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“We would all be better off if more people
realised that simple nonlinear systems do not
necessarily possess simple dynamical prop-
erties.”

–Robert May, 1976-

”I think the next [21st] century will be the
century of complexity. We have already dis-
covered the basic laws that govern matter
and understand all the normal situations. We
don’t know how the laws fit together, and what
happens under extreme conditions. But I ex-
pect we will find a complete unified theory
sometime this century. There is no limit to
the complexity that we can build using those
basic laws.”

-Stephen Hawking, 2000-

”Bisogna avere un caos dentro di sé per
generare una stella danzante.”

-Nietzsche, 1883–





Abstract

Rivers are amongst the most dynamic ecosystems on earth. River ecosystems are highly
disturbed environments, where riparian vegetation, water and sediments, are intercon-
nected by positive and negative feedbacks, driven by a set of interactions. In the last two
decades, it has been widely recognized that these eco-morphodynamic feedbacks play a
crucial role in governing the equilibrium and dynamics of river ecosystem.
However, the incomplete understanding and quantification of these feedbacks limit the
comprehension of river behavior and the development of efficient predictive models.
Thus, in this research, fundamental intrinsic feedbacks between riparian vegetation and
hydro-morphodynamic disturbance are modeled, where the disturbance is generated by
the vegetation itself. The aim is to investigate how these intrinsic feedbacks govern the
equilibrium and dynamics of a simplified river ecosystem.
To this end, numerical simulations were conducted using both a 0D model (non-spatial)
and a 1D model (spatial) coupling hydro-morphodynamics with vegetation dynamics.
The case study is a straight channel where vegetation can grow only in the central patch,
while upstream and downstream there are bare soil regions. The system is perturbed
periodically by a succession of floods of constant amplitude. Vegetation growth occurs in
between of two consecutive floods, during low flood periods. Vegetation consists of two
components, the above-ground biomass (canopy) and below-ground biomass (root depth).
In both models, the canopy increases the roughness, reducing flow velocity. Variations in
the flow field and the reduction of bottom shear stress modify sediment transport, leading
to a greater imbalance between the vegetated and bare areas and thus, inducing erosion.
Erosion increases the probability of vegetation uprooting, and when scour reaches root
depth, uprooting occurs. The overall feedback loop is negative: higher vegetation biomass
causes greater sediment flux imbalance and more erosion, ultimately resulting in less veg-
etation. However, root growth may inhibit the negative feedback loop, promoting positive
feedbacks. Indeed, this interplay between hydro-morphodynamic disturbance (erosion)
and the vegetation resistance (root depth), governs the predominance of either a positive
or a negative feedback overall balance.
Model results demonstrate that when the positive feedback overall balance prevails, the
system always reaches a stable configuration. Furthermore, the system can exhibit hystere-
sis, meaning that, depending on the initial condition, it can achieve a stable configuration
in two alternative states, the fully vegetated condition or bare soil. In the presence of the
vegetated patch, the system can also exhibit a more complex multi-stable behavior, with
infinite equilibria between the two alternative states. This also implies that spatial inter-
actions smooth out critical transitions and tipping points, by facilitating smoother shifts
that occur gradually through multiple smaller intermediate steps. Indeed, the resilience
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of the system, which is the ability of the system to still maintain its fundamental structure
and functions after being subject to the ecological disturbance, increases due to spatial
interactions.
In contrast, when the negative feedback overall balance prevails, the system never reaches
a steady state but exhibits dynamic oscillations. The oscillations can be either (i) periodic
or (ii) aperiodic, strongly dependent on initial conditions, and with a positive Maximum
Lyapunov Exponent, indicating chaotic behavior. The study also reveals that the route to
chaos is a period-doubling bifurcation, and the calculation of time scale of predictability
shows that the system is predictable only for a few growth-flood cycles.
These results suggest that altering the ratio between hydro-morphodynamic disturbance
and vegetation resistance, such as through anthropogenic pressure and climate change,
may shift the system from a positive to a negative feedback overall balance. This shift
could lead from a stable state to periodic oscillations or unpredictable chaotic behavior,
limiting long-term predictions of river trajectories. Additionally, understanding how posi-
tive and negative eco-morphodynamic feedbacks govern river dynamics can contribute to
develop efficient predictive models. Models are essential tools for implementing efficient
river management and facilitate effective communication with stakeholders.
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dell’impostore, perché ce lo meritiamo. Vi auguro un grande successo per il vostro per-
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Chapter 1

Introduction

1.1 River Ecosystem
Rivers are amongst the most dynamic and highly productive ecosystems on earth (e.g.,
Van Oorschot et al., 2017). In the past, they played a central role in human society,
serving as the cradle and hub of some of the most important civilizations (Smith, 2020).
Even nowadays, they provide essential services to society and they support economic and
recreational activities. They are highly disturbed environments, which are characterized
by complex, temporally dynamic spatial distributions associated with a shifting mosaic of
habitat patches (Gurnell, 2014). In such environments, living organisms, such as riparian
vegetation, interact with abiotic components of the surrounding environment, sediments,
and water, through nonlinear complex feedbacks (Odum, 1959).
Over the last two decades the importance has been widely recognized of these two-way
interactions between riparian vegetation and hydro-morphodynamic processes in control-
ling river ecosystem equilibrium and dynamics (Corenblit et al., 2007). The importance
has been highlighted by laboratory experiments (e.g., Tal and Paola, 2010; Le Bouteiller
and Venditti, 2015), field studies (e.g., Pasquale et al., 2014), and numerical models
(e.g., Perona et al., 2009; Bertagni et al., 2018).
The main eco-morphodynamic feedbacks are illustrated in the Figure 1.1 and are briefly
described in the following paragraphs.

1.1.1 Effects of riparian vegetation on hydro-morphodynamics
Riparian vegetation has been recognized as one of the fundamental components of river
systems, controlling river evolution at different spatial and temporal scales (Gurnell,
2014). The flow field encounters the canopy and undergoes a change in turbulence (Nepf,
2012), direction and intensity due to an increase in drag force and roughness. These
changes occur at both the scale of individual plants and vegetation patches (Zong and Nepf,
2010). The additional drag force is due to the physical obstruction of the canopy and varies
significantly with biomechanical properties, such as stem density, flexibility, submerged
and emergent conditions (Västilä and Järvelä, 2014). The increase in roughness is a
consequence of energy and momentum loss caused by friction with vegetation and the
ground. In hydraulic models, the overall feedback between canopy and flow is commonly
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CHAPTER 1. INTRODUCTION

Figure 1.1: Key eco-morphodynamic feedbacks in the river ecosystem

modeled by increasing the roughness value (Politti et al., 2018).
Variations in the flow field have also profound effects on sediment transport, indeed bottom
shear stress is reduced due to the presence of vegetation. In fact, the vegetation slows
down the flow velocity and increases local deposition, stabilizing channel geometry (Li and
Millar, 2011). Reduction in bottom shear stress within vegetated patches induces reach-
scale riverbed changes, with a higher reduction observed in areas with denser vegetation
and larger plant frontal areas (Vargas-Luna et al., 2015; Le Bouteiller and Venditti,
2015). Ultimately, the canopy is also capable of trapping sediments (Corenblit et al.,
2014). The root system also plays a significant role in the morphodynamic evolution
of river ecosystems. In fact, roots increase sediment cohesion (Pasquale et al., 2014)
and affect the hydraulic and mechanical properties of the substrate, reducing erosion and
increasing bank stability (Gurnell, 2014; Politti et al., 2018). Additionally, they can alter
the moisture content of the riverbed, as highlighted by Tron et al. (2014).
Roots often display a complex structure (Gregory, 2007) and can be phreatophytic, namely
they extend into the riverbed to reach the groundwater level position. Among riparian
plants, there are many examples of phreatophytic plants, such as𝑄𝑢𝑒𝑟𝑐𝑢𝑠 𝑙𝑜𝑏𝑎𝑡𝑎 (Rohde
et al., 2021) and 𝑃𝑜𝑝𝑢𝑙𝑢𝑠 𝑛𝑖𝑔𝑟𝑎 (Holloway et al., 2017), while this characteristic is less
common in aquatic plants.

1.1.2 Effects of hydro-morphodynamics on riparian vegetation

Fluvial hydro-morphodynamic processes play a significant role in all plant life stages, that
is, dispersal, colonization, recruitment, growth, succession and mortality (Solari et al.,
2016). Water flow is essential for the transportation and dispersal of seeds and propagules.
After the dispersion, plant recruitment success depends mainly on water flow fluctuations
(Caponi et al., 2019), and on a minimum disturbance-free period (defined as ”Windows
of Opportunity” by Balke and Nilsson 2019). Additionally, groundwater level fluctu-
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ations affect root system growth, distribution and maximum depth (Tron et al., 2014).
During vegetation succession, besides the flow and flood regime, other crucial elements
include channel geometry, soil type, and species distribution and competition. To ensure
their survival, riparian plants often adopt strategies during different life stages, such as
developing high dispersal rates, vegetative reproduction (Camporeale et al., 2013) and
resistant roots.
Prolonged periods of flooding can reduce the oxygen in the riverbed, causing plant mor-
tality by anoxia. Moreover, hydro-morphodynamic processes can expose vegetation to
mortality by burial and uprooting. Burial occurs during the final phase of floods, when
water velocity decreases and sediments are deposited, covering totally (or even partially)
the canopy (Holloway et al., 2017). In contrast, uprooting occurs during floods when
hydro-morphodynamic disturbance weaken the roots mechanical anchoring.
Edmaier et al. (2011) classified the uprooting into two types: the type I mechanism
occurs when the flow has enough force to pull out the plant instantaneously; the second
type II mechanism occurs when a gradual erosion exposes roots to the flow, reducing
the plant’s roots anchoring force. Thus, uprooting type II occurs only when a significant
proportion of roots has been exposed due to erosion. Several studies suggest that the type
II mechanism is the main cause of vegetation mortality in gravel bed rivers (Pasquale
et al., 2012; Crouzy et al., 2013; Edmaier et al., 2015; Bywater-Reyes et al., 2015).

1.1.3 Biogeomorphic succession: disturbance and resistance

Riparian vegetation can significantly control geomorphic processes and landform dynam-
ics. Therefore, plants are ”ecosystem engineers”, and they use available resources to
maintain, to modify or create their own habitat (Jones et al., 1994). River size and stream
power determine the species acting as ecosystem engineers. In low dynamic streams,
aquatic plants prevail, while in larger rivers, pioneer riparian trees dominate because they
must withstand higher stream power (Gurnell, 2014). Plants play an active role and
promote positive feedbacks, such as resisting against the flow, trapping and stabilizing
sediments, and increasing bank stability (Gurnell, 2014), to adapt the environment and
create a niche favorable for biogeomorphic succession.
The biogeomorphic succession of vegetation is a self-organized, space- and time-oriented

process. Indeed, it involves a gradual transition from bare soil to seedlings, then to pio-
neer shrublands, followed by post-pioneer forests or a biomorphological phase, ultimately
reaching a stable state, the ecological phase, as shown in Figure 1.2 (Corenblit et al.,
2009). The biogeomorphic succession can regress due to the destructive flood force,
which erodes sediments and uproots vegetation. Large floods, having low frequency and
high intensity, may shift the system from any stage to bare soil. Therefore, the interplay
between vegetation resistance force and the destructive flood force governs the spatial and
temporal progression (landform aggradation) or regression (erosion and uprooting) in the
biogeomorphic succession, generating cyclic dynamics.
Riparian trees can rapidly grow into mature plants within a few years under favorable
hydro-morphological conditions (Corenblit et al., 2014). Also root resistance develops
quickly, with phreatophytic plant roots easily reaching depths greater than > 1 𝑚 within
1-2 years (Mahoney and Rood, 1998). In larger gravel-bed rivers, the return interval of
floods that can significantly affect vegetation has been reported to vary from 1-2 years
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Bare soil Pioneer

BiogeomorphologicalEcological phase

Flood disturbance

Plants resistance

Figure 1.2: The interplay between the two antagonistic forces of vegetation resistance (green
arrow) and flood disturbance (blue arrow) creates dynamic cycles in the biogeomorphic succes-
sion. Adapted from Corenblit et al., (2009).

for partial vegetation removal on highly dynamic braided rivers (Surian et al., 2015), to
several decades for major vegetation renewal (Belletti et al., 2014).

1.2 River ecosystem as a complex system

From a mathematical perspective ecosystems, and thus also the river ecosystem, are
complex systems (Limburg et al., 2002). Complex systems consist of interconnected
and interdependent elements that exhibit particular properties, including emergence, self-
organization, and adaptation (as explained in the next paragraphs).
This perspective allows for understanding and predicting nonlinear phenomena, such as
hysteresis cycles and abrupt shifts, which have been observed in river ecosystems, yet
lacking a systematic interpretation. In fact, complex systems can be studied through the
discipline of system dynamics, which explains complex behaviors such as hysteresis, but
also oscillations, and chaos.
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1.2.1 Positive and negative feedbacks loop

The ecosystem is, by definition, a physical system composed of biotic and abiotic elements
interconnected by each other and the surrounding environment (Odum, 1959). These in-
teractions can be schematized by negative or positive feedbacks (DeAngelis et al., 2012).
Positive feedback amplifies the effect by reinforcing the other element in the same direc-
tion while negative feedback occurs when one element influences the other in the opposite
direction. The ecosystem is typically composed of numerous interconnected elements in
a network generating positive or negative feedback ”loops” among all its components.
Depending on the environmental condition and external disturbance, negative or positive
feedback loops may prevail.
Positive feedback loops push the ecosystem in one direction, in an exponential growth
or decay, towards the alternative stable states outside the normal operating parameters.
Positive feedbacks stimulate changes and they are responsible of a rapid change within
the ecosystem or shifts towards alternative stable states. An example of a positive feed-
back loop is the root-riverbed cohesion relation (see Figure 1.3A): roots increase riverbed
cohesion (+), reducing sediment mobility and erosion, and enhancing soil strengthening,
which in turn induces sediment accretion and root development (+) (Van de Vijsel et al.,
2023). Multiplying the positive effects results in a positive total loop that pushes the
system toward landform aggradation and vegetated islands (Corenblit et al., 2014).

Ecosystem boundaries

Ecosystem boundaries

Ecosystem boundaries

Ecosystem boundaries

+

+

-

- (Roots)(Soil moisture)

+

(Roots)(Soil cohesion)
+

Figure 1.3: The nonlinear interactions among abiotic and biotic elements of an ecosystem can
generate to either positive or negative feedback loops. (A) Positive feedback loops drive the
ecosystem towards exponential growth or decay, pushing it towards alternative stable states
—such as the roots-soil cohesion relation. (B) Conversely, negative feedback loops regulate
the ecosystem’s internal balance — such as the roots-soil moisture relation.
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Instead, negative feedback loops regulate the entire ecosystem, keeping it within natural
boundaries and regulating its internal balance. Several studies demonstrate how the in-
ternal balance can be both static and dynamic, meaning that some systems, to function
properly, do not reach a steady state but keep on oscillating within the natural boundaries
(Siteur et al., 2016; Lloyd et al., 2001; Ruoff and Nishiyama, 2020). Negative feedback
loops generate oscillations, which can be periodic or chaotic. For instance, a negative feed-
back loop is observed in the roots-riverbed moisture relation (see Figure 1.3B): riverbed
moisture promotes root development (+), roots absorb water, reducing riverbed moisture
(-). Multiplying the negative effect by the positive effect results in a negative total loop.
In this way, both roots and riverbed moisture are constrained within natural boundaries, in
a state of oscillatory equilibrium.

1.2.2 Properties of a complex system

Among the various biotic and abiotic components, synergy may emerge. This implies
that these elements can collaborate through feedback loops, enhancing effects with a more
significant impact than if they were isolated. This synergy may give rise to the property
of emergence (Corning, 2012), meaning the sum of the parts does not give the whole, but
new properties and principles can emerge among their interactions.
The ecosystem is also subject to an external ecological disturbance, which is a physical
force, agent, or process causing a perturbation within it (Rykiel Jr, 1985). Typically, the
ecological disturbance acts quickly and with a significant effect, resulting in the removal of
a large amount of biomass. This can be observed in several ecosystems, for instance, by the
devastation of forests due to fires and avalanches, as well as the impact of floods on riparian
plants. These events can disrupt the balance of positive and negative feedbacks within the
ecosystem, causing a shift away from equilibrium, as discussed by Morgan Ernest and
Brown (2001).
The ecosystem’s capacity to withstand disturbance is referred to as the force of ’resistance’
(Lake, 2013). As mentioned in the previous section, in the river ecosystem, ecological
disturbance is caused by floods, and the resistance force is provided by riparian vegetation.
Additionally, the ecosystem has an important property called ”resilience”, defined as ”a
measure of the ability of the system to absorb changes of state variables, driving variables,
and parameters, and still persist” (Holling, 1973).
When the ecosystem is perturbed by the ecological disturbance, it naturally self-organizes
into spatial patterns. Examples of self-organization in ecosystems are coral structures
(Van der Kaaden et al., 2020), flocking behavior in birds (Cavagna et al., 2010) and
vegetation patters in arid zones (Meron, 2015). Elements within the system collaborate
by organizing and dividing tasks, forming self-organized cells, and working cooperatively
(Odum, 1959) to establish efficient networks and patterns. This self-organization emerges
from dynamic interactions among individual components; thus, the system is autonomous
and lacks centralized control (Levin, 1998). The self-organization and emergence of pat-
terns represent adaptive processes (Isaeva, 2012) within the ecosystem. The adaptability
property enables the ecosystem to continuously adjust itself to evolving needs, ensuring
equilibrium and evolution, but making its predictions challenging.
In the river ecosystem, an example of self-organization is provided by morphological
bars. Morphological bars represent mesoscale patterns characterized by sediment waves
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with wavelengths proportional to the channel width. They form in both fine and coarse
sediments (Seminara and Tubino, 2001; Seminara, 2010) due to hydro-morphodynamic
interactions (see Figure 1.4).

Figure 1.4: Morphological bars are examples of self-organization in the river ecosystem. In the
figure are shown the Tagliamento River (left) and Reno River (right). Adapted from Google Earth.

1.2.3 Behavior of a complex system

Predicting ecosystem behavior is also challenging because the ecosystem can remain in
equilibrium for a long period and then undergo sudden shifts of abrupt changes. The
state change can be gradual, following a linear or quasi-linear trend as external perturba-
tions vary. Alternatively, it may cross a critical threshold, following a nonlinear complex
trend and critical shifts (Scheffer et al., 2001). In other cases, the ecosystem can also
exhibit hysteresis (Phillips, 2003). In the hysteresis cycle, two possible states, known
as alternative stable states, exist for a given set of conditions. Thus, the return from
the post-disturbance state to the pre-disturbance state may not encounter the same initial
conditions due to a shift in the ecosystem’s equilibrium. When the system is disturbed
beyond a critical threshold, it may abruptly switch from one state to another. Several
studies also show how ecosystems can exhibit multiple equilibria and states of coexistence
(e.g., Rietkerk et al., 2021; Bastiaansen et al., 2022). Furthermore, numerous studies
suggest that the ecosystem may not always reach a stable equilibrium but it may persist in
periodic or chaotic oscillations (e.g., Rinaldi and Scheffer, 2000; Reluga, 2004; Siteur
et al., 2014; Grimaudo et al., 2022).

From a mathematical perspective, complex systems can be analyzed using dynamical
systems theory (Newman, 2011). Among the various possible approaches, this theory
also includes developing numerical models to explore the relationships among the system
components and investigating their behavior over time.

Dynamical systems theory focuses on both the statics and dynamics of the system. Statics
involves studying the system when there are no variations over time (e.g., equilibrium
and hysteresis); dynamics examines the system’s behavior over time and focuses on how
the system variables change in response to disturbances (e.g., bifurcations, oscillations,
chaos).
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1.3 Research gap and motivations
In the river ecosystem, the interplay between hydro-morphodynamic disturbance and
the vegetation resistance governs the predominance of either positive or negative eco-
morphodynamic feedbacks, controlling river statics and dynamics (Corenblit et al., 2014).
Even though many eco-morphodynamic feedbacks are already known, the understanding
of how these mechanisms interact with each other and govern river processes remains
limited (e.g, Wohl et al. 2015, Van Oorschot et al. 2017). Recent studies show how
such eco-morphodynamic interactions can make dynamics very complex and challenging
to understand, including critical shifts and hysteresis (e.g., Bertagni et al., 2018; Bau’
et al., 2021). Other studies demonstrate how the river system can exhibit oscillations and
chaotic behavior, considering water-sediment interactions (Salter et al., 2020; Stecca and
Hicks, 2022).
Approaching the river ecosystem from the perspective of a complex system can help sys-
tematically understand these intricate nonlinear dynamics.
Therefore, this research aims to understand how the main positive and negative eco-
morphodynamic feedbacks govern the complex equilibrium and dynamics of a simplified
river ecosystem. To this end, simplified numerical models are developed to couple hydro-
morphodynamics with vegetation dynamics.
This research can contribute to developing predictive models for a better understanding of
river dynamics and for an improvement of river management.
In fact, critical shifts and hysteresis can challenge predictions of evolutionary trajectories
due to rapid and potentially irreversible changes (Bertoldi et al., 2014; Bertagni et al.,
2018). Moreover, the chaotic behavior inherently limits the long-term predictability of
system trajectories, modifying the approach to predictive eco-morphodynamic models,
their development, and the interpretation of their results, as suggested for other geo-
morphic systems (Phillips, 2003; Salter et al., 2020). Predictive models are vital for
understanding river responses to environmental changes and guiding river management
for risk mitigation and ecosystem restoration (Wohl et al., 2015).
This becomes even more crucial with climate change, where the effects are observed in
the variation of flood disturbance, whether in its frequency, magnitude, or timing (Blöschl
et al., 2017). Delays or advancements in flood disturbance timing can introduce an im-
balance in the ecosystem functioning, for example, by altering the plant growing season.
Thus, understanding system equilibrium and dynamics is also crucial for predicting cli-
mate change effects and preserving the functionality and intrinsic value of ecological
processes in river ecosystems.

1.4 Research objectives
The main objective of this PhD research is:

-Understanding, through numerical models, the fundamental positive and negative
feedbacks among vegetation, water, and sediments to investigate how they influence
both the (i) static and (ii) dynamic behavior of a simplified river ecosystem.

More specifically:
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-Investigate the presence of hysteresis behavior and how spatial interactions may
influence the system’s equilibrium (static).

-Investigate the presence of chaotic behavior, define its properties and driving pa-
rameters and quantify the time scale of predictability (dynamic).

To this end, simplified numerical models are developed, including a 0D model (non-
spatial) and a 1D model (spatial), coupling hydro-morphodynamics with vegetation dy-
namics. Both models include only the key eco-morphodynamic feedbacks and processes.
These models are used to explore both the statics and dynamics of the river ecosystem by
applying the theory of dynamical systems.

1.5 Thesis Outline: Next Chapters
In Chapter 2, eco-morphodynamic numerical models are described. From the traditional
eco-morphodynamic problem, assumptions are made to derive the 1D model (spatial),
with further simplifications for the 0D model (non-spatial), necessary to reduce the com-
putational simulation time.
In Chapter 3, both models are used to investigate the statics of the system. The static
behavior of the 0D model, that is when the overall balance of positive feedbacks prevail,
is investigated. Subsequently, the effect of spatial interactions (1D model) on stability is
examined.
In Chapter 4, both models are used to investigate the dynamic of the system, that is when
the overall balance of negative feedbacks prevail. Periodic and aperiodic oscillations are
investigated in both the non-spatial and spatial models.
In Chapter 5, the main results obtained will be summarized and discussed based on the
conducted analysis and the established research objectives.
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Chapter 2

Eco-morphodynamic models

2.1 Introduction

In recent years, several models have been developed to describe the dynamics between
vegetation and hydro-morphodynamic processes (Solari et al., 2016). Analytical models,
despite their simplicity, have played a crucial role in isolating and understanding several
ecological processes (Camporeale and Ridolfi, 2006; Tron et al., 2014; Bertagni et al.,
2018; Perona and Crouzy, 2018). For instance, Camporeale and Ridolfi (2006) in-
vestigate the effect of river hydrology on the distribution of vegetation along the riparian
transect transverse to the river, while Tron et al. (2014) introduce an analytical model
with stochastic components, which describes the interaction between root growth and
groundwater oscillations. Moreover, Perona and Crouzy (2018) introduce a physically
based stochastic model for the uprooting mechanism.
One of the earliest numerical models with on-line eco-morphodynamic feedbacks is the
cellular automata one by Murray and Paola (2003), used to investigate the effect of sed-
iment stabilization by roots on the channel pattern. Cellular rule-based models allow for
simulating ecological processes with short computational times and with a relatively easy
set-up but they have limitations in representing morphodynamic processes at the reach
scale (Coulthard et al., 2007). The development of physics-based numerical models has
allowed to overcome this limitation. For instance, Crosato and Saleh (2011) solve the
hydro-morphodynamic problem including vegetation, as a static element, which modifies
the flow field and sediment transport. Bertoldi et al. (2014) additionally include vegeta-
tion dynamics, both growth and death, which actively influence hydro-morphodynamics.
One of the most recent sophisticated model by Van Oorschot et al. (2017) incorporates
also several ecological processes such as colonization, seedling establishment, and species
interactions.

Although there are now several advanced models that include numerous ecological pro-
cesses, for this analysis, simplified deterministic models are developed: a 0D model
(non-spatial) and a 1D model (spatial). These models consider only the main fundamental
feedbacks between vegetation and hydro-morphodynamics to (i) reduce the complexity
of the analysis, to (ii) have greater control over the ongoing processes, and (iii) reduce
the computational time required for simulations. Indeed, the study of dynamical systems
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(i.e., bi-stability, bifurcation, chaos) requires complex analyses that can be more easily
understood and untangled by simplified models. Moreover, the development of the non-
spatial model enables conducting analytical analyses and gaining a deeper understanding
of the system properties and dynamics. Finally, by modeling only the main feedbacks,
they can be isolated and there is greater control over their interactions. The fundamental
processes implemented in the models are shown in Figure 2.1. Vegetation consists of two
components, the canopy and the root depth. The canopy increases fluid flow resistance
by increasing local roughness, modifying flow patterns (Nepf, 2012) and reducing the
bottom shear stress (Le Bouteiller and Venditti, 2015). Moreover, the uprooting type II
is implemented, since it’s the most relevant plant death mechanism for most fluvial envi-
ronments (Edmaier et al., 2011; Bywater-Reyes et al., 2015). In addition, vegetation and
root growth are implemented, where the maximum root depth is limited and controlled by
the position of the groundwater level (Fan et al., 2017).
In both models, the canopy modifies the flow field and reduces the bottom shear stress,
inducing erosion at the downstream boundary between the vegetated and the bare areas due
to an imbalance between the bedload fluxes entering and exiting the control volume. This
process generates an intrinsic feedback whereby the presence and growth of vegetation
increases the disturbance (Bouma et al., 2007; Le Bouteiller and Venditti, 2015) and
thus potentially induces vegetation uprooting. This intrinsic process is common in many
fluvial environments where scour occurs in close proximity to individual plants or vege-
tation patches. Depending on the configuration, erosion may occur upstream or laterally
of small vegetated patches (Zong and Nepf, 2012; Kim et al., 2015) or downstream of
larger patches covering the entire channel width (Le Bouteiller and Venditti, 2015; Diehl
et al., 2017).
In this analysis, simplified models are used to isolate this intrinsic mechanism which
directly links the presence of vegetation to the magnitude of disturbance, investigating
how it affects river equilibrium and dynamics. Numerical models can be useful tools for
understanding river responses to environmental changes and guiding river management for
risk mitigation and ecosystem restoration (Wohl et al., 2015; Palmer and Ruhi, 2019).

&

Figure 2.1: Key eco-morphodynamic processes implemented in the models.
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2.2 Hydro-morphodynamic problem
For this analysis, the starting point is the traditional 1D model of the hydro-morphodynamic
problem, as given by the Saint-Venant-Exner model.

𝜕ℎ

𝜕𝑡
+ 𝜕𝑞𝑥
𝜕𝑥

= 0 , (a)

𝜕𝑞𝑥

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑞2
𝑥

ℎ

)
+ 𝑔ℎ( 𝜕ℎ

𝜕𝑥
+ 𝜕𝑧𝐵
𝜕𝑥

) = −𝑔ℎ(𝑆 𝑓 𝑥) , (b)

(1 − 𝑝) 𝜕𝑧𝐵
𝜕𝑡

+ 𝜕𝑞𝐵𝑥
𝜕𝑥

= 0 , (c)

(2.1)

where the equation (2.1a) is the Continuity equation, the equation (2.1b) is the Momentum
equation and the equation (2.1c) is the sediment continuity equation, namely the Exner
equation. ℎ is the water depth, 𝑥 is the stream–wise coordinate, 𝑡 is time, 𝑞𝑥 is water
discharge per unit width, 𝑔 is is the gravitational acceleration, 𝑆 𝑓 𝑥 is the friction term, 𝑧𝐵
is the riverbed level, 𝑞𝐵𝑥 is the sediment discharge per unit width and 𝑝 is the sediment
porosity (refer to Figure 2.2). The equation (2.1a) indicates that, to ensure the conservation
of water mass, temporal variations in the water level must be balanced by corresponding
variations in the water discharge inflow and outflow along the x-axis. The equation (2.1b)
delineates a force equilibrium within the x-axis: the two initial terms denote the inertia
forces of the flow, accounting for temporal variations in water discharge and spatial flow
variance. The subsequent two terms represent the gravitational pull on the water mass
along the x-axis, while the final term represents head losses due to friction. The equation
(2.1c) indicates that, to ensure the conservation of sediment mass, temporal variations in
the riverbed level must be balanced by corresponding variations in the inflow and outflow
sediment discharge along the x-axis.
An additional assumption is made, namely, that the riverbed evolves, and the flow field

adapts instantaneously to the riverbed (i.e., steady flow condition is assumed 𝜕ℎ
𝜕𝑡

≈ 0,
𝜕𝑞𝑥
𝜕𝑡

≈ 0). Considering this assumption during subsequent morphodynamic steps, the
Exner equation (2.1c) can be integrated with a larger time step, significantly reducing
computational time (Parker, 2004). Several simulations are conducted, both with and
without this simplification, to prove that it did not significantly impact the analysis and
results regarding the dynamic behavior of the system (the simulations are omitted here).
This assumption leads to these further simplified equations:

𝑞𝑥 = 𝑐𝑜𝑛𝑠𝑡 , (a)

𝑑ℎ

𝑑𝑥
=
𝑆 − 𝑆 𝑓 𝑥
1 − 𝐹2

𝑅

, (b)

(1 − 𝑝) 𝜕𝑧𝐵
𝜕𝑡

+ 𝜕𝑞𝐵𝑥
𝜕𝑥

= 0 , (c)

(2.2)

where 𝑆 is the riverbed slope (≈ 𝜕𝑧𝐵
𝜕𝑥

) and 𝐹𝑅 is the Froude number. The equation (2.2b)
is the Gradually Varied Flow Equation.
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Figure 2.2: Sketch of the variables and parameters in the one-dimensional hydro-morphodynamic
problem.

2.3 1D model (spatial) and feedback loop

2.3.1 Hydro-morphodynamic processes
Starting from the traditional hydro-morphodynamic problem, a 1D eco-morphodynamic
model (spatial) is developed to capture the main feedbacks between vegetation and hydro-
morphodynamic processes. A river reach with a rectangular cross-section, a central
vegetated patch, and a riverbed composed of cohesionless, uniform sediment is considered.
Starting from the system of equations (2.2), the hydrodynamic problem is solved by
numerically integrating the Gradually Varied Flow Equation (2.2b) and using the Manning-
Strickler method to evaluate the overall flow resistance, where the total shear stress is
calculated as:

𝜏 =
𝜌𝑔𝑢 |𝑢 |
𝑘2
𝑠ℎ

1/3
, (2.3)

where 𝜌 is the water density, 𝑔 is the gravitational acceleration, 𝑢 is the vertically averaged
flow velocity, ℎ is the water depth, and 𝑘𝑠 is the Strickler coefficient (the inverse of the
Manning coefficient 𝑛). The friction term 𝑆 𝑓 𝑥 is given by:

𝑆 𝑓 𝑥 =
|𝑢2 |
𝑘2
𝑠ℎ

4/3
. (2.4)

While the discharge may vary over time, it remains constant over the entire river reach
during a single time step. The Exner equation (2.2c) is adopted to obtain the evolution
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of the bottom elevation 𝑧𝐵 of a riverbed composed of a uniform sediment. The 𝑞𝐵𝑥 is
determined through the standard Meyer-Peter Müller equation (Meyer-Peter et al., 1948),
which requires that the dimensionless Shields shear stresses 𝜃 exceeds a threshold value
(𝜃𝑐𝑟 = 0.047) for the onset of sediment transport:

𝑞𝐵𝑥√︃
(𝑠 − 1)𝑔𝑑𝑠3

= 8 (𝜃 − 𝜃cr)
3
2 (2.5)

where 𝑠 is the sediment relative density and 𝑑𝑠 is the sediment diameter.
The dimensionless Shields stress is given by:

𝜃 =
|𝜏 |

(𝜌𝑠 − 𝜌)𝑔𝑑𝑠
, (2.6)

where 𝜌𝑠 is the sediment density.
The Exner equation (2.2c) is solved by using a Godunov method (Toro, 2001), and the
water surface profile is obtained by solving the Gradually Varied Flow Equation using a
standard solver for ordinary differential equations. The numerical domain is discretized
in 200 uniform cells (𝑀 = 200). The total channel length is 𝐿 = 1500 𝑚, the upstream
coordinate of the vegetated patch is 𝑥𝑢𝑝 = 600 𝑚, meanwhile the one downstream is
𝑥𝑑𝑤 = 900 𝑚. Uniform conditions are set at both the inlet and outlet of the numerical
domain as initial conditions, and a fixed-bed simulation is conducted until steady state is
reached. Then, morphodynamic simulations are performed, maintaining 𝑧𝐵 fixed at both
the inlet and the outlet.

2.3.2 Vegetation growth
In this model, the vegetation 𝐵 is dimensionless and grows over time (𝑡) following a logistic
function (Bertagni et al., 2018; Caponi and Siviglia, 2018), which can be integrated to
obtain the following equation:

𝐵(𝑡) = 𝐵0𝐾𝑒
𝜎𝑡

𝐵0 (𝑒𝜎𝑡 − 1) + 𝐾 . (2.7)

where 𝐵 is the vegetation biomass, 𝐵0 is the biomass at the onset of the growth period, 𝑡
is time, 𝐾 is the maximum biomass value (carrying capacity, set to 1 in this model) and 𝜎
is the vegetation growth rate, which is constant. Vegetation only grows within the central
vegetated patch, with biomass initialized at a small positive value 𝐵𝑚𝑖𝑛 to ensure growth
from bare soil.
The model considers root depth, denoted as 𝜁𝑢𝑝𝑟 , to grow over time (𝑡) following an
exponential function as:

𝑑𝜁𝑢𝑝𝑟

𝑑𝑡
= 𝜎𝑟 𝜁𝑢𝑝𝑟 , (2.8)

𝜁𝑢𝑝𝑟 = min(offset, 𝜁𝑢𝑝𝑟 ) , (2.9)

where 𝜎𝑟 is the root growth rate and is constant. The root depth 𝜁𝑢𝑝𝑟 can reach a
maximum value called ”offset”, which represents the distance between the riverbed 𝑧𝐵
and the groundwater table level. It is considered that roots cannot grow below such a
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level because they would die due to anoxia (Tron et al., 2014). We also assume that the
groundwater level is always parallel to and at a constant distance from the riverbed 𝑧𝐵.
Moreover, in this model, there are two distinct time scales: the flood time scale (𝑇𝐹) and
the growth time scale (𝑇𝑣), namely period of low flow. During flood periods, when the
dimensionless shear stresses 𝜃 exceeds the threshold value 𝜃𝑐𝑟 and solid transport occurs,
vegetation may be partially or totally uprooted due to the erosion mechanism (uprooting
type II).

2.3.3 Biogeomorphic feedbacks

The model considers that in every cell of the vegetated patch, vegetation increases the
global flow resistance on the bed surface by increasing the roughness. Thus, it is assumed
that the Strickler coefficient 𝑘𝑠 decreases linearly, as described in (Bertoldi et al., 2014;
Caponi and Siviglia, 2018):

𝑘𝑠 = 𝑘𝑠,𝑔 + (𝑘𝑠,𝑣 − 𝑘𝑠,𝑔)
𝐵(𝑡)
𝐾

, (2.10)

where 𝑘𝑠,𝑔 refers to the value attributed to the bare soil while 𝑘𝑠,𝑣 is the roughness of
a fully vegetated bed and 𝑘𝑠,𝑣 < 𝑘𝑠 . As roughness increases, flow velocity decreases
nonlinearly, modifying the Shields stress 𝜃 and thus reducing sediment transport. This
leads to an imbalance in transport capacity between the vegetated and bare areas in the
downstream part of the vegetated patch, consequently leading to erosion.
The vegetation 𝐵 also reduces the bottom shear stress, affecting sediment transport (Yager
and Schmeeckle, 2013; Le Bouteiller and Venditti, 2015). Since direct quantification
of the bottom shear stress is extremely difficult in the presence of vegetation, the reduction
of bottom shear stress is modeled by multiplying the total shear stress 𝜏 by a factor 𝛾 < 1
(Le Bouteiller and Venditti, 2015; Caponi and Siviglia, 2018) and compute the sediment
flux using the reduced Shields stress, 𝛾𝜃. The parameter 𝛾 ranges between 0 and 1 and it
is chosen as:

𝛾 =

(
𝑘𝑠 (𝑡)
𝑘𝑠,𝑔

)2
. (2.11)

During flood periods, the type II uprooting mechanism occurs (Edmaier et al., 2011;
Pasquale et al., 2012; Bywater-Reyes et al., 2015). Although experimental evidence
suggests type II uprooting typically occurs before complete root biomass excavation (Ed-
maier et al., 2015), it is assumed that uprooting occurs when flow-induced erosion fully
excavates to root depth 𝜁𝑢𝑝𝑟 . This assumption is made to avoid the introduction of an
additional threshold parameter. Thus, two cases are possible: if Δ𝑧𝐵 ≥ 𝜁𝑢𝑝𝑟 uprooting
occurs and vegetation in the specific cell is completely removed; if Δ𝑧𝐵 < 𝜁𝑢𝑝𝑟 , uprooting
does not occur.
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2.3.4 Model workflow

Figure 2.3: Sketch of the eco-morphodynamic model functioning. An alternating sequence of
constant floods (𝑇𝐹 ) and low flow periods (𝑇𝑣) is considered. The time interval between two
successive floods is Δ𝑇𝐹 . Since 𝑇𝐹 (hours, days) ≪ 𝑇𝑣 (months, years), the duration of the
flood (𝑇𝐹 ) and the growing period (𝑇𝑣) are not to scale. Vegetation and root depth grow starting
from 𝐵𝑚𝑖𝑛 and 𝜁𝑢𝑝𝑟 = 0, reaching the value 𝐵+ and 𝜁+𝑢𝑝𝑟 by the end of the growing season.
Subsequently, during the initial flood period, the uprooting reduces the values of vegetation and
root depth to 𝐵− and 𝜁−𝑢𝑝𝑟 . The surviving vegetation and the remaining root depth resulting from
the initial flood (average values 𝐵− and 𝜁−𝑢𝑝𝑟 , respectively) are used as the starting conditions
for the subsequent growth period and so forth.

The workflow used is a simplified version of Caponi et al. (2020), and its schematic
representation is illustrated in Figure 2.3. This case study is chosen to specifically re-
produce an erosion process forced only by the presence of vegetation (Le Bouteiller and
Venditti, 2014; Caponi and Siviglia, 2018) similarly to the experimental conditions used
by Le Bouteiller and Venditti (2014) and Diehl et al.(2017). This choice allows to isolate
the feedback mechanism between vegetation and erosion and thus capture its effects on
system dynamics. Although erosion occurs at the downstream boundary in this config-
uration, it’s important to note that the configuration remains applicable regardless of the
erosion’s location, be it upstream, downstream, or next to small vegetated patches. This
setup broadly represents the dynamics at the boundary between vegetated and bare areas,
where the presence of biomass intensifies erosion. The main advantage of the chosen
configuration is that it provides complete control over the erosion process.

A sequence of growth-flood cycles is considered, alternating constant floods 𝑞 and low
flow periods. Vegetation grows and develops root depth 𝜁𝑢𝑝𝑟 only during low flood pe-
riods, when there are no morphological changes (immobile bed). Feedbacks between
vegetation and hydro-morphodynamic processes (the correction of the bed shear stress,
the correction of the flow resistance and the uprooting) take place only during floods,

17



CHAPTER 2. ECO-MORPHODYNAMIC MODELS

when sediment transport, and consequently erosion, occurs.

The flood time scale 𝑇𝐹 (hours, days) is much faster than the growth time scale 𝑇𝑣
(months, years). Therefore, within the model, flood disturbances are considered as im-
pulses, and it is assumed that vegetation and root depth growth during flood events are
negligible (Bertagni et al., 2018). It is also assumed that floods repeat deterministically
with a fixed period Δ𝑇𝐹 . The assumption that the flow repeats deterministically is a
strong simplification, but it allows for better isolation and control of the effects of internal
mechanisms without the influence of external stochastic oscillations.
During low flow periods, vegetation grows logistically towards its equilibrium value (car-
rying capacity 𝐾). If the growth rate 𝜎 is equal to 1 (refer to Figure 2.4), the vegetation
𝐵 reaches 99.9% of its maximum growth (i.e., 𝐵

𝐾
= 0.999) at time 𝑡 = 𝑇𝑣 . If 𝜎 is equal to

0.1, the vegetation 𝐵 reaches 99.9% of its maximum growth at time 𝑡 = 10𝑇𝑣 . The time
scale 𝑡∗ is dimensionless and it is equal to 𝑡∗ = 𝑡

𝑇𝑉
. 𝜎 represents physically the velocity

of vegetation growth; thus, by modifying this parameter, different vegetation types can be
modeled.
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Figure 2.4: Logistic growth of vegetation types with different growth rates 𝜎. If the growth rate
𝜎 is equal to 1, the vegetation 𝐵 reaches 99.9% of its maximum growth (i.e., 𝐵

𝐾
= 0.999) at

time 𝑡 = 𝑇𝑣 . If 𝜎 is equal to 0.1, the vegetation 𝐵 reaches 99.9% of its maximum growth at time
𝑡 = 10𝑇𝑣 and so forth. The time scale 𝑡∗ is dimensionless, and it is equal to 𝑡∗ = 𝑡

𝑇𝑉
.

During the initial low flood period, vegetation and root depth grow starting from a
uniform distribution, i.e., in every cell 𝐵 = 𝐵𝑚𝑖𝑛 and 𝜁𝑢𝑝𝑟 = 0, reaching the average value
in the patch 𝐵+ and 𝜁+𝑢𝑝𝑟 by the end of the growing season. Subsequently, during the
first flood period, feedbacks between vegetation and hydro-morphodynamic processes are
activated, potentially leading to uprooting and reducing vegetation and the root depth to
the average value in the patch 𝐵− and 𝜁−𝑢𝑝𝑟 . The surviving vegetation from the initial flood
(average values 𝐵− and 𝜁−𝑢𝑝𝑟 ) is used as the starting condition for the subsequent growth
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period and so forth.
The case study is a straight channel with a wide, rectangular cross-section, with an initial
slope 𝑆, where vegetation can grow only in the central patch, while upstream and down-
stream there are bare soil regions composed of cohesionless, uniform sediment (refer to
Figure 2.5A), (Caponi and Siviglia, 2018).
At the initial condition (at 𝑡 = 0), the slope 𝑆 and vegetation distribution are uniform across
the entire domain. Due to the presence of vegetation in the central patch, spatial differ-
ences arise in the physical parameters involved in the processes. During flood periods,
the presence of vegetation reduces the flow velocity and increases the water depth ℎ in the
central patch, resulting in a greater imbalance in transport capacity between the vegetated
patch and the bare soil regions. The imbalance in transport capacity induces erosion over
time (𝑡) in the downstream interface (between the vegetated patch and the bare soil region)
and deposition in the upstream interface, increasing the slope within the vegetated patch
(refer to Figure 2.5B). When the erosion Δ𝑧𝐵 completely exceeds the root depth 𝜁𝑢𝑝𝑟 , the
vegetation in the specific cell is uprooted and the riverbed adjusts to the new conditions.
If the erosion Δ𝑧𝐵 does not excavate completely the root depth 𝜁𝑢𝑝𝑟 , the vegetation in the
specific cell resists to the hydro-morphodynamic disturbance and remains anchored in the
patch (refer to Figure 2.5C). The average value of the remaining vegetation is 𝐵− .
After the flood, during the growth period, vegetation and root depth show distinct growth
due to different initial conditions in the uprooted and non-uprooted zones. Thus, at the
end of the growth period, a spatially heterogeneous configuration is observed within the
vegetated patch as well (refer to Figure 2.5D), and the average value of the vegetation is
defined as 𝐵+. This configuration is used as the starting condition for the subsequent flood
period and so forth.
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Figure 2.5: Case study configuration of the spatial model. (A) the case study is a straight channel
where vegetation can grow only in the central patch, while upstream and downstream, there are
bare soil regions. At the initial condition (at 𝑡 = 0), the slope 𝑆 and vegetation distribution are
uniform across the entire domain. (B) During floods, (time 𝑡 = 𝑡1), bed level changes occur due
to biogeomorphic feedbacks, inducing erosion at the downstream end of the patch and inducing
deposition at the upstream end. (C) When erosion Δ𝑧𝐵 reaches the root depth 𝜁𝑢𝑝𝑟 in time
(𝑡 = 𝑡2 and 𝑡 = 𝑡3), the vegetation in the specific cell is uprooted, and the riverbed adjusts to
the new condition. (D) After the flood, during the growth period, vegetation and root depth grow
slowly in the uprooted zone and faster in the not-uprooted zone due to different initial conditions.
This final configuration is used as the starting condition for the subsequent flood period and so
forth.
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2.3.5 Negative feedback loop
The implemented feedbacks between vegetation and hydro-morphodynamic processes
generate a total negative feedback loop (Figure 2.6): more vegetation increases the rough-
ness, reduces the flow velocity and increases water depth ℎ (effect in same direction +)
within the vegetated area. An increased water depth results in a reduction of sediment
transport, leading to a greater imbalance in transport capacity between vegetated and bare
areas. Thus, higher water depth ℎ leads to more erosion in the downstream part of the
vegetated patch (effect in same direction +). More erosion leads to vegetation uprooting
(effect in opposite direction -). Multiplying the negative effect by the positive effects
results in a total negative loop.

However, the strength of the negative feedback loop is governed by the ratio between

+

+

+

+

-
-

Figure 2.6: The feedback interactions among vegetation, flow field, and sediment transport gen-
erate a total negative feedback loop: more vegetation leads to higher water depth ℎ (effect in
same direction +). Higher water depth ℎ leads to more erosion Δ𝑧𝐵 (effect in same direction +).
More erosion leads to a higher probability of vegetation uprooting (effect in opposite direction
-). Vegetation and root depth can grow during low flood periods (positive effect). If all the posi-
tive/negative effects are multiplied, a total negative feedback loop is obtained, which is in sum a
counterbalanced feedback. However, the strength of the negative feedback loop is governed by
the ratio between erosion and root depth and can also be completely inhibited, resulting in a net
positive feedback.

the hydro-morphodynamic disturbance (erosion) and root resistance (root depth) and can
also be completely inhibited by root growth (positive effect). When root growth inhibits
the negative effect of uprooting, the entire negative feedback loop is inhibited, resulting
in a net positive feedback. The inhibition of the negative feedback loop suppresses the
oscillations, and the system is driven towards steady state. The inhibition occurs when (i)
roots grow quickly or deeply into the riverbed (high value of 𝜎𝑟 or 𝑜 𝑓 𝑓 𝑠𝑒𝑡), surviving
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the uprooting and reaching over time the vegetated state; when (ii) roots grow slowly or
shallowly into the riverbed (low value of 𝜎𝑟 or 𝑜 𝑓 𝑓 𝑠𝑒𝑡), being uprooted and pushed over
time toward bare soil. In this second case, roots grow minimally during low flow periods;
nevertheless, this effect is so small that it can be considered negligible (and the solution
can be considered stable as bare soil).

2.4 0D Model (non-spatial) and feedback loop

2.4.1 Hydro-morphodynamic processes
A zero-dimensional (0D) discrete-time model is developed (May, 1974; Reluga, 2004)
(non-spatial) aiming to derive the simplest model that represents the fundamental physics
occurring at the boundary between vegetated and bare areas (Paola and Leeder, 2011). In
this conceptual model (see Figure 2.7), a control volume of length 𝐿𝑣 is being considered
to represent a vegetated patch within a river composed of cohesionless, uniform sediment.
The main assumptions of the model are uniform flow conditions for the water depth ℎ𝑢𝑛𝑖 𝑓 ,
a constant slope 𝑆 over time and a rectangular cross section. The hydrodynamic problem
is solved by using the Manning-Strickler method for evaluating the global flow resistance,
where the total shear stress is calculated as shown in equation (2.3).
Riverbed erosion (Δ𝑧𝐵) results from the imbalance between unit-width bedload flux enter-
ing (𝑞𝐼𝑁

𝐵
) and leaving (𝑞𝑂𝑈𝑇

𝐵
) the control volume and is obtained by applying the sediment

continuity equation in discrete form (over a time interval Δ𝑡):

Δ𝑧𝐵 =
𝑞𝐼𝑁
𝐵

− 𝑞𝑂𝑈𝑇
𝐵

𝐿𝑣
Δ𝑡 . (2.12)

It is considered that vegetation 𝐵 increases the global flow resistance by modifying the
Stricker coefficient 𝑘𝑠 , resulting in changes in the bedload flux 𝑞𝐼𝑁

𝐵
entering the control

volume over time. The bedload flux leaving the control volume is assumed to be constant
and calculated setting 𝑘𝑠 = 𝑘𝑠,𝑔. This assumption is made because the 0D model aims
to replicate the erosion mechanism of the 1D model. Indeed, the imbalance between 𝑞𝐼𝑁

𝐵

and 𝑞𝑂𝑈𝑇
𝐵

induces erosion, similarly to what happens downstream of the patch in the 1D
model.
The 𝑞𝐵 is determined through the standard Meyer-Peter Müller equation (Meyer-Peter
et al., 1948), which requires that the dimensionless shear stresses 𝜃 exceeds a threshold
value (𝜃𝑐𝑟 = 0.047) for the onset of sediment transport.
Under the previous mentioned assumptions, the Shields stress is given by:

𝜃 =

(
𝑞

𝑘𝑠

) 3
5 𝑆

7
10

(𝑠 − 1)𝑑𝑠
, (2.13)

where 𝑞 is the flood discharge and 𝑠 is the sediment relative density (set to 2.65).

2.4.2 Vegetation growth
In this model, vegetation 𝐵 and root depth 𝜁𝑢𝑝𝑟 grow following the equations (2.7, 2.8,
2.9) described in the 1D model (refer to Subsection 2.3.2).
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Flow direction

Figure 2.7: Sketch of the 0D model. 𝐿𝑣 is the length of the control volume and represents the
vegetated patch within a river. Uniform flow conditions are assumed for the water depth ℎ𝑢𝑛𝑖 𝑓 ,
with a constant slope 𝑆 over time, and a rectangular cross-section. Vegetation 𝐵 modifies the
global flow resistance and generates an imbalance between the bedload fluxes entering (𝑞𝐼𝑁

𝐵
)

and exiting (𝑞𝑂𝑈𝑇
𝐵

) the control volume, consequently leading to riverbed erosion. Riverbed ero-
sion Δ𝑧𝐵 is the difference between the final riverbed 𝑧𝐵 and the initial riverbed 𝑧𝐵0 . 𝜁𝑢𝑝𝑟 is the
root depth.
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2.4.3 Biogeomorphic feedbacks

It is considered that vegetation 𝐵 increases the global flow resistance and reduces the shear
stresses on the bed surface as described in the equations (2.10, 2.11) of the 1D model
(refer to Subsection 2.3.3).
During flood periods, the uprooting occurs when flow-induced erosion excavates the root
depth 𝜁𝑢𝑝𝑟 and reduces the anchoring resistance of the vegetation, leading to the partial
or complete removal of it. In the 0D model, uprooting is modeled differently from the 1D
model, as shown in Figure 2.8. Indeed, the uprooting of the 0D model aims to represent
the average uprooting of the 1D patch, as explained in the Appendix (A).
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Figure 2.8: Uprooting mechanism occurring during flood periods (𝑇𝐹 ) described by equations
(2.14) and (2.15). 𝐵+ and 𝜁+𝑢𝑝𝑟 respectively represent the vegetation and the root depth before the
uprooting, and 𝐵− and 𝜁−𝑢𝑝𝑟 represent the vegetation and the root depth after the uprooting, while
Δ𝑧𝐵 is the riverbed erosion. 𝛽 is a nonlinear shape parameter, and the constant 𝑤𝑚 represents
the minimum fraction of 𝜁𝑢𝑝𝑟 required for uprooting mechanism to occur (in this graph equal to
0.27).

𝐵+ and 𝜁+𝑢𝑝𝑟 respectively represent the vegetation and the root depth before the uprooting,
and 𝐵− and 𝜁−𝑢𝑝𝑟 represent the vegetation and the root depth after the uprooting, while
Δ𝑧𝐵 is the riverbed erosion. 𝛽 is a shape parameter, where if 𝛽 = 1, the function is linear;
if 𝛽 > 1 the rate of vegetation decrease, accelerates. The constant 𝑤𝑚 represents the
minimum fraction (range from 0 to 1) of 𝜁𝑢𝑝𝑟 required for uprooting mechanism to occur.
Therefore, three possible cases emerge: if erosion remains below the fraction 𝑤𝑚 of 𝜁𝑢𝑝𝑟 ,
uprooting does not occur and 𝐵−= 𝐵+, 𝜁−𝑢𝑝𝑟=𝜁+𝑢𝑝𝑟 ; if erosion excavates the entire 𝜁𝑢𝑝𝑟
length, the vegetation is completely removed and both vegetation 𝐵 and root depth 𝜁𝑢𝑝𝑟
are reset to their initial values (𝜁𝑢𝑝𝑟 = 0 and 𝐵 = 𝐵𝑚𝑖𝑛). If 𝜁𝑢𝑝𝑟 is in between these two
extreme cases, only a portion of the vegetation and root depth is removed.
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Therefore, the uprooting is modeled with the following equations:

𝐵− =



𝐵+ if 0 ≤ Δ𝑧𝐵 < 𝑤𝑚𝜁
+
𝑢𝑝𝑟 , (a)(

1 −
Δ𝑧𝐵
𝜁+𝑢𝑝𝑟

−𝑤𝑚

1−𝑤𝑚

)𝛽
𝐵+ if 𝑤𝑚𝜁

+
𝑢𝑝𝑟 ≤ Δ𝑧𝐵 < 𝜁

+
𝑢𝑝𝑟 , (b)

𝐵𝑚𝑖𝑛 if Δ𝑧𝐵 ≥ 𝜁+𝑢𝑝𝑟 . (c)

(2.14)

𝜁−𝑢𝑝𝑟 =



𝜁+𝑢𝑝𝑟 if 0 ≤ Δ𝑧𝐵 < 𝑤𝑚𝜁
+
𝑢𝑝𝑟 , (a)(

1 −
Δ𝑧𝐵
𝜁+𝑢𝑝𝑟

−𝑤𝑚

1−𝑤𝑚

)𝛽
𝜁+𝑢𝑝𝑟 if 𝑤𝑚𝜁

+
𝑢𝑝𝑟 ≤ Δ𝑧𝐵 < 𝜁

+
𝑢𝑝𝑟 , (b)

0 if Δ𝑧𝐵 ≥ 𝜁+𝑢𝑝𝑟 , (c)

(2.15)

where for equations (2.14a) and (2.15a) uprooting does not occur, for equations (2.14c
and 2.15c) vegetation and root depth are completely removed and for equations (2.14b and
2.15b) only a portion of the vegetation and root depth is removed.

2.4.4 Model workflow

The 0D model workflow is equal to the one described in the 1D model (refer to Subsection
2.3.4).

2.4.5 Negative feedback loop

As in the spatial model, also in the non-spatial model, the feedbacks interaction between
vegetation and hydro-morphodynamic processes generate a total negative feedback loop
(refer to Subsection 2.3.3 and Figure 2.6). However, in the extreme cases of the systems
(2.14) and (2.15), i.e., equations (2.14a) and (2.14c) and equations (2.15a) and (2.15c),
it is observed that the uprooting negative effect is inhibited, consequently leading to the
inhibition of the total negative feedback loop. This can be physically explained by root
depth dynamics. If roots grow quickly or deeply into the riverbed (high value of 𝜎𝑟 or
𝑜 𝑓 𝑓 𝑠𝑒𝑡), they are more likely to survive the uprooting and reach the vegetated state over
time. On the contrary, if roots grow slowly or shallowly into the riverbed (low value of
𝜎𝑟 or 𝑜 𝑓 𝑓 𝑠𝑒𝑡), they are more likely to be uprooted and to be pushed by the disturbance
toward bare soil. In this second case, roots grow minimally during low flow periods;
nevertheless, this effect is so small that it can be considered negligible (and the solution
can be considered stable as bare soil).
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2.5 Limitations of the models
It’s evident that both the 0D and 1D models used in this analysis are highly simplified,
and strong assumptions have been made, as listed in the previous sections. The low-
dimensional nature of the analyzed problems and the simplicity of the equations distance
the research from application in a real river.
The vegetation modeling is also highly simplified as the biomass 𝐵 is treated as a single
variable for both below-ground biomass and above-ground biomass. In addition, root
depth grows independently of both biomass 𝐵 and riverbed.
Furthermore, many important biogeomorphic feedbacks have not been considered, such
as soil cohesion caused by roots or the burial mechanism for mortality.
The external flood disturbance is considered deterministic and constant, and the stochastic
variability has not been taken into account.

However, all these simplifications (and also others described subsequently) were made
deliberately, and the model was streamlined by isolating only the essential elements to
understand the main mechanisms governing the dynamics of the system and the seed of
oscillations and chaos.
The aim of this research is not to describe a real river, but merely to understand the func-
tioning of some key ecomorphodynamic relations, which, although simple, can already
exhibit very complex dynamics.
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Chapter 3

Bi-stability and multi-stability

3.1 Introduction

In ecosystems, biotic elements interact with each other and with the abiotic components
of the surrounding environment through nonlinear interactions, which lead to positive
and negative feedbacks. For the same external environmental condition, the ecosystem
can show multiple equilibrium states, defined as alternative stable states (Scheffer et al.,
2001). Therefore, positive feedback loops push the ecosystem outside its equilibrium
towards alternative stable states. May (1977) was the first author to theoretically demon-
strate the existence of alternative stable states in several ecosystems.
Moreover, ecosystems face constant exposure to external disturbances that modify the ex-
ternal conditions altering their equilibrium (Morgan Ernest and Brown, 2001). Ecosys-
tems respond to external disturbances by exerting a force of resistance. They also demon-
strate a force of resilience by absorbing changes and self-organizing, persisting against
disturbances (Holling, 1973). In the river ecosystem, plants act as ecosystem engineers
(Gurnell, 2014) and resist flood disturbances while modifying the environment and push-
ing the system towards the ecological phase of biogeomorphic succession (Corenblit
et al., 2014). In particular, roots exert an anchoring force to the riverbed, preventing
plants removal by the hydro-morphodynamic disturbance (Edmaier et al., 2011).
External disturbances can induce abrupt changes and critical transitions as observed in a
variety of ecosystem models including lakes, coral reefs, salt marshes, oceans, forests, and
arid lands (Scheffer et al., 2001; Marani et al., 2010; Van der Kaaden et al., 2020). For
certain values of the external disturbance, the response of ecosystems may be smooth and
continuous. However, for some values of the external disturbance the response could be
non-trivial and the system can shift in alternative stable states (hysteresis).
To better explain this concept, ecosystems can be visualized as a marble (Scheffer et al.,
2001) where the unstable equilibrium corresponds to the summit of a hill (Figure 3.1 and
Figure 3.2). A minor perturbation can induce the ecosystem to transition into one of the
downhill, or basins of attraction (the two alternative states). The interplay between hydro-
morphodynamic disturbance and vegetation resistance governs river dynamics (Corenblit
et al., 2014). Therefore, if the hydro-morphodynamic disturbance prevails, the system
is pushed towards a single stable state, bare soil; if the vegetation resistance prevails,
it is pushed towards the ecological phase. However, for some external environmental
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Flood disturbancePlants resistance

River ecosystem

Figure 3.1: Ecosystems can be conceptualized as a marble. The unstable equilibrium corre-
sponds to the summit of a hill. A minor perturbation can induce the ecosystem to transition
into one of the downhill (the two alternative states). In the river ecosystem plants resist against
flood disturbance to conducive to the ecological phase, instead the flood disturbance usually acts
quickly and with a big effect removing a large amount of biomass and pushing the ecosystem to
bare soil (as shown in the graph).

conditions, the system can show hysteresis. Due to the hysteresis behavior (Figure 3.2), if
the disturbance is increased from the upper branch and the transition to the other branch
of equilibrium (tipping point F2) occurs, when then the disturbance is reduced again, the
ecosystem does not return to its previous state. Instead, a significant reduction in the
disturbance (up to F1) is required to recover the system by shifting back to the upper
branch. Consequently, under the same disturbance regime, two equilibria are possible
depending on the initial conditions. Moreover, as shown in Figure 3.2, the ecosystem
exhibits catastrophic shifts and tipping points, where the behavior of the system changes
abruptly.

In the river ecosystem, the potential presence of alternative states has already been em-
phasized in some studies (Dent et al., 2002; Corenblit et al., 2014; Bau’ et al., 2021).
In these works, authors demonstrate how the system can show multiple stable equilibrium
points and undergo irreversible shifts, depending on the initial conditions. Stable alterna-
tive states due to different initial conditions of roots have also been studied in laboratory
experiments (Wang et al., 2016).
However, despite a limited number of mainly qualitative studies, the concept of alternative
states has not yet been extensively investigated in the context of the river ecosystem.
Moreover, even though there are some theoretical works describing how homogeneous
non-spatial ecosystems behave, there are only few works describing spatial-heterogeneous
ecosystems behavior. Recent research shows how the stability graph (shown in Figure
3.2) becomes considerably more complex when space is involved, due to coexisting stable
states (Bastiaansen et al., 2022), multi-equilibria (Meron et al., 2019) and spatial self-
organized patterns (Meron, 2015). One of the most important implication of these works
is that spatial ecosystems seem to exhibit greater resilience compared to non-spatial the-
oretical models. In fact, by organizing in spatial patterns and in coexisting states, spatial
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Figure 3.2: Ecosystem stability graph (on the left), and conceptual interpretation with the equilib-
rium of a marble (right). For some values of the external disturbance (environmental conditions),
the ecosystem stability graph can exhibit abrupt shifts and two alternative states, i.e., hystere-
sis. If the disturbance from the upper branch is increased and a transition to the other branch of
equilibrium (tipping point F2) occurs, when then the disturbance is reduced again, the ecosystem
does not return to its previous state. Instead, a significant reduction in the disturbance (up to F1)
is required to recover the system by shifting back to the upper branch. Adapted from Scheffer
et al. (2001) and Rietkerk et al. (2021).

ecosystems do not abruptly shift in between two stable alternative states, preventing catas-
trophic shifts (Rietkerk et al., 2021). For instance, vegetation in savanna and dryland
ecosystems, self-organize in spatial patterns. In Figure 3.3 is illustrated the difference
between a homogeneous ecosystem (A) and a spatial ecosystem (B) behavior. As shown
in Figure 3.3B, the Turing bifurcation is the point where uniform vegetation coverage
destabilizes due to worsening external conditions. This leads to the emergence of distinct
and regular patterns known as Turing patterns (Turing, 1990). Furthermore, the Busse
balloon (grey area in Figure 3.3B) is a region of the parameter space in mathematical
models where regular spatial patterns with different wavelengths exist and are stable.
Starting from the Turing bifurcation and inside the Busse balloon, ecosystems create al-
ternative pathways and avoid tipping points (Rietkerk et al., 2021). Thus, ecosystems
increase their resilience because they persist and do not tip to another basin of attraction.
Heterogeneous spatial ecosystems avoid critical transitions and they transitate smoothly
and gradually (Holmgren and Scheffer, 2001). Therefore, in real-world data, tipping
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points appear to be consistently much fragmented—and thus more gradual with multiple
smaller intermediate steps due to a partial restructuring of the ecosystem (Bastiaansen
et al., 2022), rather than a single large collapse (Rosier et al., 2020). Understanding how

E
c
o
sy

st
e
m

 s
ta

te

E
c
o
sy

st
e
m

 s
ta

te

Figure 3.3: (A) Illustration of the hysteresis behavior for a non-spatial homogeneous ecosystem.
(B) Illustration of the more complex behavior for multi-stable spatial ecosystems. Here, within the
grey area, named the ”Busse balloon,” spatially self-organized stable states can persist, start-
ing from a specific point, the Turing bifurcation. Instead of a critical transition, multiple smaller
and gradual shifts occur. Solid lines represent stable equilibria, dashed lines indicate unstable
equilibria. Double arrows signify ecosystem shifts, while single arrows indicate minor ecosystem
adjustments. Adapted from Rietkerk et al. (2021).

spatial interactions modify the equilibrium graph, tipping points, and resilience have not
been yet investigated in the context of the river ecosystem.
Quantifying the equilibrium graph and the resilience of spatial ecosystems is essential for
developing efficient tools that can contribute to a better understanding of river dynamics
and to improving river management. Ignoring alternative states of ecosystems and the
potential for catastrophic shifts could lead to significant economic and ecological losses,
and restoration projects may be costly or ineffective (Scheffer et al., 2001). To manage an
ecosystem optimally, it is necessary to possess a thorough understanding of its equilibrium
graph.

Therefore, in this chapter, the aim is to explore how the main inherent feedbacks be-
tween vegetation and hydro-morphodynamics affect the static equilibrium graph of the
simplified river ecosystem, namely when the system is at steady state. It’s important to
highlight that in this chapter, the system always reaches a steady state because the negative
feedback loop is inhibited and positive effects prevail, as explained in Subsection (2.3.3)
and shown in Figure 2.6. In fact, the inhibition of the negative feedback loop suppress
the oscillations, and the system is driven towards steady state (alternative stable states or
multiple states).
In all the results of this chapter, the root growth parameter values inhibit the negative
feedback loop, promoting instead positive effects that push the ecosystem towards stable
states (refer to Figure 1.3).
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The main objectives of this chapter are defined as follows:

(i) to investigate the presence of hysteresis in the non-spatial model and understand
the driving-parameters of the process (section 3.2).

(ii) to analyze how spatial interactions (1D model) may influence the equilibrium
graph of the system and how this impacts the resilience (section 3.3).

The method involves numerical simulations, and the models utilized are those described
in Chapter 2.

3.2 Bi-stability in a non spatial eco-morphodynamic model

3.2.1 Numerical simulations
With the 0D model three sets of simulations (A), (B), (C), are performed by modifying
parameters as shown in Figure 3.4 and as illustrated in Table 3.1.
(i) First, the two parameters governing the root depth growth in equations (2.8) and (2.9)

Figure 3.4: Three sets of numerical simulations are performed: (A) limit condition for which
roots can grow deep (deep 𝑜 𝑓 𝑓 𝑠𝑒𝑡) and fast (high 𝜎𝑟 ) into the riverbed; (B) limit condition for
which roots grow shallow (shallow 𝑜 𝑓 𝑓 𝑠𝑒𝑡) and slow (low 𝜎𝑟 ) into the riverbed; (C) intermediate
condition for which there are intermediate values of the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 and 𝜎𝑟 .

are modified: the velocity 𝜎𝑟 and the maximum depth offset. In the set of simulations
(A) a limit condition for which roots can grow deep (𝜁𝑢𝑝𝑟𝑚𝑎𝑥

= 2.7 𝑚) and fast into the
riverbed is chosen. With 𝜎𝑟 = 1, starting from the initial condition 𝜁𝑢𝑝𝑟𝑖 = 0.01 𝑚, roots
reach immediately 1 𝑚 depth (≈ 1 growth-flood cycles). In the set of simulations (B) a
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Table 3.1: Run parameters for three different set of simulations A,B,C.

Parameter set A set B set C Unit

𝜎𝑟 1 0.0001 0.002 -
𝑜 𝑓 𝑓 𝑠𝑒𝑡 2.7 0.15 1.2 𝑚

𝑞 [0-20] [0-20] [0-20] 𝑚2𝑠−1

𝜁𝑢𝑝𝑟𝑖 [0-𝑜 𝑓 𝑓 𝑠𝑒𝑡] [0-𝑜 𝑓 𝑓 𝑠𝑒𝑡] [0-𝑜 𝑓 𝑓 𝑠𝑒𝑡] 𝑚

limit condition is chosen for which roots grow shallowly (𝜁𝑢𝑝𝑟𝑚𝑎𝑥
= 0.15 𝑚) and slowly

into the riverbed. With 𝜎𝑟 = 0.0001 starting from 𝜁𝑢𝑝𝑟𝑖 = 0.01 𝑚, roots could reach 1 𝑚
depth at infinity (≈ 4500 growth-flood cycles). Then, the set of simulations (C) is chosen
for which there are intermediate values of the maximum depth (𝜁𝑢𝑝𝑟𝑚𝑎𝑥

= 1.2 𝑚) and of
𝜎𝑟 . With 𝜎𝑟 = 0.002, starting from 𝜁𝑢𝑝𝑟𝑖 = 0.01 𝑚, roots reach 1 𝑚 depth after ≈ 200
growth-flood cycles.
(ii) Second, for each set (A), (B), (C), 1000 simulations are performed modifying the
range of the flood intensity 𝑞 from 0 to 20 𝑚2/𝑠. 𝑞=20 𝑚2/𝑠 corresponds to a flood event
with a return period of approximately 2-10 years (𝜃 ≈ 0.3). For each flood intensity 𝑞,
the magnitude of the erosion process is quantified by the erosion potential 𝐸𝑝 (Caponi
and Siviglia, 2018) to define a proxy for the magnitude of the hydro-morphodynamic
disturbance. 𝐸𝑝 is calculated as the value of the erosion after the first growth-flood cycle
with vegetation at carrying capacity.
(iii) Third, for each set (A), (B), (C), and for each value of the flood intensity 𝑞, 1000
simulations are performed with different initial conditions of the root depth 𝜁𝑢𝑝𝑟,𝑖 , in a
range from 0 to 𝑜 𝑓 𝑓 𝑠𝑒𝑡.

All the other model parameters are equal for each set (A), (B), (C), and are typical
values for gravel-bed rivers. They are summarized in Table 3.2.

These sets of simulations are performed to explore two key aspects:

(i) the relation between root depth growth dynamics (proxy of the resistance force) and 𝐸𝑝
(proxy of the hydro-morphodynamic disturbance). For each value of the flood intensity 𝑞
(proxy for external environmental conditions) corresponds a value of Ep.

(ii) the dependence of the system’s steady state on the initial condition of the root depth
𝜁𝑢𝑝𝑟,𝑖 .

To ensure reaching the steady state solution, 1000 growth-flood cycles are simulated.
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Table 3.2: Run parameters.

Parameter Description Value and Unit

𝑝 Porosity 0.4
𝑘𝑠,𝑣 Minimum Strickler coefficient with vegetation 8𝑚1/3𝑠−1

S Channel slope 0.006
𝜎 Vegetation growth rate 0.28
𝑑𝑠 Sediment diameter 6 cm
𝐾 Carrying capacity 1
𝐵𝑚𝑖𝑛 Initial vegetation biomass 1.0 ×10−5

𝑇𝑣 Vegetation growth time scale 1 growing season
𝑘𝑠,𝑔 Strickler coefficient of the bare soil 30 m1/3s−1

Δ𝑇𝐹 Time interval between floods 𝑇𝑣
𝐿𝑣 Vegetation patch length 300 m
𝑇𝐹 Flood duration in the 0D model 0.78 h
𝛽 Shape parameter for the uprooting 1.0
𝑤𝑚 minimum fraction of 𝜁𝑢𝑝𝑟 required for uprooting 0.27
𝑞𝐵 Unit width sediment flux 𝑚2𝑠−1

3.2.2 Results

Model results show that for the set of simulations (A), the system always reaches the steady
state in the vegetated state (Figure 3.5A). In fact, when roots grow rapidly (high value of
𝜎𝑟 ) and deeply into the riverbed (high value of offset), roots resistance (proxy 𝜁𝑢𝑝𝑟 ) is
significantly greater than any value of the hydro-morphodynamic disturbance (proxy 𝐸𝑝 ,
range from 0 to 0.54 𝑚). Thus, for every value of the flood intensity 𝑞 and for every initial
condition 𝜁𝑢𝑝𝑟,𝑖 , root depth grows and reaches over time the maximum value (𝜁𝑢𝑝𝑟=2.7
𝑚). At steady state, if the maximum root depth reaches its maximum, the vegetation 𝐵
achieves the carrying capacity 𝐾 , i.e., the ecological phase.
For the set of simulations (B), the system always reaches the steady state in bare soil, ex-
cept when there is no solid transport (for 𝑞 ≤ 2.4 𝑚2/𝑠, 𝜃 < 𝜃𝑐𝑟 ), and thus, no uprooting
mechanism. In fact, without uprooting, the system always reaches over time the vegetated
state, (Figure 3.5B), as there is no hydro-morphodynamic disturbance. When solid trans-
port occurs (𝑞 > 2.4 𝑚2/𝑠) and roots grow slowly (low value of 𝜎𝑟 ) and shallowly into the
riverbed (low value of offset), roots resistance (proxy 𝜁𝑢𝑝𝑟 ) is significantly smaller than
any value of the hydro-morphodynamic disturbance (proxy 𝐸𝑝). Thus, for every value of
the flood intensity 𝑞 and for every initial condition of the root depth 𝜁𝑢𝑝𝑟,𝑖 , both vegetation
𝐵 and root depth 𝜁𝑢𝑝𝑟 go over time to bare soil (𝜁𝑢𝑝𝑟 = 0 and 𝐵 = 𝐵𝑚𝑖𝑛).
For the set of simulations (C) the system shows bi-stability between 2.4 𝑚2/𝑠 ≤ 𝑞 ≤
12.1 𝑚2/𝑠 (≈ 0.08 𝑚 ≤ 𝐸𝑝 ≤ 0.3 𝑚) and the steady state depends on the initial condition
of the root depth 𝜁𝑢𝑝𝑟,𝑖 , (Figure 3.5C). If the initial condition (e.g. 𝜁𝑢𝑝𝑟,1) is above the
unstable equilibrium (red line in Figure 3.5C), the system reaches the vegetated state over
time because the initial condition is deep enough and its growth is rapid enough to be
stronger than the hydro-morphodynamic disturbance (proxy 𝐸𝑝). If the initial condition
(e.g. 𝜁𝑢𝑝𝑟,2) is below the unstable equilibrium, the system goes to bare soil over time
because the initial condition is not-deep enough into the riverbed and its growth is not rapid
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Figure 3.5: (A) When roots grow rapidly (high value of 𝜎𝑟 ) and deeply into the riverbed (high
value of offset) the system always reaches the vegetated state. (B) When roots grow slowly
(low value of 𝜎𝑟 ) and shallowly into the riverbed (low value of offset) the system always reaches
the bare soil (except when there is no solid transport and thus no uprooting mechanism (for
𝑞 ≤ 2.4 𝑚2/𝑠, 𝜃 < 𝜃𝑐𝑟 ). (C) For intermediate values of 𝜎𝑟 and offset, the system shows bi-
stability for 2.4 𝑚2/𝑠 ≤ 𝑞 ≤ 12.1 𝑚2/𝑠 (≈ 0.08 𝑚 ≤ 𝐸𝑝 ≤ 0.3 𝑚) and the steady state depends
on the initial condition of the root depth 𝜁𝑢𝑝𝑟,𝑖 . The red line represents the unstable equilibrium
of the system. If the initial condition (e.g. 𝜁𝑢𝑝𝑟,1) is above the unstable equilibrium, the system
reaches the vegetated state over time. If the initial condition (e.g. 𝜁𝑢𝑝𝑟,2) is below the unstable
equilibrium, the system goes to bare soil over time.
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enough to be stronger than the hydro-morphodynamic disturbance (proxy 𝐸𝑝). Therefore,
in the range between 2.4 𝑚2/𝑠 ≤ 𝑞 ≤ 12.1 𝑚2/𝑠, roots resistance is comparable to the
magnitude of the hydro-morphodynamic disturbance and differences in the initial condi-
tions can lead the system to switch between the two alternative states.
For low value of the flood intensity (𝑞 ≤ 2.4 𝑚2/𝑠), the system always reaches the veg-
etated state over time because roots resistance is higher then the hydro-morphodynamic
disturbance 𝐸𝑝 for every initial condition. On the contrary, for high value of the flood
intensity (𝑞 > 12.1 𝑚2/𝑠), the system always goes in bare soil over time because roots
resistance is much lower then the hydro-morphodynamic disturbance 𝐸𝑝 for every initial
condition.

To determine the unstable equilibrium in the set of simulations (C), simulations are
performed for each value of the flood intensity q with 1000 different initial conditions of
root depth 𝜁𝑢𝑝𝑟,𝑖 ranging from 0 to 𝑜 𝑓 𝑓 𝑠𝑒𝑡.
Indeed in Figure 3.6 results are shown for a set of simulations, corresponding to Figure
3.5C, with constant flood intensity 𝑞 = 7.3 𝑚2/𝑠. The trajectories (i.e., solutions) of
several initial conditions of the root depth 𝜁𝑢𝑝𝑟 are plotted over the dimensionless time 𝑡∗.
If the initial conditions are above the unstable equilibrium (e.g. 𝜁𝑢𝑝𝑟,1), all the trajectories
over time go toward the vegetated state. If the initial conditions are below the unstable
equilibrium (e.g. 𝜁𝑢𝑝𝑟,2), all the trajectories go over time to bare soil. In Figure 3.6A
several growth-flood cycles are simulated, without discarding any cycle, with the purpose
to show the root depth trajectories over time. Instead, in Figure 3.6B the steady state solu-
tion of 𝜁𝑢𝑝𝑟 is shown as a function of 𝜁𝑢𝑝𝑟,𝑖 , discarding the transition cycles. The critical
value at which the system switches the basin of attraction is the unstable equilibrium (red
line in both Figure 3.6A and 3.6B), as qualitatively explained in Figure 3.1.
From these results, it can be observed how the system undergoes critical shifts and tipping
points (e.g., in Figure 3.6B the value of 𝜁𝑢𝑝𝑟,𝑖 = 0.7 is a tipping point). It is also important
to highlight that small differences in the initial conditions, especially when close to the
unstable equilibrium, can significantly affect the final equilibrium of the system.
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Figure 3.6: Set of simulations corresponding to Figure 3.5C, in the case with constant flood
intensity 𝑞 = 7.3 𝑚2/𝑠. (A) Trajectories of initial conditions of the root depth 𝜁𝑢𝑝𝑟𝑖 are shown over
time 𝑡∗. If the initial condition is above the unstable equilibrium (e.g. 𝜁𝑢𝑝𝑟,1) the trajectory over
time goes toward the vegetated state. If the initial condition is below the unstable equilibrium
(e.g. 𝜁𝑢𝑝𝑟,2) the trajectory over time goes to bare soil. (B) 𝜁𝑢𝑝𝑟 is plotted at steady state as a
function of the initial condition 𝜁𝑢𝑝𝑟𝑖 . The red line, in both figures, is the unstable equilibrium.
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3.3 Multi-stability in a spatial eco-morphodynamic model

3.3.1 Numerical simulations
With the 1D model three sets of simulations (A), (B), (C) are performed by modifying
parameters as shown in Figure 3.4 and as illustrated in Table 3.1. Indeed, the setup is
similar to the one of the non-spatial model.
For each value of the flood intensity 𝑞, the proxy for the hydro-morphodynamic distur-
bance 𝐸𝑝 is calculated as the mean value of erosion after the first growth-flood cycle,
within the vegetated area with biomass at carrying capacity. For each value of 𝑞, 𝐸𝑝,𝑚𝑎𝑥
is also calculated, which is the maximum local erosion reached after the first growth-flood
cycle within the vegetated area with biomass at carrying capacity.
All the other model parameters are chosen as typical values for gravel-bed rivers and they
are the same as those used in the 0D model (refer to Table 3.2), except for flood duration
which is 𝑇𝐹 (1𝐷) = 3 ℎ in the 1D model (and 𝑇𝐹 = 0.78 ℎ in the 0D model). The flood
duration is calibrated such that 𝑇𝐹 (0𝐷)/𝑇𝐹 (1𝐷) = 0.26 to establish morphodynamic
equivalence between the 1D model and the 0D model, ensuring that the average erosion in
the 1D model matches the erosion potential 𝐸𝑝 in the 0D model, as explained in Appendix
(A.3).
These sets of simulations are performed to explore how the spatial heterogeneity modifies
these two key aspects:

(i) the relation between root depth growth dynamics (proxy of the resistance force) and 𝐸𝑝
(proxy of the hydro-morphodynamic disturbance). For each value of the flood intensity 𝑞
(proxy for external environmental conditions), corresponds a value of Ep.

(ii) the dependence of the system’s steady state on the initial condition of root depth 𝜁𝑢𝑝𝑟,𝑖 .

To ensure reaching the steady state solution, 500 growth-flood cycles are simulated.
Compared to the 0D model, the growth-flood cycles have been reduced here due to the
significantly longer computational time required. However, with the chosen parameters,
the system always reaches the steady state before 500 growth-flood cycles.

3.3.2 Results
Multi-stability graph

Model results show that for the sets of simulations (A) and (B), (respectively Figure 3.7A
and 3.7B), the behavior is similar to the one described for the corresponding sets of the
0D model (Figure 3.5A and 3.5B).
Instead, for the set of simulations (C) the system shows a more complex multi-stable
behavior (Figure 3.7C). The multiple states encompass the entire area of the Figure 3.7C
where the black dots can be observed. In fact, as illustrated in Figure 3.8 (𝐴 − 𝐶 − 𝐸), if
the initial conditions of root depth 𝜁𝑢𝑝𝑟,𝑖 (green points) are within the domain of attraction
(green areas), all trajectories eventually converge over time (𝑡𝑠𝑠 is the time at steady state)
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Figure 3.7: (A) When roots grow rapidly (high value of 𝜎𝑟 ) and deeply into the riverbed (high
value of offset), the system always reaches the vegetated state. (B) When roots grow slowly
(low value of 𝜎𝑟 ) and shallowly into the riverbed (low value of offset), the system always reaches
the bare soil (except when there is no solid transport, and thus no uprooting mechanism, i.e.,
for 𝑞 ≤ 1.0 𝑚2/𝑠, 𝜃 < 𝜃𝑐𝑟 ). (C) For intermediate values of 𝜎𝑟 and offset, the system shows
a more complex multi-stable behavior. The red zone represents the multi-stability zone, while
the green areas are the domains of attraction of the two homogeneous states (i.e., bare soil and
vegetated state). If the initial conditions are inside the domains of attraction, the system reaches
the vegetated state or bare soil over time. If the initial conditions are inside the multi-stability
zone, the system reaches an equilibrium in between the two alternative states. The black dots
represent the equilibrium states.

to one of the two alternative states (vegetated riverbed or bare soil). Conversely, as shown
in Figure 3.8 (𝐵−𝐷 − 𝐹), when the initial conditions of root depth (red points) are within
the region of multi-stability (red area), all trajectories over time reach different equilibria
across the entire area in between the two alternative states.
Thus, if the initial conditions are inside the upper domain of attraction, roots are deep
enough and their growth is rapid enough to resist against the hydro-morphodynamic dis-
turbance (proxy 𝐸𝑝) and they go over time to the vegetated state. If the initial conditions
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Figure 3.8: Explanation of the multi-stable solution for the spatial model. (A-C-E) If the initial
conditions of root depth 𝜁𝑢𝑝𝑟,𝑖 (green points) are within the domain of attraction (green areas),
all trajectories eventually converge over time (𝑡𝑠𝑠 is the time at steady state) to one of the two
alternative states (vegetated riverbed or bare soil). (B-D-F) Conversely, when the initial conditions
of root depth (red dots) are within the region of multi-stability (red area), all trajectories over time
reach different equilibria across the entire area in between the two alternative states (red dots
when 𝑡 = 𝑡𝑠𝑠).
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Figure 3.9: Set of simulations corresponding to Figure 3.7C with constant flood intensity 𝑞 =

7.3 𝑚2/𝑠. (A) Trajectories of initial conditions of the root depth 𝜁𝑢𝑝𝑟 are shown over time 𝑡∗. If
the initial conditions are inside the domains of attraction (𝜁𝑢𝑝𝑟,𝑖 ≤ 0.45 𝑚 or 𝜁𝑢𝑝𝑟,𝑖 ≥ 1.0 𝑚), all
the trajectories over time go toward the vegetated state or bare soil. If the initial conditions are
inside the multi-stability zone (0.45 𝑚 < 𝜁𝑢𝑝𝑟,𝑖 < 1 𝑚), they reach the steady state solution in
between the two alternative stable states. (B) The steady-state solution of 𝜁𝑢𝑝𝑟 is shown as a
function of the initial condition 𝜁𝑢𝑝𝑟,𝑖 , where the two red lines delimit the multi-stability zone.

are inside the lower domain of attraction, roots are too shallow and their growth is not
rapid enough to resist against the hydro-morphodynamic disturbance and they go over
time to bare soil. However, if the initial conditions are inside the multi-stability zone, the
hydro-morphodynamic disturbance is able to uproot only a portion of the vegetated patch,
while the other part resists against it and reaches its maximum growth over time. More-
over, in Figure 3.8, one can observe how multi-stability prevents critical shifts and tipping
points. Indeed, the 1D system does not show critical transitions as seen in the non-spatial
model (Figure 3.5C), but it exhibits a smoother behavior due to spatial interactions.
Figure 3.9 displays results for a set of simulations, corresponding to Figure 3.7C, with
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constant flood intensity 𝑞 = 7.3 𝑚2/𝑠. In Figure 3.9A, the trajectories of several initial
conditions of the root depth 𝜁𝑢𝑝𝑟𝑖 are plotted over the dimensionless time 𝑡∗. If the initial
conditions are inside the domains of attraction (𝜁𝑢𝑝𝑟,𝑖 ≤ 0.45 𝑚 or 𝜁𝑢𝑝𝑟,𝑖 ≥ 1.0 𝑚), all the
trajectories over time go toward the vegetated state or bare soil. If the initial conditions
are inside the multi-stability zone (0.45 𝑚 < 𝜁𝑢𝑝𝑟,𝑖 < 1 𝑚), the steady state solution is in
between the two alternative stable states because the hydro-morphodynamic disturbance
is able to uproot only part of the vegetated patch, while the other part of the patch resists
against it and reaches its maximum over time.
To define the multi-stability zone, simulations are performed for each value of the flood
intensity q with 100 different initial conditions of root depth 𝜁𝑢𝑝𝑟,𝑖 , ranging from 0 to
𝑜 𝑓 𝑓 𝑠𝑒𝑡. The range of initial conditions that reaches the equilibrium between the two
alternative states defines the multi-stability zone (as shown in Figure 3.9). Figure 3.9B
displays the steady state solution of 𝜁𝑢𝑝𝑟 as a function of the initial condition 𝜁𝑢𝑝𝑟,𝑖 , where
the two red lines delimit the multi-stability zone.

In Figure 3.10, it is observed that the line delimiting the upper domain of attraction is
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Figure 3.10: Link of the multi-stability graph with the value of the hydro-morphodynamic distur-
bance. The line delimiting the upper domain of attraction is linked to the value of the maximum
local erosion 𝐸𝑝,𝑚𝑎𝑥 . Conversely, the line delimiting the lower domain of attraction is linked to
the value of the average erosion 𝐸𝑝 .

linked to the value of 𝐸𝑝,𝑚𝑎𝑥 . In fact, if the initial conditions of roots are deeper than
the maximum point of erosion 𝐸𝑝,𝑚𝑎𝑥 , no plant is uprooted and all the patch goes to the
carrying capacity over time. Conversely, the line delimiting the lower domain of attraction
is linked to the value of 𝐸𝑝 . In fact, if the average erosion 𝐸𝑝 is greater than the initial
conditions of roots, the erosion is able to uproot every plant, leading the system to bare
soil. The curves of 𝐸𝑝 and 𝐸𝑝,𝑚𝑎𝑥 are wider than the multi-stability zone because they are
calculated with biomass at carrying capacity (and thus at maximum disturbance), whereas
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during the simulations the vegetation is not always at carrying capacity (and, therefore,
the disturbance is lower).

Spatial interactions

Based on the previous results, it can be observed that multi-stability prevents critical shifts
and tipping points, instead smoothing out the system’s behavior through spatial interac-
tions. Figure 3.11A, displays the spatial distribution along the 𝑥 axis for the case with
𝑞 = 7.3 𝑚2/𝑠 and 𝜁𝑢𝑝𝑟,𝑖 = 0.78 𝑚, where the initial condition is inside the multi-stability
zone. This initial condition with negligible biomass but non-negligible root depth could be
representative of (i) a winter season condition, (ii) a canopy damaged by sediment trans-
port, or (iii) juvenile flexible plants that lower into the flow (and therefore with negligible
variations in 𝐾𝑠). At steady state, in Figure 3.11B, part of the patch is uprooted, while
the remaining part reaches the vegetated state. Also the riverbed and water profile adjust
depending on the remaining patch. This capacity of the patch to partially resist and not
be completely uprooted for certain values of the disturbance is what makes the system’s
behavior smooth, avoiding critical shifts and tipping points.
Figure 3.12 illustrates only the spatial distribution of roots, along the 𝑥 axis, for the case

with 𝑞 = 7.3 𝑚2/𝑠 and 𝜁𝑢𝑝𝑟,𝑖 = 0.7 𝑚 (brown line), where the initial condition is inside
the multi-stability zone. Over time, part of the patch is uprooted, while the remaining
part reaches the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (yellow line). It’s important to note that the final average is
equal to 𝜁𝑢𝑝𝑟 = 0.21 𝑚 , meaning the final solution ends up outside the multi-stability
zone, in the lower domain of attraction. Therefore, points with initial conditions inside
the multi-stability zone in Figure 3.8 can span the entire area between the two alternative
states depending on the value of the final average solution.
Figure 3.13 represents the multi-stable states configuration. The different lengths of the

final patch at steady state determine all the intermediate points of multi-stability between
the two alternative stable states. Additional simulations are conducted simplifying the
1D model and removing spatial interactions, as detailed in Appendix (A.1) and Appendix
(B). The results in the Appendix indicate that the simplified model can only exhibit stabil-
ity or bi-stability, confirming that spatial interactions are the key element for multi-stability.
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Figure 3.11: (A) Spatial distribution and numerical solution along the 𝑥 axis for the case with
𝑞 = 7.3 𝑚2/𝑠 and 𝜁𝑢𝑝𝑟,𝑖 = 0.78 𝑚, at the initial condition (𝑡=0). (B) At steady state, part of the
patch is uprooted, while the remaining part reaches the vegetated state (vegetation reaches the
carrying capacity, and roots reach the 𝑜 𝑓 𝑓 𝑠𝑒𝑡).
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Figure 3.12: Spatial distribution and numerical solution along the 𝑥 axis for the case with 𝑞 =

7.3 𝑚2/𝑠 and 𝜁𝑢𝑝𝑟,𝑖 = 0.7 𝑚 (brown line), the initial condition is inside the multi-stability zone.
Over time, part of the patch is uprooted, while the remaining part reaches the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (yellow
line). The final average is equal to 𝜁𝑢𝑝𝑟 = 0.21 𝑚.

0.2

0.4

0.6

0.8

1.2

1

0.6

0
0 0.25 0.3 0.45 0.6

Figure 3.13: Multiple stable states configuration due to spatial interactions. The different lengths
of the final patch at steady state determine all the intermediate points of multi-stability between
the two alternative stable states.
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3.4 Conclusion and implications

In this chapter, the established objectives are achieved:

(i) In the non-spatial model, hysteresis is observed, and the driving parameters of the
process are related to the root growth (𝜎𝑟 and offset). The process is more generally driven
by the ratio between the resistance force (proxy 𝜁𝑢𝑝𝑟 ) and the hydro-morphodynamic
disturbance force (proxy 𝐸𝑝).

(ii) In the 1D model, spatial interactions modify the equilibrium graph of the ecosys-
tem from bi-stability to multi-stability. Moreover, the spatial distribution of vegetation
appears to smooth critical transitions and tipping points. Thus, the simplified ecosystem
can persist and find equilibrium in infinite states between the two alternative states, not
only within them. The transition between the two alternative states is gradual and the
resilience increases compared to the non-spatial model.

In all the results of this chapter, the root growth parameter values (𝜎𝑟 and offset) inhibit
the negative feedback loop, promoting positive effects that push the ecosystem towards
alternative stable states (refer to Figure 1.3), namely vegetated state or bare soil, or both
simultaneously (hysteresis).
Mathematically, in the non-spatial model, when the resistance force prevails over the
hydro-morphodynamic disturbance force, the system is pushed over time toward the equa-
tions (2.14a) and (2.15a), i.e., vegetated state. On the contrary, the system is pushed over
time toward the equations (2.14c) and (2.15c), i.e., bare soil. When the two forces are
comparable, the system can be pushed towards either state (a, c) depending on the initial
condition, i.e., hysteresis.
In the spatial model, the behavior is similar to the 0D model, as shown in the Appendix
(A). Thus, when the resistance force prevails over the hydro-morphodynamic disturbance
force, also the 1D system is pushed toward the vegetated state, and, on the contrary, to bare
soil. However, if the two forces are comparable (multi-stability zone), only a portion of
the vegetated patch is uprooted and turns into bare soil, while the remaining part persists,
reaching over time the vegetated state.
These results demonstrate that the final equilibrium of the non-spatial model can exhibit
hysteresis, as in the theoretical graph proposed by Scheffer et al. (2001). Moreover,
results of the 0D model show tipping points and instantaneous shifts between stable states
(Figure 3.5C and Figure 3.6). Subsequently, it can be observed how this behavior becomes
more complex and multi-stable in the 1D model (refer to Figure 3.7C and Figure 3.9).
The 1D model shows how spatial interactions smooth critical transitions and tipping points.
Indeed, the system avoids abrupt shifts and self-organizes into multi-stable states. Transi-
tions between alternative states are gradual, showing smaller intermediate steps (refer to
Figure 3.7C). This is due to the spatial distribution of vegetation which can persist after
being subjected to the hydro-morphodynamic disturbance, increasing the resilience of the
system.
These results are conceptually in line with recent works on spatial ecosystems (Rietkerk
et al., 2004, 2021; Bastiaansen et al., 2022). Surprisingly, despite the significant dif-
ferences between the simplified ecosystem and the savanna-forest ecosystem studied by
Rietkerk et al. (2021), both systems exhibit similar static behavior. In Figure 3.14A, Ri-
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etkerk et al. show coexistence of stable states between the forest and savanna alternative
states. Also in the results of this chapter, this coexistence between bare soil and vegeta-
tion is evident, Figure 3.14B. In both ecosystems, spatial interactions smooth out tipping
points and critical transitions and the final equilibrium depends on both the intensity of
disturbance and the initial conditions of the vegetation.
These results could suggest that even very different ecosystems can demonstrate similari-
ties in their static behavior and thus, a general common behavior may exist.

0.6

Vegetated patch

Figure 3.14: (A) The static behavior of the savanna-forest ecosystem by Rietkerk et al. (2021)
compared to (B) the results of the simplified river ecosystem. Both systems exhibit multi-stability
and smoothed behavior.

One of the main implications of these results is that real river ecosystems can be more
resilient than previously thought, due to the ability of system to self-organize and persist
despite of the external disturbance. However, this does not change the basic concept be-
hind the tipping points theory: the system still exhibits critical states and nonlinear shifts,
but the behavior is more smoothed due to spatial heterogeneity.
These results (refer to Figure 3.8) can help quantify the spatial resilience of the river
ecosystem. Understanding the equilibrium graph of the river ecosystem can be crucial for
developing efficient tools that can contribute to a better understanding of river dynamics
and to improving river management. Indeed, to manage the ecosystem, one can act on
both the x-axis (hydro-morphodynamic disturbance) or on the y-axis (resistance force). It
is essential to have a good understanding of the equilibrium graph of the spatial ecosystem
to achieve the desired outcomes in river management. Quantifying resilience can also help
communicate effectively with politicians and stakeholders to make informed decisions for
the preservation of ecosystems.

3.4.1 Limitations of the analysis
One of the main limitations of the current research lies in the complexity of connecting
these models with real ecosystems. Moreover, hysteresis and multiple states are difficult
to detect in real river ecosystems. In fact, in real river ecosystems, the interactions among
different elements are much more complex compared to the fundamental feedbacks studied
in these models, and there are many other components (such as stochastic disturbance, 2D
spatial distribution, colonization by vegetation, etc.) that complicate the analysis. In the
literature, there are only a few laboratory experiments (Wang et al., 2016), and there have
been no field studies so far.
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Furthermore, due to the emergence property, the equilibrium graph of the 2D spatial
ecosystem is expected to be more complex than the graph found in the 1D model. In fact,
the 2D spatial river ecosystem tends to self-organize into patterns (e.g., morphological
bars), and the direction and intensity of negative/positive feedbacks can vary at each point
in space. However, the equilibrium graph of the 1D model (Figure 3.7C) may be useful
as a conceptual basis for the more complex 2D model graph, just as the 0D graph was
useful for deriving the 1D graph. Additionally, it is expected that the concept of increased
resilience and smoothed critical transitions also holds true in a 2D system.

For this reason, future research could first focus on calibrating and parameterizing the
models. Secondly, it is suggested to focus on laboratory or real-world data analysis (es-
pecially considering the current increase in available data) to investigate the presence of
alternative and multiple states in real river ecosystems. Thirdly, it is suggested to also
focus on investigating the 2D equilibrium graph with numerical models.

3.5 Beyond static equilibrium: Oscillations and dynamic
equilibrium

In this chapter, the static equilibrium of the simplified river ecosystem is analyzed, namely
when root growth dynamics inhibit the negative feedback loop (refer to Figure 2.6). How-
ever, when the negative feedback loop prevails, it is found that the system oscillates without
reaching a steady state, but rather maintains a dynamic equilibrium, as shown in the Figure
3.15.
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Figure 3.15: When the negative feedback loop prevails, the simplified river ecosystem does not
reach a static equilibrium, but rather oscillates dynamically. Moreover, for some parameters, the
system exhibits a strong dependence on initial conditions, meaning small variations (≈ 10−5) of
initial conditions (vegetation 𝐵1, vegetation 𝐵2) diverge over time.

Furthermore, it was observed that for some parameters, these oscillations are aperiodic
and exhibit a strong dependence on initial conditions. As shown in Figure 3.15, if the
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initial condition of the vegetation 𝐵1 is changed by a small quantity (|𝐵1 − 𝐵2| ≈ 10−5)
the numerical solutions diverge over time. This is the commonly called ”Butterfly Effect”
(Lorenz, 1972), Figure 3.16.

Figure 3.16: The strong dependence on initial conditions is commonly known as ”the Butterfly
Effect”.

In the next chapter, the dynamic equilibrium of the simplified river ecosystem will be
studied, and the nature of the observed aperiodic oscillations will be investigated.
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Chapter 4

Oscillations and chaos

4.1 Introduction: Chaotic systems and predictability
At the beginning of the 20th century, the mathematician Poincaré realized that, for some
nonlinear deterministic systems, small differences in present observations may be am-
plified over time, producing significant differences in future conditions—the so-called
”Butterfly Effect” (Lorenz, 1972).

Present state

time

Figure 4.1: In chaotic systems, even a slight alteration of the initial conditions leads to an expo-
nential divergence of the trajectories over time. The black trajectory is the one that is realized, the
gray ones are the trajectories that would occur by changing slightly the initial condition (Slingo
and Palmer, 2011).

These nonlinear deterministic systems, strongly sensitive to initial conditions, are defined
as chaotic systems. According to Laplace’s deterministic concept, if the present state of
a system is known perfectly, then its future condition could be perfectly known as well
(Van Kampen, 1991). However, due to limitations in numerical representation and in-
evitable measurement errors in physical quantities, the initial conditions of a system can
never be known perfectly, but only approximately (Stone, 1989).
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Thus, even though chaotic systems are deterministic, dependence on initial conditions
and the limitations in their quantification, constrain the predictability. Regardless of how
close the initial conditions are, their trajectories will diverge exponentially, impacting the
quality of predictions (as shown in Figure 4.1).
Even though chaos limits the long-term predictability, it should not be seen only as a
limitation. The amplification of small fluctuations can provide natural systems with ac-
cess to renewal and novelty (Crutchfield et al., 1986), increasing dynamics, enhancing
adaptability and reinforcing the system against the external disturbance.
Moreover, chaotic systems are not synonymous of randomness (Stone, 1989). Their tra-
jectories diverge but remain confined to a well-defined region of the phase space, the
attractor. Chaos denies the long-term predictability of the system, but it can also es-
tablish the constructive limits of its short-term predictability. In fact, the estimation of
the Maximum Lyapunov Exponent (𝜆) provides a method to quantify the time scale of
predictability.
The predictability scale of the system strongly depends on the system itself and can range
from seconds, as in the double pendulum (Shinbrot et al., 1992), to million years, as
in the case of planets (Sussman and Wisdom, 1992). Chaotic behavior has been found
in several models of natural phenomena such as the atmosphere (Lorenz, 1963), (Figure
4.2), forest ecosystem disturbed by fire (Reluga, 2004) and in the human heartbeat (Gold-
berger, 1991).

Figure 4.2: The atmosphere is an example of a chaotic system in nature. Photo taken by
NOAA/NASA Goddard Rapid Response Team, 2018.

Chaos and complex behavior has also been recently investigated in geomorphological nu-
merical models, such as in braided rivers (Stecca et al., 2017), in delta networks (Salter
et al., 2020), and in fractal basins by Rinaldo (2005).
However, the chaotic behavior in numerical eco-morphodynamic models at the reach scale
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has not yet been specifically investigated.
Understanding when ecosystems lose their equilibrium and when they exhibit oscillations
or chaotic behavior is of fundamental importance for developing efficient tools that can
contribute to a better understanding of river dynamics and to improving predictions of
river trajectories. For example, in chaotic systems, probabilistic approaches can be used
for forecasting, as already well known by the weather prediction community (Slingo and
Palmer, 2011).

Thus, in this chapter, the dynamics of the simplified ecosystem are investigated, namely
how the system transitions from a state of stable equilibrium to an oscillatory state. It is
important to emphasize that when the system does not reach a steady state, it is because
the negative feedback loop is not inhibited by root growth dynamics. Vegetation grows
(Figure 4.3A) and increases the roughness, resulting in reduced flow velocity within the
vegetated area (Figure 4.3B). Vegetation reduces sediment transport, leading to a greater
imbalance between the vegetated and bare areas and thus inducing erosion (Figure 4.3C).
Erosion increases the likelihood of vegetation uprooting, and when scour reaches root
depth, uprooting occurs (Figure 4.3D). The overall feedback loop is negative: higher
vegetation biomass causes greater sediment flux imbalance and more erosion, ultimately
resulting in less vegetation.

Figure 4.3: Schematic representation of the biogeomorphic negative feedback loop. Vegetation
grows (A) and increases the roughness, resulting in reduced flow velocity within the vegetated
area (B). Vegetation reduces sediment transport, leading to a greater imbalance between the
vegetated and bare areas and thus inducing erosion (C). Erosion increases the likelihood of veg-
etation uprooting, and when scour reaches root depth, uprooting occurs (D). The overall feedback
loop is negative: higher vegetation biomass causes greater sediment flux imbalance and more
erosion, ultimately resulting in less vegetation. Vegetation regrows during low-flow periods, main-
taining the negative feedback cycle

Moreover, to simplify the system analysis, an additional assumption is made, namely that
the root depth 𝜁𝑢𝑝𝑟 is constant and equal to the maximum value 𝑜 𝑓 𝑓 𝑠𝑒𝑡. This results in a
3-variables system instead of 4, which is simpler to treat mathematically and numerically.
It was decided to keep the root depth constant because simulations showed that this pa-
rameter strongly influences the system’s dynamics, and this simplification was necessary
to have full control of the analysis. Additionally, roots physically grow quickly in the early
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stages of the plant’s life and then remain rather constant over time.
The main objectives of this chapter are defined as follows:

(i) Investigating the presence of chaotic oscillations in the models and defining the
route to chaos, attractors, fractals, and the main driving parameters of the process.

(ii) Quantifying the scale of predictability, namely the Lyapunov time of the sim-
plified river ecosystem.

The method involves stability analysis of the 0D model and numerical simulations with
both the non-spatial and spatial model described in Chapter 2.

Before presenting the analysis and results, a brief description of the concepts of the
route to chaos, fractals, and attractors is provided here.

4.1.1 Route to chaos: From stability to instability
The system can transition from a stable state to aperiodic oscillations (i.e., chaos) through
several ”routes to chaos”, by modifying driving parameters. Understanding the route to
chaos is crucial to comprehend how the dynamical system evolves from a stable region to
a chaotic-unstable region and to understand how sensitive the shift is to parameters. As
shown in Figure 4.4, there are several routes to chaos, such as intermittency (left), period
doubling (center), and Neimark-Sacker bifurcation (right).
In the period doubling route to chaos, the system transitions from stability to chaos
through periodic oscillations, losing stability and doubling its period until reaching chaos,
as shown in Figure 4.4 (center). However, within the chaotic regions, ”periodic windows”
may emerge, exhibiting brief episodes of order and periodic behavior.
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Figure 4.4: The system can transition from a stable state to a chaos through several routes
to chaos, such as intermittency (left), period doubling (center), and Neimark-Sacker bifurcation
(right). Adapted from Gritli et al. (2012), Wikimedia Commons, Zhang et al. (2018).

The bifurcation points of period doubling can be identified through the stability analysis
and the Cobweb maps of the system. Cobweb maps are a graphical method used to
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iteratively represent a map and to investigate its dynamic behavior (Strogatz, 2018).

4.1.2 Fractals and attractors
How can chaotic trajectories diverge exponentially and still remain confined to a well-
defined region of the phase space, the attractor? This paradox is explained by the concept
of fractals and the mechanism of stretching and folding.
In 1963 Lorenz was simulating the behavior of a model of convection in the atmosphere.
Surprisingly, though the solution exhibited divergent outcomes with slight changes in the
initial conditions (i.e., chaos), Lorenz noted that the structure was order and enclosed in
a specific region of space, but creating a ”infinite complex of surfaces” (Lorenz, 1963)
namely a ”strange attractor” with a fractal structure (Strogatz, 2018).

Lorenz strange attractor Rössler strange attractor

Figure 4.5: Two examples of strange attractors for chaotic solutions, the Lorenz attractor (1963)
on the left and the Rössler attractor (1976) on the right. The axes 𝑥, 𝑧, and 𝑥, 𝑦 represent selected
variables of the two dynamical systems, respectively, and the trajectories (black lines) are their
solutions over time. Adapted from Strogatz (2018).

Trajectories are obtained by plotting a graph with system variables numbered 𝑚 as axes
(i.e., phase space with 𝑚 dimensions) and tracing the mathematical solution of the dy-
namical system over time.
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Two well-known examples of strange attractors include the already mentioned Lorenz
attractor and the Rössler attractor, shown in Figure 4.5. The chaotic trajectories of these
strange attractors are confined to a specific bounded region but they also diverge expo-
nentially. They exist in a finite space but they give rise to an infinite structure that repeats
itself, a fractal. This is explained by the mechanisms of stretching and folding. The
system stretches the trajectories in the phase space, causing them to diverge. However, it
then folds them, bringing them back into the confined region. This process is repeated
cyclically over time (Strogatz, 2018).
Fractals are geometric objects with precise properties:
(i) symmetry and self-similarity, namely they repeat the same shape on smaller scales,
(ii) structure at arbitrary small scales
(iii) a not integer dimension.
A well-known example of a fractal is the Mandelbrot set (Mandelbrot, 1982), given by a
very simple equation:

𝑧𝑛+1 = 𝑧2
𝑛 + 𝑐 (4.1)

where 𝑧 is the variable of the system, 𝑛 is the number of iterations and 𝑐 is a parameter
with a real and an imaginary part (complex number). Starting from this equation a highly
complex order structure is obtained, as shown in Figure 4.6. The 𝑥 and 𝑦 axes of the
area represent different values of the parameter 𝑐 of equation (4.1), respectively the real
and imaginary parts. To define when the solution is chaotic or stable, it is necessary to
calculate the Maximum Lyapunov Exponent 𝜆 (MLE). The inner part of the Mandelbrot
set (black in Figure 4.6) represents the stable solution (negative value of the MLE) of the
system, while the outer part (blue in Figure 4.6) is the chaotic solution (positive value of
the MLE). If one zooms in on Figure 4.6, it becomes apparent that it repeats itself infinitely
(zoom in on the red area).
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Figure 4.6: Example of chaotic fractal solution, the Mandelbrot set (Mandelbrot, 1982). The 𝑥
and 𝑦 axes of the area represent different values of the parameter 𝑐 of equation (4.1), respec-
tively the real and imaginary parts. The stable solution is the black part of the Figure, the unstable
chaotic solution is represented by the blue color. If one zooms in on the figure, it becomes appar-
ent that it repeats itself infinitely (zoom in on the red area). Adapted from Wikimedia Commons.
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4.2 Oscillations and chaos in the 0D model
In this section, the 0D model is used to:

(i) conduct a stability analysis of the system and to draw the Cobweb maps to define
the route to chaos of the system.

(ii) estimate the Maximum Lyapunov exponent (𝜆) to define the time scale of predictabil-
ity for several parameter configurations through numerical simulations (details shown in
Subsection 4.2.1).

(iii) investigate the fractal structure of the system through numerical simulations.

The stability analysis and fractal solutions are exclusive to the 0D model due to (i) its
analytical tractability and (ii) significantly lower computational time requirements com-
pared to the 1D model. Nevertheless, in Appendix (A), it is demonstrated how the
dynamic behavior of the 0D model is comparable to that of the 1D model, indicating that
the common biogeomorphic feedbacks and the intrinsic disturbance mechanism are the
key ingredients generating the chaotic behavior.

4.2.1 Methodology
Stability analysis and Cobweb maps

To define the nature of the oscillations emerging in the system, a stability analysis is
conducted on the 0D model. In this section, we recombine without modifying the equations
of the 0D model (described in Section 2.4)
It is assumed 𝜁𝑢𝑝𝑟 = 𝑐𝑜𝑛𝑠𝑡 and the logistic equation (2.7) is solved as explained in
subsection 2.3.2.
Second, the sediment continuity equation (2.12) in discrete form is combined, and starting
from equation (2.14), the following map for the 0D system is obtained:

𝐵−
𝑛+1 =



𝐵+
𝑛+1 if 0 ≤ W𝑛+1 < 𝑤𝑚 , (a)(
1 − W𝑛+1−𝑤𝑚

1−𝑤𝑚

)𝛽
𝐵+
𝑛+1 if 𝑤𝑚 ≤ W𝑛+1 ≤ 1 , (b)

𝐵𝑚𝑖𝑛 if W𝑛+1 > 1 , (c)

(4.2)

where W =
Δ𝑧𝐵
𝜁𝑢𝑝𝑟

= 𝐸
𝜁𝑢𝑝𝑟

. Additionally:

W𝑛+1 =
𝐸 (𝐵+

𝑛+1)
𝜁𝑢𝑝𝑟

, (4.3)

𝐵+
𝑛+1 =

𝐵−
𝑛𝐾𝑒

𝜎Δ𝑇𝐹

𝐵−
𝑛

(
𝑒𝜎Δ𝑇𝐹 − 1

)
+ 𝐾

, (4.4)

𝐸 (𝐵+
𝑛+1) =

{
𝐶2 − 𝐶1 [max (Θ − 𝜃𝑐𝑟 , 0)]

3
2

} Δ𝑇𝐹

𝐿𝑣
, (4.5)
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with

𝐶1 =
8
√︁
(𝑠 − 1)𝑔𝑑3

𝑠

1 − 𝑝 , (4.6)

𝐶2 = 𝐶1
(
𝜃𝑔 − 𝜃𝑐𝑟

) 3
2 , (4.7)

𝐶3 =
𝑞3/5𝑆

𝑘2
𝑠,𝑔 (𝑠 − 1)𝑑𝑠

, (4.8)

and

Θ = 𝐶3

[(
𝑘𝑠,𝑣 − 𝑘𝑠,𝑔

𝐾

)
𝐵+
𝑛+1 + 𝑘𝑠,𝑔

] 7
5

. (4.9)

The stability of the map is studied as described in Section (10.1) of Strogatz (2018). 𝐵∗

is a fixed point of a map if it is satisfied 𝐵∗ = 𝑓 (𝐵∗), and 𝐵𝑛 = 𝐵∗, where 𝑛 is the number
of iterations. Thus, 𝐵𝑛+1 = 𝑓 (𝐵𝑛) = 𝑓 (𝐵∗) = 𝐵∗ and the orbit remains at 𝐵∗ for all future
iterations. To determine the stability of 𝐵∗, a nearby orbit 𝐵𝑛 = 𝐵∗ + 𝜂𝑛 is considered and
and it is checked if the orbit is attracted to or repelled from 𝐵∗. Thus:

𝐵∗ + 𝜂𝑛+1 = 𝐵𝑛+1 = 𝑓 (𝐵∗ + 𝜂𝑛) = 𝑓 (𝐵∗) + 𝑓 ′ (𝐵∗)𝜂𝑛 +𝑂 (𝜂𝑛2) , (4.10)

but since 𝑓 (𝐵∗) = 𝐵∗ and neglecting the 𝑂 (𝜂𝑛2), it is obtained:

𝜂𝑛+1 = 𝑓 ′ (𝐵∗)𝜂𝑛 . (4.11)

This is a linear equation in 𝜂, and is called the linearization about 𝐵∗, with the eigenvalue
𝜆= 𝑓 ′ (𝐵∗). If |𝜆 | = | 𝑓 ′ (𝐵∗) | < 1, then 𝜂𝑛 → 0 as 𝑛→ ∞ and the fixed point 𝐵∗ is linearly
stable. Conversely, if |𝜆 | = | 𝑓 ′ (𝐵∗) | > 1 the fixed point is unstable.
In the map, when 𝑤𝑚 ≤ W𝑛+1 ≤ 1:

𝐵−
𝑛+1 =

(
1 − W𝑛+1 − 𝑤𝑚

1 − 𝑤𝑚

)𝛽
𝐵+
𝑛+1 , (4.12)

in explicit form:

𝐵−
𝑛+1 =

©«1 −

{
𝐶2 − 𝐶1 [max (Θ − 𝜃𝑐𝑟 , 0)]

3
2

}
Δ𝑇𝐹
𝐿𝑣

− 𝑤𝑚
1 − 𝑤𝑚

ª®®¬
𝛽

𝐵−
𝑛𝐾𝑒

𝜎Δ𝑇𝐹

𝐵−
𝑛

(
𝑒𝜎Δ𝑇𝐹 − 1

)
+ 𝐾

,

(4.13)
𝐵−
𝑛+1 is plotted as a function of 𝐵−

𝑛 as illustrated in Figure 4.7 and the intersection point
of this curve with the line 𝐵−

𝑛+1 = 𝐵−
𝑛 (red line) is found to determine the fixed point 𝐵∗.

Then, an analysis is conducted to determine whether the derivative (blue dashed line) at
𝐵∗ satisfies | 𝑓 ′ (𝐵∗) | < 1 defining the stability of the system.
In the period-doubling route to chaos, the derivative is equal to | 𝑓 ′ (𝐵∗) | = 1 at the
first bifurcation. If the derivative | 𝑓 ′ (𝐵∗) | < 1 the system is stable; if the derivative is
| 𝑓 ′ (𝐵∗) | > 1 the system becomes unstable. In the marginal case where | 𝑓 ′ (𝐵∗) | = −1,
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linearization cannot provide any insight into its behavior.
In addition to the local view offered by the linearization, the graphical method of cobweb
maps can also be used to provide a picture of the system’s global behavior (green line in
Figure 4.7). Cobweb maps are especially useful when they can offer explanations where
local analysis fails, for example, in marginal cases. From the Cobweb maps method, given
an initial condition 𝐵−

𝑛0 draw a vertical line until it intersects the curve 𝑓 . From this
point, intersect horizontally the line 𝐵−

𝑛+1 = 𝐵−
𝑛 and then vertically to the curve again. It

is necessary to repeat the process 𝑛 times (excluding the first steps, which represent the
transition zone) to obtain the solution of the system.
The same analysis for several values is repeated for (i) the vegetation growth velocity 𝜎
of equation (2.7) and (ii) the uprooting parameter 𝛽 and 𝑤𝑚 of equations (2.14, 2.15).
These parameters are chosen because they are the main factors to shape the behavior
of the analyzed map (4.13). All the other model parameters are as described in Table
3.2, moreover the flood intensity 𝑞 is constant and equal to 12 𝑚2/𝑠 and the root growth
velocity is 𝜎𝑟 = ∞.

0
0

0.005 0.01 0.015

0

0.005

0.01

0.015

Figure 4.7: Stability analysis and Cobweb map. To study the stability of the system, 𝐵−
𝑛+1 is

plotted as a function of 𝐵−𝑛 and the intersection point of this curve with the line 𝐵−
𝑛+1 = 𝐵−𝑛 is

found to determine the fixed point 𝐵∗. An analysis of the derivative at 𝐵∗ is then conducted
to determine the system’s stability, where | 𝑓 ′ (𝐵∗) | < 1 indicates stability, while | 𝑓 ′ (𝐵∗) | > 1
signifies instability. In this Figure, | 𝑓 ′ (𝐵∗) | < 1, thus the system is stable and the Cobweb map
(green line) converges to the unique solution of the system, the fixed point 𝐵∗.

Maximum Lyapunov Exponent (𝜆)

By definition, a chaotic system exhibits aperiodic oscillations, strong sensitivity on initial
conditions, and positivity of the Maximum Lyapunov Exponent (𝜆). In the 0D discrete
model the Maximum Lyapunov Exponent (𝜆) is calculated as described in Section (10.5)
of Strogatz (2018). In fact, the 0D model is a dynamical system defined as a𝑚𝑎𝑝 because
time is discrete rather than continuous.
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Given an initial point 𝐵𝑛1, consider a neighboring point 𝐵𝑛2 = 𝐵𝑛1 + 𝛿0, where the initial
separation 𝛿0 is extremely small. Let 𝛿𝑛 be the distance after 𝑛 iterations. If |𝛿𝑛 | ≈ |𝛿0 |𝑒𝜆𝑛,
then 𝜆 is called the Maximum Lyapunov Exponent (𝜆). Considering that:

𝛿𝑛 = 𝑓 𝑛 (𝐵𝑛1 + 𝛿0) − 𝑓 𝑛 (𝐵𝑛1) , (4.14)

thus, if 𝜆 is computed, it is obtained:

𝜆 =
1
𝑛

ln | 𝛿𝑛
𝛿0

| = 1
𝑛

ln | 𝑓
𝑛 (𝐵𝑛1 + 𝛿0) − 𝑓 𝑛 (𝐵𝑛1)

𝛿0
| , (4.15)

and with 𝛿0 → 0:

𝜆 =
1
𝑛

ln | ( 𝑓 𝑛)′ (𝐵𝑛1) | , (4.16)

applying the chain rule and considering 𝑛 → ∞, the Maximum Lyapunov Exponent (𝜆)
for the orbit starting at 𝐵𝑛1 is defined as:

𝜆 = lim
𝑛→∞

{
1
𝑛

𝑛−1∑︁
𝑖=0

ln | 𝑓 ′ (𝐵𝑛𝑖 ) |
}
, (4.17)

𝜆 is positive for chaotic attractors; 𝜆 is negative for stable fixed points and periodic
oscillations.

Numerical simulations

In the non-spatial model the magnitude of the erosion process, serving as a proxy for
the hydro-morphodynamic disturbance, is first quantified using the erosion potential 𝐸𝑝
(Caponi and Siviglia, 2018), as defined in Subsection (3.2.1). Additionally, the proxy
for the system’s resistance is defined as the constant value of the root depth 𝜁𝑢𝑝𝑟 , due
to the ability of roots to anchor in the riverbed and resist to the disturbance. The choice
of a constant root depth is mainly made to simplify the model and have full control over
the dynamics. Physically, this choice can be explained by the fact that plant roots grow
rapidly during the early stages of life and then remain rather stable over time. Furthermore,
the ratio between disturbance and resistance (𝜔𝑧𝐵 =

𝐸𝑝

𝜁𝑢𝑝𝑟
) is introduced as a normalized

parameter to measure the relative strength of these components, as suggested by previous
work (Bertoldi et al., 2014; Caponi and Siviglia, 2018; Perona and Crouzy, 2018).
When 𝜔𝑧𝐵 is small, it indicates that the anchoring capacity of roots prevails over the
disturbance, favoring vegetation establishment. Conversely, when 𝜔𝑧𝐵 is large, it signifies
that the disturbance prevails over the resistance force and plants are uprooted.

The chosen configuration allows isolating and controlling the intrinsic mechanism of
erosion caused by the the presence of vegetation, as explained in Section (2.1).
A set of numerical simulations is performed to quantify the Maximum Lyapunov Exponent
by modifying: (i) the value of the vegetation growth rates 𝜎 and (ii) the value of 𝜔𝑧𝐵 , (iii)
the unit width stream power, computed as the product of the unit-width discharge 𝑞 by the
river slope, 𝑆. Although the unit width stream power and 𝜔𝑧𝐵 are two dependent parame-
ters, they have been investigated separately because the aim is to provide an estimation of
chaos for a well-known parameter in morphodynamics (unit width stream power) rather
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than for the estimated one (𝜔𝑧𝐵 ). To explore the fractal solution of the system, a matrix
of simulations is performed where the vegetation growth rate 𝜎 is modified on the x-axis
and the parameter Σ = 1

𝜔𝑧𝐵

and 𝛽 are modified on the y-axis. The Maximum Lyapunov
Exponent (MLE) is then calculated on the third axis (colors indicate different values of
the MLE) for each simulation.

All the other model parameters are as described in Table 3.2, moreover the flood in-
tensity 𝑞 is constant and equal to 12 𝑚2/𝑠 and the root growth velocity is 𝜎𝑟 = ∞. The
value of 𝐸𝑝 for 𝑞 = 12 𝑚2/𝑠 is 0.35 𝑚. To ensure reaching the steady state solution, 1000
growth-flood cycles were simulated, with the first 700 cycles discarded and only the last
300 cycles considered, as outlined in Subsection (3.2.1).

4.2.2 Results

Stability analysis and Cobwebs

In Figure 4.8 the stability of the system is investigated for several values of the vegetation
growth rate 𝜎, plotting 𝐵−

𝑛+1 as a function of 𝐵−
𝑛 and finding the intersection point of this

curve with the line 𝐵−
𝑛+1 = 𝐵−

𝑛 to determine the fixed point 𝐵∗. In Figure 4.8A it can be
observed that all the curves show a behavior with a maximum. For 𝜎 = 0.10 (Figure 4.8B)
the derivative | 𝑓 ′ (𝐵∗) | < 1, indicating that the system is stable. The fixed point 𝐵∗ is the
solution of the system, as shown by the convergence of the Cobweb map. However, when
𝜎 = 0.12 (Figure 4.8C) the derivative | 𝑓 ′ (𝐵∗) | > 1, indicating system instability. In this
case, when the Cobweb map is drawn, the system is observed to jump, after a period of
transition, between two different solutions (green dots), exhibiting periodic oscillation. If
𝜎 = 0.18 (Figure 4.8D) the derivative | 𝑓 ′ (𝐵∗) | > 1, thus the system shows instability and
the Cobweb map jumps between infinite solutions, displaying a chaotic behavior.
An investigation is conducted into how the stability of the system is altered by varying
values of 𝛽 and 𝑤𝑚 (refer to Figure 4.9): curves show always the same behavior with a
maximum that depends on the chosen parameters. For the same value of 𝛽 = 1, the curve
with the highest peak is the one with 𝑤𝑚 = 0.50 because uprooting occurs later for larger
values of 𝑤𝑚. In the case with 𝛽 = 9.0, the peak of the curve is the lowest because with
high values of 𝛽 the uprooting curve descends rapidly.
Through stability analysis, it is demonstrated that the system’s route to chaos is a period-
doubling bifurcation. The period-doubling bifurcation will be presented in the next
Subsection, in Figure 4.10A, where both the numerical and analytical results, coinciding,
are presented together. In Figure 4.10A, for the selected parameters 𝜁𝑢𝑝𝑟 = 0.12, 𝛽 = 1.0,
and 𝑤𝑚 = 0.27, it is found that the derivative is equal to | 𝑓 ′ (𝐵∗) | = 1 at the first bifurcation
point for 𝜎 = 0.10. Before the first bifurcation, the derivative is | 𝑓 ′ (𝐵∗) | < 1 and the
system is stable; after the first bifurcation, the derivative is | 𝑓 ′ (𝐵∗) | > 1 and the system
becomes unstable.
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Figure 4.8: Stability analysis of the system for different values of 𝜎, where 𝜁𝑢𝑝𝑟 = 0.12, 𝛽 = 0.9
and 𝑤𝑚 = 0. These values have been chosen considering that 𝛽 and 𝑤𝑚 can vary, as detailed
in the Appendix A.3. For 𝜎 = 0.10 the derivative | 𝑓 ′ (𝐵∗) | < 1, indicating system stability. The
fixed point 𝐵∗ is the solution of the system, as shown by the convergence of the Cobweb map.
When 𝜎 = 0.12 the derivative | 𝑓 ′ (𝐵∗) | > 1 indicating system instability. In this case, when the
Cobweb map is plotted, the system is observed to jump, after a period of transition, between
two distinct solutions (green dots), indicating a periodic oscillation. If 𝜎 = 0.18 the derivative
| 𝑓 ′ (𝐵∗) | > 1, thus the system shows instability and the Cobweb map displays infinite solutions
and thus a chaotic behavior.
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Figure 4.9: Stability analysis of the system for different values of 𝛽 and 𝑤𝑚: curves show always
a behavior with a maximum.

Period-doubling bifurcation and positivity of MLE

In the numerical results presented here, 𝜁𝑢𝑝𝑟 = 0.12, 𝛽 = 1.0, and 𝑤𝑚 = 0.27 are utilized.
These values are obtained by fitting the 0D model to the 1D model, as illustrated in
Appendix (A.3). As shown in the Appendix (A), despite the simplification, the 0D model
shows a dynamic behavior similar to that of the 1D model.
Model results show (refer to Figure 4.10A) a route to chaos defined by a period-doubling
bifurcation. The first bifurcation occurs at 𝜎 = 0.10 and the second bifurcation occurs at
𝜎 = 0.127, respectively, the chaotic regime starts at about 𝜎 = 0.134. The corresponding
Maximum Lyapunov Exponents (refer to Figure 4.10B) are negative when the solution is
stable or periodic, zero at the bifurcation points, and positive in the chaotic zone. The
time scale of predictability of the system is also calculated, defined as the inverse of the
Maximum Lyapunov Exponent (Kantz and Schreiber, 2004). Since in the calculation
of the MLE, every iteration 𝑛 in equation (4.16) corresponds to one growth-flood cycle,
the time scale of predictability 1

𝜆
is approximately calculated as 2 growth-flood cycles.

This implies that in the chaotic zone, after a few growth-flood cycles, the system is no
longer predictable. Furthermore, it is demonstrated (refer to Figure 4.10C) that the MLE
is independent of the model parameters and remains positive and constant across a broad
range of hydro-morphodynamic disturbance/vegetation resistance ratios 𝜔𝑧𝐵 . Chaotic
behavior is prevented when 𝜔𝑧𝐵 tends to zero or infinity resulting in negative values of
the MLE (Figure 4.10C, 𝐼𝑛𝑠𝑒𝑡). Additionally, the variability of the MLE is examined as a
function of the unit-width stream power within a range typical of gravel-bed rivers (Figure
4.10D). Again, the values are largely constant, between 0.04 and 0.07, and depend more
on the choice of parameters 𝛽 and 𝑤𝑚 than on the values of the stream power. However,
rivers with small stream power (0.02-0.03 𝑚2/𝑠) are characterized by smaller values of
the Lyapunov exponents and thus longer predictability horizon. These results confirm that
the Lyapunov time of the system is only a few growth-flood cycles and is nearly constant
over a wide range of parameters and hydro-morphodynamic configurations.
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Figure 4.10: (A) Bifurcation diagram showing biomass before floods 𝐵− as a function of 𝜎: the
route to chaos is defined by period-doubling. (B) The corresponding Maximum Lyapunov Ex-
ponents are negative when the solution is stable or periodic, zero at the bifurcation points, and
positive in the chaotic zone. The time scale of predictability in the chaotic zone is about 2 growth-
flood cycles. (C) The Maximum Lyapunov Exponent is positive and nearly constant over a wide
range of disturbance/resistance ratios and (D) also for typical ranges of unit-width stream power.
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Fractals

The solution of the system is a fractal solution (Figure 4.11), i.e., it is self-similar and it
repeats itself on different scales infinitely. In fact, in the zoomed-in inset, one can observe
the curve repeating infinitely on smaller scales with smaller portions exhibiting similar
patterns to the entire structure (self-similar). This result shows how the solution of the
system has an intrinsic order and it’s not random. By changing the set of parameters,
modifying, for example, the uprooting parameter 𝛽 on the y-axis, the solution remains
fractal but yields different figures (Figure 4.12).

Figure 4.11: Fractal solution of the system. A matrix of simulations is conducted, where the
vegetation growth rate 𝜎 is plotted on the x-axis and the parameter Σ = 1

𝜔𝑧𝐵
is plotted on the

y-axis. Subsequently, the Maximum Lyapunov Exponent (MLE) is plotted on the third axis, with
colors indicating different values of the MLE. In the zoomed-in inset, the MLE color scale is
different to highlight the repetition property.
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Figure 4.12: Fractal solution of the system. A matrix of simulations is conducted where the
vegetation growth rate 𝜎 is modified on the x-axis and the uprooting parameter 𝛽 is adjusted on
the y-axis. Subsequently, the Maximum Lyapunov Exponent (MLE) is plotted on the third axis,
with colors indicating different values of the MLE. In the zoomed-in inset, the MLE color scale is
different to highlight the repetition property.
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4.3 Oscillations and chaos in the 1D model
In this section, the 1D model is used to:

(i) analyze some periodic and aperiodic oscillatory time series, calculate the correspond-
ing Maximum Lyapunov Exponents, and show the attractors.

(ii) plot the bifurcation graph of the system as a function of the vegetation growth rate 𝜎.

4.3.1 Methodology
Maximum Lyapunov Exponent (𝜆)

The calculation of the Maximum Lyapunov Exponent (𝜆) in a multi-dimensional system
is more complex than the method used for the 0D model (𝑚𝑎𝑝).
Indeed, the time evolution of dynamical systems is defined within a specific phase space
(Kantz and Schreiber, 2003). Consequently, a vector space can be defined, referred to
as the ’phase space’ of the system. By specifying a point within this space, the system’s
state is effectively determined.
The primary challenge encountered is reconstructing the phase space of the system from a
time series, which essentially constitutes an observation of its behavior. This challenge is
commonly referred to as the ’problem of the phase space reconstruction,’ and it is solved
using the method of delay. The time series consists of a sequence of scalar measurements,
denoted as 𝑛, representing a particular quantity (in this case, vegetation 𝐵), which depends
on the current state of the system (𝑥), taken at multiples of a fixed sampling time Δ𝑡:

𝐵𝑛 = 𝐵(x(𝑛Δ𝑡)) .

Through the method of delay, the phase space of the system (referred to as the embedding
phase space) can be reconstructed from the time series. A delay reconstruction is formed
by the vectors B𝑛, which are defined as follows:

B𝑛 = (𝐵𝑛−(𝑚−1)𝜏 , 𝐵𝑛−(𝑚−2)𝜏 , . . . , 𝐵𝑛−𝜏 , 𝐵𝑛) ,

Here, 𝑚 represents the dimensions, and 𝜏 is the lag or delay time, which is the time
difference in the number of samples 𝜏 (or in time units, 𝜏Δ𝑡) between adjacent components
of the delay vectors.
In chaotic systems, trajectories diverge exponentially fast in time. The exponent that
measures how fast the system diverges (and thus the strength of chaos) is the Maximum
Lyapunov Exponent (𝜆).
Let B𝑛1 and B𝑛2 be two points in phase space with a distance | |B𝑛1 − B𝑛2 | | = 𝛿0 ≪ 1.
Denote by 𝛿Δ𝑛 the distance, some time Δ𝑛 ahead, between the two trajectories emerging
from these points, 𝛿Δ𝑛 = | |B𝑛1+Δ𝑛 − B𝑛2+Δ𝑛 | |. Then, 𝜆 is determined by:

|𝛿Δ𝑛 | ≈ |𝛿0 |𝑒𝜆Δ𝑛, 𝛿Δ𝑛 ≪ 1, Δ𝑛 ≫ 1 . (4.18)

Naturally, two trajectories can not separate farther than the size of the attractor, such that
the law of equation (4.18) is only valid during times in for which 𝛿Δ𝑛 ≪ 1. If 𝜆 is positive,
this means that the nearby trajectories diverge exponentially, indicating chaos. The inverse
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Figure 4.13: Calculation of the Maximum Lyapunov Exponent (𝜆) in the 1D model. From the time
series of vegetation 𝐵, the phase space of the system can be reconstructed using the method
of delays. In the example depicted in this Figure, a dimension of 𝑚 = 3 and a time delay of
𝜏 = 2 are chosen; from the time series, 3-dimensional vectors B𝑛 are created and plotted in
the phase space (𝑚1, 𝑚2, 𝑚3). 𝜏 is the time difference in number of samples between adjacent
components of the delay vectors. Next, all the neighbors of a selected point B𝑛0 are identified,
which are points closer than 𝜖 at Δ𝑛 = 0 (i.e., |B𝑛123 − B𝑛0 | = 𝛿0 < 𝜖). For the sake of clarity,
the Figure displays only one neighbor, B𝑛123 . Following that, the divergence of the trajectories’
distance, denoted as 𝛿, is calculated over a relative time period Δ𝑛. Finally, 𝑆(Δ𝑛) is computed as
a function of 𝛿 over time and an average of all the neighbors. This process is repeated for several
values of B𝑛0 . The initial slope of 𝑆(Δ𝑛) is an estimation of the Maximum Lyapunov Exponent 𝜆,
which provides insights into the chaotic nature of the system.
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of the Maximum Lyapunov Exponent ( 1
𝜆

) is the time scale of predictability of the system.
There are several algorithms for the calculation of the Maximum Lyapunov Exponent (𝜆);
here, the algorithm proposed by Kantz (1994) is utilized.
In the embedding phase space, a point B𝑛0 is chosen from the time series, and all neighbors
with a distance smaller than 𝜖 are selected. Then, for many values of 𝑛0, the average over
the distances of all neighbors to the reference part of the trajectory is computed as a
function of the relative time. The logarithm of the average distance at time Δ𝑛 is some
effective expansion rate over the time span Δ𝑛 (plus the logarithm of the initial distance).
Thus, it is calculated:

𝑆(Δ𝑛) = 1
𝑁

𝑁∑︁
𝑛0=1

ln ©« 1
|𝑈 (B𝑛0 ) |

∑︁
B𝑛∈𝑈 (B𝑛0 )

|𝐵𝑛0+Δ𝑛 − 𝐵𝑛+Δ𝑛 |
ª®¬ . (4.19)

Where B𝑛0 are embedding vectors, U(B𝑛0 ) is the neighborhood of B𝑛0 with diameter 𝜖 ,
𝛿 = |𝐵𝑛0+Δ𝑛 − 𝐵𝑛+Δ𝑛

| is the distance 𝛿. If, for some range of Δ𝑛, the function 𝑆(Δ𝑛)
exhibits a robust linear increase and it reaches a plateau (Franchi and Ricci, 2014), the
system is chaotic, and its slope is an estimation of the Maximum Lyapunov Exponent (𝜆)
per time step, which must be converted to the desired units (e.g., number of growth-flood
cycles). 𝑆(Δ𝑛) is calculated for various values to enhance the robustness of the analysis
because, a priori, the embedding dimension 𝑚, the time lag 𝜏 and the optimal distance 𝜖
may not be known. The program 𝑙𝑦𝑎𝑝𝑘 in the TISEAN 3.0.1 software package (Hegger
et al., 1999) performs the necessary calculations to create the curves 𝑆(Δ𝑛) and estimate
the Maximum Lyapunov Exponent (𝜆).
The analysis is conducted using the vegetation 𝐵 time series including the transient phase
from growth-flood cycle 1-50. A negative value of the Maximum Lyapunov Exponent (𝜆)
indicates stable or periodic solutions, whereas positive values indicate irregular-chaotic
dynamics.

Numerical simulations

The magnitude of the erosion process, which represents the hydro-morphodynamic dis-
turbance, is initially quantified using the erosion potential 𝐸𝑝 , as defined in Subsection
(3.3.1). The resistance 𝜁𝑢𝑝𝑟 and the ratio between disturbance and resistance (𝜔𝑧𝐵 =

𝐸𝑝

𝜁𝑢𝑝𝑟
)

are calculated as defined in Subsection (4.2.1).
A set of numerical simulations are performed to estimate the Maximum Lyapunov ex-
ponent and the attractors by modifying: (i) the value of 𝜔𝑧𝐵 to investigate several ratios
between the disturbance and the resistance, (ii) the value of the vegetation growth rates
𝜎 to investigate different vegetation types. All the results plotted represent the average
values of the variables of the system within the patch.
All the other model parameters are as described in Table 3.2, moreover the flood intensity
𝑞 is constant and equal to 12 𝑚2/𝑠, the flood duration is 3 hours and the root growth
velocity is 𝜎𝑟 = ∞. The value of 𝐸𝑝 for 𝑞 = 12 𝑚2/𝑠 is 0.35 𝑚, which corresponds to a
flood event with a return period of approximately 2-5 years (𝜃 ≈ 0.23).
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4.3.2 Results
Time series analysis and attractors

Model results show three different possible behaviors: (i) a stable solution (Figure 4.14A),
(ii) periodic oscillations (Figure 4.14B), or (iii) aperiodic oscillations (Figure 4.14C).
In Figure 4.14A, the disturbance is weaker than the resistance (𝜔𝑧𝐵 = 10−3). Thus, over
time, vegetation 𝐵 grows (𝜎 = 0.2) and it is not uprooted, indeed the root resistance is
greater than the erosion. After a transition phase, it reaches a stable solution at the vege-
tated state (𝐾 = 1). For the sake of clarity, in Figure 4.14 it is not plotted the transition
phase (1-28 growth-flood cycles).
If the trajectories of the three variables of the system are plotted (x-axis represents vege-
tation 𝐵, y-axis represents the erosion Δ𝑧𝐵, and the color scale represents the water depth
ℎ) in the phase space, it can be observed that the attractor of the system consists of only
one point (see the 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 of Figure 4.14A).
In Figure 4.14B, during low flow periods, vegetation grows until the carrying capacity
(𝐾 = 1), due to the high value of (𝜎 = 0.8), but then it is completely uprooted during
floods due to the higher value of the disturbance (𝜔𝑧𝐵 = 2.9). This behavior gives rise to
periodic oscillations and thus, if the trajectories of the three variables of the system in the
phase space are plotted, it can be observed that the attractor of the system consists of a
periodic 2D-curve (see the 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 of Figure 4.14B).
In Figure 4.14C vegation grows (𝜎 = 0.2) during the first low flow period but then it is
partially uprooted during the first flood (𝜔𝑧𝐵 = 2.9), thus, in the second low flood period it
grows differently due to the varied initial conditions and so forth. This behavior gives rise
to aperiodic oscillations between the bare soil and the vegetated state. If the trajectories
of the three variables of the system are plotted in the phase space, it can be observed
that the attractor of the system in this case consists of a strange 3D-attractor, which never
repeat itself (see the 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 of Figure 4.14C). Moreover, when the initial condition of
the vegetation (𝐵1, 𝐵2, 𝐵3) is changed by a small quantity (≈ 10−5), it is found that the
system in Figure 4.14C is strong sensitive to initial conditions. Thus, the trajectories of
the three simulations start closed but then they diverge over time. In Figure 4.14A and
4.14B the trajectories of 𝐵1, 𝐵2, 𝐵3 overlap because when the system is in a periodic or
stable configuration is not sensitive dependent on initial conditions.
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Figure 4.14: (A) If 𝜔𝑧𝐵 = 10−3 and 𝜎 = 0.2, vegetation 𝐵 reaches, after a transition phase, a
stable solution at the vegetated state (𝐾 = 1) over time 𝑡∗. The transition phase (1-28 growth-
flood cycles) is not plotted. The attractor of the system consists of only one point (𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒).
(B) If 𝜔𝑧𝐵 = 2.9 and 𝜎 = 0.8, vegetation grows until the carrying capacity 𝐾 = 1, but then it
is completely uprooted during floods. This behavior gives rise to periodic oscillations, and the
attractor of the system consists of a periodic 2D-curve (𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒). (C) If 𝜔𝑧𝐵 = 2.9 and 𝜎 = 0.2
vegetation grows during the first low flow period but then it is partially uprooted during the first
flood. Subsequently, during the second low flow period it shows distinct growth due to different
initial conditions and so forth. This behavior gives rise to aperiodic oscillations and the attractor of
the system is a strange 3D-attractor (𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒). Moreover, the initial condition of the vegetation
is changed by a small quantity (𝐵1 = 1.0×10−5, 𝐵2 = 1.1×10−5, 𝐵3 = 1.2×10−5) and it is found
that the system in this case is strong sensitive to initial conditions, thus the trajectories of the
three simulations diverge over time and the Maximum Lyapunov Exponent is positive (𝜆 = 0.38).

74



CHAPTER 4. OSCILLATIONS AND CHAOS

Maximum Lyapunov Exponent (𝜆)

In Figure 4.15, the Maximum Lyapunov Exponent (𝜆) is calculated for time series of
vegetation 𝐵 corresponding to Figure 4.14. The cases in Figure 4.15A and Figure 4.15B,
corresponding to, respectively, the calculation of the time series of Figure 4.14A and
Figure 4.14B, show negative values of the Maximum Lyapunov Exponent (𝜆). In fact,
in Figure 4.15A the curve 𝑆(Δ𝑛) exhibits a robust linear increase but it does not reach a
plateau over the time span Δ𝑛. In Figure 4.15B the curve 𝑆(Δ𝑛) does not exhibit a robust
linear increase over the time span Δ𝑛. In these cases the nearby trajectories do not diverge
exponentially, the system is not chaotic, and it shows stable solution (Figure 4.14A) or
periodic oscillations (Figure 4.14B). In the case of Figure 4.15C, corresponding to the
calculation of the time series of Figure 4.14C, the curve 𝑆(Δ𝑛) exhibits a robust linear
increase reaching a plateau over time span Δ𝑛. The slope of its linear increase (𝜆=0.38)
represents an estimation of the Maximum Lyapunov Exponent. In this case the nearby
trajectories diverge exponentially, the system is chaotic, and it shows irregular oscillations.
The inverse of the Maximum Lyapunov Exponent is the time scale of predictability, which
must be converted to the desired units (i.e., ≈ 2.6 number of growth-flood cycles). This
result is consistent with the Maximum Lyapunov Exponent calculated in the 0D model
(refer to 4.2.2).
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Figure 4.15: Value of the Maximum Lyapunov Exponent (𝜆) for time series of vegetation 𝐵 cor-
responding to Figure 4.14. In Figure 4.15A (refer to Figure 4.14A) the curve 𝑆(Δ𝑛) exhibits a
linear increase but it does not reach a plateau over time span Δ𝑛, representing a non-chaotic
solution. In Figure 4.15B (refer to Figure 4.14B) the curve 𝑆(Δ𝑛) does not exhibit a robust linear
increase, representing a non-chaotic solution. In Figure 4.15C (refer to Figure 4.14C) the curve
𝑆(Δ𝑛) exhibits a robust linear increase and a plateau over time span Δ𝑛, representing a chaotic
solution. The inverse of the slope of its linear increase (i.e., Maximum Lyapunov Exponent 𝜆) is
the time scale of predictability (e.g., ≈ 2.6 number of growth-flood cycles).

Since in Figure 4.14C it is found (i) strong dependence on initial conditions, (ii) aperiodic
oscillations and (iii) positivity of the Maximum Lyapunov Exponent (𝜆 = 0.38), the
chaoticity of the system for this parameter setting is demonstrated.
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Bifurcation graph and chaotic zone

In Figure 4.16A and 4.16B, the vegetation at the beginning (𝐵− , yellow points) and at the
end (𝐵+, green points) of every growth period is plotted as a function of the parameter 𝜎.
If 𝜔𝑧𝐵 is small (Figure 4.16A) or big (Figure 4.16B) the system does not show chaotic
behavior. In Figure 4.16A, the resistance 𝜁𝑢𝑝𝑟 is much greater than the disturbance
(erosion potential 𝐸𝑝) and the system reaches its stability at the vegetated state, thus 𝐵−=
𝐵+= 𝐾 , for every value of 𝜎. In Figure 4.16B, vegetation grows, during low flow periods,
depending on the value of 𝜎, but the disturbance 𝐸𝑝 is much greater than the resistance
𝜁𝑢𝑝𝑟 . Indeed, vegetation is completely uprooted at every flood period (𝐵− = 𝐵𝑚𝑖𝑛),
inducing periodic oscillations.
If the vegetation resistance and the hydro-morphodynamic disturbance have the same order
of magnitude the system shows chaotic behavior (Figure 4.16C). In the case C, a plot of the
biomass before floods, 𝐵+, is shown as a function of 𝜎, revealing a bifurcation diagram.
Within the range of 𝜎 [0.0, 0.65], the system exhibits chaotic behavior, characterized by
multiple values of 𝐵+ due to aperiodic oscillations, as well as periodic windows — open
areas where periodic cycles emerge within the chaotic zone. A stable period-3 cycle is
found in the range [0.22, 0.26] and a stable period-2 cycle is observed in the largest period
window in the range [0.34, 0.52]. For growth rates above 0.69 the solutions are periodic.
Moreover, the Maximum Lyapunov Exponent (red bars) is calculated for several time
series of vegetation 𝐵, consistently demonstrating its positivity within the chaotic zone.
The time scale of predictability of the system is also calculated, revealing its equivalence
to only a few growth-flood cycles (3-4) within every range of the chaotic behavior, as
shown in the right vertical axis of the figure. This implies that the system, with these
parameter settings, is not predictable after a few growth-flood cycles.
It is also important to underline that the results are plotted for the variable vegetation 𝐵,
but all the other variables of the system behave dynamically in the same way. In other
words, if the vegetation is stable, the other variables of the system are also stable; if it
oscillates periodically, the other variables also oscillate periodically; if the vegetation is
chaotic, the other variables are also chaotic.
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Figure 4.16: The vegetation at the beginning (𝐵−) and at the end (𝐵+) of every growth period is
plotted as a function of the parameter 𝜎. (A) If the resistance is much bigger than the disturbance
( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 10−3) the system reaches its stability at the vegetated state 𝐵− = 𝐵+ = 1, for every value

of 𝜎. (B) If the disturbance is much bigger than the resistance ( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 106), the vegetation grows

during low flow periods but then it is completely uprooted at every flood period (𝐵− = 𝐵𝑚𝑖𝑛),
inducing periodic oscillations. (C) If the resistance and the disturbance have the same order of
magnitude ( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 2.9) the system shows chaotic behavior, characterized by multiple values of

𝐵+ due to aperiodic oscillations, and a bifurcation diagram. The Maximum Lyapunov Exponent
(red bars) is calculated for several time series of vegetation 𝐵, consistently demonstrating its
positivity within the chaotic zone. The red dot in the center of the plot represents the mean, while
the bottom and top of the error bars represent the minimum and the maximum values in the data
set, respectively. Moreover, the time scale of predictability of the system is calculated, as shown
on the right vertical axis. The blue arrows refer to the vegetation time series in Figure 4.14B and
4.14C.
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4.4 Conclusion and implications

In this chapter, the established objectives are achieved:

(i) Through these analyses, it has been established that the observed aperiodic oscilla-
tions are chaotic. The system exhibits chaotic oscillations when (i) the total negative
feedback loop prevails and when (ii) vegetation resistance (proxy 𝜁𝑢𝑝𝑟 ) is of the same
order of magnitude as the hydro-morphodynamic disturbance (proxy 𝐸𝑝). The route to
chaos for the system is also identified, namely period-doubling bifurcation, and established
that the system is driven by the intrisic mechanisms of eco-morphodynamic feedbacks.
The fractal solutions and attractors are also defined.

(ii) The timescale of predictability (Lyapunov time) has been quantified, equivalent to
a few growth-flood cycles. This implies that the system is not predictable beyond a few
growth-flood cycles.

It’s important to mention that these conclusions are valid for both the spatial and non-
spatial models.

These results show how the system can lose its equilibrium and exhibit either periodic
or chaotic oscillations depending on where it is located in the period-doubling bifurca-
tion (refer to Figure 4.10C and 4.16C). From these results, it seems that the system can
enter and exit chaotic zones, depending on the ratio between plant resistance and hydro-
morphodynamic disturbance. When the system is in the stable or periodically oscillatory
zone, it is deterministic predictable. However, when it enters inside the chaotic zone,
it becomes unpredictable in the long term. In fact, in the chaotic zone, the maximum
Lyapunov time scales indicates a predictability for only a few growth-flood cycles.
In natural rivers, the duration of these growth-flood cycles can vary considerably, depend-
ing on the type of vegetation (e.g., aquatic vs. riparian) and on the flood magnitude that
is able to uproot the vegetation. In low-energy small rivers where macrophytes are the
main engineering species (Gurnell, 2014) the growth-flood cycle is likely to be annual. In
larger gravel-bed rivers, the return interval of floods that can significantly affect vegetation
has been reported to vary from 1-2 years for partial vegetation removal on highly dynamic
braided rivers (Surian et al., 2015), to several decades for major vegetation renewal (Bel-
letti et al., 2014). Riparian trees grow rapidly, exerting a strong impact on the flow field
already after a few years, when the biomass is closer to the ground. Also the resistance of
riparian plants develops in short time, where roots of phreatophytic plants grow to reach
the ground water level and can easily reach depths > 1 𝑚 in 1-2 years (Mahoney and
Rood, 1998). This analysis suggests that chaotic behavior is more likely to manifest when
the magnitude of flood disturbance and associated erosion closely matches the resistance
exerted by roots. Therefore, different river systems may exhibit chaotic behavior on differ-
ent time scales, also depending on the growth stage of the vegetation and its root network.
Moreover, these results suggest that external factors that amplify the erosion process, such
as bedform migration and bank erosion, are likely to modify the nonlinear dynamics con-
sidered here, where the morphological disturbance is uniquely generated by the presence
of vegetation. Increased erosion, if not balanced by vegetation resistance, may prevent the
emergence of chaos within the system. This intrinsic mechanism is not limited to rivers
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and can play an important role in different types of vegetated landscapes, where the inter-
play between time-dependent disturbances and vegetation resistance is key to shaping their
evolution, such as in salt marshes, wetlands, and coastal dunes (Goldstein and Moore,
2016; Marani et al., 2010; Bertagni et al., 2018; Schwarz et al., 2018).
Chaotic behavior has been found in fluvial system considering only sediment-flow inter-
actions, when flow is redistributed in multiple anabranches, like in braided rivers (Stecca
and Hicks, 2022) and in deltas (Salter et al., 2020). However, in less complex river
morphologies, such as those with migrating bars, the emergence of chaos from these in-
teractions remains unproven (Schielen et al., 1993), although it may occur within certain
parameter ranges. Despite using simplified eco-morphodynamic models in this analysis,
the results demonstrate that adding vegetation may enhance the occurrence of determinis-
tic chaos over a wide range of typical value of stream power (refer to Figure 4.10D).
The presence of chaos could have significant implications for the capability of models to
predict river trajectories and for river management. In fact, if rivers exhibit chaotic zones,
their management outcomes may not unfold as planned (Wohl et al., 2015).

4.4.1 Limitations of the analysis

There are several limitations regarding this analysis. Firstly, the models used in this
thesis are highly simplified, especially the vegetation equations, which have not been
parameterized yet. Future research could modify and parameterize the vegetation model
to make it more realistic and to observe how chaotic behavior varies depending on it.
For example, one could add some important feedbacks such as (i) dependence between
biomass 𝐵 and root depth 𝜁𝑢𝑝𝑟 , (ii) dependence of vegetation on the riverbed position,
(iii) or cohesive effect of the roots, etc.
Secondly, in the literature, there is a significant debate on the actual importance of chaos
in natural systems. Some authors argue that natural systems tend to remain mainly in
a zone of stability or periodic oscillations (Berryman and Millstein, 1989; Upadhyay
and Rai, 1997). Others, on the contrary, assert that chaos is a fundamental element for
evolution and the maintenance of biodiversity (Jones and Culliney, 1999; Rogers et al.,
2022; Munch et al., 2022).
Moreover, it is complex to demonstrate the presence of chaos in real river ecosystems. In
fact (i) there are not sufficient long time series data to calculate the Maximum Lyapunov
Exponent and (ii) in real time series, noise is present due to stochastic elements, such as
flood events.
Additionally, it is unknown whether the value of the Maximum Lyapunov Exponent in
more complex 2D-models has the same order of magnitude as the one estimated in this
analysis. What can be stated with this research is that (i) chaos has been found for a wide
range of parameters typical of gravel rivers in the models (ii) the values of the Maximum
Lyapunov coefficients in 0D and 1D models are of the same order of magnitude.
It is hoped that these studies on a simplified river ecosystem can serve as a guide for future
research in laboratory experiments and real-world analysis, especially considering the
current increase in available data. Second, it is hoped that these studies can be useful for
conducting analyses on heterogeneous 2D eco-morphodynamic models, such as estimating
the order of magnitude of the Maximum Lyapunov Exponent.
Finally, it would be interesting to investigate how stochastic disturbance modifies the
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chaotic behavior. In fact, in these analyses, deterministic disturbances are considered,
but stochastic events, that have a strong control on vegetation dynamics (Bertagni et al.,
2018), could either enhance or mitigate the intrisic chaotic behavior.
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Conclusions and implications

In the river ecosystem, water, sediments, and vegetation interact through nonlinear inter-
actions, which lead to positive and negative feedbacks. These feedbacks, governed by
the interplay between disturbance and resistance, generate highly nonlinear and complex
processes. In this thesis, eco-morphodynamic models are developed, both non-spatial and
spatial, to study a simplified river ecosystem through the lens of the dynamical system
theory. The main positive and negative eco-morphodynamic feedbacks are modeled to
investigate how they control the complex river dynamics, both statics and dynamics.
In both models, the biomass increases the roughness, reducing flow velocity. Variations in
the flow field and the reduction of bottom shear stress modify sediment transport, leading
to a greater imbalance between the vegetated and bare areas and thus, inducing erosion.
Erosion increases the probability of vegetation uprooting, and when scour reaches root
depth, uprooting occurs. The overall feedback loop is negative: higher vegetation biomass
causes greater sediment flux imbalance and more erosion, ultimately resulting in less veg-
etation. However, root growth may inhibit the negative feedback loop, promoting positive
feedbacks.
The aim was to address the two research objectives outlined in Section (1.4). Indeed, the
aim was to (i) investigate the presence of hysteresis behavior in the simplified ecosystem
and how space influences this behavior; (ii) investigate the presence of oscillatory or
chaotic behavior, define its properties and driving parameters and quantify the time scale
of predictability.
Here, the main key findings of this research are illustrated:

(i) When the negative feedback loop is inhibited, the system tends to reach a steady
state. However, the equilibrium is not always unique. The non-spatial model can
also show hysteresis, leading to both the vegetated and bare soil depending on the
initial condition. In the spatial model, the behavior can become even more complex,
exhibiting multi-stability, meaning infinite possible equilibria between the two alter-
native states are possible.

(ii) When the negative feedback loop prevails, the system oscillates dynamically.
These oscillations can be periodic or chaotic and the transition from a stable state to
a chaotic one occurs through a period-doubling bifurcation. The solution is confined
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within the attractor and the predictability time scale is only a few growth-flood cycles.

5.1 From statics to dynamics
The prevalence or inhibition of the negative feedback loop is what determines the stability
or oscillations of the system. The ratio between the hydro-morphodynamic disturbance
and vegetation resistance inhibits or increases the negative feedback loop.
In Figure 5.1, different ratios are examined by adjusting the root growth velocity parameter
𝜎𝑟 . A set of simulations are performed with the non-spatial model, where the parameters
are those described in Table 3.2 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0.8, 𝜎 = 0.12, and 𝛽 = 2. The vegetation
before floods 𝐵+ is plotted as a function of the erosion potential 𝐸𝑝 . The Figure 5.1 shows
how the prevalence of the negative feedback loop and its inhibition varies in the plots
(A-E) depending on the value of 𝜎𝑟 . The regions for very low or very high values of
𝐸𝑝 have always inhibited negative feedback loop (blue arrows), while in the intermediate
regions (red arrows) the negative feedback loop can prevail depending on the value of 𝜎𝑟 .
In Figure 5.1(A), it is observed that, when the value of 𝜎𝑟 is high (i.e., 𝜁𝑢𝑝𝑟 can be con-
sidered constant because it reaches immediately the 𝑜 𝑓 𝑓 𝑠𝑒𝑡) the negative feedback loop
prevails, and the system exhibits periodic oscillations and chaos, except for low value of
𝐸𝑝 (< 0.2), where the ratio between the resistance and the disturbance 𝜔𝑧𝐵 is low and the
inhibition prevails. As the value of 𝜎𝑟 decreases, in order from Figure 5.1(A) to Figure
5.1(E), the negative feedback loop is inhibited, suppressing the oscillations and leading to
bi-stability Figure 5.1(E).

5.2 Prediction of evolutionary trajectories
Understanding how positive and negative feedbacks govern the complex dynamics of river
ecosystems can have significant implications for predicting evolutionary trajectories and
river management. In fact, as observed in this analysis, both in chaotic and multi-stability
zones, initial conditions can be crucial and can significantly impact the system’s trajectory.
An example of how the dependence on initial condition and multi-stability can complicate
river management is provided by Bau’ et al. (2021). Their case study is a cross-section
representative of the braided reach of the River Maggia. They combine stochastic and de-
terministic approaches of phreatophytic vegetation dynamics into a analytical framework.
At high elevations above the phreatic surface, roots go deep into the soil to reach the water
table. Conversely, at lower elevations close to the phreatic surface, roots develop near the
soil surface (Tron et al., 2015; Bau’ et al., 2019). The main mechanism of death for plants
is flow-induced uprooting, modeled with a critical depth leading to plant collapse while
the external disturbance is a stochastic river discharge. They also combine the 1D Exner
equation for conditions of net bed erosion with a Meyer-Peter and Müller type sediment
transport relationship. In 1953, a dam was built on the Maggia River, causing a significant
hydrological change that led to vegetation encroachment and gradual channel narrowing.
Figure 5.2, displays the case study and analysis by Bau’ et al. (2021) in accordance with
the results of this thesis. At point 1 the eco-morphodynamic system is in equilibrium before
the construction of a dam. After the construction of the dam, the hydro-morphodynamic
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Figure 5.1: Set of simulations performed with the non-spatial model, where the parameters are
those described in Table 3.2 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0.8, 𝜎 = 0.12, and 𝛽 = 2. The vegetation be-
fore floods 𝐵+ is plotted as a function of the erosion potential 𝐸𝑝 , varying the value of the root
growth velocity 𝜎𝑟 . (A) the value of 𝜎𝑟 is high (i.e., 𝜁𝑢𝑝𝑟 can be considered constant because
it reaches immediately the 𝑜 𝑓 𝑓 𝑠𝑒𝑡) and the system exhibits periodic oscillations and chaos due
to the prevalence of the negative feedback loop (red arrow). (B-C-D-E) as the value of 𝜎𝑟 de-
creases the negative feedback loop is inhibited (blue arrow), leading to bi-stability.
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disturbance (𝐸𝑝) decreases, and the system shifts to point 2. However, as the disturbance
decreases, phreatophytic roots also deepen because the groundwater table lowers due to
the dam construction. Due to deeper initial conditions, the system finds its new equilib-
rium at point 3 between the two alternative states. Assuming removal of the dam and a
return to the initial hydro-morphodynamic disturbance 𝐸𝑝 , the new equilibrium point 4
differs from the starting point 1 due to deeper root conditions and the presence of multiple
possible equilibria.
To return to point 1, it is necessary to increase the hydro-morphodynamic disturbance to
point 5, where the system has enough strength to remove the deeper roots, reaching the
equilibrium at point 6. Ultimately, reverting to the initial hydro-morphodynamic condi-
tion 𝐸𝑝 allows the system to return to point 1. However, even upon returning to point 1
with the same mean root value, the spatial distribution is likely to differ from the initial
one due to changes in the riverbed and water depth resulting from previous alterations.
Thus, it is unlikely that the system returns to the exact starting condition as before the
dam construction. Differently from (Bau’ et al., 2021), the results of this thesis show
not just a possible hysteresis cycle, but all possible multi-equilibria points starting from
different initial conditions. Additionally, it provides an explanation as to why the river
exhibits multiple stable equilibrium points and where the system is likely to find its new
equilibrium.

0 6

Figure 5.2: Interpretation of Bau’ et al.’s (2021) results according to the multi-stability graph. The
construction and successive removal of a dam alter the initial conditions, pushing the system to
different equilibria.

The illustrated example shows how the construction and subsequent removal of the dam
might not restore the initial conditions of the system, reducing the effectiveness of river
management and yielding unexpected results.
Developing models capable of identifying multi-stability behaviors is fundamental to im-
proving the ability to predict river responses and ecosystem restoration.
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Moreover, the system can also exhibit non-static behaviors, periodic oscillations, and
chaotic dynamics. In this analysis, chaos inherently limits the predictability of the models
to a few growth-flood cycles. The strong dependence on initial conditions complicate the
ability of models to predict evolutionary trajectories.
However, even though models cannot precisely determine where the outcomes will go, one
could identify a zone where they will likely to be (refer to Figure 5.3). In fact, although the
chaotic solution cannot be precisely identified, it is confined within the attractor and has a
well-defined intrinsic fractal order. Thus, the chaotic solution remains confined within a
well-defined zone, even though it is challenging to precisely define its exact position. One
could determine this zone by modifying the approach to predictive eco-morphodynamic
models, their development, and their interpretation (Phillips, 2003). For instance, most
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Figure 5.3: Illustration of the system’s trajectory over time. If the system enters a chaotic zone,
its future trajectory can not be precisely determined. However, a zone known as the attractor can
be defined, within which it is likely that the trajectory will go. Adapted from Dufour and Piégay
(2009) and Slingo and Palmer (2011).

state-of-the-art predictive approaches rely on statistical methods (Slingo and Palmer,
2011). Another approach is the data-driven machine learning, which has successfully
predicted dynamics of some chaotic flows with accurate short-term predictions and long-
term statistics (Doan et al., 2021). In other studies, combinations of machine learning
with physics-based methods are implemented (Bar-Sinai et al., 2019). Chaos, therefore,
imposes limits but also opens up possibilities for developing new tools to predict the
trajectories of the river ecosystem and to improve river management.
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5.3 General implications
The disturbance-resistance ratio in the models shifts the system equilibrium, induces oscil-
lations, or drives the ecosystem into a chaotic behavior. Climate change and anthropogenic
pressure are altering the hydro-morphodynamic disturbance (Blöschl et al., 2017), mod-
ifying the ecosystem dynamics. Indeed, variations in the flood regime alter the ratio
between disturbance and resistance, thus varying the balance between positive and nega-
tive feedbacks and thereby driving the system towards stability or chaos. Understanding
whether the impact of climate change on real rivers leads them towards stability or chaos
is crucial for determining how to enhance ecosystem resistance and increase resilience.

Since 1950 there is a clear evidence that the fundamental shifts in the state and functioning
of the whole Earth ecosystem are driven mainly by human-global economic activities and
not by natural variability. Due to this Great Acceleration of human-economic disturbance,
humanity has entered into a new geological epoch defined as the Anthropocene (Steffen
et al., 2015). The human-global economic activities are modifying the equilibrium of
ecosystems, pushing them outside the normal operating parameters. In the language of
complex systems, climate change and anthropogenic pressure are modifying the feedbacks
balance and creating positive feedback loops that pushes ecosystems towards planetary
boundaries (Rockström et al., 2009).

Environmental, social, and economic systems are all complex systems, strongly inter-
correlated with each other. A solid understanding of ecosystem dynamics, including
whether they exhibit chaotic and unpredictable behaviour, or if they show oscillations or
multi-stability, is necessary for preserving the environment and biodiversity. Due to the
deep interconnections, the understanding of ecosystem dynamics also play a more hidden
but crucial role in reducing social inequality and avoiding economic crises.
With a deep understanding of ecosystem dynamics, one can comprehend their functioning
and actively shape the direction for a sustainable future. In fact, a sustainable future is
based on healthy ecosystems, social equity, and economical safety. All these objectives
can not be achieved without simultaneously satisfying the other two since they are deeply
interconnected. In this sense, the human activities and the economic system should not
be seen merely as an external disturbance to the Earth’s ecosystem. In fact, humanity
has permanently altered the Earth’s ecosystem, becoming an integral part of this new
socio-economic-ecological realty.
By studying this new socio-economic-ecological reality from a dynamical systems per-
spective, a better understanding can be gained of how to improve its equilibrium, synergy,
and resilience. More precisely, it is unthinkable to revert to the lost paradise of natu-
ral world (Dufour and Piégay, 2009), but a new socio-economic-ecological equilibrium
should be sought.
This awareness must be acquired to fulfill the social duty as scientists: sharing the knowl-
edge with politicians and citizens to collaboratively make the most suitable decisions to
build a sustainable future. In fact, since the socio-economic-ecological system is self-
regulated, like any complex system, the adaptation or non-adaptation to a new equilibrium
also depend on the political and economic choices made as part of the system (Levin,
1998; Holling, 2001).
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Appendix A

Link between 0D model with 1D
model

A.1 Assumptions of the simplified 1D model
To investigate the behavior of the 1D model without spatial variations, two assumptions
are made (refer to Figure A.1):

(i) at the end of each growth period, the vegetation 𝐵 and root depth 𝜁𝑢𝑝𝑟 are uniformly
redistributed within the vegetated patch 𝐿𝑣 , while preserving their total values.
(ii) at the end of each growth period, the riverbed slope is reset to its initial value 𝑆.

Figure A.1 is a sketch of the 1D eco-morphodynamic model (A and B) and its simplified
version (A and C). In Figure A.1(A) before the first flood, the slope of the riverbed 𝑆 is
constant, and the vegetation 𝐵 and the root depth 𝜁𝑢𝑝𝑟 are uniformly distributed throughout
the entire vegetated patch of length 𝐿𝑣 . After the flood, the vegetation and the root depth
are partially uprooted, and the slope 𝑆 changes due to eco-morphodynamic feedbacks.
During the next growth period the vegetation and the root depth in the uprooted zone grow
differently from the non-uprooted zone (due to different initial conditions). Thus, the new
riverbed configuration at the end of the growth period is not uniform inside the vegetated
patch. Figure A.1(B) shows the complete 1D model and the configuration described above
is used as initial condition for the next flood event. Figure A.1(C) shows the simplified
1D model, where the vegetation 𝐵 and root depth 𝜁𝑢𝑝𝑟 are redistributed uniformly in the
vegetated patch (while preserving their total values) and the initial slope is reset to its
original constant value 𝑆.

A.2 Link between 0D model with 1D model
Despite the further simplifications and removal of the spatial component (refer to Ap-
pendix A.1), the 0D model shows a dynamic behavior similar to that of the 1D model,
indicating that biogeomorphic feedbacks and the intrinsic disturbance mechanism are the
key ingredients generating the chaotic behavior. To investigate a connection between
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Figure A.1: Sketch of the 1D eco-morphodynamic model (A and B) and its simplified version (A
and C).

the models, the behavior of the uprooting function is examined for (i) the 0D model, (ii)
the simplified 1D model, and (iii) the complete 1D model, using parameters from Table 3.2.

A.3 0D Model calibration
Figure A.2(A) shows the behavior of the uprooting function of the 0D model, which
characterizes the survival of vegetation during floods. Figure A.2(B) shows the behavior
of the uprooting function of the 1D simplified model. It exhibits a linear behavior with
𝛽 = 1 and 𝑤𝑚 = 0.27. Figure A.2(C) shows the behavior of the uprooting function of
the 1D complete model. Results show strong nonlinear behavior, depending on different
values of 𝜎: it can be stated that 𝛽 frequently exceeded unity, and 𝑤𝑤 varied between 0
and 0.4. To establish morphodynamic equivalence between the complete 1D model and
the 0D model, the flood duration is calibrated such that 𝑇𝐹 (0𝐷)/𝑇𝐹 (1𝐷) = 0.26, ensuring
that the average erosion in the control volume matches the erosion potential 𝐸𝑝 . This
calibrated value is used for the analysis of the 0D model.
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Figure A.2: (A) Behavior of the uprooting function of the 0D model. (B) Behavior of the uprooting
function of the 1D simplified model. It exhibits a linear behavior with 𝛽 = 1 and 𝑤𝑚 = 0.27. (C)
Behavior of the uprooting function of the 1D complete model. It exhibits a nonlinear behavior,
where 𝛽 > 1 and 𝑤𝑤 varying between 0 and 0.4.
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Appendix B

Simplified 1D model and
bi-stability

B.1 Numerical simulations
Simulations were performed with the simplified 1D model. All the details of the numerical
simulations remain consistent with the analysis described in Section (3.3).

B.2 Results
The results show that for high values of 𝜎𝑟 and offset, (Figure B.1A), the system always
reaches the steady state in the vegetated state. In contrast, for low values of 𝜎𝑟 and offset
(Figure B.1B), the system always reaches the steady state in bare soil, except when there
is no solid transport (for 𝑞 ≤ 0.8 𝑚2/𝑠, 𝜃 < 𝜃𝑐𝑟 ). These results are similar to both the
0D and the complete 1D models.
For intermediate values of 𝜎𝑟 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡, similarly to the 0D model, the system shows
bi-stability between 0.8 𝑚2/𝑠 ≤ 𝑞 ≤ 8.0 𝑚2/𝑠 and the steady state depends on the initial
condition of the root depth 𝜁𝑢𝑝𝑟,𝑖 . To determine the unstable equilibrium, simulations
were performed for each value of q with 100 different initial conditions of root depth,
𝜁𝑢𝑝𝑟,𝑖 ranging from [0-1.2].
Differently from the complete 1D model, the simplified 1D model does not exhibit multi-
stability, but only bi-stability. This result confirms that spatial interactions are the key
element of multi-stability. In fact, spatial interactions are eliminated in the simplified 1D
model thanks to the assumptions made above. The results of the simplified 1D model are
consistent with the results of the non-spatial model.
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Figure B.1: (A) When roots grow rapidly (high value of 𝜎𝑟 ) or deeply into the riverbed (high
value of offset) the system always reaches the vegetated state. (B) When roots grow slowly
(low value of 𝜎𝑟 ) or shallowly into the riverbed (low value of offset) the system always reaches
the bare soil, except when there is no solid transport and thus no uprooting mechanism (for
𝑞 ≤ 0.8 𝑚2/𝑠, 𝜃 < 𝜃𝑐𝑟 ). (C) For intermediate values of 𝜎𝑟 and the offset, the system exhibits
bi-stability for 0.8 𝑚2/𝑠 ≤ 𝑞 ≤ 8.0 𝑚2/𝑠, consistent with the non-spatial model. No multi-stability
can be observed. The red line represents the unstable equilibrium of the system.
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3.11 (A) Spatial distribution and numerical solution along the 𝑥 axis for the
case with 𝑞 = 7.3 𝑚2/𝑠 and 𝜁𝑢𝑝𝑟,𝑖 = 0.78 𝑚, at the initial condition (𝑡=0).
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3.15 When the negative feedback loop prevails, the simplified river ecosys-
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4.2 The atmosphere is an example of a chaotic system in nature. Photo taken
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4.3 Schematic representation of the biogeomorphic negative feedback loop.
Vegetation grows (A) and increases the roughness, resulting in reduced
flow velocity within the vegetated area (B). Vegetation reduces sediment
transport, leading to a greater imbalance between the vegetated and bare
areas and thus inducing erosion (C). Erosion increases the likelihood of
vegetation uprooting, and when scour reaches root depth, uprooting oc-
curs (D). The overall feedback loop is negative: higher vegetation biomass
causes greater sediment flux imbalance and more erosion, ultimately re-
sulting in less vegetation. Vegetation regrows during low-flow periods,
maintaining the negative feedback cycle . . . . . . . . . . . . . . . . . . 55

4.4 The system can transition from a stable state to a chaos through several
routes to chaos, such as intermittency (left), period doubling (center), and
Neimark-Sacker bifurcation (right). Adapted from Gritli et al. (2012),
Wikimedia Commons, Zhang et al. (2018). . . . . . . . . . . . . . . . 56
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4.5 Two examples of strange attractors for chaotic solutions, the Lorenz at-
tractor (1963) on the left and the Rössler attractor (1976) on the right.
The axes 𝑥, 𝑧, and 𝑥, 𝑦 represent selected variables of the two dynamical
systems, respectively, and the trajectories (black lines) are their solutions
over time. Adapted from Strogatz (2018). . . . . . . . . . . . . . . . . . 57

4.6 Example of chaotic fractal solution, the Mandelbrot set (Mandelbrot,
1982). The 𝑥 and 𝑦 axes of the area represent different values of the
parameter 𝑐 of equation (4.1), respectively the real and imaginary parts.
The stable solution is the black part of the Figure, the unstable chaotic
solution is represented by the blue color. If one zooms in on the figure, it
becomes apparent that it repeats itself infinitely (zoom in on the red area).
Adapted from Wikimedia Commons. . . . . . . . . . . . . . . . . . . . 59

4.7 Stability analysis and Cobweb map. To study the stability of the system,
𝐵−
𝑛+1 is plotted as a function of 𝐵−

𝑛 and the intersection point of this
curve with the line 𝐵−

𝑛+1 = 𝐵−
𝑛 is found to determine the fixed point

𝐵∗. An analysis of the derivative at 𝐵∗ is then conducted to determine the
system’s stability, where | 𝑓 ′ (𝐵∗) | < 1 indicates stability, while | 𝑓 ′ (𝐵∗) | >
1 signifies instability. In this Figure, | 𝑓 ′ (𝐵∗) | < 1, thus the system is stable
and the Cobweb map (green line) converges to the unique solution of the
system, the fixed point 𝐵∗. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Stability analysis of the system for different values of 𝜎, where 𝜁𝑢𝑝𝑟 =
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that 𝛽 and 𝑤𝑚 can vary, as detailed in the Appendix A.3. For 𝜎 = 0.10 the
derivative | 𝑓 ′ (𝐵∗) | < 1, indicating system stability. The fixed point 𝐵∗ is
the solution of the system, as shown by the convergence of the Cobweb
map. When 𝜎 = 0.12 the derivative | 𝑓 ′ (𝐵∗) | > 1 indicating system
instability. In this case, when the Cobweb map is plotted, the system
is observed to jump, after a period of transition, between two distinct
solutions (green dots), indicating a periodic oscillation. If 𝜎 = 0.18 the
derivative | 𝑓 ′ (𝐵∗) | > 1, thus the system shows instability and the Cobweb
map displays infinite solutions and thus a chaotic behavior. . . . . . . . . 65

4.9 Stability analysis of the system for different values of 𝛽 and 𝑤𝑚: curves
show always a behavior with a maximum. . . . . . . . . . . . . . . . . . 66

4.10 (A) Bifurcation diagram showing biomass before floods 𝐵− as a function
of 𝜎: the route to chaos is defined by period-doubling. (B) The corre-
sponding Maximum Lyapunov Exponents are negative when the solution
is stable or periodic, zero at the bifurcation points, and positive in the
chaotic zone. The time scale of predictability in the chaotic zone is about
2 growth-flood cycles. (C) The Maximum Lyapunov Exponent is positive
and nearly constant over a wide range of disturbance/resistance ratios and
(D) also for typical ranges of unit-width stream power. . . . . . . . . . . 67

4.11 Fractal solution of the system. A matrix of simulations is conducted,
where the vegetation growth rate 𝜎 is plotted on the x-axis and the pa-
rameter Σ = 1

𝜔𝑧𝐵

is plotted on the y-axis. Subsequently, the Maximum
Lyapunov Exponent (MLE) is plotted on the third axis, with colors indi-
cating different values of the MLE. In the zoomed-in inset, the MLE color
scale is different to highlight the repetition property. . . . . . . . . . . . . 68
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4.12 Fractal solution of the system. A matrix of simulations is conducted where
the vegetation growth rate 𝜎 is modified on the x-axis and the uprooting
parameter 𝛽 is adjusted on the y-axis. Subsequently, the Maximum Lya-
punov Exponent (MLE) is plotted on the third axis, with colors indicating
different values of the MLE. In the zoomed-in inset, the MLE color scale
is different to highlight the repetition property. . . . . . . . . . . . . . . . 69

4.13 Calculation of the Maximum Lyapunov Exponent (𝜆) in the 1D model.
From the time series of vegetation 𝐵, the phase space of the system can
be reconstructed using the method of delays. In the example depicted in
this Figure, a dimension of 𝑚 = 3 and a time delay of 𝜏 = 2 are chosen;
from the time series, 3-dimensional vectors B𝑛 are created and plotted
in the phase space (𝑚1, 𝑚2, 𝑚3). 𝜏 is the time difference in number of
samples between adjacent components of the delay vectors. Next, all the
neighbors of a selected point B𝑛0 are identified, which are points closer
than 𝜖 at Δ𝑛 = 0 (i.e., |B𝑛123 − B𝑛0 | = 𝛿0 < 𝜖). For the sake of clarity, the
Figure displays only one neighbor, B𝑛123 . Following that, the divergence
of the trajectories’ distance, denoted as 𝛿, is calculated over a relative
time period Δ𝑛. Finally, 𝑆(Δ𝑛) is computed as a function of 𝛿 over time
and an average of all the neighbors. This process is repeated for several
values of B𝑛0 . The initial slope of 𝑆(Δ𝑛) is an estimation of the Maximum
Lyapunov Exponent 𝜆, which provides insights into the chaotic nature of
the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 (A) If 𝜔𝑧𝐵 = 10−3 and 𝜎 = 0.2, vegetation 𝐵 reaches, after a transition
phase, a stable solution at the vegetated state (𝐾 = 1) over time 𝑡∗. The
transition phase (1-28 growth-flood cycles) is not plotted. The attractor of
the system consists of only one point (𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒). (B) If 𝜔𝑧𝐵 = 2.9 and
𝜎 = 0.8, vegetation grows until the carrying capacity 𝐾 = 1, but then it
is completely uprooted during floods. This behavior gives rise to periodic
oscillations, and the attractor of the system consists of a periodic 2D-curve
(𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒). (C) If 𝜔𝑧𝐵 = 2.9 and 𝜎 = 0.2 vegetation grows during the
first low flow period but then it is partially uprooted during the first flood.
Subsequently, during the second low flow period it shows distinct growth
due to different initial conditions and so forth. This behavior gives rise
to aperiodic oscillations and the attractor of the system is a strange 3D-
attractor (𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒). Moreover, the initial condition of the vegetation
is changed by a small quantity (𝐵1 = 1.0 × 10−5, 𝐵2 = 1.1 × 10−5, 𝐵3 =

1.2 × 10−5) and it is found that the system in this case is strong sensitive
to initial conditions, thus the trajectories of the three simulations diverge
over time and the Maximum Lyapunov Exponent is positive (𝜆 = 0.38). . 74
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4.15 Value of the Maximum Lyapunov Exponent (𝜆) for time series of vege-
tation 𝐵 corresponding to Figure 4.14. In Figure 4.15A (refer to Figure
4.14A) the curve 𝑆(Δ𝑛) exhibits a linear increase but it does not reach a
plateau over time span Δ𝑛, representing a non-chaotic solution. In Figure
4.15B (refer to Figure 4.14B) the curve 𝑆(Δ𝑛) does not exhibit a robust
linear increase, representing a non-chaotic solution. In Figure 4.15C (refer
to Figure 4.14C) the curve 𝑆(Δ𝑛) exhibits a robust linear increase and a
plateau over time span Δ𝑛, representing a chaotic solution. The inverse of
the slope of its linear increase (i.e., Maximum Lyapunov Exponent 𝜆) is
the time scale of predictability (e.g., ≈ 2.6 number of growth-flood cycles). 75

4.16 The vegetation at the beginning (𝐵−) and at the end (𝐵+) of every growth
period is plotted as a function of the parameter 𝜎. (A) If the resistance
is much bigger than the disturbance ( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 10−3) the system reaches

its stability at the vegetated state 𝐵− = 𝐵+ = 1, for every value of 𝜎.
(B) If the disturbance is much bigger than the resistance ( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 106), the

vegetation grows during low flow periods but then it is completely uprooted
at every flood period (𝐵− = 𝐵𝑚𝑖𝑛), inducing periodic oscillations. (C)
If the resistance and the disturbance have the same order of magnitude
( 𝐸𝑝

𝜁𝑢𝑝𝑟
= 2.9) the system shows chaotic behavior, characterized by multiple

values of 𝐵+ due to aperiodic oscillations, and a bifurcation diagram. The
Maximum Lyapunov Exponent (red bars) is calculated for several time
series of vegetation 𝐵, consistently demonstrating its positivity within the
chaotic zone. The red dot in the center of the plot represents the mean,
while the bottom and top of the error bars represent the minimum and the
maximum values in the data set, respectively. Moreover, the time scale of
predictability of the system is calculated, as shown on the right vertical
axis. The blue arrows refer to the vegetation time series in Figure 4.14B
and 4.14C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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