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Abstract

Computability theory came into being as a result of Hilbert�s attempts to
meet Brouwer�s challenges, from an intuitionistc and constructive standpoint,
to formalism as a foundation for mathematical practice. Viewed this way, con-
structive mathematics should be one vision of computability theory. However,
there are fundamental di¤erences between computability theory and construc-
tive mathematics: the Church-Turing thesis is a disciplining criterion in the
former and not in the latter; and classical logic - particularly, the law of the
excluded middle - is not accepted in the latter but freely invoked in the former,
especially in proving universal negative propositions. In Computable Economics
an eclectic approach is adopted where the main criterion is numerical content
for economic entities. In this sense both the computable and the constructive
traditions are freely and indiscriminately invoked and utilised in the formaliza-
tion of economic entities. Some of the mathematical methods and concepts of
computable economics are surveyed in a pedagogical mode. The context is that
of a digital economy embedded in an information society.

KeyWords:Computable Economics, Computability, Digital Economy, Con-
structivity

JEL Classi�cation Codes:B41,C60,C63,C65
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1 Basics and Motivation1

"Classical mathematics fails to observe meaningful distinctions
having to do with integers. .... Classical mathematicians do concern
themselves sporadically with whether numbers can be �computed�,
but only on an ad hoc basis. The distinction is not observed in
the systematic development of classical mathematics, nor would the
tools available to the classicist permit him to observe the distinction
systematically even if he were so inclined."
[5], p.7

The above seemingly simple but, in fact, rather profound observation by
Errett Bishop, who revived and put constructive mathematics on an applicable
footing, captures the essential weakness of classical real analysis. How can a
mathematics that cannot maintain and develop a �meaningful distinction�be-
tween numbers that can and cannot be computed be the basis of formalization
in a subject such as economics which is quintessentially a quantitative subject,
especially in its many policy oriented concerns? A digital economy, almost by
de�nition, is quanti�ed in terms of integers or rational numbers. If so, an eco-
nomic theory that relies on a mathematics that cannot meaningfully distinguish
the computable numbers from those that cannot be computed cannot, by de-
�nition, be quantitative in numerical modes. How can economists continue to
maintain the �ction that their subject is numerically meaningful and use their
formal propositions, derived by using a non-numerical mathematics, to claim ap-
plicable policy prescriptions of signi�cance to the daily lives of people, societies
and nations?
Over the years many economists, both within and without the citadel that

may be called, for want of a better name, orthodoxy, have tried to �nd ways to
infuse, systematically, an element of systematic numerical content in the precise
sense mentioned above by Errett Bishop. Kenneth Arrow, Robert Clower, Alain
Lewis, Maury Osborne, Herbert Simon and others come most immediately to
mind as pioneers who made serious e¤orts to try to modify orthodox economic
theory in directions that could have made it depend on numbers and processes
that operate on them in economically meaningful ways. Despite their prestige
and their e¤orts, the citadel remains founded on classical mathematics.
There is a great deal of discussion, in academic and other professional circles,

about the predominance of the digital economy in modern times, even to the ex-
tent of claiming that such an economy characterizes a post-modern information
society. However, an economic theory in the digital mode, for an information
society, is not readily available for pedagogical purposes. To be sure, there are
many kinds of books on the information society; with increasing frequency, even
books and professional articles on e-commerce appear and give the impression
that there is a seamless adaptation of various kinds of orthodox economic the-

1 I am deeply indebted to Tom Boylan, Duncan Foley, John McCall and Joe McCauley.
Each, in his own way, has stamped an imprint on the contents of this paper. Alas, it is I who
must bear all responsibilities for the remaining infelicities.
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ory readily available for facilitating rigorous analysis. In this contribution I take
exception to this view and try to indicate the kind of economics that may be rel-
evant for the analysis of a digital economy embedded in an information society.
The guiding principles for the approach taken here is given by Kolmogorov:

"Quite probably, with the development of the modern comput-
ing technique it will be clear that in very many cases it is reasonable
to conduct the study of real phenomena avoiding the intermediary
stage of stylizing them in the spirit of the ideas of mathematics
of the in�nite and the continuous, and passing directly to discrete
models. This applies particularly to the study of systems with a
complicated organization capable of processing information. In the
most developed such systems the tendency to discrete work was due
to reasons that are by now su¢ ciently clari�ed. It is a paradox re-
quiring an explanation that while the human brain of a mathemati-
cian works essentially according to a discrete principle, nevertheless
to the mathematician the intuitive grasp, say, of the properties of
geodesics on smooth surfaces is much more accessible than that of
properties of combinatorial schemes capable of approximating them.
Using the brain, as given by the Lord, a mathematician may

not be interested in the combinatorial basis of his work. But the
arti�cial intellect of machines must be created by man, and man has
to plunge into the indispensable combinatorial mathematics. For the
time being it would still be premature to draw �nal conclusions about
the implications for the general architecture of the mathematics of
the future."

Andrei N Kolmogorov: �Combinatorial Foundations of Information Theory and

the Calculus of Probabilities� ([24], pp. 30-1)

The kind of economic fundamentals that underpin the mathematical for-
malisms of a computable economics for a digital economy seeks a return to clas-
sical building blocks and classical frameworks in their most elementary forms. In
the rest of this section I shall try to indicate what I mean by this in the most ba-
sic, elementary, way. But before that I should like to substantiate my claim that
I seek a �return to classical building blocks and classical frameworks�by invok-
ing the pertinent observations by two eminent theorists who have contributed
much to the foundations of orthodox economic analysis in the non-digital do-
main: Tjalling Koopmans and Steve Smale. In his classic and thoughtful Three
Essays on the State of Economic Science, Koopmans ([25], p.60; italics added)
observed, almost sotto voce:

�Before turning to [the] discussion [of the model of competitive
equilibrium] it is worth pointing out that in this particular study
our authors [Arrow and Debreu] have abandoned demand and sup-
ply functions as tools of analysis, even as applied to individuals.
The emphasis is entirely on the existence of some set of compati-
ble optimising choices . . . . The problem is no longer conceived as
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that of proving that a certain set of equations has a solution. It has
been reformulated as one of proving that a certain number of max-
imizations of individual goals under independent restraints can be
simultaneously carried out�

The new emphasis brought with it a new formalism and a mathematics to
encapsulate it that was entirely divorced from numerical meaning and digital
signi�cance. The continuous in its real number versions came to be the vehicle
of analysis and digital implementations required approximations which were,
correspondingly, divorced from theory. It is not as if it was necessary to recast
the fundamental economic problem of �nding equilibrium solutions between
supply and demand, �even as applied to individuals�, as one of �nding a proof of
the existence a solution to �maximizations of individual goals under independent
restraints�. As Smale perceptively remarked:

"We return to the subject of equilibrium theory. The existence
theory of the static approach is deeply rooted to the use of the math-
ematics of �xed point theory. Thus one step in the liberation from
the static point of view would be to use a mathematics of a di¤erent
kind. Furthermore, proofs of �xed point theorems traditionally use
di¢ cult ideas of algebraic topology, and this has obscured the eco-
nomic phenomena underlying the existence of equilibria. Also the
economic equilibrium problem presents itself most directly and with
the most tradition not as a �xed point problem, but as an equation,
supply equals demand. Mathematical economists have translated the
problem of solving this equation into a �xed point problem.�

. . . ..
�I think it is fair to say that for the main existence problems

in the theory of economic equilibrium, one can now bypass the �xed
point approach and attack the equations directly to give existence of
solutions, with a simpler kind of mathematics and even mathematics
with dynamic and algorithmic overtones.�
[46], p.290; italics added.

These, then, are the economic precepts, against the analytical backdrop pro-
vided by Komogorov�s above re�ections on formalisms for information theory
and the combinatorial and discrete underpinnings of a digital machine with
which to pursue quantitative analysis, that will circumscribe the world of com-
putable economics. The �mathematics of a di¤erent kind�that Smale refers to
will be constructive analysis and computability theory (including computable
analysis). Given the algorithmic foundations of both constructive analysis and
computability theory2 and the intrinsic dynamic form and content of algorithms,

2However, computability theory is disciplined by the Church-Turing Thesis; the algorithmic
underpinnings of constructive analysis are not so constrained. On the other hand, the former
freely invokes classical logical principles in proof exercises and the latter does not accept some
of the key precepts of classical logic. I shall be opportunisitc in my reliance on either of these
algorithmic mathematics to formulate, analyse and prove economic propositions.
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it is clear that this will be a �mathematics with dynamic and algorithmic over-
tones�. This means, thus, that computable economics is a case of a new kind
of mathematics in old economic bottles. The �new kind of mathematics� im-
plies new questions, new frameworks, new proof techniques - all of them with
algorithmic and dynamic content for digital domains and ranges.
Some of the key formal concepts of computable economics are, therefore:

solvability & Diophantine decision problems, decidability & undecidability, com-
putability & uncomputability, satis�ability, completeness & incompleteness, re-
cursivity and recursive enumerability, degrees of solvability (Turing degrees),
universality & the Universal Turing Machine and Computational, algorithmic
and stochastic complexity. The proof techniques of computable economics, as
a result of the new formalisms, will be, typically, invoking methods of: Diago-
nalization, The Halting Problem for Turing Machines, Rice�s Theorem, Incom-
pressibility theorems, Specker�s Theorem, Recursion Theorems. For example,
the recursion theorems will replace the use of traditional, non-constructive and
uncomputable, topological �x point theorems, routinely used in orthodox math-
ematical analysis. The other theorems have no counterpart in non-algorithmic
mathematics.
In the spirit of pouring new mathematical wines into old economic bottles,

the kind of economic problems of a digital economy that computable economics
is immediately able to grant a new, digital, lease of life are the classic ones
of: computable and constructive existence and learning of rational expectations
equilibria, computable learning and complexity of learning, computable and
bounded rationality, computability, constructivity and complexity of general
equilibrium models, undecidability, self-reproduction and self-reconstruction of
models of economic dynamics (growth & cycles), uncomputability and incom-
pletenes in (�nite and in�nite)game theory and of Nash Equilibria,decidability
(playability) of arithmetical games, the intractability (computational complex-
ity) of optimization operators; etc. Naturally, I shall not be able to go through
all or even any of these examples in this contribution; but suitable hints and
relevant references will be supplied.
I must warn any sympathetic, but critical, reader of one possible and serious

misapprehension. Considering a digital economy has nothing to do with any
kind of �nitism. However, such a caveat must be balanced by the fact that ap-
peal to �nitism will not obviate the paradoxes of the countable in�nite that are
ubiquitous in the mathematics of the discrete. It is easy and almost routinely
simple to construct perfectly ordinary example from microeconomics and game
theory where the fundamentals are formalized axiomatically and described �-
nitely but still to be able generate undecidable properties in them. For example,
considering a game with a �nite number of players and strategies also �nite in
number does not mean that simple counting arguments can locate Nash equilib-
ria. Equally, it is not true, as some have suggested that the non-computability
of preference orderings might be circumvented by rendering the commodities
and their power sets �nite. There are many di¤erent ways to demonstrate the
existence of undecidabiliteis in �nite structures, but this is not a direction I wish
to pursue in this essay especially because it is elegantly and rigorously discussed
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in [9] (but cf. also [52], for detailed discussions).
This essay, therefore, is organised as follows. The next section considers

elementary examples to illustrate some of the above concepts and three examples
of relevant references from the standard literature to make a case for the discrete,
the digital and the ubiquity of the discontinuous. Section three is a discursive
and general presentation of the elements that should necessarily form a theory
of an information society to embed in a digital economy. Section four outlines
the elements of the �new mathematics� that underpins computable economics
for a digital economy. The essay ends with some re�ections of omitted issues,
possible futures and some further methodological and technical observations.

2 Notes on the Discrete, Digital and the Dis-
continuous in Economics

"It is di¢ cult to test theories of dynamic, history-dependent sys-
tems. The saturation with content - with diverse meaningful sym-
bolic structures - only makes matters worse. There is not even a
well-behaved Euclidean space of numerical measurements in which
to plot and compare human behavior with theory."
Newell and Simon ([36], p.13)

Suppose we are given a simple, linear, equation, perhaps an excess demand
equation, and attempt to �solve�it:

�x+ �y = � (1)

�; �; �: integer (or rational) valued parameters;
x; y: integer (or rational) valued variables;
What is so unusual or strange - at least to an economist - about what one is

trying to do, i.e., �attempting to solve the equation�? An immediate reaction by
a conventionally educated economist �and many others �would be to dismiss
the attempt as futile since we are given one equation in two variables and asked
to �solve�it! Traditionally, one would expect the concept of solution to carry with
it the associated idea that there should be as many equations as variables. But
suppose, instead, one means by �solution�a search for the integer (or rational)
values of the variables x and y given integer (or rational) valued parameters �,
�, and � for which the equation is satis�ed as given above �then the scenario
is wholly di¤erent.
In the alternative perspective of the new mathematics, the relevant questions

associated with the
concept of �solution�or �satis�ability�would be:

� Is there a uniform way, a priori, of telling whether integer (or rational)
values of x and y exist such that the equation is satis�ed � i.e., can be
�solved�;
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� Is there a general method of �nding (in addition to �proving existence�)
all such values of x and y that satisfy the equation;

In other words, how can the problem of the �satis�ability�and �solvability�
of such equations be studied and what methods are available to systematise
and routinise their use? The paradoxical answer to both of these questions is
that the problems of �solvability� and �satis�ability� are intractable and their
systematic and routinised study is almost impossible. To get a handle on this
remark, let me generalise just a little and ask:

Problem 1 Given a polynomial equation with integer coe¢ cients, decide whether
or not the equation has any integer solutions. (In the jargon of computability
theory or number theory, we are testing Diophantine equations for solutions).

For example, is there an integer x satisfying:

3x8 + 7x5 � 18x2 � 427x+ 10 = 0 (2)

If the equation holds for some x, then:

10 = x
�
�3x7 � 7x4 + 18x+ 427

�
(3)

Thus relevant x is one of the eight numbers �1, �2, �5, �10. To see whether
or not the equation has a solution, just plug in each of those
eight numbers for x. If any of the eight works, we have a solution; while if

none of them work, there is no solution. Generalizing, we have a nice algorithm
for testing the polynomial equation

p(x) = 0 (4)

for solutions: If c, the constant term of p, equals 0, then x = 0 is a solution.
If c 6= 0, �nd all of its divisors. Then plug each divisor of c into p. The equation
p(x) = 0 has a solution iff one of these plug-ins yields 0 as an answer. This
algorithm can easily be written up as a program � the divisors of c can be
found either by brute force, checking all integers from f� jcjg through fjcjg, or
(preferably) by a more e¢ cient search.
Now consider the equation:

15x+ 33y = 28 (5)

Does it have any integer solutions? No, for a quite simple reason: Regardless
of x and y , the left-hand side must be a multiple of 3, so it cannot equal 28. In
general, the linear equation with integer coe¢ cients:

ax+ by = c (6)

cannot be satis�ed for integer values of the variables unless c is a multiple
of the greatest common divisor of a and b [denoted gcd (a; b)]. Conversely, if c
is a multiple of gcd (a; b), then standard elementary number theory implies:
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9(x; y); s:t ax+ by = c (7)

is satis�able. So again, a simple procedure based on divisibility lets us test
ax+ by = c for solutions, solvability and satis�ability:

Claim 2 There exists a solution i¤ gcd(a,b) is a divisor of c.

Of course, that still leaves the question of how to crank out the computation
of gcd(a,b). But that can be done easily. One could, by brute force, check
numbers from 2 through jaj to �nd which of them divide both a and b. Or, more
e¢ ciently, one could use the Euclidean algorithm, a 2500-year-old �program�
devised for this purpose. Generalize the above examples to: �nd a procedure
that, given a polynomial equation with integer coe¢ cients, determines whether
or not the equation has an integer solution. Is this problem decidable? To answer
this rigorously, it is �rst necessary to be precise about the meaning of procedure.
This term was made precise as a result of the development of computability
theory via the notion of e¤ective calculability by a Turing Machine or by partial
recursive functions or by ��de�nable functions or by Register Machines or by
other formalisms, all of them equal to one another by the Church-Turing Thesis.
The above claim can then be properly generalised as the following problem,
known as Hilbert�s 10th Problem (to which I return more formally later on,
below):

Problem 3 Determination of the solvability of a Diophantine equation: Given
a Diophantine equation with any (�nite) number of unknown quantities and with
rational integral numerical coe¢ cients; to devise (i.e., construct) a process ac-
cording to which it can be determined, by a �nite number of operations, whether
the equation is solvable in rational integers.

Remark 4 Hilbert did not ask for an algorithm to �nd a solution in case one
exists, because that presents �no problem� in principle, provided time and pa-
tience are freely available. Brute force su¢ ces again � just systematically try
out the possible combinations of values for the variables until you �nd one that
works. What brute force will not do is to inform you when the equation has no
solutions. In this latter case, as brute force testing progresses, you will suspect
more and more strongly that there is no solution, but without ever knowing for
sure. Hilbert asked for some other algorithm that would de�nitively settle each
case.

It is this subtle distinction between an a¢ rmation and a refutation that
is captured by the formal di¤erences underpinning the de�nitions of recursive
& recursively enumerable sets. In computable economics one way to impose
structure on observable variables will be by way of supposing their membership
in one or the other of the above sets - rather like the way one imagines, in
orthodox mathematical economics that variable de�ned over compact sets.
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I claim that, by de�nition, variables, parameters and coe¢ cients de�ning
basic behavioural functions in economics (particularly the economics of a dig-
ital economy) - supply, demand, production, etc., - should be formalised as
Diophantine equations and their solutions sought as equilibrium market val-
ues along the above lines. In one sense, every economic problem for a digital
economy, approached by computable economics, can be formulated as a Dio-
phantine decision problem. I shall have a little more to say about these things
below. How does such a formalism relate to the traditional optimization exer-
cises of orthodox theory? Let me illustrate with simple examples, again, in such
a way that concepts of computable economics relevant for analyzing a digital
economy (embedded in an information society) can also be highlighted.
Consider the following three-variable Boolean formula:

:x3 \ (x1 [ :x2 [ x3) (8)

Just as in the case of equations with integer (or rational) values, given a
truth assignment t(xi) = 1 or 0 for each of the variables xi (i = 1; ::3), the above
Boolean formula can be evaluated to be true or false, globally. For example the
following assignments gives it the value true: t(x1) = 1; t(x2) = 1; t(x3) = 0.
Boolean formulas which can be made true by some truth assignments are said
to be satis�able.
Now consider the Boolean formula:

(x1[x2[x3)\(x1 [ f:x2g)\(x2[f:x3g)\(x3[f:x1g)\(f:x1[f:x2g[f:x3g)
(9)

Remark 5 Each subformula within parenthesis is called a clause; The variables
and their negations that constitute clauses are called literals; It is �easy�to �see�
that for the truth value of the above Boolean formula to be true all the subfor-
mulas within each of the parenthesis will have to be true. It is equally �easy�to
see that no truth assignments whatsoever can satisfy the formula such that its
global value is true. This Boolean formula is unsatis�able.

Problem 6 The Satis�ability Problem

Given m clauses, Ci(i = 1; : : : :;m), containing the literals (of) xj(j =
1; : : : :; n), determine if the formula C1 \ C2 \ : : : : : : : \ Cm is satis�able.
Determine means ��nd an (e¢ cient) algorithm�. To date it is not known

whether there is an e¢ cient algorithm to solve the satis�ability problem �i.e., to
determine the truth value of a Boolean formula. This is �more-or-less�equivalent
to the above mentioned unsolvability of Hilbert�s 10th Problem. Now to go
from here to an optimization framework is a purely mechanical a¤air. Denoting
the union operator as ordinary addition and the negation operator related to
arithmetic operators as: :x = (1 � x) and noting that it is necessary, for each
clause C, there should, at least, be one true literal, we have, for any formula:
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X
x2C

x+
X
x2C

(1� x) � 1 (10)

With these conventions, the previous Boolean formula becomes the following
integer linear programming (ILP) problem:

x1 + x2 + x3 � 1 (11)

x1 + (1� x2) � 1 (12)

x2 + (1� x3) � 1 (13)

x3 + (1� x1) � 1 (14)

(1� x1) + (1� x2) + (1� x3) � 1 (15)

0 � x1; x2; x3 � 1; and integer (16)

De�nition 7 A Boolean formula consisting of many clauses connected by con-
junction (i.e., \) is said to be in Conjunctive Normal Form (CNF).

Remark 8 A CNF is satis�able i¤ the equivalent ILP has a feasible point.

Clearly, the above system of equations and inequalities do not, as yet, rep-
resent an ILP since there is no �optimisation�. However, it can be turned into
a complete ILP in the ordinary sense by, for example, replacing the �rst of the
above inequalities into:

Max y, s:t : x1 + x2 + x3 � y (17)

Remark 9 The formula is satis�able i¤ the optimal value of y, say �y exists and
satis�es �y � 1.

Finally a warning on ad hoc �approximate� solutions: an ILP cannot, ex-
cept for �ukes, be solved just by rounding the solution to the �corresponding�
linear programming (LP) problem. Since the constraints corresponding to the
satis�ability problem for any formula in CNF, with at least two literals in each
clause is always satis�ed by the fractional values: x j= 1

2 , 8x j , a feasible solution
to the LP is always trivially available. But, rounding a feasible LP solution to
an acceptable ILP � i.e., deciding whether it can be rounded � is as hard as
the original satis�ability problem. As for: �how hard?�, �what does hard mean?�
and �what is easy?�, are questions that are for computational complexity theory.
These, then, are some of the elementary transformations and alternate for-

mulations that the mathematics of computable economics entails, if a digital
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economy is to be seriously formalized and analyzed in the same way orthodox
theory has handled simple, real-valued domain, optimizations. Satis�ability and
decidability replace blind optimizations; this is why Simon got it right from the
outset when he sought to underpin classical behavioural economics with satis-
�cing behaviour.
At another, more basic economic theoretic level of even the �rst principles

course, Edward Chamberlain�s 1948 report on class room experiments to test
the validity of the competitive equilibrium hypothesis is an acknowledged classic
of modern experimental economics3 ([8]). The key notion underlying the exper-
iment was the fact that the process of demand and supply adjustments, whether
towards an equilibrium or not, implied demand and supply step functions and,
hence, of course, an excess demand function of that form, as well (cf. [8], op.cit,
Figure 1; cf. also [48], the two diagrams on p.118)4 .
Most kinds of experimental economic setups, where market processes need

to be simulated to test the validity of theoretically predicted equilibria, whether
under classical competitive or non-competitive conditions, whether in game-
like situations or not, implies - whether convergent or nor - the use of step
functions. This, coupled to the fact that there is no theory of an algorithmic5

3Although Irving Fisher�s earlier analogue experiments should be considered the true foun-
tainhead for the �eld of experimental economics:

"The [hydraulic] mechanism just described is the physical analogue of the ideal
economic market. The elements which contribute to the determination of prices
are represented each with its appropriate rôle and open to the scrutiny of the
eye. We are thus enabled not only to obtain a clear and analytical picture of
the interdependence of the many elements in the causation of prices, but also to
employ the mechanism as an instrument of investigation and by it, study some
complicated variations which could scarcely be successfully followed without its
aid." ([14], p.44, italics in original)

I shall not pursue doctrine-historical priorities in this paper.
4 I cannot resist mentioning that William Thornton pointed out, at the very dawn of supply-

demand analysis of equilibria, that the process of an English auction would, in general and for
a single commodity, converge to a di¤erent value from the one to which a Dutch auction would
converge. Even that acknowledged last standard bearer of the �classical��ag, John E Cairnes
acknowledged that this observation would cast decisive doubt on the �classical� equilibrium
solution in terms of demand and supply:

"...[W]hat is the explanation of market prices?. This question, after having
been discussed by economists from Turgôt and Adam Smith to Mill, was
at length supposed to have received its de�nitive solution in the chapters
on �Demand and Supply� in the Principles of Political Economy by the
latter authority. That solution, however, has lately been challenged by
Mr. Thornton, I must own it seems to me, so far as the negative portion
of his criticism is concerned with success." ([7], p.97; italics added)

I was unable to resist the temptation to quote Cairnes in view of the fact that I am, after all,
the holder of the John E Cairnes Chair of Economics! Of course, experimental economists are
aware of such ambiguities and indeterminacies and device procedures that are consistent with
orthodox microeconomic postulates and guarantee convergence to determinate equilibria (cf,
for example, [47], in particular, p.944, ¤. My point, however, is that none of these procedures
can be underpinned by rationality postulates that are algorithmic; nor are they, themselves,
formally algorithmic and cannot be shown to converge to computable equilibria.

5By �algorithmic� I mean, of course, either computable in the strict recursion theoretic
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process that guarantees convergence to any of the theoretical equilibria predicted
by orthodox theory - whether of the competitive6 , non-competitive or game
theoretic variety - makes it obviously di¢ cult �to plot and compare human
behavior with theory�, as Newell and Simon, masters par excellence of empirical
and behavioral economics, pointed out years ago.
Another acknowledged classic. albeit in the altogether di¤erent area of the

dynamics of the stock market, was Louis Bachelier�s astonishing doctoral dis-
sertation of 1900 which heralded the advent of the formal study of the random
character of stock market price dynamics ([3]). Bachelier�s heuristic solution to
the integral equation:

Px;t1+t2 =

Z 1

�1
Pz�x;t1Px;t2dx (18)

is the di¤usion process:

Px;t =
1

2�k
p
t
exp

�
� z2

4�k2t

�
(19)

where x and z are prices and t is time.
More than half a century after Bachelier�s path-breaking paper, Maury Os-

borne ([37]), in reviving a study of the underpinnings of the seeming random-
ness of price and returns behaviour in the stock market, pointed out some of the
mathematical infelicities in that classic. One of the crucial points in cleaning
up some of the mathematical infelicities was the question of the existence of
the �rst and second partial derivatives w.r.t z in the postulated solution. In an
attempt to remove the infelicity, Osborne�s own reformulated model was, in its
turn, underpinned by three crucial empirical assumptions:

� Prices move in discrete units of 1=8 of a dollar7 ;

� In each pre-de�ned unit of time only a �nite, integral number of transac-
tions can be made on any commodity or entity traded in the stock market;

sense or constructive in any of the standard senses - i.e., Bishop-style constructivism, Russian
constructivism, etc.

6The claims of computable general equilibrium theory to have devised constructive algo-
rithms to show the e¤ective computation of competitive equilibria is demonstrably false. This
can be shown in view of a decisive invoking of an undecidable disjunction via the use of the
Bolzano-Weierstrass theorem at a crucial step in the construction of the �algorithm�.

7Anyone working with one of the readily available symbolic mathematical softwares, for
example Matlab or Mathematica, will have experiences with the kind of heavily truncated
approximations of money market rates that are part of the built-in functions in them. In
Matlab the command format bank is a built-in instruction for working with only two decimal
places for currency. The requirements of economic theory cannot be met by even the most
precise digital computer. To this obvious di¢ culty must be added the added complication of
conversion of real numbers expressed as decimal fractions into dyadic fractions. The simple
fact that the binary fraction for 0.1 is non-terminating and can lead to unexpected catastrophes
when truncated arbitrarily should be warning enough to any somnambulant economic theorist.
But I know of no economic theorist who has ever shown any kind of awareness of even this
simple fact.

13



� The validity of the Weber-Fechner law8 ;

Interestingly, Osborne�s assumptions and empirical framework (and results)
underpinned and implied the use of step functions. (cf, for persuasive and
colourful arguments on this point, his fascinating book [38], in particular Figures
2.4-1, 2.4-2 and 2.4-3, pp.23-6). The kind of high frequency money market and
commodity market data, daily reported even in the popular �nancial press, that
underpin the �rst two assumptions are readily available for empirical analysis
in any number of routinely accessible data banks.
If, as is routinely done in almost every variety of experimental or empirical

economic research, it is assumed that this kind of economically relevant data is
generated by a probability space in which rational decision makers reside, then
it appears to be necessary for the investigator to work with the formalism of
empirical distribution functions9 , if also the assumption of step functions is to
be maintained.10 But this is not normal practice in economic theory or even in
the theory of �nance (even of the computational variety).
On the other hand, when market data, whether of the stock market variety or

of the more traditional goods and money market varieties, are to be experimen-
tally or empirically analyzed on the basis of standard economic theory, there is
a conundrum that has no straightforward formal solution. All of orthodox, and
even non-orthodox, mathematically formalized economic theory pre-supposes
the domain of real numbers (and, occasionally, even the non-standard num-
bers). Moreover, the transition is made, from the price (p) dynamics of excess
demand via primitive tatônnement discussions:

_p = z(p; t); pt0 = �p (20)

to a stochastic di¤erential equation:

_p = z(p; t; �t); pt0 = ~p (21)

where, now, �t is a random function and ~p is a random initial value.
If (21) had very little or no justi�cation in economic theory, there would be

even more reason to accuse the interpretation of market price �uctuations in

8The subjective probability basis of orthodox utility theory and its tenuous underpinnings
in psychophysics was, in the early literature, given a tenuous formal foundation via the Weber-
Fechner law (cf., for example, [32], p.380).

9The empirical distribution function, Fn of n points a1; a2; :::; an on the (Euclidean) line is
the step function with jumps 1=n at a1; a2; :::; an. Thus, nFn(x) equals the number of points
ak 2 (�1; x] and Fn is a distribution.(cf. [11], Chapter I, §12, p.36,¤)
10By using a Cantor-type distribution (cf.[11], op.cit, pp34-6) it is possible to generate

the famous Devil�s Staircase, a case of a continuous distribution function without a density.
Nonlinearly coupled market dynamics can lead to the Devil�s Staircase.
I have often conjectured that the persistence of �far from equilibrium� con�gurations of

typical e-commerce markets, for example, are generated by the nonlinearly coupled dynamics
of supply chains and demand dispersions �the one giving rise to hierarchical structures and the
other to asynchronous interactions of heterogeneous economic entities. The former amenable
to combinatorial, graph theoretic, formalisms and analysis; the latter, to dynamical systems
analysis via, say, encapsulation as cellular automata.
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terms of (22) to be pure ad hockery. However, in a somewhat perverse way,
a powerful theorem in mathematical economics, the so-called Sonnenschein-
Debreu-Mantel theorem on excess demand functions can, in fact, be invoked to
justify the assumption of arbitrary aggregate functional speci�cations for price
dynamics. If we are prepared to analyzemarket price dynamics then the practice
of going from (4) to the more speci�c form of the stochastic di¤erential equation:

dp = �(p; t)dt+ �(p; t)d�(t) (22)

(where,�(t): is a Wiener process; and �(p; t): a drift coe¢ cient) could,
indeed, be made to make rigorous economic theoretical sense.
However, to go from (22) and (23), via a basis in economic theory or by

way of the kind of kind of restrictions assumed by Osborne on the domain
over which prices are de�ned, and the constraints on the frequency of decision
making, to di¤erence schemes requires an approximation theory that no amount
of ad hockery, black magic or alchemy in numerical analysis and complexity
theory will alleviate. Still, with princely unconcern for mathematical rigour
and economic theoretical consistencies, market data is analyzed in the digital
domain, with digital means, using, for example, the Ito Stochastic calculus,
underpinned by one or the other of the rational theories of decision making in
measure-theoretically justi�ed probabilistic spaces with little or no digital basis.
In this connection it must also be pointed out that even within the citadel of

macroeconomic dynamics, growth and business cycle theory, the traditional as-
sumption of postulating that empirical data has been generated from an under-
lying probability space in which rational agents reside and economic institutions
are located has been questioned with increasing vigour by orthodox theorists,
even of the dominant school (cf. [27]).
Many years ago, in one of the most fundamentally innovative discussions on

a core area of monetary economics, Clower and Howitt remarked that a realistic
analysis of the Transactions Theory of the Demand for Money implied the use of
proof techniques involving �the use of number theory - a branch of mathematics
unfamiliar to most economists�([?], p.452, footnote 3). The simple reason was
that they imposed simple, realistic, constraints on the domain of analysis -
discrete units. Thirty years later11 , in the ferment of the digital economy, not
an iota of progress has been made on familiarising economists with number
theory or any other kind of discrete mathematics, in spite of lip service to
computational economics.
Clower and Howitt began by supposing that individual traders produce, sell

and purchase only discrete units of one stock-�ow good. Using �the generic
symbols S, D and M� to denote measurable quantities of production-supply,
demand and money prices and y, the constant level of production per unit of
time of S, the time-paths of the inventories of the variables had the following
patterns (in the special case S = 3; D = 2; y = 1;m = 0 and M0 = 1; Fig.1,
p.451 in [?]):

11The original version of the paper appeared as a UCLA Economics Discussion Paper in
1974.
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Figure 1: Time Paths of Inventories
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Figure 2: The Finance Function

Corresponding to the initial assumptions, the average money holdings, �M;
denoted as the �nance function, F (S;D), is given by:

F (S;D) = �M = �S + �D �G(S;D) (23)

where the �barred variables�denote average holdings and G(S;D), the divisor
function is given by:

G(S;D) =

�
GCD of S and D if S=D is rational

0, otherwise
(24)

The graph of this perfectly natural and realistic �nance function, F (S;D);reproduced
from [?] (Fig.2, p.452), is shown below.

The simple economics of the seemingly bizarre behaviour depicted in the
diagram is as follows12 :

12The points, x; y; z; ::::, along the longer lower boundary and those on the shorter lower
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"[The graph�s] most notable characteristic is that for any given
value of S the �nance function contains a jump discontinuity at every
value of D for which S=D is rational. These discontinuities have a
straightforward economic interpretation. The trader can economize
on money balances most e¤ectively by so coordinating purchases and
sales that sales often or always occur simultaneously with purchases,
in which case S and D will have a common divisor that di¤ers signif-
icantly from zero. If, instead, most or all sales are poorly coordinated
with purchases, most purchases will have to be �nanced with money
carried over from previous sales, and S and D will have a common
divisor that is close to zero."
ibid, p.452; italics added

In other words, whenever S = D, then, since G(S;D) = S, the trader need
not hold money; however, if demand is reduced by even a fraction, then the
divisor function will drop to the neighbourhood of zero and money balances
will rise discontinuously. This prediction is not based on any kind of ad hoc
assumptions about risk and uncertainty or placing agents and institutions in
probabilistic environments, various Phelpsian islands and so on.
Chamberlin�s experimental domain is permeated with step functions; Os-

borne, in the sphere of computational �nance, seeks to constrain the domain of
variables to the discrete; Clower and Howitt do constrain the domain of elemen-
tary supply-demand analysis of a classic problem in monetary theory to rational
valued variables and invoke the methods of number theory and dynamical sys-
tems theory to solve their intractable problem. What such innovative criticisms
and doubts - almost all of them rigorously formulated - imply, most obviously,
are a series of irrelevancies at the core, foundational, levels of economic and
methodological basics. For example, the irrelevancy of basing theory on the
domain of real numbers, the excessive informational burdens on the rationality
postulates of individual behaviour that make ordinary decision making impos-
sible, the uncomputability of almost any equilibrium predicted by theory, and
so on.
If it was simply inertia and tradition that were the root causes of lapses in

rigour or neglect of the importance of considering the proper domain for rel-
evant economic variables and respect for the modern digital tools of analysis
then one would have expected a change in practice and expertise to have taken
place at least by osmosis, if not hard work and e¤ort toward learning the math-
ematics of the discrete and the digital. Since none of these has happened and
to avoid unnecessary compromises with theoretical and empirical rigour, whilst
respecting the discrete/digital nature of observational data, all of the economic
theoretical formalizations are achieved via the mathematics of the digital com-

boundary, a; b; c; :::, are attained when D is an exact multiple or divisor of S, where, therefore,
�M =

�� �S � �D
��. The values on the upper boundary, along the line AB, are attained when S

D

is irrational, when, therefore: �M = �S + �D:In the remaining cases, when S
D
is rational but

neither it nor its reciprocal is an integer, yield values in the region bounded by the above
lines.
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puter and algorithms: viz., computability theory and constructive mathematics.
Therefore, the underlying economic theory is Computable Economics. However,
this should not lull the reader into thinking that all the formal structures in
Computable Economics presuppose computability by agents or institutions; in
fact, such a formalism is replete with undecidabilities and uncomputabilites and
call forth a wholly new ontology for applied and theoretical economics. In par-
ticular, working within a probability space as the generator of empirical data
and a space in which rational agents decide optimally with the calculus of ex-
pected utility maximization mediated by subjective probabilities will have to
be given up. But the alternatives are quite rich and even philosophically and
epistemologically exciting and challenging.

3 Information, Computation and Emergent Com-
plexities in a Digital Economy

"Discrete forms of storing and processing information are funda-
mental. They are at the base of the very measure of the �quantity of
information�expressed in �bits�, numbers of binary symbols. ...[T]he
discrete part of information theory is to some extent destined to play
a leading organizing part in the development of combinatorial �nite
mathematics. ... [I]t is not clear why information theory should be
based so essentially on probability theory, as the majority of text-
books would have it. It is my task to show that this dependence on
previously created probability theory is not, in fact, inevitable."

[24], p.31; italics added

The theoretical foundations of a digital economy are based on digitally un-
derpinned information, computation and communication structures for agents
and institutions that are conceived as emergent, complex, evolving entities. In
this essay the digital economy will be considered to be embedded in a formal
information society - just as, orthodox economic theory is the theory of mod-
ern industrial societies and not of primitive economies. Hence an outline of
the characteristics of what a formal information society entails will have to be
discussed. To this must be added an outline of how agents and institutions can
formally be situated in a digital economy that is embedded in an information
society and theorised economic theoretically?
Information problems have become of central concern in orthodox economic

theory of every hue and variety. However, the nature of the formal informa-
tion theory that has been harnessed in the service of orthodoxy, whether in
economic theory or in econometrics, has been based on equally orthodox (sub-
jective or measure theoretic) probability theory. Not a single consideration of
an information problem in any kind of formalism of economic theory or econo-
metrics has de-linked it from either subjective probabilistic underpinnings or
a measure theoretic basis. A fortiori, there is, so far as I know, no formal
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information-based problem in economics - whether microeconomic, macroeco-
nomic, IO, Game Theory or econometrics - that is demonstrably computable (or
shown to be formally uncomputable). Moreover, the formalism of communica-
tions, in the same collection of economic and econometric disciplines mentioned
above, by and between agents and institutions, has never been based on a for-
mal information theory that is independent of probability theory and, hence, on
discrete or digital mechanisms; viz., on computable mechanisms.
On the other hand, so far as I know, no one has proposed a theory of the

information society, particularly one that is compatible with any of the stan-
dard economic theories - let alone of the dominant or orthodox economic theory
- of modern industrial economies. Any theory of the information society will
have to be underpinned by and built on the foundations that were devised by
Alan Turing, Claude Shannon, Norbert Wiener, John von Neumann, Andrei
Komogorov and Herbert Simon. Turing�s notion of computability ; Shannon�s
measure and formalization of coding for communication and sampling to trans-
form the analog - in which, as pointed out above, much theorising resides - to
the digital within a framework of information theory; Wiener�s epistemological
and methodological contributions to the mathematics of the stochastic processes
that underpin the noise contaminating the information that is communicated
between social agents and institutions and the latter�s attempt to coordinate and
control their smooth functioning according to speci�ed criteria; von Neumann�s
experimental design criteria, utilizing the formalization of cellular automata,
for self-reproduction and self-reconstruction in addition to his contributions to
the development of the stored-program digital computer; Kolmogorov�s creative
genius abandoning his own early creation of a measure theoretic basis for prob-
ability theory and developing a combinatorial and computable basis for it and
resurrecting the once discredited frequency theory of probability to provide a
digital basis for information theory; and, closer to home, so to speak, Herbert
Simon�s almost single-handed development of modern cognitive science on the
basis of a theory of computation and information processing by realistic cogni-
tive mechanisms. On these sterling building blocks are to be found a theory of
the digital information society.
To the above core theoretical bases of an information society, particularly

where experimental self-reproduction and self-reconstruction theories of the dig-
ital economy are at issue, have, moreover, to be supplemented with a vision of
the emergent complexities of new market forms, innovations and societal trans-
formations that are brought about by new technologies, not just of a scienti�c
or engineering nature.
If these are the foundations on which a theory of a digital information soci-

ety is founded, any subsidiary theory of agents or institutions, such as economic
theory, cannot but aim at a consistency with the basics, as suggested above,
that came out of the various de�ning themes and theories of Turing, Shannon,
Wiener, von Neumann, Simon and Kolmogorov. Paradoxically, economic the-
ory as taught and harnessed for practice today has nothing to do with any
of these underlying foundations of information theory, the theory of computa-
tion, communication theory, cognitive science, theories of self-reproduction and
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self-reconstruction based on computability and the need to tackle, theoretically
and empirically, emergent complexities of the digital foundations of individual
and institutional behaviour and evolution . How, then, can the economics and
decision processes of a digital economy be analysed?
To answer this question it will be necessary to identify, clearly and formally,

those foundations of the economic theory of individual behaviour, institutional
evolution, market complexities and technological innovations that depend on
theories of information, computation, communication and emergence. It is pos-
sible that an orthodox economic theorist would claim, as hinted in the opening
paragraph of this section, that the citadel is well aware of informational, com-
putational and emergent factors of the foundations of economic theory. Such an
orthodox theorist could easily point to work by Nobel Prize winning economists
and their work on asymmetric information. Perhaps, even more fundamentally,
a hand may be waved in the direction of the information revolution that brought
with it, in one fell swoop, also the microfoundations movement in macroeco-
nomics heralded by the celebrated Phelps volume ([41])13 ; a volume that, in
almost every conceivable way, made it possible for the newclassical revolution
to sweep all before it. And, then, such a theorist would or could triumphantly
point out to the �signal processing� basis of newclassical economics; go even
further and point out to the fact that rational agents in such economies are,
essentially, signal processors and if such things are not based on information,
communication and computation theories then what else can be? Indeed, such
theorists, the dominant ones at the moment, could even point out to a wholly
new trend in macrodynamics whereby the theory is now felt to have been solidly
and �rmly based in recursive mathematical structures: Markov processes, dy-
namic programming and Wald�s sequential decision making (as claimed, for
example, in [30]). The residual complaint that such theories are incapable of
encapsulating emergent structures14 may well be side-tracked by the believable
claim that it is next on the research agenda and initial steps are in the process
of being taken or, at least, been considered seriously.
It is trivial to show that the formally rigorous core of orthodox neoclassical

economic theory, General Equilibrium Theory, with or without informational
and communication constraints, whether in its alleged �computable�incarnation
or not, has no computable, viz., digital, numerical content whatsoever. In fact
General Equilibrium Theory, in its present form and contrary to various explicit

13 Information problems in macroeconomics were centrally placed by the pioneers of the
subject, particularly by Lindahl and Keynes, from the outset. But they, too, neglected the link
with computation and relied on either subjective or logical probability theory for a justi�cation
of an information theoretic consideration of individual or institutional decision process. The
same can be said of Stigler�s later revival of Hayekian information and knowledge themes, in
the early 60s.
14Occasionally, vague references to Hayek�s work on The Sensory Order might be invoked,

especially by so-called members of one variety of Austrian economics. But this is not some-
thing to which orthodoxy can turn to; moreover, the claims of the Austrians are formally thin
and digitally meaningless. There are earlier approaches to emergent evolution of agents and
institutions, more solid and better based on digital structures, going all the way back to John
Stuart Mill, to which we can turn. That, however, is not a story that I shall dwell upon here.
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assertions, cannot formally be made numerically meaningful in any algorithmic
formalism. Hence there is no meaningful way to encapsulate computable self-
reproduction or self-reconstruction processes as general equilibrium models.
This is not the place to demonstrate this negative assertion in any formal way.
The point, however, is that this theory, as presently formalized, can provide no
basis for an empirical or experimental analysis of a digital economy.
Above all, nothing in formal economic theory has given content to formaliz-

ing agents, whether rational or not, with numerically meaningful cognitive con-
tent. Not a single formal learning scheme developed and implemented within
formal economic theory has ever been built on either recursion theoretic or con-
structive bases. Some rare instances of learning or inference schemes can, at
best, be classed as numerically meaningful except for the fact that they are
implemented by numerically and algorithmically unformalizable rational agents
seeking uncomputable �x points or entities. There are, to be sure, pseudo-formal
claims to the contrary; but it is easy to show that such claims are false. All of
the above reservations and comments apply, pari passu, to all formal theories
of economic dynamics, whether of theories of the business cycle or growth and
development.
The issue of �nancial markets - asset markets, for example - in a digital

economy, and the question of the theory of computational �nance in general, is
a more complicated story. There is a healthy, vigorous and rigorous attempt to
place this �eld of research on a behavioural basis (eg., [51], although not quite
in the sense of classical behavioural economics) and to consider computable for-
malizations and discuss the complexities of emergent �nancial markets in algo-
rithmic frameworks (eg., [34]). If these embryonic formal tendencies crystallise
in numerically meaningfully ways, then it is clear that �nancial markets might
well be underpinned by agents and institutions that are algorithmically rich and
formally rigorous in information, computation and emergent complexities.
In sum, there is no extant economic theory for a digital economy, with

the exception of behavioural economics as developed by Herbert Simon15 and
Computable Economics, that has ever linked information combinatorially with
computation and communication in the context of computationally meaningful
procedural agents in algorithmically evolutionary institutions. Classical behav-
ioural economics is not based on recursion theory. Computable economics is
squarely based on recursion theory. Either of the theories could form the ba-
sis for an analysis of information, computation and emergent complexities in a
digital economy. I choose the latter, pro tempore, partly because I have come
to believe that the former is, largely, a �subset�of the latter. I am aware that
Simon would disagree with such an assertion; alas, he is no longer among us to
refute my statement, as he, no doubt, would have with conviction and force.
However, I shall retain the fundamental insight that agents and institutions

in any decision theoretic context should most fruitfully be considered problem
solvers. Hence any formalization of such entities has as its starting point, even in

15 I have come to refer to this kind of behavioural economics as �classical�, in contrast to the
newer varieties based on non-numerical microfoundations.
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computable economics, the algorithmic formalization of problems, an algorith-
mic characterization of agents and institutions and the crucial questions asked
are always about solvability of problems - and if solvable, how hard or easy. Nat-
urally, this also means a recognition that there are unsolvable problems and, in
computable economics, under the assumption of the Church-Turing Thesis and
the Kolmogorov-Chaitin-Solomono¤Thesis, these are also absolutely unsolvable.
This will not be the case in constructive mathematics. This will be an inher-
ent feature of a digital economy characterized by computable economics; but
a characterization of such an economy in terms of orthodox economic theory
would be unable to determine its limits w.r.t problem solvability.

4 Computable Economics for a Digital Economy

"From the point of view of the mathematician the property of
being digital should be of greater interest than that of being elec-
tronic. ... That the machine is digital ... means �rstly that numbers
are represented by sequences of digits which can be as long as one
wishes. One can therefore work to any desired degree of accuracy.
....This is in sharp contrast with analogue machines, and continuous
variable machines .... . A second advantage of digital computing
machines is that they are not restricted in their applications to any
particular type of problem."
Alan Turing: Lecture to the London Mathematical Society on 20

February 1947 ([53], p.106)

In this section a broad brush picture of the nature and scope of computable
economics, from the point of view providing the economic theory of a digital
economy as characterised in the previous section, is discussed. On a larger can-
vas, it would be natural to include Constructive Economics on an equal footing
with computable economics under the one umbrella of Algorithmic Economics.
However, for the speci�c purposes of an economic theory of a digital economy,
especially as characterised in the previous section, it is more useful to con�ne
attention to an eclectic computable economics which �opportunistically�invokes
constructive principles whenever necessary in the manner of relative computa-
tion and appeals to oracles. There are many technical reasons for this, not least
my own mathematical incompetence in constructive measure theory.
First of all, the overall nature of the overall modelling strategy in computable

economics is disciplined by what may be called the following �credo�:

1. � The triple fassumption; proof; conclusiong will always be under-
stood in terms of finput data; a lg orithm; output datag.

2. � Mathematics is best regarded as a very high level programming lan-
guage.

3. � Every proof is an algorithm in the strict recursion theoretic sense.
This, of course, means that classical logic is freely and almost uncritically
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invoked. There will be no qualms about invoking the law of the excluded
middle. However, that does not mean that there will by undecidable
disjunctions in any algorithm (see the next criterion).

4. � To understand a theorem of computable economics, in algorithmic
terms, represent the assumptions as input data and the conclusions as
output data. Then try to convert the proof into an algorithm which will
take in the input and produce the desired output. If you are unable
to do this, it is probably because the proof relies essentially on the law
of excluded middle. This step will identify any inadvertent infusion of
undecidable disjunctions in existential statements.

5. � If we take algorithms and data structures to be fundamental, then it
is natural to de�ne and understand functions in these terms. If a function
does not correspond to an algorithm, what can it be? Hence, take the
stand that functions are, by de�nition, computable.

6. � Given a putative function f , we do not ask �Is it computable?�, or
"Is it constructive?", but rather �What are the data types of the domain
and of the range?�This question will often have more than one natural
answer, and we will need to consider both restricted and expanded do-
main/range pairs. Distinguishing between these pairs will require that
we reject undecidable propositions. If you attempt to pair an expanded
domain for f with a restricted range, you will come to the conclusion that
f is non-computable.

Secondly, the optimization paradigm of orthodox economic analysis and,
indeed, of almost every kind of formal decision theory except classical behav-
ioural economics and some parts of the cognitive sciences, is replaced by the
more general paradigm of Diophantine decision problems. This is speci�cally to
acknowledge the fact that the domain of discourse in computable economics are
the computable numbers, in general, and the rational numbers (or the integers),
in particular. Thus, one does not arbitrarily force the domain of discourse to be
the real numbers simply because the economic theorist is only competent in real
analysis. The available, natural, domain of analysis in economic and �nancial
markets, in a digital economy, will be rational, integer or, perhaps, the algebraic
numbers. This will be adequately respected in the assumptions made about the
analytical and decision theoretic framework.
Thirdly, the implementation of a Diophantine decision problem will be in

the form of asking for the solvability or not of a Diophantine representation
of market equilibrium in a digital economy. This will lead, seamlessly, to an
exploitation of the connection with the Halting Problem for Turing Machines
and the powerful methods developed for showing the unsolvability of Hilbert�s
10th Problem. In a very general way, the connections come about as follows:

A relation of the form

D (a1; a2; :::::; an; x1; x2; :::; xm) = 0
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where:

De�nition 10 De�nition 11 D is a polynomial with integer coe¢ cients with
respect to all the variables a1; a2; :::::; an; x1; x2; :::; xm (also integer or rational
valued), separated into parameters a1; a2; :::::; an and unknowns x1; x2; :::; xm,
is called a parametric Diophantine equation.

De�nition 12 D in De�nition 10 de�nes a set z of the parameters for which
there are values of the unknowns such that:

ha1; a2; :::; ani 2 F () 9x1; x2; :::; xm [D (a1; a2; :::; an; x1; x2; :::; xm) = 0]

Loosely speaking, the relations denoted in the above two de�nitions can be
called Diophantine representations. Then sets, such as z, having a Diophantine
representation, are called simply Diophantine. With this much terminology at
hand, it is possible to state the fundamental problem of Diophantine equations
as follows:

Problem 13 A set, say ha1; a2; :::::; ani 2 F , is given. Determine if this set is
Diophantine. If it is, �nd a Diophantine representation for it.

Of course, the set z may be so structured as to possess equivalence classes of
properties, P and relations, R:Then it is possible also to talk, analogously, about
a Diophantine representation of a Property P or a Diophantine representation
of a Relation R: For example, in the latter case we have:

R (a1; a2; :::::; an)() 9x1; x2; :::; xm [D (a1; a2; :::::; an; x1; x2; :::; xm) = 0]

Hence, given, say partially ordered preference relations, it is possible to ask
whether it is Diophantine and, if so, search for a Diophantine representation
for it. Next, how can we talk about the solvability of a Diophantine repre-
sentation? This is where undecidability (and uncomputability) will enter this
family of �inviting �ora of rare equations� - through a remarkable connection
with recursion theory, summarized in the next Proposition:

Proposition 14 Given any parametric Diophantine equation, D, it is possible
to construct a Turing Machine, M , such that M will eventually Halt, begin-
ning with a representation of the parametric n-tuple, ha1; a2; :::::; ani, i¤ D in
De�nition 9 is solvable for the unknowns, x1; x2; :::; xm.

But, then, given the famous result on the Unsolvability of the Halting problem
for Turing Machines, we are forced to come to terms with the unsolvability of
Diophantine equations16 .

16 It must, of course, be remembered that all this is predicated upon an acceptance of the
Church-Turing Thesis.
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Several remarks are in order here. The perceptive reader would have realised
that the computable economy is a Diophantine economy and, hence, so is the
digital economy. Therefore, algorithmic agents and algorithmic institutions will
routinely face formally unsolvable Diophantine decision problems. This is the
context in which boundedly rational agents could be de�ned and their behaviour
experimentally and empirically analysed. Next, it is precisely the existence of
formally unsovlable decision problems in a Diophantine economy that calls forth
satis�cing behaviour. These two remarks are made to dispel the conventional
misconception that a boundedly rational agent is simply orthodoxy�s omnipotent
substantively rational agent cognitively constrained in various ad hoc ways; and
that satis�cing is simply a �second best� optimization outcome. If anything,
the truth is exactly the opposite - but I shall not pursue further discussions to
clarify these remarks in any great detail in this essay.
Fourthly, following a tradition that regrettably was stillborn, market inter-

actions will be modelled in terms of coupled dynamical systems taking as the
fountainhead for such an approach the path breaking paper by Richard Good-
win in 1947 ([16]). For over a century markets have been modelled with various
metaphors in mind: from Walras and Pareto invoking analogue calculation ma-
chines and iterated dynamical systems as metaphors in the late 19th century to
markets as evolutionary mechanisms in more recent years and even all the way
to markets as institutions and institutions as algorithms in the modern sense
by the more imaginative modern economists such as Simon and Scarf. There is
no doubt that markets have evolutionary aspects that have to be encapsulated
in any modelling formalism; there is also no question that the fertile idea of
markets as analogue or digital calculating devices may suggest interesting for-
malisms. However, the need to model the dynamic interaction of markets as the
source of emerging complexities and evolving novelties seems best handled in
terms of explicit dynamics. For this nothing, surely, is more obvious than cou-
pled dynamical systems and since there is a tradition, albeit comprehensively
neglected, that can be invoked, I shall do so.17 In particular, this exercise will
be squarely within the Turing tradition of enabling novelty and complexity to
evolve via the coupling of simple dynamical systems. The general idea is as
follows18 .
17As a pupil of Richard Goodwin I was privileged to be shown by him how two Phillips

Hydraulic Machines could be coupled linearly to study trade between two national economies
and to demonstrate the emergence of complex dynamics as two parameters were systematically
�tuned�. In his �Reminiscences�on the occasion of the e¤orts at the LSE to repair and refurbish
the Phillips Machine, about a decade and half ago, Goodwin wrote as follows:

"..I was very excited to �nd that Phillips had two of his magical machines in
London, so I could reproduce what I had analyzed back in 1947 in my dynamical
coupling paper. If I remember correctly, Phillips did not believe we could produce
erratic behaviour by coupling his machines - but we did"

Goodwin, undated manuscript, probably Summer, 1991.

18 I am simply reproducing the model in [54]. The reasons are as follows: �rst of all, to
familiarize the reader with the strategy adopted by Turing; secondly, to hint that by suitable
adaptations and re-interpretations, a similar or more general model can be devised for coupled
markets; thirdly, to indicate that much can be done within the �linear� fold; �nally, to show
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Begin, in the simplest case, with two linear di¤erential equations, encapsu-
lating the dynamics of demand-supply in two linearly coupled markets19 :

dxr
dt

= axr + byr (25)

dyr
dt

= cxr + dyr (26)

Transform them into standard variational equations via �di¤usion� coe¢ -
cients � and �:

dxr
dt

= (axr + byr) + �(xr+1 � 2xr + xr�1) (27)

dyr
dt

= (cxr + dyr) + �(yr+1 � 2yr + yr�1) (28)

Assuming stable or neutrally stable dynamics for market interactions when
�di¤usive�interaction is absent means the following conditions between the trace
and the determinant of the characteristic equations will have to be satis�ed for
the constant of the system (25)-(26):

� = a+ d � 0 (29)

� = ad� bc > 0 (30)

The general linear system of equations can be orthogonalised by introducing
the coordinate transformations, �i, �i (8i = 0 : : : N), for x and y, respectively,
and using the relationship20 :

NX
r=1

exp[
2�irs

N
] =

�
0 if 0 < s < N
N if s = 0 or s = N

Then, it is easy to show that the orthogonalised system of 2N decoupled equa-
tions in the new coordinate system are:

d�s
dt

= (a� 4� sin2 �s
N
)�s + b�s (31)

and:
d�s
dt

= c�s + (d� 4� sin2
�s

N
)�s (32)

Denoting by �; a�and d�, the following:

how to link bifurcation analysis with the search for emergent complexities in a manageable
way. Unfortunately, due to space considerations I will have to leave much in the form of bare
hints and skeletal discussions and leave it to the good reader to infer adequately.
19 If it might help the reader to follow the rest of the analysis in this part, s/he could think

of x and y as excess demand levels in two coupled markets of two trading economies.
20 In the �rst case, since the l.h.s is a geometric progression and 0 < s < N, the result is

immediate; in the second case, in either of the alternatives, s=0 or s=N, all terms are equal
to 1, hence the l.h.s sums to N (cf. [54], p.39).
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� = sin2(
�s

N
) (0 � � � 1) (33)

a� = a� 4�� (34)

and:
d� = d� 4�� (35)

Then, the trace and the determinant of the characteristic equation for the
orthogonalised system will be:

�� � a� + d� (36)

and:
�� � a�d� � bc (37)

It is easy to calculate �� decreases monotonically with increases in �, � and
�. On the other hand, since �� depends on a� and d� multiplicatively, there
is no unambiguous way of relating changes in �� to changes in the relevant
parameters,�, � and �. However, it is clear that as the parameters are varied or
change autonomously, and given that �� decreases (or increases) monotonically,
the dynamics of the system loses stability as �� becomes negative. The loss
of stability, from a stable node or focus, to a saddle-point, is called a Turing
Bifurcation.21

It is this loss of stability that Turing exploited to provide a beautiful, simple
but counter-intuitive example of how, from a formless initial structure, form
- i.e., �order� - can be generated. It is counter-intuitive in that one expects a
di¤usive mechanism to iron out - i.e., smooth out - inhomogeneities. Instead,
starting with a minor inhomogeneity in a linear, coupled, dynamical system, the
Turing Bifurcation leads to a growth of form - i.e., inhomogeneities giving rise
to morphogenesis.
At this point it is apposite to state that my conjecture here is to interpret

�di¤usion�and �di¤usive�interaction in terms of �competition�in coupled market
dynamics. The full implication of this analogy must be left for a di¤erent
exercise.
Several modelling remarks are in order at this point. Given the various,

scattered, strictures that I have earlier made against modelling in the domain of
the continuous, real, variable, it will not do to work with di¤erential equations
without care and caveats. Either one has to work with di¤erence equations or
explicit, equivalent discretizations must accompany any such formalization in
terms of di¤erential or any other continuous time dynamical system. It is for
this reason I have circumscribed this discussion in terms of linear di¤erential
equations; they can routinely be discretized to equivalent di¤erence systems.
Such is not the case with nonlinear dynamical systems. Some clarifying remarks
on this issue will be made in the concluding section.

21This can be contrasted and compared with the more familiar Hopf Bifurcation, where
the parameter variation and loss of stability involves foci and limit cycles.
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However, an alternative strategy, that which is advocated in the computable
economic research program for a digital economy, is to go directly from the dif-
ferential equation to its equivalent Turing Machine. Again, this is a routinisable
strategy. By extension, coupled dynamical systems can be modelled as coupled
Turing machines - or, as has been stated many times in the recent �complexity�
literature, the economy as a massively parallel system of interacting markets. In
this sense, a discrete dynamical system or coupled Turing machines can easily
be re-interpreted in terms of a cellular automata system activated on a grid. It
is, then, immediate, to reinterpret the cellular automaton as a �nite automaton.
If this automaton is not capable of universal computation, then it will not be
capable of either self-reproduction or self-reconstruction. Thus, such markets
even if they are capable of evolving complex novelties are not capable of survival.
The themes that Turing broached, and the kind of analysis he developed,

provides a fertile source for those interested in a dynamical approach to com-
plex adaptive systems analysis. This is amply illustrated by works such as those
by Kelso ([21])and Levin ([29]. In particular, Kelso�s work integrates pattern
detection with a dynamical systems and simulation perspective at the forefront,
eschewing all the paraphernalia of �statistics and probability�and showing the
virtues of metastability - more particularly, but misleadingly, sometimes re-
ferred to as �life at the edge of chaos�. This would be equivalent to simulating
and locating coupled Turing machine con�gurations, when studied as cellular
automata on a grid, with initial conditions compatible with universal computa-
tion. The question whether an economic system is capable of self-reproduction,
i.e., growth, and innovations will, then, be answered by investigating whether
it, modelled as coupled dynamical systems or one of its above equivalents can
be shown to be capable of interesting bifurcations and universal computations.
More can be said but in the absence of simulations to illustrate some of the
claims, it is better left for a di¤erent exercise.
In this chapter, where the main theme is the study of digital economies, the

framework of the Turing bifurcation enables an encapsulation also of positive
feedback between interacting markets, whilst simultaneously, the propagation of
inhomogeneities, via varieties of competitive mechanisms and couplings, leads to
complex novelties in a self-organizing order. Both agents and markets - or, more
generally, institutions - become so-called complex adaptive systems and hence
evolution, too, is encapsulated in the formalism. None of this requires the agents,
the markets or any other institution to be embedded in a probability space or
to act as expected utility maximizers. Indeed, agents, markets and institutions
will be interpreted either as nonlinear oscillators or as Turing Machines; the
former as universal dynamical systems; the latter as Universal Turing Machines
capable of universal computation. I don�t see anything strange about this; after
all the Lucasians view agents as signal processors; it is not necessary to stretch
one�s imagination too far to make a transition from agents as signal processors
to agents as nonlinear oscillators or Turing machines.
The �nal modelling precept is the place of induction or abduction in the com-

putable economic modelling of a digital economy embedded in an information
society: the need for agents and institutions to learn and infer over time. This
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is similar, perhaps even equivalent to, pattern recognition by complex adaptive
systems. Although the frontiers of current research advocates such an approach,
here the aim would be to use the Turing Machine formalism of agents, markets
and institutions to re-interpret learning and inference as induction or abduction
by such machines from data sequences. This means induction and abduction
are given formalisms in terms of computations on data sequences without ei-
ther assuming that the data sequences are emanating from probability spaces or
are embedded in them. The idea will be to divorce both induction and abduc-
tion, formally, from any reliance on probability considerations. The theoretical
framework for such an exercise is algorithmic complexity theory.
The above modelling strategies form the core and the key of the computable

economic approach to modelling the dynamics of the digital economy as embed-
ded in an information society. These strategies are not meant to be implemented
in any particular sequence. For example, it may be useful - or not, as the case
may be - to move from a dynamical system formulation to its Turing Machine
equivalence and, then, to a Diophantine formalism to investigate solvability - or
the other way about.

5 Mathematical Methods of Computable Eco-
nomics

Computer science ... is not actually a science. It does not
study natural objects. Neither is it, as you might think, mathe-
matics; although it does use mathematical reasoning pretty exten-
sively. Rather, computer science is like engineering - it is all about
getting something to do something, rather than just dealing with
abstractions ... . ...
But this is not to say that computer science is all practical, down

to earth bridge-building. Far from it. Computer science touches on
a variety of deep issues. ... . It naturally encourages us to ask
questions about the limits of computability, about what we can and
cannot know about the world around us."
Richard Feynman: Feynman Lectures on Computation ([13],

p.xiii; italics added)

As always, the versatility and audacity of Feynman�s intellect has captured
the essence of a vast subject of immense complexity with a few well chosen
phrases of subtle depth. Dentists do not deal with abstractions; that is why
an equally versatile and audacious intellect such as Keynes, long years ago,
hoped that economists might some day become as humble as dentists. Instead,
economic theory has concentrated, for about the past half a century or so, on
�just dealing with abstractions�. Moreover, borrowing another famous Keyne-
sian phrase, these abstractions have been dealt with using the �pretty polite
techniques�of irrelevant, non-numerical, mathematics. No wonder, then, that
economic theory has not been able to �get something to do something�. Instead,
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computable economics is �like engineering - it is all about getting something
to do something�. At the same time, using the tools and the mathematics of
computer science and allied disciplines, it is also �about what we can and cannot
know about the world around us�- i.e., epistemology.
To give quantitative, numerically meaningful, content to the general state-

ments and modelling strategies discussed in previous sections, it is necessary to
formalize the economic entities that characterise computable economics, agents,
institutions, technologies, etc., in relevant ways. In this section, therefore, a
menu of the kind of mathematics that is necessary to do so will be outlined.
It should remind the reader of what s/he would have found in appendices and
�cookbooks�of mathematical economics or econometrics in years gone by - be-
fore all economists and econometricians were expected to have become minor or
major experts of real analysis, measure theory, smooth dynamical systems and
stochastic processes. No economic theorist worth his salt would dream of trying
to tackle or study business cycles, growth or development without �rst master-
ing numerical analysis, stochastic processes, �ltering theory, dynamical systems
theory and real analysis and much else. My generation had to learn topology
from excellent mathematical economics texts such as the ones by Nikaido before
even beginning to understand the meaning of the excess demand function and
equilibrium in the market for carrots, apples and tractors, all formalized in vec-
tor spaces and indexed in the continuum. Compared to all this paraphernalia,
the mathematics of computable economics is refreshingly algorithmic for the
modern generation brought up not with pencil and paper but with a monitor
and the keyboard.
Suppose the starting point of the computable economist who is studying a

digital economy is the following:

Conjecture 15 Observable variables are sequences that are generated from re-
cursively enumerable but not recursive sets, if rational agents underpin their
generation.

An aside: In 1974 Georg Kreisel posed the following problem:

�We consider theories, ... and ask if every sequence of natural num-
bers or every real number which is well de�ned (observable) according
to the theory must be recursive or, more generally, recursive in the
data. ....... Equivalently, we may ask whether any such sequence of
numbers, etc., can also be generated by an ideal computing or Tur-
ing Machine if the data are used as input. The question is certainly
not empty because most objects considered in a ... theory are not
computers in the sense de�ned by Turing. ........�

[26], p.11

The above conjecture has been formulated after years of pondering on Kreisel�s
typically thought-provoking question and the feelings expressed in the earlier
sections. More recently, a reading - belated and undigested though it may well
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be, for the moment - of Osborne�s stimulating book ([38]), was also a source
of inspiration in the formulation of the conjecture as an empirical disciplining
criterion for computable economics.
The conjecture is also is akin to the orthodox economic theorist and her

handmaiden, the econometrician, assuming that all observable data emanate
from a structured probability space and the problem of inference is simply to
determine, by statistical or other means the parameters that characterise their
probability distributions. Whilst Einstein in his epistemology may not believe
that the Good Lord is malicious enough to be playing roulette with us, mortals,
the economic theorist and the econometricians seem to think they know better.
I prefer Einstein�s epistemology and, hence, begin with the above conjecture. If
the computable economist�s starting point is the above conjecture then it follows
that:

Theorem 16 Only dynamical systems capable of computation universality can
generate sequences that are members of sets that are recursively enumerable but
not recursive.

Theorem 17 Only dynamical systems capable of universal computation can ex-
tract patterns inherent in arbitrary, digitally generated, data, without assuming
their generation by an underlying probability model

Corollary 18 Asymptotically stable dynamical systems are not capable of com-
putation universality.

Proposition 19 Only dynamical systems capable of computation universality
are consistent with the no arbitrage hypothesis.

Theorem 20 Rational economic agents in the sense of economic theory are
equivalent to suitably indexed Turing Machines; i.e, decision processes imple-
mented by rational economic agents - viz., choice behaviour - is equivalent to
the computing behaviour of a suitable indexed Turing Machine.

Put another way, this theorem states that the process of rational choice by an
economic agent is equivalent to the computing activity of a suitably programmed
Turing Machine.

Conjecture 21 Dynamical systems capable of computation universality can
persist in disequilibrium con�gurations for long time periods.

Theorems 16 and 17, Corollary 18, Proposition 19 and Conjecture 21 have
been the basis of my work in [55] and in chapter 4 of [56]. Ideas underpinned
by related results are also discussed in the important and earlier work by Peter
Albin ([2], chapter 7).

Theorem 22 (Rabin, 1957) T]here are games in which the player who in
theory can always win cannot do so in practice because it is impossible to
supply him with e¤ective instructions regarding how he should play in order
to win.
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The next item has been mentioned twice already in this essay; but I restate
it here just for completion.

Problem 23 Hilbert�s 10th Problem: Determination of the solvability
of a Diophantine equation

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coe¢ cients; to devise a process according to
which it can be determined by a �nite number of operations whether the equa-
tion is solvable in rational integers.

Theorem 24 Undecidability of Hilbert�s tenth problem

There is no algorithm which, for a given arbitrary Diophantine equation,
would tell whether the equation has a solution or not.

Theorem 25 Halting Problem for Turing Machines

Suppose we are given a Turing Machine computable function fn(m). Then
there is no general algorithm for determining, for arbitrary n � 0 and m � 0,
whether fn(m) is de�ned.

Theorem 26 Rice�s Theorem: Let C be a class of partial recursive functions.
Then C is not recursive unless it is the empty set, or the set of all partial
recursive functions.

Claim 27 Validity of the Church-Turing Thesis on E¤ective Calculability

Claim 28 Validity of the Kolmogorov-Chaitin-Solomono¤-Martin Löf Thesis
on Randomness

Anyone who is able to formalize these theorems, corollaries and conjectures
and work with them as disciplining economic theoretical criteria would have
mastered all the necessary mathematics of computable economics. The rest
of this section is a guide for those who are perplexed by the above theorems,
corollaries, conjectures and propositions.

Theorem 29 Specker�s Theorem in Computable Analysis ([49], pp. 145-58)
A sequence exists with an upper bound but without a least upper bound.

Theorem 30 The Pour-El/Richards Theorem

There exists an Ordinary Di¤erential Equation (ODE) s.t : '0(t) = F [t; '(t)]
with '(0) = 0, s.t F (x; y) is computable on the rectangle [0 � x � 1;�1 � y �
1], but no solution of the ODE is computable on any interval [0; �]; � � 0:

Theorem 31 Fix Point Theorem

Suppose that � : Fm �! Fn is a recursive operator (or a recursive program
Þ). Then there is a partial function f� that is the least �xed point of � :

33



Theorem 32 � (f�) = f�;
If � (g) = g, then f� v g:

Remark 33 If, in addition to being partial, f� is also total, then it is the
unique least �xed point.

De�nition 34 Computational 3D Sperner ([39], p.510)

Given an integer n (in binary) and a polynomial-time algorithm computing
for each point of the n � n � n subdivision of the cube a legal color, �nd a
tetrachromatic cubelet (one that has four colours).

Theorem 35 For any k � 2, k �D Sperner is ine¢ cient (i.e., belongs to the
class PPAD - Polynomial Parity Argument in a Directed Graph;[39], p.510)

Proposition 36 There exists a probability measure m(�) that is universal in
the sense of being invariant except for an inessential additive constant such that:

log2m (�) � K (�) (38)

where K(�) is the Kolmogorov-Chaitin algorithmic complexity.
The statement above is phrased with induction and abduction in mind. More

conventionally, in terms of the terminology of recursion theory, the proposition
is usually stated as the Invariance Theorem (due to Kolmogorov, Solomono¤
and Chaitin):

Theorem 37 9 a universal partial recursive function f0, such that, for any
other partial recursive function f , there is a constant cf such that for all (binary)
strings x; y : Kf0(x j y) � Kf (x j y) + cf .

Where K, as above is the Kolmogorov(-Chaitin algorithmic) complexity and:

KS(x) = minfj p j: S(p) = n(x)g and KS(x) =1 if there are no such p (39)

S : a method of programming; p : a program with j p j denoting the smallest
program that gives rise to x 2 D, a domain of combinatorially de�ned objects,
the elements of which are given a standard enumeration by numbers n(x):In
other words, KS(x) is the smallest program that gives rise to the object x 2 D
and is its complexity w.r.t the specifying method S.
More concretely stated, the core implication of the invariance theorem is,

for a given reference Turing Machine UTM, the length of the shortest program
to compute x is: minfl(p) : UTM(p) = xg, where l(p) is the �nite binary string
identi�ed with p:Therefore:

De�nition 38 K(x) = minfl(UTM) + l(p) : UTM(p) = xg � 1
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where, l(T ) : length of the self-delimiting encoding for a Turing Machine
UTM .
Since, for each n there are 2n binary strings of length n, but only

Pn
i=o 2

i =
2n� 1 possible shorter �descriptions�we can �nd at least one binary string x of
length n such that K(x) � n. Such strings are referred to as incompressible.

Theorem 39 The Incompressibility Theorem

Let k be a positive integer. For each �xed y, every �nite set A of cardinality
m has at least m(1 � 2�c) + 1 elements x with K(x j y) � logm � c, where
K(x j y) is the complexity of the object x given y:
Finally, related to invariance theorems in the domain of algorithmic com-

plexity theory and the �x point theorem (Theorem 30, above) of classical re-
cursion theory, we have the recursion theorem, essential for understanding self-
reproduction and self-reconstruction:

Theorem 40 Recursion Theorem Let T be a Turing Machine that computes
a function:

t : �� � �� �! �� (40)

Then, there is a Turing Machine R that computes a function:

r : �� �! �� (41)

such that, 8! :

r(!) = t (hRi ; !) (42)

where,
hRi: denotes the encoding of the Turing Machine into its standard represen-

tation as a bit string;
and the �(star) operator denotes its standard role as a unary operator de-

�ned as: A� = fx1; x2; ::::; xk j k � 0;8xi 2 Ag
The idea behind the recursion theorem is to formalize the activity of a Tur-

ing Machine that can obtain its own description and, then, compute with it.
All malicious �hackers�, perhaps with no knowledge of this theorem, are invok-
ing this theorem every time they generate viruses! More seriously, this theorem
is essential, too, for formalizing, recursion theoretically, a model of growth in
a digital economy and to determine and learn, computably and constructively,
rational expectations equilibria (cf. [58]). The �x point theorem and the recur-
sion theorem are also indispensable in the computable formalization of policy
ine¤ectiveness postulates (cf. [33] for a pioneering vision of this approach),
time inconsistency and credibility in the theory of macroeconomic policy. Even
more than in microeconomics, where topological �x point theorems have been
indispensable in the formalizations underpinning existence proofs, the role of
the above �x point theorem and the related recursion theorem are absolutely
fundamental in what I come to call Computable Macroeconomics.
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6 Ways Ahead

"Mathematize as he will, and seek algorithms as he will, the
empirical scientist is not going to aspire to an algorithm or proof
procedure for the whole of his science; he would not want it if he
could have it. He will want rather to keep a large class of his sen-
tences open to the contingencies of future observation. It is only
thus that his theory can claim empirical import."
[43], p.155

If the ubiquity of the digital computer and the popular references to a digital
economy embedded in an information society leads to new convictions in the
mathematical economic community and the mathematical economist begins to
reconsider the mathematical underpinnings of economic theory, along some of
the lines indicated in the previous sections, then there are at least three more
directions of research that could be explored with much hope for an enriched
and truly numerically rigorous foundations for the subject: interval analysis,
computable & constructive analysis and numerical analysis & recursion theory.
First, the relevance of interval analysis as a basis for enhancing and mak-

ing sure that digital computers are used with care and the theorist does not
demand more precision than could be delivered by such machines, even if the
theory has been based on computable or constructive mathematics. Recently
Brian Hayes, in one of his fascinating regular columns on Computing Science
in the American Scientist ([19]) reminded us - at least those of us concerned
with respecting the discrete and �nite precision nature of digital computers - of
the dangers of arbitrary approximations and routinised truncations of standard
computations:

"On February 25, 1991, a Patriot missile battery assigned to
protect a military installation at Dahrahn, Saudi Arabia, failed to
intercept a Scud missile, and the malfunction was blamed on an error
in computer arithmetic. ... In combination with other peculiarities
of the control software, the inaccuracy caused a miscalculation of
almost 700 meters in the predicted position of the incoming missile.
Twenty-eight soldiers died."
ibid, p.484; italics added.

What was this tragic �error in computer arithmetic�? It is simply due to the
fact the binary fraction for the decimal fraction 10�1 = 0:1 is not terminating :

10�1 = (0:1)10 = (:0001100110011:::)2 = (0 0011 0011 0011 ::::)2 (43)

In other words, the decimal fraction, in its binary notation, cycles and is
non-terminating and will have to be truncated with unpredictable consequences,
unless a serious approximation analysis is included in the software which trun-
cates automatically for some predetermined instruction. But there is another
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alternative, similar to the Clower-Howitt admonishment to the economist to
master number theory (or some mathematics of the discrete); in the case of
pitfalls due to the discrete and �nite nature of the digital computer and its
arithmetic, the alternative would be to use Interval Analysis, where an �interval
of real numbers is treated as a new kind of number, represented by a pair of
real numbers, namely its right and left end points� ([35], p.vii; italics added).
This is to go part of the way towards the analytical part of computable eco-
nomics - i.e, computable or constructive analysis. Had such numbers been used
in the software that was built into the operation of the control software referred
to above, the error would have been eliminated. Maury Osborne�s warning to
traders in the stock market, not to approximate by the continuous that which
is intrinsically discrete, made over a quarter of a century ago, rings a similar
tone:

As for the question of replacing rows of closely spaced dots by
solid lines, you can do that too if you want to, and the governors of
the exchange and the community of brokers and dealers who make
markets will bless you. If you think in terms of solid lines while
the practice is in terms of dots and little steps up and down, this
misbelief on your part is worth, I would say conservatively, to the
governors of the exchange, at least eighty million dollars per year."
[38], p.34; italics added.

Today, I would put the conservative estimate at more than several multiples
of that �gure of 27 years ago, even adjusting for in�ation. The reason, once
again, a reliance on an illegitimate domain of analysis, unrealistic assumptions
and the wrong mathematics for analyzing digital data, by digital agents in a
digital medium using a digital machine for computing discrete numbers.
Is there, then, no way to justify the use of real numbers as the relevant

domain of analysis for a digital economy and, hence, to rely on orthodox the-
ory and its well developed mathematical structures and practice to analyse it?
Paradoxically, in spite of my various and even, at times, virulent, negative re-
marks on the irrelevancies of orthodox mathematical economics for the purposes
of analyzing a digital economy embedded in an information society, there is a
way out - in fact, there are several ways out. It is possible to redo ortho-
dox mathematical economics using recursive analysis or computable analysis.
This chapter is already disproportionately long; hence the case for underpin-
ning orthodox economic theory with the mathematics of recursive analysis or
computable analysis cannot be fully substantiated here. However, some useful
indications might show that the distance between computable economics and
orthodox mathematical economics need not be as vast as I have made out in
the main part of this work.
The assumptions underlying Conjecture 14 and Theorem 15 are stepping

stones towards a compromise approach to the study of a digital economy with
the tools of computable economics. The reason, concisely summarised, is as
follows. Consider the typical space in which ordinary mathematical economic
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exercises are conducted - a Banach Space. Such a space is characterised by three
fundamental classical mathematical properties: linearity, limit and norm. Thus,
a topology on a Banach space can be characterised by a sequence of elements of
the space. On the other hand, the sequence of elements of a recursively enumer-
able set can be ordered as a computable sequence. Therefore, it is quite easy to
endow a Banach space with relative computability properties. If, in addition,
the notion of a computable, continuous, function of a real variable, as de�ned,
say, by Grzegorczyk or Lacombe, in the 50s, is also harnessed, we are almost
fully equipped to continue using the full paraphernalia of orthodox concepts in
a slightly altered, but perfectly meaningful in algorithmic and dynamic senses.
However, there are other ways to de�ne computable, continuous, functions -
some of which I prefer to the standard way using the notions and methods of
Grzegorczyk or Lacombe, but I shall not elaborate on the alternatives here22 .
Next, we need to characterise the computable reals in an e¤ective way. This

can be done in many alternative ways: for example, following the tradition
of classical mathematical analysis, by e¤ectivizing Cauchy sequences; or, by
sticking to the tradition of mathematical logic and e¤ectivizing the Dedekind
cuts. I prefer the latter mode simply because recursion theory is, by now, a
de�ning sub-discipline of mathematical logic and much of the motivating forces
of constructive mathematics are still underpinned by a puritanism about logical
principles. But either way, the e¤ectivizing is straightforward. Anyone familiar
with the standard way the real number system is built up from the natural and
rational numbers via one of the above two methods, should have no di¢ culties
mastering the way the computable reals are de�ned.
But lest the enthusiastic classical mathematical economist gets carried away

with the promise of �business as usual�, some warning signposts must be placed.
It is partly with this purpose that theorems 25, 28 and 29 above have been
included as part of the Mathematical Methods of Computable Economics. From
theorem 2523 it is easy to show that equality between two computable real
numbers is, in general, undecidable. From theorem 28 it is clear that a much
beloved theorem of elementary classical analysis, where a bounded monotone
sequence converges, is not valid in computable analysis - i.e., a sequence exists
with an upper bound but without a least upper bound. On the other hand,
it will be possible to eliminate the reliance on the classical �x point theorems
of Brouwer, Kakutani, etc., which are non-constructive and uncomputable, by
using theorems 30 and 39, with some careful reformulations.
An exactly similar path can be carved with constructive analysis, but I will

have to leave it for another exercise. Uniform continuity. located points, etc.,
will replace classical starting points and duality theorems, for example, will not

22My preferable method is to rely on Goodstein�s Uniform Calculus ([17]), where the whole
of elementary analysis is developed from the starting point of uniform continuity. This starting
point, together with the fact that the Uniform Calculus does not rely on any dubious logical
principle invoking proof by reductio ad absurdum, places it sensitively between computable
calculus and constructive analysis.
23The contribution by da Costa and Doria to this volume develops a more general version

of this theorem, valid in classical analysis.

38



have the unambiguity that is routinely invoked by those who rely on classical
mathematical analysis. I think I have given enough hints to show how one
can remain within the analytical fold, but not lose numerical and algorithmic
meaning.

Algorithms and dynamics are most easily recognized, without any need to
understand the mathematical underpinnings of the former, in dynamical sys-
tems theory. In the spectacular developments achieved in dynamical systems
theory in the second half of the 20th century, the digital computer played a
decisive part. However, there is a close connection between algorithms and dy-
namical systems via numerical analysis. The use of the digital computer to
study continuous dynamical systems requires the analyst or the experimenter
to �rst discretise the system to be studied. The discretisation processes for
nonlinear dynamical systems are often intractable and undecidable. On the
other hand, paradoxically, until very recently the mathematical foundation for
numerical analysis was not developed in a way that was consistent with the
mathematical foundation of the digital computer - i.e., computability theory.
As a result we have, in economics, a plethora of attempts and claims about
computational economics that are not well founded on recursion theoretic, con-
structive or numerical analytic foundations. Bishop�s observation, quoted in
the very �rst lines of this chapter, is fully applicable to the ad hockery prac-
tised by computational economists, fully similar to the activities of the classical
mathematical economist.
Now, there are, to the best of my knowledge, two ways out of the dilemma

faced by the computational economist. Either be rigorous about the theory of
approximations and numerical analysis in discretising the continuous; or, look
for a mathematical foundation for numerical analysis taking heed of the following
observations remarks by Smale, et.al:

"There is a substantial con�ict between theoretical computer sci-
ence and numerical analysis. These two subjects with common goals
have grown apart. For example, computer scientists are uneasy with
calculus, whereas numerical analysis thrives on it. On the other hand
numerical analysts see no use for the Turing machine.
The con�ict has at its roots another age-old con�ict, that between

the continuous and the discrete. Computer science is oriented by the
digital nature of machines and by its discrete foundations given by
Turing machines. For numerical analysis, systems of equations and
di¤erential equations are central and this discipline depends heavily
on the continuous nature of the real numbers. ...
Use of Turing machines yields a unifying concept of the algorithm

well formalized. ....
The situation in numerical analysis is quite the opposite. Algo-

rithms are primarily a means to solve practical problems. There is
not even a formal de�nition of algorithm in the subject. ....
A major obstacle to reconciling scienti�c computation and com-

puter science is the present view of the machine, that is, the digital
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computer. As long as the computer is seen simply as a �nite or dis-
crete subject, it will be di¢ cult to systematize numerical analysis.
We believe that the Turing machine as a foundation for real number
algorithms can only obscure concepts.
Towards resolving the problem we have posed, we are led to ex-

panding the theoretical model of the machine to allow real numbers
as inputs."
[6], p.23; italics added.

This is a strategy that is a compromise between using an analog computer
and a digital one, on the one hand, and, on the other, between accepting either
constructive or computable analysis and classical real analysis. The model of
computation developed with great ingenuity by Smale and his co-workers may
well be the best way to retain much of classical mathematical economics while
still being able to pose and answer meaningfully questions about decidability,
computability and computational complexity - and to retain numerical meaning
in the whole framework.
As for my remark about being rigorous about the theory of approximations

and numerical analysis in discretising the continuous, particularly when work-
ing within the framework of dynamical systems theory and using the digital
computer24 , what I mean is the need to avoid the paradoxes posed by phantom
solutions (cf. [42] and [45]). The exact sense in which this problem confounds
the connection between the continuous and the discrete can be described with
a simple example. Consider the Verhulst equation, almost the simplest conceiv-
able, empirically relevant, nonlinear di¤erential equation:

_x = x (1� x) (44)

To simulate and study this system using a digital computer it is necessary
to �nd an equivalent nonlinear di¤erence equation representation for it. By
equivalent I mean one with the same long-run, steady state, phase portrait -
basins of attraction, limit points, etc. Now, mercifully, this system is exactly
integrable and therefore the analyst knows what s/he is looking for, so far as
implementing �equivalence�. The solution for the Verhulst equation is the logistic
curve; so, the di¤erence scheme approximation to it should also generate the
logistic curve. But often, particularly in economics, the following seemingly
obvious nonlinear di¤erence equation system is chosen as the approximation for
digital implementation:

�xn = xn+1 � xn = xn (1� xn)�tn (45)

Now, this seemingly simple and straightforward di¤erence scheme cannot be
solved in closed form and, hence, it is not clear that it is an �equivalent�approxi-
mation to the original Verhulst equation. However, the following approximation
can be solved in closed form (for small h):

24These remarks are irrelevant should it be possible to use an analogue computer (cf.[57]).
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xn+1 � xn = (xn+1 � xnxn+1)h (46)

with closed form solution given by:

xn = [1� (1� x�10 )(1� h)n]�1 (47)

which, for small h, approaches the logistic curve:

x(t) = [1� (1� x�10 )e�t]�1 (48)

However, for h > 1;spurious solutions - i.e., phantom solutions - are gener-
ated.
How can an economist, wedded to modelling in the continuous domain, avoid

the dilemma of phantom solutions? This is a pertinent question for at least two
reasons: the ubiquity of the digital computer and the easy access to simulation
software such as Matlab and Mathematica. My own analytical answer to this
dilemma is to study numerical analysis as dynamical systems in their own right
(cf. [50], especially chapter 4), in the �rst instance; then, as a second step,
transform the dynamical system to an equivalent Turing machine. This way a
solid mathematical foundation for numerical analysis is at hand in a very direct
way.
Let me end with less rigorously grounded speculations about the nature of

the discrete and its relevance for economic modelling. The digital economy may
well be an artefact of the fact that the digital computer is ubiquitous. I can
imagine, counterfactually, a world of dominated by the analogue computer, as
it once nearly did, and it would be inconceivable that the economic world would
then not have been interpreted, modelled and named the analogue economy.
But, increasingly, there are tendencies in many of the neuro-, physical- and
other natural sciences, and in some of the pure sciences, to acknowledge the
fact that �reality�may well be discrete. Not very recently, Richard Feynman
([12], p.467) wondered:

"Can physics be simulated by a universal computer?

Feynman, in his characteristically penetrating way, then asked three obvi-
ously pertinent questions to make the above query meaningful:

� What kind of physics are we going to imitate?

� What kind of simulation do we mean?

� Is there a way of simulating rather than imitating physics?

Before providing absolutely fundamental, but tentative, answers to the above
queries, he adds a penetrating caveat (ibid, p.468; italics in original):

"I want to talk about the possibility that there is to be an exact
simulation, that the computer will do exactly the same as nature."
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The nature of my discussion above is also about �what kind of economics
are going to simulate?� - not imitate; and about �exact simulation�of a rele-
vant economic theory. Feynman�s answer to part of the �rst question was that
the kind of physics we should simulate are �quantum mechanical phenomena�,
because (ibid, p. 486):

"...I�m not happy with all the analyses that go with just the
classical theory, because nature isn�t classical, dammit, and if you
want to make a simulation of nature, you�d better make it quantum
mechanical, and by golly it�s a wonderful problem, because it doesn�t
look so easy."

But he was careful to point out, also, that there was a crucial mathematical
di¤erence between �quantizing�and �discretizing�(ibid, p. 488; italics added):

"Discretizing is the right word. Quantizing is a di¤erent kind of
mathematics. If we talk about discretizing ... of course I pointed
out that we�re going to have to change the laws of physics. Because
the laws of physics as written now have, in the classical limit, a
continuous variable everywhere ... ."

It is this that I mean in my vision, outlined in the earlier sections, for
economics, if we want to be seriously rigorous about using the digital computer
to study the real world around us, in its economic manifestations. Ad hoc
patching up, unrigorous approximations, arbitrary discretizations of theoretical
entities, modelled with continuous variables that have no correspondence in
economic reality have no place in a rigorous digital world
He was not the only giant in the natural sciences who wondered thus: Ein-

stein, Schrödinger, Hamming, To¤oli, Fredkin and most recently, Penrose, too,
have had speculative thoughts along similar lines. Einstein, in perhaps his last
published work, seems to suggest that a future physics may well be in terms of
the discrete:

"One can give good reasons why reality cannot be represented as
a continuous �eld. ...."
[10], p.166

Roger Penrose, in his recently published, massive, vision of The Road to
Reality, was even more explicit:

[W]e may still ask whether the real-number system is really �cor-
rect�for the description of physical reality at its deepest level. When
quantum mechanical ideas were beginning to be introduced early in
the 20th century, there was the feeling that perhaps we were now
beginning to witness a discrete or granular nature to the physical
world at its smallest scales.... Accordingly, various physicists at-
tempted to build up an alternative picture of the world in which
discrete processes governed all action at the tiniest levels. ....
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In the late 1950s, I myself tried this sort of thing, coming up
with a scheme that I referred to as the theory of �spin networks�, in
which the discrete nature of quantum-mechanical spin is taken as
the fundamental building block for a combinatorial (i.e. a discrete
rather than real-number-based) approach to physics."
[40], pp.61-2; italics in the second paragraph as in original.

These speculations on the granular structure of �reality�at some deep level
arose out of purely theoretical developments in the subject, but in continuous
interaction with the epistemology of measurement in well-designed and sound
experimental environments. Whether or not the economy is digital or not is not
something we can theorize about in the same way - or, perhaps, have not done
so till now.
In one of the great classical textbooks of mathematical logic, [44], with

painstaking detail and meticulous �delity, extracted and presented, in prose of
unsurpassed exactitude, the logic that was inherent in the normal practice of
mathematics. I have often wondered what kind of logic for mathematicians
would be the result if such an exercise were carried out exclusively on the
textbooks by Goodstein ([17]), Lorenzen ([31]), Bishop ([4]), Weihrauch ([59]),
Aberth ([1]), Landau ([28]), Hardy ([18]) and Keisler ([20]). The �rst one es-
chews reductio ad absurdum but retains other standard undecidable disjunctions
in proof procedures; the next two are elementary and advanced texts, respec-
tively, on constructive analysis, although it is the second that is consistently
free of any reliance on the use of the law of the excluded middle; the books by
Weihrauch and Aberth are explicitly on computable analysis, hence relying on
the Church-Turing Thesis but accepting the strictures of classical logic; next,
Landau and Hardy are introductory texts on classical analysis; �nally, Keisler is
an introductory textbook on non-standard analysis. In Rosser, the latter three
were treated with great care and much sympathy and the nature of the implicit
logic used in them were extracted with �nesse - but Keisler required an appen-
dix for its treatment ([44], Appendix D). In more recent times Knuth ([22]; [23])
has attempted a related exercise by investigating standard textbooks to try to
understand whether there is such a thing as a �mathematical way of thinking�
which is distinct from an �algorithmic way of thinking�. I believe a good case
can be made for the identity between the two modes of thinking had Knuth
looked only at books such as those by Goodstein, Lorenzen, Bishop, Weihrauch
and Aberth; contrariwise, had he looked at all of the above and a majority
coming out of the Bourbakian stables, then he may have been led to believe
that there was no clear cut answer. Similarly, it is my conviction that Rosser�s
admirable exercise would have resulted in at least three volumes on Logic for
Mathematicians (or, at least, three new appendices) - depending on the mathe-
matician�s philosophical stance. It seems to me that the way of thinking of the
mathematical economist is con�ned to those that are predominantly present in
the classical mathematical analyst. As a result the emergence of new forms
of economic societies, such as the digital one embedded in an information so-
ciety, receives an inappropriate economic interpretation and a one-dimensional
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formalization which emasculates the digital underpinnings of modern economic
transactions and institutions..
Over the past few years Duncan Foley has been giving such issues some

considerable thought and has also pondered over the kinds of questions I have
raised, from the point of view of computable economics. His perceptive crit-
icisms and imaginative interpretations of the kind of exercise I have reported
above are worth quoting in full, to conclude this essay25 :

"Why raise these issues of abstraction in relation to your cri-
tique of real-analysis-based mathematical economics and your inge-
nious suggestions about correcting or improving this �eld by using
constructive or computable mathematical methods? One reason is
to raise a warning that the shift from real to computable numbers,
logically salutary as it might be, does not in itself address the more
fundamental question of the fact that theoretical economic quan-
tity and price are themselves complex abstractions from actually ob-
servable transactions, which might have limits as tools for analysis.
The second reason perhaps might give some insight into the limits
your critique has encountered among the mathematical economists
so far. The abstraction from concrete transactions to "quantity" and
"price" on which traditional mathematical economics rests is deeply
tied up with the project of applying calculus and a fortiori real analy-
sis to economic interactions. (The Classical political economists had
a much weaker and more robust notion of the regularity of economic
interactions in their method of "long-period" averages.) When you
ask mathematical economists to re-think their ideas of proof and
computability from the point of view of meta-mathematical devel-
opments of the twentieth century you are also implicitly asking them
to re-think the abstractions of quantity and price altogether. I sus-
pect this is at the root of the question that I think lies behind most
mathematical economists incomprehension of your logical critique,
which is, what mistake are we making in adhering to real analysis?"
[15]

Perhaps the force of circumstances and the realities of a digital economy,
embedded in an information society, will force the classical orthodoxies to begin
to think in novel ways and use numerically relevant, algorithmic and dynamic,
mathematics - even if logical criticisms may fail to entice them to enlightened
paths.

25 I am afraid I will be doing some violation to the broad and deep points Foley was making
by only quoting a part of his letter to me. I shall be happy to make available a copy of the
full letter to any reader who makes an explicit request for it!
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