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ABSTRACT

Open-source packages typically have their source code available on
a source code repository (e.g., on GitHub), but developers prefer to
use pre-built artifacts directly from the package repositories (such
as npm for JavaScript). Between the source code and the distributed
artifacts, there could be differences that pose security risks (e.g.,
attackers deploy malicious code during package installation) in
the software supply chain. Existing package scanners focus on the
entire artifact of a package to detect this kind of attacks. These
procedures are not only time consuming, but also generate high
irrelevant alerts (FPs). An approach called LastPyMile by Vu et
al. (ESEC/FSE’21) has been shown to be effective in detecting dis-
crepancies and reducing false alerts in vetting Python packages
on PyPI by focusing only on the differences between the source
and the package. In this work, we propose to port that approach
to scan JavaScript packages in the npm ecosystem. We presented
a preliminary evaluation of our implementation on a set of real
malicious npm packages and the top popular packages. The results
show that while being 20.7x faster than git-log approach, our ap-
proach managed to reduce the percentage of false alerts produced
by package scanner by 69%.
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• Software and its engineering→ Software configurationman-
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→ Software security engineering;.
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1 INTRODUCTION

Nowadays, FOSS (Free and Open Source Software) has become a
fundamental part of the software supply chain [17]. FOSS enables
users and developers to audit, review, and even modify the source
code to integrate additional features. In software development pro-
cess, developers tend to use third-party dependencies to speed up
their development. In practice, Pashchenko et al. [21] reported that
developers rely on certain quality and popularity factors (e.g., num-
ber of stars in the software repository, number of contributors,
etc.) to decide whether to use the project as a dependency or not.
The security aspect, however, is only considered afterwards and
enforced depending on company policies.

To assess the quality and security of a software dependency,
developers could manually review its source code in a source code
repository (e.g. on Github [8]). Once the code is checked, develop-
ers can build or compile the source into a built artifact that users
can download and install directly. However, the process of manu-
ally compiling the source code usually requires knowledge of the
build systems. When it comes to big projects, it is time-consuming
because such project sometimes depends on many other dependen-
cies. For the practicality, developers prefer to use pre-built packages
from a package repository, such as npm [14] for Javascript.

In theory, such practice assumes that no modifications have been
introduced in the last mile between the source code and the package.
However, recent software supply chain attacks have successfully
exploited this assumption by injectingmalicious code into the down-
stream projects. Given a high imbalance between the number of
uploaded packages and maintainers in the existing ecosystem [23],
the popular package repository like npm has become a highly-
targeted malware distribution channel for attackers. Therefore, an
effective and efficient reviewing process in the supply chain is
needed to check for malicious code injections.
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The source code of a project is often altered in the build process,
and attackers could intentionally insert many modifications (legiti-
mate or malicious) at any point of the chain. Those discrepancies
can be introduced by manual or automated build tools [20] or by
attackers (e.g., package hijacking attacks). Package end-users have
limited ways of finding and correcting these defects to avoid ex-
ploitation. One approach for identifying malicious npm packages
is by scanning the entire package to find the malicious scripts. This
approach has been proven to cause many false positives [20, 22].
A key observation is that only a small part of the source code is
modified in code injection attacks. The study by Vu et al. [20] has
shown that it is efficient and effective to check only the discrep-
ancies between source code and package for identifying malicious
code injection.

However, the approach by Vu et al. [20] is specific for Python
packages on PyPI. There are certain challenges for adopting the
approach to packages in other ecosystems such as npm. In this
work, we aim to replicate [20] to detect injections in npm packages
using discrepancies between source and package for npm artifacts.
We then aim to answer the following question:

RQ: Can we effectively and efficiently identify the code injected

into malicious npm artifacts?

In order to answer the question, we first aim at replicating [20]
by implementing a new tool called LastJSMile, in order to detect
code injections in npm packages. To test the approach, we then use
a dataset containing malicious npm packages. Moreover, to show
the efficiency of our approach we compare our solution with the
alternative solution called git-log mentioned in [20]. git-log is
the approach typically used by developers to trace the presence of
a particular line of code in the source code repository. Finally, we
integrate the malware rules used in the existing package scanner
OSSGadget Detect Backdoor and use the combined approach
to test the malicious packages in the Backstabber dataset and the
popular packages in the npm ecosystem. The alerts generated by
our experiments are manually validated to confirm the effectiveness
of the proposed approach on both correctly identifying malicious
code and reducing the number of false alerts.

The rest of the paper is organized as the following: the moti-
vating example of a malicious artifact is discussed in §2. We then
discussed more about software supply chain attacks and the current
mitigation techniques in §3. Section §4 discusses in more detail how
we implemented LastPyMile for npm. We described the dataset
we use for evaluation in §5, and our evaluation results are then dis-
cussed in §6. We explained the threat to validity of our preliminary
experiment in §7, and lastly we concluded our study and described
the possible future works in §8.

2 MOTIVATING EXAMPLE

Figure 1 shows an attack on the version 3.7.2 of the popular package
eslint-scope 1. In this attack, attackers managed to hijack the
npm credential of an ESLint maintainer and published the mali-
cious version, which included a brand new module called build.js

and a modified version of the existing file package.json. The mali-
cious code shown in Figure 1 was injected into the npm repository,

1https://www.npmjs.com/package/eslint-scope

1 try{
2 var https=require('https ');
3 https.get({’hostname’:’pastebin.com’,path:’/raw/XLeVP82h’, headers :{'User -Agent ':

'Mozilla /5.0 (Windows NT 6.1; rv :52.0) Gecko /20100101 Firefox /52.0'
, Accept:'text/html ,application/xhtml+xml ,application/xml;q
=0.9 ,*/*;q=0.8'}},(r)=>{

4 r.setEncoding('utf8');
5 r.on('data',(c)=>{
6 eval(c);

7 });
8 r.on('error ' ,()=>{});
9
10 }).on('error ' ,()=>{});
11 }catch(e){}

The red-highlighted texts are the malicious code the attacker injected to steal npm

credentials.

Figure 1: Malicious code injected in the lib/build.js file of
eslint-scope-3.7.2.

so it persisted until the users of the package noticed it and re-
ported it. As a consequence, more than 4500 users’ credentials were
stolen [5]. A recent study by Zahan et al. [24] shows that 2818 main-
tainer accounts associated with an expired domain, allowing an
attacker to hijack 8494 packages by taking over the npm accounts.

Existing package security scanners, for example OSS Detect
Backdoor would produce many false alerts when applied to scan
the whole artifact (version) of a package (see Table 7). Hence, in
this case, one should only focus on the two involved files instead
of all 12 files of the legitimate artifact. On the other hand, npm-
audit only scans the metadata of a package (e.g., the name of
package dependencies), which would fail to detect the malicious
code injected. Hence, the challenge for being effective in identifying
malicious code is to pinpoint the injected (malicious) code that can
be used as an input to existing scanners and humans.

3 BACKGROUND

Npm. Npm is a package manager that is the largest public repos-
itory for JavaScipt packages. At the time of this writing, it hosts
more than 2.4 million packages. Developers can publish and install
packages from npm using the package installer utility called npm.
Npm packages usually contain a file called package.json to facilitate
others to manage and install them. Unfortunately, this file is the
main target in many software supply chain attacks [16, 24].
Software supply chain attacks. Software supply chain attacks
are characterized by deliberately injecting malicious code into a
software product (e.g., a specific artifact of an npm package) to
infect the end-users further down the chain [10]. A single package
can be counted as a “supplier" for several other open source soft-
ware projects which use its code as dependencies. This chaining
nature makes popular packages very attractive to attackers. Attack-
ers typically use three attack types in the software supply chain
attacks [16]: package typosquatting, package combosquatting, and
package hijacking [16, 23]. In typosquatting, attackers could pub-
lish malicious modules to the npm registry with names that look
like existing popular modules. The intention is to fool users into
installing them, either by driving them to do so through targeted
actions or just by mistake (a typo). Similarly, in combosquatting,
attackers use a combination of a popular package name and another
set of characters or a rearrangement of the same name to fool end
users. Meanwhile, in package hijacking attacks, bad actors gain
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Table 1: Existing tools for analyzing npm packages

The current state of the art tools for mitigating software supply chain attacks are limited

and produce lots of false alerts

Package scanner Detection Granularity Technique used

npm-audit [4] Metadata of dependencies Static
MalOSS [6] Package Static and Dynamic
OSSGadget [13] Artifact Static
Ferreira et al. [7] Package Static
Ohm et al [15] Artifact Static
Zahan et al [24] Metadata Static
Liang et al [11] Package Static

access to developers accounts (e.g. maintainer account for an npm
package) and publish compromised versions of a package.
Detecting malicious npm packages. Table 1 summarizes the
existing approaches used for checking the maliciousness of npm
packages. Several approaches analyze the metadata of a package [4,
24]. For example, npm provides a tool called npm-audit [4] to scan
the description of the dependencies in a project against a database
of known vulnerabilities. Zahan et al. [24] defined some signals that
could indicate malicious package, such as the presence of install
scripts. However, this tool does not identify the code of a package
that is deliberately injected by attackers in code injection attacks.

Liang [11] used anomaly detection techniques on a set of features
(package metadata and code) to flag suspicious packages. However,
this approach performs poorly on small-sized malicious artifacts
that share most of the code with the legitimate packages. On the
other hand, Oss Detect Backdoor [13] relies on a set of regular
expressions and performs pattern matching or string matching in
order to identify potential malicious lines of code within an artifact.
The tool however generates a lot of false alerts, including False
Positives (FP) and False Negatives (FN). Several approaches [18, 23]
rely on package names to raise alarms on potential suspicious
packages. However, further verification (e.g., code-based) is needed
to assert the maliciousness of those packages.

MalOSS [6] extracts various features of a package artifact using
metadata, static, and dynamic analysis. However, this approach is
resource-intensive, which makes it challenging to be integrated into
the security pipeline of a very active ecosystem like npm. Ohm et
al [15] proposed a set of signatures extracted from knownmalicious
packages. They then identify the clusters of packages that share
the same source code using the Markov Cluster Algorithm. This
approach however does not generalize to the malicious packages
with unknown signatures.
Detecting code injections in npmpackages. In software supply
chain attacks, attackers tend to inject malicious code into existing
files of a package artifact to remain hidden from the humans. Vu et
al. [20] shows that in code injection attacks, attackers tend tomodify
only a tiny portion of the legitimate artifact. They then proposed
an approach called LastPyMile to detect code injections in PyPI
packages by comparing the source and package. However, on that
study, they only evaluated the effectiveness of the approach on PyPI
packages. Also, they only tested LastPyMile on the typosquatting
and combosquatting attacks.

Summary: The current approaches for mitigating software sup-
ply chain attacks in the npm ecosystem (Table 1) have several
limitations, including high number of false positives. We propose
a solution, inspired by [20], to effectively identify malicious code
in npm packages.

4 PROPOSED SOLUTION

We ported the LastPyMile algorithm [20] to detect code discrepan-
cies between JavaScript packages on the npm ecosystem and their
source code repositories on Github. Figure 2 shows the four main
steps in our implementation:

Step 1: Finding the source code repository of a npm pack-

age. To identify the differences between the code in package and
source code repositories, we first need to locate the source code
repository of an npm package (e.g., a Github URL) [20, 22]. Inspired
by [19], we query the online npm registry2 as the main data source.
The registry contains the metadata of a package in JSON format
and we assume that it is a safe source since it is provided by the
npm team itself. At the same time, we retrieve the list of package
versions to be processed in Step 3. For each package p, we proceed
as follows:

• Open the URL https://registry.npmjs.org/p, and retrieve the
metadata of the package in JSON format.

• Retrieve and parse the URL of the repository by searching
the fields “repository/url”.

• Retrieve, parse, and sanitize the URL found in the field “home-
page”.

Step 2: Collecting file hashes and lines from source code

repository.We compute all the hashes (SHA256) and collect the
lines of all the files present in all the commits in the history of the
source code repository of a package. We use the python library
GitPython3 to process all the past commits. To improve the run
time overhead, we process all the commits of every branch in the
source code repository in parallel using the multiprocessing li-
brary 4. The outcome of this step is all the hashes and lines of the
files of all commits.

Step 3: Collecting file hashes and lines of package arti-

facts. If the user provides an artifact to our tool as one of the
inputs, we proceed to process that particular artifact. Otherwise,
our tool will iterate all the versions of a package produced by Step
1 and download all built artifacts. For each package p, we proceed
as follows:

• Open the URL https://registry.npmjs.org/p, and retrieve the
JSON containing the metadata of the package.

• Retrieve the latest version of the package by searching the
fields “dist-tags/latest”.

• Retrieve all the available versions of a package by searching
the field “versions”.

• Open the URL https://registry.npmjs.org/p/v for each ver-
sion v.

We then extract each artifact, compute the hashes (SHA256) of
the files, and collect all the lines of the files. In contrast to PyPI
packages, most npm packages exist in the tarball (.tgz) format.
2https://registry.npmjs.org/
3https://github.com/gitpython-developers/GitPython
4https://docs.python.org/3/library/multiprocessing.html
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Our implementation consists of four main steps. The inputs are package name and (optional) artifact, while the final output is a JSON file containing phantom files and

lines. Source code repository refers specifically to Github repository, and the hashing algorithm used is SHA-256.

Figure 2: The workflow of identifying code injections in npm packages

Step 4: Identifying phantom files and hashes.We compare
the list of hashes and lines of each version of a package obtained
in Step 3 with those in the source code repository obtained in Step
2. Basically, the information retrieved in Step 2 would be useful to
check whether there are files in the analyzed artifact that have never
been on the repository. The final output is then stored in a JSON
file containing the absent files and lines (that are not present in the
history of the source code repository) of every processed artifact.
Specifically, when a phantom file is found (a file not present in the
history of the repository) then the program checks for phantom
lines (lines that are not present in the history of the repository). We
then generalize the term phantom files for (1) those absent files
and (2) the files that contain phantom lines (absent lines) [20].

5 DATASET OF MALICIOUS PACKAGES

To evaluate the effectiveness of our implementation, we used the
living malware dataset for open-software supply chain attacks,
called Backstabber [16]. This dataset contains the malicious arti-
facts collected from different attacks in major package repositories
including PyPI, npm, and RubyGems. We analyze 361 malicious
npm artifacts with three types of software supply chain attacks:
typosquatting, combosquatting, and package hijacking. We focused
on this three types of attacks because they are very relevant in the
npm ecosystem.

During our investigation, 226 of the total artifacts (62.6%) were
not typosquatting, combosquatting, or package hijacking, therefore
we excluded those samples from the analysis. Among the remaining
135 artifacts, we excluded 16 artifacts (11.8%) that used expired
repository links. At the end, we analyzed and ran the tool on 119
artifacts as shown in #Artf. column in Table 4. All of these malicious
artifacts have been removed by the npm team from the public
repository for security reasons.

We focus on the ways attackers inject malicious code into ex-
isting artifacts of the packages in the dataset. In particular we see
two types of injection:

• modified files: existing files get lines added/deleted by at-
tackers

• brand new files: completely new files are added by attackers
We discuss first (1) the distribution of all injected files generally
and then focus on (2) the brand new files.
Distribution of all injected files. Table 2 shows the top ten files
that are touched by the attackers. The package.json file is the most
common file because attackers change it to change the package
name in typosquatting and combosquatting attacks. We observed
that all 119 malicious artifacts contain a modified version of the
package.json file. This file is commonly used in the npm environ-
ment to specify the details about the package itself. From those 119
artifacts, there are 92 cases (77.3%) in which the package.json file
is used to launch malicious installation scripts as part of the build
procedure of the package. On the other hand, in 50 cases, those
installation scripts are located in a modified JavaScript file (mostly
in the index.js file) that is usually available when distributing npm
packages.

In 12 cases (10.1%), the malicious code was integrated directly in
the package.json file. In those instances, the attackers hid malicious
bash commands to the post installation features. The commands
launched in this file are mostly the ones that delete all the current
and parent directories. In typosquatting and combosquatting at-
tacks, the README file was used to replicate a popular package
description for a malicious artifact. Those are used in conjunction
with the LICENSE files to make the malicious artifact more simi-
lar to the legitimate one. Finally, a small fraction of the packages
integrated other additional JavaScript files (e.g. update.js, app.js,
support.js) that contain malicious code. In most of those cases, the
attacker was able to hijack a legitimate package and submit a new
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Table 2: Top different phantom files in the dataset of mali-

cious npm packages

#Package: the number of package with a specific name of phantom files. We observed

that attackers rely on package.json file to launch malicious scripts on all artifacts. The

percentages are based on the total number of phantom files across packages. Other

phantom-file names (the rest 71.7%) occur less than 0.5% each.

Phantom-file name #Package Percentage (%)

package.json 119 12.6
index.js 40 4.2
README.md 35 3.7
package-setup.js 30 3.2
LICENSE 10 1.0
install.js 9 0.9
update.js 7 0.7
bower.js 7 0.7
app.js 5 0.5
.bower 5 0.5
support.js 5 0.5

Table 3: Discrepancies in files of malicious npm packages

‘Src’ (Source) denotes the number of LOC in the source code repository. Dark-gray-colored

rows denote instances when attackers introduced brand new files, and light-gray-colored

rows denote instances when attackers rewrote existing file completely.

Attack Number of LOC
Filepath

Type Src. Deleted Injected
commander-js-2.19.84/package.json 79 -79 +1
commander-js-2.19.84/setup.js 0 0 +1
commander-js-2.19.84/update.js

Combosquatting
0 0 +13

crossenv-6.1.1/package.json 54 -54 +7
crossenv-6.1.1/package-setup.js

Combosquatting 0 0 +17
eslint-scope-3.7.2/package.json 62 -16 +6
eslint-scope-3.7.2/lib/build.js

Package Hijacking 0 0 +9
kraken-api-0.1.8/package.json 33 0 +3
kraken-api-0.1.8/lint.js

Package Hijacking 0 0 +15
chalc-2.0.0/package.json 78 -74 +7
chalc-2.0.0/index.js

Typosquatting 213 -213 +12
uglyfi-js-3.4.6/package.json 56 -56 +1
uglyfi-js-3.4.6/lib/coprophagan.js

Typosquatting 0 0 +21

version containing a new JavaScript file added as a post-installation
script (leaving the other files unchanged).
Brand new files. Seventy one malicious artifacts (59.7%) in the
dataset contain brand new files that do not exist before. For instance,
as shown in Table 3, the malicious artifact commander-js-2.19.84
contains two brand new files, namely setup.js and update.js. The file
setup.js is added as a post-installation script in the package.json. This
particular script will spawn a new process in which the malicious
code in update.js will be called. Another interesting example of this
case is the malicious artifact kraken-api-0.1.8 which not only
mimics the legitimate artifact in all files, but also introduces a brand
new file: lint.js. This file, as confirmed by our manual validation,
contains a malicious code as a post-installation script.

Table 4 shows that in typosquatting and combosquatting attacks,
attackers significantly introduced brand new files compared to
the package hijacking attack. This is likely because the package
hijacking attack is considered to be more complex and stealth than
the squatting attacks. We also noticed that, in certain instances (e.g.,
commander-js-2.19.84), attackers removed all existing lines and
add one or more new malicious lines.

Interested on this phenomena, we want to observe whether it
is related to the artifact size. For this purpose, we observe the
distribution of the percentage of phantom lines in comparison
with the size of npm artifacts in Figure 3. We then found that
package hijacking cases tend to happen in bigger artifacts than

Table 4: Average distribution of phantom files and lines

found by our implementation

%Artf. denotes the number of artifacts with specific attack type in our evaluation dataset.

%All Files Injected denotes the percentage of artifacts that all files are phantom (either

brand new or contain phantom lines). % ≥50% Lines Injected denotes the percentage of

artifacts that more than equal to 50% of their LOCs are phantom.

Avg. %Phantom %All Files % ≥50% Lines
Type #Artf.

Files Lines Injected Injected

Combosquatting 74 94.6% 54.5% 91.9% 78.4%
Package Hijacking 24 47.8% 16.2% 8.3% 8.3%
Typosquatting 21 85.0% 50.0% 81.0% 81.0%
All 119 83.5% 46.0% 73.1% 64.7%

◦: Combosquatting, ×: Package Hijacking, △: Typosquatting.

Blue marks denote small artifacts (less than equal 10KLOCs) and red marks denote

big artifacts (greater than 10KLOCs). Package hijacking cases tend to happen in bigger

artifacts, while combosquatting is more in smaller artifacts and typosquatting is more

evenly spread.

Figure 3: Percentage of Phantom lines of malicious npm ar-

tifacts in comparison with the artifact size.

combosquatting and typosquatting. In more detail, we observed
that the percentage of the phantom lines for smaller artifacts (less
than equal ten KLOCs) tend to be higher than bigger artifacts.

6 RESULTS

6.1 Performance efficiency

To find such discrepancies shown in Table 3, a possible approach
is to use git-log command [3]. This command iterates over all
commits in a repository to find information whether a specific line
is present at some point in the history of the related repository. In
most cases, the result contains the information about the commit
in which the line was introduced.

To measure the performance of our approach compared to git-
log, we run both approaches on the top ten popular npm pack-
ages [1] and measure the time required for the analysis. As shown
in Table 5, on average, our approach only takes 10.6% of git-log’s
processing time. The git-log command does not scale for large
packages such as commander or request because it iterates over
all revisions each time it is invoked.

Our implementation inherits [20] by pre-processing all commits
in a repository and scanning all the code only once. This approach
allows our tool to scale well even with a large amount of versions
in the same packages to check. On the other hand, git-log iterates
through all revisions each time it is invoked, hence it does not scale
for big packages, especially the packages linked to big repositories.
Indeed, by default, git-log approach requires more resources and
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Table 5: Performance comparison of git log approach vs our

tool’s approach on top 10 selected packages

The evaluation was done for all versions on each package. The number for git log in

commander and request package are logical estimations as they went over our time

limit (3h) to process all versions (the product of the execution time for 10 versions and

the total number of versions). “How much faster" column shows how much faster is our

tool’s performance (LOC/sec) vs. git-log.

Package Size (LOC) git-log (sec) Our tool (sec) How much faster

chalk 24 992 1807 83 21.8x
commander 257 066 29 780* 837 35.6x
debug 92 591 6188 471 13.1x
loose-envify 1248 72 17 4.2x
minimist 24 162 1141 48 23.8x
ms 34 713 1927 49 39.3x
object-assign 2484 130 51 2.5x
prop-types 44 223 3097 472 6.6x
request 544 463 65 660* 1935 33.9x
tslib 29 610 1942 75 25.9x
Average 105 555 11174 376 20.7x

time to process packages. To illustrate the improvement, we com-
pare the smallest package (loose-envify) and the biggest package
(request) on our ten samples, where request is 436.3x the size of
loose-envify. In this case, git-log took 911.9x longer to process
request, but our implementation only took 113.8x longer. On av-
erage, our implementation is 20.7x faster than git-log, which even
exceed the performance efficiency of LastPyMile (16x faster than
git-log).
Current approaches on identifying malicious packages, such as
git-log, happen to be time-consuming and resource-intensive as
they scan the entire package. The performance evaluation shows
that the approach adopted by our tool is in average 20.7x faster

than the git-log approach.

6.2 Effectiveness when combined with other

npm package scanners

To evaluate the effectiveness of our tool, we conducted a comparison
analysis using OSS Detect Backdoor [12] (ODB in short), one
of OSS Gadget’s [13] utilities that is able to identify potential
backdoors and malicious code within an artifact. We selected OSS
Detect Backdoor among the other state-of-the-art tools for many
reasons: it is a practical approach that is lightweight, scales well
(the performance does not change depending on the size of the
artifact), and scans the whole code of a package.

We first tried to run ODB on malicious packages in the dataset.
However, the tool was not able to directly process the packages due
to technical issues happening when launching the tool. Therefore,
we built a lightweight scanner using rules from OSS Detect Back-
door [12], which are 37 regular-expressions-based rules. We then
ran the scanner on the phantom files/lines (files/lines returned by
our tool) and on the whole artifact. The generated alerts then went
through our manual validation, where two researchers indepen-
dently validated the alerts. They then looked at the results together
and discussed with the third researcher (who was not involved in
the preliminary validation process) to resolve any conflicts.

Table 6 shows the alerts generated by ODB on the latest versions
of top npm packages [1]. We observed that running ODB rules
on the whole artifacts resulted in many alerts. On the other hand,
the scanning of phantom files produced by our tools produced no

Table 6: OSS Detect Backdoor’s rules for top 10 popular

legitimate npmpackages inwhole artifact vs. phantomfiles.

We observed that even when the artifact is legitimate, the rules from OSS detect

backdoor still generate false alerts on certain files (e.g. markdown files) when scanning

the whole artifact.

Artifact #Whole Artifact #Phantom files only

chalk-5.0.1 10 0
commander-9.0.0 18 0
debug-4.3.3 4 0
loose-envify-1.4.0 3 0
minimist-1.2.5 0 0
ms-2.1.3 0 0
object-assign-4.1.1 0 0
prop-types-15.8.1 0 0
request-2.88.2 106 0
tslib-2.3.1 3 0

Table 7: OSS Detect Backdoor’s rules for malicious pack-

ages in whole artifact vs. phantom files.

#Total: the total alerts produced by the rules. #FP: LOCs that are classified as malicious

while actually they are not. We used the rules from OSS Detect Backdoor tool for this

evaluation. In particular, we observed that the number of false alerts is significantly

reduced when scanning only phantom files instead of the whole artifact.

Whole artifact Selected by our tool
Artifact #Total #FP %FP #Total #FP %FP
colour-string-1.5.3 7 5 71.4% 2 0 0.0%
commander-js-2.19.84 9 8 88.9% 1 0 0.0%
eslint-scope-3.7.2 29 28 96.5% 1 0 0.0%
foever-0.15.3 47 45 95.7% 3 1 33.3%
grunt-radical-0.0.14 16 15 93.7% 2 1 50.0%
kraken-api-0.1.8 7 7 100% 2 2 100%
react-datepicker-plus-2.4.2 103 84 81.5% 20 1 5.0%
sailclothjs-1.2.6 27 24 88.9% 4 1 25.0%
uglyfi-js-3.4.6 52 50 96.1% 2 0 0.0%
yeoman-genrator-3.1.1 18 16 88.9% 2 0 0.0%

Average 90.2% 21.3%

alerts. Our manual validation suggests that all the alerts generated
by ODB are false alerts (FPs). For example, many of the alerts are
related to the README files (because they contain markdown code
that trigger the backdoor patterns in the rules) which make them
false alerts. On the other hand, there are alerts on JavaScript code
because there are certain patterns in the code that trigger ODB’s
rules as they are too generic (e.g. “.get” or “.platform” matching
strings). This result shows that our approach can improve the tool
performance in distinguishing legitimate packages and malicious
packages in npm ecosystem, as LastPyMile also did for Python
ecosystem.

Next, to evaluate the effectiveness of our solution in identifying
malicious code, we ran a similar evaluation on the malicious npm
artifacts in Backstabber dataset [16]. Table 7 shows the alerts pro-
duced by running ODB rules on the whole malicious artifacts and
the phantom files produced by our tool.

Ourmanual validation confirms that 90.2% of the alerts generated
by scanning the whole artifacts with ODB’s rules are false positives
(FPs) while scanning only the phantom files (the files flagged by
our tool) with the same rules drops the false positive rate to 21.3%.
On average, scanning the phantom files only produced 13.9%. This
result aligns with LastPyMile in reducing the number of FP alerts.
Regarding false negatives (FN), ODB only missed the malicious code
(TP) in kraken-api-0.1.8 and found all of them in other artifacts
(recall 1̃00%). All the TPs foundwhile scanning thewhole artifact are
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also found while scanning only phantom files, or in other words: we
do not lose any TP with this approach. Even in kraken-api-0.1.8,
ODB alreadymissed the TPs (FNs) while scanning the whole artifact.
Therefore, we would argue that our proposed solution does not
degrade the recall of the analysis tool, while significantly improving
the precision.
Although scanning the whole artifacts provide much more cov-
erage, scanning only the phantom (injected) files significantly
produces (4.2x) less false alerts (FPs), while providing the same
number of detected TP files (precision improved significantly

while recall stays the same).

7 THREATS TO VALIDITY

The limitations of the Backstabber dataset [16]. The dataset has unbal-
anced proportions of attack types. However, it could be considered
sufficient for our analysis, as a preliminary analysis. Expanding the
evaluation dataset would be a promising future work to evaluate
the effectiveness of our tool.

We consider only repositories hosted on Github. Although almost
all of the samples are packages currently hosted on Github, there
may be few instances that are hosted on other platforms. However,
we would argue that our evaluation is general enough, as Github
is the largest code host with more than 190 million repositories,
of which JavaScript covers 14.1%, the second on the most-used-
language rank [2].

The possibility of developers moving around the code in reposi-

tory. This behaviour impacts the performance and results produced
by our tool because it changes the file hashes. With this kind of
changes, our tool would report those files as unseen, and developers
would need to check them manually to know which lines have been
introduced. However, this phenomena seems quite rare and only a
small number of files are affected.

Only checking the absent code from the repository. Even though
we did not find any package doing so in the dataset, malicious code
could be added in the source repository of a package [9]. This case
is out of the scope of our study, as the malicious code can be spotted
by developers who review the code.

8 CONCLUSION AND FUTUREWORKS

We have ported LastPyMile approach to detect discrepancies be-
tween source code and artifacts in npm ecosystem. The approach
has been tested on malicious artifacts and the top ten legitimate
packages in npm. Our preliminary evaluations on both legitimate
and malicious artifacts suggest the feasibility of the integration
with existing package scanners such as ODB. Our implementation
is efficient (20.7x faster than git-log) while also scales to large
packages such as the commander package.

On the ten malicious npm artifacts in the Backstabber dataset,
the combination of our tool with the existing ODB’s malware rules
managed to reduce the ratio of false alerts from 90.2% to 21.3%,
a four fold drop, compared to using ODB directly. Furthermore,
scanning the latest versions of the top ten popular npm packages
using our approach resulted no false positives, as it should be for
legitimate packages.

Future step is to scale the evaluations to more JavaScript pack-
ages in the npm ecosystem and all malicious packages in the Back-
stabber dataset. As a natural step, we plan to develop the malware
detection rules to scan the discrepancies between npm packages
and their source code repositories. We also plan to publish the im-
plementation as an open-source project and integrate it with the
security pipeline used by npm.
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