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Abstract

The present work introduces a rigorous stochastic model, called the generalized stochastic 

microdosimetric model (GSM2), to describe biological damage induced by ionizing radiation. 

Starting from the microdosimetric spectra of energy deposition in tissue, we derive a master 

equation describing the time evolution of the probability density function of lethal and potentially 

lethal DNA damage induced by a given radiation to a cell nucleus. The resulting probability 

distribution is not required to satisfy any a priori conditions. After the initial assumption of 

instantaneous irradiation, we generalized the master equation to consider damage induced by a 

continuous dose delivery. In addition, spatial features and damage movement inside the nucleus 

have been taken into account. In doing so, we provide a general mathematical setting to fully 

describe the spatiotemporal damage formation and evolution in a cell nucleus. Finally, we provide 

numerical solutions of the master equation exploiting Monte Carlo simulations to validate the 

accuracy of GSM2. Development of GSM2 can lead to improved modeling of radiation damage to 

both tumor and normal tissues, and thereby impact treatment regimens for better tumor control and 

reduced normal tissue toxicities.

I. INTRODUCTION

Currently, around 50% of all patients with localized malignancies undergo treatment 

including ionizing radiation, mostly in combination with tumor resection and/or 

chemotherapy [1,2]. Conventional therapy with high-energy photons is by far the most 
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common approach, but the use of accelerated particles has grown exponentially, especially in 

the past decade. The well-defined, energy-dependent, range with sharp distal fall-off and the 

limited lateral beam spread, typical of ions when penetrating a medium, translate into a dose 

profile delivered with millimeter precision. In addition, charged particles, especially for 

larger charge, present enhanced biological effectiveness compared to photons, resulting in 

reduced cellular repair [3–5]. Thus the field of radiation oncology is evolving toward 

broader application of radiotherapy with ions, while still several key physical and biological 

questions remain to be fully unraveled. In particular, the need to account for a biologically 

effective dose, beyond a purely physical energy deposition, imposes an advanced 

characterization of a beam [6]. The calculation of the effective dose distribution delivered to 

the patient during a treatment indeed requires detailed knowledge of the radiation field 

composition at the tumor site and surrounding tissue. The beam quality across its 

propagation in the medium is, in fact, modified by nuclear and electromagnetic interactions 

of the primary ions with the patient’s body nuclei, atoms, and molecules, creating a mixed 

radiation field composed of primary as well as secondary nuclear fragments of different 

charge and kinetic energy [3,7].

In such a complex radiation field, many different mechanisms deliver a variety of 

nanoscopic damages to the biological target molecules, mainly mediated by their secondary 

electrons distribution [8,9] and by the radicals generated from the scattered electrons 

[10,11], although there are lesser processes [12,13]. Clearly, such a nanoscopic pattern of 

energy deposition produces a complexity of molecular damage [14], which correlates with a 

different repairability and thus a different biological response. An accurate approach for 

characterizing the complex radiation field produced by an ion beam is microdosimetry [15]. 

There are two main points of strength in using this methodology: (i) the energy deposited by 

radiation is measured in an area with dimensions comparable to a cell nucleus; and (ii) 

stochastic fluctuations of energy deposition, e.g., from cell to cell, are taken into account. 

Microdosimetry is considered to be a link between the physical characteristics and the 

biological effectiveness of radiation with the advantage of an experimentally measurable 

physical quantity, and it has been used in radiobiological models to describe radiation 

quality. One of the most relevant examples is the microdosimetric kinetic model (MKM), 

which was formulated in its original version in [16,17] as an elaboration of the theory of 

dual radiation action (TDRA) [18,19] and of the repair-misrepair model (RMR) [20,21]. The 

MKM exploits microdosimetric spectra to calculate the energy deposited by radiation and 

predicts cell survival modeling the DNA-damage repair kinetics. Today, it is one of two 

radiobiological models employed clinically in particle therapy, together with the local effect 

model (LEM) [22,23].

Although based on microdosimetry, the MKM is a purely deterministic model as only the 

average number of lethal lesions induced by radiation to the DNA is considered. The model 

aims to provide a mathematical formulation of the kinetic evolution of double-strand breaks 

(DSB) in the DNA in order to calculate the cell survival fraction. Mathematically, the 

temporal evolution of a DSB is described by a system of two ordinary differential equations 

representing the average number of lethal and potentially lethal damages as a function of 

time. This description is accurate only as long as the lethal and potentially lethal damage 

distributions are Poissonian, and results in a cell survival curve that follows a linear-
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quadratic behavior [16]. However, it has been widely shown in the literature that the DNA 

damage distribution deviates significantly from a Poisson function under several irradiation 

conditions, such as high-dose or high-LET (linear energy transfer) [24]. For this reason, 

several recent studies focused on implementing corrections to the original MKM 

formulation to account for non-Poissonian behaviors of the DNA damage distribution 

[17,24–28]. An extensive collection of the original MKM formulation and its subsequent 

generalizations can be found in [29]. Nonetheless, all MKM versions are based on the 

original deterministic formulation described by Hawkins [16].

The main goal of the present work is to develop a fully probabilistic model of DNA damage 

formation and its kinetic evolution based on microdosimetry. The new model, called the 

Generalized Stochastic Microdosimetric Model (GSM2), will provide a rigorous and general 

mathematical description of DNA damage time-evolution without using any a priori 
assumption on the lesion distribution (e.g., a Poisson). The model accuracy will be tested for 

different irradiation conditions (beam quality, dose, and dose rate) and compared with MKM 

predictions to prove both GSM2 validity and advances compared to the current standard.

In our model formulation, the potential damage induced by radiation to the proteins of the 

repairing machinery was not considered. This approximation can have a non-negligible 

impact on the cell response, but normally only at a second-order level compared to DNA 

damage, as it is also assumed in similar radiation damage models such as the MKM and the 

LEM [30].

The classical approach for mathematically modeling a complex physical system, such as the 

one resulting from the interaction between cells and ionizing radiation that leads to the 

formation of DNA lesions, is achieved with deterministic models. In these approaches, given 

an initial condition the system time-evolution can be completely characterized at each state. 

Recent studies [31] have shown that this approach fails mainly for three reasons: (i) a precise 

and accurate estimation of the parameters is often not feasible; (ii) such models become 

unrealistic in accounting for all relevant interactions as the system complexity increases, 

[32]; and (iii) certain systems can be oversensitive to some input parameters, typically the 

initial values. The inclusion of stochasticity in the modeling of complex systems using 

suitable random variables is natural for many systems, and lets such models avoid much of 

the difficulties of deterministic models.

To model complex physical processes, such as lesions formation following a radiation 

exposure, the standard method is to consider the macroscopic system, so that the main focus 

is on the system as a whole; this approach typically shows that the principal relationship 

governing the physical or biological processes is deterministic, and its predictions are 

assumed to represent average values. In a microscopic (or often nanoscopic) approach, 

instead, each element of the system is usually modeled using Brownian dynamics [33–35]. 

However, the complexity of lesion formation and time-evolution makes a full Brownian 

dynamics-representation intractable.

To obtain a more general and accurate description of DNA lesion formation and evolution 

than those provided by a macroscopic approach, and yet to maintain suitable mathematical 
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tractability of the main equations, which is often missing in a microscopic approach, a 

hybrid methodology, known as mesoscopic, can be considered. This approach takes into 

account the stochastic nature of a system while remaining manageable from both the 

analytical and numerical points of view. The mesoscopic method is based on the assumption 

that the process driving the system evolution is a Markov jump process [36]. The equations 

of motion are described via the so-called master equation, which contains a DNA damage 

probability density function of the whole system [33,36,37].

A. Rationale for a new model

In GSM2, we will introduce an equation, referred to as the microdosimetric master equation 

(MME), that governs the time evolution of the joint probability density function for lethal 

and sublethal damages inside the cell nucleus and is based on just three rate parameters a, b, 

and r, defined below. The main innovation in comparison to the existing approaches is that in 

the proposed MME, account is taken of the variations in both lesions formation and 

evolution caused by the randomness of these processes. In particular, we will use 

microdosimetry spectra for describing radiation quality and include the stochastic nature of 

energy deposition.

To provide a rigorous mathematical formulation of the DNA damage kinetics, we will 

consider lethal and sublethal lesions inside a single cell nucleus. Potentially lethal lesions 

can either be repaired or not, in which case they become lethal lesions. A cell in which at 

least one lethal lesion has been formed is considered inactivated. A potentially lethal damage 

induced by radiation can undergo three main processes: (i) it can be repaired at a rate r; (ii) it 
can become a lethal damage at a rate a; or (iii) it can combine with another potentially lethal 

lesion to form a lethal lesion at rate b.

Starting from some probabilistic assumptions on the lesions formation, we will derive a 

master equation that describes the time evolution for the joint probability density function of 

DNA lesions for both lethal and potentially lethal damage. The density function solution will 

be shown to have a first moment in agreement with the standard MKM driving equations. 

One important goal of this study is to overcome the Poissonian assumption on lethal lesions.

In the present work, we will further generalize the MME in two main directions. In 

particular, besides the damage kinetic mechanisms (i), (ii), and (iii) introduced above, we 

will additionally consider that (iv) either a lethal or sublethal damage can be formed 

randomly due to the effect of the ionizing radiation at a rate ḋ; and (v) lethal lesions can 

move inside the cell nucleus. Case (iv) can represent DNA damage formation resulting from 

a continuous irradiation field. In fact, together with standard lesion interactions, we will also 

take into account random jumps in the number of lethal and sublethal lesions caused by the 

stochastic nature of radiation-energy deposition.

Case (v) accounts for the fact that we also allow lesions to move between adjacent domains. 

Because the GSM2 model considers pairwise interactions of potentially lethal lesions, the 

domain size plays a crucial role. In fact, a domain that is too big might imply that lesions 

created far away from each other can interact to form a lethal lesion. On the other hand, a 

domain that is too small results in a lower number of lesions per domain so that the 
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probability of double events can be underestimated. In the limiting case in which the domain 

size approaches zero, lesion interactions across neighboring domains also approach zero 

[38,39]. To minimize the model dependence on the domain size, we will allow interactions 

between lesions both belonging to the same domain and to different domains [31].

In summary, we will introduce a general master equation that models the joint probability 

distribution of DNA lethal and potentially lethal lesion inside a cell nucleus. The derived 

master equation will encompass a number of effects. Besides the effect of potentially lethal 

lesion repair and death due to either spontaneous death or pairwise interaction, the model 

also has the stochastic effect of energy deposition due to ionizing radiation and lesions 

movements between adjacent domains, providing a description of the cell nucleus as a 

whole. Not yet included is a time-delayed active repair of double-strand breaks, nor is cell 

apoptosis, although a spontaneous repair rate term can simulate much of the effect of repair 

mechanisms when applied to protracted dosages. Damage due to radicals produced by the 

ionizing radiation begins near the time of exposure, and so their effects are represented.

To validate GSM2, we will consider microdosimetric energy spectra obtained from GEANT4 

simulations [40]. We will show how different assumptions related to the probability 

distribution of damages number, as well as model parameters, show significant deviation 

from the Poisson distribution assumed by most existing models, including the MKM. We 

will further compute the survival probability and compare it to the classical linear-quadratic 
(LQ) model [41,42].

The innovations presented in this work are several. We will develop a fully probabilistic 

description of the DNA damage kinetic. In particular, the joint probability distribution of the 

number of sublethal and lethal lesions will be modeled. We will further generalize the model 

including interdomain movements and continuous damage formation due to protracted dose. 

The resulting master equation solution will provide the real probability distribution without 

any a priori assumption on the density function, allowing the computation of several 

biological end points. The proposed approach will be able to fully describe the stochastic 

nature of energy deposition both in time and space, improving the existing models where the 

energy deposition is averaged over both the whole cell nucleus and cell population. In doing 

so, we will be able to reproduce several behaviors referred to in the literature as non-
Poissonian effects, which cannot be predicted by the MKM and its variants and are typically 

included in the models with ad hoc corrections [17,24,25,28].

Because of GSM2 flexibility and generality, analytical solutions both on the probability 

density function and on the resulting survival curve are not of easy derivation. Therefore, the 

present study is intended as a first step of a systematic investigation of the stochastic nature 

of energy deposition and how it influences lesion formation. In particular, a further 

investigation will focus on the long-time behavior of the master equation and the resulting 

survival curve. Furthermore, the principles used in the current approach will be used to 

develop a fully stochastic model of intercellular damage formation optimized to improve 

radiation field characterization via a novel hybrid detector for microdosimetry, [43].
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With GSM2 and its future developments, we try to shed new light on non-Poissonian effects 

in order to obtain a deeper mechanistic understanding, which will allow us to model them 

more accurately.

B. Structure of the paper

The present paper is structured as follows: Section II recalls basic assumptions and 

formulation of the MKM and its variants, [17,24,26–28]. Then Sec. III introduces the main 

master equation describing the probability distributions of lethal lesions. Connections of the 

current model to the standard MKM are presented in Sec. III A. Section III B shows in detail 

how microdosimetric spectra can be used to extract the energy deposition. Sections III C and 

III D introduce the above-mentioned generalization of the master equation to consider split 

dose and domain interconnection. Connections of the current model to the standard MKM 

are presented in Sec. III A. Further, long-time behavior and survival probability resulting 

from the GSM2 are presented in Sec. III E. Finally, Sec. IV presents some numerical 

examples aiming at highlighting specific aspects resulting from the governing master 
equation.

II. FUNDAMENTALS ON THE MICRODOSIMETRIC KINETIC MODEL AND 

RELATED NON-POISSONIAN GENERALIZATIONS

The microdosimetric kinetic model (MKM) is based on the following assumptions:

(i) The cell nucleus can be divided into Nd independent domains.

(ii) Radiation can create two different kinds of DNA damage, referred to as sublethal and 

lethal.

(iii) Lethal lesions cannot be repaired. On the contrary, sublethal lesions can either be 

repaired or evolve into a lethal lesions either by spontaneous death or by interaction with 

another sublethal lesion.

(iv) The number of sublethal and lethal lesions in a singledomain d is proportional to the 

specific energy z delivered by radiation to the site.

(v) Cell death occurs if at least one domain suffers at leastone lethal lesion.

In the described setting, lethal lesions represent clustered double-strand breaks that cannot 

be repaired, whereas sublethal lesions are double-strand breaks that can be repaired.

We denote by xg, zd and yg, zd the average number of sublethal and lethal lesions, 

respectively, induced in the domain d that received a specific energy zd; for ease of notation, 

we will omit the subscript (d, z) and indicate xd, z ≔ x and yd, z ≔ y. The following set of 

coupled ordinary differential equations (ODEs) is satisfied:
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d
dty(t) = ax + bx2,
d
dtx(t) = − (a + r)x − 2bx2 .

(1)

The term proportional to xg, zd in the first equation comes about because the number of lethal 

lesions increases, in part, from the conversion of single nonlethal lesions that are present, 

and the term proportional to xg, zd
2  is due to the interaction of pairs of nonlethal lesions 

producing a lethal one. In the second equation, the r term determines the rate of repaired 

nonlethal lesions, while the 2b term accounts for the loss of nonlethal lesions when two 

make one lethal one.

If further (a + r)xd, zd ≫ 2bxd, zd
2 , then Eq. (1) can be simplified as

d
dty(t) = ax + bx2,
d
dtx(t) = − (a + r)x,

(2)

making solutions expressible in terms of dropping exponentials in time.

One of the main goals of the MKM is to predict the survival probability of cell nuclei when 

exposed to ionizing radiation, whose quality is described with a microdosimetry approach. 

To achieve this result, an additional assumption to those listed above must be made:

(vi) Lethal lesions follows a Poissonian distribution.

Under the latter assumption, the probability Sd, zd that a domain d survives as t → ∞ when 

receiving the specific energy zd can be computed as the probability that the random outcome 

of a Poisson random variable is null. Therefore, Sd, zd is given by

Sd, zd = e−limt ∞yd, zd(t) . (3)

An explicit computation [16,44,45] shows that the number of lethal lesions as t → ∞ can be 

expressed as

lim
t ∞

yd, zd(t) = λ + aκ
a + r zd + bκ2

2(a + r)zd
2 . (4)

Combining Eqs. (4) and (3), we obtain

Sd, zd = e−Azd − Bzd
2
,

with A and B some suitable constants independent of d and zd.
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The survival probability (3) can be extended to the whole cell nucleus (Sn) by averaging it 

on all domains as

Sn, zn ≔ exp − ∑
d = 1

Nd
lim

t ∞
yd, zd(t) . (5)

Finally, by averaging Sn, zn over the entire cell population, the overall cell survival can be 

calculated as

S = exp −αD − βD2 , (6)

where D is the macroscopic dose delivered to the entire cell population. Details on how the 

survival function S was derived can be found in [16,17,24,25].

Several generalizations [24–28,46,47] have been proposed to take into account effects due to 

a deviation of the lethal lesion behavior from a Poissonian distribution. All models try to 

correct the survival probability (6) by introducing some correction term based on the 

overkilling effects. An overkilling effect may come about because a single particle deposits 

much more energy than is required to kill a cell [48], resulting in fewer cells killed per 

absorbed dose. The typical survival correction is of the form [24]

S = exp − α0 + f zd, zn β D − βD2 ,

where f zd, zn  is a suitable correction term that depends on both energy deposition on the 

single domain zd  and on the cell nucleus zn . An alternative form is given by [25]

S = exp − α0 + zd*β D − βD2 ,

where zd* is a term that accounts for the overkilling effects.

We refer to [29] for a comprehensive review of the biophysical models of DNA damage 

based on microdosimetric quantities.

It is worth highlighting that all corrections so far proposed for non-Poissonian effects rely on 

ad hoc terms derived from empirical considerations. The final goal of this study, instead, is 

to obtain analogous corrections based on physical considerations stemming from the 

stochastic nature of energy deposition [49].

III. THE GENERALIZED STOCHASTIC MICRODOSIMETRIC MODEL GSM2

As part of this study, we investigated how the models described in Sec. II could be 

developed to rely on the whole probability distribution for x and y rather than simply on its 

mean value. In fact, all proposed generalizations of the MKM always consider deterministic 

driving equations for predicting the number of lethal and sublethal lesions. Non-Poissonian 
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effects are often proposed as correction terms added to the survival fraction predicted by the 

MKM with no formal mathematical derivation and mainly based on empirical evaluations.

The MKM formulation is based on the probability distribution of inducing a damage when a 

specific energy z is deposited. Once the survival for a given z is computed, the specific 

energy is averaged over the whole cell population to yield the overall expected survival 

probability. To the best of our knowledge, there is no systematic investigation that aims at 

capturing the true stochasticity of both energy deposition and lesion formation.

The main goal of the present work is thus to generalize microdosimetric-based models in 

order to describe the full probability distribution of lethal and sublethal lesions. We will take 

advantage of assumptions (i)–(v) described in Sec. II. Regarding assumption (iv), the MKM 

assumes that the initial distribution of the lethal lesions, given an energy deposition z, 

follows a Poisson law. We will generalize this assumption assuming a general initial 

distribution, allowing to fully describe the stochastic nature of energy deposition. This point 

will be treated in detail in Sec. III B.

An additional remark on the importance of the initial distribution is necessary to fully 

understand the implication of the generalization we will carry out in this study. The 

stochasticity of energy deposition in a microscopic volume is the basic foundation of 

microdosimetry, and assuming every probability distribution to be Poissonian is a restrictive 

assumption that limits the model application.

To capture the real stochastic nature of energy deposition and related DNA damage 

formation, we will provide a probabilistic reformulation of Eq. (1). We denote by (Y (t), X 
(t)) the system state at time t, where X and Y are two ℕ0-valued random variables 

representing the number of lethal and sublethal lesions, respectively. We will consider a 

standard complete filtered probability space (Ω, ℱ, ℱt t ⩾ 0, ℙ) that satisfies the usual 

assumptions of right-continuity and saturation by ℙ-null sets.

Let us consider two different sets X and Y containing the possible values for the number of 

sublethal and lethal lesions, respectively. As we have indicated after Eq. (1), the heuristic 

interpretation of the coefficients in Eq. (1) is that a is the rate at which a sublethal lesion 

becomes a lethal lesion, r is the rate at which a sublethal lesion recovers and goes to the set 

∅ (i.e., that of the healthy cells), whereas b is the rate at which two sublethal lesions interact 

to become a single lethal lesion. These considerations can be mathematically expressed as

X a Y ,

X r ∅ ,

X + X b Y . (7)
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At a given time t, the probability to observe x sublethal lesions and y lethal lesions is 

expressed as

p(t, y, x) = ℙ[(Y (t), X(t)) = (y, x)] .

Also,

pt0, y0, x0(t, y, x) ≔ p t, y, x | t0, y0, x0 = ℙ (Y (t), X(t)) = (y, x) | Y t0 , X t0 = y0, x0

is the probability conditioned to the fact that at t = t0 there were x0 and y0 sublethal and 

lethal lesions, respectively.

To determine the governing master equation for the above probability density p(t, y, x), we 

need to account for all possible system changes in the infinitesimal time interval dt.

Thus, the following scenarios may happen:

(i) At time t we have exactly (y, x) lesions and they remain equal with a rate [1 − (a + r)x − 

bx(x − 1)], namely

ℙ[(Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = (y, x)] = 1 − [(a + r)x − bx(x − 1)]dt + O dt2 .

(ii) At time t we have exactly (y, x + 1) lesions, and one sublethal lesion recovers with rate 

(x + 1)r, namely

ℙ[(Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = (y, x + 1)] = (x + 1)rdt + O dt2 .

(iii) At time t we have exactly (y − 1, x + 1) lesions, and one sublethal lesion becomes a 

lethal lesion with a rate (x + 1)a, namely

ℙ[(Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = (y − 1, x + 1)] = (x + 1)adt + O dt2 .

(iv) At time t we have exactly (y − 1, x + 2) lesions, and two sublethal lesions become one 

lethal lesion with a rate (x + 2)(x + 1)b, namely

ℙ[(Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = (y − 1, x + 2)] = (x + 2)(x + 1)bdt + O dt2 .

Grouping the equations derived in Sec. III, we obtain

p(t + dt, y, x) = p(t, y, x) 1 − [(a + r)x − bx(x − 1)]dt + O dt2 + p(t, y, x + 1) (x + 1)rdt + O dt2 + p(t, y − 1,
x + 1) (x + 1)adt + O dt2 + p(t, y − 1, x + 2) (x + 2)(x + 1)bdt + O dt2 .

Taking the limit as dt → 0, we arrive at the microdosimetric master equation (MME)
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∂tp t, y, x = − a + r x − bx x − 1 p t, y, x + x + 1 rp t, y, x + 1
+ x + 1 ap t, y − 1, x + 1 + x + 2 x + 1 bp t, y − 1, x + 2 , (8)

where ∂t denotes the partial derivative with respect to the time variable. Equation (8) must be 

equipped with a suitable initial condition p(0, y, x) = p0(y, x).

We remark that the above-derived MME arises solely from the probabilistic assumptions 

regarding lesion formation.

The MME (8) can be written for short as

∂tp(t, y, x) = E−1, 2 − 1 [x(x − 1)bp(t, y, x)] + E−1, 1 − 1 [xap(t, y, x)]
+ E0, 1 − 1 [xrp(t, y, x)]
= ℰ−1, 2[x(x − 1)bp(t, y, x)] + ℰ−1, 1[xap(t, y, x)] + ℰ0, 1[xrp(t, y, x)],

(9)

where above we have denoted the creation operators defined as

ℰi, j[f(t, y, x)] ≔ Ei, j − 1 [f(t, y, x)] ≔ f(t, y + i, x + j) − f(t, y, x) .

A. Connection with the MKM

The present section aims at showing that the mean value of the master equation does satisfy, 

under certain assumptions, the kinetic equations (1). In what follows, E denotes the mean 

value of a random variable defined as

x(t) ≔ E[X(t)] = ∑
x, y ⩾ 0

xp(t, y, x),

y(t) ≔ E[Y (t)] = ∑
x, y ⩾ 0

yp(t, y, x) .

Note that, for a general function f, the following holds true:

∑
x, y ⩾ 0

xℰi, j[f(y, x)p(t, y, x)] = − Ejf(Y , X),

∑
x, y ⩾ 0

yℰi, j[f(y, x)p(t, y, x)] = − Eif(Y , X) .
(10)

Therefore, multiplying the MME (9) by x and then by y, we obtain using (10)

d
dtE[Y (t)] = bE X(t)[X(t) − 1] + aE[X(t)],
d
dtE[X(t)] = − 2bE X(t)[X(t) − 1] − (a + r)E[X(t)] .

(11)
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Equations (11) are still not of the form of Eqs. (2); in particular, they depend on a second-

order moment E X t X t − 1 . Nonetheless, explicit computation will show that, if we 

tried to compute a kinetic equation for the second-order moment E X t X t − 1 , we would 

obtain a dependence on higher moments, and thus an infinite set of coupled ODEs. To solve 

the impasse, we shall make what is called a mean-field assumption, that is, we assume that

E X(t)[X(t) − 1] E[X(t)]2 .

Under the above mean-field assumption, Eqs. (11) become

d
dty(t) = bx2(t) + ax(t),
d
dtx(t) = − 2bx2(t) − (a + r)x(t),

(12)

and the original kinetic equations are in turn recovered.

A quick remark on the mean-field assumption is needed. In the case of x being large enough, 

we have that the following approximation holds true: E X t X t − 1 E X2 t ; therefore, 

the mean-field assumption means that E X2 t − E X t 2 0. Noticing that the last term is 

merely the variance, and recalling that the variance for a random variable is null if and only 

if the random variable is in fact deterministic, if the mean-field assumption is reasonable, 

then the realized number of lesions does not differ much from the mean value so that all we 

need to know is contained in the mean value. On the contrary, if there is evidence that the 

mean value is not a reasonable approximation for the realized number of lesions, the mean-
field assumption must be considered unacceptable, in which case more detailed knowledge 

of the probability distribution is essential to have a good understanding of the system.

B. Initial distribution for the number of lethal and sublethal lesions

One of the main advantages of the proposed model is that the distribution of DNA damages 

induced by an ionizing radiation z does not need to be chosen as Poissonian. In the present 

section, we will show how the number of induced lesions can be evaluated starting from 

microdosimetric spectra.

Let f1;d(z) be the single-event distribution of energy deposition on a domain d; see [15]. The 

single-event distribution f1;d can be either computed numerically via the Monte Carlo toolkit 

supplied by GEANT4 [40], or by experimental microdosimetric measurements.

The full probability distribution of an energy deposition thus depends on the number of 

events that deposit energy on the cell nucleus. Given a cell nucleus, composed by Nd 

domains, the probability that ν events deposit an energy z obeys a Poissonian distribution of 

mean λn ≔
zn
zF

, where zn is the mean energy deposition on the nucleus, i.e.,

zn = ∫0
∞

zf z |zn dz,
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and zF is the first moment of the single event distribution f1;d defined as

zF ≔ ∫
0

∞
zf1; d(z)dz . (13)

Then, assuming a Poissonian probability that a domain registers ν events, the energy 

deposition distribution is given by

f z |zn ≔ ∑
v = 0

∞ e− zn
zF

v!
zn
zF

n
fv; d(z),

where fν;d(z) is the energy deposition distribution resulting from ν depositions.

In particular, given a domain d that suffers ν energy deposition events, the distribution 

resulting from ν events can be computed convolving ν times the single event distribution; 

see [15,28]. Therefore, the imparted energy z has distribution fν;d, computed iteratively as

f2; d(z) ≔ ∫0
∞

f1; d(z)f1; d(z − z)dz,

…,

fv, d(z) ≔ ∫0
∞

f1; d(z)fv − 1; d(z − z)dz .

For a certain energy deposition z, the induced number of lesions is a random variable. The 

standard assumption is that the distribution of X given z is a Poisson random variable of 

mean value κz. Analogous reasoning holds for Y, being the number of induced lethal 

lesions, a Poisson random variable of mean λz. Given the high flexibility of the proposed 

approach, the number of induced lesions given an energy deposition z can be any random 

variable. It is worth stressing that the chosen distribution may vary with LET.

In the following general treatment we will denote by pzX x|κz pzY y |λz  the initial random 

distribution for the number of sublethal (lethal) lesions given an energy deposition z. We 

remark again that both pzX x|κz  and pzY y |λz  can be any probability distribution. Specific 

relevant examples will be considered in the numerical implementation.

Putting all the above reasoning together, the MME (9) reads

∂tp(t, y, x) = ℰ−1, 2[x(x − 1)bp(t, y, x)] + ℰ−1, 1[xap(t, y, x)] + ℰ0, 1[xrp(t, y, x)],

p(0, y, x) = p0
X(x)p0

Y (y), (14)

where the initial distribution is obtained as
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p0
X(x) = ∫

0

∞
pzX x|κz f z |zn dz,

p0
Y (y) = ∫

0

∞
pzY y |κz f z |zn dz .

(15)

C. The protracted dose case for the generalized stochastic microdosimetric model

The MME can be further generalized to consider protracted dose irradiation. We refer to a 

protracted dose as a continuous dose delivered over a range of time. In contrast, a dose 

delivered over a short time is called acute dose irradiation, whereas a series of such acute 

irradiations at prescribed time steps is referred to as split dose irradiation. Existing models 

fail at properly describing protracted dose, being unable to fully capture the stochasticity 

inherent to energy deposition. Usually, strong assumptions are used to treat protracted dose, 

[24], or a split dose is used to approximate a continuous dose delivery [26]. Nonetheless, 

models cannot fully predict experimental data [26].

The generalization of the GSM2 master Eq. (9) to consider a continuous dose irradiation is 

not trivial. In fact, at random time t the number of lesions, either lethal or sublethal, exhibits 

a jump upward of a random quantity that depends on the energy deposition z, which we 

recall is a random variable.

More formally, the possible interactions now become

X a Y ,

X r ∅ ,

X + X b Y ,

X ḋ X + Zκ,

Y ḋ Y + Zλ,

where Zλ and Zκ are two random variables with integer-valued distributions p0
X and p0

Y , 

respectively, defined as in Eq. (14). The parameter ḋ represents the dose rate (see [46,47]), 

and it is given by ḋ ≔
zn

TirrzF
, with zF given in Eq. (13) and Tirr is the total irradiation time. 

We have the following:
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(i)

ℙ[(Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = (y, x)]
= 1 − (a + r)x + bx(x − 1) + ḋ 1 − p0

X(0) 1 − p0
Y (0) dt + O dt2 ,

(ii)

ℙ (Y (t + dt), X(t + dt)) = (y, x) | (Y (t), X(t)) = y − iy, x − ix
= ḋp0

X ix p0
Y iy dt + O dt2 , ix = 1, …, x, iy = 1, …, y .

Furthermore, reactions (ii), (iii), and (iv) in Sec. III remain valid.

Therefore, a similar analysis to the one carried out in Sec. III leads to the following MME:

∂tp(t, y, x) = E−1, 2 − 1 [x(x − 1)bp(t, y, x)] + E−1, 1 − 1 [xap(t, y, x)]

+ E0, 1 − 1 [xrp(t, y, x)] + ∑
ix = 1

x
∑

iy = 1

y
Eḋ

−iy, − ix − 1 − p0
X(0) 1 − p0

Y (0) [ḋp(t,

y, x)]
ℰ−1, 2[x(x − 1)bp(t, y, x)] + ℰ−1, 1[xap(t, y, x)] + ℰ0, 1[xrp(t, y, x)] + ℰḋ

−y, − x

[ḋp(t, y, x)] .

(16)

The operator in the last line of Eq. (16), right-hand side, has been defined as

ℰḋ
−y, − xf(t, y, x) ≔ ∑

ix = 1

x
∑

iy = 1

y
Ed

−iy, ix − 1 − p0
X(0) 1 − p0

Y (0) f(t, y, x)

= ∑
ix = 1

x
∑

iy = 1

y
p0
X ix p0

Y iy f t, y − iy, x − ix − 1 − p0
X(0) 1 − p0

Y (0) f(t, y, x) .

The protracted dose is assumed to be delivered up to a finite time Tirr < ∞, beyond which 

no irradiation is considered and the system evolves according to (9).

D. The diffusive cell nucleus model for GSM2

At the beginning of Sec. III, we investigated the time evolution for lethal and sublethal 

lesions in the cell nucleus. As we discussed above, one of the major weaknesses of the 

standard MKM and its extensions is the choice of the cell domains [31]. In fact, too small 

domains translate into a null probability of double events, whereas too big domains imply 

that distant lesions may combine to produce a lethal lesion. To overcome this problem, the 

cell nucleus is split into several domains so that the time evolution in each domain can be 

considered independently. Further, in the following treatment we ameliorate the above 

limitations by allowing domains interaction and variability in shape and dimension.

In the current section, we will show how the MME (16) can be extended to include 

interactions between the domains. To keep the treatment as clear as possible, no protracted 
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dose will be considered. The general case of a continuous irradiation can easily be included 

in the following treatment via arguments analogous to the ones used in Sec. III C.

Let us consider Nd domains (referred to also as voxels) that can undergo one of the 

following possible reactions:

Xi
a Y i, i = 1, …, Nd,

Xi
r ∅ , i = 1, …, Nd,

Xi + Xi
b Y i, i = 1, …, Nd .

(17)

A reasoning similar to the one carried out at the beginning of Sec. III leads to the following 

MME:

∂tp(t, y, x) = ∑
i = 1

Nd
ℰi

−1, 2 xi xi − 1 bp(t, y, x)

+ ∑
i = 1

Nd
ℰi

−1, 1 xiap(t, y, x) + ℰi
0, 1 xirp(t, y, x) .

(18)

In Eq. (18), the variables x and y are N-dimensional vectors with the ith components given 

by xi and yi, representing the number of sublethal or lethal lesions, respectively, within the 

ith domain (i = 1, …, N).

Remark III.1.—To keep the notation as simple as possible, in with the ith components 

given by xi and yi, representing the Eq. (17) we chose the rates a, b, and r independent of the 

donumber of sublethal or lethal lesions, respectively, within the main. Similar results would 

be obtained with voxel-dependent rates ai, bb, and ri, i = 1, …, Nd.

Empirical evidence shows that the lesions, together with interacting within the same voxel, 

may also move to a different voxel. In fact, lesion spatial movement inside a cell has been 

demonstrated to be significantly higher than the typical voxel size [50]. To account for this 

behavior, we will add an additional term to the MME (18).

Besides reactions considered in Eq. (17), we now assume further the following:

Xi
κi, jX

Xj, i, j = 1, …, Nd,

Y i
κi, jY

Y j, i, j = 1, …, Nd .
(19)

Remark III.2.—We assumed possible interactions also between nonadjacent domains. If the 

reactions described by Eq. (19) are to be intended as lesion movements inside the cell 

nucleus, the most reasonable choice for the interaction rates is to set

κi; jX = κi; jY = 0
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for j ∉ Γi, where Γi is the set of adjacent domains to i.

Following the same process described in Sec. III, we obtain the MME,

∂tp(t, y, x) = ∑
i = 1

N
ℰi

−1, 2 xi xi − 1 bp(t, y, x)

+ ∑
i = 1

N
ℰi

−1, 1 xiap(t, y, x) + ℰi
0, 1 xirp(t, y, x)

+ ∑
i, j = 1

N
X ℰi, j

−1, 1 xiκi; jX p(t, y, x) + ∑
i, j = 1

N
Y ℰi, j

Y ; − 1, 1 yiκi; jY p(t, y, x) ,

(20)

where the operators are defined as

X ℰi, j
−1, 1f(t, y, x) = Ei

0, 1Ej
0, − 1 − 1 f(t, y, x),

Y ℰi, j
−1, 1f(t, y, x) = Ei

1, 0Ej
−1, 0 − 1 f(t, y, x) .

The first two lines of Eq. (20) account for reactions within the same voxel, whereas the last 

line arises from movements between adjacent domains.

Using the same approach for modeling the initial damage distribution (Sec. III B), the 

resulting MME reads

∂tp(t, y, x) = ∑
i = 1

Nd
ℰi

−1, 2 xi xi − 1 bp(t, y, x) + ∑
i = 1

Nd
ℰi

−1, 1 xiap(t, y, x) + ℰi
0, 1 xirp(t, y, x)

+ ∑
i, j = 1

Nd
X ℰi, j

−1, 1 xiκi; jX p(t, y, x) + ∑
i, j = 1

Nd
Y ℰi, j

Y ; − 1, 1 yiκi; jY p(t, y, x) ,

p(0, y, x) = ∏
i = 1

N
p0; i

X xi p0; i
Y yi , (21)

where p0; i
X xi p0; i

Y yi  denotes the initial distribution for the voxel i as computed in Eqs. (14) 

and (15).

E. Survival probability

Cell survival is one of the most relevant biological end points in radiobiology, and it is 

defined as the probability for a cell to survive radiation exposure, mostly measured by its 

ability to form clonogens, i.e., to retain its reproductive potential. Taking into account 

assumption (v), no lethal lesions must be present in the cell nucleus after a sufficiently large 

time has passed from the irradiation. An estimate of cell survival can be obtained from the 
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solution to the MME (9). In this study, we will focused on a single domain, because the 

calculations for the entire cell are completely analogous.

The survival probability for the domain d under the assumptions (i)–(v) introduced above is 

defined as

SY ≔ ℙ lim
t ∞

Y (t) = 0 . (22)

To assess the survival probability, the limiting long-time distribution for the MME (9) must 

be studied.

From an heuristic perspective, since the number of sublethal lesions can only decrease, the 

points (y, 0) : y ∈ ℕ0  are absorbing states. Furthermore, the system reaches an absorbing 

state in a finite time with probability 1, converging toward a limiting stationary distribution. 

By absorbing state we mean that once the system reaches the point (y, 0), it stays there and 

future evolutions are no longer considered.

Due to the high generality of the GSM2 model, especially because no detailed balance is 

satisfied and no explicitly conserved quantities can be obtained, the closed form for the 

limiting distribution is not easily computable. For this reason, in the present work the 

survival probability will be computed from the corresponding master equation numerical 

solution as

SY = lim
t ∞

p(t, 0, 0) .

In forthcoming developments, we will study in more detail the survival probability resulting 

from the proposed GSM2 model and its explicit form. In general, it is worth mentioning that 

besides the numerical approach, such as the one used here, and the analytical approach in 

which the survival probability is explicitly computed, an efficient approach is to introduce 

suitable approximations in the driving equation so that a formal expansion of the survival 

probability can be computed [36].

IV. NUMERICAL IMPLEMENTATION

To calculate a numerical solution to the MME (9), the following steps are performed:

(i) We choose the number Nd of domains in which the cell nucleus is divided. As GSM2 

does not rely on any specific assumption for the probability distribution, the domains do not 

need to be assumed to be of equal size. For each domain, the single event energy deposition 

distribution f1;d(z) is obtained with GEANT4 [40] simulations.

(ii) The number of lethal and sublethal lesions are sampled from the distributions p0
X(x) and 

p0
Y (x) as derived in Eq. (15). The standard assumption is that pzX pzY  is a Poisson distribution 

of mean κz (λz). Given the general setting, we will compare the results with an initial 

Gaussian distribution of different possible variances.
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(iii) Given the initial number of lesions, the evolution pathsare simulated via the stochastic 
simulation algorithms (SSA) (Ref. [51], Chap. 13).

(iv) Steps (i)–(iii) are repeated to obtain the Monte Carloempirical distribution of lethal and 

sublethal lesions over the cell nucleus.

(v) The survival probability in the single domain as well asthe cell nucleus are calculated 

from the empirical distribution obtained in step (iv).

Previous steps can be computed independently for each domain if no interaction between 

domains is assumed or the paths for the whole nucleus can be estimated simultaneously, in 

the case of a dependent-voxel model. The computational effort for the latter is substantially 

higher. It should be noted here that developing an efficient simulation algorithm is beyond 

the scope of the present work, and we refer to [52] for a review of possible simulation 

algorithms.

A. The numerical solution

The present section is devoted to finding and discussing the numerical solution of MME 

derived in Sec. III. In particular, the full master equation (9) is solved via the stochastic 
simulation algorithms (SSA) (Ref. [51], Chap. 13), so that the density is estimated with a 

Monte Carlo simulation. We simulate 106 events, and the density function is thus 

reconstructed empirically.

The goal of this section is also to highlight how a different setting affects the density 

distribution of the lesions. In particular, it will emerge how the density distribution resulting 

from the corresponding master equation changes for different lesion evolution parameters, 

initial probabilistic conditions, and irradiation conditions.

To assess the energy deposited on the domain, we used the microdosimetry approach as 

discussed in Sec. III B. With GEANT4, we simulated microdosimetric spectra of a 20 MeV/u 

carbon ion beam traversing a 1.26-cm-diam sphere filled with pure propane gas with a low 

density (1.08 × 10−4 g/cm3), such that the energy depositions are equivalent to those in 2 μm 

of tissue. This geometry reproduces a standard tissue equivalent proportional counter 

(TEPC) as used, for example, in [53]. Specific energies acquired with the TEPC are then 

converted to the domain size of interest as reported in Ref. [29] (Sec. 2). The choice to 

simulate a microdosimeter has been made with the aim of remaining as consistent as 

possible with real experiments. In addition, carbon ions have been chosen since the existing 

model fails at predicting relevant radiobiological end points under high-LET regimes.

In the calculations, we consider high doses, so that multievent distributions as described in 

Sec. IIIB are computed for zn ≫ 1. This choice is due to the fact that the plotted distributions 

refer to a single-cell nucleus domain, and thus to highlight differences at such a small scale, 

a high dose needs to be considered. At lower doses, differences between the MME solution 

for a single nucleus domain for different parameters are more difficult to appreciate. 

Nonetheless, small differences at the domain level can translate into relevant dissimilarities 

at the macroscopic level.
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Figure 1 reports different path realizations for the lethal and sublethal evolution; the 

stochastic paths are also compared to the mean value, which evolves according to the MKM 

kinetic equations (1). The plots indicate that the mean value cannot be representative of the 

whole path realization distribution.

Figure 2 shows the master equation solution at different times. The left panels show the 

contour plots of the joint probability distributions of lethal and sublethal damages, together 

with their marginal distributions depicted along the axis. The right panels are 3D 

representations of the density function solutions. Yellow regions represent values with 

higher probability, whereas purple regions denote values for which the probability is close to 

0. At a starting time t1, there is a high variability in the number of reparable lesions while 

small fluctuations are present in the number of lethal lesions. As time increases to t2 it can 

be seen that variability in the number of lethal lesions increases. At a later time t3, instead, 

the situation is the exact opposite, with a greater variability in the number of lethal lesions 

against small fluctuations in the number of sublethal lesions.

Figure 3 compares lethal and sublethal lesion distributions for different types of irradiation 

conditions, namely acute dose delivery at initial time, split dose at uniform time steps, and 

protracted dose according to Eq. (16). A split dose at uniform times yields a rather similar 

lesion distribution to that of a fully stochastic protracted dose irradiation, while the solution 

differs significantly for the acute dose case. This result is caused by the nonlinear effect that 

double events have on the probability distribution of the lesions.

The long-time distribution of lethal lesions is compared with a Poisson distribution for 

different parameters and doses in Fig. 4. At lower doses and for b negligible with respect to 

r, the MME solution is in fact Poissonian (top panel). As the dose increases, the MME 

solution can be non-Poissonian even if r dominates b (middle panel). Finally, for higher 

doses and higher b, the MME solution differs significantly from a Poisson distribution 

(bottom panel).

B. Effect of the initial law on the lethal lesions distribution and cell survival

The goal of the present section is to emphasize the dependence on the initial law of the long-

time lethal lesion distribution, showing that the marginal distribution of the lethal lesions 

might differ from the Poisson distribution that is typically assumed.

We considered different initial conditions for Eq. (15). In particular, the following initial 

distributions were selected for pzX x|κz  and pzY y |λz : (i) a Poisson random variable with 

mean value μ; and (ii) a Gaussian with mean value μ and variance between 0.5μ and 1.5μ. 

The mean value μ has been set to λz for sublethal lesions and κz for lethal lesions. The 

results are plotted in Fig. 5 and indicate that a more peaked initial distribution corresponds to 

a more peaked long-time distribution, meaning that the initial value can sharpen or broaden 

lethal and sublethal lesion distributions. This effect has a straightforward consequence on the 

resulting survival probability shown in Fig. 6.

We test both the typically used Poisson initial distribution and a Gaussian random variable 

with different variance. Figure 5 shows the comparison of lethal and sublethal lesion 
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distributions for different initial conditions. In particular, an initial datum has been taken to 

be a Poisson random variable with mean value μ. Additionally, the case of an initial 

distribution to be Gaussian and with mean value μ and variance 0.5μ and 1.5μ has been 

considered. The mean value μ has been set to λz for sublethal lesions and κz for lethal 

lesions. It can be seen how the initial value can sharpen or broaden lethal and sublethal 

lesion distributions, with a straightforward consequence on the resulting survival probability; 

see Fig. 6.

Survival probability is one of the most used and relevant radiobiological observables. Figure 

6 highlights how a different initial condition affects the resulting survival curve. In 

particular, it is important to notice that the probability of survival rises or falls in the high-

dose region. One of the major flaws in classical models, with particular reference to the 

linear-quadratic model, is the fact that it significantly underestimates the probability of 

survival for high doses. In particular, it can be seen how the resulting survival probability 

differs from the classical linear quadratic survival. For low-dose irradiation, it emerges how 

the survival probability exhibits a linear-quadratic behavior. On the contrary, for higher 

doses the survival curve maintains linear patterns as shown by experimental data. Given the 

deep importance of the survival probability, this topic is currently being investigated in more 

detail, and it will be the subject of future research.

V. CONCLUSION

The present work represents a step toward an advanced and systematic investigation of the 

stochastic nature of energy deposition by particle beams, with a particular focus on how it 

affects DNA damage. Starting from basic probabilistic assumptions, a master equation for 

the probability distribution of the number of lethal and sublethal lesions induced by radiation 

of a cell nucleus has been derived. The model, called the Generalized Stochastic 

Microdosimetric Model (GSM2), provides a simple and yet fundamental generalization of 

all existing models for DNA-damage prediction, being able to truly describe the stochastic 

nature of energy deposition. This advance results in a more general description of DNA-

damage formation and time-evolution in a cell nucleus for different irradiation scenarios, 

from which radiobiological outcomes can be assessed.

Most of the existing models assume a Poissonian distribution of lethal damage, ignoring the 

true space-time stochastic nature of energy deposition. To overcome the limits of this 

assumption, ad hoc corrections have been introduced, called non-Poissonian corrections in 

the literature, but to the best of our knowledge an extensive survey on the complete 

stochasticity of biophysical processes has never been carried out.

This work aims at highlighting how the stochastic nature of energy deposition can lead to 

different cell survival estimations, and how non-Poissonian effects emerge naturally in the 

general setting developed. Remarkably, in particular, GSM2 does not require any ad hoc 
corrections for taking into account overkill effects, in contrast to prior models.

In a separate work, we will focus on verification and optimization of the prediction of the 

survival curves for different systems, i.e., radiation type, irradiation conditions, and cell line. 
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In addition, given the general nature of the proposed model, closed-form solutions for lesion 

distribution and survival curve are typically difficult to obtain. However, it is fair to say that, 

due to the several processes involved, approximation methods provide powerful tools to 

estimate several quantities of interests. Among the most important approximation methods, 

we mention system size expansions [33,36,54,55] and the related small-noise asymptotic 

expansions [36]. Both approaches will be investigated in future research to provide accurate 

estimates of several biological end points, such as cell survival.

Further investigation will also be devoted to developing a more efficient numerical 

implementation of the driving master equation.
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FIG. 1. 
Sublethal lesions (a) and lethal lesions (b) evolution. GSM2 parameters were set to r = 1, a = 

0.1, and b = 0.01. The red line represents the average value.
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FIG. 2. 
Master equation solution at time t = 1 a.u. (top panel), t = 100 a.u. (middle panel), and t = 

150 a.u. GSM2 parameters were set to r = 1, a = 0.2, and b = 0.1. The left panels report the 

contour plots of the joint probability distributions of lethal and sublethal damages, with the 

marginal distributions depicted along the axis. The right panels are 3D plots for the density 

function. Yellow regions represent values with higher probability, whereas purple regions 

denote values for which the probability is close to 0.
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FIG. 3. 
Master equation solution for acute, split, and protracted doses of 100 Gy. GSM2 parameters 

were set to r = 1, a = 0.2, and b = 0.1.
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FIG. 4. 
Comparison of long-time lethal lesion distributions and Poisson distributions. (a) dose = 5 

Gy, r = 1, a = 0.1, and b = 0.01. (b) dose = 100 Gy, r = 5, a = 0.1, and b = 0.01. (c) dose = 

150 Gy, r = 5, a = 0.2, and b = 0.1.
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FIG. 5. 
Lethal and sublethal lesion distribution depending on the chosen initial distribution at time 

t1 = 1 a.u. and t3 = 150 a.u. The initial distributions pzX and pzY  have been chosen as a 

Poisson distribution of mean μ = {λz, κz} or as a Gaussian distribution with mean μ = {λz, 
κz} and variance σ2 ∈ {0.5μ, …, 1.5μ}. The MME parameters were set to r = 1, a = 0.2, and 

b = 0.1.
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FIG. 6. 
Cell survival function calculated for different initial conditions. The initial distributions pzX

and pzY  have been chosen as a Poisson distribution of mean μ = {λz, κz}, or as a Gaussian 

distribution with mean μ = {λz, κz} and variance σ2 ∈ {0.5μ, …, 1.5μ}. The MME 

parameters were set to r = 1, a = 0.2, and b = 0.1.
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