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Abstract
Aim: Assessing how different sampling strategies affect the accuracy and precision of 
species response curves estimated by parametric species distribution models.
Major Taxa Studied: Virtual plant species.
Location: Abruzzo (Italy).
Time Period: Timeless (simulated data).
Methods: We simulated the occurrence of two virtual species with different ecology 
(generalist vs specialist) and distribution extent. We sampled their occurrence follow-
ing different sampling strategies: random, stratified, systematic, topographic, uniform 
within the environmental space (hereafter, uniform) and close to roads. For each sam-
pling design and species, we ran 500 simulations at increasing sampling efforts (total: 
42,000 replicates). For each replicate, we fitted a binomial generalised linear model, 
extracted model coefficients for precipitation and temperature, and compared them 
with true coefficients from the known species' equation. We evaluated the quality of 
the estimated response curves by computing bias, variance and root mean squared 
error (RMSE). Additionally, we (i) assessed the impact of missing covariates on the 
performance of the sampling approaches and (ii) evaluated the effect of incompletely 
sampling the environmental space on the uniform approach.
Results: For the generalist species, we found the lowest RMSE when uniformly 
sampling the environmental space, while sampling occurrence data close to roads 
provided the worst performance. For the specialist species, all sampling designs 
showed comparable outcomes. Excluding important predictors similarly affected 
all sampling strategies. Sampling limited portions of the environmental space 
reduced the performance of the uniform approach, regardless of the portion 
surveyed.
Main Conclusions: Our results suggest that a proper estimate of the species response 
curve can be obtained when the choice of the sampling strategy is guided by the 
species' ecology. Overall, uniformly sampling the environmental space seems more 
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1  |  INTRODUC TION

Species distribution models (SDMs) rely on species observations 
(presence/absence, abundance) and spatially explicit variables 
(e.g. climatic, edaphic, topographic, anthropogenic) to estimate 
the relationship between living organisms and their environment. 
Specifically, SDMs allow for deriving species' response curves along 
chosen environmental gradients, which define how species re-
spond to the environmental conditions they experience. Based on 
statistical models fitted to field-collected observations, SDMs are 
sensitive to the quality (and quantity) of data used for model calibra-
tion (Hirzel & Guisan, 2002; Lobo, 2008; McPherson & Jetz, 2007; 
Tessarolo et al.,  2021). Species presence and absence data, both 
ideally collected in situ, would be modelled as a function of environ-
mental variables sampled at the same geographical locations where 
the species was recorded. However, absences are very often cre-
ated in silico (e.g. pseudo-absences, background points) to overcome 
the logistic difficulty of confirming them in the field (Lobo, 2008). In 
any case, SDMs are seldom fitted using species (and environmen-
tal) data collected strictly for that purpose. Instead, biodiversity 
data used as input in SDMs are primarily opportunistic and sampled 
for different purposes (Gábor et al., 2020; Hirzel & Guisan, 2002). 
Examples include opportunistic data from museum collections or 
herbaria (Newbold,  2010), citizen science (Feldman et al.,  2021; 
Leandro et al., 2020), vegetation surveys (Bazzichetto et al., 2021) or 
a combination of these (Wasof et al., 2015). Using data not collected 
explicitly for species distribution modelling can be an issue, as the 
sampling strategy determines the quality of the species response 
curves estimated by SDMs (Baker et al., 2022; Beck et al., 2014).

In principle, species distribution data should be collected or 
sampled in a way that helps answering our ecological questions. 
Specifically for SDMs, which are rooted in the niche theory (sensu 
Hutchinson, see Jackson & Overpeck, 2000), species distribution data 
should be sampled so that an adequate description of the realised 
niche of the species can be achieved (Guisan & Zimmermann, 2000). 
Typically, in vegetation science, SDMs rely on presence–absence 
data from pre-existing vegetation surveys recorded by botanists 
and phytosociologists to describe plant communities (co-occurrence 
data). Not initially collected to model a single species distribution, 
such data should be used cautiously, as they might lead to a poor 
estimate of the relationship between the species and the environ-
ment. In this respect, there is a vast scientific literature on the effect 

of sampling design (and sampling bias) on SDMs. Still, almost all of 
these studies evaluated models' predictive performance, that is they 
compared SDMs' predictions to independent observations using ac-
curacy measures such as AUC, true skill statistics, kappa, sensitivity, 
specificity and the Continuous Boyce Index (see Guisan et al., 2017; 
Hirzel et al., 2006; Kadmon et al., 2003; Tessarolo et al., 2014; Varela 
et al., 2014). Instead, and this is not to downplay the importance of as-
sessing models' predictive performance, we argue that SDMs should 
also be evaluated in terms of their capacity to estimate the actual 
species' response curves and, thus, the mechanisms generating spe-
cies distribution. Indeed, measures of predictive accuracy are known 
to be affected by several factors, including sample prevalence and 
size (Jiménez-Valverde, 2021), which may confound the comparison 
of SDMs fitted under different circumstances (e.g. different sampling 
strategies or intensity of sampling bias). Even worse, some accuracy 
metrics can score high in the case of poorly defined SDMs (Lobo 
et al., 2008). Hence, accounting for the performance of coefficients' 
estimators derived from parametric SDMs, rather than focusing 
solely on their predictive performance, is important. In this regard, 
simulations, together with specific measures of accuracy (i.e. bias) and 
precision (i.e. variance), can provide an alternative for evaluating the 
influence of different factors on SDMs' capacity to provide accurate 
estimates of the actual coefficients defining species response curves 
(Albert et al., 2010; Fernandes et al., 2018; Gu & Swihart, 2004).

Here, we use simulations of virtual plant species and data col-
lection to answer the following questions: how does sampling strat-
egy affect the quality of the species response curves derived from 
SDMs? And more specifically: to what extent are the coefficients' 
estimators of the species response curves simulated using different 
sampling designs accurate and/or precise? To quantify accuracy and 
precision, we use bias, variance and root mean squared error (RMSE; 
see Box 1 for definitions).

2  |  MATERIAL S AND METHODS

2.1  |  Simulations of plant virtual species and their 
sampling

To assess the impact of vegetation sampling on parametric SDMs, 
we used binomial generalised linear models (GLMs). Binomial GLMs, 
also known as logistic regression models, are widely used among 

Handling Editor: Volker Bahn
efficient for species with wide environmental tolerances. The advantage of seeking 
the most appropriate sampling strategy vanishes when modelling species with narrow 
realised niches.
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    |  3BAZZICHETTO et al.

SDMs practitioners, and their statistical properties are well known 
(see McCullagh & Nelder, 1989).

We focus on the Abruzzo region in Central Italy, which covers 
different climates and habitat types (see Figure S1.1; Appendix S1). 
We started by generating two virtual plant species: Dianthus speran-
dii and D. tundrae (species' names are invented and do not relate to 
the species' ecological preferences). For the sake of simplicity, we 
assumed the occurrence of the two virtual species to be only driven 
by temperature and precipitation. As shown in Figure 1, D. sperandii 
has a thermal optimum at approximately 7.5°C and its probability 
of occurrence increases linearly with precipitation. Similarly, D. tun-
drae has an optimum at approximately 9°C and its occurrence prob-
ability also increases with precipitation. However, D. tundrae has a 

much more constrained thermal tolerance, and thus a lower prev-
alence (i.e. the ratio between number of presences and absences). 
As a result, D. tundrae has a narrower distribution than D. sperandii. 
By generating virtual species sharing more or less similar ecological 
preferences, but different thermal niche breadth and thus different 
distribution extents, we tested the effect of sampling strategy on 
SDMs for generalist vs specialist species.

Once we defined the true relationships between the two virtual 
species and the two climatic variables (by setting the parameters 
determining the species' response curves: see Equation 1), we com-
puted, for each cell of a raster layer spanning the study area (spatial 
resolution: ca. 1 km), the true probability of occurrence (p) of the 
species across the Abruzzo using the following model:

BOX 1 Definitions of bias, variance and root mean squared error.

Bias: the expected difference between an estimator and the parameter. Bias is used to assess accuracy (i.e. quality of the answer 
we can get from the analyses of ecological data, Bolker, 2008):

Bias = E[(�̂ − �)]

Variance: expected squared difference between an estimator and its expected value (note that the estimator's expected value is 
different from the parameter if the estimator is biased). Variance is used to assess precision (i.e. how largely the estimator fluctu-
ates around its mean in the long-run, Bolker, 2008):
Variance = E[(�̂ − E[�̂])2]

Root Mean Squared Error (RMSE): square root of the mean squared error (MSE), which is the expected squared difference between 
the estimator and the parameter. The MSE can be partitioned in (squared) bias plus variance. Therefore, it combines precision 
and accuracy, and, for this reason, is generally used as a measure of the quality of an estimator. We here use the RMSE as it is 
expressed on the same scale as the data:

RMSE = √E[(�̂ − �)2]

Graphical representation of bias (a) and variance (b). In panel a, the gold logistic function shows the true response curve of the 
species for a given environmental variable, while the grey function is the long-run average of multiple simulated response curves. 
The difference between the gold and the grey logistic functions is the bias. In panel b, the blue logistic function represents the 
long-run average of multiple simulated response curves (in grey). Note that the blue line only represents the true logistic function 
(in gold in panel a) when the bias equals zero (in which case the variance is the MSE). Also note that the figure above provides a 
‘simplified’ representation of bias and variance of species' response curves, as bias does not necessarily produce vertical shifts 
of the true logistic function, and, similarly, variance may not lead to evenly spread oscillations around the true response curve.
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4  |    BAZZICHETTO et al.

where logit(·) is the natural logarithm of the odds pi/(1-pi), α is the 
model intercept, βpr is the regression parameter for precipitation, βtm 
is the parameter for the linear term of temperature and βtmq is the 
parameter for the quadratic term of temperature. Regression param-
eters, here rounded to the third digit, for D. sperandii, were set to: 
−11.389 (α), 0.007 (βpr), 1.384 (βtm) and −0.092 (βtmq). For D. tundrae, 
they were set to: −22.173 (α), 0.005 (βpr), 3.779 (βtm) and −0.21 (βtmq). 
Logit-transformed probabilities were turned to the unit interval [0,1] 
using the logistic function. Then, we used the true occurrence prob-
ability (p) of the two species in a given grid cell of 1 km resolution to 
simulate their occurrence (presence/absence) across the study region 
(Figure 2a,b). Specifically, we derived a presence/absence raster layer 
by drawing a random realisation of a Bernoulli trial with probability p 
at each raster cell. The obtained presence/absence layers are reported 
in Figure 2c,d. Note that, by sampling from the Bernoulli distribution, 
we avoided selecting a fixed threshold to generate the layers of the 
species presence/absence.

We then simulated what vegetation ecologists would do: go 
out in the field and collect data! We created six sampling strategies 
(Box 2) and fitted SDMs for each of them. Here, our sampling units 
are the cells of the raster layer with the presence/absence of the two 
virtual species (hereafter, ‘sampling cells’, Figure 2, panels c and d). To 
keep the simulations as realistic as possible, we conducted the sam-
pling only in a restricted area of the Abruzzo region: we considered 
all areas approximately from 500 to 1800 m a.s.l. (90% of the cells 
included between 518 and 1821 m a.s.l.; minimum elevation: 197 m, 
maximum elevation: 2791 m) (the perimeter of the area of interest 
is marked in white in Figure  2; the frequency distribution of tem-
perature and precipitation is reported in Figure S1.2, Appendix S1). 
Indeed, both D. sperandii and D. tundrae are cold-tolerant species, so 
it would not make sense to sample their occurrence, for example, 

on the coast (where the probability of finding the species is nearly 
0, see Figure 2) or where habitat features are very different from 
the species' optima. So, by restricting our focus to a smaller area of 
interest, we avoided the ‘there are no elephants in the Antarctic’ 
paradox (Lobo et al., 2010).

The data collected through the six sampling approaches (see 
Box  2) were then used to fit binomial GLMs (link logit), which al-
ways included the following terms as predictors: precipitation + 
temperature + temperature2. Each model was fitted to the sampled 
data using the same model formula as in Equation 1, that is the one 
used to generate the occurrence pattern of D. sperandii and D. tun-
drae. This allowed quantifying (i) how much—on average—the esti-
mated coefficients deviated from the true parameters (i.e. bias), (ii) 
how much—on average—they fluctuated around the average of the 
coefficient estimator (i.e. variance) and (iii) how much—on average—
they fluctuated around the true parameters (i.e. RMSE) (see Box 1). 
Note that our measures of bias, variance and RMSE are estimators 
of these quantities, which we computed by replacing expectations 
with averages (computed over multiple simulations). The simulated 
sampling realisations were replicated 500 times for each of the six 
sampling strategies we tested, thereby fitting 3000 GLMs. Because 
regression coefficients of GLMs are estimated by maximum likeli-
hood, they feature desirable properties such as asymptotic unbi-
asedness and efficiency (i.e. decreasing bias, variance, and therefore 
RMSE, with increasing sample size). As a consequence, a compar-
ison of the impact of different sampling strategies on the bias and 
variance (and RMSE) of the species' response curve cannot be un-
dertaken without accounting for the effect of sample size (i.e. the 
total number of presence/absence records used to fit our GLMs). 
Therefore, we repeated the 500 sampling-specific simulations for an 
increasing number of sampling cells (i.e. sampling effort): from 200 
to 500 cells using an increment of 50 cells between both limits. As 
a result, for each sampling strategy, we obtained 500 values of the 

(1)logit
(

pi
)

= � + �pr × preci + �tm × tempi + �tmq × tempi
2

F I G U R E  1  Simulated response curves 
of Dianthus sperandii (in lime) and D. 
tundrae (in blue) along the temperature 
(left panel) and precipitation (right panel) 
gradients.
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    |  5BAZZICHETTO et al.

regression coefficients as estimated by GLMs fitted to datasets of 
sizes from 200 to 500 (by 50). All datasets contained at least 30 
presences, which means 10 presences for each regressor included in 
the model, that is, precipitation, linear and second-order polynomial 
terms for temperature (intercept excluded). Correlation among pre-
dictor variables (here, temperature and precipitation) was checked at 
each iteration to avoid its impact on the variance of the coefficients.

We compared the sampling approaches, as simulated for the dif-
ferent sampling efforts, in terms of the relative difference among 
their RMSE values. We considered an approach as the best perform-
ing approach (at a given sampling effort) when it was associated with 
the lowest RMSE. We then used bias and variance to assess their 
impact on the species' response curves. It should be noted that, al-
though statistical power calls for big numbers, sample size is one of 
the most important limiting factors when planning actual sampling 
campaigns. In this sense, sampling strategies providing high per-
formance at low sampling effort should be preferred for their effi-
ciency, as they represent the best trade-off between feasibility and 
accuracy of species response curves.

It is worth mentioning that the uniform approach has a lim-
itation depending on the chosen number of sampling units to 
be extracted from each grid cell overlaid to the environmental 
space. Indeed, as explained in Box 2, when this number is larger 
than the amount of sampling units present in a cell, all units are 
extracted. This circumstance usually happens at the boundary of 
the environmental space, where the density of sampling units is 
lower. Although this is not an issue for the sampling strategy itself, 
having a certain amount of sampling units included in all datasets 
used to fit the GLMs can downwardly bias the variance of coeffi-
cients' estimators, in turn affecting RMSE. To account for this, we 
repeated another time the simulations for the uniform sampling 
of D. sperandii and D. tundrae, this time computing the variance of 
the estimators as the average (across simulations) of the ‘theoret-
ical’ variance, that is inverse of the Fisher information matrix. We 
used this variance estimator, which is not affected by the issue of 
fixed number of sampling units, to re-compute the RMSE for the 
uniform approach, and we compared it with the one obtained from 
the original simulations.

F I G U R E  2  Simulated occurrence probability and presence/absence data of Dianthus sperandii (a, c) and D. tundrae (b, d). The white line in 
the plots delineates the area of interest for the study (i.e. all lands approximately between 500 and 1800 m a.s.l.).
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6  |    BAZZICHETTO et al.

BOX 2 Description of the simulated sampling strategies.

Random: one of the most common sampling strategies, it is used for several purposes, including the description of vegetation pat-
terns across space, and it is usually adopted to ensure independence among sampling units (Lájer, 2007).

Systematic: also very common, the systematic strategy collects data from regularly spaced grids to maximise the sampling effort for 
any number of sampling units. Our systematic approach is similar to the ‘grid approach’ implemented by Hirzel and Guisan (2002).

Proportional random–stratified (hereafter, stratified): this survey is one step forward of the random approach. It accounts for the 
fact that habitat types (i.e. abiotic conditions) are not homogeneously distributed across the geographical space. So, the sampling 
is performed within strata covering many (if not all) combinations of abiotic conditions, including rare habitats (Roleček, Chytrý, 
Hájek, Lvončik, Tichý, 2007). In our case, as we only focus on temperature and precipitation (climatic data gathered from CHELSA; 
Karger et al., 2017), the stratification provides an exhaustive sampling of combinations of the two climatic variables within the geo-
graphical space. As the strata were not evenly distributed (i.e. some strata were more widely spread than others), in each stratum, 
we sampled a number of cells proportional to the area of the stratum. The strata were generated as 16 classes combining tempera-
ture and precipitation conditions. Note that the proportional random–stratified converges to the random design when sample size 
(N) gets very large (Hirzel & Guisan, 2002).

Topographic: this sampling strategy is commonly used by ecologists to capture a large amount of variability along a given transect. It 
reproduces the idea of collecting data across transects located in areas with high topographic (and potentially climatic) heterogeneity. 
To generate this traditional sampling design, we used four topographic layers: elevation, slope, northness and eastness. The last three 
were derived from the elevation layer, which, in turn, was retrieved at a spatial resolution of approximately 48 m x 65 m using the R 
package elevatr (get_elev_raster function with zoom argument set at 10; Hollister, 2021; For elevation data sources, see https://github.
com/tilez​en/joerd/​blob/maste​r/docs/data-sourc​es.md#what-is-the-groun​d-resol​ution). To identify areas with highly heterogeneous 
terrain conditions, we first standardised each topographic layer to have mean value zero and unit variance, and aggregated its spatial 
resolution to match that of the bioclimatic layers (approximately 1 km). Specifically, each 1 km cell was assigned the standard deviation 
of the aggregated cells. Then we summed the four resulting layers to derive a single one. Finally, to focus the sampling only on those 
areas featuring high heterogeneity, we retained (and then randomly sampled) only those cells with a standard deviation larger than 
the median standard deviation of the final layer (all other cell values were set to NAs, and were, therefore, not sampled).

Proximity to roads (hereafter, proximity-to-road): this sampling design reflects the reality of logistic constraints during fieldwork. 
Specifically, to account for the fact that sampling activities are sometimes preferentially carried out in the most accessible places 
(e.g. this is the case for citizen science data), we simulated a sampling strategy that maximises access through proximity to roads. The 
resulting bias has been widely investigated in the analyses of species distribution data (Kadmon et al., 2004; Tessarolo et al., 2014). 
To generate this sampling scenario, we downloaded from OpenStreetMap a layer comprising all major roads in the Abruzzo (using 
the osmdata R package, Padgham et al., 2017). Then we derived a raster layer reporting, for each cell, the corresponding (Euclidean) 
distance from the closest road. Finally, we transformed the value of each cell (i.e. distance from the closest road) to the correspond-
ing negative exponential (e.g. exp(−1*road distance)) so that the probability of sampling a given cell decayed (exponentially) as the 
distance from the closest road increased.

Uniform sampling of the environmental space (hereafter, uniform): this sampling strategy is conceptually similar to the stratified sam-
pling, while, practically, it is implemented as the systematic approach. Indeed, the uniform sampling of the environmental space 
aims at collecting data from as many habitat types as possible by regularly selecting sampling units within a (here, 10 cells × 10 cells) 
grid overlaid to a two-dimensional (environmental) space. In practice, the grid is scanned on a cell-by-cell basis and, from each cell, 
a fixed number of randomly selected sampling units is extracted (see Figure S2.1, Appendix S2). If the amount of sampling units 
in a cell is lower than the fixed, desired number of units to be collected per cell, then all sampling units are extracted. The uniform 
sampling allows, at the same time, to maximise information on environmental variability and minimise sampling bias (e.g. it avoids 
over-sampling habitat types that are more widely distributed within the geographical space). In this study, the environmental space 
was defined as the two-dimensional plane spanned by temperature and precipitation (see Albert et al., 2010; Varela et al., 2014, 
Hattab et al., 2017; see also Figure S2.2 in Appendix S2, which shows the portion of the environmental space occupied by the two 
virtual species). In Figure S2.3 (Appendix S2), we also show the effect of randomly sampling the environmental space, which re-
sults in over-sampling the most widespread environmental conditions encountered in the geographical space. Note that randomly 
sampling the geographical space leads to the same sampling bias.

Maps of design-specific sampling effort are reported in Figure S3.1 (Appendix S3).
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2.2  |  Beyond simulations: Accounting for real-life 
issues associated with species distribution modelling

In real life, the outcome of species distribution modelling is affected 
by a multitude of potential issues involving all stages of the analysis: 
from data sampling to model-related factors. Here, we considered the 
impact of missing covariates, such as potential confounding factors, 
and the effect of incompletely sampling the environmental space. 
The former is a common issue in SDMs (Eltih & Leathwick  2009), 
whereas the latter can impact the performance of, particularly, the 
uniform approach.

To test for the effect of missing covariates, we generated the dis-
tribution of two new virtual subspecies, whose occurrence probability 
was affected by temperature, precipitation and exposition towards the 
North (hereafter, northness). Northness was computed as the cosine of 
the terrain aspect measured in radians. To spatially match the raster of 
the northness with the climatic layers, we first resampled the layer of 
the elevation and then computed the northness. The two virtual sub-
species were generated to have distribution patterns similar to those 
of D. sperandii and D. tundrae, which again led to compare species with 
a wide vs a restricted distribution. The regression parameters for inter-
cept, temperature and precipitation were kept at the same value used 
for D. sperandii and D. tundrae, while the parameter for the northness 
was set to −1.4 for the widely distributed species (hereafter, D. speran-
dii subsp thermophilus) and to −2 for the species with a more restricted 
distribution (hereafter, D. tundrae subsp thermophilus). We set negative 
regression parameters to generate species preferentially occurring in 
south-oriented areas, seeking topographically warmer expositions (in 
the Northern Hemisphere). Simulations were repeated for all sampling 
strategies, excluding northness from the fitted GLMs, and their perfor-
mance was compared as done for D. sperandii and D. tundrae.

To test the effect of missing parts of the environmental space used 
by the virtual species, we repeated the simulations for the uniform ap-
proach considering only selected portions of the whole environmental 
space. Specifically, we performed the uniform sampling within two envi-
ronmental sub-spaces, including all sampling units located either below 
or above the mean temperature of the environmental space (Figure S2.4, 
Appendix S2). This allowed testing the performance of the uniform ap-
proach when data on the whole temperature and precipitation gradient 
were not available. We assumed the impact of incompletely sampling 
the environmental space on the uniform approach to be the same re-
gardless of species' characteristics and focussed only on D. sperandii.

The R code of the simulations is available at: https://github.com/
Manue​leBaz​ziche​tto/Sampl​ingRe​spCurves.

3  |  RESULTS

3.1  |  Performance of sampling strategies

As a general result, the RMSE of the coefficients' estimators fitted 
by our parametric SDMs decreased with increasing sampling ef-
fort irrespective of the sampling strategy and converged towards a 

similar minimum value (Figure 3a,b). This is not surprising, as it re-
flects the asymptotic unbiasedness and efficiency of the regression 
coefficients estimated by GLMs. For D. sperandii, the most important 
discriminating factor in the performance (i.e. RMSE) of the sampling 
strategies was variance, while for D. tundrae, it was bias (Figures S5.2 
and S6.2). Having a low proportion of sampling units consistently 
included in the datasets used to fit the GLMs across simulations 
did not affect the results for the uniform approach (Figure  S4.1; 
Appendix S4).

Concerning D. sperandii, the proximity-to-road, as a sampling de-
sign, consistently provided the worst performance in terms of RMSE 
at all sample sizes (Figure 3a). The only exception was for the esti-
mation of the precipitation parameter, for which the performance 
of the proximity-to-road approach was comparable to that of the 
other sampling designs. On the contrary, the uniform sampling de-
sign within the environmental space scored the lowest RMSE val-
ues at all sampling efforts for all parameters (Figure 3a). Specifically, 
the RMSE of the uniform sampling was systematically 50% lower 
than that of the proximity-to-road sampling for all coefficients but 
precipitation (Figure  S5.1). The random, stratified, systematic and 
topographic sampling designs performed similarly, with their RMSE 
values generally included right in between those of the proximity-
to-road and uniform approaches (Figures 3a, S5.1). All designs, ex-
cept for the proximity-to-road approach, overestimated the partial 
effect of precipitation in the long run, that is, featuring a positive 
bias (Figure  S5.2). In this regard, the largest bias (averaged across 
all simulations of increasing sampling effort) was associated with 
the uniform approach, which predicted a 111% increase in the odds 
of finding D. sperandii for each 100 mm increase in precipitation, in 
spite of a 105% increase predicted by the true model (see Figure 3c; 
Figure S5.3 for the effect of the bias on the response curves). For the 
linear and quadratic temperature terms, the estimators derived from 
the uniform sampling within the environmental space were upwardly 
and downwardly biased, respectively (Figure S5.2). Concerning the 
variance, the uniform sampling within the environmental space pro-
vided the most efficient estimators for all coefficients, regardless of 
sample size (Figure S5.2). This resulted in a more consistent shape of 
the response curve across simulations (Figure 3c, Figure S5.3).

Concerning D. tundrae, regardless of the sampling effort, the 
topographic approach scored the highest performance for all re-
gression coefficients but precipitation (Figures  3b; Figure  S6.1). 
Also, except for precipitation, the topographic approach was al-
ways (i.e. across sampling efforts) followed by the systematic, 
stratified and random strategies (Figures 3b; Figure S6.1). On the 
contrary, the uniform sampling within the environmental space 
showed the worst performance (i.e. highest RMSE) for the in-
tercept and the temperature (both linear and quadratic terms) at 
nearly all sampling efforts, whereas it scored best for precipita-
tion. The stratified, systematic, random and uniform designs, in the 
long-run, overestimated the partial effect of precipitation, while 
the estimators derived from the proximity-to-road and topographic 
approach had a low and negative bias, respectively (Figure S6.2). 
Similarly to what was observed for D. sperandii, the largest bias 
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8  |    BAZZICHETTO et al.

was associated with the uniform approach, which predicted a 71% 
increase in the odds of finding D. tundrae for each 100 mm increase 
in precipitation, whereas the true model predicted a 63% increase 
(see Figure  3d and Figure  S6.3 for the effect of the bias on the 
response curves). All sampling designs, except for the topographic, 
underestimated the value of the intercept and provided upwardly 
biased estimators of the linear term for temperature and down-
wardly biased estimators of the quadratic term for temperature 
(Figure  S6.2). Concerning variance, the uniform sampling within 
the environmental space had the lowest variance for precipitation, 
while all strategies showed comparable efficiency for the other 
coefficients.

3.2  |  Results for missing covariates and incomplete 
sampling of the environmental space

Concerning D. sperandii subsp thermophilus, excluding northness 
from the fitted GLMs did not particularly affect the proximity-to-
road sampling, which exhibited the worst performance in estimating 
all parameters except precipitation (Figure 4a), similarly to what was 
observed for D. sperandii. Conversely, simulating a missing covariate 
brought the performance of the uniform sampling partially closer to 
that of the other sampling strategies than observed for D. sperandii 
(Figure 4a). Specifically, when estimating the intercept and the pa-
rameter for precipitation, the uniform approach performed worse 

F I G U R E  3  Root mean squared error of regression coefficients for D. sperandii (generalist species, panel a) and D. tundrae (specialist 
species, panel b). Panel c: Comparison between the response curves for D. sperandii as estimated by data collected through the proximity-
to-road approach and the uniform sampling of the environmental space. Panel d: Comparison between the response curves for D. tundrae 
as estimated by data collected through the uniform sampling of the environmental space and the topographic approach. Grids of panels c 
and d combine two sampling efforts (N = 200 and 500) and the two predictors used in the models (i.e. temperature and precipitation). Red 
lines, in panels c and d, represent the true relationship between D. sperandii (panel c) or D. tundrae (panel d) and the predictors. Comparisons 
between estimated and true response curves for all sampling strategies and efforts are reported in Appendix S5 (Figure S5.3) for D. sperandii 
and in Appendix S6 (Figure S6.3) for D. tundrae.
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    |  9BAZZICHETTO et al.

for D. sperandii subsp thermophilus than for D. sperandii. Indeed, in 
contrast to what was observed for D. sperandii, intercept and pre-
cipitation were best estimated by the topographic approach when 
northness was excluded (Figure 4a). However, results for the linear 
and the quadratic terms of temperature were in line with those ob-
tained for D. sperandii, with the uniform approach scoring best across 
all sampling effort. As for D. tundrae subsp thermophilus, results were 
similar to those observed for D. sperandii subsp thermophilus. The 
topographic sampling scored best for intercept and precipitation, 
whereas the uniform sampling showed the best performance for the 
linear and quadratic term for temperature, although RMSE values 
were not very far from those of the topographic sampling (Figure 4b).

The incomplete sampling of the environmental space overall 
reduced the performance of the uniform approach, except when 
using sampling units located above the mean temperature to esti-
mate the parameter for precipitation. Restricting the sampling to 
units located below the mean temperature (left side of the envi-
ronmental space; Figure  S2.4, Appendix  S2) reduced the perfor-
mance of the uniform approach for estimating all parameters. In 
this case, performances were comparable to those displayed by 
the worst performing sampling approaches presented in 3.1. for 
D. sperandii (Figure 3a). The performance of the uniform approach 
was halved when modelling the response curve for precipitation 
(Figure 5). On the contrary, restricting the sampling to units located 
above the mean temperature (right side of the environmental space; 
Figure S2.4, Appendix S2) did not affect the performance of the uni-
form approach for estimating precipitation but strongly decreased 
its performance for estimating the intercept and the linear and qua-
dratic terms of the response curve for temperature (Figure 5).

4  |  DISCUSSION

By creating virtual species with different thermal tolerances and, 
as a result, different distribution extents across the Abruzzo region 
in Italy (wide for D. sperandii and narrow for D. tundrae), we tested 
the impact of different sampling strategies on the accuracy and pre-
cision of species response curves estimated by parametric SDMs. 
Overall, there seems to be no ‘silver bullet’ strategy, that is a unique 
sampling approach with optimal performances across species with 
wide vs narrow distributions. This suggests that the sampling of 
presence/absence data should be planned on a case-by-case basis, 
that is according to the ecological characteristics of the species 
(span of the niche breadth and distribution extent) and the environ-
mental heterogeneity of the study area (Chefaoui et al., 2011). We 
also found that collecting more data (increasing the sample size N) 
alleviates the impact of the sampling strategy on the variance and 
RMSE of the coefficients, thereby confirming results from previous 
studies (Albert et al., 2010; Chefaoui et al., 2011; Gábor et al., 2020; 
Tessarolo et al., 2014). This suggests that, although exhaustive sam-
pling campaigns are time- and cost-consuming, larger sample sizes 
successfully improve the estimation of species response curves ir-
respective of the sampling strategy used.

For generalist species like D. sperandii, the uniform sampling 
strategy within the environmental space seems to be the best and 
the most efficient option (i.e. most effective at the lowest sample 
sizes). Intuitively, species with low environmental specialisation and 
wide geographical ranges are better modelled if data are regularly 
collected along environmental gradients. Uniformly sampling the en-
vironmental space is the best way to achieve that: data are collected 

F I G U R E  4  Root mean squared error of regression coefficients for D. sperandii subsp thermophilus (generalist species, panel a) and D. 
tundrae subsp thermophilus (specialist species, panel b) derived from GLMs fitted excluding northness.
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10  |    BAZZICHETTO et al.

at (generally) spatially aggregated but environmentally heteroge-
neous geographical locations (Figure  S3.1 in Appendix  S3; Varela 
et al., 2014). In this regard, the uniform sampling of the environmental 
space was already argued as a suitable strategy for reducing the effect 
of sampling bias (Varela et al., 2014) or designing cost-effective yet 
highly informative surveys for species distribution modelling (Hattab 
et al., 2017). A key advantage of the uniform approach is certainly 
the low variance of the estimated coefficients (Albert et al.,  2010; 
Figure  S5.2 in Appendix S5). In this respect, we observed that the 
correlation between temperature and precipitation in the datasets 
generated by the uniform approach was, on average, lower than that 
associated with other sampling strategies (average Pearson correla-
tion coefficient computed across sampling efforts: uniform −0.46, 
proximity −0.60, topographic −0.61, others −0.66), which may partly 
explain the higher precision of the coefficients estimated from para-
metric SDMs through the uniform sampling approach. Importantly, 
coefficient estimators derived from the uniform approach remained 
the most efficient even after accounting for the (low) proportion of 
sampling units consistently included in the datasets used to fit the 
GLMs. Instead, an incomplete sampling of climatic gradients, and 
more specifically, systematically sampling only restricted portions 
of the environmental space (mimicking real-life situations of SDMs 
fitted on a limited amount of environmental data), had an overall neg-
ative impact on the performance of the uniform approach. While this 
seems to impair the efficacy of the uniform approach, similar effects 
on the other sampling strategies exist (Figure S2.3, Appendix S2).

In contrast to what we observed for the uniform approach, 
the proximity-to-road strategy exhibited the worst performance 
in terms of RMSE (Albert et al., 2010). One possible explanation is 
that, as the probability for D. sperandii to occur at a given location in-
creased with increasing distance from roads, the datasets generated 
by the proximity approach likely included suboptimal information on 
the favourable environmental conditions for that species. For this 

reason, we warn ecologists against using data gathered through the 
proximity-to-road strategy for fitting SDMs, except for specific cir-
cumstances under which this is the investigated factor (e.g. MIREN 
protocol for species responding to anthropogenic disturbances, see 
Haider et al., 2022). Indeed, using data collected close to roadsides 
increases the chance of estimating erroneous species' response 
curves (Figures 3c, S5.3), especially when road networks have low 
environmental coverage (Tessarolo et al.,  2014). For instance, in 
mountain systems, the density of the road network decreases dras-
tically towards higher elevations where accessibility can be a very 
important constraint (Albert et al., 2010). These kinds of side effects 
should be considered very carefully when calibrating SDMs with 
empirical data sampled for a completely different purpose.

For specialist species (e.g. D. tundrae), all sampling designs appear 
to perform similarly, but the topographic approach scored best for all 
regression parameters but precipitation. The similar performance of 
the six sampling strategies we tested for the specialist species might 
be due to species with a low relative occurrence area (i.e. the pro-
portion of area occupied by the species over the whole study area) 
being generally easier to model (Lobo, 2008). On the other hand, the 
good performance of the topographic approach could be related to 
the fact that (i) D. tundrae has its thermal optimum close to the mean 
temperature in the area of interest (i.e. 9°C; Figure 1) and (ii) by ran-
domly selecting sampling units among those with high topographic 
heterogeneity (see Box 2), the topographic design mimics the uniform 
approach, but is likely to over-sample the most common environmen-
tal conditions in the study area (e.g. average temperature) (Albert 
et al.,  2010). As a result, in our study, data collected through the 
topographic sampling were best for capturing the narrow shape of 
the response curve of D. tundrae along the temperature gradient. Had 
D. tundrae's thermal optimum lied far from the mean temperature of 
the study area, the topographic approach would have probably not 
resulted in such an observed high performance. In this respect, other 

F I G U R E  5  Root mean squared error 
(RMSE) of regression coefficients for 
D. sperandii (generalist species) and 
the uniform approach implemented 
in portions (left: sampling units below 
mean temperature; right: sampling 
units above mean temperature) of the 
whole environmental space (i.e. full). 
See Figure S2.4 (Appendix S2). Insets 
enhance the visibility of the comparison 
among RMSE trends for the portions 
of the environmental space with similar 
performances.
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    |  11BAZZICHETTO et al.

sampling strategies with similar performances to the topographic ap-
proach, for example, the stratified approach, may be less sensitive 
to the position of the species' optima. It is worth noticing that, even 
for D. tundrae, the uniform approach provided the best estimators 
for precipitation, which suggests that as long as a species has a wide 
tolerance to an environmental driver, this sampling design provides a 
good estimation of the response curve. As an alternative to the tested 
approaches, adaptive-sampling strategies could also provide a viable 
means for modelling species with narrow distributions (Jeliazkov 
et al., 2022). One example is SDM-guided sampling designs: SDMs 
are fitted on species and environmental data collected through pre-
liminary sampling. The obtained predictions are then used to identify 
areas to collect new data on the target species (Chiffard et al., 2020).

Although not strictly related to any sampling strategy, model 
misspecification, which includes the problem of missing covariates, 
is widely acknowledged as an important (and common) issue in SDMs 
(Elith & Leathwick, 2009). Our results indicate that excluding one key 
covariate, like northness which was used to generate the distribution 
of the two subspecies of Dianthus, had little impact on the ranking 
of the performance of the sampling approaches. This suggests that 
the effect of ‘missing covariates’ may equally and negatively impact 
all sampling approaches. At the same time, the impact of excluding 
northness might have been weakened by the low correlation be-
tween the variable and the climatic predictors observed in the area of 
interest. Indeed, the amount of bias associated with missing covari-
ates is a function of the correlation between the omitted predictor 
and both (i) the response variable and (ii) the predictors kept in the 
fitted model (Gelman & Hill, 2007). Interestingly, we found that ex-
cluding northness led to the topographic sampling outperforming the 
uniform approach for modelling the response curve along the precip-
itation gradient. A possible explanation could be that, being based on 
northness (among other topographic variables), the topographic ap-
proach was probably less impacted by the bias introduced by model 
misspecification. This evidences how using a sampling strategy asso-
ciated with ‘important’ predictors excluded from SDMs can reduce 
the impact of missing covariates on model predictions of the species 
response curve. Yet, we also observed that the uniform sampling still 
scored best for describing the unimodal response curve of the gen-
eralist D. sperandii subsp thermophilus to temperature, pointing to its 
best performance for modelling generalist species.

To sum up, when the aim is to model a widespread and general-
ist species, choosing an appropriate sampling approach (here: uni-
formly sampling the environmental space) could represent the most 
efficient strategy, as it allows obtaining accurate response curves 
while sparing resources that would be otherwise allocated to field 
sampling. As the species' tolerance to environmental drivers shrinks, 
the advantage of selecting an adequate sampling design vanishes, as 
all approaches seem to have comparable performances. More spe-
cifically, uniformly sampling the environmental space may no longer 
provide optimal results, while other, equally good approaches (e.g. 
stratified design), could be chosen. Hence, and because no sampling 
strategy clearly stands out to sample specialist species, uniformly 
sampling the environmental space may in the end be the best bet 

irrespective of the degree of specialisation of a given species as it will 
allow to at least optimise the accuracy of the response curves gener-
ated for generalist and widespread species. In any case, we advocate 
a careful pre-investigation about the ecology of the species as a way 
to inform the selection of predictors, avoid missing important drivers 
of species distribution, specify adequate shapes of the relationship 
between species and environmental variables and, eventually, for-
mulate meaningful SDMs (Austin, 2007). A few more points might 
help guiding sampling campaigns or using already collected data for 
fitting SDMs. First, thinking thoroughly about the research aim is 
necessary: while the uniform and topographic sampling strategies 
might be suitable options for modelling native species redistribution 
along elevational gradients, the proximity-to-road approach could 
perform better to predict the altitudinal shift of invasive species (see 
the MIREN protocol; Haider et al., 2022). Second, although identify-
ing a minimum sample size to accurately estimate species response 
curves is beyond the scope of this study, we recommend relying on a 
number of presence/absence data comparable to the lower threshold 
used in our simulations (i.e. 200). Indeed, the predictive performance 
of SDMs was shown to stabilise at sample size equal to or larger 
than 200 observations (Guisan et al., 2017; Hanberry et al., 2012). 
Crucially, and regardless of the sampling strategy, sample size should 
always increase with model complexity (i.e. number of parameters 
to be estimated) to avoid overfitting and, as a result, improve out-
of-sample prediction of species occurrence. In this regard, a com-
mon ‘rule of thumb’ for logistic regression is that of guaranteeing at 
least 10 observations of the least abundant class between presences 
and absences per predictor (Collart & Guisan, 2023, and references 
therein). In case very few presence records are available, as it often 
happens for extremely rare and specialist species, specific modelling 
techniques such as ‘ensembles of small models’ (Breiner et al., 2015) 
or phylogeny-informed algorithms (Mondanaro et al.,  2023) could 
be adopted. Third, while data on species presence are increasingly 
available for a wider set of taxa, true absences from field observa-
tions, which require resource-intensive field campaigns, are very 
often replaced by pseudo-absences or background points. In this 
case, recent approaches for uniformly sampling pseudo-absences 
in the environmental space (Da Re et al., 2023) could be a valuable 
alternative to the more common procedure of randomly generating 
(plausible) absence points across the study area.

Importantly, real-life issues related to SDMs can strongly affect 
the performance of the sampling strategies. Here, we considered the 
effect of incompletely sampling the environmental space or exclud-
ing important predictors, but we acknowledge that other, equally 
important factors, for example, location and survey error (Gábor 
et al., 2022) or the lack of a priori knowledge on the shape of the 
species response curve may affect the performance of the tested 
sampling approaches. We, therefore, envisage the use of simulation-
based approaches for testing the performance of different sampling 
strategies under a wider set of potential modelling-related issues. 
That being said, insights stemming from our simulations might be 
challenged by SDMs fitted using empirical data and dealing with 
more complex scenarios, as comparing the performance of different 
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sampling approaches required us to adopt simplified and controlled 
settings (e.g. a low number of parameters). Finally, although our 
study is designed with plant ecology in mind, its rationale could be 
extended to improve the modelling of the distribution of other bio-
logical organisms.

AUTHOR CONTRIBUTIONS
MB conceptualised the study with MGS and VB; MB analysed the 
data with inputs from VB and JL; MB and MGS wrote the first draft 
of the manuscript. All authors discussed the results, contributed to 
the improvement of the first manuscript version and gave their final 
approval for publication.

ACKNO​WLE​DG E​MENTS
All authors are grateful to Dr. Joaquin Hortal (Department of 
Biogeography and Global Change of the Museo Nacional de 
Ciencias Naturales—CSIC), who provided a friendly review on the 
manuscript.

FUNDING INFORMATION
MB acknowledges funding from the European Union's Horizon 
Europe research and innovation programme under the Marie 
Skłodowska-Curie grant agreement No 101066324. MGS acknowl-
edges funding from the European Union's Horizon Europe research 
and innovation programme under the Marie Skłodowska-Curie grant 
agreement No 101090344. DDR is supported by the FRS-FNRS. ET 
acknowledges funding from the Estonian Research Council (grant 
MOBJD1030).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The results presented in this manuscript are the product of simu-
lated data. The R code of the simulations is available at: https://
github.com/Manue​leBaz​ziche​tto/Sampl​ingRe​spCurves.

E THIC S APPROVAL S TATEMENT
Not applicable.

ORCID
Manuele Bazzichetto   https://orcid.org/0000-0002-9874-5064 
Jonathan Lenoir   https://orcid.org/0000-0003-0638-9582 
Daniele Da Re   https://orcid.org/0000-0002-3398-9295 
Enrico Tordoni   https://orcid.org/0000-0002-9722-6692 
Duccio Rocchini   https://orcid.org/0000-0003-0087-0594 
Marco Malavasi   https://orcid.org/0000-0002-9639-1784 
Vojtech Barták   https://orcid.org/0000-0001-9887-1290 
Marta Gaia Sperandii   https://orcid.org/0000-0002-2507-5928 

R E FE R E N C E S
Albert, C. H., Yoccoz, N. G., Edwards, T. C., Jr., Graham, C. H., 

Zimmermann, N. E., & Thuiller, W. (2010). Sampling in ecology 

and evolution–bridging the gap between theory and practice. 
Ecography, 33(6), 1028–1037.

Austin, M. (2007). Species distribution models and ecological theory: A 
critical assessment and some possible new approaches. Ecological 
Modelling, 200(1–2), 1–19.

Baker, D. J., Maclean, I. M., Goodall, M., & Gaston, K. J. (2022). 
Correlations between spatial sampling biases and environmen-
tal niches affect species distribution models. Global Ecology and 
Biogeography, 31(6), 1038–1050.

Bazzichetto, M., Massol, F., Carboni, M., Lenoir, J., Lembrechts, J. J., Joly, 
R., & Renault, D. (2021). Once upon a time in the far south: Influence 
of local drivers and functional traits on plant invasion in the harsh 
sub-Antarctic islands. Journal of Vegetation Science, 32(4), e13057.

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in 
the GBIF database and its effect on modelling species' geographic 
distributions. Ecological Informatics, 19, 10–15.

Bolker, B. M. (2008). Ecological models and data in R. Princeton University 
Press.

Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming 
limitations of modelling rare species by using ensembles of small 
models. Methods in Ecology and Evolution, 6(10), 1210–1218.

Chefaoui, R. M., Lobo, J. M., & Hortal, J. (2011). Effects of species' traits 
and data characteristics on distribution models of threatened in-
vertebrates. Animal Biodiversity and Conservation, 34(2), 229–247.

Chiffard, J., Marciau, C., Yoccoz, N., Mouillot, F., Duchateau, S., Nadeau, 
I., Fontanilles, P., & Besnard, A. (2020). Adaptive niche-based sam-
pling to improve ability to find rare and elusive species: Simulations 
and field tests. Methods in Ecology and Evolution, 11(8), 899–909. 
https://doi.org/10.1111/2041-210X.13399

Collart, F., & Guisan, A. (2023). Small to train, small to test: Dealing with 
low sample size in model evaluation. Ecological Informatics, 75, 
102106.

Da Re, D., Tordoni, E., Lenoir, J., Lembrechts, J. J., Vanwambeke, S. O., Rocchini, 
D., & Bazzichetto, M. (2023). USE it: Uniformly sampling pseudo-
absences within the environmental space for applications in habitat 
suitability models. EcoEvoRxiv https://doi.org/10.32942/​X2XS32

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review 
of Ecology, Evolution and Systematics, 40(1), 677–697.

Feldman, M. J., Imbeau, L., Marchand, P., Mazerolle, M. J., Darveau, M., 
& Fenton, N. J. (2021). Trends and gaps in the use of citizen science 
derived data as input for species distribution models: A quantitative 
review. PLoS One, 16(3), e0234587.

Fernandes, R. F., Scherrer, D., & Guisan, A. (2018). How much should 
one sample to accurately predict the distribution of species assem-
blages? A virtual community approach. Ecological Informatics, 48, 
125–134.

Gábor, L., Jetz, W., Lu, M., Rocchini, D., Cord, A., Malavasi, M., Zarzo-
Arias, A., Barták, V., & Moudrý, V. (2022). Positional errors in spe-
cies distribution modelling are not overcome by the coarser grains 
of analysis. Methods in Ecology and Evolution, 13(10), 2289–2302. 
https://doi.org/10.1111/2041-210X.13956

Gábor, L., Moudrý, V., Barták, V., & Lecours, V. (2020). How do spe-
cies and data characteristics affect species distribution models 
and when to use environmental filtering? International Journal of 
Geographical Information Science, 34(8), 1567–1584.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/
hierarchical models. Cambridge university press.

Gu, W., & Swihart, R. K. (2004). Absent or undetected? Effects of 
non-detection of species occurrence on wildlife–habitat models. 
Biological Conservation, 116(2), 195–203.

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability 
and distribution models: With applications in R. Cambridge University 
Press.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution 
models in ecology. Ecological Modelling, 135(2–3), 147–186.

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13725 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/ManueleBazzichetto/SamplingRespCurves
https://github.com/ManueleBazzichetto/SamplingRespCurves
https://orcid.org/0000-0002-9874-5064
https://orcid.org/0000-0002-9874-5064
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0002-3398-9295
https://orcid.org/0000-0002-3398-9295
https://orcid.org/0000-0002-9722-6692
https://orcid.org/0000-0002-9722-6692
https://orcid.org/0000-0003-0087-0594
https://orcid.org/0000-0003-0087-0594
https://orcid.org/0000-0002-9639-1784
https://orcid.org/0000-0002-9639-1784
https://orcid.org/0000-0001-9887-1290
https://orcid.org/0000-0001-9887-1290
https://orcid.org/0000-0002-2507-5928
https://orcid.org/0000-0002-2507-5928
https://doi.org/10.1111/2041-210X.13399
https://doi.org/10.32942/X2XS32
https://doi.org/10.1111/2041-210X.13956


    |  13BAZZICHETTO et al.

Haider, S., Lembrechts, J. J., McDougall, K., Pauchard, A., Alexander, J. 
M., Barros, A., Cavieres, L. A., Rashid, I., Rew, L. J., Aleksanyan, A., 
Arévalo, J. R., Aschero, V., Chisholm, C., Clark, V. R., Clavel, J., Daehler, 
C., Dar, P. A., Dietz, H., Dimarco, R. D., … Seipel, T. (2022). Think glob-
ally, measure locally: The MIREN standardized protocol for monitor-
ing plant species distributions along elevation gradients. Ecology and 
Evolution, 12(2), e8590. https://doi.org/10.1002/ece3.8590

Hanberry, B. B., He, H. S., & Dey, D. C. (2012). Sample sizes and model 
comparison metrics for species distribution models. Ecological 
Modelling, 227, 29–33.

Hattab, T., Garzón-López, C. X., Ewald, M., Skowronek, S., Aerts, R., 
Horen, H., Brasseur, B., Gallet-Moron, E., Spicher, F., Decocq, G., 
Feilhauer, H., Honnay, O., Kempeneers, P., Schmidtlein, S., Somers, 
B., van de Kerchove, R., Rocchini, D., & Lenoir, J. (2017). A unified 
framework to model the potential and realized distributions of in-
vasive species within the invaded range. Diversity and Distributions, 
23(7), 806–819. https://doi.org/10.1111/ddi.12566

Hirzel, A., & Guisan, A. (2002). Which is the optimal sampling strategy for 
habitat suitability modelling. Ecological Modelling, 157(2–3), 331–341.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). 
Evaluating the ability of habitat suitability models to predict species 
presences. Ecological Modelling, 199(2), 142–152.

Hollister, J. W. (2021). Elevatr: Access elevation data from various APIs. R 
package version 0.4.1. https://CRAN.R-proje​ct.org/packa​ge=eleva​tr/

Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations 
and communities to environmental changes of the late quaternary. 
Paleobiology, 26(S4), 194–220.

Jeliazkov, A., Gavish, Y., Marsh, C. J., Geschke, J., Brummitt, N., Rocchini, 
D., Haase, P., Kunin, W. E., & Henle, K. (2022). Sampling and model-
ling rare species: Conceptual guidelines for the neglected majority. 
Global Change Biology, 28(12), 3754–3777. https://doi.org/10.1111/
gcb.16114

Jiménez-Valverde, A. (2021). Prevalence affects the evaluation of dis-
crimination capacity in presence-absence species distribution mod-
els. Biodiversity and Conservation, 30(5), 1331–1340.

Kadmon, R., Farber, O., & Danin, A. (2003). A systematic analysis of 
factors affecting the performance of climatic envelope models. 
Ecological Applications, 13(3), 853–867.

Kadmon, R., Farber, O., & Danin, A. (2004). Effect of roadside bias on 
the accuracy of predictive maps produced by bioclimatic models. 
Ecological Applications, 14(2), 401–413.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-
Auza, R. W., Zimmermann, N. E., Peter Linder, H., & Kessler, M. 
(2017). Climatologies at high resolution for the earth's land sur-
face areas. Scientific Data, 4(1), 1–20. https://doi.org/10.1038/
sdata.2017.122

Lájer, K. (2007). Statistical tests as inappropriate tools for data analy-
sis performed on non-random samples of plant communities. Folia 
Geobotanica, 42(2), 115–122.

Leandro, C., Jay-Robert, P., Mériguet, B., Houard, X., & Renner, I. 
W. (2020). Is my sdm good enough? Insights from a citizen sci-
ence dataset in a point process modeling framework. Ecological 
Modelling, 438, 109283.

Lobo, J. M. (2008). More complex distribution models or more repre-
sentative data? Biodiversity Informatics, 5(January). https://doi.
org/10.17161/​bi.v5i0.40

Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain na-
ture of absences and their importance in species distribution mod-
elling. Ecography, 33(1), 103–114.

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading 
measure of the performance of predictive distribution models. 
Global Ecology and Biogeography, 17(2), 145–151.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. CRC Press.
McPherson, J., & Jetz, W. (2007). Effects of species' ecology on the accu-

racy of distribution models. Ecography, 30(1), 135–151.
Mondanaro, A., Di Febbraro, M., Castiglione, S., Melchionna, M., 

Serio, C., Girardi, G., Belfiore, A. M., & Raia, P. (2023). ENphylo: 
A new method to model the distribution of extremely rare spe-
cies. Methods in Ecology and Evolution, 14(3), 911–922. https://doi.
org/10.1111/2041-210X.14066

Newbold, T. (2010). Applications and limitations of museum data for con-
servation and ecology, with particular attention to species distribu-
tion models. Progress in Physical Geography, 34(1), 3–22.

Padgham, M., Lovelace, R., Salmon, M., & Rudis, B. (2017). osm-
data. Journal of Open Source Software, 2(14), 305. https://doi.
org/10.21105/​joss.00305

Roleček, J., Chytrý, M., Hájek, M., Lvončík, S., & Tichý, L. (2007). Sampling 
design in large-scale vegetation studies: Do not sacrifice ecological 
thinking to statistical purism! Folia Geobotanica, 42(2), 199–208.

Tessarolo, G., Lobo, J. M., Rangel, T. F., & Hortal, J. (2021). High uncer-
tainty in the effects of data characteristics on the performance of 
species distribution models. Ecological Indicators, 121, 107147.

Tessarolo, G., Rangel, T. F., Araújo, M. B., & Hortal, J. (2014). Uncertainty 
associated with survey design in species distribution models. 
Diversity and Distributions, 20(11), 1258–1269.

Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. 
(2014). Environmental filters reduce the effects of sampling bias 
and improve predictions of ecological niche models. Ecography, 
37(11), 1084–1091.

Wasof, S., Lenoir, J., Aarrestad, P. A., Alsos, I. G., Scott Armbruster, 
W., Austrheim, G., Vegar, B., John, H., Birks, B., Bråthen, K. A., 
Broennimann, O., Brunet, J., Bruun, H. H., Dahlberg, C. J., Diekmann, 
M., Dullinger, S., Dynesius, M., Ejrnæs, R., Gégout, J.-C., … Decocq, 
G. (2015). Disjunct populations of European vascular plant species 
keep the same climatic niches. Global Ecology and Biogeography, 
24(12), 1401–1412. https://doi.org/10.1111/geb.12375

BIOSKE TCH

Manuele Bazzichetto is a vegetation ecologist broadly interested 
in what drives plant diversity change across space and time. He 
is currently a postdoctoral fellow at the Czech University of Life 
Sciences, where he investigates the impact of extreme climatic 
events on the stability of ecosystem functions.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Bazzichetto, M., Lenoir, J., Da Re, D., 
Tordoni, E., Rocchini, D., Malavasi, M., Barták, V., & 
Sperandii, M. G. (2023). Sampling strategy matters to 
accurately estimate response curves' parameters in species 
distribution models. Global Ecology and Biogeography, 00, 
1–13. https://doi.org/10.1111/geb.13725

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13725 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/ece3.8590
https://doi.org/10.1111/ddi.12566
https://cran.r-project.org/package=elevatr/
https://doi.org/10.1111/gcb.16114
https://doi.org/10.1111/gcb.16114
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.17161/bi.v5i0.40
https://doi.org/10.17161/bi.v5i0.40
https://doi.org/10.1111/2041-210X.14066
https://doi.org/10.1111/2041-210X.14066
https://doi.org/10.21105/joss.00305
https://doi.org/10.21105/joss.00305
https://doi.org/10.1111/geb.12375
https://doi.org/10.1111/geb.13725

	Sampling strategy matters to accurately estimate response curves' parameters in species distribution models
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Simulations of plant virtual species and their sampling
	2.2|Beyond simulations: Accounting for real-­life issues associated with species distribution modelling

	3|RESULTS
	3.1|Performance of sampling strategies
	3.2|Results for missing covariates and incomplete sampling of the environmental space

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ETHICS APPROVAL STATEMENT
	REFERENCES
	BIOSKETCH


