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Abstract

Cauchy-elastic solids include hyper-elasticity and a subset of elastic materials for which the
stress does not follow from a scalar strain potential. More in general, hypo-elastic materials
are only defined incrementally and comprise Cauchy-elasticity. Infringement of the hyper-
elastic ‘dogma’ is so far unattempted and normally believed to be impossible, as it apparently
violates thermodynamics, because energy may be produced in closed strain cycles. Contrary
to this belief, we show that non-hyper-elastic behavior is possible and we indicate the way
to a practical realization of this new concept. In particular, a design paradigm is established
for artificial materials where follower forces, so far ignored in homogenization schemes, are
introduced as loads prestressing an elastic two-dimensional grid made up of linear elastic rods
(reacting to elongation, flexure and shear). A rigorous application of Floquet-Bloch wave
asymptotics yields an unsymmetric acoustic tensor governing the incremental dynamics of
the effective material. The latter is therefore the incremental response of a hypo-elastic solid,
which does not follow from a strain potential and thus does not belong to hyper-elasticity.
Through the externally applied follower forces (which could be originated via interaction with
a fluid, or a gas, or by application of Coulomb friction, or non-holonomic constraints), the
artificial material may adsorb/release energy from/to the environment, and therefore produce
energy in a closed strain loop, without violating any rule of thermodynamics. The solid is
also shown to display flutter, a material instability corresponding to a Hopf bifurcation, which
was advocated as possible in plastic solids, but never experimentally found and so far believed
to be impossible in elasticity. The discovery of elastic materials capable of sucking up or
delivering energy in closed strain cycles through interaction with the environment paves the
way to realizations involving micro and nano technologies and finds definite applications in
the field of energy harvesting.

Keywords Cauchy-elasticity · Follower forces · Dynamic homogenization · Hypo-elasticity ·
Bloch waves

1 Introduction

In a Cauchy-elastic solid, the state of stress at a point in the current configuration remains deter-
mined by the state of strain at that point, measured with respect to an arbitrarily chosen reference
configuration. Consequently, the Cauchy stress does not depend on the deformation path followed
from the reference configuration, even if the work done by the stress may be path-dependent. When
it is not, the material is called hyper-elastic and the stress can be derived from a strain potential.
Therefore, Cauchy-elasticity defines a set of constitutive responses broader than hyper-elasticity,
thus comprising materials for which a strain potential cannot be defined.

A constitutive response more general than Cauchy-elasticity is hypo-elasticity, defined only
incrementally and with the sole constraint that strain is incrementally recovered upon unloading.

∗Corresponding author: e-mail: bigoni@ing.unitn.it; phone: +39 0461 282507.
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Therefore, the elastic fourth-order tensor lacks the major symmetry and a strain potential does
not exist, except for special classes of material responses, for instance hyper-elasticity [1, 2].

In a linearized theory, the incremental stress is merely determined by the incremental strain and,
when the transformation is non-Hermitian, the potential is absent, so that the material can produce
or absorb energy when subject to a closed loop of strain. The latter circumstance leads to possible
dynamic material instabilities and is believed to preclude the existence of a passive material of
that nature, which would violate general restrictions from thermodynamics in an isolated system.
This belief is rooted in the beginning of the nineteenth century, when George Green [3] established
the symmetry of the elastic laws1 and Lord Kelvin [5] pointed out the concept of strain energy
function for elastic materials2, called now hyper-elastic.

While hyper-elasticity has become a reference theory and elastic materials are ubiquitous, hypo-
elasticity and Cauchy-elasticity not following from a potential have been abandoned, so that the
latter materials are unknown and believed to be excluded from the real world. Despite this belief,
a rigorous application of homogenization theory is provided in the present article to show that

passive elastic materials without a strain energy potential are possible.

In particular, Floquet-Bloch wave asymptotics is used to find the effective behavior for the in-plane
incremental response of a periodic grid of elastic rods, prestressed by follower forces. From these
forces, generated as an the interaction with an ‘environment’, the material can absorb energy, so
that production or release of work in a closed strain cycle does not violate thermodynamics. The
effective material is given through the explicit, closed-form calculation of its unsymmetric acoustic
tensor. This unsymmetry proves that the effective elastic material does not admit a strain potential
and thus is a hypo-elastic or a Cauchy-elastic material.

The effective hypo-elastic material is found to suffer instabilities, in particular, flutter instabil-
ity, a Hopf bifurcation which was advocated [6], although never indisputably experimentally found,
to be possible in plastic materials, but not in elastic ones3. Remarkably, flutter instability is found
to occur under a tensile follower load, a result so far believed to be achievable only through the
use of sliding constraints, in analogy with the buckling in tension [10]. The development of flutter
instability is investigated by comparing the response of the periodic lattice to a pulsating concen-
trated force (analyzed numerically via the finite element method) with its corresponding effective
hypo-elastic medium (analyzed analytically with the relevant infinite-body dynamic Green’s func-
tion [9]). This comparison, never so far attempted, shows that the blowing-up nature of flutter
can be replicated in an artificial elastic material, when subject to follower forces.

It is noted in closure that the results presented in this article share some common points
with the so-called ‘non-Hermitian systems’ investigated in the dynamics of metamaterials. These
materials can exchange energy with their surroundings, but have been introduced as active [11–
16], so that they contain motors, actuators, or piezoelectric devices, which can apply non-trivial
forces or change the properties of the elements internal to the system itself. Moreover, many of the
realizations so far presented are unidimensional and no attempt has ever been made to derive an
effective material behavior in which the elastic tensor lacks the major symmetry. A more detailed

1Lord Kelvin, (1883, Sect. 673) [4] writes “[The linear elastic stress-strain] equations express the six components
of stress as linear functions of the six components of strain with 15 equalities among their 36 coefficients, which
leave only 21 of them independent. [...] But it is only by the principle of energy that, as first discovered by Green,
the fifteen pairs of these coefficients are proved to be equal”.

2Lord Kelvin (1855) writes “the work required to strain the body from one to another of two given mechanical
states, keeping it always at the same temperature, is independent of the particular succession of mechanical states
through which it is made to pass, and is always the same when the initial and final states are the same. This
theorem was, I believe, first given by Green (as a consequence, I suppose, of the most general conceivable hypothesis
that could be framed to explain the mutual actions of the different parts of a body on which its elasticity depends),
who inferred from it that there cannot be 36, but only 21, independent coefficients of elasticity [...]. It is now
demonstrated as a particular consequence of the Second General Thermodynamic Law”.

3Among the material instabilities that can be captured by continuum models, flutter instability still remains the
most elusive. A continuum material capable of displaying such dynamic instability has been shown to be possible
through a non-associative elastoplastic constitutive law [7–9]. However, the origin of the constitutive law used so
far is phenomenological, so that connections between constitutive parameters and microstructure are not clearly
determined. Moreover, flutter is predicted to occur considering only the loading branch of the piece-wise linear
constitutive operator of plasticity, so that the real nonlinear behavior is unknown. The present study proves the
existence of an alternative way to achieve flutter instability through an elastic material.
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presentation of results already available is postponed to Appendix A, where the interested reader
is referred.

The architected elastic materials explored in the present article are passive, but can absorb
and release energy when subject to strain cycles of non-null area, an effect which is here related
to the concept of follower force. The passive nature of these materials lies in the fact that follower
loads can be applied to an elastic structure through passive devices by exploiting friction or non-
holonomic constraints [17, 18]. This is in stark contrast with previously mentioned results on non-
Hermitian systems, which rely on a careful tuning of feedback controls, and thus are relevant for
modeling active systems, but not for energy harvesting applications. Therefore, the combination of
the homogenization approach presented in this article with the loading strategies recently pointed
out to generate follower forces [17, 18] leads to the design of a new class of materials, never so
far explored and waiting for applications in soft devices and metamaterials, capable of harnessing
mechanical energy from the environment.

The article is organized as follows. Section 2 demonstrates the link between lack of major
symmetry in the elasticity tensor and the capability of a material to absorb/release energy during
closed deformation paths. The formulation for the non-Hermitian incremental dynamics of lattices,
preloaded by follower forces, is introduced in Section 3, while the homogenization technique leading
to the hypo-elastic effective material is developed in Section 4. A concrete example showcasing an
anisotropic lattice is presented in Section 5, where the dynamics and stability of both the effective
medium and the lattice are analyzed. Section 6 investigates the manifestation of flutter instability
in the forced response of the lattice and its corresponding effective medium.

2 A premise on lack of symmetry and the energy absorbed

or released in an infinitesimal strain cycle

The crucial feature of the elastic materials explored in this article is that the lack of the major
symmetry in the constitutive fourth-order tensor leads a material to absorb or release energy in
a closed infinitesimal cycle of strain, when this cycle encloses a non-vanishing area. Usually this
feature is believed to be obvious, so that proofs of it are never reported, even in elementary or
specialized textbooks. Therefore, the precise link between the violation of conservation of strain
energy in a material and the non-symmetry of its acoustic tensor is detailed below.

The effective material that will be shown to correspond to the incremental response of a lattice
prestressed with follower forces is characterized by an incremental response, where, adopting an
updated Lagrangian description, the increment of the first Piola-Kirchhoff stress, Ṡ, is linearly
related to the gradient of incremental displacement L through the fourth-order elastic tensor H as

Ṡ = H[L] . (1)

Being the increments in the first Piola-Kirchhoff stress and in the displacement gradient both
unsymmetric, the fourth-order tensor H lacks the left and right minor symmetries, respectively,
Hijhk 6= Hjihk and Hijhk 6= Hijkh. When an incremental strain potential exists, the tensor H

possesses the major symmetry, Hijhk = Hhkij . In the case the response is not hyper-elastic, tensor
H lacks the major symmetry, Hijhk 6= Hhkij , which is the case addressed in the present article.

Body-wave propagation in a material incrementally defined through Eq. (1) is governed by the
acoustic tensor A, function of the unit vector n, which determines the propagation direction, and
defined for every vector g as

A(n)g = H[g ⊗ n]n . (2)

Note that lack of major symmetry of H is equivalent to lack of symmetry of A, so that when
a strain potential does not exist, A is unsymmetric.

The response of a material is stable when all eigenvalues of the acoustic tensor are real and
positive. Loss of ellipticity is defined as the vanishing of one of the eigenvalues and corresponds
to the possibility of localization of deformation and shear banding. When two eigenvalues of the
acoustic tensor are complex conjugate either flutter instability (the real part of the eigenvalues is
different from zero) or divergence instability (the eigenvalues are a pure imaginary conjugate pair)
occurs.
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In order to address the consequences of the lack of the major symmetry of the fourth-order
tensor H, it is instrumental to define the incremental stress Ṡ generated by an incremental dis-
placement gradient assumed in the form L = g ⊗ n, which is

Ṡ = H[g ⊗ n] .

The infinitesimal second-order work done by the incremental stress in an infinitesimal increment
of strain in which n remains constant and g is incremented by dg can be written as

dW = Ṡ · dL = H[g ⊗ n] · dg ⊗ n = dg ·A(n)g ,

where A(n) is the acoustic tensor, Eq. (2). Thus, the work done in a closed infinitesimal loop

Fig. 1. Representative sketch of an incremental strain loop in the g-space with enclosed area Ω and ‘signed’
projections Ω1, Ω2, Ω3 involved in the energy absorbed by a non-hyper-elastic material in the closed cycle C,
Eq. (6).

C in the three-dimensional space characterized by the orthonormal basis {e1, e2, e3}, where the
components of g are g1, g2, and g3 (Fig. 1), can be written as

W(C) =

∮

C

(Ag) · dg , (3)

where the dependence of A on n is omitted. An application of the Stokes theorem to Eq. (3)
provides ∮

C

(Ag) · dg =

∫

Ω

curl (Ag) · da , (4)

where the curl is performed with respect to g and Ω is an open surface bounded by C and having
da as area element, oriented according to the right-hand rule.

The curl on the right-hand side of Eq. (4) is constant with respect to g and assumes the form

curl(Ag) = 2A[32]e1 + 2A[13]e2 + 2A[21]e3 , (5)

where A[ij] = (Aij −Aji)/2 is the skew-symmetric part of A. Therefore, only the skew-symmetric
part of A plays a role in determining the work done along a closed contour C in the strain space,
so that a chain substitution of Eqs. (5), (4) into Eq. (3) yields

W(C) = 2A[32]

∫

Ω

e1 · da

︸ ︷︷ ︸

Ω1

+2A[13]

∫

Ω

e2 · da

︸ ︷︷ ︸

Ω2

+2A[21]

∫

Ω

e3 · da

︸ ︷︷ ︸

Ω3

, (6)

where Ω1, Ω2, Ω3 can be interpreted as the ‘signed’ areas of the projections of the surface Ω onto
the coordinate planes (of unit normal ei, see Fig. 1).

The significance of Eq. (6) lies in the fact that it provides a direct way for the determination
of the loop that maximizes the absorbed/released energy. Specifically, a loop whose area elements
are aligned parallel to and in the same direction of (in the opposite direction of) the curl vector (5)
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will maximizes the scalar product (6) and thus the energy absorbed (released). In other words,
the energy (6) is maximized/minimized by loops contained in the plane orthogonal to the curl
vector (5).

For the two-dimensional setting adopted throughout the rest of the article, Eq. (6) is reduced
to

W(C) = (A21 −A12) Ω3 , (7)

where Ω3 is the ‘signed’ area of the two-dimensional loop C, positive (negative) for counterclockwise
(clockwise) loops. Eq. (7) proves that the material absorbs (releases) a net quantity of energy along
every counterclockwise cycle in the g-space for which the skew-symmetric term A21−A12 is positive
(negative).

The actual realization of an effective material possessing an unsymmetric acoustic tensor is the
central subject of the following sections.

3 Incremental dynamics of lattices preloaded by follower forces

A way is presented to introduce non-selfadjointness in the mechanics of periodic lattices, via non-
conservative loadings. In particular, it is shown how a suitable periodic configuration of follower
loads applied to a lattice of elastic rods (deforming in a plane under bending, axial and shear forces)
may induce a prestress state leading to a non-Hermitian incremental response of the system.

Note that the follower loads are transmitted by the ‘environment’ on the structure and are
assumed to be non-conservative of the tangential type, as in the well-known case of the Ziegler
double pendulum. Their practical realization cannot be achieved using tools based on a potential
energy (such as for instance springs), but necessitate special devices such as those developed by
Bigoni and co-workers [17–19].

An infinite grid (with nodes preserving continuity of displacements and rotations, so that in-
cremental bending moment is transmitted in addition to shear and normal forces) of elastic rods is
considered, obtained through the tessellation of a single unit cell C along two linearly independent
directions, defined by a pair of basis vectors {a1,a2}, Figs. 2 and 3. This configuration is assumed
to satisfy equilibrium with the externally applied forces and subject to a periodic state of axial
stress inside the rods, the prestress. The incremental displacement along the rods is defined by the
vector field

uk(sk, t) = uk(sk, t) e
t
k + vk(sk, t) e

n
k , ∀k ∈ {1, . . . , Nb} , (8)

where et
k and en

k are unit vectors aligned parallel and orthogonal to the rods (Figs. 2 and 3), so
that uk and vk denote the axial and transverse displacements, functions of the local coordinate sk
and of time, while Nb is the number of rods in a unit cell. As the rods are assumed unshearable,
the incremental rotation of the cross section is defined as θk(sk, t) = v′k(sk, t).

The linearized equations of motion governing the incremental displacement fields, to be super-
imposed on a given axially-preloaded configuration of a rod (the index k is momentarily omitted),
are

γ ü(s, t)−Au′′(s, t) = 0 , (9a)

γ v̈(s, t) +B v′′′′(s, t)− P v′′(s, t) = 0 , (9b)

where A and B are the axial and bending stiffness, respectively, the intertia is defined by the linear
mass density γ, and P is the axial preload, generated by external loads of the tangentially follower
type (the inclusion of additional dead loadings is trivial and will not be considered for simplicity).

For time-harmonic motion, u(s, t) = u(s) e−i ωt, the solution to Eqs. (9) can be cast in the
following form

u(s) = N(s;ω2, P ) q , (10)

where vector q collects the generalized incremental displacements (including rotations) at the ends
of the rod and N is a matrix of shape functions defining the exact solution. The incremental forces
transmitted at the ends of the rod can be evaluated via Eq. (10) and the second-order kinetic and
elastic potential energies for the k-th rod, denoted here as Tk and Vk, can be represented as [20]

Tk(q̇k) =
1

2
q̇k ·Mk(ω

2, Pk) q̇k , Vk(qk) =
1

2
qk ·Kk(ω

2, Pk) qk , ∀k ∈ {1, . . . , Nb} , (11)
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Fig. 2. Two-dimensional lattice structure periodically preloaded by follower forces. Periodicity of the system is
defined by the unit cell C and the direct basis {a1,a2}. The preloaded configuration B0 (shown on the left) is
assumed as reference for the incremental displacement field sketched on the right. Homogenization shows that the
effective incremental behavior of the lattice is described by an elastic material which does not follow from a scalar
strain potential. See also Fig. 3 for a detailed view of the unit cell.

where Mk and Kk are the symmetric mass and stiffness matrices of the k-th rod.
The second-order functionals (11) can conveniently be employed to build the Lagrangian of the

unit cell, L(q, q̇) = T (q̇)− V(q), by simply summing the energy contribution of each rod,

T (q, q̇) =

Nb∑

k=1

Tk(q̇k) , V(q) =

Nb∑

k=1

Vk(qk) , (12)

where vector q collects all generalized incremental displacements of the unit cell. Therefore, the
incremental dynamics of the unit cell is governed by the variational principle

− δ

∫ t1

t0

L(q, q̇) dt =

∫ t1

t0

f · δq dt , ∀δq | δq(t0) = δq(t1) = 0 , (13)

where f · δq is the virtual work done by the generalized incremental forces acting on the nodes
of the unit cell. The use of Eq. (12) in Eq. (13) yields the equations of motion in the Lagrangian
form

d

dt

∂L(q, q̇)

∂q̇
−

∂L(q, q̇)

∂q
= f , (14)

which more explicitly becomes

M(ω2,P ) q̈ +KH(ω
2,P ) q = f , (15)

where P is a Nb-dimensional vector collecting the values of preload of the rods, while M and KH

are the symmetric mass and stiffness matrix of the unit cell.
It is important to remark that the derivation of Eqs. (13)–(15) does not involve any restrictive

assumption on the nature of the incremental forces f . If these forces are derived from a potential,
a complete Hermitian formulation follows and homogenization leads to a hyper-elastic effective
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Fig. 3. Detailed view of the unit cell C of the lattice structure illustrated in Fig. 2. All joints connecting the rods
are assumed to be fully rigid, so that axial and shear forces and bending moments are incrementally generated. The
follower forces, sketched in red, are non-conservative and remain tangential to the deformed (horizontal) rod.

material. Therefore, the way to hypo-elasticity is to assume forces not descending from a potential
and, in particular, follower forces will be assumed, remaining constant in modulus and tangent to
the structural element at the point where these are applied.

3.1 Incremental virtual work contribution of follower forces

The incremental force vector f on the right-hand side of Eqs. (13)–(15) is conveniently split as

f = f̂ + fF, with fF denoting the incremental contribution of the follower loads (occurring as a
consequence of an incremental deformation), assumed to be applied only to the inner nodes of the

unit cell, and f̂ being the forces internal to the lattice that are transmitted by the neighboring
cells. Thus fF has non-zero entries corresponding to inner nodes only and f̂ has non-zero entries
corresponding to boundary nodes only. The incremental force vector fF due to follower loads is
derived as follows.

Fig. 4. Two rods of the lattice loaded by a follower force of constant magnitude and remaining always tangential to
the rods at the location where it is applied. The reference configuration is shown on the left, while an incrementally
deformed configuration is sketched on the right. Note that the application of the concentrated follower force generates
an axial preload inside the rods that is discontinuous at the junction node j but constant on each rod.

With reference to Fig. 4, a pair of rods of the lattice is considered loaded by a tangential
follower force Q(j), applied to the junction node j. For convenience, the generalized incremental
displacement vector of the j-th node is denoted as q(j) = u(j) e

t+v(j) e
n+θ(j) e

3, with e3 being the
out-of-plane unit vector e3 = et × en. Correspondingly, the generalized incremental force vector
acting at the j-th node assumes the form f(j) = H(j) e

t +V(j) e
n +M(j) e

3, where H(j) is the axial
load, V(j) the transverse load and M(j) the out-of-plane bending moment. With this notation, the

7



linearization of the virtual work associated to the follower force, performed with respect to the
preloaded equilibrium configuration, reads as

Q(j)

(
cos θ(j) e

t + sin θ(j) e
n
)
· δq(j) ∼ Q(j)

(
et + θ(j) e

n
)
· δq(j) , (16)

where Q(j) = ‖Q(j)‖ and θ(j) is the incremental rotation of the node. As the linearization is made
about an equilibrium configuration, the zeroth-order term Q(j) e

t
· δq(j) is assumed to be balanced

by the internal axial loads P , so that only the difference Q(j)

(
et + θ(j) e

n
)
· δq(j) −Q(j) e

t
· δq(j)

contributes to the incremental problem, Eq. (15). Hence, the follower load performs the incremental
virtual work

fF
(j) · δq(j) = Q(j) θ(j) e

n
· δq(j) . (17)

Eq. (17) shows that the increment of the follower force is always orthogonal to the follower force
itself, so that the incremental force fF

(j) can be expressed by means of the vectorial relation en =

e3 × et as
fF
(j) = Q(j) θ(j) e

n =
(
θ(j) e

3
)
×Q(j) . (18)

Furthermore, Eq. (17) can be rewritten more explicitly as

fF
(j) · δq(j) = Q(j) θ(j) δv(j) , (19)

an expression that highlights the unsymmetry of the follower contribution, as it is clear that no
scalar function φ exists such that δφ = Q(j) θ(j) δv(j).

It may be worth noting that, due to the external concentrated (follower) loading, the state of
preload in the lattice is necessarily piecewise constant. Consequently, the energies, Eq. (11), have
to be evaluated for each rod, considering the local value of preload. Moreover, the displacement
vector of the unit cell q necessarily contains the displacements at all the loading points.

The incremental contribution from the follower force, Eq. (17), to the right-hand side of the
variational principle, Eq. (13), can be computed by summing the contributions from all nodes
where follower loads are applied. Hence, the total incremental virtual work associated with the
follower loads can be expressed using Eq. (17) as

fF
· δq =

N∑

j=1

fF
(j) · δq(j) =

N∑

j=1

(
θ(j) e

3
)
×Q(j) · δq(j) , (20)

where N is the number of nodes in the unit cell.
Eq. (20) uniquely defines the incremental force vector fF as a linear function of the nodes’

incremental rotation θ(j). As a consequence, a unique matrix KF, which will be called follower
load matrix, can be defined

fF(q) = −KF(P ) q , (21)

where it is clear that KF 6= KT

F due to the fact that the virtual work contribution of each follower
load is unsymmetric with respect to the exchange between rotation and transverse displacement,
as shown by Eq. (19). Note that the state of preload P in the reference configuration is assumed
to be in equilibrium with the externally applied follower forces Q(j), and therefore KF depends
linearly on the preload state P .

Through the use of Eq. (21), the equations of motion of the unit cell (15) can be cast in the
following form

M(ω2,P ) q̈ +
(
KH(ω

2,P ) +KF(P )
)
q = f̂ , (22)

an equation clearly showing that the presence of follower loads provides the additional unsymmetric
stiffness term KF and also affects the matrices M and KH through the preload P . It should be
noted that if KF is set to zero with P 6= 0, Eq. (22) reduces to the governing equation holding for
the same structure subject to the same loads, but now assumed dead.

8



3.2 Wave propagation in non-Hermitian lattices

The problem of incremental wave propagation can now be formulated for the infinite lattice struc-
ture preloaded by the periodic distribution of follower forces.

By enforcing Floquet-Bloch boundary conditions in the usual linear form q = Z(k) q̃, with
k ∈ R

3 being the wave vector and q̃ the reduced vector of degrees of freedom and recalling that
Z(k)Hf̂ = 0 (where the superscript H denotes Hermitian conjugation) [20, 21], Eq. (22) becomes

Z(k)H
(
−ω2M(ω2,P ) +K(ω2,P )

)
Z(k) q̃ = 0 , (23)

where K(ω2,P ) = KH(ω
2,P )+KF(P ) is the total unsymmetric stiffness matrix. The system (23)

can concisely be rewritten as
A(ω2,k,P ) q̃ = 0 , (24)

upon introduction of the matrix

A(ω2,k,P ) = Z(k)H
(
−ω2M(ω2,P ) +K(ω2,P )

)
Z(k) . (25)

Eq. (24) governs the incremental wave propagation for the infinite lattice and has the structure
of an eigenvalue problem for the eigenfrequencies ω and eigenvectors q̃. It is highlighted that
the non-selfadjointness is related to the prestress-dependence generated through follower forces,
corresponding to a non-vanishing and unsymmetric stiffness contribution KF, so that

A(ω2,k,P )H = Z(k)H
(
−ω2M(ω2,P ) +K(ω2,P ) +KF(P )T

)
Z(k) 6= A(ω2,k,P ) .

It is therefore clear that when the follower contribution vanishes, either because only dead loads
are prescribed or because the lattice is not preloaded, Eq. (23) becomes a standard eigenvalue
problem for wave propagation in a conservative structure with real eigenvalues, ω2 ∈ R.

The presence of the follower loads alters drastically the stability properties of the lattice material.
In fact, while for dead loads (KF = 0, P 6= 0) the governing matrix A(ω2) is Hermitian4 and the
stability is defined in the usual way as

A(ω2)H = A(ω2) =⇒ ω2 ∈ R

{

ω2 > 0 stability

ω2 ≤ 0 divergence instability
(26)

when follower loads are present (KF 6= 0, P 6= 0), the governing matrix A(ω2) is non-Hermitian
and the stability scenario completely changes

A(ω2)H 6= A(ω2) =⇒ ω2 ∈ C







Im(ω2) = 0 stability (ω2 > 0)

or divergence (ω2 ≤ 0)

Im(ω2) 6= 0 flutter instability

(27)

and flutter instability becomes possible.

4 Non-hyper-elastic effective continuum via non-Hermitian

lattice wave asymptotics

A low-frequency and long-wavelength (LF-LW) asymptotic analysis of the lattice waves is devel-
oped to derive the macroscopic response of the lattice structure from the dynamics governed by
Eq. (24). This technique, never so far applied to non-Hermitian systems, shows that the unsym-
metry of the problem (23) leads to a fundamentally different asymptotics compared to the classical
homogenization of Hermitian problems [20], so that non-trivial solvability conditions come into
play.

The asymptotic approach provides a positive answer to the fundamental question of whether
the non-selfadjointness of the wave propagation problem leads to a non-selfadjoint macroscopic
response. Hence, the effective continuum is necessarily non-hyper-elastic, for which a strain-energy
function does not exists, even though the macroscopic incremental response remains both linear
and elastic.

4A matrix–valued function A(λ) is said to be Hermitian if A(λ)H = A(λ) for all λ ∈ C.
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4.1 Lattice wave asymptotics

The LF-LW asymptotics of lattice waves is developed by assuming the origin of the {ω,k}-space as
center for a series expansion of the matrix A(ω(k)2,k) and its right eigenvector q̃(k). Accordingly,
by setting k = εh with ε being a small dimensionless parameter and h a fixed vector in the k-space,
the eigenvalue ω(εh) and the eigenvector q̃(εh) are sought in a series form

ω(εh) ∼ ω
(1)
h

ε+ ω
(2)
h

ε2 + . . . , (28a)

q̃(εh) ∼ q̃
(0)
h

+ q̃
(1)
h

ε+ q̃
(2)
h

ε2 + . . . , (28b)

as solutions of the corresponding expansion of the system (24), which becomes
(

A(0) +A
(1)
h

ε+A
(2)
h

ε2 + . . .
)(

q̃
(0)
h

+ q̃
(1)
h

ε+ q̃
(2)
h

ε2 + . . .
)

= 0 , (29)

where the subscript h is meant to remind the dependence on the wave vector along which the
expansion is performed. As Eq. (29) has to be satisfied at each order, a hierarchy of linear systems
is obtained, which, up to second-order, reads

O(ε0) : A(0) q̃
(0)
h

= 0 ,

O(ε1) : A(0) q̃
(1)
h

+A
(1)
h

q̃
(0)
h

= 0 ,

O(ε2) : A(0) q̃
(2)
h

+A
(1)
h

q̃
(1)
h

+A
(2)
h

q̃
(0)
h

= 0 .

(30)

The matrix A(0) is real and singular with a non-trivial nullspace spanned by rigid-body transla-
tions, as so-called floppy modes [22–24] are excluded from the present analysis [20]. Consequently,
the existence of solutions for Eqs. (30) has to be assessed through the Fredholm alternative the-
orem. The solvability condition for the j-th equation of the system (30) can thus be written as
follows

y ·

j
∑

p=1

A
(p)
h

q
(j−p)
h

= 0 , ∀y ∈ kerA(0)T , ∀j > 0 . (31)

where the space spanned by the vectors y is the so-called left-nullspace of A(0), in other words, the

space of left eigenvectors y satisfying A(0)Ty = 0. Note that, the Rouché–Capelli theorem implies
that the nullspace and the left-nullspace of the square matrix A(0) must have the same dimension.

The crucial point to be highlighted here is that for the non-Hermitian problem (24), the matrix
A(0), although real, is not symmetric, so that its nullspace differs from its left-nullspace, with the
latter being dependent on the follower load through the matrix KF(P ). When the follower loads

vanish, KF(P ) = 0, matrix A(0) becomes symmetric, so that kerA(0)T = kerA(0), and therefore
its left-nullspace will contain only rigid-body translations. This fact will be shown to have profound
consequences both on the solvability of Eqs. (30) and on the symmetry of the resulting effective
continuum material.

4.2 The unsymmetric acoustic tensor for the hypo-elastic effective con-

tinuum

For Hermitian lattices the effective material behavior is uniquely defined by the equations of the
asymptotic expansion (30) up to second-order [20]. This result is now extended to non-Hermitian
lattices loaded with follower forces.

Up to second-order, the matrices involved in Eqs. (30) are A(0), A
(1)
h

, and A
(2)
h

, which can be
built through a series expansion of Eq. (25) as

A(0) = Z(0)H
(

K
(0)
H +KF

)

Z(0) ,

A
(1)
h

= Z
(1)
h

H
(

K
(0)
H +KF

)

Z(0) +Z(0)H
(

K
(0)
H +KF

)

Z
(1)
h

,

A
(2)
h

= Z
(2)
h

H
(

K
(0)
H +KF

)

Z(0) +Z(0)H
(

K
(0)
H +KF

)

Z
(2)
h

+

+Z
(1)
h

H
(

K
(0)
H +KF

)

Z
(1)
h

−
(

ω
(1)
h

)2

Z(0)HM (0)Z(0) ,

(32)
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where K
(0)
H and M (0) are the limits at vanishing frequency of KH and M , respectively, while Z

(j)
h

is the j-th term of the series expansion of Z(εh) centered at ε = 0. In the following, the notation

K(0) = K
(0)
H + KF is adopted for compactness. By inspecting Eqs. (32), the following features

emerge:

(i) Z
(j)
h

is real when j is even and purely imaginary when j is odd;

(ii) The matrix of follower loads KF breaks the symmetry of A(0) and the anti-symmetry of A
(1)
h

;

(iii) As for the Hermitian case, information about the eigenfrequencies starts to appear at second-

order, where the square of the first-order term of the expansion (28a), namely term
(

ω
(1)
h

)2

,

appears as a factor multiplying the inertial term.

Using expressions (32), the solution of Eqs. (30) can be constructed as follows. At the lowest

order, the only unknown is vector q̃
(0)
h

, which satisfies the homogeneous linear system

O(ε0) : Z(0)HK(0)Z(0) q̃
(0)
h

= 0 . (33)

It is easy to recognize that vectors q̃
(0)
h

in the form of rigid-body translations are the only solutions
of Eq. (33), so that5

q̃
(0)
h

= g1 t1 + g2 t2 , (34)

where the two rigid-body translations, parallel to vectors t1 and t2, and of magnitude g1 and g2 are
assumed to be mutually orthogonal for convenience. Coefficients g1 and g2 are to be determined
through solution of the higher-order equations of system (30).

The first-order expansion reported in Eqs. (30) is non-homogeneous. It becomes, with the

help of Eq. (32) and noticing that K(0)Z(0) q̃
(0)
h

= 0 because q̃
(0)
h

is a rigid-body translation, the
following expression

O(ε1) : Z(0)HK(0)Z(0) q̃
(1)
h

= −Z(0)HK(0)Z
(1)
h

q̃
(0)
h

, (35)

whose only unknown is vector q̃
(1)
h

, which is to be determined for every q̃
(0)
h

of representation (34).
As Eq. (35) is a non-homogeneous singular linear system, the solvability condition (31) needs to
be evaluated, which, specialized to Eq. (35), assumes the form

y ·Z(0)HK(0)Z
(1)
h

q̃
(0)
h

= 0 , ∀y
∣
∣
∣Z

(0)HK(0)TZ(0)y = 0 . (36)

The importance of condition (36) for non-Hermitian lattices can be appreciated by noting that this
condition is trivially satisfied when follower loads are absent, i.e. for Hermitian lattices. In fact,
when KF = 0, matrix A(0) is symmetric and thus the space of vectors y appearing in Eq.(36)
coincides with the space of rigid-body translations (34), so that condition (36) becomes

tj ·Z
(0)HK(0)Z

(1)
h

q̃
(0)
h

= q̃
(0)
h

·Z
(1)
h

T

K(0)Z(0) tj = 0 , ∀j ∈ {1, 2} ,

where the fact that Z(0) is real has been used. On the contrary, for non-Hermitian lattices, the
solvability of the first-order system (35) is not a priori guaranteed, but has to be verified on a
case-by-case basis, owing to the dependence of the left-nullspace of A(0) on the specific distribution
of follower loads.

It is now demonstrated that, when the first-order system is solvable, the second-order system
allows for the identification of the effective behavior in a way similar to the Hermitian case. Let
τ1(h) and τ2(h) be the two independent solutions of Eq. (35), respectively corresponding to t1

and t2, so that any other solution q̃
(1)
h

can be expressed through the linear combination

q̃
(1)
h

= g1 τ1(h) + g2 τ2(h) . (37)

5Note that Floquet-Bloch conditions imposed by the matrix Z(0) prevent rigid-body rotations from being ad-
missible solutions of Eq. (33).
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Using Eqs. (32), the second-order system reported in Eqs. (30) becomes

O(ε2) : Z(0)HK(0)Z(0) q̃
(2)
h

= −Z(0)HK(0)Z
(2)
h

q̃
(0)
h

+

−Z(0)HK(0)Z
(1)
h

q̃
(1)
h

−Z
(1)
h

H

K(0)Z(0) q̃
(1)
h

+

−Z
(1)
h

H

K(0)Z
(1)
h

q̃
(0)
h

+
(

ω
(1)
h

)2

Z(0)HM (0)Z(0) q̃
(0)
h

,

(38)

where q̃
(0)
h

and q̃
(1)
h

are expressed as linear combinations defined by Eqs. (34) and (37), respectively.
For simplicity, the following notation is introduced

Υ = Z(0)HK(0)Z
(1)
h

+Z
(1)
h

H

K(0)Z(0) ,

Γ = Z(0)HK(0)Z
(2)
h

+Z
(1)
h

H

K(0)Z
(1)
h

,

Ψ = Z(0)HM (0)Z(0) ,

(39)

so that, by letting y1 and y2 be the vectors spanning the left-nullspace of A(0) and using Eqs. (34), (37),
and (39), the solvability conditions for the system (38) can be written as

y1 ·

(

g1 (Γ t1 +Υ τ1) + g2 (Γ t2 +Υ τ2)−
(

ω
(1)
h

)2

Ψ (g1 t1 + g2 t2)

)

= 0 ,

y2 ·

(

g1 (Γ t1 +Υ τ1) + g2 (Γ t2 +Υ τ2)−
(

ω
(1)
h

)2

Ψ (g1 t1 + g2 t2)

)

= 0 .

(40)

Conditions (40) can be organized in a matrix form as

[

Ξ−
(

ω
(1)
h

)2

Π

]

g = 0, (41)

where

Ξ =

[
y1 · (Γ t1 +Υ τ1) y1 · (Γ t2 +Υ τ2)
y2 · (Γ t1 +Υ τ1) y2 · (Γ t2 +Υ τ2)

]

, Π =

[
y1 ·Ψ t1 y1 ·Ψ t2
y2 ·Ψ t1 y2 ·Ψ t2

]

,

which has the structure of an eigenvalue problem. The eigenvalue
(

ω
(1)
h

)2

and the corresponding

eigenvector g = {g1, g2}
T represent the linearized dispersion relation and the polarization of the

long-wavelength waveform, respectively (the lowest-order terms of the series expansion (28)). Thus
Eq. (41) defines the LF-LW behavior of the lattice structure, in other words, the behavior of the
effective continuum.

System (41) evidences the following features:

(i) Matrices Ξ and Π are real;

(ii) Matrices Υ and Γ are, respectively, linear and quadratic forms in h, so that matrix Ξ is in
turn quadratic in h;

(iii) Matrix Π is independent of h, as a consequence of the independence of Ψ from h;

(iv) Neither matrix Ξ nor Π is necessarily symmetric;

(v) Matrices Ξ and Π do not result to be uniquely defined, because they depend upon the choice
of the arbitrary vectors y1 and y2, which merely need to form a basis for the left-nullspace
of A(0).

The indeterminacy connected to the above point (v) can be solved through a left-multiplication
by ρΠ−1 of the eigenvalue problem (41), which yields

(

Ξ̂ − ρ
(

ω
(1)
h

)2

I

)

g = 0 , (42)
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where Ξ̂ = ρΠ−1
Ξ, and ρ is the average mass density of the lattice, ρ = 1

|C|

∑Nb

j=1 γj lj , with |C|

being the area of the unit cell.
The normalized problem (42) has now exactly the same structure of the eigenvalue problem

governing the wave propagation in a homogeneous elastic continuum, the so-called effective con-

tinuum. This is because Ξ̂ is a quadratic form in h, so that the eigenvalues ω
(1)
h

are homogeneous
functions of degree 1 with respect to h, characterizing the classical linear dispersion of an elastic
solid.

The remarkable feature of the eigenvalue problem (42) is the unsymmetry of the effective
acoustic tensor Ξ̂, which implies that

(i) the effective continuum is necessarily non-hyper-elastic, as an hyper-elastic material must
possess a symmetric acoustic tensor;

(ii) complex conjugate eigenvalues cannot be excluded, so that the effective solid can display a
complex dispersion, which corresponds to flutter instability.

The homogenization here presented demonstrates, in a constructive way, that non-hyper-elastic
continua can actually arise from the LF-LW limit of lattice materials that incorporates non-
conservative positional forces (follower loads). It is also shown that the resulting effective material
is still an incrementally linear and elastic material, meaning that the non-hyper-elasticity neces-
sarily follows from the lack of major symmetry of the effective constitutive operator, preventing
the existence of an incremental strain-energy potential.

The following sections provide a concrete application of the presented analysis, investigate the
stability properties of the non-hyper-elastic effective medium, and demonstrate that the latter
behaves as an artificial material capable of capturing a dynamic instability of the lattice that may
be defined as macroscopic flutter, corresponding to flutter at the scale of a continuum.

5 Breaking selfadjointness in a lattice material

The lattice configuration sketched in Fig. 5 is used to demonstrate the existence of a hypo-elastic
material response, even capable of displaying flutter instability.

The structure shown in the figure was optimized through an extensive search to identify the most
suitable symmetry class that displays flutter, occurring as the critical instability (meaning that
static bifurcations do not occur before flutter). Analysis of several structures indicates that flutter
instability is critical for fully anisotropic effective materials, while for orthotropic or cubic materials
static instabilities (macroscopic or microscopic) usually occur before flutter. This finding is in
agreement with [8, 9], where, even though in an elastoplastic constitutive framework, anisotropy
is shown to play an important role for the emergence of flutter instability.

The anisotropic lattice shown in Fig. 5 is realized by assembling together rods of three types,
labeled as 1, L, and R, which are allowed to have different values of mechanical parameters. The
geometry of the lattice can also be modified by means of the angle α ∈ (0◦, 90◦) of inclination
between the rods of type 1 and type L or R. The central rod 1 (colored in orange, Fig. 5) is
assumed to be preloaded axially with two follower loads of magnitude P applied at its ends.

In order to reduce the parameter space, the complete set of non-dimensional groups is identified,
in addition to the angle α, as follows. The dimensionless frequency and loading are defined as

Ω = ωl
√

γ1/A1 , p =
Pl2

2B1
, (43a)

(where γ∗, A∗, and B∗ are respectively the linear mass density, the axial and the bending stiffness
of the rod) while the mass density and stiffness of the rods form the following non-dimensional
groups

µL = γL/γ1 , µR = γR/γ1 , χL = AL/A1 , χR = AR/A1 ,

λ1 =
l

2
√

B1/A1

, λL =
l

4 cosα
√

BL/AL

, λR =
l

4 cosα
√

BR/AR

,
(43b)

where λ1, λL, and λR represent the slenderness of the three types of rods.

13



Fig. 5. Anisotropic lattice preloaded by a periodic distribution of follower forces. The effective material following
from homogenization is non-hyper-elastic and, at sufficiently high value of load, displays macroscopic flutter insta-
bilities. The lattice is made up of three types of rods with different mechanical properties: 1 (black/orange), L
(purple), and R (green).

Results are presented for the following values

µL = 1/25 , µR = 3/10 , χL = 1/25 , χR = 1 , λ1 = 40 , λL = 70 , λR = 40 , α = 70◦, (44)

while the loading parameter p is left free to identify the condition for flutter instability.
The numerical values (44) have been selected as representative of a structural grid that can, at

least in principle, be realized in a laboratory experiment.

5.1 Complex eigenvalues for the acoustic tensor of the effective medium

The asymptotic method outlined in Section 4 is directly applied to the anisotropic lattice reported
in Fig. 5, so that the acoustic tensor Ξ̂ governing the effective dynamic response of the material
can be identified through Eq. (42) as an explicit function of all the dimensionless parameters (43).
The numerical values (44) are adopted, so that the eigenvalues of Ξ̂ are reported as a function of
only the propagation direction n and the loading parameter p.

Eq. (42) is conveniently made dimensionless as follows

l

A1‖h‖2

(

Ξ̂(h) − ρ
(

ω
(1)
h

)2

I

)

g = 0 , (45)

so that the propagation direction can be identified as n = h/‖h‖ = cos θ e1 + sin θ e2 and the
dimensionless eigenvalues can be defined by

ζ2 =
ρ l

A1‖h‖2

(

ω
(1)
h

)2

, (46)

where the average mass density for the lattice under study is

ρ =
µL + µR + 2 cosα

sinα

γ1
l

≈ 1.09
γ1
l
.
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Fig. 6. Real and imaginary parts of the dimensionless eigenvalues ζ2 of the acoustic tensor pertinent to an effective
elastic material derived from the anisotropic lattice (Fig. 5). At null prestress, p = 0, panels (a, d) the follower
forces vanish, so that the symmetry of the acoustic tensor follows and the effective material is stable (i.e. ζ2 ∈ R+).
An increase of (tensile) axial load up to p = 10 is sufficient to produce complex conjugate eigenvalues in a narrow
range of directions centered around θ ≈ 115◦, panels (b, e). This range is broadened when the load is increased up
to p = 60, panels (c, f), where a second range of complex conjugate eigenvalues appears centered around θ ≈ 60◦.

The nature of the eigenvalues ζ2 of the acoustic tensor dictates the stability of the effective
medium which can be analyzed as a function of the loading parameter p. Fig. 6 reports results for
the solutions ζ2(θ) at three different values of loading. At vanishing axial load, p = 0, (Fig. 6a, d)
the follower forces are absent, so that the acoustic tensor is symmetric and the effective material
is stable (i.e. ζ2 ∈ R+). An increase in the magnitude of the (tensile) follower loads up to p = 10
is sufficient to generate complex conjugate eigenvalues in a narrow range of directions centered
around θ ≈ 115◦, see Fig. 6b, e. This range is broadened by further increasing the load up to
p = 60 (Fig. 6c, f), a level which also generates a second range of complex conjugate eigenvalues
centered around θ ≈ 60◦.

The results shown in Fig. 6 can be synthesized in the following statements, never previously
pointed out:

(i) The lattice material behaves as a non-hyper-elastic effective medium;

(ii) Flutter instability of the effective solid can be triggered by a tensile and follower preload.

It follows that a new and completely unexplored way is disclosed towards the realization of elastic
materials without a strain-energy potential. As shown in Section 2, these materials are able to
exchange energy with the environment by undergoing closed strain cycles of non-vanishing area.

5.2 Flutter domains vs ellipticity loss in the effective medium

The identification of the critical flutter load for the lattice follows from a computation of domains
in the space {θ, p}, where the eigenvalues (46) becomes complex conjugate, Im ζ2 6= 0. This
computation provides, in addition to the flutter load, also the fan of directions along which the
blowing-up waves characterizing flutter do appear in the forced response of the material (see
Section 6).

Fig. 7 shows flutter domains in the load p vs wave inclination θ plane, denoted by blue regions
and computed for the parameter set (44) at different values for the angle α ∈ {50◦, 60◦, 70◦, 80◦}.
In the same figure, the threshold identifying loss of ellipticity (denoted with continuous red lines)
is also reported. Ellipticity loss corresponds to the condition of localization of deformation, a
quasi-static material instability. Parts 7a, b, and c demonstrate that the effective medium can
reach flutter instability for both compressive and tensile loads. However, for compression, p < 0,
the threshold for loss of ellipticity becomes close to the flutter load, so that only a small part of
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Fig. 7. Flutter domains (blue regions in the load p vs wave inclination θ plane) and threshold for ellipticity loss
(red lines) are reported for an elastic material ‘equivalent’ to the anisotropic lattice of Fig. 5 at different values
of angle α. Note the strong dependence of the flutter regions on the inclination angle α, showing that the tensile
flutter regions (p > 0) become narrower as α is decreased from 80◦ to 60◦, until tensile flutter load does not occur at
α = 50◦, panel (d). A flutter load in compression (p < 0) is present in all four panels, with panels (a), (b), and (c)
showing that flutter occurs before ellipticity loss (as for compression |pF| < |pE|), while for α = 50◦ panel (d) shows
that flutter cannot be reached within the elliptic regime (as |pF| > |pE|).

the flutter region is attainable in compression before a macroscopic static bifurcation occurs (see
for example Fig. 7a and c).

The effective material remains, instead, elliptic under a tensile follower loading (p > 0), so
that the flutter regions can be reached without prior encountering any static bifurcations.

Moreover, the dependence of the flutter regions on the angle α is quite strong, as demonstrated
by the severe narrowing of the flutter region in tension caused by the decrease of α from 80◦

(Fig. 7a) to 70◦ (Fig. 7b), as well as by the complete disappearance of tensile flutter loads for
α = 50◦. Fig. 7d also shows that flutter is still present in compression, but the region cannot be
attained without first encountering a loss of ellipticity.

These results demonstrates the extreme tunability of the anisotropic lattice, whose geometry
can be designed to reach a critical flutter instability, both in tension and compression, as well as
to avoid flutter and to meet the condition of ellipticity loss, corresponding to the localization of
deformation.
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5.3 Complex-valued lattice dispersion vs the effective medium

So far the effective medium has been the main subject of the investigation, providing evidence
that a macroscopic flutter instability can be attained for the anisotropic lattice under study. In
this section, a proof is provided that the prediction of the effective material are actually accu-
rate for capturing the LF-LW behavior of the lattice. This is conducted by comparing directly
the dispersion relation of the lattice (simulated numerically via finite elements, using COMSOL
Multiphysics®) to the wave speeds predicted by the effective medium. Furthermore, to better
characterize the dynamic behavior of the lattice also at medium/high frequency, the actual nonlin-
ear lattice dispersion is analyzed through the computation of dispersion diagrams and dispersion
surfaces.

Fig. 8 shows the first six branches of the dispersion diagram pertaining to the lattice, computed
along a fixed direction in the wave vector space defined by k = k (cos θ e1 + sin θ e2) with θ =
2 rad ≈ 115◦. This direction corresponds to flutter for the lattice inclination α = 70◦ at a critical
load pF = 1.23 (Fig. 7b) and is selected to examine the ‘nucleation’ of the complex-valued dispersion
that the effective medium predicts to occur when the follower load is increased from zero. The
dispersion diagrams is evaluated in the dimensionless space {kl,Ω}.

The figure shows the great accuracy of the homogenization, confirmed by the perfect match
between the LF-LW dispersion curves (solid colored lines) and the linear dispersion of the non-
hyper-elastic effective solid (dashed black lines). Furthermore, as the loading parameter increases
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Fig. 8. Complex dispersion diagrams (only the first six branches are reported, ordered by the real part), computed
along the direction of the wave vector k = k (cos θ e1 + sin θ e2) with θ = 2 rad ≈ 115◦, for the anisotropic lattice
(Fig. 5). Colored solid lines denote the dispersion relation for the lattice (numerically simulated via finite elements),
while the dashed black lines refer to the effective medium. The two diagrams perfectly match within LF-LW regime.
The gray horizontal line in (c) indicates the frequency Ωf = 0.13 chosen for the analysis of the forced response
reported in Fig. 12. As the follower loading is increased from p = 0, panels (a, d), complex conjugate branches
appear in the LF-LW region at p = 10, panels (b, e), as well as at higher frequency when p = 60, panels (c, f).

from p = 0 (Fig. 8a, d) to p = 10 (Fig. 8b, e), the dispersion relation becomes complex-valued
in the LF-LW region (first and second branch near kl = 0), but remains real-valued at higher
frequency. A further increase of load up to p = 60 (Fig. 8c, f) (i) leads to a higher slope of the
imaginary part of both the first and the second branch emanating from the origin, and (ii) causes
the higher branches also to become complex-valued within some intervals of the normalized wave
number kl.

The dispersion diagrams reported in Fig. 8 are useful for visualizing the formation of the
complex-valued dispersion, but they reveal the structure of the dispersion branches only along a
predefined path in the k-space. In order to fully appreciate the two-dimensional features of the
dispersion relation, the complex-valued eigenfrequencies Ω(k) corresponding to the two acoustic
branches have been computed on the full reciprocal unit cell, for −π < k1l < π and −2π cotα <
k2l < 2π cotα, and the real and imaginary parts are plotted in Fig. 9 as 3D plots in the Ω–kl
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Fig. 9. Complex dispersion surfaces of the acoustic branches for the anisotropic lattice (Fig. 5), subject to three
different levels of follower loading p = 0, 10, 60. Parts (a) and (b) refer to the case of a stable Hermitian lattice so
that the dispersion surfaces have vanishing imaginary part. As p is increased, parts (c)–(f), the acoustic branches
become complex-valued in a complex-conjugate fashion. In parts (c)–(e), the zones where the surfaces of the real
part ‘merge’ are highlighted in yellow.
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Fig. 10. Real and imaginary parts of the complex dispersion surfaces and complex slowness contours for the
two acoustic branches of the anisotropic lattice, subject to a follower loading of intensity p = 60. The severe and
localized gradients that can be observed in the real parts, panels (a)–(d), are the typical signature of a strong
dynamic anisotropy of the lattice. Parts (e)–(h) show the structure of the imaginary part of the acoustic branches
emanating from the origin of the k-space that are responsible for the macroscopic flutter instability.

19



dimensionless space to visualize the complex dispersion surfaces.
The imaginary part of the dispersion surfaces (Fig. 9) clearly shows the formation of the

complex-valued acoustic branches, triggered by the increase of the follower load from p = 0, up to
p = 10 and beyond, p = 60. Furthermore, the ‘merging’ of the real parts can be appreciated from
yellow parts (looking like lines, but having a finite area) depicted in the 3D views of Fig. 9e, to
indicate the presence of complex-conjugate eigenfrequencies. In order to provide a more distinct
visualization of the complex structure of the acoustic branches, a detailed representation of the
real and imaginary parts is reported in Fig. 10 for p = 60, where the dispersion surfaces are plotted
separately along with the corresponding slowness contours.

Fig. 10a–d shows that the real part of the dispersion surfaces is characterized by severe and
localized gradients, representing the typical signature of a strong dynamic anisotropy of the system.
On the other hand, Fig. 10e–h shows the presence of ‘islands’ of wave vectors for which there is a
non-vanishing imaginary part of the eigenfrequencies, thus revealing the directions and wavelengths
of the blowing-up wave modes, characteristic of flutter instability.

It is also worth noting that the dispersion surfaces provide a valuable information about the
presence of static bifurcation of both macro and microscopic type [20]. As can be seen in Fig. 9, the
applied tensile follower loading does not cause any eigenfrequency to vanish for any non-vanishing
wave vector, indicating that short wavelength static bifurcations are excluded. Moreover, the slope
of the acoustic branches is non-vanishing for every propagation direction, so that the effective
material remains within the elliptic range and macroscopic static bifurcations are also excluded.

The presented dispersion analysis, besides demonstrating the accuracy of the non-hyper-elastic
effective medium in the LF-LW regime, suggests also a way to trigger the macroscopic flutter
instability through the application of an external pulsating load (the dynamic Green’s function
approach [9]). It is in fact expected that, when the forcing frequency is selected within the range
of complex-valued acoustic branches (for some directions of propagation), the response of the
lattice will be characterized by waves displaying an exponential amplification, as shown in [9].
Furthermore, the case p = 60 (Fig. 8c, f) shows the simultaneous presence of multiple complex-
valued branches, in addition to those present in the LF-LW region. It may therefore be speculated
that a ‘high-frequency flutter’ might interact with macroscopic flutter, occurring at low frequency,
when a dynamic excitation is applied to the lattice. This interaction does not in fact occur, as will
be shown in Section 6 through numerical investigation of the forced response of the lattice.

It is also worth recalling that the complex-valued dispersion found here is not due to the
presence of viscosity or thermo-mechanical coupling, which simply entail a temporal damping of
the material response (see for instance [25–27]) and thus cannot produce any flutter instability.

6 Disclosing flutter at the macroscopic scale

The manifestation of macroscopic flutter is disclosed by analyzing the time-harmonic response of
the effective medium corresponding, via homogenization, to the infinite anisotropic lattice shown
in Fig. 5, when a concentrated force is applied, pulsating at sufficiently low frequency, as proposed
in [9].

The lattice response is also computed numerically through time-harmonic finite element simu-
lations, used to compare with the response of the infinite-body Green’s function. F.E. calculations
have been performed in COMSOL Multiphysics® on a finite-size square domain 350 l wide, thus
having 350 unit cells along the e1 direction. The square domain is surrounded by an additional
layer, 50 l wide, endowed with viscous damping which is properly tuned to minimize reflections back
to the inner region (thus acting as an ad-hoc PML). Each rod has been discretized using standard
Euler-Bernoulli elements (cubic shape functions) with the maximum dimension l/20. The com-
putational mesh has been selected after testing three different element sizes, l/30, l/20, and l/10,
where l/20 has been found to be the appropriate trade-off between accuracy and computational
cost. The incremental contribution of the follower loads is introduced by adding the terms given
by Eq. (20) directly to the weak form of the equations of motion of the lattice.

Two cases of follower load are considered, p = 1 and p = 60, respectively below and above
the critical load for macroscopic flutter pF ≈ 1.23 (Fig. 7b). The forcing frequency is set equal
to Ω = Ωf = 0.13, while the other lattice parameters are defined by the set of values (44). The
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Fig. 11. Time-harmonic forced response of the anisotropic lattice (upper part) and of the corresponding effective
continuum (lower part), displaying a stable behavior for p = 1 < pF (colors based on the norm of real part of the
displacement field). The material does not evidence flutter instability, so that the response is strongly anisotropic,
but decays away from the pulsating load.

response of the lattice is compared to the time-harmonic Green’s function response of a hypo-elastic
material, endowed with the effective non-symmetric acoustic tensor found via homogenization. The
time-harmonic Green’s function for an arbitrary non-symmetric constitutive law has been derived
in [9] and is not repeated here. Introducing the components n1 and n2 of the unit wave propagation
vector n, the effective acoustic tensor computed through the homogenization technique results as
follows (reported with 4 significant figures):

• For p = 1 < pF

Ξ̂(n) =
[(
0.7310n2

1 + 0.004622n1n2 + 0.006831n2
2

)
e1 ⊗ e1+

+
(
0.002312n2

1 + 0.02823n1n2 + 0.01370n2
2

)
e1 ⊗ e2+

+
(
−0.003075n2

1 + 0.02825n1n2 + 0.01345n2
2

)
e2 ⊗ e1+

+
(
0.007138n2

1 + 0.02734n1n2 + 0.1615n2
2

)
e2 ⊗ e2

]
A1/l
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• For p = 60 > pF

Ξ̂(n) =
[(
0.7318n2

1 + 0.009171n1n2 + 0.01370n2
2

)
e1 ⊗ e1+

+
(
0.004606n2

1 + 0.04323n1n2 + 0.03802n2
2

)
e1 ⊗ e2+

+
(
−0.1946n2

1 + 0.03928n1n2 + 0.02572n2
2

)
e2 ⊗ e1+

+
(
0.02300n2

1 + 0.06475n1n2 + 0.1832n2
2

)
e2 ⊗ e2

]
A1/l .

Comparisons between lattice and continuum are performed by excluding a small disk of radius 4 l,
cut around the loading point to avoid the ‘blinding’ effect caused by the logarithmic singularity
inherent to the Green’s function.

Fig. 12. Time-harmonic forced response of the anisotropic lattice (upper part) and of the corresponding effective
continuum (lower part), displaying flutter instability at p = 60 > pF (colors based on the norm of real part of the
displacement field). The response is typical of the behavior of a dynamically unstable material, evidencing blowing-
up waves traveling away from the forcing source, but localized along two preferential directions. The latter are well
captured by the spectral analysis of the effective acoustic tensor, characterized by complex-conjugate eigenvalues
(Figs. 6c, f and 7b).

Results pertaining to the case p = 1 < pF are reported in Fig. 11, showing colored density plots
of the magnitude of the normalized displacement field (only the real part is reported). In this first
figure, the follower loading is not high enough to induce complex-conjugate eigenvalues for the
effective acoustic tensor. Therefore, flutter instability does not occur and the response is strongly
anisotropic (compare parts a, c to b, d), but decays away from the pulsating load, revealing the
signature of a dynamically stable material.
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The decaying response reported in Fig. 11 is in stark contrast to the results shown in Fig. 12,
pertaining to the case p = 60 > pF. Here the follower loading is above the critical value for
flutter instability and therefore the forced response reveals the presence of wave characterized by
amplitudes exponentially growing away from the forcing source. The directions of these blowing-up
waves is in agreement with the fan of angles for which the effective acoustic tensor displays complex-
conjugate eigenvalues (Fig. 6c, f and Fig. 7b). In particular, the magnitude of the displacement
field decays in the immediate neighborhood of the loading point, but exponentially grows at a
sufficient distance and along the predicted fan of directions. Moreover, the effect related to the
direction of application of loading (horizontal in Fig. 12a, c and vertical in Fig. 11b, d) is evident
in a region close to the loading point, while at a further distance, information about the perturbing
agent is ‘obscured’ by the rapidly growing response. This suggests that the key factor for triggering
flutter instability is the state of the material and not the nature of the disturbance, a feature typical
of a material instability.

Fig. 13. Fourier transform of the lattice forced response with the superimposed real slowness contour corresponding
to the forcing angular frequency ReΩ = Ωf = 0.13. Parts (a, b) correspond to the stable response of Fig. 11a, b,
while parts (c, d) refer to the fluttering response of Fig. 12a, b. The amplitude of the Fourier tranform shows that,
for the stable case (a, b), the response is composed of waves extracted from a quite diffused part of the slowness
contour, while an increase of the loading up to p = 60 (c, d) causes a sharp concentration of the excited waves along
the parts of the slowness contour where the acoustic branches ‘merge’ to become complex-conjugate.

Fig. 12 demonstrates an excellent agreement between the lattice response and the Green’s
function of the effective medium, thus proving that the effective behavior of a lattice material loaded
by follower forces can be adequately described by a hypo-elastic, not hyper-elastic, continuum.
This, in turn, also suggests that the interaction between macroscopic flutter and ‘high-frequency
flutter’ does not occur. In fact, Fig. 12 shows that, when the forcing frequency is sufficiently
low, the possible complex-valued higher branches of the dispersion relation (e.g. those shown in
Fig. 8c, f) do not alter the manifestation of the flutter instability at the scale of the continuum.

An additional proof of the fact that the lattice is undergoing a macroscopic type of flutter
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instability can be obtained by probing the wave spectrum of the lattice response via the compu-
tation of the corresponding Fourier transform. By denoting the transform of the horizontal and
vertical displacement fields as F(u1) and F(u2) (efficiently evaluated through FFT), Fig. 13 shows
the density plot of the quantity

√

|F(u1)|2 + |F(u2)|2, providing a measure of the displacement
amplitude in the Fourier space.

Fig. 13 depicts a perfect superposition between the set of dominant waves (marked in green/yellow)
and the real slowness contour, computed at the forcing angular frequency ReΩ = Ωf = 0.13, thus
verifying the accuracy of the numerical simulations. By comparing results referred to the stable case
(Fig. 13a, b) and those pertaining to the flutter instability (Fig. 13c, d), it can be observed that,
as the loading is increased from p = 1 to p = 60, the spectrum of excited waves concentrates onto
the parts of slowness contour where the acoustic branches ‘merge’ to become complex-conjugate.
Hence, the Fourier tranform confirms that Bloch modes characterized by complex-valued dispersion
dominate the response of the lattice undergoing flutter instability.

7 Conclusions

Is it possible to design an artificial material, which is neither subject to actuation, nor temperature
changes or electromagnetic fields, and which is merely hypo-elastic and does not admit an elastic
potential? A positive answer to this question has been provided in this article. The material,
obtained as the effective response of a lattice of elastic rods prestressed with follower forces, is
passive, but at the same time may absorb energy from the environment, by performing closed
cycles in the strain space, a feature crucial for energy harvesting applications. The obtained hypo-
elastic material has been shown to be subject to flutter instability, consisting in an unbounded
growth of propagating waves. Remarkably, flutter is found not only for compressive, but also for
tensile follower loads. On the one hand, this instability has been so far considered impossible
for elastic materials, while on the other it has been advocated, but never experimentally found or
theoretically proven, for plastic materials characterized by the non-associative flow rule. Therefore,
this article proves that flutter instability is possible in an elastic continuum, thus closing a problem
remained open since at least 50 years and opening a new way to the design of unexplored materials.
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A Short review on non-Hermitian systems

Non-Hermitian response, generally associated to lack of reciprocity, has been in recent years the
focus of an intense research interest, embracing optical [28–30], quantum [31, 32], acoustical [33],
and mechanical [16, 34, 35] systems. In statics, non-reciprocity violates the Betti identity, while in
dynamics, non-reciprocity breaks the invariance occurring when source and receiver are swapped
in a medium. To eliminate this invariance in elastodynamics or to violate the Betti identity in
statics, various systems have been introduced, which are listed below.

• ‘Kinetic media’ contain moving parts or circulating flows, a simple example being a fluid in
constant motion, see for instance [36]. In these media reciprocity is lost as a consequence of
a sort of Doppler effect, which violates the source/receiver invariance, but has nothing to do
with the concept pointed out in the present article.

• Nonlinear materials do not obey the Betti reciprocity theorem, which holds in a linear theory.
Regarding nonlinear materials, however, a possible correspondence with the results presented
in this article would be a lack of the principal symmetry of the linearized material response,
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governed by an elastic fourth-order operator. This operator has never been explored so far as
connected to the lack of reciprocity in dynamics. The so-called ‘static non-reciprocity’ [37]
is known in mechanics since a long time as ‘bimodularity’ of the response of a material,
see among many others [38–40]. Bimodularity can be caused by unilateral contact, or by
the attainment of a bifurcation or an instability load. Bimodularity also occurs in a wire
(in a masonry), which can sustain tension (compression), but not compression (tension).
Bimodularity has nothing to do with the lack of the major symmetry of the elastic fourth-
order operator and is therefore not pertinent to the results presented in this article.

• Activated materials change their constitutive properties in time (or in space) in response to
an external stimulus [11–15]. Usually these systems are 1D chains, for instance [34, 35], and
therefore do not correspond to elastic two-dimensional materials (even if it can be speculated
that the 1D concept could be suitably generalized to more complex set-ups). Non-reciprocity
effects can also be found in media designed to create topologically protected wave propa-
gation, for instance introducing gyroscopes in a lattice [41–44], or non-local feedback con-
trols [16]. In the former case Ziegler [45] has shown that gyroscopic forces cannot destabilize
a conservative linear system, so that a material equivalent to the discrete system analyzed
in those papers would be crucially different from that found in the present article, which is
shown to display flutter instability. The latter case where feedback controls are introduced in
discrete systems is leading to the results closer to those reported here. However, in both cases
homogenization of the response into an effective elastic medium has not been attempted.

It is remarked that the non-Hermitian response addressed in the present article has a precise
technical meaning, namely, that the effective fourth-order elastic tensor lacks the so-called ‘major
symmetry’ (while the minor symmetries are never met in the incremental theory considered here,
based on the increment of the first Piola-Kirchhoff stress and the gradient of incremental deforma-
tion). In this sense, all the above-mentioned papers are, strictly speaking, not pertinent because
there is no comparison with an effective elastic medium. In addition, our system is passive, not
active. The generation of the follower forces used in the present article has been shown to be
possible with passive systems involving Coulomb friction [17] or non-holonomic constraints [18].
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