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Abstract— In this work, the authors have assessed the
robustness of an Economic Nonlinear Model-Predictive
Controller (ENMPC) aimed at maximizing the power pro-
duction of wind turbines. The scope of the paper is to
quantify the sensitivity of this type of controller concerning
wind conditions, climate, wind speed prediction unavail-
ability, and aerodynamic performance degradation. A power
production controller’s robustness is crucial for the wind
turbine industry due to the extreme variability of external
conditions and the wear caused by long-term continuous
operativity. Model-Predictive controllers are, in principle,
more prone to robustness issues concerning standard con-
trollers, a fact that limits their adoption on actual wind tur-
bines. The analysis is performed with the fully-aeroelastic
solver OpenFAST considering a wide set of realistic load
cases. It is demonstrated that the ENMPC previously devel-
oped is robust to wind prediction unavailability and change
in wind turbulence intensity. Conversely, it is not robust
to the modelling error due to aerodynamic degradation.
Indeed, a reduction in generated power concerning the
reference controller is observed, especially for operating
region two and end-life blades. Finally, a significant in-
crease in power production is achieved considering the ex-
ternal temperature variation thanks to the ENMPC’s direct
handling of the generator temperature constraint.

Index Terms— ENMPC, robustness, wind energy

I. INTRODUCTION

The power controller strategy of a wind turbine greatly
impacts the amount of energy it extracts from the wind. The
objective of a power controller is to maximize energy produc-
tion, maintaining the functioning point within the structural
and electric envelope to guarantee safe, reliable and efficient
production [1]. The standard wind turbine control strategy
is usually segmented into four or more operating regions.
In the simplest case, in region 1, below cut-in speed, the
generator is inoperative, whereas, between cut-in and rated
wind speed (region 2), the control strategy aims at maximizing
the generated power, which is still lower than the generator
rated power. In region 3, above rated wind speed, the controller
acts to maintain rated power as wind speed increases. Finally,
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in region 4, the generator is shut down to prevent damage
to the turbine. In region 2, several control strategies may be
used [2], [3] for the maximum power point tracking problem
(MPPT). The standard for large horizontal-axis wind turbines
is represented by the optimal torque method, in which the
generator torque is proportional to the square of rotor angular
velocity, and the blade pitch (the other control variable) is kept
constant to an almost-optimal value [4].

Although this technique is pretty easy to implement, it
represents a suboptimal choice, especially when strong tur-
bulence is present. Indeed, especially for large inertia rotors,
the controller fails to achieve optimal rotor speed when the
wind velocity suddenly changes [5]. In the last twenty years,
many improvements have been proposed to the optimal torque
method to alleviate its shortcomings. E.g., they include the
reduction of the aforementioned constant [5], to the use of
wind-speed estimation to correct the value of generator torque
[6], and the use of adaptive control [7].

Another family of wind turbine control methods is the
Nonlinear Model Predictive Control (NMPC). It can include
nonlinear aerodynamic effects (such as stall), constraints on
states and inputs and complex cost functions. Moreover, unlike
the standard control approach, in NMPC, the two main control
variables, collective blade pitch and generator torque are
usually used together throughout the operating range. Usually,
NMPC aims at tracking a predefined reference or static optimal
set points [8]–[10]. When NMPC is formulated to maximize
a cost function directly (e.g., generated power), it is referred
to as Economic NMPC (ENMPC) [11], [12]. Few examples
are available in the literature [13], [14] where an ENMPC
to maximize power production is proposed. However, in [13]
and in [14], the controller is not coupled with a high-fidelity
solver to take into account modelling error fully. Note that
in [14], the modelling error is only partially considered by
adding an error on tower’s main eigenfrequency. Moreover,
the effect of a reduced time horizon is assessed in case of a
limited prediction capacity of a nacelle LIDAR. However, the
case of a complete lack of wind prediction is not considered.

Wind turbine controller robustness is a crucial issue, owing
to the variability of atmospheric conditions (which may vary
from calm winds to storms) and the long-term continuous
operativity with relatively little maintenance. Wear and conse-
quent degradation of aerodynamic and conversion performance
is well-known, and it has been estimated that a wind turbine
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loses 12% of power output in a 20-years lifetime [15], a
rate significantly faster than those of other energy production
methods, including photovoltaic. Although this fact has an
evident repercussion on the levelized cost of energy, it also
may affect MPPT performance. For example, in the standard
optimal torque method, the controller design requires the
knowledge of the exact power curve of the turbine to evaluate
the optimal constant of proportionality between torque and
rotor kinetic energy. A misjudgment of this constant causes
a loss of power and instabilities (usually solved through
dedicated mechanisms). It is evident that, also if the optimal
nominal value of the constant is known at the design stage
(and this is hardly the case due to uncertainties), this value
would become inadequate when the power curve modifies
with turbine ageing [5], [16], [17]. Analyzing a new MPPT’s
robustness against internal and external factors is crucial in
view of its use in real-world applications.

In the literature, the methods adopted to track an optimal
reference power which includes the uncertainty of wind con-
ditions, are mainly three: 1) polytope MPC, 2) tube-based
MPC [18], [19] and 3) stochastic MPC [20]. The first two
approaches treat uncertainty as a bounded disturbance, usually
leading to a more conservative control strategy. In contrast,
the third method optimizes the desired performance index sat-
isfying probability constraints that incorporate the stochastic
information of wind speed resulting in a compromise between
the control objective and operation risk. However, the price
to pay is a higher computational load. In [20], the stochastic
and tube-based MPC are compared. Results show that both
methods are promising optimal control strategies under wind
speed disturbance, with stochastic performing better with
substantial wind variability.

In this paper, the authors investigate the robustness of
the ENMPC developed and described in detail in [21]. The
parameters considered in the robustness analysis are related
to blade degradation and atmospheric conditions (temperature,
turbulence level and availability of information about incoming
wind). Section II illustrates the reduced-order model on which
the controller is based, section III briefly outlines the controller
itself, whereas section IV reports the results of the robustness
analysis.

II. WIND TURBINE NONLINEAR REDUCED ORDER
MODEL

The model-predictive uses the nonlinear reduced-order
model (ROM) developed in [21]. Here the model is reported in
brief for the reader’s convenience. The model consists of two
states (shaft angular velocity and mean wake induced velocity)
turbine model with unsteady aerodynamics, coupled with a
1-DoF generator thermal model. The ordinary differential
equations for wind turbine aeromechanics read:

JrotΩ̇ = τaer − τgen (1)

maλ̇ = 2ρπR2λ(λ− Vw) + T (2)
In the first equation, Jrot is the rotor/transmission/generator
inertia (relative to low-speed shaft angular velocity Ω), τaer
the aerodynamic torque, and τgen the generator torque (mul-
tiplied by the gearing ratio). In the second equation, ma =

0.637ρ(4πR3/3) is the apparent aerodynamic mass, Vw is the
wind speed, λ is the wake inflow at the rotor disk (which
reduces effective wind speed when greater than zero), ρ is
the air density, R is the rotor radius, and T is the rotor
aerodynamic thrust. The aerodynamic torque and thrust can
be expressed as:

τaer = Paer/Ω = ρπR2V 3
wCP /2Ω (3)

T = 1/2ρπR2(Vw − λ)2CT (4)
where Paer is the aerodynamic power, Vw is the wind speed,
and CP and CT denote the power and thrust coefficient.

For a computationally efficient application of the model,
a map of the power and thrust coefficients is identified in
terms of Ω, β and (Vw − λ) (see [21]) through a preliminary
numerical investigation based on the open-source OpenFAST
tool [22].

Usually, the generator temperature is not considered by the
controller. However, the generator can override the rated power
for a considerable time before the generator rated temperature
is reached, starting from a lower temperature. Following [21],
a single-node model for the generator temperature is proposed:

θ̇ = −k(θ − θ0) + cPgen (5)
where θ0 is the external temperature, and k and c are param-
eters to be identified. In this work, it is assumed θ0 = 20◦C,
c = 6.67 10−8 ◦C/(Ws), and k = 1

120s
−1 (this corresponds

to a time constant of 120s). In case of an external temperature
lower than that considered during the design, the generator
could work at a power higher than rated, increasing the
power production. Conversely, a temperature higher than 20◦C
causes an overheating of the generator also for a power lower
than rated. The inclusion of this state variable in the model
gives the opportunity of increasing power production and of
avoiding generator overheating at the same time.

III. CONTROL STRATEGY

A. Reference controller

The standard controller of a Variable-Speed/Variable-Pitch
wind turbine acts differently in the two main operating regions,
region 2 and 3. Above cut-in speed but below rated wind (and
then below rated power, region 2), the controller regulates
generator torque proportionally to Ω2 to keep optimal tip-
speed ratio as wind speed increases. Here, the pitch is kept at a
fixed optimal value. Above rated wind speed and below cut-off
speed (region 3) the objective of the controller is to maintain
generated power at rated value. The blade pitch is used as
control variable in a PI controller to maintain rated angular
speed. The generator torque is adjusted to have constant power,
i.e. τ = Prat/Ω. A transition region (2.5) is usually added to
improve wind turbine performance about rated wind speed.
For a more detailed description of the reference controller,
see [4].

B. ENMPC formulation

In this work, the authors have used the ENMPC, developed
and analyzed in detail in [21]. The ENMPC consists of a
sequence of control actions defined through the solution of
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Optimal Control Problems (OCPs) over overlapping finite
time intervals. Specifically, for every update time (Tu), the
OCP over the time horizon (Th) is initialized considering the
available measurements and solved (see fig. 1).

Fig. 1. NMPC timing. Overlapping OCPs determine the control variable.

The targeted objective is the maximization of aerodynamic
power extraction under a set of constraints to avoid generator
overheating and turbine overloading.

The constraints associated with the cost function minimiza-
tion are 1) the collective pitch (control variable #1) β is
constrained to avoid blade stall and to avoid extrapolation of
the power and thrust coefficients, increasing the robustness
of the controller; 2) the generator torque τ (control variable
#2) is limited according to the installed generator; 3) the
pitch rate β̇ and the torque rate τ̇ are limited to obtain
a feasible actuation law; 4) the generator has a significant
thermal capacity, and hence the rated generator power can
be overridden for a considerable amount of time; indeed, a
generator thermal ROM is developed (see section II) and a
constraint on the generator temperature, θ, is considered; 5) the
electronics has reduced thermal capacity, and its rated power
cannot be overridden, even for a short amount of time. A
feasible approach is to oversize power electronics in terms of
rated power concerning the generator to exploit the capacity
of the generator to be overridden during functioning to extract
more energy from wind gusts about rated wind speed. Then,
a constraint directly given in terms of the generated power
P gen is considered to avoid damages to the power electronics.
In a real-world application, the power electronics rated power
should be set through an economic analysis (cost increase vs
power production increase). In this work, the electronics rated
power has been arbitrarily set 20% higher than the generator
rated power; 6) a thrust constraint is included to avoid high
loads on structures.
Thus, the ENMPC scheme over the horizon Tw reads:

max
u

J =

∫ T0+Tw

T0

Paerdt (6)

Equation (6) is subject to the dynamics defined in eqs. (1),
(2) and (5) and to the constraints listed above. Note that the
control variables are the second derivatives of actual controls
(generator torque and blade pitch) to assure controls C1
continuity [21]. Since the ROM is nonlinear and based on
maps evaluated on the entire functioning range, the controller
does not require functioning regions and switching criteria.

This work uses the code PINS to solve the OCP [23]. It
is developed by Trento University and is free for academic
use upon request. PINS is based on an indirect method where

the BVP is solved with the finite difference or collocation
approach. The indirect method relates to Pontryagin Min-
imum Principle [24] to derive the necessary conditions of
optimality [25]. A custom-designed, robust and fast nonlin-
ear solver that exploits the problem structures of the dis-
cretized BVP is used. The executable of the controller, along
with the interface with OpenFAST and the reference guide,
has been made freely downloadable at https://github.
com/lpustin/ENMPC-for-Wind-Turbines.

IV. NUMERICAL RESULTS

The widely-used NREL 5 MW wind turbine [4] is the test
case for applying the proposed control strategy. The high-
fidelity dynamic response is simulated by the open-source
software OpenFAST [22]. In [21], the assessment of the
ENMPC performance on the same turbine has attested a
significant increase in generated power between cut-in and
rated wind speeds. One of the results of [21] is the sensitivity
analysis on the effect of time horizon Th and time update Tu

on controller performance and computational effort. Here, the
optimal values found in [21] are used, i.e. Tu = 1 s, Th = 30
s. The time step is 0.2 s, sixteen times the time step used in
OpenFAST.

In this work, its robustness is investigated with respect
to 1) wind speed prediction error (section IV-A); 2) wind
turbulence (section IV-B); 3) blade degradation (section IV-
C); 4) external temperature (section IV-D); The analyses are
performed over a set of load cases (LC) covering the entire
functioning range. The baseline turbulence is the ’B’ IEC
Kaimal, and a power-law wind shear with an exponent equal
to 0.2, and a surface roughness length of 0.03 m are used.

A. Controller performances without the wind speed
prediction

In principle, the developed ENMPC requires predicting
the effective wind speed on the optimization time horizon.
However, wind speed prediction (obtained by LIDAR sensor
[26] for direct wind measurement or using a predictor based
on previous measurements [27], [28]) is often inaccurate, due
to advection and measurement error, in the former case, or
estimation error, in the latter. The current wind speed (plus a
white-noise error with amplitude 0.2 m/s) is considered to as-
sess the effect of a lack of knowledge of incoming wind in the
whole optimization time horizon. Current effective wind speed
can be obtained with an observer by available measurements
on wind turbines (an open-source implementation is available
in ROSCO [29]). Confirming the preliminary results presented
in [21], fig. 2 shows that the ENMPC power production
with and without the incoming wind speed data availability
is similar for all the LCs, if a sufficiently short time update
(Tu =1 s, see [21] for the tuning of this parameter) is used.
Moreover, fig. 2 depicts the blade pitch Standard Deviation
(SD), that can be considered an indicator for the control effort.
In the operating region 2, the reference controller keeps the
pitch constant, according to the control philosophy. In the other
cases, the ENMPC pitch SD is lower than that of the reference
controller with and without the wind prediction. Such a smooth
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Fig. 2. Generated power increment, maximum thrust increment and control effort (standard deviation of blade pitch), considering the exact
knowledge of effective incoming wind over the whole time horizon (blue bars) or considering the wind speed constant, i.e. without knowledge of
future wind (red bars).

control law is achieved thanks to the fact that there is no strict
constraint on angular speed, and the first derivative continuity
of the control law. Moreover, in the ENMPC without wind
prediction case, the blade pitch SD is higher (especially for
the operating region 3 LCs) than in the ENMPC with wind
prediction. This is attributable to the need of the controller to
recover from the wrong prediction on state evolution caused
by the wind misjudgment. Finally, in the case without wind
speed prediction, the maximum thrust peak is higher than in
the case with prediction. However, the thrust constraint is not
violated (the maximum thrust is reached only for the rated
speed, 12 m/s), and the thrust oscillations are not included in
the objective function. A future investigation could include,
especially for operating region 3, a term for penalizing thrust
oscillations in the objective function.

B. Controller robustness with respect to the wind
turbulence level

In IEC [30] standard, three levels of turbulence (’A’, ’B’,
and ’C’) are defined, with ’A’ being the most turbulent.
Usually, actual sites have lower turbulence level than the IEC
standard, which is conservative and designed for certification
purposes. Instead, it is fundamental to assess site turbulence
levels to provide an accurate estimation of Annual Energy
Production. A power maximization controller needs to be
effective with all the turbulence levels to be adopted in real-
world applications. This work assesses the controller perfor-
mance in all the IEC turbulence categories , comparing the
generated power and the maximum thrust peak with respect
to the reference controller in the same conditions.

At low wind speed, the controller performs better with the
less turbulent ”C” case (see fig. 3), whereas nearing rated
wind speed, a higher turbulence level gives a greater power
increment with respect to the reference controller. Indeed, as
described in [21], the ENMPC power increase in region 2
is related to the combined action on generator torque and
collective pitch and to the capability to predict wind turbine
dynamics in response to incoming wind. At low speed, the
error between the ROM predicted wind turbine dynamics and
the high fidelity OpenFAST dynamics decreases with lower
turbulence, and the ENMPC performances increase. At higher
wind speed, the superior capability to exploit wind gusts with
respect to the standard controller more than compensates for

Fig. 3. Increment of mean generated power and of the maximum
aerodynamic thrust peak (concerning the reference controller). The
three IEC categories of turbulence (”A”, ”B”, and ”C”, with ”A” being the
most turbulent) are shown.

the reduced ROM predictive capability, resulting in improved
performance.

Instead, near rated wind speed (operating region 2.5, 12
m/s), the advantage of using the ENMPC is greater for higher
turbulence levels, thanks to handling the generator thermal
constraint. Indeed, as described in [21], near-rated wind speed,
the power increment achieved with the controller is related to
its capability to override rated power for short transients (until
the generator temperature reaches the rated value). In such a
way, contrary to the reference controller, the ENMPC may
exploit wind bursts above rated wind speed. Such bursts are
stronger for higher turbulence.

In fully developed operating region 3 , the advantage of us-
ing the ENMPC is null since the mean generated power cannot
exceed the rated one without violating the thermal constraint.
As the reference controller, the ENMPC can maintain the rated
power for all the turbulence levels.

Although reference controller doesn’t take rotor thrust into
account, and the proposed one only considers a constraint on
it, some interesting considerations on the two controllers may
be drawn. The behaviour in region 2 and 3 are indeed clearly
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different. In region 2, there isn’t a sharp advantage of one
of the two controllers, with any level of turbulence. On the
contrary, in region 3, the proposed controller gives a clear
advantage in terms of maximum thrust, which decreases as
the wind speed increases and that is greater for higher level of
turbulence. This is probably due to the fact that the reference
controller uses the blade pitch as a control variable only in
region 3. It is well known that using pitch to control angular
velocity gives rise to an increase of vibratory level [31].
In addition, the proposed controller doesn’t impose a strict
constraint on rotor angular speed, allowing a +20% variation
with respect to the rated value of the standard controller. This
may reduce the use of collective pitch.

C. Controller robustness with respect to the wind turbine
aerodynamic degradation

Wind turbine blades are exposed to precipitations of a
variety of forms and abrasives airborne particles can accrete
and erode the surface, especially at the leading edge. This
can reduce blade performances and be a critical issue for
model predictive control. Indeed, the Reduced Order Model
prediction error increases and thus the controller performance
can drastically decrease. However, a short update time, as for
the case without wind speed prediction, can mitigate the effect
of ROM error. In [17], the effects of leading edge erosion
on wind turbine blades are analyzed. We have chosen two of
the examined cases, the ’A2’ case (only pits on the leading
edge) and the ’C4’ case (end-life blade with pits, gouges and
delamination). Since the airfoil used in [17] isn’t the same as
the NREL 5MW wind turbine, the lift and drag coefficients
are proportionally scaled. This approximation is suited for
estimating the overall trend in Annual Energy Production.
According to Tab. 3 in [17], for the case ’A2’, the lift
coefficient is decreased by 10%, and the drag one is increased
by 80%. For the ’C4’ case, the lift coefficient is decreased by
15%, and the drag one is increased by 400%.

Fig. 4. Increment of mean generated power (with respect to the
reference controller without aerodynamic degradation) for the ENMPC
and the reference controller considering different levels of aerodynamic
degradation (see tab. 3 in [17]).

In operating region 3, the ENMPC and the reference con-
trollers can maintain the rated power (see fig. 4) for both
the degradation cases, thanks to the large availability of wind
power. In the operating region 2.5 and for low degradation,
the ENMPC outperforms the standard controller, exploiting
the thermal transient to override rated power. However, both
controllers have significantly lower performance for a highly
degraded blade. Finally, in operating region 2, the ENMPC

power production is lower than the reference controller for
both levels of damage. The ROM can be updated online
during blade ageing to reduce the effect of modelling errors.
Recently, several model identification methods for uncertain or
evolving systems have been proposed, using machine learning
techniques or nonlinear model predictive controllers applied
to online model discrimination [32], [33].

D. Controller performances in the presence of external
temperature variation

Fig. 5. Increment of mean generated power concerning the reference
controller. Three external temperatures are analyzed.

In [21], for the first time to the author’s knowledge, a
controller directly handling the generator thermal constraint
has been developed. Here, the controller performances with
an external temperature variation are analyzed. Indeed, if
the external temperature is lower than the design one, the
generator heat exchange increases, and it is possible to increase
generated power. Note that a strict constraint on maximum in-
stantaneous generated power (20% the rated power) is imposed
to protect the electronics (see [21]). The sensitivity analysis
aims to show the potential of including external temperature
in the control strategy. Future investigations will focus on
a thermal high-fidelity model coupled with OpenFAST to
confirm and accurately assess the generator power increment.
Three cases of external generator temperature are analyzed:
1) the rated Text = 20°C case, where, in steady conditions,
the generator reaches reference temperature for rated power.
This is the condition considered in the previous analyses;
2) two lower external temperature cases, Text = 15°C and
Text = 10°C cases.

Figure 5 depicts the increment of the mean generator power
for the three cases. As expected, the external temperature
does not affect the power production in the operating region
2. Indeed, the generator temperature constraint is not active
for low wind speed. Conversely, for the operating region
3, the generator temperature constraint is active, and power
production increases with external temperature lower than
reference one, 20°C. Finally, for 12 m/s and 11 m/s LCs
(where rated wind speed is exceeded for a limited amount of
time), the generator temperature constraint is active only for
the Text = 20°C. Therefore the increased generator cooling
is sufficient in Text = 15°C and Text = 10°C cases to
avoid the generator temperature constraint activation, and the
same optimal solution and power production are achieved (see
fig. 5).
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V. CONCLUSIONS

The robustness of the ENMPC developed in [21] is inves-
tigated to make the controller more ready for real-world ap-
plications. The controller is coupled with the fully-aeroelastic
solver OpenFAST, and a comprehensive set of load cases are
considered in all the operating regions of interest of the wind
turbine. First, considering the unavailability of wind speed
prediction, the controller has proven to be robust. Indeed, only
a slight decrease in generated power is observed. Secondly,
three wind turbulence intensities are considered. In all the
examined cases, the controller increases power production,
without particular problems in terms of closed-loop stability.
Then, a medium and a severe case of leading edge erosion are
analyzed. Below region 3, the controller is heavily affected
by blade damage, especially for low wind speed. An online-
tuned ROM can reduce modelling error, and can help to
increase generated power in the presence of blade damage.
Finally, since the controller handles the generator temperature
constraint directly, a significant increase in power production
is achieved when the external temperature is lower, particularly
in operating region 3.
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