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ABSTRACT. Infinite dimensional oscillatory integrals with a poly-
nomially growing phase function with a small parameter € are stud-
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1. INTRODUCTION

Oscillatory integrals on finite dimensional Hilbert spaces, an expres-
sion of this form

/n e‘éq’(w)g(x)da:, (1)

(where ® : R* — R is the phase function and € € R* a real positive
parameter) are a classical topic of investigation , having several ap-
plications, e.g. in electromagnetism, optics and acoustics. They are
part of the general theory of Fourier integral operators [24, 31]. Par-
ticularly interesting is the study of the asymptotic behavior of these
integrals in the limit € | 0. The generalization of the definition of
oscillatory integrals to the case where the integration is performed on
an infinite dimensional space, in particular a space of continuous func-
tions, presents a particular interest in connection with applications to
quantum theory such as the mathematical realization of Feynman path
integrals [1, 8]. In the case where the integration is performed on such
spaces and on general real separable Hilbert spaces, the theory was for
a long time restricted to oscillatory integrals with phase functions ®
which can be written as sums of a quadratic form and a bounded func-

tion belonging to the class of Fourier transforms of complex measures.
1
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In [9, 10] these results have been generalized to phase functions with
quartic polynomial growth. In this paper we consider a generalization
of the oscillatory integral (1) and its infinite dimensional analogue, in
the case where the imaginary unity ¢ in the exponent is replaced by a
complex parameter s € Ct = {z € C : Re(z) > 0}:

I(s) = /e‘fq’(w)g(x)dx. (2)

Strictly speaking I(s) has an oscillatory behavior only for s being a
pure imaginary number. By generalizing the results of [10], we prove
(in section 2) a representation formula which allows to compute an
infinite dimensional oscillatory integral of the form (2), with a phase
function ® having an arbitrary even polynomial growth, in terms of a
Gaussian integral. In the non degenerate case (i.e. when the Hessian
of the phase function is non degenerate), we compute (in section 3) the
asymptotic expansion of the integral as € | 0 in powers of €. In the
degenerate case the situation is more involved. In section 4 we handle
in detail a particular example and apply this result to the study of
the asymptotic behavior of the trace of the heat semigroup Tr[e’%H 1,
t > 0, in the case where H is the essentially self-adjoint operator on
Cse = CP(RY) € L*(RY) given on the functions ¢ € C° by

o) = (- 28+ V(@) o) ®)

where i > 0 and V is a polynomially growing potential of the form
V(z) = |z|/*V, » € R% This corresponds to exhibiting the detailed
behavior of Tr[e_%H], t > 0, "near the classical limit”. Indeed H can
be interpreted as a Schrodinger Hamiltonian, (in which case 7 is the
reduced Planck’s constant) and consequently e as a Schrodinger
semigroup (heat semigroup). In recent years a particular interest has
been devoted to the study of the trace of the heat semigroup and of
the corresponding Schrodinger group e wH ,t € R, (related to the heat
semigroup by analytic continuation in the ”time variable” ¢) and their
asymptotics in the ”semiclassical limit & | 0”7 (see, e.g., [40], [1, 3, 4]
and also [15, 13, 14, 17] for related problems). In particular one is
interested in the proof of a trace formula of Gutzwiller’s type, relating
the asymptotics of the trace of the Schrodinger group and the spectrum
of the quantum mechanical energy operator H with the classical peri-
odic orbits of the system. Gutzwiller’s heuristic trace formula, which
is a basis of the theory of quantum chaotic systems, is the quantum
mechanical analogue of Selberg’s trace formula, relating the spectrum
of the Laplace-Beltrami operator on manifolds with constant negative
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curvature with the periodic geodesics (see, e.g., [21] and [2, 3, 4].

In the case where the potential V' is the sum of an harmonic oscillator
part and a bounded perturbation V that is the Fourier transform of
a complex (bounded variation) measure on R?, some rigorous results
on the asymptotics of the trace of the Schrodinger group and the heat
semigroup have been obtained in [3, 4] by means of an infinite dimen-
sional version of the stationary phase method for infinite dimensional
oscillatory integrals (see [8] for a review of this topic).

The paper is organized as follows. In section 2 we give the definition
and the main results on infinite dimensional oscillatory integrals of the
form (2) with a polynomial phase function @, in section 3 we study
the asymptotic expansion of the integral in the case where the origin
is a non degenerate critical point of ®, while in section 4 we study a
degenerate case and apply these results to the asymptotics of Tr[e_%H ],
t>0,as h{0.

2. INFINITE DIMENSIONAL OSCILLATORY INTEGRALS

The present section is devoted to the study of the oscillatory inte-
grals with complex parameter s. In the following we shall denote by
(H,{, ),|l ||) a real separable infinite dimensional Hilbert space, s will
be a complex number such that Re(s) > 0, g : # — C a Borel function.
Let us consider the generalization of the oscillatory integral (1) to the
case (2) where the imaginary unity ¢ in the exponent is replaced by a
complex parameter s € Ct = {z € C : Re(z) > 0}:

I(s) = /n e ¢ *@g(z)dx. (4)

In the case where s is a pure imaginary number, by exploiting the os-
cillatory behavior of the integrand, the oscillatory integral (4) can still
be defined as an improper Riemann integral even if the (continuous)
function ¢ is not summable. In the case where the phase function & is
a quadratic form, the integral (4) is called Fresnel integral. We propose
here for the general case (4) a modification of the Hérmander’s defini-
tion [24], also considered in [18, 6] in connection to the generalization
to the infinite dimensional case. This modification is as follows:

Definition 1. Let f : R®* — C be a Borel function, s € C* a complex
parameter. Let S be a subset of the space of the Schwartz test functions

S(R™). If for each ¢ € S such that $(0) = 1 the integrals

I5(f, ) = / (2ms™) 2 31oF f (2)(6)

n
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exist for all § > 0 and lims_o I5(f, @) erists and is independent of ¢,
then this limit is called the Fresnel integral of f with parameter s (with
respect to the space S of regqularizing functions) and denoted by

7= | e () (5)

By an adaptation of the definition of infinite dimensional oscillatory
integrals given in [18] it is possible to define the oscillatory integral with
parameter s on the Hilbert space H, namely

I(s) = / e eI g (2 (6)

H

as the limit of a sequence of (suitably normalized) finite dimensional
approximations [4].

Definition 2. A Borel measurable function f : H — C is called F?*
integrable if for each sequence { P, }nen of projectors onto n-dimensional
subspaces of H, such that P, < P,y and P, — I strongly asn — oo (I
being the identity operator in H), the finite dimensional approzimations
of the Fresnel integral of f, with parameter s,

—~——

0= sﬂeg”P"”'Pf(an)d(Pnﬂﬁ) (7)

exists (in the sense of definition 1) and the limit lim,,_, F3 (g) exists
and is independent of the sequence {P,}.
In this case the limit is called the infinite dimensional Fresnel integral
of [ with parameter s and is denoted by

/se%”gcnzf(x)dx.

H

f is then said to be integrable (in the sense of Fresnel integrals with
parameter s).

The description of the largest class of functions which are integrable
in this sense is an open problem, even in the finite dimensional case.
Clearly it depends on the class S of the regularizations. The common
choiceis § = S(R"), [18, 6]. In this case [18, 8, 6] the space of integrable
functions includes (in finite as well as in infinite dimensions) the Fresnel
class F(H), that is the set of functions f : H — C that are Fourier
transforms of complex bounded variation measures on H:

f@) = [ ) = igle), a e
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sup Y _ |17 (Ei)| < oo,
%

where the supremum is taken over all sequences {E;} of pairwise dis-
joint Borel subsets of H, such that U;E; = H.
In fact for any f € F(#H) it is possible to prove a Parseval type equality
that allows to compute the infinite dimensional oscillatory integral of
f (with purely imaginary parameter s) in terms of an absolute conver-
gent integral with respect to the associated measure iy [18, 6]. Indeed
given a self-adjoint trace-class operator B : H — H, such that (I — B)
is invertible, a function f € F(H), f = fiy and a positive parameter
i € R, it is possible to prove that the function e~2(*5%) f(z) is Fres-
nel integrable and the corresponding Fresnel integral with parameter
s = —i/h is given by
/ 3ol g3 (0.59) (o) £ (3)
H
= (det(I = B)) 12 [ o Bt B ey (o) (3
H

where det(I — B) = |det(I — B)|e~™ ™4 (~5) ig the Fredholm deter-
minant of the operator (I — B), |det(I — B)| its absolute value and
Ind((/ — B)) is the number of negative eigenvalues of the operator
(I — B), counted with their multiplicity.

Let us also recall, for later use, a known result on infinite dimensional
oscillatory integrals.

Let # be a Hilbert space with norm | - | and scalar product (,-).
Let also || - || be an equivalent norm on H with scalar product denoted
by (-,-). Let us denote the new Hilbert space by 7. Let us assume
moreover that

(21, 22) = (21, 22) + (21, T22), T1,T2 € H

lz||* = |z|* + (z,Tx), reH
where T’ is a self-adjoint trace class operator on ‘H. The following holds
(see [4, 5]):

Theorem 1. Let f:H — C be a Borel function. f is integrable on 'H
(in the sense of definition 2) if and only if f is integrable on H and in
this case

/ =315 f(2)dz = det(I + T / =31 f(2)da (9)

H H
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Recently the class of ”Fresnel integrable function” in the sense of

definition 2 has been further enlarged. In particular in [9] the Parseval
type equality (8) has been generalized to the case where H is finite
dimensional but the phase function is an even degree (not necessar-
ily second order) polynomial, while in [10] a corresponding result has
been proved for infinite dimensional Hilbert spaces and phase functions
which are the sum of a quadratic and a quartic term.
Let us also remark that definition 2 can be seen as an extension of a line
of development relating infinite dimensional integrals of probabilistic
and oscillatory type, going back to Cameron, see, e.g., [16], [32] and
corresponding references under ”analytic approach” in [1, 8].

In the following we shall extend these results to infinite dimensional
Hilbert spaces and suitable polynomial phase functions of higher de-
grees. The main idea is a generalization of Parseval-type equality,
obtained by modifying the definition 1 by restricting the class of regu-
larizing functions to a class S of analytic functions.

Let o € R, in the following I, will denote the open interval (0, @) if
a > 0 and (¢, 0) if @ < 0; D, will denote the sector of the complex z—
plane

D,:={z=12]e® €C : |2| >0, p € 1},
and S, (R") will denote the space of functions ¢ € S(R") satisfying the
following assumptions:

(1) for any z € R™ the function
z = ¢(zx), z€R, zeR"

can be extended to an analytic function in D, and continuous
in the closure D, of D,.
(2) for any z € D,, the map

z = ¢ () := ¢(2x), ze€eC, zeR"

is bounded

Clearly Sp(R") C S,(R") if @ < B. As an example the function
z € R — e 1#I” is an element of Sr/a(RY).

Given a real separable Hilbert space of #, with inner product ( , )
and norm || ||, let us consider the abstract Wiener space (H, B) built on
‘H, where (B,] |) is the Banach space completion of H with respect to
the measurable norm | | and let 4 be the standard Gaussian measure
on B associate with H (see [22, 29] and the Appendix of the present
paper). H is sometimes called the reproducing kernel Hilbert space of
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B. Let us denote by ¢ the norm of the continuous inclusion of A in B.

Theorem 2. Let s,7 € C, s = |s|e’® and r = |r|e?®, with o, 8 €
[—7/2,7/2]. Let us assume that for any ¢ belonging to the closure I_q
of I_o)2, the angle f+ 2N is included in the interval [—7/2,m/2].
Let B : H — H be a trace class symmetric operator such that (I — B)
18 strictly positive. Let Vo : 'H — R be a positive, continuous in
the | |-norm and homogeneous function of order 2N, i.e. Von(Ax) =
MNNVon (), for any N € R, z € H. Let g : H — C satisfy the following
assumptions:

e for any x € H the map
z — g(zx), ze€R, zeH

can be extended to an analytic function on D_y/ and continu-
ous i D_q /5.
e JK; >0, 3K, € (0,1/c?),Vz € H

822 —
|g(2$)‘ S Kl|€T(K2|z|2_<w7B$))|: Vz € D—a/2 (10)
e the function x — g¢%(z) = g(e™"*/%x), x € H, is continuous in
the | - |-norm.

Then the infinite dimensional oscillatory integral with parameter s
and regularizing class S_q 2 of the function f:H — C

f(@) = e3@E TN @g(), z e, (11)
15 well defined and it is given by

/e§<‘“’(IB)””>TV”(“'”)g(:v)d:v:/e;(“”B‘”)’"S_N‘?W(“’)ga(|s|1/2w)du(w),

H B
(12)
Von resp. g% being the stochastic extensions of Von resp. g* to B.

Proof: The right hand side of (12) is well defined, indeed under the
assumption of | [-norm continuity, the functions V,5 and ¢g* can be
extended by continuity to random variables Voy and g* on B, which
coincide with the stochastic extensions of 172N and g¢ of Voy and ¢g“
p-a.e. Moreover for any A € Ct and for any increasing sequence of
n—dimensional projectors P, in H, the family of bounded random vari-
ables e AVavoln(') = ¢=AViv (") (P, being the stochastic extension of P,
to B)converges p—a.e. to e AV2n(-),

As B is symmetric trace class, the quadratic form on H x H:

z € H +— (z, Bx)
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can be extended to a random variable on B, denoted again by (-, B - ).
Moreover the random variable e2¢ -8 ) is in L*(u) (see appendix). The
bound (10) for z = s7/? extends by continuity on §* : B — C and
by Fernique’s theorem the integral on the right hand side of (12) is
convergent.

Let {P,}nen be a sequence of finite dimensional projection operators
on H converging strongly to the identity as n — co. Let ¢ € S_,/2(R")
be a regularizing function. For any 6 > 0 let us consider the regularized
finite dimensional approximations

(gmfl)fnﬂ / e*%(iny(I*B)PnCU)*TVZN(Pn$)g(an)¢((sPnl-)d(Pn$)'
M

(13)
For any z € R the integral (13) is equal to

(Zzif)"ﬂ/ ¢ F PualBIPea) TV Pl (P ) (25 Po) (P

nH 14)
By the assumptions on the functions ¢, g, as well as on the parame-
ters s and 7, by Fubini and Morera theorems the integral (14) is an
analytic function of the variable z in the sector D_,/, and continu-
ous on D_,/» and coincides with the value of the integral (13) on R*.
By a straightforward application of the reflection principle [30] it is a
constant function on the whole closed sector D_, /2. In particular for

z =512 = |5|71/2e7"*/2 we conclude that

(2ms 1) [ DR ) (P )6 (GP,a)d(Pos)
nH
— (271')_”/2 / e—%(Pnz,(I—B)Pnac)—r,g*NVm\;(Pnz)g(8—1/2an)d)(s—l/?épnx)d(an)
nH

By letting 6 | 0 and by the dominated convergence theorem the latter
is equal to

:/e;(an,BPnz)rsNVzN(in)ga(‘s\1/2Pn$)dli($)
B

By letting n — oo and by the dominated convergence theorem the
latter converges to the right hand side of (12) O
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Remark 1. Theorem 2 generalizes the results obtained in [10] concern-
ing the oscillatory integrals of the form

/ e%<w’w>ei)‘v4(w)g(x)dx. (15)
H

Indeed the Parseval type equality (12) allows one to compute explic-
itly infinite dimensional oscillatory integrals with polynomial phase of
higher degree, provided that the parameter s has a non vanishing real
part. For instance one can compute infinite dimensional oscillatory
integrals of the form

/56 lsle’® (2.2) iAVan (@) g () Iz
H

with A\ € Rt and a € [—7 /N, 0].

Remark 2. In the case s € R, theorem 2 relates a Gaussian integral
on the Banach space B with an integral on its reproducing kernel Hilbert
space H.

If the operator (I — B) : H — H is not strictly positive, formula

(12) does not hold. In the following we shall generalize the results of
theorem 2 to the case where (I — B) has non positive eigenvalues, by
restricting the class of polynomial phase functions V5.
Given a trace class symmetric operator B : H — H, then the number
of non positive eigenvalues of (I — B) (counted with their multiplicity)
is finite. We shall denote by H, the kernel of I — B, by H_ the subspace
of H where I — B is negative definite, and by H, the subspace of ‘H
where I — B is positive definite. We have H = H_ & Ho D H. Let us
introduce the notation H1 = H_ @ Hy, Ho = Hy and x € H = x1 + 2o,
with z; € H;, i = 1,2. Clearly dim(#H;) < +oc and this fact will be
used in the following. Let us denote by (Hs, Bs2) the abstract Wiener
space associated with H, and by us the Gaussian measure on B, asso-
ciated with Hs.

Theorem 3. Let s,7 € C, s = |s|e!® and r = |r|e?, with o, B €
[—7/2,7/2]. Let us assume that for any ¢ € I__a/g , the angle B+2Np
is included in the interval (—m/2,m/2).

Let B:H — H and Von : H — R satisfy the assumptions of theorem
2. Let us assume moreover that there exists a constant K5 such that
for any x, € Hyi,x9 € Ha one has Von(z1 + x2) — Von(z1) > K3. Let
g : H — C satisfy the following assumptions:
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o for any x € H the map
z — g(zx), 2€R, zeH

can be extended to a function which is analytic in D_q/» and
continuous i D_g .

° ElK4,K5,(5 > 0, dKg € (0,1/02), Ve, € Hi,20 € Hy, Vz €
D—a/2-'

— 322
g(2(z1 + 32))| < K4|6K5|2w1I2N 5+T(K6‘w2‘?32_<$213$2>)|’ (16)

e the function v +— ¢%(z) = g(e™"*/%x), x € H, is continuous in
the | |-norm.
Then the infinite dimensional oscillatory integral with parameter s and
reqularizing class S_qaj2 of the function (11) is well defined and it is
given by

/Se—%<w:(I—B)w>—’"V2N(””)g(:E)dx = (QW)_dim(le/ e~ 3ton(I=B)m)
H H1xBa

e (w2.Bun)—rs™ Vo (@i+w2) go (5|12 (1) + wy))dpu(ws) x dz1 (17)

Proof: The proof is completely analogous to the proof of theorem
2. Let us consider a sequence {P, },en of finite dimensional projection
operators on Hy converging strongly to the identity as n — oc. Because
of the conditions on the parameters s,r € C, the regularized finite
dimensional approximations of the integral

(27r871)7(n+dim(7-£1))/2 / 67%(wl,(IfB)zl)ef%(Pn:m,(IfB)inz)frVQN(in2+w1)
Hi1XPpHa

g(PniL'Q + .T1)¢(5(Pn$2 + .Tl))d.Tl X d(PniL'Q)

are equal to

(QW)*dZm(%l)/Q / e*%(wl,(IfBﬁn)e%<Pn$2,BPn:L‘2>71‘5_NV'2N (Pn$2+$1)
H1xPpHa
o= L1PazsP?
(27-‘-)n/2

_ (27_r)—dim(7-£1)/2 / e 3 (xl,(I—B)xl)e%(inz,Ban)—rs—Nf/m,(in2+w1)
H1XBo

g(s Y2 (Pyay + 1)) dx1 X d(P,xo)

ga(|s|—1/2(an2 + 21))dxy X dp(wy). (18)
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As by hypothesis

|e—%(zl,(I—B)ml)e%(inz,BPnzg)—rs*Nf/QN(Pn:vz—f-wl)ga(|S|—1/2(an2 + xl))‘

< K4€K5|s—1/2x1|2N—56—%(zl,(I—B)zl)—|1"||s\_Ncos(,B—Na)VZN(a:l)

e*\rHs|—N COS(ﬂ*NOL)K3e&2i|PnZ2|%2
the dominated convergence theorem can be applied and by letting n —
oo the integral (18) converges to the right hand side of (17). O

Remark 3. In theorem 3 the convergence of the integral on the sub-
space Hy is due to the fast decreasing behavior of the function emrs Van
instead of e’%<"(I’B)'), as the latter has an exponential growth on H,.
For this reason the assumptions of theorem 3 include the condition that
for any ¢ € I_,a/g , the angle B+ 2N is included in the open interval
(—m/2,m/2), instead of the closed one (as in theorem 2). On the other
hand this restriction allows us to admit a stronger growth of the func-
tion g on the subspace H; and to replace condition (10) of theorem 2
by condition (16).

3. THE ASYMPTOTIC EXPANSION

In the following we shall put s := s—el, s'=|s'|et, r = %', with e € RT
and s, 7' satisfying the assumptions of theorem 2 and we shall study
the asymptotic behavior of the integral

I(e) ::/e_32(’”’(1_B)x>_i‘/21"(“”)g(x)dx (19)
H

in the limit € | 0. Let us assume that the operator B : H — H be of
trace class, symmetric and such that I — B > 0 and the functions Vp, g
satisfy the assumptions of the theorem 2. Let us denote by gy : B — C
the function given by gy (w) := §*(|s'|*/?w) (§* being the stochastic
extension of © +— g(e~"*/%z), + € H). Assume that g, satisfies the
following hypothesis:

(1) Vw € B, the function A — gy (Aw) is 2m—times continuously
differentiable in A € R. B
(2) Yk =1,...,2m, 3 a polynomial @ in the variables |\| and w|
such that Vw € B, VA € R
dk

Wgs’(Aw)p\:X < Qk(D‘L ‘LUD
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For notational simplicity in the following we shall adopt the short writ-

ing

®) (X d"
g (/\7w) = Wgs’(
The following holds:

Theorem 4. Under the assumptions above the integral I(€) admits the
following asymptotic expansion

m—1

1) = 3" €Cy+ O™ (20)

n=0

and the leading term is Cy = det(I — B)~'/2§(0).

Proof: By equation (12) the integral I(e) is equal to
| et g, () (1)
B
For any w € B, let us consider the function f : R" — C, given by

) = ei,,,lslfNeNflf/ZN(w)gs,(\/Ew)’ ceRF

By expanding f(e€) in power series of /e we get
2m—1

FO =3 e/ + Rom(v/6)
where

1 o
= Y 0w ) Van(w)'
k0 : k+(2N—2)l=n

and Rom = oy fy f@™ (1) (1 — 1)?™~1dt, with

2m
m 2m' _plg!=N)2N-2y; 1)
FEN) =2 g —d O Pamer Qe TR,
k=0

77,/S/—N)\2N—2‘~/2N(w) _

and Py, (\,w) are polyflomials (in A and V (w)) defined by %| NET:
Py(\, w)e sV Van (@) By substituting into (21) we get

I(e) = Z_ Cre" + R (€)

(_T/)lS/—Nl LB f ~ .
Co= D, T/‘ g (0,w) Vo (w)'dp(w)
k)l : k+(2N—2)i=2n o

(22)
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and

Rm<e)=(2m€—f1)! / / B £ (1 /) (1 — 12" dt dju(w).

By the assumptions on the function g, the integrals in the formula (22)
are well defined, as well as the remainder that satisfies the following
estimate

m 1
|Rm(e>|sﬁ [ etemisemeaia o au)
S S

|P2mktf e 1 >2m Lt dpu(w)
<em / / HOBID (1, W) (1 — 2™ dt dp(w)  (23)

where Py, (), |w|) denotes a polynomial in the variables )\, |w| and

1
lim / / 3@BIP (1 /e w)(1 — £ dt du(w) < oo,
BJO

el0

The leading term is given by
Co=3(0) [ eHP () = 3(0) der(1 — B)
B

with det(/ — B) being the Fredholm determinant of the operator I — B
(see Appendix). m

Remark 4. Theorem 4 allows one to handle the asymptotic behavior
of infinite dimensional integrals with a complex phase function ® of the

form
!/

d(z) = _55(;;:, (I — B)z) — r'Vaon(z), z€B.

It generalizes both the Laplace method (for the study of the asymptotics
of integrals with real phase functions) and the stationary phase method
(for the study of the asymptotics of integrals with purely imaginary
phase functions). According to theorem 4, the only critical point con-
tributing to the asymptotic behavior is the origin x = 0. Indeed one
can eastly verify that the only real stationary point of the phase func-
tional is x = 0 and formula (20) is the asymptotic expansion around
this critical point.
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If the operator (I — B) : H — H is not strictly positive, the results of
theorem 4 are no longer valid. For instance, in the case where (I — B)

has a non trivial kernel, the phase function ® : H — C,

SI

O(z) := —§<ac, (I — B)z) — r'Van(x)
has a degenerate critical point in z = 0, i.e. ®'(0) =0 and Kerd”(0) #
{0}. In the case where the negative eigenspace of the operator I — B
is not empty, the phase function ® could have critical points x, € H
different from 0 and the asymptotic behavior of the integral should
be determined by these critical points. Let us consider for instance a
factorisable integral of the following form:
I(e) := /S e 3 @n(=B)ar)= 5 (2, (I=B)aa)= T Van (1)~ Von (#2) gy e
HiXHa

(24)
where dimH; = 1. By theorem 3 I(e) = I,(e)lz(e), with Iy(e) =
Is, g3 (w2Buw2) g=r'(s") TN N1 Van (w2) g, (135 satisfies the assumptions of the-

orem 4, and I is of the form [;(e) = fRegyz’%ywdy , with a > 0 and
A € Ct. In particular if a = 0, A = 1, then I;(¢) = 61/2N%, while
if a =1, = 1/2N, then I;(€) ~ e>v¢ (where ~ means that the quo-
tient of both sides tends to 1 as € | 0). In the non factorisable case
the situation is more involved. Indeed in principle one should apply
an infinite dimensional version of the saddle point method and analyze
the behavior of the integral around non real stationary points. Actu-
ally a detailed treatment of the saddle point method in the case the
dimension of the space on which the integral is performed is greater
than 1 is still lacking (see however [28]). In the following we give an
example of the study of the asymptotics of the integral in a degenerate
(non factorisable case) and apply this result to the study of the trace
of the heat semigroup with a polynomial potential.

4. A DEGENERATE CASE
Let (Hpt, (, ),||]) be the Hilbert space
Hypy = {v € H'([0,4]; R?) : 7(0) = v()}
with inner product

(71, 72) Z/O %(7’)5’2(7')d7'+/0 1 (T) 2 (T)dr.

The present section is devoted to the study of the asymptotic behavior
as € J. 0 of an infinite dimensional Fresnel integral (with parameter s/¢)
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of the form

—~—

8/6 2 2 T 2
I(e) = / e JoA(rar=2 [ () ar g (25)
Hop,t

with N € N, N > 2, and s,r € C* satisfy the assumptions of theorem
3.

~1/e
Heuristically the integral (25) can be written as” [ Ho te%q’(”’)dv”, where
the phase function ® : #,; — R is given by

o) = =5 [ 4@dr—r [ e Ver (26)

and the asymptotic behavior of I(e) should be determined by the sta-
tionary points of the phase functional ®, i.e. the points such that

(I),(’Y) ((b) = 07 ng € Hp,ta

®' being the Fréchet derivative. One can easy verify that the null path
v = 01is a stationary point of ® and it is degenerate, namely Ker (®”(0))
is not trivial. Indeed

@)= [ b)) = —sle, [+ L) (27)

where L is the unique self-adjoint operator on H, ; defined by the qua-
dratic form

t
(6. 10) = | s,

0
We easily see that L for any 9 € H,; is given by:

Ly(r) = /OT sinh(7—u)v (u)du— = et)zl e /o sinh(7—u)y(u)du+
1 L
+ A= —c1 /0 sinh(t + 7 — w)y(u)du, (28)

The kernel of I + L is given by the solution of the equation
1

(1—e)(

P(T) + =) /0 (sinh(t + 7 — u) — sinh(7 — u)) ¢ (u)du+

+ /OT sinh(7 — u)y(u)du =0 (29)

with the periodic condition t(0) = (). By differentiating (29) twice,
it is easy to see that if 9 satisfies (29) then

W(r) =0, V1 € (0,1,
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so that the only solutions of (29) satisfying the periodic condition
¥(0) = 9(t) are the constant paths. From (27) the kernel of ®”(0)
is the d— dimensional subspace:

Ker[®"(0)] = {y € Hp: v(1) =2 V7 €]0,1], v € R*}.

Let us decompose the Hilbert space H,; into the direct sum H,; =
Hy ® Hy, where Hy = Ker[®"(0)] and Hy = Ker[®"(0)]*, y(7) =
71 (1) +72(7), (1) =t [y y(w)du, 72(7) = (1) =m(7). In particular

t
Ho={y€Hp; : / v(r)dr = 0}.
0

As one can easily verify that for any v, € Hy,y1 € H1 one has

t t
Vow (71 +7) — Vi () = / (1) + () PN — / () PNdr > 0,
0 0

the assumptions of theorem 3 are satisfied and

1O = () [ embented et B b ) x
BaxXH1

(2m) /2 / ¢ Blonlwn) AN BN g () x dy, (30)
Ba xRé

where A = rs™" and (H,, B,) is the abstract Wiener space built on Ho.
By putting z := /ey/t and expanding the term |y/ews(7) + z|*" we

have

2 —d/2 2

19 = (%) /EE%sz@xM%
t Rd

where

o) = [ et Bt e )
Ba

_ / e~ i erdr 2 i [ona(r) o™V ar =24 a) g
Ha

The asymptotic behavior of f(x,¢€) as € | 0 can be simply determined
by expanding the integrand in powers of €. Indeed

—~——

f6) = / e~ H(On (4 La)) =2 Pa /) g
Ha
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where L, : Ho — Hs is the unique bounded self adjoint operator
determined by the quadratic form

(¢, (I + L) /¢ (T)dT + 2N \|z|*N~ 2/ () (T)dr

+4N(N — 1)A|:c|2N—4/ zd(T) zp(T)dT, ¢, € Ho, (31)
0
and one can easily see that L, is given by given by

B
1—e)(l—e

L,(r) = B/OT sinh(u—7)y(u)du+ 7 /0 sinh(7—u)y(u)du+

where B is the d x d matrix defined by B := A%(z) — 1444 and
A%(x);; = 2NN |2PY 7267 + AN (N — 1)\ |z|2N x5, ij=1,...,d.

Moreover

t t
Pox (2, v/ers) = / Ver(r)+al?N dr—tla PN —2N [PV / Jewr(r)dr
0 0

t t
—eN|z[*V? IV(T)IQdT—QN(N—l)GIwIQN4/ (@y(7))?dr := € g(x, €, 72)
0 0
(33)
(where we have used the fact that fo Y2(T)dT = 0 as v, € H,), and for
any x, vy, we have

. N 2N -6 ! 3
limg(r,,72) = =78 / (ay2(s))Pds+

FAN(N — 1)[a/2N / (8 ya(s) 2ds. (34)

Aél/z

By expanding e *¢ /" 9®¢7) around € = 0:

Flz,€) = / 6—%(("72,(I+Lm)"rz>e—)\fl/zg(ﬂﬂ,f,"rz)d,y2 = fi(z, 6)—)\61/2f2(33, e,
Ho
(35)

where

—~——

fi(z,¢€) :/ 6_%«72’(["'1%)72)6{72 — det(I—l—LI)_l/Q
Ha
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and

fQ(IL', 6) — / g(x, €, 72)6—%((72,(I+Lx)72)e—u,\€1/2g(z,e,72)d%’ (36)
Ho

with u € (0,1).

For the calculation of the spectrum o(L;) of L,, it is convenient to
replace the standard basis of R¢ with an orthonormal basis which di-
agonalizes the symmetric matrix A?(x). By denoting its eigenvalues by
a?,1=1,...,d, it is easy to verify that the spectrum of L, is given by
o(Lg) ={Xin,i=1,...,d, n=1,2,...}, where

2
a; —1
i .
in = ————— 1=1,....d, n=12, ...
Z,’n 4227 ) ] 3=
1+7Tt_2n

are eigenvalues of multiplicity 2. By applying Lidskij’s theorem [41]
and the Hadamard factorization theorem (see [42], theorem 8.24) one
gets

h(A(z)t)—1
det(I + L,) = det (%), for z # 0
(2cosht —2)74, for z =0

The next result follows easily by the integral representation (36) of the
function f.

Lemma 1. fy(z,€) is a C* function of both x € R and e :== \/e € RT.
Moreover for any x € R%, fy(z,0) = 0 and lim, W = C(x),
where C' is a positive function of x € R%,

Proof: First of all we have

Atlz|2N t t
fa(z,€) :/ e g(z,€, 72)6_%f0 13 ()ds =3 Jo IVena(s) +al?Mds
Ho

e_PT" (QN\z\QN_Qfot \'y(s)|2ds+4N(N—1)|m|2N—4fot(w'y(s))st) dy. (37)
By expressing the infinite dimensional integral on the Hilbert space H,
as an integral on the abstract Wiener space (i, Ha, By) associated with
‘H, one gets:

u/\t\m|2N

t
fz(.T, 6) =e - / g(x’ €, wQ)e%(wzyLowz)e—“e—/\ Jo Wewa(s)+z|*Vds
B2

—I*T“ <2N|x|2N*2 f(f |wa(s)|2ds+4N(N—1)|z|2V—4 f(f(xwz(s))2ds>

dp(wa), (38)
where the functions
Wy — g(xa 6,&)2)
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wy > (wa, Lowa)

¢
ww—)/ |V ewa(s) + z[*Nds
0

t t
wy > 2N |z[2N 2 / lwa(s)[2ds + AN(N — 1)[z N4 / (zn(5))2ds
0 0

represent the stochastic extensions to By of the corresponding func-
tions on Hs. The stochastic extensions are well defined because of the
regularity of the functions involved. Analogously

fa(z,€) :/ §(w, €, wp)e 2 l(wnbawa) gmule
B2

/2%

e du(wn).  (39)

Representation (38) shows the absolute convergence of the integrals
involved, while representation (39) shows the regularity of f, as a func-

tion of /e.

By a direct computation we obtain

f2(x’ 0) :/ (x 0 w2)e é(<w2,me2)du(w2),
B2

where
N— 3)'3'8‘$|2N Gfo (vwa(s))>ds+
(2,0, u) = +2N(N — 1)|z|?N~ 4f0 zws(s)|wa(s)|?ds, 2N > 6
4f0 Two(8)|wa(s)|?ds, 2N =4
(40)
and
. f2(xa€) - fg(ﬂf,O) wa,Lyw
lim 20 5mewwﬂﬁ Ddp(wn) < 00, (41)
where
( fo lwo(s)[*ds, 2N =4
ga(wn,7) = 4 3|z|? fo |lwa(s)|*ds + 12 fo Two(8))?|wa(s)|?ds, 2N =6

(P4 [ lwa(s)[Ads + 4(5) (V72) [PV [ (zws(s))?[wa(s) *ds+
L +16() 22V [ (zwa(s))*ds, 2N > 8

(42)

By equation (35), the integral I(e) can be represented as the sum I(e) =
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I (€) + Iy(€), where

2me —d/2 _tA|g2N
Ii(e) = (t—g) /Rde <" fi(x, €)da,

2 _d/2 t 2N
Iz(e)=—)\el/2(£) /e_%“" fo(z, €)dx

Proof: By scaling

12(6) — _)\61/2td(27r)—d/2€d/2N—d/2/ e—t)\|z|2Nf2(€1/2N$, e)dac
Rd

—tA(1—u)|z|2N ~¢ 1/2N
a0t [ G
d Bz

s <2N|51/2Nw\2N_2 I3 wa(s)[Pds+AN (N —1)|e!/2N g[2N -4 fg(el/wwwz(s))?ds)
€

_ _)\td(27T)—d/26d/2N—d/2+1/2/
R

e~ IVews()+e! /2N a N ds o5 (wsLows) g (Y (43)

By the dominated convergence theorem, the definition (33) of the func-
tion g, lemma 1 and equation 41 we get:

lim£ = —)\td(27r)_d/2/ e~ tA1-w)l*Y

3— 3—d
Rd

/ g(x,O,wg)eéw“”LO‘“)du(wg)dw:0, (44)
B2

where §(z,0,ws) is given by (40), and

hm#i_d — —)\td(27r)_d/2/ e—f)\(l—u)|z|2N
€0 ¢ 3N Rd
/ g4(w2ax)e%<W2,L0wz)du(w2)d$ < o0, (45)
B2
where g4(ws, x) is given by (42) O

Lemma 3. I;(¢) = € ¢2n (cosh t—1)4/22¢/2¢=d/2N \~d/2NTU2N) 4 6 (2-d) 55ty

NT(d/2)
as e 0.
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Proof:

2 —d/2
Li(e) = (%) /d e~ ¢l det(I + Ly)~"/%dx
R

2me —d/2 At g2 cosh(A(z)t) — 1 \ /2
= (== e 2|
( 2 ) /Rd ‘ det <A2(3:) (cosht — 1)) de

ht—1\4d/2 £ h(A —1\-1/2
= (I [ g (PRADD D)
R4

o 2me

By scaling

1/2N —1\-1/2
d iz 2N cosh(A(e'/*" z)t)
2 /Rd e det ( A2(61/2N1-) ) dz

(N=1)/2N A(z)t) — 1\~1/2
gk a2V (cosh(e x )
Ciexn /Rd e det VDN A2(7) dz

d/2
with C;y = t%%) . Let a2(x), i = 1, ...,d be the eigenvalues of

the matrix A%(z). Then

d(N—1)
Rd [1; \/cosh(eW=D/2N g, (z)t) — 1

d/24—d
= Ctﬁﬁv_g/ e_)‘t‘zPN 2 t d./L'
Ré Hz \/1 + Cosi’éai)e(Nfl)/Nag(x)tQ
h(0;) (N—
_ CtG%%Qd/Qtd/ 67}\t‘$‘2N H (1_ %G(N 1)/Na?($)t2 )
Rd i (1+ §icof;1(91)E(N—l)/Na%(x)t2)3/2

with 6; € (0,eV=1/2Ng,(z)t) and & € (0,1). We have
Ii(e) = Ia(e) + Ti2(e),

where the first term is equal to

I(e) = e (LSht — 1>d/22d/2 / e M gy
’ 27 Rd

=t (cosht — l)d/22d/2td/2N)\d/2N/‘ oIz g
2T Rd
['(d/2N)

= € 2
_ —dN d/26d/2,—d/2N \—d/2N
= 2 ht—1)4=2%%¢ A ——
€ 2N (cos ) NT(d/2)’
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and the second term is equal to

ht—1y\d/2
I o(€) = (LS ) ed/2N2d/2/ etz
Rd

2me

h(0;e(N—1/2N g, (z)t _
cosh( . (@)t) (N 1)/Na?(x)t2

1- 2 ) - )d
(H ( (1+ &i cosh(9;(N—1/2N a;(z)t) eN=1/N g2(1)12)3/2 o

g 12

and it satisfies the following relation

, I 5(e) t* rcosht —1\d/2_, ., — At[a]2N 5
lim — 2 0 =~ () 2 [ e 2_ai(w)ds < oo

O

By combining lemma 2 and 3 we get:

Theorem 5. As € | 0 the infinite dimensional oscillatory integral I(e)
(25) has the following asymptotic behavior:
1 I'(d/2N -1
I(e) = e 45 (cosh t — 1)4/294/24=d/2N \~d/2N 7N(F{d/2§ + O(e(Q’d)Jg—N)
(47)

The latter result can be applied to the study of the asymptotic be-
havior of the trace Tr[e#] of the heat semigroup, where H : D(H) C
L*(R%) — L*(R?) is the quantum mechanical Hamiltonian given on the

dense set of vectors 1 € S(R?) by

2
Hip(a) =~ A(@) + V(a)b(z), (18)
with V(z) = ANz|?, NeN, N>2, >0,z € R N eN.
It is well known that H is an essentially self adjoint operator on C°(R?)
(see [37], theorem X.28). H is a positive operator and is the generator of
an analytic semigroup, denoted by e~ nH , t > 0 (the "heat semigroup”
with potential V). Its trace Tr[e~ ] is well defined as V (z) is smooth
and increases at least quadratically at infinity, hence the spectrum of
H consists of (real positive) eigenvalues )y, 7 € N¢. By a standard
WKB argument one can deduce that there exist a positive constant o
(depending on N) with

lim infﬁ > 0.

|00 |70|®



OSCILLATORY INTEGRALS 23

Theorem 6. The trace of the heat semigroup Trle#H], ¢t > 0, for H
as in equation (48), is given by the infinite dimensional Fresnel integral
(with parameter s = 1/h, in the sense of definition 2)

Trle #2] = (2cosh t — 2)~%/? / e~ an Jo V() s =3 g 1) ds g (49)
Hop,t
For h ] 0 the following asymptotics holds:
['(d/2N)

Tr —-tH :hfdbtfdﬂN)\fd/QN
[ w 2IZNT(d/2)

+O(EE D) (50)

Proof: The proof of (49) is divided into 3 steps.
1,; Step: By Feynman-Kac formula (see e.g.[40, 41]) Tr[e~#] is given,
for t > 0 by:

dx 1t
Tufe ] = / / e ko VIRal)VRRds g, )
wa (270)32 o (

dzr — N1 rtg(s +z|2N ds
:/RdW/c e Jo lo(s)+=] ) (51)
[0,]

where Cpo 4 is the space of continuous paths o : [0,%] — R¢ such that
a(0) = «(t) and p is the Brownian bridge probability measure on it
(see, e.g. [40] for this concept).

Let us introduce the Hilbert spaces Y;; and Y, of paths ,

{y e H'(0,t;R?) : 7(0) =~(t) =0}
with norms

t
V5, = vl = | 4(s)°ds.
0
t

t
2, = Il = / 5(s)ds + / 7 (s)2ds.

It is well known that (7, Yy, Clo,q) is an abstract Wiener space.

First of all (see remark 2) the integral in (51) on Cj4 with respect to
the Brownian bridge measure can also be written in terms on an infinite
dimensional integral (with parameter s = 1) on the Hilbert space Yj;
(in the sense of definition 2):

/ 67% fot V(\/ﬁa(s)—kx/ﬁ:c)dsdu(a) — / 675\7‘267% fg V(\/E’Y(S)-H/ﬁw)dsd,yj
C[O,t] YO,t

so that

t dx o’ 1,2 1t
Trle~# 2] = o ar =317 e= % Jo V(VRy(s)+Vha)ds g 59
1= [ g o6
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2,4 Step: By the transformation formula relating infinite dimensional
integral on Hilbert spaces with varying norms (theorem 1), we get a
relation between the integral on Yy, and the integral on Y, ;. Indeed

191" = I7[* + (7, T7)

where T' is the unique self-adjoint trace class operator on Yj; defined
by the quadratic form

t
(0. T3e) = [ n(shalo)ds,
0
Indeed (see [4] for details) n = Ty, v € Yy if and only if
ii(s) +7(s) =0,  s€0,1

7(0) =0 (53)
n(t) =0

Y
and det(I +7T) = (SIHT“) . By inserting this into equation (9) we
obtain:

—~——

/ e 51 ek Ji V6 Vo) g
Yo,

- ( t )‘”2 / 8N ek S VR VR g
sinh ¢ Y.

»,t

and by equation (52)

ot dx _lyy2 1t s x)ds
p,t

3.4 Step: The final step is a transformation of variable formula for
integrals on the Hilbert space H,;. Y, can be regarded as a subspace
of H,+ and any vector v € H,, can be written as a sum of a vector
n € Yy, and a constant in the following way:

v(s) = n(s) + =z, s€[0,t], vy € Hps, n € Yy, x=(0).

We have to compute a constant C; such that for integrable functions f

/ e3P F(7)dy = Ct/ dx/ =32l £ 4 ).
Hop,t R4 Yp,t

By Fubini theorem

— —~—  —~—

/ I )y = X /yp,f_%w”z s an)de, (59

p,t
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where Yth is the space orthogonal to Y, ; in H, ;. One can easily verify
that YpJ; is d—dimensional and it is generated by the vectors {v; }i—1,._ 4,

. ) _ 4 es(l—e_t)—l—e_s(et—l)) A . .
with v;(s) = e,(zﬁ\/sinht(wsht_l) , s € [0,1], é; being the 4y, vector of

the canonical basis in R?. The right hand side of (55) is equal to

1 T _1 il |2
/Rd 7(27_‘_)(1/2 (/Y e 2 In+32; yivil| f(77—|— Zyzvz)dn) dy’

where £(s) = Y, yvi(s), i = 1,...,d. By writing the finite dimensional

approximation of fypte’%”’ﬁzi vivill® f(n 4 3. yiv1)dn, by the formula
for the change of variables in finite dimensional integrals and by noting

that
v/2cosht —2
Uj, V4 =
e Y

where u; € H,; is the vector given by u;(s) = é;, s € [0,¢], we get

1 o’ _1 I
R Yot i

2cosht —2\d 1 [ 2
_ (E) o ([ e Rl {43 ) dn ) de
Vsinht we (2m)47 \Jy,,, Z’

v2cosh t72) d
V2nsinht )
By combining these results we get equation (49).
The asymptotic behavior of the trace Trle #%] as i | 0 follows by
equation (49) and theorem 5. m

so that the constant C} is equal to (

Remark 5. In [4, 7] the representation (49) is proved for the case
where V' is a quadratic function plus a bounded perturbation (which is
the Fourier transform of a complex measure) by means of a different
technique (a Fubini theorem for infinite dimensional oscillatory inte-
grals with respect to non-degenerate quadratic forms), that cannot be
applied in our present case. Indeed the quadratic part of the phase
function appearing in the integral on the right hand side of (49) can be
written as

/0 V2 (s)ds = —(v, L),

with L : Hpy — Hpy is the operator (28). As we have seen, L is not
wnvertible and det L = 0. This fact forbids the application of the Fubini
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theorem as stated in [4, 7] and a direct application of the methods of
[4, 7].

Remark 6. A representation equivalent to (51) is discussed in [40] for
other continuous potential V with eV € L'. However the limit h | 0
discussed in [40] is not the semiclassical limit we discuss here. To the
best of our knowledge our limit for our type of polynomially growing
potentials has not been rigorously discussed before. In addition our
result on this problem, besides coming as a direct application of a study
concerning oscillatory integrals, also provides a method to derive an
explicit fractional power expansion formula in h in terms of classical
orbits (we shall however do not give here details of this, contenting
ourselves to have indicated the method how to obtain them).

APPENDIX A. ABSTRACT WIENER SPACES

Let (H,{, ), || ||) be a real real separable Hilbert space. Let v be the
finitely additive cylinder measure on #, defined by its characteristic
functional o(z) = e 2/#I’. Let | | be a “measurable” norm on 7,
that is | | is such that for every ¢ > 0 there exist a finite-dimensional
projection P, : H — H, such that for all P 1L P, one has

v({x € H| |P(x)| > €}) <€,

where P and P. are called orthogonal (P L P,) if their ranges are
orthogonal in (H, (, )). One can easily verify that | | is weaker than
|| ||- Denoted by B the completion of A in the | |-norm and by i the
continuous inclusion of A in B, one can prove that y = voi~!is a
countably additive Gaussian measure on the Borel subsets of B. The
triple (i, #, B) is called an abstract Wiener space (see, e.g., [22, 29]).
Given y € B* one can easily verify that the restriction of y to H is
continuous on H, so that one can identify B* as a subset of H. Moreover
B* is dense in H and we have the dense continuous inclusions B* C ‘H C
B. Each element y € B* can be regarded as a random variable n(y) on
(B, it). A direct computation shows that n(y) is normally distributed,
with covariance ||y||>. More generally, given y;,y, € B*, one has

/Bn(yl)n(yz)du = (Y1, Y2)-

The latter result allows the extension to the map n : H — L%(B, p),
because B* is dense in H. Given an orthogonal projection P in H, with

P(z) = Z(ei,x)ei

i=1
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for some orthonormal ey, ..., e, € H, the stochastic extension P of P
on B is well defined by

n

()= nle)(-Jer

i=1
Given a function f : #H — By, where (B, || ||5,) is another real separable
Banach space, the stochastic extension f of f to B exists if the functions
foP : B — B; converge to fin probability with respect to u as P
converges strongly to the identity in 4. If ¢ : B — B; is continuous
and f := g|, then one can prove [22] that the stochastic extension of
f is well defined and it is equal to g u—a.e. Moreover for any h € H
the sequence of random variables

Z hin(ei), hz = <€Z', h)
i=1

converges in L?(B, i), and by subsequences y a.e., to the random vari-
able n(h).
Given a self-adjoint trace class operator B : H — H, the quadratic
form on H x H:

z € H — (x,Br)
can be extended to a random variable on B, denoted again by (-, B - ).
Indeed for each increasing sequence of finite dimensional projectors P,
converging strongly to the identity, P,(z) = Y., e;{e;,z) ({e;} being
a CONS in #), the sequence of random variables

n
w€ B Y {es, Bejyn(e:) (w)n(e;)(w)
ij=1
is a Cauchy sequence in L'(B, ). By passing if necessary to a subse-
quence, it converges to (-, B -) u—a.e.
Let us assume that the largest eigenvalue of B is strictly less than 1 (or,
in other words, that (I — B) is strictly positive). Then one can prove
that the random variable g( - ) := e2{"*B") is y-summable. Indeed by
considering a CONS {e;} made of eigenvectors of the operator B, b;
being the corresponding eigenvalues, the sequence of random variables

G B C,  wis ga(w) = e2 Zim bl @)]®

converges to g(w) p-a.e..
On the other hand one has
1
—1(1-b))z

n e~z (1=bi)z?
/Bgn(w)d,u(w) = H / Tdmi = (H(l — bi))*1/2
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so that [ g,du converges, as n — oo, to (det( —B))~'/2, where det(I —
B) denotes the Fredholm determinant of (I — B), which is well defined
as B is trace class. Moreover 0 < g, < g,y for each n . It follows
that, as n — 00, [ gndp — [ gdu = (det(I — B))~'/2. By an analogous
reasoning one can prove that for any y € H, the sequence of random
variables f,,:

W fo(w) = eXi= vin(es) () o3 ey bi([n(ei) ()]

where y; = (y, e;), converges p—a.e. as n goes to oo to the random
variable f( - ) = e"®()e3(»B") and that

/ Fadp — / fdp = (det(I — B)) /23 @U=B""n)  (56)
(see [29, 26]).
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