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Abstract

Event detection is a critical challenge in many fields like video surveillance, social graph
analysis, and multimedia processing. Furthermore, events are “structured” objects involv-
ing multiple components like the event type, the participants with their roles, and the
atomic events in which it decomposes. Therefore, the recognition of an event is not only
limited to recognize the type of the event and when it happened, but it involves solving
a set of simple tasks. Exploiting background knowledge about events and their relations
could then be beneficial for event detection. In the last years, neuro-symbolic integration
has been proposed to merge the strengths and overcome the drawbacks of both symbolic
and neural worlds. As a consequence, different neuro-symbolic frameworks, which com-
bine low-level perception of neural networks with a symbolic layer, encoding prior domain
knowledge (usually defined in terms of logical rules), have been applied to solve different
atemporal tasks. In this thesis, we want to investigate the application of the neuro-symbolic
paradigm for event detection. This would also provide a better insight into the strengths
and limitations of neuro-symbolic towards tasks involving time.
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Chapter 1

Introduction

What is Artificial Intelligence?

“It is the science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using computers
to understand human intelligence, but AI does not have to confine itself to methods
that are biologically observable”

—John McCarthy, What is Artificial Intelligence?

This is what the winner of the Turing Award (1971) John McCarthy said in the paper
“What is Artificial Intelligence” [62] where he first coined and defined the term Artificial
Intelligence (AI). Some of the readers may disagree by stating that the true precursor of
the term is Alan Turing. Indeed, Turing, which also referred as the “father of computer
science”, published in 1950 an article called “Computing Machinery and Intelligence” [83]
where he tried to answer the question ’can machines think? ’. To answer the question,
he proposed the well-known Turing Test to test a machine’s ability to exhibit intelligent
behaviour equivalent to or indistinguishable from that of a human. According to Adrienne
Mayor, research scholar, folklorist, and science historian at Stanford University, artificial
intelligence dates back to ancient myths [61]. She sees Hephaestus, the Greek god of
invention and blacksmithing, as the precursor of modern AI. Indeed, many of its creations
can be seen as prototypes of modern AI products. No matter what the origin of the term
AI is, nowadays, the results of AI are tangible and have radically changed our everyday
life. AI products like personal assistants (e.g., Amazon Alexa, Siri and Google), and self-
driving cars (e.g, Tesla and Waymo) have not only changed the way we interact with each
other but with the surrounding environment too. All of these are examples of what is
called weak AI (aka narrow AI), where an AI system is trained to solve specific tasks. This
is still far from the more ambitious objective to develop an AI having an intelligence equal
to that of a human (Artificial General Intelligence) or even able to exceed it (Artificial
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CHAPTER 1. INTRODUCTION

Super Intelligence). Furthermore, looking deepen at the results of weak AI, it is worth
observing that all the results have been achieved thanks to the availability of a huge
amount of data over which AI models (mostly neural networks) have been trained on.
This can be seen as a kind of gap for these models with respect to humans. Indeed,
originally, neural networks have been proposed as a way to replicate the complex cognitive
ability of the human brain. Therefore, keeping in mind this goal, one can see that it is
still too far for current neural networks. Indeed, we as humans are able to solve tasks with
only a few examples and have the capability to revise/create existing/new knowledge by
reasoning over it. As a consequence, a new research paradigm has emerged in the field
of AI: Neuro-Symbolic Artificial Intelligence (NeSy AI). NeSy AI (aka neuro-symbolic
integration1) [39] is a subfield of AI that combines learning and reasoning by merging
together neural networks and symbolic AI. The promise of NeSy AI is that by merging
these two paradigms, we are able to obtain a system that combines the strengths of the
two worlds. From the neural side, this involves having trainable systems over raw data and
robust against noise, while for symbolic AI, the possibility to have an explainable system
where expert knowledge can be exploited at different levels. Different ”general purpose”
neuro-symbolic frameworks have been proposed in the literature [18, 78, 59, 56, 60, 92, 87]
and have been shown to be successful to solve not only classical machine learning tasks like
(multi-class) classification but also more complex tasks like Semantic Image Interpretation
[28]. In all those frameworks, not so much attention has been devoted to tasks involving
time, but time plays a key role in our everyday life. The actions we perform every day
and the order in which we do them are based on decisions that keep into account different
aspects of time, like actions’ durations (e.g, a person is late for work, so he is going to take
his car instead of the bus) or common sense temporal domain knowledge (e.g, to arrive
on time at work, a person has to wake up early). When talking about temporal tasks,
one of the main challenging tasks is event detection (ED). Indeed, ED from sequences
of data is a critical challenge in various fields, including surveillance [20], multimedia
processing [89, 54], and social network analysis [21]. Furthermore, events are structured
objects that involve different components (e.g, the participants, their roles, the atomic
events, etc.). Integrating commonsense and structural knowledge about events and their
relationships can significantly enhance machine learning methods for ED. For example,
in analyzing a park security video, the (temporal) knowledge of a person moving towards
a bench, leaving a bag close to it, and then going away can aid event detection.

In this thesis, we investigate neuro-symbolic integration in the context of event recog-
nition2. In particular, we tried to address the following research questions:

1in the manuscript, we are going to use these two terms interchangeably
2event detection and event recognition are used interchangeably
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CHAPTER 1. INTRODUCTION 1.1. CONTRIBUTIONS

R1: How can we formalize and what kind of formalism can we use to define the event
recognition problem in a neuro-symbolic context?

R2: What kind of supervision and background knowledge can we use/exploit in an end-
to-end neuro-symbolic approach for event recognition?

R3: What are the issues emerging in those approaches (e.g., scalability)? How can we
solve/mitigate them?

R4: Can we ”readapt” these approaches to solve lower tasks with respect to event recog-
nition? For example, using these approaches to predict sequences of values, which
have to be compliant with the background knowledge, that may be used to build an
event recognition system (e.g, triggering an event warning when certain values are
identified in a sequence).

1.1 Contributions

This thesis focuses on the application of the neuro-symbolic paradigm in the context of
event recognition with the objective to answer to the aforementioned research questions.
In line with this objective, my research has led to two (connected) directions:

• Direction 1: The integration of the temporal dimension (oriented to event recog-
nition) into existing neuro-symbolic frameworks.

• Direction 2: Proposing a novel (temporal) neuro-symbolic approach for event
recognition.

These two directions has led to the following publications:

• Apriceno, Gianluca, Andrea Passerini, and Luciano Serafini. “A neuro-symbolic ap-
proach to structured event recognition.” 28th International Symposium on Temporal
Representation and Reasoning (TIME 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

• Apriceno, Gianluca, Andrea Passerini, and Luciano Serafini. “A Neuro-Symbolic
Approach for Real-World Event Recognition from Weak Supervision.” 29th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

• Badreddine, Samy, Gianluca Apriceno, Andrea Passerini, and Luciano Serafini. “In-
terval Logic Tensor Networks.” arXiv preprint arXiv:2303.17892 (2023).
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1.2. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

• Apriceno Gianluca, Luca Erculiani, and Andrea Passerini. “A Neuro-Symbolic ap-
proach for Non Intrusive Load Monitoring”(currently under review at PAIS23)

1.2 Outline of the Thesis

The thesis is structured as follows:

Chapter 2:

The objective of this chapter is to provide the reader with the basic background concepts
related to neural networks, symbolic AI, and NeSy AI. For the part related to neural
networks, we briefly review their connection with the human brain, introduce their main
components (i.e, neuron and activation functions) and focus on the three standard neural
architectures which are used in almost every modern architecture, respectively, Feed For-
ward Neural Network, Convolution Neural Network, and Recurrent Neural Network. For
symbolic AI, we focus on logic programming and define its main building blocks which
contribute to defining what a logic programming is. For NeSy AI, we introduce the well-
known neural extensions of logic programming, DeepProbLog, and the neuro-symbolic
framework Logic Tensor Network. This part will be useful to better understand chapter
3 and chapter 5. We want to highlight that this chapter is not intended to be exhaustive,
and therefore, for further details, the interested reader is referred to the references pointed
out in the chapter.

Chapter 3:

In this chapter, we provide an explicit formalization for the event recogntion problem
where events divides in structured and atomic events. Then, we present a neuro-symbolic
prototype that we developed using the DeepProbLog framework and compare it with a
(recurrent) neural baseline. The comparison has been evaluated on the recognition of
synthetic events generated by our mnist-digit event video simulator. The results show the
higher ability of our neuro-symbolic approach to recognize event as well as its ability to
generalize to unseen outcomes with respect to the fully neural baseline.

Chapter 4:

In this chapter, we propose a neuro-symbolic approach for Temporal Event Detection in
a real world scenario involving sport activities. We show how by incorporating simple
knowledge involving the relative order of atomic events and constraints on their duration,
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the approach substantially outperforms a fully neural solution in terms of recognition
accuracy, when little or even no supervision is available on the atomic events.

Chapter 5:

In this chapter, in line with the first research direction, we propose interval real logic a
temporal (interval based) extension of real logic. The language of interval real logic allows
to express temporal properties and relations about (trapezoidal) event and is interpreted
over finite sequence. The implementation of interval real logic has been done through
Logic Tensor Network and the overall framework has been tested over four synthetic
tasks that require reasoning about events to predict their fuzzy durations. Our results
show that the system is capable of making events compliant with background temporal
knowledge.

Chapter 6:

In this chapter, we show how background knowledge can also be exploited to solve lower
tasks on top of which event recognition approaches can be built. Briefly, the task we solve
consists in disaggregating the total energy consumption of an house in the consumption of
the individual appliances that compose it (e.g., kettle, microwave etc.). For this purpose,
we readapt the approach presented in chapter 4, and devise a neuro-symbolic approach
where background knowledge about the behaviour of the appliance in terms of its con-
sumption over time is used to refine the prediction of the neural network representing the
given appliance.

Chapter 7:

In this chapter, conclusions are drawn and directions for future works are briefly discussed.

9
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Chapter 2

Background

In this chapter, we are going to cover the main concepts related to three topics: neural
networks, symbolic AI, and neuro-symbolic integration. In addition, since in chapters
3 and 4, we formalize the event recognition problem in a neuro-symbolic context using
an event calculus inspired formalization, we also briefly introduce the event calculus for-
malism. The overall goal of this chapter consists in providing to the reader the basic
concepts/notions about the aforementioned topics in order to facilitate the understanding
of the following chapters. As we have already mentioned, this chapter is not intended
to be exhaustive, and then, for further details, the interested reader is referred to the
references pointed out in the chapter.

2.1 Neural Networks

Artificial neural networks[52], commonly referred to as neural networks, have been pro-
posed as an attempt to mimic the complex reasoning of the human brain. Nevertheless,
it is highly recognized that the capability of the human brain is still too far by neural
networks. This difference is not only in terms of neurons (billions of neurons compared to
thousands or millions) but due to the lack of adaptability/flexibility and generalization
which are characteristic of the human brain. Indeed, the human brain is able to adapt
more quickly and generate new ideas in a more efficient way with respect to neural net-
works. Furthermore, while the learning process of the human brain lasts its entire life,
the learning process of neural networks is a kind of "temporal” learning over a limited
amount of data. Despite these differences, neural networks have been shown to achieve
high accuracy in solving specific tasks.

11



2.1. NEURAL NETWORKS CHAPTER 2. BACKGROUND

2.1.1 Neuron

The human brain is one of the most complex organs of a human. Indeed, it is responsible
for controlling many aspects of our everyday life like vision, memory, emotions, etc. From
a computer scientist’s point of view, we can see the brain as acting like a computer, it
processes information coming from the senses and the body and sends messages back to
the body.

The principal processing unit of the brain is a cell called neuron that propagates or
transforms the incoming signal into an effector (e.g. feelings, movements). A more concise
and schematic view of a neuron is depicted in Figure 2.1. As can be seen, a neuron is
composed of four main parts:

• A set of weighted connections, also referred to as weights, each of which weighs the
input signal x and connects it to the neuron k. In details, if xj ∈ x, its corresponding
weight will be wkj.

• An adder that sums up the input signal x with its corresponding weights.

• A bias bk, an external (positive or negative) parameter, that applies an affine trans-
formation to the output of the adder.

• An activation function (aka squashing function) that limits the amplitude of the
output signal into a specific range.

From a mathematical point of view, we can describe the neuron of Figure 2.1 by the
following equations:

zk =
n∑

i=1

wikxi + bk (2.1)

ok = ϕ(zk + bk) (2.2)

where zk is the pre-activation of the neuron (i.e., it is the result of the sum of the adder
and the bias), ϕ is the activation function, and ok is the output of the neuron, obtained
by applying ϕ to zk. Furthermore, we can avoid to explicitly mentioning bk by including
a weight w0 = 1 and an input x0 = bk. Therefore, Equations 2.1 and 2.2, can be rewritten
as:

zk =
n∑

i=0

wikxi + bk (2.3)

ok = ϕ(zk) (2.4)

12
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Figure 2.1: Neuron’ structure

2.1.2 Activation Functions

Roughly speaking, the role of an activation function consists in determining if a neuron
should be activated or not. The most common activation functions are:

• Threshold:

f(x) =

1, if x ≥ t

0, if x < t
(2.5)

The threshold function can be seen as a step function (Figure 2.2a). If the input x
(i.e. the preactivation) is greater than a given threshold t, the neuron fires otherwise
the incoming signal is not propagated any further. Even if it is simple, this activation
function is not used in modern architecture since its gradient is zero and therefore
no learning is going to occur.

• Sigmoid1:

f(x) =
1

1 + e−x
(2.6)

1used in 3.7.1, 4.3 and 5.5.1

13



2.1. NEURAL NETWORKS CHAPTER 2. BACKGROUND

As can be seen by looking at the Figure 2.2b, the sigmoid function is a soft version
of the threshold function. This function squashes the input signal in the range [0,1]
and, due to its differentiability, it allows to perform training. The drawback of
this function is that, in cases of many layers, vanishing gradient problem may rise.
Furthermore, training using sigmoid activation function is usually slow.

• ReLU2:

f(x) = max(0, x) (2.7)

ReLU, which stands for Rectified Linear Unit, is one of the most used activation
functions (Figure 2.2c). It solved the vanishing gradient problem and ensure faster
gradient convergence [68].

f(x) = max(αx, x) (2.8)

As can be seen, by introducing the parameter α, the learning is going to occur, even
for negative values.

• Softplus 3:

f(x) = log(1 + ex) (2.9)

The Softplus function is usually used to replace the ReLU function (Figure 2.2d).
Indeed, it can be seen as a smooth version of ReLU where the "knee" of ReLU is
removed.

2.1.3 Neural architectures

In [33], McCulloch and Pitts proposed a neuron-based theoretical model of the nervous
system. The model is simple: it is a network of neurons where each neuron is connected
to the neighborhood neurons, through synapses. Even if it is simple, the model is able to
perform extremely complex computations.

2used in 3.7.1
3used in 5.5.2
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(a) Threshold (b) Sigmoid

(c) ReLU (d) Softplus

Figure 2.2: Activation functions

Fully-connected neural network

As can be seen by looking at Figure 2.3, a fully-connected neural network (FCN)4 is a
feed-forward network that is composed of three kinds of layers:

• One input layer

• One or more hidden layer

• One output layer

The input layer, which is composed of a set of source nodes, projects the input signal
x ∈ Rn onto the hidden layers. The hidden layers are the processing layers where the
computation (i.e., the transformation of the input signal) is performed. Usually, more
than one hidden layer is used in this kind of architecture, with each hidden layer having
the same or a different number of neurons and adopting one of the activation functions
presented in 2.1.2. This is done in order to learn (i.e. approximate) a more complex

4used in: 3.7.1
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Figure 2.3: Fully-connected nueral network

function. Finally, the output layer returns the final results of the network (i.e., the
result of the computation of the hidden layers). This kind of architecture is called "fully-
connected” because every neuron in a layer is connected to every neuron in the next
adjacent layer.

Convolutional Neural Network

When the input signal has a shape different than a vector, adopting a FCN may not
be the right choice. For example, if the input is a grayscale image of size W × H × 1,
where W and H denote the width and the height of the image, respectively (1 is the
number of color channels), reshaping it to a vector would definitely determine the loosing
of spatial information coming from the neighborhood pixels. Furthermore, due to the
interconnectivity of a FCN, the number of parameters to learn will be quite high, with an
impact on the computational cost. To overcome this issue, convolutional neural networks
(CNNs) 5 have been proposed. As can be seen by looking at Figure 2.4, together with
fully connected layers, a CNN has two additional layers:

• A convolutional layer

• A pooling layer

5used in: 3.7.1
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Figure 2.4: Convolutional neural network

A convolution layer is composed of a set of learnable filters (also referred to as kernels)
that slide over an image. Roughly speaking, a filter is a matrix composed of learnable
weights whose aim consists of learning features about the incoming (processed signal).
These features are referred to as features/activation maps and encode useful information
(like edge, color, etc.). When a CNN is composed of more than one convolutional layer, the
idea is that the first layers usually learn more general features compared to the deep layers.
In addition, adopting a convolutional layer with respect of FC layer would be cheaper in
terms of learnable parameters. Generally, between two convolutional layers is common to
insert a pooling layer. This layer is used to compress the incoming information in order
to reduce the number of learnable parameters and save model computation. Examples of
pooling layers include: max, average, and global max pooling (for more details on both
convolution and pooling layers see Convolutional Neural Networks for Visual Recognition)

Recurrent Neural Networks

When dealing with sequential data, both FCNs and CNNs will not achieve great perfor-
mance. This is mostly due to the fact that these approaches would make a prediction
that only depends on the current input, without keeping into account the temporal de-
pendency of the sequence. In order to model this kind of dependency, Recurrent Neural
Networks have been proposed (RNNs). In simple words, RNNs, which have their roots in
Elman networks [31], are a class of neural networks where the output from the previous
step is fed as input to the current step (Figure 2.5). For each timestamp t, the temporal
hidden representation ht and the output ot are expressed as follows:

ht = ϕ1(Whhht−1 +Whxxt + bh)

ot = ϕ2(Wohht + bo)

17
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2.2. SYMBOLIC AI CHAPTER 2. BACKGROUND

where Whx,Whh,Woh, ht, bh, bo are shared learnable weights, and ϕ1, ϕ2 are activation func-
tions. Using a RNN has different advantages. First, as we have already stated, it captures
temporal input correlations between timestamps. Second, it takes as input sequence of
arbitrary lengths. Lastly, similar to CNNs, parameters are shared across time. One of the
main issues of RNNs is their difficulty to capture long-term dependencies. This is due to
the so-called vanishing gradient that appears during the training of an RNN. Intuitively,
this is due to the fact that, during the backpropagation, the gradient will get smaller and
smaller (almost zero) when approaching the initial layers. As a consequence, no update
will occur for the weights of these layers. In order to overcome this issue, specific gates
have been proposed, leading to an "evolution” of the standard RNNs that is called Long
Term Short Memory [40]6. These gates are the following:

• Input gate (Ig): a gate that is used to quantify the information carried by the
input at time t (i.e, xt).

• Forget gate (Fg): a gate that decides if we should retain or not the information at
the previous timestamp.

• Output gate (Og): a gate that decides how much (final) information of the current
cell we should return

and each of them realizes the following transformation:

Gg = ϕs(WGgxt + UGght−1 + bGg) G ∈ {F,U,O} (2.10)

where ϕs is the sigmoid function and WGg , UGg , bGg are learnable weights specific for each
gate.

2.2 Symbolic AI

At the beginning of AI, symbolic AI (aka symbolic reasoning) has been the dominant
paradigm in AI. One of the reasons, it is due to the ability of symbolic approaches to
encode and reason about knowledge in an explicit way, close to humans. In addition,
symbolic approaches have been also shown to be:

• expressive

• easier to explain

• generalize from a few examples
6used in:3.7.2
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Figure 2.5: Recurrent Neural Network

In particular, logic programming, which encodes knowledge in terms of facts and rules,
has been applied to solve effectively many different complex tasks. Furthermore, since its
introduction, many families of logic programming languages have emerged, like Prolog,
Answer Set Programming, Datalog, etc. In what follows, we are going to provide a
general overview on logic programming, and we will see later how it has been combined
with neural networks to create hybrid reasoning systems.

2.2.1 Logic Programming

Logic Programming, whose origin can be rooted in the debates between procedural and
declarative knowledge representations, is a declarative programming paradigm where one
only encodes the information about the domain and the goal to achieve without providing
any details on "how” to reach it. This is in contrast with the imperative (and perhaps
more known) programming paradigm where detailed instructions are provided to the
system in order to achieve the final goal. To make an example, consider a robot in a
flat that has to reach a given room. From a declarative perspective, the robot may have
access to a total/partial map of the flat, knowing only its start position and the target
destination. In this case, the robot has to choose the actions to perform in order to reach
the destination. While, in the imperative paradigm, the actions that the robot has to
execute are established a priori.

Logic concepts

Before going into the technical details and providing a more formal definition of what
logic programming is, we briefly review the main concepts related to logic.
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Suppose to have a domain D. D can be described by a tuple (C,F ,P) where:

• C is a set of constant symbols

• F is a set of functors symbols

• P is a set of predicate symbols

Constants of C are used to represent individuals of D. Functors symbols are used to
refer to individuals for which exists a sequential connection with other individuals of
D. To make an example, suppose to have the individuals Abraham, Homer and Bart
denoted respectively with constants a, h, b and the functor fatherOf accepting only one
argument. Further, suppose that Abraham is the father of Homer and Homer is the
father of Bart. fatherOf(b) refers to the constant h (i.e. Homer). If we apply the same
functor a second time (fatherOf(fatherOf(b)), we refer to the constant a (i.e. Abraham).
Predicates symbols are used to express relations among individuals (e.g., relation friends).
Both predicates and functors are defined by indicating the number of arguments that they
take as input (i.e. their arity). A generic individual of D is represented by a variable.
Constants, functors, and predicates are represented using an initial lowercase letter, while
variables are represented using an initial capital letter. A term t can be built from a
constant, a variable, or the recursive application of functors. The input of predicates
is terms and predicates applied to tuple of terms are referred to as atomic formulas or
atoms. A ground term is a term that contains no variables, and a ground atom is an atom
that contains no variables. A literal is an atom or its negation. A clause is a disjunction
(logical or) of literals. A summary of the aforementioned concepts is given in Figure 2.6.

Logic program

A logic program Lp is composed of a set of clauses with at most one positive literal (aka
Horn clauses7), having the following form:

h←− b1, b2, . . . bn.

In the clause above8, h and b1, b2, . . . bn are atoms that are referred as the head and
the body of the clause, respectively. All clauses are assumed to be implicitly universally
quantified.
In logic programming language Prolog [73], clauses can be classified in:

• Facts
7usually may be extended with negation in the body (negation as a failure).
8, stands for ∧ and this a disjunction since h←− b1, b2, . . . bn ≡ h ∨ ¬b1 ∨ ¬b2 ∨ · · · ∨ ¬bn
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C = {j, k, z, . . . }

V = {X,Y, Z, . . . }

F = {f | f : Cα → C} α = 1, . . . , n

P = {p| p : Cα → [0, 1]} α = 1, . . . , n

If :

j ∈ C, X ∈ V

f1 ∈ F and f1 : C → C

p1 ∈ P and p1 : C → [0, 1]

Have :

T = {j,X, f1(j), f1(X), . . . } GT = {j, f1(j), . . . }

A = {p1(j), p1(X), . . . } GA = {p1(j), p1(k), . . . }

L = {a1, . . . , an} with ai ∈ A and i = 1, . . . , n

Cl = {c1, . . . , cm} with ci =∨nj

j = 1aij and i = 1, . . . ,m

Figure 2.6: Logic programming concepts: V is the set of variables, T is the set of terms, GT is
the set of ground terms, A is the set of atoms, GA is the set of ground atoms, L is the set of
literals and Cl is the set of clauses (α and nj indicate respectively the arity of a functor/predicate
and the number of literals of a clause ci).

• Rules

• Queries

Facts (F ), which are clauses with an empty body, are used to express unconditionally
true statements on both objects and their relations. Rules (R), which are standard Horn
clauses, are used to inject prior knowledge on both objects and their relations. Finally,
queries, which are clauses with an empty head, are used to ask questions on both objects
and their relations. Determine if a query q is logically entailed by Lp (Lp |= q) means
using both F and R to find a set of inference steps leading to the derivation of q.

2.2.2 Event Calculus

Event Calculus (EC) is a logic programming formalism introduced by Kowalski and Ser-
got [51] in 1986 to represent and reasoning about events and their effects. The main
components of EC are:

21



2.3. NEURO-SYMBOLIC INTEGRATION CHAPTER 2. BACKGROUND

EC predicates
happensAt(e, t) Event e happens at time t

initially(f) Fluent f holds from time 0

initiatedAt(e, f , t) Fluent f starts to hold after
event e at time t

holdsAt(f , t) Fluent f holds at time t
terminatedAt(e, f , t) Fluent f ceases to hold after

event e at time t
clipped(t1, f , t2) Fluent f is terminated between

time t1 and t2

t1 < t2 Time point t1 is before time point t2

Table 2.1: Example of some EC predicates.

• Events also referred to as actions, include both concrete (e.g, Mary turns on the
light) and abstract (e.g, sale fall off) events.

• Fluents: properties whose value may change over time. like numerical values (e.g.
number of working hours) or propositions (e.g. is cold)

• Time: a discrete or continuous value used to define the time in which an event
occurs or a fluent initiates/holds/terminates.

In the original formalization of EC, events happen at specific time and their occurrence
causes the initiation (or termination) of a period of time in which fluent/s hold (or held).
These facts are expressed using some well-defined predicates (some of those are reported
in Table 2.1) in term of an EC narrative of facts. These predicates are then connected
together to define both domain independent and dependent rules.
Different dialects to the original EC have been proposed in the literature [79]. In chapter
2, we will provide an event calculus inspired formalization in order to define the event
recognition problem in a neuro-symbolic context. In chapter 4, we will provide a slightly
modify version of the formalism introduced in chapter 3, by defining the distinction of
events in structured and atomic events.

2.3 Neuro-symbolic integration

Neuro-symbolic integration (NeSy) is a subfield of AI that combines neural and symbolic
approaches. The growing interest in NeSy AI is motivated by different reasons. One
of the reasons, from cognitive science, is that neural and symbolic approaches represent
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two different abstractions, respectively. As we have already seen in Section 2.1, neural
approaches based on neural networks represent an abstraction of the working of the human
brain. On the other side, symbolic approaches, based on the representation of knowledge
by formal languages, can be seen as an abstraction of the human reason mechanism.
Therefore, it appears natural to ask itself how these two abstractions can be unified
together. Another reason is that with the integration of neural and symbolic approaches,
it is possible to merge the strengths and overcome the issues of the two worlds. For
example, neural networks are robust to noise with respect to symbolic approaches but
require a huge amount of data and are often referred to as black box models. On the
other hand, symbolic approaches are self-explanatory and require less amount of training
data. Looking at the literature, different neuro-symbolic frameworks that rely on explicit
encoding of knowledge as first order formulas have been proposed over the last years like
Logic Tensor Network [78], Lyrics [59], DeepProbLog[56], and NeurASP [92]. Among
these, DeepProbLog and LTN which relies, respectively, on probabilistic reasoning and
fuzzy logic have been proven to be successful in many different tasks. In what follows, we
are going to provide an overview on both DeepProbLog and LTN, which will be useful
later to understand chapters 3 and 5.

2.3.1 DeepProbLog: combining probabilistic logic programming with neural
networks

The difference between logic programming Prolog and probabilistic logic programming
ProbLog is that in ProbLog each fact f ∈ F is labeled with a probability p that states
that f is true with probability p (respectively false 1 − p). By assuming that each f

is mapped to a boolean random variable and that these variables are independent each
other, it is possible to calculate the probability of a L′ ⊆ L (also referred to as world) as:

P (L′) =
∏
fi∈L′

pi
∏
fi /∈L′

1− pi

Therefore, a probability distribution is defined over the possible worlds. In this context,
the probability of a query q to L can be computed as:

Computing P (q) by enumerating and summing all the worlds from which q can be
derived is not feasible. Therefore, approximation techniques or techniques based on map-
ping boolean formulas to specific representations (e.g. Binary Decision Diagram [13] and
Sentential Decision Diagram [25]) are usually adopted.
A DeepProbLog program 9 can be seen as a neural extension of ProbLog. The differ-
ence with respect to ProbLog program is that DeepProbLog introduces neural computed

9used in: 3.7.3
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predicates that allow to instantiate neural computed facts. In this case, the output of
the underlying networks is normalized in the range [0,1] in order to be interpreted as a
probability value. In detail, the neural extension is realized by enhancing ProbLog with
a primitive that allow to declare neural predicates:

nn(nid,Xs, Y,Ys)

where nn is a reserved functor used to to declare a neural predicate, nid is an identifier
for the underlying neural network, Xs denotes a sequence of n input variables (Xs =
{Xi}ni=1, n ∈ N), Y is the output variable, and Ys denotes a sequence of m possible values
(Ys = {yi}mi=1,m ∈ N) that Y can assume.

2.3.2 Logic Tensor Network

Logic Tensor Network is a neuro-symbolic framework where neural networks are combined
with a rule-based symbolic reasoning through fuzzy logic. Before seeing the technical
details of LTN, we introduce basic concepts related to fuzzy logic.

Fuzzy Logic

Fuzzy logic is a many-valued logic that extends classical boolean logic by allowing truth
values in the range [0, 1]. It is based on the work of Zadeh on fuzzy sets [95] which
generalize standard crisp sets by introducing the concept of "degree of membership" of
an element to a set. Formally, if we denote with U the universe of discourse, (i.e. all the
objects we can talk about) and with A a subset of U , we can describe A as:

A = {x | mA(x) = 1} with mA(x) =

1, x ∈ A
0, x /∈ A

where mA is a function called membership function (also referred to as characteristic
function) that decides if an element belongs or not to a set. If A instead is a fuzzy set,
we have that mA(x) ∈ [0, 1]. As we move from crisp to fuzzy sets, we should also define
the fuzzy counterpart of the set operators. If A and B are two fuzzy sets, we have:

• mA∩B(x) = {min(mA(x),mB(x))}

• mA∪B(x) = {max(mA(x),mB(x))}

• mA(x) = 1−mA(x)
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Fuzzy statements

Fuzzy logic is usually used to model uncertainty and vagueness related to linguistic vari-
ables. A linguistic variable is defined as a variable whose values are sentences in natural
or artificial languages. For example, suppose that we have as a linguistic variable the
temperature of a place. Related to the temperature, we have 3 expressions (i.e., values):
hot, warm, and cold. For each of these expressions, there would be a fuzzy set with a cor-
responding membership function that we denote with mhot, mwarm and mhot, respectively.
Continuing the example, a temperature of 20◦C would have a higher degree of member-
ship for warm compared to hot and cold (i.e, we would have that mcold(20) < mhot(20) <
mwarm(20)). Furthermore, as in classical boolean logic, using logical operators, we would
be able to combine these expressions to build more complex statements. In addition, since
we are no more dealing with standard boolean logic, we should have a way to evaluate
these fuzzy statements and return a value in the range [0, 1]. For this reason, different
fuzzy interpretations have been proposed in the literature like Łukasiewicz, Product and
Godel. These can be seen as a kind of soft interpretation of classical logical operators
that still cover their semantics in case of crisp values (i.e. when statements can only be
true or false).

Logic Tensor Networks

After talking about fuzzy logic, we are ready to introduce Logic Tensor Networks (LTN)10.
LTN [78] is a neuro-symbolic framework where data driven models (e.g., neural networks)
are enhanced with knowledge about world. The core of LTN is represented by real logic, a
fully differentiable first-order logic language that maps logical concepts (e.g., propositions
and predicates) into real vector space (i.e, to tensors). Formally, real logic is defined on
a first-order language L which contains the following set of symbols:

• C a set of constants symbols

• X a set of variable symbols

• F a set of functor symbols

• P a set of predicate symbols

Examples of formulas that we can build from L are:

∀x∃y, z(FatherOf(y, x) ∧MotherOf(z, x))

MotherOf(z, x) ∧MotherOf(z, y)→ Brothers(x, y)

10used in: 5
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that state, respectively, that every person has a father and a mother, and that if two
persons have the same mother, then they are brothers. Since formulas involve objects of
different types, a set D is introduced to represent domain symbols. The assignment of
types to symbols of L is done by 3 functions, D, Din, and Dout. D returns the domain
of a given constant or variable, Din returns the domain of the arguments of a functor
or predicate, and Dout returns the domains of the range of a functor. The connection
between symbols of real logic and real vector spaces is achieved by another function that
is called grounding and it is denoted by G. This kind of interpretation for grounding
is different from its standard interpretation, (renamed in [78] as instantiation), which
replaces variables of a given term with constants or other terms that do not contains
variables. More precisely, a grounding provides an interpretation of both domain symbols
D and non-logical symbols of L. In details, a grounding G is a function that:

• ∀d ∈ D, it assigns a set G(d) ⊆ ∪
n1...nz∈N⋆

Rn1×···×nz and for every d1, . . . dm ∈ D⋆,

G(d1, . . . , dm) =×m
i=1 G(di) 11

• ∀c ∈ C, it assigns a tensor G(c) in the domain G(D(c))

• ∀x ∈ X , it assigns a finite sequence of tensors t1, . . . tk each one in the domain
G(D(x))

• ∀f ∈ F , it assigns a function that takes as input tensors of domain G(Din(f)) and
returns as output tensor belonging to domain G(Dout(f))

• ∀p ∈ P , it assigns a function that takes as input tensors of domain G(Din(p)) and
returns as output a (truth) value in the range [0,1]

Regarding the (fuzzy) semantics of logical connectives, the following interpretations are
used:

• ¬ : Ns(v1) = 1− v1 (standard negation)

• ∧ : Tp(v1, v2) = v1v2 (product t-norm)

• ∨ : Sp(v1, v2) = v1 + v2 − v1v2 (dual product t-conorm)

• → : Ir(v1, v2) = 1− a+ ab (Reichenbach implication)

• ∃ : ApM(v1, . . . vn) =
(
1
n

∑n
i=1 v

p
i

) 1
p p ≥ 1 (generalized mean)

• ∀: ApME(v1, . . . vn) = 1 −
(
1
n

∑n
i=1(1− vi)p

) 1
p p ≥ 1 (generalized mean w.r.t. the

error)

where v1 . . . vn ∈ [0, 1]

11⋆ denotes the Kleene star
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Learning & Reasoning

Roughly speaking, learning in real logic consists in finding (according to a search criterion)
the best parameters of a parametric grounding Gθ(·). More formally, if T = ⟨K,Gθ(·),θ⟩
is a first order theory in real logic, where K is a set of closed formulas built from the
symbols of L and Θ is the hypothesis space of the symbols’ parameters, learning consists
in finding the parameters θ∗ over Θ that maximize the satisfiability of T :

θ∗ = argmax
θ∈Θ

SatAgg Gθ(ϕ) (2.11)

where SatAgg is an aggregation function for the formulas of K (i.e., SatAgg : [0, 1]∗ →
[0, 1]) that computes the satisfiabilty of T .

Reasoning in real logic is the task of verifying if a logical formula ϕ is a logical conse-
quence of the theory T . Directly applying the logical consequence for fuzzy logic would
not be possible since grounded theory ⟨K,Gθ(·)⟩ may have a satisfiability value less than
one. To overcome this issue, one can define a "satisfiability interval" [q, 1] with 1

2
< q < 1

and state that a formula is true if its satisfiability value is into the interval. As a conse-
quence, one can say that a formula ψ is a logical consequence of T , if, for every grounded
theory ⟨K,Gθ(·)⟩, if SatAgg(K,Gθ(·)) ≥ q then Gθ(·)(ϕ) ≥ q. Nevertheless, the drawback
in this case, may be that one has to query the truth value of ϕ for a potentially infinite set
of groundings. One possible solution would be limit the number of grounding by focusing
only on the grounded theories that maximize T . Therefore, the objective becomes to find
all θ∗ that satisfy both T and ϕ:

θ∗ = argmax
θ

SatAgg(K,Gθ) and SatAgg(K,Gθ∗) ≥ q (2.12)

Alternatively to this reasoning, which is referred in [78] as querying after learning, one
can reason by refutation (aka proof by refutation) and find a counterexample such that
the logical consequence does not hold (for further details about learning and reasoning,
see Subsections 3.2 and 3.4 of [78]).

Example 1. Suppose we want to train a binary classifier S to recognize if a given email
is a spam or not. In this scenario, we may have the following:

• Domain:

emails

• Variables:

– x+ for spam emails
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– x− for not spam emails

– x all emails (i.e, all examples)

– D(x) = D(x+) =, D(x−) = emails

• Predicates:

– S(x) (trainable) spam email classifier

– Din(S) = emails

• Rules:

– ∀x+S(x+)

– ∀x−¬S(x−)

• Grounding:

– G(emails) ∈ R⋉ (i.e, each email is represented by a feature vector of size n)

– G(x) ∈ Rm×n (a batch of m examples)

– G(x+),G(x+) ∈ Rn

– G(S|θ) : NNθ(x) → 0, 1, the binary classifier is mapped to a Neural Network
(NN) parameterized by θ

As stated before, learning consists in finding the set of parameters θ∗ that maximize
the satisfiability of our theory. In this example, if we define with De the dataset containing
all email examples our objective function becomes:

θ∗ = argmax
θ∈Θ

SatAggϕ∈K Gθ,x←−Deϕ(x)

whereK = {∀x+S(x+), ∀x−¬S(x−)} and Gθ,x←−Deϕ(x) means tht the variables x is grounded
with the data of De when grounding ϕ(x). Since, training a NN is usually done on batches
of examples, the overall loss function becomes:

Loss = 1− SatAggϕ∈K Gθ,x←−Bϕ(x)

where B is batch randomly sampled from De. After training, we simply test the perfo-
mance of the model by checking if the predicted class (usually choose by comparing the
output of the NN with a threshold) is equal or not to the ground truth class.

28



Chapter 3

A Neuro-Symbolic Approach to
Structured Event Recognition

Events are structured entities with multiple components: the event type, the participants
with their roles, the outcome, the sub-events etc. A fully end-to-end approach for event
recognition from raw data sequence, therefore, should also solve a number of simpler
tasks like recognizing the objects involved in the events and their roles, the outcome
of the events as well as the sub-events. Ontological knowledge about event structure,
specified in logic languages, could be very useful to solve the aforementioned challenges.
However, the majority of successful approaches in event recognition from raw data are
based on purely neural approaches (mainly recurrent neural networks), with limited, if any,
support for background knowledge. These approaches typically require large training sets
with detailed annotations at the different levels in which recognition can be decomposed
(e.g., video annotated with object bounding boxes, object roles, events and sub-events). In
this chapter, we propose a neuro-symbolic approach for structured event recognition from
raw data that uses ”shallow” annotation on the high-level events and exploits background
knowledge to propagate this supervision to simpler tasks such as object classification.
We develop a prototype of the approach and compare it with a purely neural solution
based on recurrent neural networks, showing the higher capability of solving both the
event recognition task and the simpler task of object classification, as well as the ability
to generalize to events with unseen outcomes.

3.1 Introduction

Events are structured entities with multiple components and relations with other entities
[74]. The most important components of an event are the event type, the participants
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with their roles, the sub-events, and the event outcome. Therefore, the approaches for
full fledged event recognition should be able to extract the information about all the
components of the events that happen in a data sequence. To this aim, a system for event
detection should solve a number of different simpler tasks like recognizing the objects
involved in the events and their roles, the outcome of the events as well as the sub-events.
In this context, having background knowledge about the event structure, specified in
logic languages, could be very useful to solve the aforementioned challenges. However,
looking at [88], one can see that the majority of neural approaches (aka sub-symbolic)
applied in event recognition strictly rely on the features learnt by the underlying networks
with limited, if any, support for background knowledge. Furthermore, the training of the
underlying networks of these approaches requires a large amount of training data with a
detailed supervision on all the events’ components (e.g., a video annotated with events,
sub-events, object roles and object bounding boxes). Alternatively, one could think to
have data with an annotation limited to the occurrence of an event (i.e., a ”shallow”
annotation) and exploit the background knowledge to infer information on the event
components. For example, if a video clip is annotated with the event ”John is preparing
a cappuccino to Mary”, one can infer from the background knowledge that the video
is showing at least two people, one male and one female, that John is preparing the
cappuccino by mixing milk and coffee into two cups, etc. As another example, if a video
clip is annotated with the event ”A potential threat is happening” and the background
knowledge defines the potential threat as a person moving, leaving his/her bag and then
moving away, one can infer that the clip contains at least one person, which is wearing a
bag, and that the (simple) sub-events move, leave a bag, and move away are happening
one after the other. All of these inferred facts can be used as supervision to neural
networks to solve the simpler tasks defined above and to recognize the structured event as
well. In this case, neuro-symbolic frameworks e.g., DeepProbLog [59] that combine low-
level neural perceptions with logic reasoning (also know as symbolic) seem to be suitable
approaches to achieve these objectives. In this chapter, we propose a neuro-symbolic
approach for structured event recognition from raw data that uses ”shallow” annotation
on the high-level events and exploits background knowledge to propagate this supervision
to simpler tasks such as object classification. We develop a prototype of the approach and
compare it with a purely neural solution based on a recurrent neural network, showing
the higher capability of solving both the event recognition task and the simpler task of
object classification, as well as the ability to generalize to events with unseen outcomes.
The detailed contributions of this chapter are the following:

1 a formal definition of the problem of structured event recognition from raw data
sequences with ”shallow” annotations and of a neuro-symbolic solution combining
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low-level neural-based predictions with high-level reasoning;

2 a framework for automatically generating simple videos containing events that are
fully annotated;

3 a prototypical neuro-symbolic recognition approach based on DeepProbLog;

4 an experimental evaluation that compares our approach with a purely neural solu-
tion, showing the advantage of explicitly using background knowledge.

The rest of the chapter is organized as follows: Section 2 formally defines the problem
of structured event recognition with ”shallow” annotation; Section 3 presents our pro-
posed solution; Section 4 briefly reviews the state of the art approaches that have been
proposed in the context of event recognition, and presents some of the most well-known
neuro-symbolic frameworks; Section 5 describes the event generation framework; Section 6
presents the experimental setting; Section 7 describes the neural LSTM approach and our
prototype approach based on DeepProbLog; Section 8 reports the experimental results;
Finally, Section 9 draws some concluding remarks.

3.2 Related Work

Event recognition has always attracted researchers coming from different fields, like Com-
puter Vision and NLP. The particular attention towards event recognition may be moti-
vated by its multiple data stream nature and by its impact in people’s daily life. Looking
at the literature, approaches to event recognition can be classified into three categories:
sub-symbolic, symbolic and neuro-symbolic. Sub-symbolic approaches (mostly based on
neural networks) moved from manually crafted features to automatic features learning
(see [2] and [88] for a survey). These approaches require a huge amount of training data
with a rich annotation at different levels (e.g, the type and temporal location of the event).
These data are hard to collect and it is difficult to ensure high-quality annotations for
large amounts of example, so that high levels of annotation errors can affect the accu-
racy of the networks being trained. Furthermore, the trained model is a black box model
that cannot explain its decisions and is not guaranteed to be consistent with existing
background knowledge. An attempt to make sub-symbolic approaches more interpretable
is represented by Concept Bottleneck Models [49] where the activation of (a subset of)
human-specified concepts is used to explain the model’s final decision. However, works like
[49] focus on atemporal domains (e.g. image). In [41], authors propose a novel approach
that addresses concepts explanation in videos, but they are not able to capture spatial
and temporal relationships between concepts. On the other hand, symbolic approaches
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like [9], are explainable and knowledge-consistent, but are not robust in the presence of
noise. Therefore, symbolic approaches dealing with uncertainty have been proposed [3].
In [80, 8], authors recognize higher events by combining evidence of simple events with
domain knowledge using the probabilistic logic programming framework ProbLog [73] . In
this case, knowledge on low level events is assumed to be given. Recently, neuro-symbolic
approaches have started to be applied in the context of event recognition. In works like
[46, 47, 91, 85, 34], pre-trained neural networks are used to extract lower events and then
passed to a symbolic layer that encodes the knowledge of the domain in the form of logic
rules. In [90], authors propose an end-to-end model where a neural network is also used
to learn to simulate the symbolic layer. One of the drawbacks is that the neural network
has to be re-trained in case of even minimal changes/updates of the existing knowledge.
Among existing frameworks, DeepProbLog[56] is particularly appealing in terms of ex-
pressivity. DeepProbLog extends the probabilistic programming language ProbLog with
neural predicates, achieving an elegant and powerful combination of neural networks, logic
and probability. Furthermore, by using DeepProbLog, any change/update to knowledge
can be easily integrated. We thus leverage DeepProbLog as the underlying integration
framework for our neuro-symbolic event recognition prototype.

3.3 Problem definition

Let L be a first order language with three sorts, O, E, and T. Terms of sort O denote
objects, terms of sort E denote events, and terms of sort T denote time-points. The
language contains the constants 0, 1, 2, . . . of sort T, used to name time points and the
binary relation <: T×T→ {⊤,⊥}. The language L also contains a set of predicates P of
sort Ok → {⊥,⊤}, which are used to describe the time invariant properties and relations
between objects. L contains also a set of function symbols E of sort Ok → E that are
used to describe events that involve a (possible empty) tuple of objects. We also have a
relationship outcome(E,O) that is used to describe the fact that the outcome of an event
is an object. Finally, L contains the predicate happens(E,T,T) that is used to describe
the fact that a certain event happens within an interval of time. For example, the formula
∃x.happens(drop(John, x), t1, t2) states that John drops an object x at some time between
t1 and t2. Notice that events can “create” new objects, for example the result of mixing
milk and coffee is a cappuccino. This is expressed by the formula milk(x) ∧ coffee(y) →
outcome(mix(x, y), z)∧ cappuccino(z). A narrative is an interpretation I of the language
L, where the terms of sort T are interpreted in the set of natural numbers and < in the
usual linear order. The terms of sort O are interpreted in a domain of objects ∆O and
those of E are interpreted in a domain of events ∆E. Since we are interested in finite
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narratives, i.e., narratives that involve a finite number of objects and a finite number
of events and time points, we can specify a narrative by using the Herbrand Base. In
particular, for every k > 0 we define a k-narrative as a pair N = (C,F) where:

• C is a finite set of new constants for objects of type O;

• F is a subset of ground atoms in the language of L extended with the constants in
C and the constants 0, 1, . . . , k of sort T; such that: if happens(e, t1, t2) ∈ F then
t1 ≤ t2.

Our main aim is to reconstruct a narrative from a data stream using some neuro-
symbolic method that is capable of combining low-level data processing capabilities with
the ability to leverage background knowledge about the structure of events. More formally,
let X = {xi}ki=1 be a data sequence of length k, where each xi is a low-level representation
for sequence element i (like a real-valued vector, matrix or tensor). Our main objective is
to generate a k-narrative that describes the events that happen in X, when they happen,
their participants, and their outcomes. In other words we want to extract from X:

• a set of objects;

• the properties and the relations between the objects;

• the set of events that happen;

• the objects (arguments) that are involved in each event that happens;

• the outcomes of the events that happen.

Example 2. Let X be a video showing two people, one moving, leaving a bag and then
moving away, and the other standing. We would like to produce the following narrative:

C = {p1, p2, b1} F =


person(p1), person(p2), bag(b1),

happens(move(p1), 0, 4), happens(drop(p1, b1), 4, 5)
happens(move(p1), 5, 7),


The type of supervision we suppose to have, in order to learn a model that extracts
narratives from data, is partial and consists of a set of n data sequences labelled with
some (not necessarily all the) ground facts about events happening in the sequence:{

X(i),F (i)
p

}n
i=1

where X(i) = {x(i)
j }kj=1 is a data sequence and F (i)

p is a set of positive and negative literals,
denoting a subset of the events that happen or don’t happen in X(i). Notice that we do
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not need to have a complete labelling for all the events. Furthermore, notice that the
supervision provided via F (i)

p also provide a supervision for the subset of objects C(i) that
appear in the data stream X(i), which is the set of constants of type O that appear in
the positive literals of F (i)

p .
Events can be related to each other, and structured events can be defined in terms of

simpler ones.

Example 3. Let potential_threat represent a structured event corresponding to a potential
threat represented by something happening in a video like the one in the previous example.
The threat could be modelled by the following formula:

happens(potential_threat, t0, t3)↔
∃x, y, t1, t2.person(x) ∧ bag(y) ∧

happens(move(x), t0, t1) ∧
happens(drop(x, y), t1, t2) ∧
happens(move(x), t2, t3)

(3.1)

An example of supervision in this context could be a set of videos X(1),X(2), . . . ,X(m)

of length k, each of which is annotated with either the single fact happens(potential_threat, 0, k)
or with the single fact ¬happens(potential_threat, 0, k).

3.4 Proposed solution

Looking at the examples of the previous section, we observe that a structured event can
be expressed in terms of simple events using logical languages. Simple events include the
objects participating in the structured event, their relationships and their individual ac-
tions. Therefore, the correct recognition of the simple events combined with the definition
of the structured event at the logical level will lead to the recognition of the structured
event.
Our proposed approach has two aims, respectively learning to recognize the structured
event happening in a data sequence and the simple events that compose it. To achieve
these aims, we provide both background knowledge on the domain, expressed in terms
of logical formulas, and ”shallow” annotations on the structured event, like the one for
the potential_threat example of Section 3.3. In order to solve our problem, we have to
complete three tasks:

object detection: in order to build the narrative, we have to find the set of objects C1

that appear in a data sequence X.
1objects and constants are used interchangeably
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object classification and relation detection: We also have to classify the objects in
their types, e.g., a chair, a person, . . . , and we have to detect relations between
objects, e.g. if the person holds a bag or not.

event recognition: we have to recognize the events that happen in the video.

The traditional approach to solve the problem is to use a pipeline, where the above
tasks are solved sequentially and the result of the solution of the previous task is provided
as input to the next task. However, this requires supervision at all levels, the objects in
the data, their class and the events. We instead have only partial supervision on some
events.
In our solution, we propose to have a fully end-to-end approach in which both the super-
vision on data and the background knowledge are used to train some neural networks for
more data driven tasks such as object detection and classification. We therefore suppose
to have the following components:

• A neural network Detnn that takes as input a sequence X and returns a set of objects
C each of which is associated with a set of numeric features f(o). For example, if
X = {di}ki=1 is a video, then f(o) contains the bounding boxes of object o at each
frame xi and the crop of the image on the bounding box for each frame;

• for some (not necessarily all) object predicates we have a network Pnn that takes
as input the features of an n-tuple of objects f(o1), f(o2), . . . , f(on) and returns a
sequence in [0, 1]k which represents the level of truth or probability of truth of the
predicate at each time point 0 ≤ i ≤ k. For example, for the person predicate in the
examples in the previous section we would have a network that given a sequence of
cropped images outputs for each image the probability that it contains a person.

All the outputs of the neural networks defined above can be combined with the background
knowledge which is described in terms of the axioms, such as Equation (3.1). The way
in which this combination is achieved could be based both on probabilistic semantics
or on fuzzy semantics. At this stage we do not want to commit on one or the other.
A list of neuro-symbolic approaches that can be adopted to implement our architecture
is provided in the related work section. In the following we provide a proof-of-concept
implementation of the architecture described above using DeepProbLog [56]. Other neuro-
symbolic approach based on logic programming, like NeurASP [92], may be used instead
of DeepProbLog. However, we believe that the recent improvement in DeepProbLog [57]2

as well as its large application in the literature, makes it a more suitable candidate to
develop our prototype. One could also think to solve the problem by moving from logic

2this work has been published later with the respect to the article to which this chapter refers to
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programming to fuzzy logics. For example, by adopting the LTN framework [78]. In this
case, one has to reformulate the problem using real logic (i.e, many symbolic approaches
for event recognition are based on logic programming). In addition, it is not clear how
much scalable the LTN framework is. Indeed, most of the works in the literature have
used [78] to solve atemporal task. As far as we know, the only work that have used LTN
in a point based temporal reasoning, is the work by Umili et al. [84]. However, this work
considers short length sequence and then it is not clear how the approach will scale when
dealing with longer sequences.

3.5 Event generation framework

Most of the available datasets for event recognition provide only limited annotations
on some but not all the elements of an event. For example, in the context of event
recognition in video there are dataset like Olympic Sport [67] and UCF101 [81] that
provide annotation only on the event happening in the video. Datasets like CAVIAR [15],
MEVA [22], Cooking [53] and HiEve [55] provide a richer annotation, e.g., objects classes,
object locations and distinction between simple and structured events, but they introduce
a level of complexity in the visual part that requires pre-trained models for processing
low level features. Here we are interested in developing a neuro-symbolic system that
is trainable end-to-end, where the learning of the low-level processing is influenced by
the high-level knowledge. Furthermore, the above mentioned datasets were manually
curated, and cannot be extended to consider newly defined structured events without a
tedious process of data collection and manual annotation. We, instead, would like to
be able to quickly generate new data streams containing new events so as to support
a fast prototyping and testing of recognition architectures. For these reasons, we have
implemented a video generator of events involving MNIST digits. The generator allows to
generate videos of different length and with a different number of digits that interact with
each other, together to the narrative describing the objects and events in the video. The
generator uses an object predicate digit(x, v) to indicate that v is the value corresponding
to object x. Concerning events, we distinguish between simple events that involve single
digits and structured ones that involve combinations of digits. The simple events we
defined are:

• appear(x): a digit x appears in the video

• disappear(x): a digit x disappears from the video

• enter(x): a digit x enters in the video
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(a)

(b)

Figure 3.1: Example of events generated by the framework: join_add (a) and join_sub (b)

• exit(x): a digit x exits from the video

The difference between appear/disappear and enter/exit is that in the former case
the digit is always fully visible when in the video, while in the latter case the digit is
only partially visible upon entering/exiting. Example of structured events definable in
the framework are:

• join_add(x, y): two digits, respectively x and y, approach each other, overlap
and then the digit that is the result of the sum of the two digits appears, i.e.,
outcome(join_add(x, y), z) with digit(x, vx), digit(y, vy), digit(z, vz) and vz = vx +

vy. Note that this event can only happen if the sum of the two digits is ≤ 9.

• join_sub(x, y): two digits, respectively x and y, approach each other, overlap and
then the digit that is the result of the difference between the two digits appears,
i.e., outcome(join_sub(x, y), z) with digit(x, vx), digit(y, vy), digit(z, vz) and vz =

max(vx, vy)−min(vx, vy).

• split(x): a digit x splits into two digits whose sum or difference gives the value of
x, i.e., outcome(split(x), (y, z)) with digit(x, vx), digit(y, vy), digit(z, vz) and vx =

vy + vz or vx = max(vy, vz)−min(vy, vz).

Some examples of structured events produced by the generator are shown in Figure 3.1.
For simplicity, each object is assumed to participate in at most one simple event and one
structured event for each frame. For each video, a narrative file is also produced that
contains the following information for each digit:

37



3.6. EXPERIMENTAL SETTING CHAPTER 3. NESY EVENT RECOGNITION

• the name: a label

• the class: the corresponding MNIST class

• the position: x and y coordinates inside the frame

• the simple event (if any) the digits is involved in

• the structured event (if any) the digits is involved in

3.6 Experimental setting

Our experimental evaluation is aimed at verifying whether a neuro-symbolic solution has
an advantage in recognizing structured events with respect to a fully neural approach. In
addition to the capability of correctly classifying each video into the corresponding struc-
tured event, we aim at evaluating the ability to learn to correctly classify the underlying
objects (the digits) as well as the ability to generalize to unseen outcomes (e.g., the result
of a join_add being a digit for which no explicit supervision was ever received). The
scenario and learning setting we created to this aim are described in the following.

3.6.1 Scenario

The scenario consists of videos produced with the event generation framework described
in Section 3.5. Each video consists of 10 frames, each frame showing one or two digits.
Digits can appear anytime within the first half of the video, and only disappear if they
join together. When present, the digits are always completely visible, apart from the
frames in which they overlap with each other (e.g., right before a join). We generated
three types of videos:

• join_add

• join_sub

• no_join

The first two refer to videos where the corresponding structured event as discussed in
Section 3.5 takes place. The resulting digit can stay in the same position or move. To
avoid ambiguities, we refrain from generating videos where one of the two operands is a
zero. As consequence, the only way to get a zero is in a join_sub when both digits are
equal. The third type refers to videos where neither of the two structured events takes
place. In this case the video contains two arbitrary digits that wander around with no
restrictions, possibly overlapping with each other.
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3.6.2 Learning setting

Our goal is to test the ability of the different approaches to learn to recognize events with
partial supervision. The idea is to provide supervision in terms of the structured event
taking place (if any) and the outcome of the event (i.e., the result of the addition/sub-
traction). Supervision is thus provided in terms of sets like the following:

{happens(join_add(x, y), 1, T ), outcome(join_add(x, y), z), digit(z, 4)}
{happens(join_sub(x, y), 1, T ), outcome(join_sub(x, y), z), digit(z, 2)}
{¬happens(join_add(x, y), 1, T ),¬happens(join_sub(x, y), 1, T )}

Note that this type of feedback provides information on the classification of the un-
derlying objects, even if only when a join takes place, and only for the digit which is the
result of the join. We thus build the task to additionally test the ability of the methods
to generalize to unseen outcomes, i.e., digits that where never observed as the result of a
join during training (or validation). For the sake of conciseness, in the following we will
refer to the combination of structured event and outcome as the class of a video (with
no_join being the class of a video where no join occurs). To generate the videos we first
split the original MNIST dataset into training, validation and test set. Then, separately
for each set, we randomly picked digits to generate a set of videos for each of the video
classes, making sure that each class had the same number of videos. We generated train-
ing and validation videos containing no_join, join_add with outcome from 2 to 7 and
join_sub with outcome from 0 to 7, for a total of 15 video classes. Test videos contain
the same classes as the training and validation ones plus join_add with outcome 8 and
9 and join_sub with outcome 8, for a total of 18 classes. We generated 1500 videos for
training, 150 for validation and 180 for testing, so that each class always contains 100
videos.

3.7 Event recognition approaches

In this section, we describe the learning approaches that we used to solve the aforemen-
tioned task. We start presenting the low-level neural networks that we use for object de-
tection and classification and proceed describing the fully neural and the neuro-symbolic
approaches that build on them. The object detector is pre-trained, while the object
classifier is trained end-to-end both in the fully neural and neuro-symbolic approaches.
Training is performed for 35 epochs, using the Adam optimizer with a learning rate of
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0.001 and early stopping on the validation set. Training for more epochs does not lead to
improvements in recognition quality.

3.7.1 Object detector and classifier

The object detector is a neural network that extracts (processed) patches from frames.
Its architecture is shown in Figure 3.2 for the case of a single frame, as the same structure
is repeated for all frames in a video. Its main module is a standard convolutional neural
network that consists of two convolutional layers, each followed by a max-pooling layer,
and two fully-connected layers. ReLU are used as activation in all layers apart from the
output layer where a sigmoid is used. The module takes as input a frame of size 128×128
and gives as output a vector of length 6:

odet = ⟨v1, v2, x1, x2, y1, y2⟩

where vi ∈ [0, 1] indicates whether the i-th digit is present in the frame and xi, yi ∈ [0, 1]×
[0, 1] are the normalized digit coordinates (digits are ordered according to the distance
between their predicted coordinates and the origin). The two patches corresponding to
the coordinates are extracted from the frame, and their content is multiplied by the value
of their visibility flag. In so doing, the detector outputs "soft" patches, that depending
on the value of the visibility flag range from the patch itself (vi = 1) to a completely black
patch (vi = 0).

The digit classifier has the same architecture as the main module of the detector, with
the sigmoid replaced by a softmax in the output layer. The classifier takes as input an
image of size of 28×28 which corresponds to a processed patch extracted by the detector
and returns as output a vector of length 11, where the first 10 elements refers to the 0-9
digits and the last one indicates the absence of a digit. This module is repeated for all
patches and all frames of the input video.

3.7.2 Fully neural approach

The fully neural approach combines the predictions of the digit detector and classifier on
the different frames using an LSTM recurrent neural network [40]. The overall architecture
is shown in Figure 3.3. For each frame in the input video, the detector extracts a pair
of patches and sends them to the digit classifier. The predictions of the classifier are
concatenated with the visibility and coordinate predictions from the detector and fed to
an LSTM cell. After processing the entire input sequence, the LSTM outputs a prediction
in three classes, join_add, join_sub and no_join. The outcome of the join event is
recovered from the output of the digit classifier on the first patch of the last frame. If the
class with the highest prediction is no_join, the outcome prediction is ignored.
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Figure 3.2: MNIST digit detector: A frame of shape 28×28 is given as input to the model that
outputs a vector of length 6. The vector contains the visibility scores and the normalized digits
coordinates of each digits (yellow and orange respectively). Both the score and the coordinates
are used to output "soft" patches that are then passed to the MNIST digit classifier.

3.7.3 Neuro-symbolic approach

We developed a neuro-symbolic approach for structured event recognition using the Deep-
ProbLog [56] framework. This framework can be seen as a neural extension of the proba-
bilistic extension of Prolog, ProbLog [73]. Like ProbLog, the knowledge about the domain
is encoded as a set of logical rules (i.e., Horn clauses). In addition, DeepProbLog intro-
duces neural predicates that allow to instantiate facts as outputs of neural predicates
processing raw data. The neural extension is realized by enhancing ProbLog with a prim-
itive that allows to declare neural predicates:

nn(nid,Xs, Y,ys)

where nn is a reserved functor used to declare a neural predicate, nid is an identifier for the
underlying neural network, Xs denotes a sequence of n input variables, Y is the output
variable, and ys denotes a sequence of m possible values that Y can assume. Training of
these neural predicates is done by providing supervision on the head of the logical rules
expressed as standard logical queries. This means that in our prototype the ”shallow”
annotations on the structured event will be mapped to queries, while simple events will
be mapped to neural predicates.

The DeepProbLog program we defined to address the event recognition task is shown
in Figure 3.4. It consists of the following predicates:

• digit(X, V, T, Vx): a neural predicate that states that the X digit of video V at time
T is Vx

• join_add_res(V, Vz): a binary predicate that states that video V is a join_add
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Figure 3.3: Fully neural approach: LSTM-based architecture.

and the resulting digit of the join is Vz

• join_sub_res(V, Vz): a binary predicate that states that video V is a join_sub and
the resulting digit of the join is Vz

• no_join(V ): a unary predicate that states that video V is a no_join video

The neural predicate digit(X, V, T, Vx) is mapped to the combination of digit detector and
classifier shown in Figure 3.3, with the difference that only the output of the classifier (i.e.,
a probability distribution on the 0-9 digits plus the absence of the digit) is provided. The
predicate join_add_res(V, Vz) basically represents the combination of join_add(X, Y ),
outcome(join_add(X, Y ), Z) and digit(Z, Vz), with the addition of the V variable indi-
cating the video (omitted for simplicity in the formalization throughout the paper). The
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nn(mnist_net, [I, V, T], Y, [0,1,2,3,4,5,6,7,8,9,-1]) :: digit(I, V, T, Y).

join_add_res(V, Z) :- join_sub_res(V, Z) :-

between(0, 4, T1), between(0, 4, T1),

digit(0, V, T1, X), digit(0, V, T1, X),

X > 0, X < 9, X > 0,

digit(1, V, T1, Y), digit(1, V, T1, Y),

Y > 0, Y < 10 - X, Y > 0,

digit(0, V, 9, Z), digit(0, V, 9, Z),

Z is X + Y, Z > 1, Z is abs(X-Y),

digit(1, V, 9, -1). digit(1, V, 9, -1).

no_join(V) :- digit(1, V, 9, X), X =\= -1.

Figure 3.4: Neuro-symbolic approach: DeepProbLog program.

predicate checks whether there are two digits in the first half of the video and only one
digit at the end that is the sum of the two. The join_sub_res predicate is similar to
join_add_res with sum replaced by difference (in absolute value, so that digits do not
need to be sorted). Finally, for a no_join, we know that there are two digits for the
whole duration of the video. Therefore, we define a rule that only fires when both digits
are visible in the last frame.

3.8 Results

In this section, we present and compare the results of the neural based LSTM approach
with our proposed neuro-symbolic approach based on DeepProbLog on the tasks defined
in Section 3.6.

Confusion matrices, where entries (i, j) denote the number of samples of true class i
classified as class j, for the event recognition problem and related sub-problems for the
two approaches are shown in Figure 3.5. The first row shows the confusion matrices for
the event and outcome recognition (join_add with outcome from 1 to 9, join_sub with
outcome from 0 to 8, no_join), while the second row reports the confusion matrices for
the underlying task of digit classification (0-9, and -1 corresponding to no digit). The
left column reports results for the fully neural approach, the right column those for the
neuro-symbolic approach.

Looking at the top left confusion matrix, we can observe that the neural approach is
able to recognize the events for which the supervision is provided, even if it sometimes
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Figure 3.5: Experimental results: confusion matrices for event + outcome recognition (top row)
and digit classification (bottom row). Left: fully neural approach; right: neuro-symbolic ap-
proach.

mistakes a join_add for a join_sub and vice-versa when the outcome is the same. On the
other hand, it completely fails in generalizing to unseen events (join_add with outcome 8
or 9, join_sub with outcome 8). This fact highlights the difficulty of the neural approach
in fully learning the semantic behind the join operations. The results of the confusion
matrix on digits (bottom left) confirm these findings, as the network fails to classify digits
for which no direct supervision is available (i.e., 8 and 9).

The situation with our neuro-symbolic approach is rather different (right column).
Indeed, DeepProbLog is capable of predicting the unseen outcomes with reasonable ac-
curacy, and the same holds for the underlying digit classification task. If we compare
the confusion matrices on the digits of the two approaches (bottom row), we can observe
that our approach has a higher accuracy even on digits for which direct supervision is
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available. These results clearly indicate the importance of the background knowledge
in compensating partial supervision and allowing to generalize beyond what is observed
during training.

3.9 Conclusion

In this work, we have proposed a neuro-symbolic approach for structured event recogni-
tion from data sequences, where background knowledge about event structure is combined
with deep neural networks used to solve the sub-tasks of event recognition such as ob-
ject detection and classification. The proposed architecture can be trained end-to-end
with data streams containing only shallow annotations. We prototyped our architecture
using DeepProblog as a neuro-symbolic integration framework and tested it on a struc-
tured event recognition problem defined on a synthetic dataset automatically generated.
The experiments show that the background knowledge about structured events and their
outcomes translates supervision on the structured event into supervision on lower-level
predictive tasks like object classification, allowing to successfully train the neural compo-
nents of the architecture. We compare our architecture with a purely neural solution that
uses the same basic components for object detection and classification. The comparison
shows how the use of background knowledge improves performance for both high-level
and low-level prediction tasks. The advantages of these effects are multiple. The first
advantage is the fact that we are able to train a classifier without a direct supervision on
some of the classes (the classes 8 and 9 in our experiment); a second advantage concerns
explanability: while in a fully neural approach it is not possible to explain the happening
of an event in terms of its components (object participants, and their types), in our ap-
proach the reasoning process that infers the happening of a structured event on the basis
of the recognition of some basic facts (detection of an object of a certain type) can be
provided as an explanation.
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Chapter 4

A neuro-symbolic approach for
real-world event recognition from weak
supervision

Temporal Event Detection (TED) is the task of detecting structured and atomic events
within data streams, most often text or video sequences, and has numerous applications,
from video surveillance to sports analytics. Existing deep learning approaches solve TED
task by implicitly learning the temporal correlations among events from data. As con-
sequence, these approaches often fail in ensuring a consistent prediction in terms of the
relationship between structured and atomic events. On the other hand, neuro-symbolic
approaches have shown their capability to constrain the output of the neural networks to
be consistent with respect to the background knowledge of the domain. In this chapter,
we propose a neuro-symbolic approach for TED in a real world scenario involving sports
activities. We show how by incorporating simple knowledge involving the relative order of
atomic events and constraints on their duration, the approach substantially outperforms
a fully neural solution in terms of recognition accuracy, when little or even no supervision
is available on the atomic events.

4.1 Introduction

As we stated in the previous chapter, events are structured entities that involve multiple
components, like the participants, their roles, the type, and the atomic events composing
it. For example, in athletics, the event long jump involves one person (the athlete), per-
forming the atomic events run, jump and sit in sequence. When talking about events, one
of the main challenging tasks is temporal event detection (TED) which consists in detect-
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ing events within data streams, like text and video. Continuing the example, it consists
in identifying the class of the atomic events and the interval of time where they occurred.
Many sub-symbolic approaches, mostly based on neural networks, have been proposed
for event recognition [2, 88]. One of the main drawbacks of this kind of approaches is
the amount of training data. Indeed, having a large training set is fundamental for an
appropriate and effective training of the model. Furthermore, "rich” annotations at dif-
ferent levels are required in order to solve the task (e.g., frame-by-frame annotation of
atomic events). Large amounts of deeply annotated data are hard to collect. Addition-
ally, errors in the annotations (e.g. in case of crowdsourced ones) may introduce noise
in the model and compromise its accuracy. More importantly, purely neural approaches
cannot guarantee consistency of the predictions with the domain knowledge, in terms of
the relationship between the structured event and the atomic events that compose it.
Neuro-symbolic approaches [39] have recently gained increasing popularity as a means
to make the best of both worlds, by combining the effectiveness in low-level processing
of deep learning technology with the ability of symbolic approaches to express complex
domain knowledge. Popular frameworks including DeepProbLog [56], DeepStochLog [87],
Logic Tensor Networks [78], LYRICS [59] and NeurASP [92] have been proposed and
applied to solve different structured tasks, like Semantic Image Interpretation [28]. In
the context of event recognition, the neuro-symbolic cognitive agent of [26] has shown
promising results in rules learning from real world complex scenarios. The drawbacks is
that one has to re-train the model from scratch even even for a slightly changed of the
scenario. [12] proposed an inspired Cortex-system based model to recognize individual
and intra human(s) actions. The model is trained on thousands of fully labeled videos.
Recently, the DeepProbLog framework has proved effective in recognizing both structured
and simple events as well as generalizing to unseen outcomes [6, 86]. However, these re-
sults have been obtained on artificial scenarios, and the framework has serious issues of
scalability when the complexity of the setting increases [29]. In this chapter, we present a
neuro-symbolic approach for structured event recognition in sport videos. The task is out
of reach of popular neuro-symbolic frameworks like DeepProbLog, because of the compu-
tational complexity given by number of frames in a video combined with the temporal
constraints of the background knowledge. We tackle the problem by combining neural
predictions on individual frames with a mixed integer linear programming formulation
enforcing satisfaction of (soft) temporal constraints from the background knowledge and
similarity with the neural outputs. The approach is fully differentiable and end-to-end
trainable. Our experimental evaluation shows how the neuro-symbolic approach pro-
vides substantially more accurate predictions with respect to a fully neural solution, with
the additional feature of guaranteeing that predictions satisfy existing hard constraints.
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Quite remarkably, the approach is capable of predicting the sequence of atomic events that
constitute a structured event even without having any supervision on them, by simply
leveraging background knowledge in terms of duration constraints to guide the learning
of the underlying neural network. The rest of the chapter is structured as follows: Section
4.2 formally defines the problem; Section 4.3 describes our proposed approach; Section 4.4
presents the experimental setting; Section 4.5 reports the experimental results. Finally,
Section 4.6 draws some concluding remarks.

4.2 Problem Definition

Our problem can be summarized as follows: Given a data sequence X = {xi}li=1 of
real-value tensors xi and some background knowledge K about the relationship between
structured and atomic events, we are interested in providing a description of the atomic
and structured events that are happening during the sequence. Let us now specify all the
details of the problem. To represent background knowledge about structured and atomic
events we use a variation of the event calculus based on First Order Logic. Let L be the
first order language that we introduce in Subsection 3.3 and K a knowledge base that
expresses general knowledge about the event types in E . We split functors symbols E
in two disjoint sets A and S that represent atomic and structured events, respectively.
Given a data sequence X = {xi}li=1, we have to find an (herbrand) interpretation I, such
that I |= K, and such that happens(e, t1, t2) ∈ I if and only if the data sub-sequence
Xt1:t2 = {xi}t2−1

i=t1
shows that an event of type e is happening. Intuitively, I describes the

type and the class of the events happening in X and when they happened.

Example 4. Let X be a video where a person is doing a long jump (structured event)
in the interval [1, 25]. The background knowledge contains the fact that a long jump can
be decomposed into a sequence of three atomic events: run, jump and sit, which can be
expressed by the following formula:

∀bhjeij(happens(longjump, bhj, ehj)↔ ∃ br, er, bj, ej, bs, es(
happens(run, br, er) ∧ happens(jump, bj, ej) ∧ happens(sit, bs, es) ∧
br = bhj ∧ er = bj ∧ ej = bf ∧ ef = ehj))

Two examples of interpretations that satisfy the above constraints are:
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I1 = {happens(longjump, 1, 25), happens(run, 1, 15), happens(jump, 15, 21),

happens(sit, 21, 25)}
I2 = {happens(longjump, 1, 25), happens(run, 1, 17), happens(jump, 17, 22),

happens(sit, 22, 25)}
...

Since we may have more than one interpretation that satisfy K, we define a cost
function c : I → R and select the interpretation I∗c with the minimum cost:

I∗c = argmin
Ic|=K

c(Ic)

In order to find I∗c , we define a neuro-symbolic approach that combines low-level neural
processing with high level reasoning in terms of background knowledge on the events.
The kind of supervision we provide to train a neuro-symbolic model in order to find I∗c is.{

X(i), G(i)
a

}n
i=1

where G(i)
a is a set of ground atoms which are true in X(i) (i.e., we have G(i)

a ⊂ F (i)
p ).

Supervision is always assumed to be partial, including the case in which supervision is
limited to structured events, and atomic events need to be learned in a fully unsupervised
way. See experiments for the details.

4.3 Proposed Approach

Our objective consists in finding an interpretation I that has to explain what happened
in X both in terms of structured and atomic events. In order to achieve it, we have to
recognize the classes of structured and atomic events happening in X and the (interval of)
time where they occurred. To achieve this objective, we use an end-to-end differentiable
neuro-symbolic approach that combines low level processing of a neural network with
a logic layer that leverages knowledge about structured and atomic events. An overall
overview of our neuro-symbolic approach is depicted in Figure 4.1. As can be seen by
looking at the figure, the first step consists in passing X to a neural network NN. NN
may be any kind of network (e.g., Convolutional, RNN and LSTM) and has two different
heads, one for structured and one for atomic events. The head for the structured events
returns as output a vector o where oi ∈ [0, 1], with i = 1, . . . , k (assuming k is the number
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Figure 4.1: Inference steps of our neuro-symbolic approach on a data sequence of length 4, with 3
structured events and 4 atomic events. The structured event of class 1, which is the one predicted
by the NN, is defined in terms of the sequence of atomic events 1 and 2, respectively.

of structured events), is the probability of the i− th structured event. On the other hand,
the head for the atomic events returns a matrix O ∈ [0, 1]l×n where entry O[i, j], with
i = 1, . . . , l and j = 1, . . . , n (assuming l and n are the length of X and the number of
atomic events, respectively), represents the probability that event j happens at timestamp
i. The predicted structured event for a video X is the one maximizing the probability of
the corresponding output head of NN, i.e.:

ŷS = argmax
i=1,...,k

oi

In principle, the sequence of atomic events could be predicted in a similar fashion by
maximizing for each frame the probability of the atomic event head of NN at that frame,
i.e.:

ŷAi = argmax
1≤j≤l

O[i, j] (4.1)

Indeed, this is how our fully-neural baseline works. However, the vector ŷA of atomic
event predictions for the frames of a video X may contain inconsistencies (e.g., predicting
the atomic event jump as part of a javelinthrow structured event, predicting fall before
jump within a highjump, or even predicting a jump that is much longer than the run that
precedes it). Our neuro-symbolic architecture prevents these inconsistencies by combining
neural network predictions with hard and soft constraints provided by the domain knowl-
edge. The domain knowledge we exploit is quite simple, and provides hard constraints
determining the sequence of atomic events that constitute a structured event, and soft
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constraints about minimal and maximal duration of each atomic event and relative dura-
tion between atomic events making up a structured event. Table 4.1 reports an example
of the hard constraints that we consider for the javelinthrow structured event. Similar
constraints are generated for the other structured events. Given the structured event ŷS

predicted by NN, the corresponding sequence of atomic events is computed by solving a
MILP problem encoding the (hard and soft) constraints combined with a scoring function
measuring the compatibility of the sequence of atomic events with the NN outputs O.
The MILP problem for a structured event (we have a separate problem for each possible
structured event) is defined as follows:

minimize
V

− f(V,O) +
ms∑
j=1

ξtcj(V )

subject to hi(V ) ∀ i = 1, . . . ,mh

(4.2)

Here V is a sequence of triplets (a, b, e), where a ∈ A is an atomic event, b, e ∈ IN are
the starting and ending frames of the event respectively. The number of atomic events
is determined by the structured event being modelled. The scoring function f(V,O)

computes the compatibility of V with O as follows:

f(V,O) =
∑

(a,b,e)∈V

(
e∑

i=b

O[i, a]−
b−1∑
j=1

O[j, a]−
l∑

j=e+1

O[j, a]

)

It basically computes the sum of the probabilities of each atomic event in the range in
which it is predicted, and subtracts its probability outside of this range (l is the overall
length of the video clip).

The soft constraints cj(V ) encode duration ranges for atomic events or combinations
of atomic events. For instance, the constraint that the sum of the durations of run and
jump should be within the sum of the maximal and minimal durations respectively is
formalized as follows:

min(|d1 + d2 −maxrun −maxjump|, |d1 + d2 −minrun −minjump|)
where:

d1 = e1 − b1 + 1, d2 = e2 − b2 + 1

a1 = run, a2 = jump

The hard constraints hi(V ) encode temporal relations between atomic events and with
respect to the structured event. See Table 4.1 for examples. Intuitively, the solutions of the
MILP problem for the predicted structured event ŷS where only hard contraints hi(V ) are
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Hard Constraints
Generic Constraints (assuming k atomic events)

ei > bi ∀ i Events should end after they began

b1 = 1 ∧ ek = l Sequence of atomic events should span the whole clip

ei = bi+1 − 1 ∀ i ∈ 0 . . . l − 1 No gap among consecutive events

Specific Constraints (for the javelinthrow structured event)

a1 = run ∧ a2 = throw javelinthrow is a run followed by a throw

d1 > d2 run should take longer than throw

Table 4.1: Example of hard constraints for the javelinthrow structured event, divided into generic
constraints that hold for any structured event, and those specific of the javelinthrow event.

considered, provide a set of candidate interpretations for X. By including the objective
f(V,O) and the soft constraints cj(V ) we obtain the interpretation with the minimum
cost for X (i.e, Y ∗

c ). The label vector ŷAsol in Figure 4.1, which is the neuro-symbolic
counterpart of ŷA in Eq. 4.1, is obtained by "unrolling" the optimal V into an atomic
label for each frame in its predicted range.

Example 5. Let X a video of length 20 where a person is performing a structured event,
but we do not know which kind of structured event. Now, suppose we have, in addition to
the structured event highjump of example 4, the structured event javelin throw and that
the background knowledge contains the fact that a javelin throw can be decomposed into
a sequence of two atomic events: run and jump, which can be expressed by the following
formula:

∀bjtejt(happens(javelinthrow, bjt, ejt)↔ ∃ br, er, bt, et, (
happens(run, br, er) ∧ happens(throw, bt, et)∧
br = bjt ∧ er = bt ∧ et = ehj))

Also, suppose that the head of NN for structure events predicted ŷS = javelinthrow for
X. If we solve the MILP for the javelin throw where only hard constraints are considered
(for example the ones in Table 4.1), we have that some of the candidate interpretations
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Figure 4.2: Training of our neuro-symbolic approach.

will be:

I1 = {happens(javelinthrow, 1, 21), happens(run, 1, 13), happens(throw, 13, 21)}
I2 = {happens(javelinthrow, 1, 21), happens(run, 1, 17), happens(throw, 17, 21)}

...

By considering and solving the whole MILP, we obtain I∗c . Continuing the example, if
we have a soft constraint which penalizes interpretations having short duration for run,
we have that I∗c = I2, that corresponds to the solution V = [(run, 1, 17), (jump, 17, 21)] of
Problem 4.2.

Figure 4.2 shows the training process of the architecture. As we assume that the
ground-truth yS of X is available at training time, the head for the structured events is
not used anymore to predict ŷS , but the ground-truth itself is used instead. Furthermore,
if the ground-truth for the atomic events (Y A ∈ Rl×n) is also available, we use it to
train the head of the atomic events. If this information is not available, we use pseudo-
labels generated from the architecture. The generation of such pseudo-labels consists of
an inference step in the currently trained architecture as per Figure 4.1, with the only
difference that the structured event is given by the ground-truth yS rather than the NN
output. The atomic event prediction vector ŷA

sol is turned into a binary label matrix
Ŷ A
sol ∈ {0, 1}l×n by one-hot encoding atomic labels (i.e., Ŷ A

sol[i, j] is set to 1 if j = ŷAsol[i]

and 0 otherwise). Then, we define two losses:

Lgt(o, O, y
S , Y A) = L(o, yS) + L(O, Y A) (4.3)

Lsol(o, O, y
S , Ŷ A

sol) = L(o, yS) + L(O, Ŷ A
sol) (4.4)
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Figure 4.3: Extraction of clips of structured events from an untrimmed video.

Where Loss 4.3 refers to the case where both ground-truth (structured and atomic) are
available, while Loss 4.4 refers to the case where the ground-truth for structured events is
available and the ground-truth for the atomic events is not, and, then, we use the pseudo
labels. In order to train NN to recognize both kinds of the events, we minimize, depending
on the case, one of the aforementioned loss and use gradient descent to update its weights.

4.4 Experimental setting

Our experimental setting has the aim to show if our proposed neuro-symbolic approach
leads to an advantage in the recognition of both structured and atomic events with respect
to a fully neural approach, when both approaches are trained with weak and limited
amount of supervision in terms of events. In details, we want to see how the knowledge
is able to compensate in the case when no or few and potentially noisy labels for events
are available. To achieve this objective, we first need a dataset of structured and atomic
events. We build such dataset from the Multi-THUMOS untrimmed video dataset [93]
that has been used widely for temporal action detection in untrimmed videos [24, 23, 82]
. Since in [93], there is no explicit distinction between structured and atomic events, we
define it and splits the events according. In particular, we consider as structured events
those events that can be decomposed as a sequence of other (atomic) events, and cut each
video into clips corresponding to structured events (Figure 4.3).

For each structured event, we do not consider all the clips, but we remove those clips
where some of the atomic events defining the structured event are not present (e.g, replay).
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The structured and atomic events we consider are shown in Appendix A.2. Then, after
building the dataset, we define the scenario. The scenario consists of clips of different
lengths where, in each clip, a person is performing one (and only one) structured event
among the ones reported in Appendix A.2.

The learning setting we consider to evaluate the fully neural approach and our proposed
neuro-symbolic approach consists in having full supervision at level of structured events
and limited and potentially noisy (e.g., overlapping between atomic events) supervision
in terms of atomic events. The kind of supervision we provide is as follows:

{happens(highjump, 1, 50), happens(run, 1, 31), happens(jump, 31, 45),

happens(fall, 45, 50)}
{happens(hammerthrow, 1, 30), happens(windup, 1, 15), happens(spin, 10, 25),

happens(release, 25, 30)}
{happens(javelinthrow, 1, 30)}

The first video is an example of noiseless labeling with full supervision on both structured
and atomic events. The second video is fully supervised too, but atomic supervision
is noisy, as there is an overlap between the windup and spin atomic events (this type of
overlapping labeling is not rare in the dataset). The third video is a case where supervision
is only provided at the structured event level, and there is no supervision on atomic events.

In this setting, we are interested in observing how the prediction in terms of atomic
and structured events change when increasing the availability of data for atomic events.
Furthermore, in the case of the neuro-symbolic approach, we are interested in seeing how
complementing the supervision coming from the dataset with the supervision coming from
the knowledge affects the predictions of the overall model. A noteworthy case is the one
where no direct supervision at level of atomic events is provided at all, and then the model
is completely trained with the supervision coming from the knowledge. The underlying
model we use for both approaches is the one described in [82] where features extracted
from a pre-trained two-stream I3D [14] are given as input in order to predict a matrix
of events (more details about the model can be found in Appendix A.3). Differently
from [82], we distinguish between structured and atomic events and consider two separate
heads, as discussed in the previous section. About the training, we train the model for 20
epochs with learning rate of 1e−3 and weight decay of 1e−6, using Adam as optimizer.
We also created a validation set of 10% of the training data in order to select the best
model.
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Figure 4.4: F1 scores on structured events averaged over 5 runs for the fully neural (green) and
the neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.

4.5 Results

In this section, we show and compare the results of the fully neural approach with respect
to our proposed neuro-symbolic approach on the task described in Section 4.4. Figure
4.4 reports average F1 scores of structured event prediction over 5 runs, for an increasing
amount of supervision in terms of atomic events (from 0 to 100%). Note that in all cases
supervision in terms of structured events is always provided. The green curve indicates the
fully neural baseline, while the red curve indicates our neuro-symbolic approach. Results
indicate that unsurprisingly, when there is full supervision on the structured event the
addition of knowledge does not help in its identification.

Figure 4.5 reports average F1 scores for the prediction of atomic events, again for
a growing amount of supervision at the atomic level. The difference between the fully
neural and the neuro-symbolic approach is striking. Substantial improvements of the
neuro-symbolic approach can be observed for almost all atomic events. Only for the
atomic events run and jump, we can see that the fully neural approach is really close
to our approach. This is probably due to the temporal duration of these events, that is
substantially higher than that of the others. This implies that a reasonable number of
frames labelled as run and jump will be available for the neural network even with a small
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Figure 4.5: F1 scores on atomic events averaged over 5 runs for the fully neural (green) and the
neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.

fraction of labelled videos. On the other hand, atomic events like release and throw have
a performance improvement that goes up as 60% and 50% respectively.

As stated in Section 4.4, a particularly significant case is the one where no direct
supervision at all is provided at the level of atomic events. This corresponds to the
leftmost point in the figures. The F1 score of the fully neural approach is close to zero
for almost all atomic events, corresponding to random guessing. On the other hand,
the F1 scores of the neuro-symbolic approach are often comparable to those of a fully
supervised setting, showing how knowledge can be exploited to completely bypass the need
for human supervision at the frame level, with major implications in terms of applicability
and training costs.

Figure 4.6 shows some representative examples of the labeling provided by the two
approaches highlighting the differences in prediction consistency between the two, both in
terms of atomic events being detected and relative duration. Note that results are achieved
with 100% supervision on atomic events, and highlight the importance of knowledge in
guaranteeing the consistency of predictions. The figure shows prediction for all frames in
a video for three videos, a highjump, a hammerthrow and a longjump respectively. For
each video, we compare ground truth atomic labels (yellow) with fully neural predictions
(green) and neuro-symbolic ones (green). In the highjump case (top), the fully neural
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approach completely misses the last event and mispredicts it as part of the jump event.
On the other hand, the neuro-symbolic approach correctly detects the last event a fall , and
has a better estimate of the duration of each event. In the hammerthrow case (middle),
the fully neural approach detects a run event, that cannot be part of a hammerthrow ,
and misses the release event. Again, the neuro-symbolic approach provides quite accurate
estimates of the duration of each event, despite the short duration of release with respect
to windup and spin. Finally, in the longjump case (bottom), the neural approach correctly
identifies the initial run, but breaks the rest of the video into a sequence of short jump,
fall , sit and even run events which is completely inconsistent, while the neuro-symbolic
approach again accurately recovers both sequence and duration of the atomic events.

4.6 Conclusion

In this work, we have proposed a neuro-symbolic approach for (structured and atomic)
event recognition where knowledge about the events and their temporal relations is ex-
ploited both at training and inference time. We have instantiated our approach on a real-
world scenario consisting of clips of sports events. Our experimental evaluation showed
how our neuro-symbolic solution achieves substantial improvements over a fully neural
baseline in terms of recognition of the atomic events that constitute a structured event.
The approach is capable of learning to detect atomic events even with no supervision
at all on them during training, by simply combining supervision on structured events,
low-level neural processing and knowledge.
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VIDEO TEST 839 - HighJump

VIDEO TEST 1431 - HammerThrow 

VIDEO TEST 379 - LongJump
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Figure 4.6: Prediction of the sequence of atomic events for three clips representing a highjump
(top), a hammerthrow (middle) and a longjump (bottom) respectively. Ground truth is in yellow,
while the neural and neuro-symbolic predictions are in green and red respectively. Both models
were trained with 100 % supervision on the atomic events. Clips were selected to show examples
of inconsistencies in neural predictions.
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Chapter 5

Interval Logic Tensor Networks

In this chapter, we introduce Interval Real Logic (IRL)1, a two-sorted logic that interprets
knowledge such as sequential properties (traces) and event properties using sequences of
real-featured data. We interpret connectives using fuzzy logic, event durations using
trapezoidal fuzzy intervals, and fuzzy temporal relations using relationships between the
intervals’ areas. We propose Interval Logic Tensor Networks (ILTN), a neuro-symbolic
system that learns by propagating gradients through IRL. In order to support effective
learning, ILTN defines smoothened versions of the fuzzy intervals and temporal relations of
IRL using the softplus activation. We show that ILTN can successfully leverage knowledge
expressed in IRL in synthetic tasks that require reasoning about events to predict their
fuzzy durations. Our results show that the system is capable of making events compliant
with background temporal knowledge.

5.1 Introduction

Up to this point, we have shown that integrating commonsense and structural knowledge
about events and their relationships can significantly enhance neural approaches for event
detection. In addition, background knowledge has been shown to improve the detection of
atomic (chapters 3 and 4), and complex events especially when training data is limited [94]
Some approaches use temporal logic, such as LTLf, to embed temporal properties in deep-
learning architectures processing image sequences [84].

To the best of our knowledge, all existing methods that incorporate background tem-
poral knowledge in event detection adopt a point-wise approach, defining events based
on properties that hold (or do not hold) at specific time points during the event’s du-
ration. However, the knowledge representation and formal ontology literature advocates

1my work has been focused mostly on the theoretical part of IRL

61



5.2. RELATED WORK CHAPTER 5. ILTN

for event-centric representations, where events are treated as "first-class citizens" with
properties that cannot be expressed solely in terms of time-point properties [50, 4, 64].

The traditional perspective of event representation characterizes events as crisp entities
and represents the duration of an event, which is the time span during which it occurs,
as a convex subset of integers or real numbers. However, this approach does not account
for events that have smooth beginnings or endings, such as a snowfall. Furthermore, even
crisp events can benefit from fuzzy semantics in representing relations between them. For
example, the statement "Darwin (1809-1882) lived before Einstein (1879-1955)" is not as
true as "March 13 comes before March 14," but it is also not entirely false. To address this
limitation, knowledge representation formalisms have been proposed for fuzzy intervals
and fuzzy relations between them [69, 76].

This chapter introduces a novel logical framework that enables the specification of
dynamically changing propositions, as well as properties and relations between events.
We refer to this framework as Interval Real Logic, which is an extension of Real Logic
[78]. This logic is designed to capture knowledge properties and relations between objects
that evolve over time, including properties and relations between events. Interval Real
Logic is interpreted in the domain of real-data sequences, where objects are associated
with trajectories, and events are associated with the objects that participate in the event,
as well as the temporal interval during which the event occurs.

In addition, the chapter introduces the differentiable implementation of Interval Real
Logic in a neuro-symbolic architecture, Interval Logic Tensor Networks (ILTN), to detect
events from data sequences using background knowledge expressed in Interval Real Logic.
To effectively propagate gradients through the logic, we propose modified trapezoidal
fuzzy membership functions and temporal relations for fuzzy intervals that overcome
vanishing gradient issues. We present a prototype implementation of ILTN and conduct
basic experiments that yield promising and positive results.

The rest of the chapter is organised as follows: Section 5.2 presents related work on
fuzzy temporal knowledge and neuro-symbolic approaches for event detection. Section
5.3 defines the language and the semantics of ILTN. Section 5.4 defines fuzzy trapezoidal
intervals and their temporal relations. In Section 5.5, the neural architecture used to
predict fuzzy events is described. In Section 5.6, the results on artificial experiments are
discussed. Finally, in Section 5.7 conclusions are drawn.

5.2 Related Work

Modeling and reasoning about temporal knowledge is a well-studied problem [43, 4, 5, 42].
Temporal logics like Linear Temporal Logic (LTL) [72] and Computational Tree Logic
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(CTL) [19] assume that the underlying (temporal) information is crisp, and do not con-
sider that the knowledge may be characterized by vagueness and uncertainty. Following
the seminal work of [95] on fuzzy sets, different works have been proposed to model both
vagueness and uncertainty of temporal knowledge when this is expressed in terms of events
and their relations via a fuzzy interval-based temporal model [30, 65, 69, 75]. These works
however are not capable of processing low level information in an efficient way, and do
not consider any learning. Indeed, fuzzy event recognition applications [44, 27, 63] simply
rely on a (fuzzy) rule-based decision system. Recently, neuro-symbolic approaches [39],
which integrate sub-symbolic and symbolic reasoning and allow to effectively integrate
learning and reasoning, have been applied in the context of event recognition. A common
solution consists in introducing a symbolic layer refining the output of a pre-trained neural
network [46, 47, 91, 85, 34]. In [90], the symbolic layer is replaced by a neural network
trained via knowledge distillation to emulate symbolic reasoning. The drawback is that
this "neuro-symbolic" layer has to be re-trained from scratch even for a slight change of
the knowledge. More recently, fully end-to-end differentiable neuro-symbolic architectures
have been proposed, by encoding temporal reasoning primitives into existing frameworks
like DeepProbLog [86, 6] or Learning Modulo Theories [7]. However, all these approaches
reason in terms of time points, making them incapable of fully expressing the properties of
temporal events. The solution we propose here aims to overcome these limitations by di-
rectly focusing on temporal intervals. LTN [78] is an end-to-end neuro-symbolic approach
based on fuzzy logic where prior domain knowledge is expressed in terms of Real Logic
formulas and interpreted using fuzzy logic semantics. LTN has been applied successfully
to solve structured tasks like semantic image interpretation [28] and to improve state of
the art object classifiers [58]. A first temporal extension of LTN has been proposed by
[84], where Linear Temporal Logic over finite traces (LTLf) formulas are translated to
fuzzy deterministic automaton and applied to solve a sequence classification task. How-
ever, as for the other previously mentioned neuro-symbolic approaches, LTLf reasons in
terms of time points and thus shares their limitations. By extending LTN to deal with
(fuzzy) interval logic primitives we aim to allow them to effectively and efficiently process
temporal sequences towards complex event recognition.

5.3 Interval Real Logic

Let Lt be a first-order language that includes terms referring to the trajectories of objects
over time. The syntax for terms and formulas in Lt follows the standard syntax of first-
order logic.

Similarly, let Le be a first-order language, referred to as the language of events, which
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includes a set of symbols e1, e2, . . . each associated with an arity m ≥ 0. The terms of Le

are expressed in the form e(t1, . . . , tn) if e has arity m and ti’s are terms in Lt. Intuitively,
e(t1, . . . , tm) denotes an event that involves t1, . . . , tm as participants. Additionally, we
assume that Le contains the set of binary predicates that correspond to binary relations
between events.

Example 6. Suppose that we want to describe the events that happen when two particles
move in a 2D space as shown in Figure 5.1.
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Figure 5.1: Trajectories of two particles in a 2D space. Several events happen over time. For
example, around time 5′′, the two particles intersect. From time 0′′ to 10′′, particle a rises
whereas particle b accelerates from left to right. Additionally, over the whole trajectory, particle
a is doing a jump while changing color.

Lt and Le are used conjointly to describe Figure 5.1. In Lt, the two particles are
denoted by constants a and b. Unary predicates such as blue, red, and violet are included
to describe the particles’ colors over time. The atomic formula blue(a) expresses that
a is blue, with its truth value being time-dependent. To describe the proximity of the
particles, Lt uses the binary predicate close, and close(a,b) is true around time 5′′ and
false otherwise.

In Le, event symbols are used to describe the events in the figure. For example, e0(a)

can denote the jump of particle a, e1(a) can denote the color change of a, and e2(a,b)

can denote the event of a and b intersecting. Predicates and functions on events are
also included in Le. For example, unary predicates on events can be used to specify
their types, as in the formula Jump(e0(a)), which states that e0(a) is of type jump, and
ChangeOfColor(e1(a)), which states that e1(a) is of type color change.

We require that Le contains the unary functions on events and the binary relations of
events shown in Table 5.1. In the table and in the rest of the paper we use ϵ (possibly
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with indices) to denote an event term e(t1, . . . , tm).

Function symbols of Le
before(ϵ) what happens before the starting of ϵ
after(ϵ) what happens after the end of ϵ
start(ϵ) the starting of ϵ
end(ϵ) the end of ϵ
[i, j] for i ≤ j ∈ N

Allen’s predicate symbols of Le
ϵ1 bf ϵ2 ϵ1 happens before ϵ2

ϵ1 af ϵ2 ϵ1 happens after ϵ2

ϵ1 mt ϵ2 ϵ2 happens immediately after ϵ1

ϵ1 ol ϵ2 the end of ϵ1 overlaps the start of ϵ2
ϵ1 st ϵ2 ϵ1 is a starting part of ϵ2
ϵ1 dr ϵ2 ϵ1 happens during ϵ2

ϵ1 fin ϵ2 ϵ1 is an ending part of ϵ2
ϵ1 eq ϵ2 ϵ1 is equal to ϵ2

Other predicate symbols of Le
H(ϵ) the event ϵ actually happened
ϵ1 in ϵ2 ϵ1 is contained in ϵ2

Table 5.1: Basic functions and relations on events

Finally, Lt contains a unary predicate Active that takes as input an event term. In-
tuitively, Active(ϵ) returns for every time step of the sequence if the event is running or
not.

Example 7. Following are some examples of formulas in Lt and Le. The atomic formula

Sunny(weather)→ Happy(John)

is an example of a Lt formula that states that John is happy whenever it is sunny. This
formula is evaluated along two traces, one for the weather and one for John, and can take
different values at different time points.

The following Le formula

H(e1(John,Mary)) ∧Meeting(e1(John,Mary))

states that a meeting between John and Mary happened.
The Lt formula

Active(e1(John,Mary))→ Happy(John) ∧ Happy(Mary)

65



5.3. INTERVAL REAL LOGIC CHAPTER 5. ILTN

expresses that during the meeting between John and Mary, they were both happy.
The Le formula

∀tx, y.Meeting(e1(x, y))→ e1(x, y) = e1(y, x)

states that in a meeting event, the roles of the participants are symmetric. Notice that the
quantification is on trace variables (not on the events). This is highlighted by the index t
of the universal quantifier.

Finally, the Le formula

∀ex.Meeting(x)→ ∃ey.PrepareAgenda(y) ∧ x bf y

expresses that before every meeting there should be an event that is the preparation of the
agenda. In this case, the quantification is on event variables, indicated by the index e of
the quantifier.

The semantics of the trace logic Lt and the event-based logic Le are defined in the
context of a linear discrete structure, which models the progression of time. We use the
natural numbers N with the standard order < as the reference structure for time.

5.3.1 Trace Semantics

In Lt, terms are interpreted as (possibly infinite) sequences of data, called trajectories.
For each time point i ∈ N, an Lt term corresponds to a feature vector in Rn. Specifically,
a trajectory is a function t : N → Rn that assigns a feature vector in Rn to every time
point. We denote the set of trajectories with features in Rn as Tn. Trace variables in Lt

refer to variables of individuals and are associated with batches of traces. Constants and
closed terms (i.e., terms without variables) in Lt are interpreted as single traces.

Formulas in Lt are evaluated at all time instants. For every time i ∈ N, an Lt formula
is associated with a truth value in the range [0, 1] that represents the level of truth of
the formula at that time. As a result, an Lt formula is interpreted as a sequence of truth
values, which we refer to as a function from N to [0, 1]. The set of such functions is
denoted as B.

The formal definition of the semantics for Lt is based on a grounding function G that
must satisfy the following conditions:

• for every variable x in Lt, G(x) ∈ (Tn)b is a batch of trajectories with the integer
size b ≥ 1,

• for every constant c ∈ Lt, G(c) ∈ Tn is a single trajectory,
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• for every function f ∈ Lt, with arity equal to m, G(f) : Tn1 × · · · ×Tnm → Tn, that
is G(f) maps to a function that takes m input trajectories and returns a trajectory,

• for every predicate p ∈ Lt, with arity equal to m, G(p) : Tn1 × · · · × Tnm → B, that
is G(p) maps to a function that takes m input trajectories and outputs a function
from time points to truth values in [0, 1].

Propositional connectives are interpreted according to fuzzy logic semantics which is
applied point-wise. For example, if ϕ and ψ are Lt-formulas, then G(ϕ∧ψ) = T (G(ϕ),G(ψ)) =
{T (Gi(ϕ),Gi(ϕ))}i∈N, where T is a t-norm such as the product t-norm. Universal and ex-
istential quantifiers are interpreted as aggregation operators. For example, G(∀xϕ(x)) =
{
∏

1≤j≤b Gi(ϕ(Gj(x)))}i∈N.
Finally, we allow a special predicate that maps from events to Lt:

• for every event ϵ, G(Active(ϵ)) : En → B; i 7→ T (I(ϵ)(i),H(ϵ)) where T is a t-norm.
The functions I and H, as well as the notation En, are defined in Section 5.3.2.
Intuitively, Active(ϵ) maps an event to a Boolean trajectory that states when and if
the event happens at each timepoint of the trajectory.

5.3.2 Event Semantics

An event is seen as a potentially infinite sequence of data, (i.e., a trajectory) and a mask
that indicates the duration of the event. Formally, an event ϵ ∈ Tn1 × · · · × Tnm × B
consists of m traces, which are the traces of the objects involved in the event ϵ, and a
Boolean trace that indicates when the event is active. Specifically, let I(ϵ) denote the
Boolean trace B that is the activation sequence of ϵ. If n = (n1, . . . , nm), we denote En as
Tn1 × · · · ×Tnm ×B, which represents the space of events involving m objects, each with
features in Rni . The formal semantics of Le is defined in reference to the definition of an
event provided in [36] and is given in terms of a function G that satisfies the following
restrictions.

• For every event term e(t1, . . . , tm), G(e(t1, . . . , tm)) ∈ En where n = (n1, . . . , nm)

and G(ti) ∈ Rni for 1 ≤ i ≤ m,

• for every [i, j] ∈ N, G(i) = {⊮n∈[i,j]}n∈N,

• for every function symbol f ∈ Le, with arity equal to m, G(f) : (En1×· · ·×Enm)→
En1···nm ,

• for every predicate symbol p ∈ Le, with arity equal to m, G(p) : (En1×· · ·×Enm)→
[0, 1].
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i 0 1 2 3 4 5 6

G(
e2

(a
,b

))

G(a)

x 2.0 2.04 2.15 2.33 2.57 2.88 3.24

y 1.0 1.47 1.93 2.36 2.76 3.12 3.43

r 1.0 0.95 0.9 0.85 0.8 0.75 0.7

g 0.0 0.0 0.0 0.0 0.0 0.0 0.0

b 0.0 0.05 0.1 0.15 0.2 0.25 0.3

G(b)

x 1.0 1.02 1.08 1.18 1.32 1.5 1.72

y 4.0 4.0 4.0 4.0 4.0 4.0 4.0

r 1.0 0.95 0.9 0.85 0.8 0.75 0.7

g 0.0 0.05 0.1 0.15 0.2 0.25 0.3

b 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I

Figure 5.2: Grounding traces and events for the particle example. e2(a,b) is the event of the two
particles intersecting.

Connectives in Le are interpreted using fuzzy semantics. For example, G(ϕ1 ∧ ϕ2) =

T (G(ϕ1),G(ϕ2)) where T is a t-norm. Quantifiers of events are interpreted by aggregation
functions.

Example 8. The first segment of the grounding G of the particle a of Figure 5.1 is shown
in Figure 5.2

Examples of function symbols from Le include before(ϵ) or start(ϵ), whereas examples
of predicate symbols of Le include H(ϵ) (unary symbol) and ϵ1 bf ϵ2 (binary symbol in infix
notation). These symbols are intuitively described in Table 5.1. Their actual grounding
is discussed in Section 5.4.

5.4 Fuzzy Intervals and Relations

As previously mentioned, I(ϵ) denotes the activation sequence of an event in B. Notice
that I(ϵ) is a fuzzy subset of N. A requirement imposed in [36] is that I(ϵ) must be an
interval, i.e., a convex subset of time points. However, in this paper, we consider the fact
that such an interval is a fuzzy interval. Therefore, we propose imposing constraints on
the shape of such a subset to be a trapezoidal fuzzy number [1].

Definition 1 (Fuzzy interval). A fuzzy interval is a fuzzy set I : R → [0, 1] such that
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there exists a ≤ b ≤ c ≤ d ∈ R.

I(x) =



x−a
b−a

if x ∈ (a, b),

1 if x ∈ [b, c],
x−d
c−d

if x ∈ (c, d),

0 otherwise.

(5.1)

We also allow special cases of semi-infinite intervals, which we use to define the before

and after operators in Section 5.4.1.

Left-infinity A left-infinite fuzzy interval is characterized by the parameters I = {x |
−∞,−∞, c, d}.

Right-infinity A right-infinite fuzzy interval is characterized by the parameters I = {x |
a, b,+∞,+∞}.

Example 9.

x

1

0 1 2 5 7

I{x | 1, 2, 5, 7}

With this restriction, we impose that the activation function of every event I(ϵ) is
such that there is a trapezoidal fuzzy interval I = {x | a, b, c, d} such that In(ϵ) = I(n)

for every n ∈ N. For ease of notation, in the rest of the paper, we will commonly denote
an interval simply by its four parameters I = (a, b, c, d).

5.4.1 Basic Operations on Fuzzy Intervals

To provide the semantics for the functions and relations of Le, we first define a set of
basic operations on fuzzy intervals. Our operations are inspired by [69] who defines
such operations on any convex and non-convex interval. We simply specialize them on
trapezoidal fuzzy intervals.

Duration

The duration of a trapezoidal fuzzy interval A = (a, b, c, d), denoted by duration(A) or
|A| is equal to

∫ +∞
−∞ A(x)dx. If A is finite then |A| = (c−b)+(d−a)

2
, otherwise |A| =∞.
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Before and After

If A = (a, b, c, d) then before(A) = (−∞,−∞, a, b) and after(A) = (c, d,+∞,+∞) and

0

1
Abefore(A) after(A)

Start and End

If A = (a, b, c, d) is left-finite then start(A) is defined as (χ − δ
2
, χ, χ, χ + δ

2
), such that

χ = a+b
2

and δ = max( b−a
2
, δmin) where δmin is a small positive value to account for the

crisp case a = b.
Similarly, end(A) = (χ − δ

2
, χ, χ, χ + δ

2
) such that A is right-finite, χ = c+d

2
and

δ = max(d−c
2
, δmin).

0

1
A

start(A) end(A)

5.4.2 Relations between Fuzzy Intervals

Ohlbach [69] defines interval-interval relations by computing the integral of point-interval
relations over the points in a set. To avoid the complexity associated with the integrals,
and to be more compliant with Allen’s definition in the crisp case, we define new relations
based on simplified containment ratios.

In these definitions, the temporal relations take precedence over the fuzzy conjunction
∧. For general fuzzy intervals, |A ∩ B| can be hard to compute. However, with trape-
zoidal intervals, the calculation of |A∩B| is derivable analitically by solving simple linear
constraints system. We show how this is done in the following subsection.

5.4.3 Area Intersection

Let us calculate Area(A ∩ B) for any two finite intervals A = (a, b, c, d) and B =

(a′, b′, c′, d′). Without loss of generality, suppose that a ≤ a′. Developing an explicit
formula to compute Area(A∩B) is not immediate as the shape of A∩B can be a polygon
with a varying number of edges (at most 6). For example:
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0

1
AB

a′ b′ c′ d′a b c d

We propose to first determine the vertices of the shape A ∩B, and then compute the
area of the shape using the shoelace formula.

Empty intersection First, we dismiss the case d ≤ a′, in which the two intervals do not
intersect. Area(A ∩B) = 0.

0

1
A B

In the rest of the section, we assume that an intersection always exists.

Bottom vertices We call bottom vertices of the shape A∩B, the ones on the line y = 0.
There are always two. As a ≤ a′, (a′, 0) is always a vertex of the shape. The second
vertex is (min(d, d′), 0).

Top vertices We call top vertices the ones on the line y = 1. There can be zero, one, or
two top vertices that delimit A ∩B, as shown in the below figures:

0

1
A B

0

1
A B

0

1
A B
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If c < b′ or b > c′, there are zero top vertices.
If b′ = c, the only top vertex is (c, 1). If b = c′, the only top vertex is (b, 1).
In other cases, there are always two top vertices (max(b, b′), 1) and (min(c, c′), 1).

Side vertices To determine the side vertices that delimit A ∩B, we compute the inter-
section of the lines drawn by the edges of each trapezoid over the whole xy plane. Then,
we keep the intersections where y ∈ [0, 1]. For example, in the below figure, there is only
one intersection that defines a side vertex of A ∩B:

0

1
A B

LARA

LBRB

Let us denote LA ≡ y = x−a
b−a

the line drawn by the left side of A, and RA ≡ y = x−d
c−d

the
line drawn by the right side of A. Similarly, we have LB ≡ y = x−a′

b′−a′
and RB ≡ y = x−d′

c′−d′

defined on B.
We are interested in finding the four intersections LA ∩ LB, LA ∩ RB, RA ∩ LB, and

RA ∩ RB. Each is easy to determine by solving the system of two equations associated
with the pair of lines. For example, LA ∩ LB is the point ( ab′−ba′

a−b+b′−a′
, a−a′

a−b+b′−a′
).

Once we have determined the intersections, we keep the ones where y ∈ [0, 1] to define
the vertices of A ∩B.

Let us cover some of the edge cases about these intersections. Firstly, any of the edge
lines can be vertical if the trapezoid is crisp on that edge. For example, if a = b, LA

is defined by the equation x = a. Regardless, the method is the same: we simply use
this vertical equation in the system of two equations. Secondly, it is possible that there
are no side vertices if some lines are parallel. For example, LA ∩ LB gives no solution if
a − b = a′ − b′ (or infinite solutions if the lines are the same). In such cases, we ignore
the pair of parallel lines. Finally, it is also possible that a side vertex is a top or bottom
vertex if the lines intersect on y = 0 or y = 1.

Area calculation Once we have determined all the vertices (xi, yi) of A ∩ B, arranged
in a counter-clockwise sequence of points, we can calculate the area using the shoelace
formula:

Area(A ∩B) =
1

2

n∑
i=1

(yi + yi+1)(xi − xi+1) (5.2)
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Semi-infinite intervals We sometimes have to compute the area intersection in cases
where A is left-infinite or B is right-infinite (for example, when using the operators bf or
af ). However, we can turn these semi-infinite intervals to finite intervals such that the
area calculation is unchanged. If A is left-infinite, we can replace the infinite parameters
with any a ≤ a′ and b ≤ b′. Similarly, if B is right-infinite, we can replace the infinite
parameters with any c′ ≥ c and d′ ≥ d. Doing so, we can reuse the method highlighted
above.

5.5 Architecture

The main objective of introducing Interval Real Logic (IRL) is to use it to impose temporal
constraints in a neural architecture for Event Detection. Given a temporal data sequence
u = {ui}Ti=0 we define a neural architecture, called Interval Logic Tensor Networks (ILTN)
that is capable to recognize if and when a set of events ϵ1, . . . , ϵk happens in the sequence,
under the hypothesis, that certain constraints expressed in IRL are (softly) satisfied.

We implemented a first simple prototype of ILTN in TensorFlow as a wrapper of
LTN [78]. The present section describes important design choices that enable the archi-
tecture. In the description, we concentrate only on the temporal prediction and not on
the classification of the events.

5.5.1 Neural Architecture

Figure 5.3b illustrates how neural networks are used to ground any event ϵ. An event is
characterized by two elements: a truth degree H(ϵ) indicating if the event happens, and
by a trapezoid interval defining the membership function and when it happens.

Let us call logits the vector of raw (non-normalized) predictions output by the neural
model, as is common in the machine learning literature. The truth degree H(ϵ) is easily
implemented using a single logit node which is then passed to a sigmoid normalization
function and constrained in the interval [0, 1].

Directly defining the parameters (a, b, c, d) of the interval is difficult as the semantic
constraint a ≤ b ≤ c ≤ d is hard to implement in a neural architecture. Instead, our
neural architecture predicts the four values (a, b − a, c − b, d − c). The only semantical
constraint on these values is that each is positive. This is easily implemented using four
logit nodes which are then passed through softplus activations.
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Neural Architecture

Sigmoid

Sequential
Input Data

(a) p(u)

Neural Architecture

Trapz Number

a b c d

1

Trapz
Logits

Softplus

Happens
Logit

Sigmoid

Happens
truth degree

Sequential
Input Data

(b) ϵ(u)

Figure 5.3: Implementation of a temporal predicate symbol from Lt (left) and of an event
symbol (fuzzy interval and happening predicate) from Le (right). Examples of sequential neural
architectures are Recurrent Neural Networks or Transformers.

5.5.2 Smooth Membership Functions

We notice an important vanishing gradient issue with trapezoidal interval functions. If x
is in the flat regions I(x) = 0 or I(x) = 1, then ∂I(x)

∂x
= 0. To account for this, we define

I∼, a smooth version of the membership function (5.1):

I∼(x) =


s+(x− a) if x ≤ a,

s+(max(b− x, x− c)) if b < x ≤ c,

s+(d− x) if d < x,

I(x) otherwise.

(5.3)
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Where s+ is the softplus function defined by:

s+(x | β) =
1

β
log
(
1 + eβx

)
(5.4)

∂ s+(x | β)
∂x

=
1

1 + exp(−βx)
(5.5)

Notice that, in (5.3), the inputs to the s+ function are all negative values. Intuitively,
looking at the graph of softplus in Figure 5.4, s+ applied to negative values outputs a
value that tends to zero with non-negative gradients.

We use I and I∼ to define an artificial operator with distinct properties in the forward
pass and backward pass of the computational graph. 2 Let ϵ = e(t1, . . . , tm) be an event
term associated with an interval I and a corresponding smooth version I∼. We use:

ϵ(x) = I(x) (5.6)
∂ϵ(x)

∂x
=
∂I∼(x)

∂x
(5.7)

The motivation is demonstrated in Figure 5.5. The backward pass ∂I∼(x)
∂x

has non-zero
gradients everywhere that push x to fit in the center of the interval. The forward pass
remains the accurate evaluation I(x).

Finally, we use the parameter β to ensure the accuracy of the operator. For example,
for large negative differences x−a, the output of s+(x−a) gets very small and can become
zero because of the way computers approximate real numbers. In float32 precision format,
this happens with x − a > 90 and β = 1. In such cases, the gradients still vanish. We
avoid this issue by setting β = 1

T
, where T is the largest time difference occuring in our

data, or in other words T is the length of the trace in the experiment.

5.5.3 Smooth Relations

Let A = (a, b, c, d) and B = (a′, b′, c′, d′) be two trapezoids. Without loss of generality,
suppose that a ≤ a′. Similarly to how membership functions has zero gradients on some
parts of the domain, the relations in 5.4.2 have vanishing gradients in two situations. The
first is when A in B = 0 and the trapezoids do not intersect. In other words, when d < a′.
The second is when A in B = 1 and A is fully contained in B. In other words, when
a > a′, b > b′, c < c′, and d < d′.

Again, we solve this by defining a smooth operator for the backward pass relying on

2See also https://www.tensorflow.org/api_docs/python/tf/custom_gradient.
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β = 1

β = 2

β = 0.5

(a) s+(x | β)

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

(b) ∂ s+(x|β)
∂x

Figure 5.4: The softplus function.

the softplus operator:

(A in B)∼ =


s+(d− a) if d < a′,

s+(a
′ − a+ d− d′) if A fully in B,

A in B otherwise.

(5.8)

with the non-vanishing derivatives on the trapezoid edges of A and B. We use A in B in
the forward pass of the computational graph and ∂(A in B)∼

∂x
in the backward pass, where

x is any parameter defining A or B. Finally, we still set β = 1
T

for the softplus function.

5.6 Experiments

We test the system on synthetic tasks that require a combination of learning and reasoning
about temporal relations between fuzzy intervals. Let ϕ1, . . . , ϕn be n constraints written
in Interval Real Logic defining a knowledge base K. Like in LTN [78], the grounding of the
knowledge base defines a satisfaction level to maximise. Optimising by gradient descent,
we have the following loss function:

L(K, θ)− (G(ϕ1, θ) ∧ · · · ∧ G(ϕn, θ)) (5.9)

where ϕi’s are Le formulas and θ is a set of trainable parameters used to define the
grounding. We focus the experimental study on the training of events with constraints
written using Le, which is the main innovation of this paper. Specifically, we focus on
learning parameters that define the fuzzy trapezoid intervals of events.
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0 2 4 6 8 10

0

1

I(x)
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−0.5

0.0

0.5

∂I(x)
∂x

0 2 4 6 8 10

0

1

I∼(x), β = 1

0 2 4 6 8 10

−0.5

0.0

0.5

∂I∼(x)
∂x , β = 1

Figure 5.5: Smooth membership function. The forward pass uses I(x) (top left). The backward
pass uses ∂I∼(x)

∂x (bottom right).

Table 5.2 displays a list of training experiments where ILTN maximizes the satisfaction
of temporal constraints. All tasks are trained using the Adam optimizer [48] with a
learning rate of 0.1. In T1, T2, T3, and T4, the results are obtained after training for
50, 500, 5000, and 200 training steps, respectively. For the logical operators, we use the
product t-norm u ∧ v = uv and the standard negation ¬u = 1− u.

We highlight the following features:

• In T1, T2 and T3, the system learns fuzzy intervals,

• In T4, the system learns a time point value x,

• T1, T2, and T3 display constraints using Allen’s relational symbols af , bf , st ,
and ol ,

• T3 and T4 display constraints using membership functions,

• T4 displays a constraint using a functional symbol end,

• In T1 and T2, u ≈ v is a smooth equality predicate implemented as exp(−|u− v|) ∈
[0, 1].
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Task Initial Conditions Setting Constraints Result

T1

0 5 10 15

0

1
A

B

C

• B trainable,

• A and C fixed.

1. |B| ≈ 2

2. B af A

3. B bf C
0 5 10 15

0

1

A

B

C

T2

0 5 10 15

0

1
A

B

C

• B trainable,

• A and C fixed.

1. |B| ≈ 1.5

2. B st C

0 5 10 15

0

1
A

B

C

T3

0 5 10 15

0

1
A

B

• A trainable,

• B fixed.

1. A ol B

2. A(3)

3. ¬A(2)
0 5 10 15

0

1
A

B

T4

0 5 10 15

0

1
A

x

• x trainable,

• A fixed.
1. end(A)(x)

0 5 10 15

0

1
A

x

Table 5.2: Experiments

5.6.1 Challenges for Future Work

In all tasks, the system learns to update the event groundings to satisfy the knowledge
base. The experiments demonstrate that ILTN can successively backpropagate gradi-
ents through the Interval Real logic. Nevertheless, we highlight three limitations of our
experiments that future work should explore.

Firstly, early stopping was an important factor in our experiments. Continuing training
after reaching the maximal satisfaction level could sometimes lead to worsening the results.
This is likely due to the smoothing of operators for obtaining non-vanishing gradients.
This feature is important early in training. However, once a constraint is satisfied, having
vanishing gradients is acceptable. Future work could explore reducing or stopping the
smoothening of constraints when their satisfaction levels are high.

Secondly, the Adam optimizer is traditionally used with learning rates in the order
of 0.001. In comparison, the learning rate of 0.1 used to train our synthetic tasks is
unusually high. A lower learning rate led to experiments not converging fast enough.
There is likely a scaling issue in the gradients of some operations. This could also explain
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why T3 required more training steps than the other tasks to reach convergence: this is
the only task that mixes relational operators ( ol ) and membership functions. The two
have gradients scaling differently which can challenge the training. Future work should
analyse further the gradient properties of each temporal operator.

Thirdly, the present experiments do not showcase yet the power of learning events
that depend on input features. For example, in Figure 5.3b, the present tasks only learn
trapezoid logits that define a trapezoid number. There is no sequential data in input and
neural architecture that builds on top of it. Future work should explore more elaborate
tasks employing such architectures.

5.7 Conclusions

In this chapter, we introduce Interval Real Logic (IRL), a two-sorted logic that enables the
prediction of properties that evolve within a set of data sequences (traces) and properties
of events that occur within the sequences. IRL semantics are defined in terms of sequences
of real feature vectors, and connectives and quantifiers are interpreted using fuzzy logic.
We represent event duration through trapezoidal fuzzy intervals, and fuzzy temporal
relations are defined based on the relationships between the intervals’ areas and their
intersections.

We also present Interval Logic Tensor Networks (ILTN), a neuro-symbolic system
that leverages background knowledge expressed in IRL to predict the fuzzy duration
of events. To prevent vanishing gradient during learning, we use softplus functions to
smooth both events and their relations. We evaluate ILTN’s performance on four tasks
with different temporal constraints and show that it is capable of making events compliant
with background knowledge in all four tasks.
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Chapter 6

A Neuro-Symbolic Approach For
Non-Intrusive Load Monitoring

A requirement of Smart Grids is the ability to predict the energy consumption patterns
of their users. In the residential domain, this is usually not feasible due to the inability
of the grid to converse with (legacy) domestic appliances. To overcome this issue Non
Intrusive Load Monitoring (NILM) was introduced, a task in which a predictor is used to
disaggregate household power consumption. Many of the newer approaches make use of
Neural Networks to accomplish this task, due to their superior ability to detect patterns
in temporal (thus sequential) data. These models unfortunately require a huge amount
of data to achieve good performance, and have the tendency to overfit the training data,
making them difficult to predict future consumptions. For these reasons, adapting them to
optimally predict a (future) house’s consumption requires expensive and often prohibitive
data collection phases. We propose a solution in the form of a neuro-symbolic framework
that refines neural network predictions via a constrained optimization problem modelling
the characteristics of the appliances of a house. This combined approach achieves superior
performance with respect to the neural network alone over two out of five appliances and
comparable results for the remaining ones, without requiring further training data.

6.1 Introduction

The past few years have seen an increased awareness by people and institutions on climate
change and its consequences. With the objective to avoid/limit its effects, people have
started to change their habits (e.g. walk and cycle more or drive electric vehicles), while
governments have committed themselves to reduce CO2 emissions 1 with the long term

1Paris agreement
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goal to be climate-neutral by 20502. Therefore, huge investments have been made in re-
newable (aka green) energies in order to meet the increasing demand and gradually replace
the dependence on traditional source of energies 3. Nevertheless, renewable energies have
a limitation connected to the presence of their natural source. Therefore, investments in
the development of a ”smart” electrical network, which is able to guarantee an effective
distribution of energy, have been made in parallel. This network has been called smart
grid and, differently to the traditional distribution, where there is an unidirectional flow
from producer to consumer, a bidirectional exchange of information is achieved in order
to guarantee an effective usage of the electricity.

One of the requirements of a smart grid consists in understanding and predicting the
energy consumption pattern of the consumers. This is done by processing the data of the
energy consumption of the individual appliances of all houses. To measure the energy con-
sumption of the appliances, two approaches can be adopted: Intrusive Load Monitoring
(ILM) and Non-Intrusive Load Monitoring (NILM). ILM is based on the installation of
a sensor (e.g., smart plugs or smart sockets) for each appliance that monitors and sends
information about the consumption of the appliance back. Even though, ILM ensures
accurate measurements, it is usually expensive and often perceived as "too intrusive” by
consumers (i.e., each sensor has to be installed inside the house of the consumer). On the
contrary, NILM, where the consumption of each appliance is obtained from the disaggre-
gation of the total energy of the house, represents a cheap and less invasive solution (even
if less accurate) with respect to ILM.

Due to the success that deep learning models have achieved in solving tasks of different
domains (e.g. computer vision and natural language processing), these models have been
started to be applied in NILM. Nevertheless, these models require a huge amount of
annotated training data and lack of the ability to generalize to unseen situations (e.g.,
situations not included in the training data). Therefore, in the last years, neuro-symbolic
techniques, which combine neural networks with symbolic reasoning, have started to be
applied to overcome these issues.

In this paper, we devise a neuro-symbolic algorithm that combines the prediction
of the Neural Network with a Constrained Programming optimization problem, used to
refine the raw prediction of the network. The optimization problem is used to encode
the behavior of the appliance in terms of its consumption over time. For example, the
characteristics that can be captured may be:

• Minimum/maximum duration of appliance activation.

• Minimum/maximum instantaneous used power.
2Net-zero
3Global electricity insights 2022
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• Presence of multiple ”states” with different duration and power adsorption.

All the characteristics, which are encoded as logic formulas, can then be used to correct the
output of the network, and to find coherent intervals of times in which the the appliance
was in use (the whole duration of a washing cycle of a washing machine, for instance),
together with their expected consumption. Furthermore, the addition of this logic layer
allows for the disambiguation of dubious predictions done by the Neural Network (due
for instance to the presence of noise), increasing the overall disaggregation performance.
Experiments have been performed on the UK-DALE dataset in the “seen” setting (i.e.,
test on the same houses’ appliances used for training but on a different period of time),
and show that our combined approach is able to outperform a fully neural model over the
prediction of two out of five appliances, with comparable results for the remaining ones.

The rest of the chapter is organized as follows: Section 6.2 briefly reviews the state
of the art on NILM, focusing mostly on deep learning approaches; Section 6.3 formally
describes the problem; Sections 6.4 and 6.4.1 describes our proposed approach; Section
6.5 presents the experimental setting; Section 6.6 shows the experimental results; Finally,
in Section 6.7 conclusions are drawn and directions for future works are briefly discussed.

6.2 Related work

Since its introduction by Hart [37], NILM has gathered the attention of researchers not
only for the intrinsic challenges [38] that it involves but for the benefits that approaches
like NILM could bring into our everyday life [32]. Over the last decade, more "classical"
approaches to NILM (see [96] for a survey) have been replaced by deep learning meth-
ods. This is due to the success that deep learning has achieved in many different fields
like computer vision and natural language processing (see [16] and [70] for a survey). In
[97], authors instantiate a network (one for each appliance) and train it to learn a map-
ping between a sequence of mains to a sequence of appliance consumption. At inference
time, multiple predictions for a generic time t are averaged in order to obtain a single
prediction. [45] obtains more accurate results with respect to [97], by predicting from
the current window of mains only the consumption of the appliance which corresponds
to the middle point of the window. A more recent approach [71], adopts an attention
mechanism to improve the generalization capability of the overall model. [66] proposes a
novel architecture which integrates the Fourier transform and achieves comparable results
with respect to the state-of-the-art approaches while being faster and smaller. In all the
aforementioned approaches, prior (explicit) knowledge about the behaviour of the appli-
ances is not exploited to perform the disaggregation (i.e. the disaggregation is completely
learnt from data). As far as we know the only attempt to exploit prior knowledge to solve
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NILM has been done by [11], but this is a fully symbolic approach and then no neural
networks have been used. In the last years, neuro-symbolic integration, which integrates
neural and symbolic AI, has emerged as a new paradigm to merge the strengths and re-
duce/limit the weaknesses of the neural and symbolic "worlds” [39]. Therefore, different
neuro-symbolic frameworks have been proposed over the years like frameworks based on
fuzzy-logic [78, 59], probabilistic logic programming [56, 92] or an Optimization modulo
theories [77]/Mixed Integer Linear Programming (MILP) encoding (see [29] and [7]). Fur-
thermore, these approaches have been applied to solve complex tasks like semantic image
interpretation [28] and event recognition from different data sources (e.g. video [6, 7] and
audio [86]). Inspired by [7], we encode the background knowledge about the behaviour of
each appliance as a mixed integer linear programming problem (MILP) and use it to refine
the prediction of the neural network. Differently from [7], we also learn the parameters
related to the MILP problem (see Section 6.4 for details).

6.3 Problem definition

NILM consists in the disaggregation of the total energy consumption of a house into
the consumption of the individual appliances belonging to it. Formally, denoting with
Xtot = (x1, . . . xt), xi ∈ R+, the total energy consumption for the period of time starting
at 1 and ending at t, and supposing the presence of n appliances, we can express the total
energy consumption at a given time i as:

xi =
n∑

j=1

yji + γi with 1 ≤ i ≤ t

where yji is the consumption of the j− th appliance at time i and γi is a noise factor. We
are interested in finding all the appliance consumption Yj = (y1, . . . , yt) yi ∈ R+, fromXtot.
To achieve this objective, we also assume to have a background knowledge K (defined over
a first order language L) about the consumption/behaviour of each appliance. Therefore,
our problem consists in finding an interpretation I (i.e. predicting a sequence of values,
one for each appliance), such that I |= K.

Example 10. Suppose that for a given house h, we have that Xh
tot = {1000, 1000, 1200, 1400}.

We want to predict the consumption for the appliance app1 of h. The background knowl-
edge K states that when app1 is active, its consumption has to be less than 500 at time t
and the sum of consumption of the next two timestamps (i.e, t + 1 and t + 2) has to be
between 700 and 1400. We can write a first order logical formula that expresses the above
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conditions:

∀ts,te∃ti, tj, tz
cons(x, ti, yti) ≤ 500 ∧
700 ≤ cons(x, tj, ytj) + cons(x, tz, ytz) ≤ 1400 ∧
active(x, ti) ∧ active(x, tj) ∧ active(x, tz) ∧
ts ≤ ti < tj < tz ≤ te ∧
tj = ti + 1 ∧ tz = ti + 2

where ts and te represent respectively the begin and the end of the period of consumption,
cons(x, t, yt) is a function that returns the consumption of a generic appliance x at time
t (i.e., it returns yt) and active is a predicate that returns 1 if an appliance is active at a
time t and 0 otherwise. Continuing the example, if we know that app1 is active between
time 2 and 4, some of the interpretations that satisfy K are:

I1 = {cons(app1, 2, 250), cons(app1, 3, 500), cons(app1, 4, 600),
active(app1, 2), active(app1, 3), active(app1, 4)}

I2 = {cons(app1, 2, 350), cons(app1, 3, 600), cons(app1, 4, 700),
active(app1, 2), active(app1, 3), active(app1, 4)}
...

As can be seen, there may be more than one interpretation that satisfies K (we denote
with Ic the set of such interpretations). Therefore, as done in [7], we introduce a cost
function c that gives a score (i.e. a real value) for each I and select the interpretation
with the minimum cost:

Imin = argmin
I∈Ic

c(I)

To find Ic, we devise a neuro-symbolic approach where the initial prediction of the
network YNNj

is refined in order to produce a new prediction Y ∗
NNj

that keeps into account
the knowledge K. To train the overall system, we have a training set of consumption of
m houses:

D = {(X i
tot, {Y i

j }
ni
j=1)}mi=1

where Y i
j denotes the consumption of the j − th appliance in house i and ni the number

of appliances in the same house (i.e. different houses may have different appliances). It
is not always that the entire D is used for the training phase (further details follow).

85



6.4. PROPOSED APPROACH CHAPTER 6. NESY NILM

s2

s3

Figure 6.1: Overall approach on washingmachine appliance: the total consumption of the house
(i.e., the total consumption of all its appliances) is passed to the washingmachine NN that
provides an initial prediction for the consumption of the washingmachine. This prediction is
then refined by its corresponding (learnt by CSP) automaton that changes the prediction of the
washingmachine NN by leveraging the knowledge encoded in each of its state.

6.4 Proposed approach

The proposed approach consists in a neuro-symbolic framework that combines the gen-
eralization capabilities of a (pre-trained) Neural Network with a constrained satisfaction
problem (CSP), which has built in its specifications the domain knowledge and enables
to refine the predictions of the network (see Figure 6.1 for a high level overview of the
proposed approach). Differently from the approaches found in literature [35, 10] the neu-
ral and symbolic models are not in competition but cooperate together. The framework
gets an initial prediction from the neural network (i.e., the prediction of the energy con-
sumption of the appliance the neural network has been trained to represent), which is
then refined by the optimization problem. Differently from other approaches, our CSP
problem is only partially defined, and before being used is meant to be trained onto a
small set of labeled examples of activations of a specific appliance to fit it properly.

The goal of the CSP is to model the energy consumption patterns of a specific appli-
ance. Before moving on, we must briefly formalize the expected pattern of the appliance.
We can imagine the lifecycle as a contiguous infinite sequence of idle intervals (in which
the appliance is not used/switch off/in standby) and activation intervals, in which most
of the power gets consumed and some useful work is performed. Each activation j starts
at a certain time tjstart and ends at time tjend (we will use tstart and tend later in the article
when referring to a generic activation). An example of this behavior is depicted in Figure
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6.2.
Following previous work on the field [17], we model an appliance as finite state automa-

ton. Indeed, an appliance is a machine that is built to perform a predetermined sequence
of actions cyclically. Therefore, a neuro-symbolic approach, which models an appliance’s
consumption as a sequence of states, has the potential to improve the accuracy of the
prediction. In addition, a neural network trained to predict an appliance’s consumption
over time, generally reasons in terms of time-points (i.e., the consumption at time x is
y), while our proposed neuro-symbolic approach reasons in term of intervals of time (i.e.,
for x seconds the consumption will follow a specific trend curve) making the prediction
more coherent over time. In this conceptualization, the appliance is represented as a col-
lection of n states {si}n1 each associated with a duration ti and a function fi : R+ → R
that maps each instant of the interval ti with the power consumed by the appliance at
that instant. Thus, the activation cycle of the appliance is described by a set of states
S = {< si, ti, fi >}ni=1. There is then a special state sidle, the initial state, with associated
its function fidle, that has no fixed duration. This is the state where the appliance is
before is switched on and after is switched off (or put in stand-by).

A life cycle of an appliance starts in s0 = sidle, when it is activated it switches to s1
and stays in that state for t1 time. After that, the appliance moves to s2 for t2 time and
then switches to the next state. After tN time spent in state sN , the appliance shuts off
and goes back to sidle.

Our CSP framework applies these ideas by first learning a set of states S, by fitting
a small number of examples of consumption patterns of the target. These are then used
to refine the predictions of the network for the time in which the appliance is considered
active i.e. between tstart and tend. We currently do not model the idle state s0 (the CSP
problem that the power consumption at idle is some constant value pidle) , relying on the
neural network to (roughly) identify the tstart and tend of each activation. In the next
sections, we will describe in detail both the training and inference procedure.

6.4.1 Training

As explained in previous sections, the training procedure of the CSP problem relies on
labeled data about a few activations of the appliance. We can formalize it as a function
P : R+ → R that links each time instant with a power consumption. For training, we
have a series of m intervals {< tj,start, tj,end >}mj=1 that encode the boundaries of the
activations. The last bit of information is the constant idle power consumption pidle of
the appliance. This is necessary because, albeit the problem relies on the network for
the prediction of power consumption when idle, it cannot assume that the activation
intervals are perfectly timed, thus it must account for the appliance potentially being in
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Figure 6.2: Example of an activation cycle of an appliance

idle near tstart and tend. Figure 6.3 depicts the whole activation cycle of an appliance that
follows these principles. The target is modeled using 3 active states s1, s2, s3, with their
corresponding state functions f1, f2, f3. Aside from the "active" states, the framework
uses two more states s0 and sn+1 to model the idle state (before the first and after the
last active state), both of them represented modeled by the function fidle, that have a
duration of t0 and tn+1. The objective of the fitting is to obtain a curve (by adding up
state and idle functions) that closely matches the target consumption curve in the interval
between tstart and tend.

In order to formalize the fitting problem, we must introduce some constructs. We
define t∗j,i as the summation of tj,start and of all the durations of all the i− 1 states:

t∗j,i = tj,start +
i−1∑
k=1

tj,k

Each function fi is an exponential function in the form

fj,i(t) = αj,ie
t + βj,i

while fidle has the form

fj,idle(t) = C

The function that is learnt from a specific activation j is then:
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fj(t) =



fj,idle(t) tj,start < t ≤ t∗j,1

fj,1(t) t∗j,1 < t ≤ t∗j,2

...

fj,i(t) t∗j,i < t ≤ t∗j,i+1

...

fj,n(t) t∗j,n−1 < t ≤ t∗j,n

fj,idle(t) t∗j,n < t ≤ tj,end

(6.1)

Defining the function encoding the interval of interest as

Pj(t) =

P (t− tj,start) tj,start < t < tj,end

0 otherwise
(6.2)

we can define the difference between the real and predicted consumption as

∆cj =

∫ tj,end

tj,start

|Pj(t)− fj(t)|dt (6.3)

Moreover, the training problem tries to minimize the deviation between the param-
eters. In particular the deviation between the duration of the states across the various
training sequences:

∆s =
n∑

i=1

max({tj,i}mj=1)−min({tj,i}mj=1) (6.4)

and the same deviation for the fj,i(t) parameters αj,i and βj,i:

∆α =
n∑

i=1

max({αj,i}mj=1)−min({αj,i}mj=1) (6.5)

∆β =
n∑

i=1

max({βj,i}mj=1)−min({βj,i}mj=1) (6.6)

The overall training problem is then defined as:

minimize
C,αj,i,βj,i,tj,i

∆s+∆α +∆β +
∑
j

∆cj (6.7)

6.4.2 Inference

Once the parameters C, αj,i, βj,i, tj,i have been optimized in training, a new optimization
problem is defined for inference. Differently from training, this time there are two distinct

89



6.4. PROPOSED APPROACH CHAPTER 6. NESY NILM

sources of input data: the actual raw aggregated power consumption (the same input given
to the neural network) and the output of the neural network. The problem is expected
to refine the neural output by using the "learnt behaviour" of the appliance (encoded
in C, αj,i, βj,i, tj,i), while at the same time ensuring that the final prediction does not
conflict with the actual instantaneous aggregated power consumption (e.g., predicting a
peak appliance power that is higher than the aggregated one).

Due to the fact that the optimization problem models only the active state of the
appliance, the algorithm is used to refine the output of the neural network only where an
activation of the appliance is detected. The activation window is computed by looking
at the neural network output. Each activation starts when a consumption greater than a
value actstart, and ends when the power consumption remains below actstart for at
least acttolerance seconds. Both the values for actstart and acttolerance can
be selected by looking at the ground truth power consumption over time of the appliance
in the training set.

We can define the difference between the aggregated and predicted consumption as:

∆mj =

∫ tj,end

tj,start

|Pj(t)− fj(t)− baseline|dt (6.8)

Where baseline is the average value of the mains power consumption before and
after the current activation. The baseline offset is necessary due to the fact that in each
instant there could be different sets of other appliances draining power, thus resulting in
an unpredictable baseline.

The optimization problem takes into account both the predicted and aggregated data.
As in training, it computes a cost that is used in the optimization objective. When it
predicts an activation (and its corresponding fj(t)), this cost is:

activecost = wc∆cj + wm∆mj (6.9)

where wc and wm are two appliance dependent hyperparameters that weights the contri-
butions of the two costs.

Given that the refinement is triggered by the prediction of the neural network, the
model must also consider the hypothesis that the neural prediction is a false positive. In
this case, the role of the problem is to discard the prediction. Therefore, the optimization
cost is computed as the power consumption predicted by the neural network.

inactivecost =

∫ tj,end

tj,start

Pj(t)dt (6.10)

Assuming that the parameters αT
j,i, β

T
j,i, t

T
j,i,∆s

T ,∆αT ,∆βT are the ones learnt during
training, the optimization problem is defined as:
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Figure 6.3: Representation of the result of the training procedure. The target activation was
fitted using an automaton with 3 states s1, s2, s3. In the figure are depicted the corresponding
state functions f1 (in cyan), f2 (green), f3 (red) and the idle function (a constant value, in this
case 0) fidle for the idle state.

minimize
αj,i,βj,i,tj,i

(isactive) activecost+ (isactive) inactivecost

subject to

tTmindB −∆sTd < tj,i < tTmaxdB +∆sTd

αT
min −∆αT < αj,i < αT

max +∆αT

βT
minhB −∆βTh < βj,i < βT

maxhB +∆βTh

where

tTmin = min({tTj,i}mj=1) tTmax = max({tTj,i}mj=1)

αT
min = min({αT

j,i}mj=1) αT
max = max({αT

j,i}mj=1)

βT
min = min({βT

j,i}mj=1) βT
max = max({βT

j,i}mj=1)

(6.11)

Where isactive is a boolean variable that is true if the optimization problem pre-
dicts an activation, and false otherwise. The hyperparameters dB, d, hB, h are used to
scale the values of the parameters tj,i, βj,i. The parameters αj,i are not scaled to avoid
losing the overall shape of the power consumption curve.
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6.5 Experimental setting

This section describes the experimental setting that we defined to validate our proposed
approach. In detail, we compare the predictions of a fully neural approach with respect
with our neuro-symbolic approach. As a neural baseline, we use the model described in
[45] which is also used as input to our neuro-symbolic approach. All the experiments
have been run on the UK Domestic Appliance Level Electricity (UK-DALE) dataset
which is one of the most used dataset in the literature to evaluate the performance of the
disaggregation algorithms.

6.5.1 UK-DALE

UK-DALE contains the measurements of the energy consumption for the whole house and
individual appliances of five UK houses. The readings have been collected by sampling
every 6 seconds and refer to the period 11/09/2012-04/26/20174. Each house hosts at least
two occupants, with occupants be potentially different for type (familiy or not family)
or habits (e.g. working all day). Therefore, the consumptions are not (always) the same
for each house. More than 15 types of appliances are contained in the dataset but not
all of them are in all houses. As done by other works like [45, 97], we focus on kettle,
microwave, fridge, dishwasher and washing machine because these are the appliances
having the highest impact on the total aggregated consumption.

6.5.2 Seen setting

We evaluate our neuro-symbolic approach and the neural baseline on the "seen" scenario.
Roughly speaking, it consists in seeing how both approaches behave when they have to
predict the appliances’ consumption over a period of time that they have not seen during
training. In detail, given a time window wh = [shw, e

h
w], shw, ehw ∈ N with shw < ehw, for an

house h, we define two windows, wh
train and wh

test, where:

wh
train = [shwtrain

, ehwtrain
]

wh
test = [shwtest

, ehwtest
]

with:

shw ≤ shwtrain
< ehwtrain

< shwtest
< ehwtest

≤ ehw

and we train and test both approaches using the data over the time windows wh
train and

wh
test, respectively.
4we used UK-DALE-2017l
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6.5.3 Metric

As done in other works like [97, 45, 71], we evaluate the predictions using the mean
absolute error (MAE):

MAE(Ŷj, Yj) =
1

l

l∑
i=1

|ŷji − yji|

where l denotes the length of the sequence (i.e. the length of the main) and Ŷj and Yj
represent the predicted and the truth consumption sequence for appliance j (with ŷji and
yji representing the consumption at time i).

6.6 Results

Appliance MAE nn MAE neuro-symbolic
dishwasher 17.7 8.02
kettle 7.25 4.52
fridge 15.8 15.8
microwave 7.92 7.98
washingmachine 8.55 8.93

Table 6.1: MAE over the test set.

In Table 6.1 are reported the MAEs for both the neural baseline and our neuro-
symbolic approach on all the appliances. As can be seen by looking at the table, our
neuro-symbolic approach outperforms the neural network on two out five appliances,
while having comparable results on the remaining ones. In Figure 6.4 are shown the
prediction of both the neural network and our neuro-symbolic approach. On the left, is
shown the comparison between the ground truth (blue) and the neural network (orange),
while on the right is shown the comparison between the ground truth and our neuro-
symbolic approach (green). As can be seen by looking at the first two rows, the use of
background knowledge provided by our neuro-symbolic approach is useful to the neural
network when the network captures the underlying consumption pattern, but it is not able
to completely fill the gap with respect to the ground-truth. More precisely, our neuro-
symbolic approach works when the predictions of the neural network are already quite
accurate but are not consistent over time. This is not surprising since a trained appliance’s
network reasons in terms of time points, while our neuro symbolic approach reasons in
terms of intervals of time (see Section 6.4). For the remaining appliances, the lack of an
improvement is due to different reasons: the objective of the constrained optimization
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problem consists in refining the predictions of the network, if they are already optimal
(fridge) or too wrong (microwave) then the impact of the background knowledge is almost
null; the training set does not contain enough representatives samples to model correctly
the behaviour of the appliance. This is the case of the washing machine appliance that
has not so many samples/activations and whose data contains a lot of variability. As a
consequence, its corresponding MAE is low even though the predictions are not good. As
can be seen by looking again at Figure 6.4, the neural model may predicts a negative
value of consumption (e.g., for dishwashwasher and kettle), this is due to the fact that no
activation is used at last layer of the baseline model [45]. We decided to keep the same
model and leave the task to remove this behaviour to the background knowledge5.
In all the experiments, the automaton model is learnt from (a subset of) data of the
target house and then is always available. If not, we can use the training data of the
other houses, but this would led to a drop in terms of performance, since we are going
to learn an automaton on a potentially different models of the same appliance which is
not exactly what we want to predict. Furthermore, even though we consider only five
appliances, the overall model can still be applied when there are more appliances. Indeed,
despite having much more noise, which is due to the presence of more appliances that
switch on and off, respectively, the model reasons on each appliance independently, and
then it should work exactly the same.

5Another option would be to use an activation function to avoid negative values (e.g. ReLU).
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Figure 6.4: Prediction of the consumption for dishwasher, kettle, fridge, microwave, and wash-
ingmachine. Ground truth is in blue, while neural and neuro-symbolic are in orange and green,
respectively.

96



CHAPTER 6. NESY NILM 6.7. CONCLUSION

6.7 Conclusion

In this chapter, we propose a neuro-symbolic approach for NILM where background knowl-
edge about the behaviour of a house’s appliances is used on top of a neural network to re-
fine its predictions. The refinement step is done through a (learnt) automaton that change
the prediction of the neural network according to the state’s (exponential) function that
has been learnt from the data (i.e., from a subset of activation windows). Experiments
show that when the prediction of the neural networks are already quite accurate (i.e. the
network is able to learn the pattern of consumption of an appliance) but are not consistent
over time, the use of the background knowledge is able to ensure a greater consistency
leading to a drastic increase of the performance.
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Chapter 7

Conclusions and Future Works

In this thesis, we have investigated NeSy AI in the context of event recognition. In detail,
our research has focused on giving an answer to the following research questions:

R1: How can we formalize and what kind of formalism can we use to define the event
recognition problem in a neuro-symbolic context?

R2: What kind of supervision and background knowledge can we use/exploit in an end-
to-end neuro-symbolic approach for event recognition?

R3: What are the issues emerging in those approaches (e.g., scalability)? How can we
solve/mitigate them?

R4: Can we ”readapt” these approaches to solve lower tasks with respect to event recog-
nition? For example, using these approaches to predict sequences of values, which
have to be compliant with the background knowledge, that may be used to build
an event recognition system (e.g, trigger an event warning when certain values are
identified in a sequence).

In chapter 3, we addressed R1 by providing an event calculus inspired formalization of
the problem in which events have been defined as structured objects involving different
components. In chapter 4, we slightly modified the previous formalization by defining the
distinction of events in structured and atomic events. The kind of supervision we provided
in chapters 3, 4 and 5, was weak (e.g., supervision on structured event) and limited to
a (subset of) the events happening in the sequence. Furthermore, we incorporate simple
knowledge involving the relative order of the events and constraints on their duration R2.
We addressed R3 in chapters 4 and 5. In chapter 4, we tackle the issue of scalability
that emerged in chapter 3, by proposing a neuro-symbolic approach that combines neural
prediction over individual frames with a MILP formulation encoding event background
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knowledge, and we applied it on a real-world event recognition scenario. In chapter 5,
the same issue has been addressed by presenting a fuzzy event interval reasoning system
based on what we called Interval Real Logic. R4 has been addressed in chapter 6 where
background knowledge has been used to refine the predictions of neural networks which
predict the consumptions of an house’s appliances. While these results are promising,
there are several directions that are left open for future research. For chapters 4 and 5,
a major direction consists in increasing the complexity of the scenarios being considered,
by dealing with structured events involving multiple actors and complex relationships
between the events, without making the underlying reasoning problem prohibitively ex-
pensive, something other neuro-symbolic frameworks currently struggle with. In addition,
an interesting direction for chapter 4 would be to compare both the the sub-symbolic and
our DeepProbLog prototype with a propabilistic graphical model like Conditional Ran-
dom Fields (CRF) which has been used widely for event detection in text. Modelling the
problem as PGM would lead to consider not only complexity and scalabality but other
issues as well like features selection (i.e., finding features able to capture both spatial and
temporal information) and the capability of the model to capture long term dependencies
(i.e., events spans multiple frames and PGM may struggle to model these temporal de-
pendencies). For chapter 5, together with the challenges that have already been discussed
in the chapter, it would also be interesting to see how the framework behaves when real
data are considered. For chapter 6, one direction could lead to a more in-depth search
for the parameters of the CSP. Indeed, we notice that a correct setting of the values of
those parameters is fundamental in order to achieve better results. Therefore, an ex-
tensive evaluation can be conducted in order to set their values. Currently, one of the
drawbacks of the datasets used in NILM is the availability of only few activations for each
appliance making their generalization more difficult. Collecting more activations from
different houses may increase drastically both the variability and generalizability of our
proposed approach. Another direction, which could be also be conducted in parallel with
the previous point, would be to move the setting from “seen" to “unseen", and see how our
neuro-symbolic approach behaves when the prediction has to be done on a house (i.e., on
its appliances) that it has not seen during training Finally, in this thesis, we have focused
mainly on event recognition in a single domain (i.e. event recognition in video), then it
would be interesting to see how the presented approaches behave when moving to other
domains (e.g., text and sound).
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A.1 MILP for high jump

Listing A.1: Encoding high jump as a MILP using MiniZinc

1 % HJ = High Jump

2 % R = Run

3 % J = Jump

4 % F = Fall

5

6 int: bHJ;

7 int: eHJ;

8

9 int: minSum_R_J = 3;

10 int: maxSum_R_J = 48;

11 int: minSum_R_F = 4;

12 int: maxSum_R_F = 57;

13 int: minSum_J_F = 3;

14 int: maxSum_J_F = 33;

15

16 int: target_R_J = maxSum_R_J - minSum_R_J + 1;

17 int: target_R_F = maxSum_R_F - minSum_R_F + 1;

18 int: target_J_F = maxSum_J_F - minSum_J_F + 1;

19

20 var bHJ .. eHJ: bR;

21 var bHJ .. eHJ: eR;

22 var bHJ .. eHJ: bJ;

23 var bHJ .. eHJ: eJ;

24 var bHJ .. eHJ: bF;

25 var bHJ .. eHJ: eF;

26

27 var int: lenR = eR - bR + 1;

28 var int: lenJ = eJ - bJ + 1;

29 var int: lenF = eF - bF + 1;

30

31

32 constraint eR > bR /\ eJ > bJ /\ eF > bF;

33 constraint bR == bHJ /\ eR == (bJ-1) /\ eJ == (bF-1) /\ eF == eHJ;

34 constraint lenR >= (lenJ + lenF) /\ lenJ < (lenR + lenF) /\ lenF < (lenR + lenJ);

35

36

37 var int: cost_comp_run_pos = - sum (t in bR..eR) (ae_predictions[1,t]);

38 var int: cost_comp_run_neg = sum (t in (eR+1)..eHJ) (ae_predictions[1,t]);

39 var int: cost_comp_jump_pos = - sum (t in bJ..eJ) (ae_predictions[2,t]);

40 var int: cost_comp_jump_neg_1 = sum (t in bHJ..(bJ-1)) (ae_predictions[2,t]);

41 var int: cost_comp_jump_neg_2 = sum (t in (eJ+1)..eHJ) (ae_predictions[2,t]);

42 var int: cost_comp_fall_pos = - sum (t in bF..eF) (ae_predictions[3,t]);

43 var int: cost_comp_fall_neg = sum (t in bHJ..(bF-1)) (ae_predictions[3,t]);

111



A.1. MILP FOR HIGH JUMP APPENDIX A. APPENDIX

44

45 var int: cost = (

46 cost_comp_run_pos + cost_comp_run_neg

47 + cost_comp_jump_pos + cost_comp_jump_neg_1 + cost_comp_jump_neg_2

48 + cost_comp_fall_pos + cost_comp_fall_neg

49 + 1000 * abs(target_R_J - (lenR + lenJ))

50 + 1000 * abs(target_R_F - (lenR + lenF))

51 + 1000 * abs(target_J_F - (lenJ + lenF))

52 );

53

54 solve minimize cost;

In lines 6-7, the constants representing the begin and the end of the clip are declared.
These are going to be filled at running time and will change depending on the length of
the clip processed. The blocks of lines 9-14 and 16-18 contains, the minimum/maximum
sum of the length of the intervals of two atomic events and the target length in which the
sum of the two intervals has to lie in. The declaration of the optimizer decision variables
is contained in line 20-25. These variables are going to be set by Gurobi at the end of
the optimization. In lines 27-29, the variables representing the length of the interval of
each atomic events are defined. Lines 32-34 represent hard constraints that Gurobi has to
satisfy. In details, line 32 states that the end of each atomic event has to be greater than
their corresponding begin, while lines 33 and 34 defines respectively temporal relations
among events and algebraic constraints among the length of the intervals of atomic events.
In addition to the satisfaction of those constraints, Gurobi has to minimize a cost function
(lines 45-62). The cost function can be split in two parts. The former (lines 46-48) is
composed by the sum of components defined in lines 37-43 where we want to maximize (i.e.
minimize) the sum of probability where the solver states the atomic events are happening
(pos), and minimize (i.e. maximize) the sum of probability where the atomic events are
not happening (neg). The latter (lines 49-51) refers to soft constraints where the solver
has to set the the sum of the length of two atomic events’ intervals to be as closed as
possible to their target length. In this case, the value of weights (i.e., 1000) have been
chosen after trying the following values: 250, 500, 750 and 1000.
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A.2 Structured and atomic events considered
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A.3. TEMPORAL ACTION LOCALIZATION MODEL APPENDIX A. APPENDIX

A.3 Temporal action localization model

The input of the model consists in a series of feature vectors f extracted by a pre-trained
two-stream I3D [14], where each fi ∈ f corresponds to 8 frames (or 0.33 seconds) and
contains global information at both frame and video-clip level. A non linear transforma-
tion is applied on these features in order to obtain class level features (C × T ×H) with
C representing the number of classes, T the number of timestamps and H the dimension
of embedding space. Then, the class-level features are refined using L attention-based
Multi-Label Action Dependency (MLAD) layers. These layers are composed by two dis-
joint branches which adopt a self-attention operation to model the relationships between
actions that happened within the same timestamp (referred as Co-occurence Dependency
branch) and actions happening at different timestamps (referred as Temporal Dependency
branch). As a result, a refined set of features is returned by each branch, respectively. At
the end, a linear combination of the two branches’ features is applied (through a learnt
value α ∈ [0, 1]) and the result is passed to C individual classification layers which outputs
class probabilities for each timestamp (T × C).
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