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Abstract
Specific phobia represents an anxiety disorder category characterized by intense 
fear generated by specific stimuli. Among specific phobias, small animal pho-
bia (SAP) denotes a particular condition that has been poorly investigated in the 
neuroscientific literature. Moreover, the few previous studies on this topic have 
mostly employed univariate analyses, with limited and unbalanced samples, lead-
ing to inconsistent results. To overcome these limitations, and to characterize the 
neural underpinnings of SAP, this study aims to develop a classification model of 
individuals with SAP based on gray matter features, by using a machine learning 
method known as the binary support vector machine. Moreover, the contribution 
of specific structural macro-networks, such as the default mode, the salience, the 
executive, and the affective networks, in separating phobic subjects from con-
trols was assessed. Thirty-two subjects with SAP and 90 matched healthy controls 
were tested to this aim. At a whole-brain level, we found a significant predic-
tive model including brain structures related to emotional regulation, cognitive 
control, and sensory integration, such as the cerebellum, the temporal pole, the 
frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when 
considering macro-networks analysis, we found the Default, the Affective, and 
partially the Central Executive and the Sensorimotor networks, to significantly 
outperform the other networks in classifying SAP individuals. In conclusion, this 
study expands knowledge about the neural basis of SAP, proposing new research 
directions and potential diagnostic strategies.
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1   |   INTRODUCTION

Anxiety disorders are among the most prevalent 
mental health issues (COVID-19 Mental Disorders 
Collaborators,  2021). These disorders are characterized 
by excessive and persistent worries that significantly 
disrupt daily life, often resulting in profound avoidance 
behaviors, distress in social settings, and impaired occu-
pational functioning (Craske et al., 2011; Mah et al., 2016; 
Olatunji, 2019; Santomauro et al., 2021). The prevalence 
of these conditions highlights the need for an in-depth 
understanding of their neural bases and development of 
effective treatments. Within the spectrum of anxiety dis-
orders, specific phobias (SP) represent a category where 
distinct stimuli or situations trigger irrational and intense 
fears, having a high prevalence (10%) in the general pop-
ulation (Fyer,  1998). Among these, small animal phobia 
(SAP), or phobias of insects, spiders, reptiles, rats, stands 
out as a condition in which, despite the efforts various 
studies proposed to explore the brain circuits involved, the 
exact neural mechanisms underlying its condition remain 
elusive.

Functional neuroimaging studies have repeatedly iden-
tified activations response to phobic stimuli in regions such 
as the insula, the amygdala, and the cingulate cortex (Del 
Casale et al., 2012; Peñate et al., 2017; Wright et al., 2003). 
Other brain regions such as the prefrontal and the orbitof-
rontal cortex (OFC), have also shown different activations. 
Moreover, structural neuroimaging studies have found 
similar results. For instance, one of the first studies on 
this topic showed significant increased cortical thickness 
in AP versus healthy control individuals in the paralimbic 
cortex, specifically in the bilateral insular cortex, the bilat-
eral pregenual anterior cingulate cortex, and the bilateral 
posterior cingulate cortex, as well as in the occipitotempo-
ral cortex (Rauch et al., 2004). Building on these findings, 
another study reported that SAP individuals had higher 
anxiety sensitivity with respect to healthy individuals and 
that this predicted greater thickness and volume of the 
right anterior insular cortex in the SAP group, suggesting 
that the right anterior insula might be a key factor in me-
diating anxiety in those who are prone to excessive anxiety 
(Rosso et  al.,  2010). Another study reported an increase 
of the 13% in the left amygdala volume in 20 human fe-
male individuals with spider phobia compared to 20 fe-
male control individuals (Fisler et al., 2013). Additionally, 
Hilbert et al. (2015), analyzed data from human individ-
uals with different phobias such as dental phobia, snake 
phobia, and reported significantly increased gray mat-
ter volumes in several brain regions among the phobia 
groups compared to the control group, including the right 
subgenual Anterior cingulate cortex (ACC), left medial 
orbito-frontal cortex (OFC), left precuneus, and others. 

Lastly, a recent study found reduced gray matter volume 
(GMV) in human individuals with SAP in the right and 
left insula, OFC, left superior medial frontal gyrus, right 
superior frontal gyrus, and right anterior cingulate cortex 
(Rivero et al., 2023). Additionally, SAP individuals exhib-
ited increased GMV in the left putamen. Despite these 
findings, prior studies investigating the neurological basis 
of anxiety disorders have faced considerable challenges 
that limit the depth and applicability of their findings. 
For example, previous studies frequently relied on lim-
ited sample sizes (Rauch et al., 2004; Rivero et al., 2023; 
Straube et  al.,  2006; Wright et  al.,  2003). Some of them 
exhibited an imbalance in participant gender distribu-
tion, with a preponderance of female subjects, leading to 
a possible bias in the neural findings. This imbalance is 
reflected also in the observed higher incidence of animal 
phobias among women compared to men, with estimates 
suggesting a ratio approaching 3:1 (Kendler et al., 2001), 
but nevertheless can cause biases in the neural findings. 
Furthermore, and more importantly, previous studies re-
lied on mass univariate analysis, focusing on individual 
voxels separately, without acknowledging the statistical 
interdependencies between them (Grecucci et  al.,  2022, 
2023; Sorella et al., 2019). In some studies, analyses were 
confined to predefined regions of interest (ROI) rather 
than employing a comprehensive whole-brain methodol-
ogy, thus limiting the findings to a few a priori selected 
to areas (Gentili et al., 2019). Additionally, the generaliz-
ability of this findings was not assessed and the applica-
bility of these findings in terms of potential biomarker to 
diagnose new unobserved individuals was not evaluated 
(Pappaianni et al., 2019; Sorella et al., 2019). These limita-
tions have sometimes led to unclear findings, particularly 
in studies of SAP, indicating the need for a broader ana-
lytical approach. For example, although the neural bases 
of fear conditioning are well known (Tovote et al., 2015), 
their involvement in individuals with SAP, is not clear. 
The OFC and the amygdala known to be responsible for 
fear conditioning may also be involved in SAP (Tovote 
et  al.,  2015). However, they are not consistently found 
in the SAP literature (Rivero et al., 2023). Also, although 
some authors reported areas included in the default mode 
network (DMN) to be altered in phobias, the proof of its 
involvement in SAP, as in other anxiety disorders (Baggio, 
Grecucci, Crivello, et al., 2023; Baggio, Grecucci, Meconi, 
et al., 2023), is missing.

Rather than relying on traditional univariate statisti-
cal methods, a new class of multivariate statistical tech-
niques known as multivoxel pattern analysis (MVPA), 
or machine learning (ML) methods, has been increas-
ingly utilized in neuroscience. These approaches offer 
greater accuracy and sensitivity in detecting complex la-
tent patterns in brain signals, enabling them to classify 
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new cases with high precision (Norman et  al.,  2006). 
Recently, these methodologies have been successfully 
applied to disorders such as schizophrenia, border-
line personality disorder (Grecucci et  al.,  2022, 2023; 
Sorella et  al.,  2019), narcissistic personality disorder 
(Jornkokgoud et  al.,  2023), and social anxiety disor-
der (Baggio, Grecucci, Crivello, et  al.,  2023; Baggio, 
Grecucci, Meconi, et al., 2023; Frick et al., 2014; Mwangi 
et al., 2012; Squarcina et al., 2017).

By capitalizing on such methods, one pioneering study 
by Lueken et  al.  (2015) applied Gaussian process classi-
fier to classify spider and dental phobias versus healthy 
controls based on the structural MRI. For what concerns 
spider phobic individuals, authors reached an accuracy 
of 89%. The OFC, as well as the cingulate, the insula, the 
hippocampus, the temporal lobe and other structures, was 
responsible for such accuracy. In a more recent attempt 
to apply ML methods in a functional MRI experiment, 
Böhnlein et al. (2021) found that spider phobic individuals 
could be correctly classified with 73% balanced accuracy 
(BA) from their neural responses to supraliminal emo-
tional faces in a large sample of participants. The regions 
involved were mainly the inferior parietal cortex, the fusi-
form gyrus, the middle cingulate, the postcentral cortex, 
and insula. Despite the merits, these studies only focused 
on spider phobic individuals, leaving unexplored the neu-
ral bases of general SAP.

In light of the limitations of previous studies, the aim 
of the present study is to apply a ML approach to clas-
sify SAP individuals versus matched controls. To accom-
plish this aim, a ML method known as binary support 
vector machine (BSVM) will be adopted. This method 
uses a multivariate statistical approach to interpret and 
discover complex patterns in brain imaging data (Frick 
et  al.,  2014; Mwangi et  al.,  2012; Norman et  al.,  2006; 
Squarcina et al., 2017), and extracting a predictive model, 
that can be used to diagnose new unobserved individuals 
(Baggio, Grecucci, Crivello, et al., 2023; Baggio, Grecucci, 
Meconi, et  al.,  2023; Grecucci et  al.,  2023; Jornkokgoud 
et al., 2023). The algorithm aims to identify the optimal 
decision boundary, or hyperplane, that divides the data 
points of different classes (Hastie et  al.,  n.d.). BSVM is 
effective in a high-dimensional space such as the brain 
which contains circa 105 voxels; can handle nonlinear 
data by relying on kernel method, and is resistant to over-
fitting (Hastie et al., n.d.; Pisner & Schnyer, 2020). Thus, 
the primary objective of our study is to exploit the poten-
tial of BSVM, to classify SAP individuals.

To our knowledge, this marks the first attempt of 
applying such a technique in this context. We hypothe-
size that specific brain structures, previously identified 
in separate studies as crucial in emotional regulation 
and the fear response mechanism—such as the OFC, 

amygdala, and basal ganglia—can effectively differen-
tiate these two groups (Mourao-Miranda et  al.,  2012; 
Rivero et al., 2023; Rondina et al., 2018; Vai et al., 2020). 
By employing BSVM, we can precisely quantify the 
contribution of each brain region to our classification 
models, identifying the most critical areas, assigning a 
weight to each, and highlighting the neurobiological 
distinctions between SAP individuals and matched con-
trol individuals (CTRLs).

Expanding beyond whole-brain analyses, the sec-
ond aim of the present study is to investigate whether 
specific brain macro-networks, previously associated 
with various psychiatric conditions, such as Borderline 
personality disorders (Grecucci et  al.,  2022, 2023; 
Langerbeck et al., 2023), Narcissistic personality disorder 
(Jornkokgoud et  al.,  2023, 2024), and anxiety disorders 
(Baggio, Grecucci, Crivello, et al., 2023; Baggio, Grecucci, 
Meconi, et al., 2023), encode enough information to clas-
sify individuals with SAP compared to CTRLs. Recent 
research has suggested that patients with certain psycho-
logical conditions demonstrate functional impairments 
in the so called “triple network” brain networks like the 
DMN, salience network (SN), and central executive net-
work (CEN) (Doll et  al.,  2013; Langerbeck et  al.,  2023). 
These networks are present both at a functional and struc-
tural level (Baggio, Grecucci, Meconi, et al., 2023; Grecucci 
et al., 2022; Meier et al., 2016), and have been linked to 
various psychiatric diseases. We hypothesize that abnor-
malities in these networks, particularly the DMN, SN, 
and CEN, may be predictive of SAP. We further postulate 
that among these networks, the DMN might be the most 
significant in differentiating SAP individuals from CTRL 
ones. Our study aims to explore their relevance in the con-
text of SAP. We also expect that, DMN-based classification 
will outperform the whole brain analysis. I.

Although a limbic network (sometimes called affec-
tive network, AN) has not been yet included in most 
of the resting state macro networks classifications 
now available (see Damoiseaux et  al.,  2006 and Uddin 
et  al.,  2019), and the possibility to detect an emotion 
related macro-network has been questioned (Barrett & 
Satpute,  2013, but see Yeo et  al.,  2011 for opposite re-
sults), we wanted to test the possibility that an affective 
related network might be relevant when classifying SAP 
individuals. This AN encompasses brain regions under-
scored in the existing literature for their pivotal roles in 
emotional processing and affective responses, including 
the amygdala, the cingulum, the pallidum, the hippo-
campus, the insula, the OFC, the medial frontal cortex, 
the putamen and the caudate. All these regions have im-
plicated in subserving emotion related process (Murphy 
et  al.,  2003; Vytal & Hamann,  2010). This network 
is similar to the “limbic network” proposed (Enatsu 
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et al., 2015; Yeo et al., 2011), that usually includes the 
hypothalamus, the hippocampus, the mammillary body, 
the thalamus, the cingulate gyrus, the para-hippocampal 
gyrus and the entorhinal cortex. However, this network 
relies only on subcortical structures, while other findings 
have now widely and undoubtedly associated other cor-
tical areas such as the OFC and the medial frontal cortex 
to an essential role in emotions expression and regula-
tion (Del Casale et al., 2012; Hilbert et al., 2015; Peñate 
et  al.,  2017; Rauch et  al.,  2004; Straube et  al.,  2006). 
Similarly, Janes et al. (2012) when testing for an emotion 
related network, mainly considered subcortical regions 
without any cortical contribution (Janes et  al.,  2012). 
The AN used in this study has also similarities with the 
AN used by Dörfel et al. (2020), for the consideration of 
the amygdala, the insula, and of regions of the prefron-
tal cortex (including the inferior frontal, middle frontal, 
superior frontal, medial frontal and orbital gyri, the cin-
gulate gyri). However, in this network many subcortical 
regions (such as for example the basal ganglia) were not 
included. Additionally, Ahmadi Ghomroudi et al. (2024) 
described an AN related to emotion regulation abilities 
but this time mainly focused on the amygdala, and fron-
tal and temporal regions, but neglecting the role of the 
other subcortical structures. To overcome the limita-
tions of the previous limbic and AN, we decided to build 
a more inclusive AN. We hypothesize that this network 
may display a good classification accuracy, possibly out-
performing the whole brain results, and similar to the 
DMN results. One possibility is that the AN outperforms 
the DMN. Alternatively, the DMN may outperform the 
AN, suggesting again a prominent role in psychological 
disorders. Additionally, we intend to test as control net-
works also the visual, the sensorimotor and the reward 
networks. We expect these networks to not allow a cor-
rect classification of SAP individuals.

In sum, in the present study, we aim to enrich the ex-
isting body of knowledge on the neural basis of anxiety 
disorders, specifically related to SAP. By using integrating 
advanced ML techniques with structural neuroimaging 

data, we aim to provide new light on the intricate neu-
ral networks that underpin specific phobias, paving the 
way for new research directions and potential therapeutic 
strategies.

2   |   METHODS

2.1  |  Participants

The sample of the present study includes participants pre-
viously collected in the study of Rivero et al. (2023), with 
additional control subjects from the UCLA Consortium 
for Neuropsychiatric Phenomics dataset to balance 
gender and age discrimination. The Neuropsychiatric 
Phenomics dataset was derived from the Openneuro data-
base (Gorgolewski et al., 2017), under the accession num-
ber ds000030, version 00016. Control subjects from the 
UCLA Consortium for Neuropsychiatric Phenomics data-
set were recruited through a comprehensive approach 
involving community advertisements, outreach to local 
clinics, and online portals. Eligibility for participation for 
both samples was contingent upon having at least 8 years 
of formal education and proficiency in English or Spanish. 
Within our whole sample, individuals in the SAP group 
received a specific phobia diagnosis using the Composite 
International Diagnostic Interview (CIDI), Version 2.1 
(Kessler & Üstün, 2004). All participants were adult, right-
handed, and none had any visual problems. The phobia 
had to be the primary psychological disorder that could 
not be explained by another health condition. Meanwhile, 
all control participants, including those from the previous 
study and additional ones from the UCLA dataset, had no 
psychiatric or neurological disorders. Our final sample 
consisted of 32 individuals (25 F, mean age: 34.4 ± 11.07) 
with SAP, and 90 healthy controls matched for age and 
gender (59 F, mean age: 31.95 ± 10.25). No significant dif-
ferences were found for age (t = 1.330, p = .186) and gender 
(t = 1.317, p = .190) between groups. See Table  1. Phobic 
and controls had similar total intracranial volume.

SAP (n = 32) CTRL (n = 90)
p-
Value

Sex 7M, 25F 31M,59F .19

Age Mean age = 34.4 
(SD ± 11.07)

Mean age = 31.95 
(SD ± 10.25)

.18

Inclusion criteria Smal animal phobia 
diagnosis, right-
handedness, no 
contraindications for MRI 
scanning

No history of psichiatric 
or neurological disorder, 
Right-handedness, no 
contraindications for MRI 
scanning

Abbreviations: CTRL, controls; F, females; M, males; SAP, small animal phobia individuals.

T A B L E  1   Table presenting 
demographic and diagnostic information 
about the participants, including their 
number, gender distribution, mean age, 
and inclusion criteria.
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2.2  |  MRI data acquisition

The MRI sessions for the original sample were conducted 
using a 3 T MR scanner (GE 3T Sigma Excite HD) with 
a 12-channel head coil. During the scans, participants 
were instructed to keep their eyes closed, relax but not 
fall asleep, and remain as still as possible. High-resolution 
three-dimensional T1-weighted images were acquired 
with specific parameters (TR/TE = 8852 ms/1756 ms, flip 
angle = 10°, 172 sagittal slices, slice thickness = 1 mm, 
FOV = 256 mm2, data matrix = 256 × 256 × 172, voxel 
size = 1 × 1 × 1 mm, and TI = 650 ms). An experienced neu-
roradiologist reviewed each scan to ensure there were no 
visible movement artifacts or gross structural abnormali-
ties. The scans on the additional CTRL individuals were 
performed on a 3 T Siemens Trio scanner. A T1-weighted 
high-resolution anatomical scan (MPRAGE) was collected 
with parameters including a slice thickness of 1 mm, 176 
slices, TR of 1.9 s, TE of 2.26 ms, matrix size of 256 × 256, 
and a FOV of 250 mm2. Diffusion-weighted imaging data 
were collected with parameters such as a slice thickness 
of 2 mm, 64 directions, TR/TE of 9000/93 ms, flip angle of 
90°, and a matrix size of 96 × 96, axial slices, and a b-value 
of 1000 s/mm2. All participants provided written informed 
consent, in compliance with the ethical guidelines set by 
the consortium.

2.3  |  Preprocessing

Before initiating any analyses, and following a rigorous 
quality check to eliminate artifacts, all data underwent a 
standardized preprocessing routine. This process utilized 
the Computational Anatomy Toolbox (CAT12, available 
at http://​www.​neuro.​uni-​jena.​de/​cat/​), which operates 
within the SPM12 software framework (accessible at 
http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​software) in MATLAB. 
This step involved the segmentation of gray matter, white 
matter, and cerebrospinal fluid. We opted for the modu-
lated normalized writing method during this phase. For 
registration, we employed the Diffeomorphic Anatomical 
Registration through Exponential Lie algebra (DARTEL) 
approach, a robust whole-brain technique that presents 
as an effective alternative to the conventional registration 
methods used in SPM (Grecucci et al., 2016; Pappaianni 
et  al.,  2018; Yassa & Stark,  2009). Subsequently, the 
DARTEL images were normalized to the MNI space and un-
derwent spatial smoothing, applying a Gaussian smooth-
ing kernel with a full width at half maximum of 12 mm in 
all dimensions, following suggestion from (Monté-Rubio 
et  al.,  2018) for MVPA approaches to structural studies. 
To minimize the impact of having participants acquired 
with two different scanners (see participants section), we 

applied Independent Component Analysis to detect and 
separate the noise derived from the scanners. Group-ICA 
using the GIFT toolbox (https://​trend​scent​er.​org/​softw​
are/​gift/​) was used to this aim. The minimum description 
length (MDL) (Calhoun et al., 2009) estimated 13 compo-
nents in the data. These 13 components were then esti-
mated with Group-ICA. Of these components, only the 
IC13 significantly differed between scanner 1 and scan-
ner 2 (t(1,120) = 4.191, p < .001). Thus, we removed the 
effect of this component from the data and subsequent 
analyses, by generating a mask with IC13. This mask was 
merged with the mask “SPM_noeyes.nii” (used in Pronto 
for the ML analyses, see Section 2.4) to create a combined 
denoising mask. The mask was generated inside SPM12 
(Statistical Parametric Mapping, https://​www.​fil.​ion.​ucl.​
ac.​uk/​) with the ImCalculator option.

2.4  |  Data analysis

ML analyses were performed using the binary sup-
port vector machine (BSVM) method within the Pattern 
Recognition for Neuroimaging Toolbox (Schrouff 
et al., 2013). The aim was to train and test the model to 
correctly classify individuals with SAP from matched con-
trols, based on gray matter features. BSVM methods are 
specifically designed for binary classification, offering a 
targeted approach, optimizing the decision boundary be-
tween two classes with a clear margin. This specialization 
allows for a more straightforward and focused application, 
enhancing interpretability and improving classification 
performance in neuroimaging studies where the distinc-
tion between conditions or groups is critical. In the first 
step (Enter data and design), the preprocessed gray mat-
ter images of both groups were entered into two separate 
classes. The denoising mask created to mitigate the dif-
ference of the scanning equipment described above, was 
entered as 1st level mask for both whole-brain analyses 
and specific network investigations to eliminate eventual 
residual noise. In the second step (Feature set) the values 
of the gray matter density of each voxel of each subject 
were extracted and reorganized into a Nsamples × Nfeatures 
data matrix, containing the values of selected features for 
each sample. This matrix was used to compute a “simi-
larity matrix”, or kernel (Hofmann et  al.,  2008), of size 
Nsamples × Nsamples, which was then input into the classifica-
tion algorithm. In the third step (Model specification and 
estimation), the BSVM was selected as training algorithm, 
and all 32 subjects with SAP were entered as one group, 
and all the 90 CTRLs subjects were entered as the second 
group. The soft-margin hyper-parameters (C) were opti-
mized following PRONTO developers suggestions with 
the following values: 0.0001, 0.01, 1, 10, 100, and 1000 
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(Claesen & De Moor, 2015), in a nested cross-validation 
scheme. Two loops in the cross-validation scheme were 
created. The inner loop was used to optimize the hyper-
parameters, and the outer loop was used to assess the 
model's performance. The data was divided into training 
and testing sets according to a k-folds CV on subjects per 
group method with 5 folds as cross-validation scheme in 
both the inner and outer loops. This cross-validation tech-
nique enhances the model's reliability and securing that 
the data are not overfitted by the model. All participants 
were divided into 5 subsets, where each subset is used once 
as a test set while the other 4 subsets collectively serve as 
the training set. This approach ensures that each subject 
is included in the test set exactly once, allowing for a more 
comprehensive assessment of the model's accuracy and 
generalizability, and more importantly, making the test 
set independent from the training set. The parameter that 
yielded the highest performance (measured by BA for a 
classification task) in the inner/nested loop was then ap-
plied in the outer loop. For each fold in the outer loop, 
the model was trained using this optimal hyperparameter 
value and tested on the excluded data (which was not used 
for parameter tuning). The accuracy for each class was de-
termined by averaging the results from all the folds of the 
cross-validation process. Given the different number of 
participants between SAP and CTRLs we relied on the BA 
estimation as a more reliable method to assess the good-
ness of the model. Additional metrics were calculated to 
thoroughly evaluate the performance of the ML models 
across macro-networks in the classification tasks. These 
comprehensive metrics, including the F1-score, sensitiv-
ity (recall), and specificity, offer a complete view of each 
model's ability to classify individuals. F1-Score refers to 
a metric that balances the precision and recall by taking 
their harmonic mean, and it is advantageous when the 
class distribution is uneven. Sensitivity refers to a meas-
ure of the model's ability to correctly identify all actual 
positives. Finally, specificity refers to the model's ability to 
identify all actual negatives.

To ascertain the statistical robustness of our classi-
fication results, we conducted 5000 permutation test-
ing on each model. Permutation testing allows to obtain 
meaningful confidence intervals and p-values. The model 
was estimated with permuted labels/targets, to produce 
a p-value for performance statistics. This procedure was 
identical for all analyses. For testing the relevance of 
macro-networks we used a second level masks, includ-
ing the five major brain networks (DMN, SN, CEN, sen-
sory network, and visual network), derived from CAREN 
macro networks atlas (see Doucet et al., 2019 for a list of 
areas included in each mask), the reward mask (including 
the pallidum, the putamen, and the caudate) coherently 
with what reported by Haber and Knutson (2010), and the 

AN mask. To compensate for the fact that different regions 
contain different numbers of voxels, and as such different 
kernels may contain different number of features, we nor-
malized the features and applied also a mean centering. 
Once the models were generated, to allow the interpreta-
tion of the models’ parameters (weights) and to estimate 
the contribution of each brain region to the statistical 
model, a weight map was computed. The weight map is a 
spatial representation of the decision function and allows 
to understand the main brain regions allowing the clas-
sification. The whole brain weight map was then plotted 
as a 3D mesh in SurfICE. For the networks exploration, 
we plotted the original masks of the CAREN atlas as 3D 
meshes. See Figure 1.

2.5  |  Whole brain results

The BSVM analyzing whole-brain gray matter features re-
turned BA stood at 79.48 (p = .0002) validating the model's 
performance beyond chance. Such results confirm the 
BSVM model ability at discerning SAP and CTRL individ-
uals. The model's robustness was further demonstrated in 
the receiver operating characteristic (ROC) curve analy-
sis, which showed an area under the curve (AUC) of 0.94. 
This high AUC underscores the model's definitive capac-
ity to separate the two groups distinctly and confidently. 
Upon examining the most significant regional contribu-
tors to this classification, it became evident that areas like 
the cerebellum, the orbito-frontal cortex, the amygdala, 
the temporal pole, the cingulate, and the putamen were 
pivotal. Their substantial influence corresponds with their 
established involvement in emotional processing and fear 
response mechanisms, reinforcing their significance in 
SAP. See Table 2 and Figures 2 and 3.

2.6  |  Macro-networks results

Our BSVM analysis across macro networks revealed 
varied performance in classifying SAP individuals from 
CTRL ones. Notably, only the default mode (DMN), the 
affective, the central executive, and the sensorimotor net-
works survived Bonferroni corrected threshold (p < .006 
threshold). The DMN showed the highest BA (BA: 80.49%, 
p-value:  .0002, AUC: 0.92), indicating its strong discrimi-
natory power, and overcoming even the whole brain re-
sults. The AN also demonstrated substantial classification 
capability (BA: 75.03%, p-value: .0002, AUC: 0.88). The 
CEN (BA: 72.12%, p-value: .0002, AUC: 0.88) and the sen-
sorimotor network (BA: 70.90%, p-value: .0002, AUC: 0.83) 
followed in performance, both yielding statistically signif-
icant results. The other networks such as the salience (BA: 
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61.77%, p-value: .0134, AUC: 0.70), visual (BA: 61.22%, 
p-value: .0148, AUC: 0.68), and reward networks (BA: 
52.19%, p-value: .2352, AUC = .67) displayed lower clas-
sification accuracies and did not survive the Bonferroni 
corrected threshold. See Table 3, and Figures 2 and 3. Of 
note, although the metrics were similar and good for all 
the significant networks, the precision of the CEN and of 
the Sensorimotor indicate lower reliability (performance 
around 50%) of these two networks. See also Table S1 for 
the BA of each fold in the cross-validation procedure.

3   |   DISCUSSION

This investigation of neurobiological distinctions between 
individuals with SAP and controls holds the promise to 
elucidate the neural underpinnings of this anxiety dis-
order. The primary objective of this investigation was to 
use a multivariate, whole-brain machine learning method 
(BSVM) to differentiate SAP from CTRL. This was done 
to extract a predictive model able to recognize new SAP 
cases from structural brain features. Additionally, the 
study aimed to assess the predictive capability of specific 
brain networks for SAP, challenging traditional neuro-
biological models of anxiety disorders and extending our 
comprehension of their complexity. Results showed that 
a whole brain circuit was able to correctly classify SAP 
individuals from controls above chance. Additionally, 
the DMN, the Affective, the Central Executive and the 
Sensorimotor were able to classify SAP individuals with 

different degrees of accuracy. In the next section we dis-
cuss our findings in more details.

3.1  |  The phobic network

Results for whole brain analyses showed a significant 
brain network able to correctly classify SAP from CTRL 
individuals. Key regions distinguishing SAP from CTRL 
individuals encompassed various cortical and subcorti-
cal brain regions such as the cerebellum, the temporal 
pole, the frontal cortex, temporal lobes, the amygdala 
and the thalamus. These regions are implicated in a 
wide range of functions, from emotional regulation and 
cognitive control to sensory integration and response to 
fear stimuli (Bechara et al., 1997; LeDoux, 2000; Olson 
et al., 2007; Schmahmann, 2019; Sherman, 2007; Squire 
et al., 2004). The cerebellum, often linked to motor con-
trol, has been implicated in emotional processing and 
fear conditioning (Schutter & van Honk, 2005). In SAP 
individuals this brain region might relate to the integra-
tion of sensory input and motor responses associated 
with phobic reactions. For what concerns the temporal 
pole and temporal lobes, their role in emotional pro-
cessing, social cognition and memory is largely known 
(Olson et  al.,  2007). These regions may contribute to 
the heightened emotional responses and memory re-
call of phobic stimuli in individuals with SAP. On the 
other side the frontal cortex, including the OFC and me-
dial frontal regions, is crucial for emotional regulation 

F I G U R E  1   Graphical representation of the main steps of the ML analyses. AAL, automated anatomical labelling atlas; CEN, central-
executive network; DMN, default mode network; GM, gray matter images; sMRI, structural magnetic resonance imaging; SN, salience 
network.

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14716 by alessandro grecucci - C

ochraneItalia , W
iley O

nline L
ibrary on [29/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fpsyp.14716&mode=


8 of 16  |      SCARANO et al.

and decision-making in the context of fear (Bechara 
et al., 1999; Milad & Rauch, 2007). The involvement of 
this region may reflect alterations in the cognitive con-
trol over emotional responses to feared stimuli, aligning 
with findings of decreased volumes in anxiety disorder 

patients (Shin & Liberzon,  2010). Additionally, the 
amygdala and the thalamus are also important emotion-
related processes’ hubs, with the amygdala's key role 
in processing fear-related stimuli (LeDoux,  2000) and 
the thalamus' function in relaying sensory and motor 

Whole brain results

ROI label Region name ROI weight (%)
ROI size 
(vox)

Vermis_3 Vermis 2.2408 522

Vermis_1_2 Vermis 2.1067 109

Cerebelum_3_L Left cerebellum 1.8075 314

Temporal_Pole_Mid_R Right middle temporal pole 1.5780 2014

Temporal_Pole_Sup_R Right superior temporal pole 1.5216 2284

Vermis_4_5 Vermis 1.5173 1175

Frontal_Mid_Orb_R Right middle orbito-frontal 
gyrus

1.4257 1503

Frontal_Mid_Orb_L Left middle orbito-frontal 
gyrus

1.3633 1396

Putamen_L Left putamen 1.3230 1963

Putamen_R Right putamen 1.3082 1824

Temporal_Inf_L Left inferior temporal gyrus 1.2349 4125

Temporal_Inf_R Right inferior temporal 
gyrus

1.2305 5574

Temporal_Pole_Sup_L Left superior temporal pole 1.1857 2785

Lingual_L Left lingual 1.1721 3873

Frontal_Inf_Orb_L Left inferior orbito-frontal 
gyrus

1.1655 2721

Amygdala_R Right amygdala 1.1380 392

Pallidum_R Right pallidum 1.1268 608

Cingulum_Post_L Left posterior cingulate 1.1121 720

Caudate_L Left caudate 1.0841 1939

Frontal_Inf_Orb_R Right inferior orbito-frontal 
gyrus

1.0821 2492

Vermis_8 Vermis 1.0769 528

Temporal_Mid_L Left middle temporal gyrus 1.0658 8786

Angular_L Left angular gyrus 1.0591 1873

Cerebelum_8_R Right cerebellum 1.0522 2566

Frontal_Sup_Orb_R Right superior orbito-frontal 
gyrus

1.0519 643

Thalamus_L Left thalamus 1.0402 2420

Precuneus_L Left precuneus 1.0361 5765

Vermis_9 Vermis 1.0186 274

Temporal_Pole_Mid_L Left middle temporal pole 1.0165 1579

Temporal_Sup_L Left superior temporal gyrus 1.0150 4430

Cerebelum_8_L Left cerebellum 1.0071 2524

Frontal_Sup_Medial_L Left superior medial frontal 
gyrus

1.0014 4905

Note: Please note that only the regions with more than 1% have been reported.

T A B L E  2   Table detailing the 
contributions of brain regions to 
the classification of SAP and CTRL 
individuals, listing ROIs, their weight in 
the classification model, and their size 
measured in voxels.
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signals to the cerebral cortex (Sherman, 2007). These re-
gions might underpin the heightened fear response and 
sensory processing of phobic stimuli in SAP individuals. 
The amygdala has been shown to be relevant for anxiety 
disorders in general (Grupe and Nitschke, 2013; Tovote 
et  al.,  2015), and indeed, some studies have reported 
differences in amygdala volumes in various anxiety 
disorders, suggesting a potential structural basis for en-
hanced emotional responsiveness (Etkin & Wager, 2007; 
Schienle et al., 2011; Shin & Liberzon, 2010). However, 
some studies on anxiety failed to report the amygdala. 

This may be due to problems in the experimental design 
such as small sample size (see Shin & Liberzon, 2010, for 
a discussion of discordant findings in anxiety disorders).

Lastly, the putamen in SAP individuals, which is related 
to motor regulation and learning (Grahn et al., 2008), sug-
gests a neurobiological basis for the avoidance behavior 
that characterize individuals with phobias. This aligns 
with the hypothesis that the putamen might be linked 
to heightened reactivity to threat cues or resistance to 
extinction, reflecting the reinforced avoidance behav-
ior towards phobic stimuli (LeDoux,  2000; Packard & 

F I G U R E  2   Brain plots, histogram plots and ROC curves of the whole brain, the DMN, the AN and the CEN. AN, affective network; 
CEN, central-executive network; DMN, default mode network; ROC, receiver operating characteristic.
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Goodman,  2013). Overall these findings align with pre-
vious research indicating structural brain differences in 
anxiety disorders (Hilbert et al., 2014; Strawn et al., 2015).

These findings challenge traditional models by sug-
gesting that phobias may be better explained by focusing 
on frontal areas’ control rather than solely on the deactiva-
tion of limbic areas. Additionally, the larger left putamen 
GMV, specific to phobias, underscores the role of complex 
motor regulation and learning in phobic responses, sug-
gesting neurodevelopmental vulnerabilities or enhanced 
reactivity to threat cues (Rauch et al., 2003).

3.2  |  Macro-network contributions

In our study we also investigating the possibility to classify 
SAP individuals via macro networks. Even if our study only 
used structural data, several previous studies have shown 
that resting state macro-networks are reflected also at a 
structural level (Baggio, Grecucci, Crivello, et  al.,  2023; 
Baggio, Grecucci, Meconi, et al., 2023; Grecucci et al., 2022; 
Jornkokgoud et al., 2024; Luo et al., 2020; Vanasse et al., 
2021). Upon applying a Bonferroni correction for multi-
ple comparisons, only four networks demonstrated robust 

F I G U R E  3   Brain plots, histogram plots and ROC curves of the sensorimotor network, the SN the visual network and the reward 
network. ROC, receiver operating characteristic; SN, salience network.
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classification capabilities: the DMN, the AN, and partially 
the CEN, and the Sensorimotor network. Of note these 
networks have regions partially included in the whole 
brain analyses. This may explain the fact that both whole 
brain and these macro networks are able to correctly clas-
sify SAP individuals.

The DMN emerged as the most potent discriminative 
network even when compared to the whole brain anal-
ysis. Following the DMN, the AN displayed significant 
classification performance, highlighting the relevance of 
its included brain regions in the neurobiological under-
pinnings of SAP. The Central Executive and Sensorimotor 
networks also showed noteworthy classification accura-
cies. The salience, visual, and reward networks did not 
meet the stringent Bonferroni correction criteria and, 
thus, were not considered statistically significant in our 
analyses. Regions belonging to the DMN are known for 
mediating self-referential thoughts and mind-wandering 
at a functional level, processes often dysregulated in psy-
chiatric conditions (Buckner et  al.,  2008; Langerbeck 
et al., 2023; Raichle et al., 2001), explaining the possible 
potential cognitive and emotional disruptions characteris-
tic of SAP. The DMN's pronounced ability to discriminate 
between SAP and CTRL individuals could thus stem from 
its critical role in processing internal states at a functional 
level, which may be perturbed by the heightened focus on 
phobic stimuli or maladaptive rumination associated with 
fear in SAP individuals. This underscores the deep cogni-
tive undercurrents of anxiety disorders, pointing towards 
a complex interplay of internal cognitive and emotional 
processes.

The AN marks a significant stride in understanding 
the emotional dimensions of SAP. Comprising regions in-
tegral to emotional processing—such as the amygdala, the 
insula, and the OFC—this network elucidates the possible 
heightened emotional reactivity and dysregulation at the 
heart of SAP. The involvement of the amygdala in fear and 

threat detection, coupled with the insula's role in integrat-
ing bodily sensations with emotional states, paints a de-
tailed picture of the affective disturbances in SAP (Paulus 
& Stein, 2006; Phelps et al., 2004). The OFC's contribution 
to modulating these responses highlights a disruption in 
the top-down control mechanisms essential for emotional 
regulation in people living with phobia. This network's 
prominence in the classification process reinforces the 
centrality of emotional dysregulation in SAP and aligns 
with contemporary understandings of the brain's role in 
emotion regulation and the expression of phobias (Paulus 
& Stein, 2006; Phelps et al., 2004).

Although with a lower precision value, we also found 
evidence for the CEN and the Sensorimotor. The CEN, 
is associated with high-level cognitive functions, includ-
ing working memory and attentional control (Seeley 
et al., 2007). Its significant classification performance may 
reflect the cognitive-attentive aspects of anxiety disorders, 
where dysfunctions in attentional control and heightened 
vigilance towards threat-related stimuli are one of the 
main features (Etkin & Wager, 2007).

The sensorimotor network although not included in 
our hypotheses, was significant but with a low precision 
value. The Sensorimotor can be easily understood for its 
involvement in the physical manifestations of anxiety, 
such as heightened startle response and avoidance behav-
ior seen in SAP individuals. This network's role in the clas-
sification underscores the integration of sensory inputs 
with motor outputs in response to phobic stimuli, possibly 
indicating a heightened readiness for fight-or-flight re-
sponses in SAP subjects (LeDoux, 2000).

Other networks, such as the salience, visual, and 
reward networks, displayed lower classification ac-
curacies and did not survive the Bonferroni corrected 
threshold. This outcome may indicate a lack of associa-
tion of some macro-networks with SAP in line with our 
initial hypotheses. Although, the Reward network and 

T A B L E  3   Table ranking the brain networks by their effectiveness in classifying SAP and CTRL individuals, presenting BA, F1-score, 
sensitivity (recall), specificity, precision, and p-values for each network.

Model
Balanced 
accuracy F1-score Sensitivity Specificity Precision

AUC (area under 
the curve)

p-
Values

Default Mode Network 80.49% 0.7213 0.7586 0.8925 0.6875 0.92 .0002

Whole Brain 79.48% 0.7119 0.7778 0.8842 0.6562 0.94 .0002

Affective Network 75.03% 0.6269 0.6000 0.8736 0.6562 0.88 .0002

Central Executive Network 72.12% 0.5965 0.6800 0.8454 0.5312 0.88 .0002

Sensorimotor Network 70.90% 0.5714 0.5806 0.8462 0.5625 0.83 .0002

Salience Network 61.77% 0.4412 0.4167 0.8023 0.4688 0.70 .0134

Visual Network 61.22% 0.4348 0.4054 0.8000 0.4688 0.68 .0148

Reward Network 52.19% 0.3143 0.2895 0.7500 0.3438 0.67 .2352

Note: Bonferroni-corrected threshold (p < .006 threshold) was considered.
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the Salience may have some implications with anxiety 
disorders, they may not be so relevant when consider-
ing SAP. Another possibility is that due to the relatively 
small sample size used in this paper, their role could not 
be clearly estimated.

4   |   CONCLUSIONS AND 
LIMITATIONS

In our study, we were interested in developing a classi-
fication model of SAP individuals versus controls based 
on the structural MRI features. The whole-brain analysis 
revealed structural differences in the cerebellum, tem-
poral pole, frontal cortex, temporal lobes, amygdala, and 
thalamus, highlighting the multifaceted nature of SAP. 
The whole-brain analysis’ identification of structural dif-
ferences in areas traditionally associated with fear and 
emotion regulation adds a structural dimension to the 
functional impairments observed in the macro networks. 
This comprehensive view suggests that SAP is character-
ized by network-specific dysfunctions and anatomical 
variations, offering a nuanced understanding of the dis-
order that transcends the limitations of focusing solely on 
either functional connectivity or structural abnormalities. 
These findings, complemented by the significant roles of 
the DMN, affective, CEN, and sensorimotor networks, 
suggest that SAP involves both discrete neural circuitries 
and widespread brain areas, implicating a broad spectrum 
of emotional, cognitive, and sensorimotor processes. As 
such, the present study provides the first attempt at cre-
ating a classification ML model that can distinguish SAP 
and CTRL individuals based on the structural gray matter 
features.

Despite the merits, this study does not come with-
out limitations. One limitation was utilizing only gray 
matter features for the model creation, as this may ex-
clude the relevance of white matter and functional 
features as potential biomarkers for classifying SAP 
individuals. Moreover, the direction of the gray matter 
was not considered in this study. Future studies, with 
other methods, are necessary to assess this aspect. A 
second limitation is represented by the relatively small 
SAP sample size. Although comparable or larger than 
some of the previous studies, a bigger SAP sample size 
may have been useful to create a more generalizable 
model. Future studies may want to expand the sample 
size. This will guarantee a stronger generalizability of 
the findings. We found that although with different val-
ues of accuracy, four out of seven networks correctly 
classified SAP versus CTRLs. This may indicate a lack of 
precise localization of SAP brain anomalies. However, 
an alternative hypothesis is that SAP involves a widely 

distributed network that overlaps with different macro-
networks. In support of this, previous studies showed 
that a triple network including the DMN, the CEN, and 
the SN, are all compromised in many psychiatric disor-
ders (Doll et al., 2013; Langerbeck et al., 2023). This is 
also in line with a more widely distributed conception 
of brain abnormalities in psychiatric disorders. So, it 
does not come with surprise that even for SAP, different 
networks are involved. Of note the whole brain analy-
ses returned many brain regions included in the other 
significant networks. Future studies may want to fur-
ther explore this point. Of note, we could not control for 
socioeconomic status and other relevant demographic 
variables. Future studies may want to better control for 
these variables. Another limitation may be the fact that 
in this study we used only structural data. Future stud-
ies using resting state functional MRI data are needed 
to replicate our findings on the macro-networks contri-
butions we found. Last but not least, the estimation of 
each region contribution (weights in the model) to the 
decision function of each model should be taken with 
cautions. Variations in the dataset (as induced by the 
cross-validation scheme) may lead to slightly different 
regional contribution estimation. Therefore, care should 
be taken when considering the regions found (Schrouff 
et al., 2013).

To conclude, the findings from our study may pave the 
way for future research directions and potential thera-
peutic strategies that aim to modulate the implicated net-
works and address the identified structural differences. By 
offering a more effective treatment paradigm for SAP and 
related anxiety disorders, this study not only enriches the 
existing body of knowledge but also opens new avenues 
for personalized medicine approaches that target the intri-
cate neural networks underpinning specific phobias.
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