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Abstract

Integrating Terrestrial and Non-Terrestrial Networks (NTNs) within Beyond-5G (B5G) and
future 6G ecosystems represents a transformative advancement in achieving ubiquitous,
resilient, and scalable communication services. NTNs, including Low Earth Orbit (LEO)
satellites, Unmanned Aerial Vehicles (UAVs), and High Altitude Platform Systems (HAPS),
extend traditional terrestrial networks by providing continuous connectivity in remote, under-
served, and connection-critical scenarios such as disaster-hit regions and rural areas. This
thesis deals with an end-to-end cloud-native framework that leverages cutting-edge tech-
nologies, including Multi-Access Edge Computing (MEC), Software-Defined Networking
(SDN), Network Function Virtualization (NFV), blockchain, and advanced AI/ML models, to
enhance service availability, security, and Quality of Service (QoS) in 3D NTN environments.

The research first explores the deployment of disaggregated Next-Generation Radio Ac-
cess Networks (NGRANs) across terrestrial and non-terrestrial domains using a Kubernetes-
based architecture. A Graph Neural Network (GNN) model is developed to monitor and
manage these networks, detecting link failures and optimizing traffic routing paths between
terrestrial and satellite components. The GNN model achieves an 85% accuracy in link failure
detection and significantly reduces end-to-end delays in NTN deployments, highlighting the
potential of AI-driven network management in enhancing overall network resilience.

To address the challenge of dynamic resource management in NTNs, this thesis in-
vestigates the implementation of functional splits, such as F1 and E1 interfaces, between
terrestrial control units (gNB-CU) and satellite-based distributed units (gNB-DU). The study
employs Long Short-Term Memory (LSTM) neural networks to predict resource utilization,
specifically CPU, memory, and bandwidth of satellite payloads. These predictive models
enable proactive monitoring and resource allocation decisions, ensuring efficient use of
limited computational resources and maintaining high levels of network performance.

Security remains a critical concern in NTNs due to decentralized and open 5G satellite
communications. A blockchain-based authentication framework is proposed to mitigate these
risks, enhancing the security of data exchanges and remote firmware updates in LEO satellite
constellations. Blockchain technology provides a decentralized, transparent, and immutable
security framework, improving authentication efficiency and protecting against unauthorized
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access, though with trade-offs in network performance, such as increased latency and reduced
throughput. This approach makes the hybrid B5G NTN network secure, reinforcing the
integrity and confidentiality of communication channels, which is essential for emerging
services and applications.

Furthermore, this thesis comprehensively evaluates MEC-based experimental testbeds
that demonstrate service resiliency in NTNs during terrestrial network outages. The MEC de-
ployments allow seamless transitions to satellite access networks, ensuring service continuity
and improving QoS. These testbeds showcase the capability of cloud-native technologies in
maintaining service availability, highlighting their critical role in resilient NTN networks.

The findings of this thesis demonstrate that integrating cloud-native architectures, blockchain-
based security mechanisms, and advanced AI/ML models significantly enhances the re-
silience, security, and resource efficiency of NTNs. These innovations pave the way for
robust, adaptive, and secure communication systems, supporting the seamless deployment
of critical B5G and 6G applications across diverse and challenging environments. This
research provides valuable insights into designing and implementing resilient NTNs, set-
ting the foundation for future advancements in global connectivity and intelligent network
management.
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Chapter 1

Introduction to 5G Non-Terrestrial
Networks (5G-NTN)

1.1 Introduction

The continuous demand for enhanced connectivity, increased data rates, and extended cover-
age areas have marked the evolution of mobile communication systems. While terrestrial 5G
networks have made significant strides in delivering ultra-reliable, low-latency communica-
tion, their geographic limitations leave remote and underserved regions without access to
advanced connectivity solutions. To address these challenges, 5G Non-Terrestrial Networks
(5G-NTNs) have emerged as a transformative extension of traditional terrestrial networks,
integrating satellite and airborne platforms into the broader 5G ecosystem.

5G-NTNs aim to provide ubiquitous connectivity, bridging the gap between urban cen-
ters and remote areas, oceans, and airspaces where terrestrial infrastructure is sparse or
nonexistent. This integration extends the reach of 5G. It enhances the overall resilience and
flexibility of the network by leveraging the unique capabilities of Low Earth Orbit (LEO)
satellites, High Altitude Platform Stations (HAPS), and other airborne technologies. These
non-terrestrial platforms operate in regenerative modes, carrying key network functions such
as the distributed unit (gNB-DU) and the user plane of the central unit (gNB-CUUP), thus
enabling advanced architectures and communication strategies.

Recent advancements in satellite technology, miniaturization, and launch cost reduction
have made LEO satellites a viable component of 5G-NTNs. These satellites offer lower
latency than traditional geostationary satellites, enabling them to support latency-sensitive
applications such as real-time communication, autonomous vehicles, and Industry 4.0 pro-
cesses. The integration of 5G-NTNs is not merely a technical enhancement but a pivotal step
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toward realizing a truly connected world, providing seamless coverage and improved quality
of service across diverse environments.

In the scope of 5G-NTNs, resource management and optimization are critical challenges
due to these networks’ dynamic and heterogeneous nature. Deploying key network compo-
nents as satellite payloads introduces unique bandwidth, latency, and resource utilization
constraints. To address these challenges, this research explores advanced predictive ap-
proaches using machine learning techniques such as Long Short-Term Memory (LSTM)
neural networks to forecast the resource consumption of gNB-DU and gNB-CUUP com-
ponents deployed in non-terrestrial platforms. By accurately predicting CPU, memory,
and bandwidth usage, the proposed approach aims to enhance network resilience through
proactive monitoring and resource allocation decisions.

The study evaluates two distinct configurations for disaggregated RAN architectures
within 5G-NTNs: one utilizing a split between gNB-CU and gNB-DU over the F1 interface
and another incorporating both F1 and E1 splits, with gNB-CUUP deployed as a satellite pay-
load. The findings demonstrate the effectiveness of the LSTM-based approach in predicting
resource utilization, highlighting the advantages of combined F1 and E1 split configurations
for improved network efficiency and resilience. This novel architecture, characterized by
its flexibility and enhanced resource allocation, sets the groundwork for future 5G-NTNs
that are robust, scalable, and capable of supporting the ever-growing demands of modern
communication networks.

The integration of blockchain technology further enhances the security and reliability of
5G-NTNs by securing communication across satellite components. This approach facilitates
seamless and secure traffic flow between terrestrial and non-terrestrial segments, supporting
mission-critical applications in various sectors, including intelligent manufacturing, IoT, and
beyond.

In conclusion, 5G-NTNs represent a critical evolution in the global communications
landscape, promising to extend the benefits of 5G to all corners of the world. The integration
of advanced machine learning models for resource prediction and blockchain for security
will play a pivotal role in realizing the full potential of these networks, ensuring that they are
efficient, resilient, secure, and scalable for future applications.
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1.2 Background and Motivation

1.2.1 Overview of 5G and Non-Terrestrial Networks

The evolution of 5G networks and advancements in aerial and space communication tech-
nologies have introduced unprecedented opportunities for ubiquitous connectivity, higher
capacity, and broader coverage. With its promising capabilities, 5G has the potential to
support a wide range of applications across various sectors. This advancement has led
to new network architectures incorporating NTN to provide fully automated ubiquitous
service. These 3D NTNs offer substantial coverage, capacity, and flexibility advantages
over traditional terrestrial networks. These networks encompass diverse communication
platforms, including satellites, drones, and deep-sea sensors, enabling communication and
data exchange in remote or challenging environments [21], [25].

Integrating NTNs with terrestrial 5G networks supports various applications across
diverse sectors, such as autonomous vehicles, remote healthcare, disaster response, and the
Internet of Things (IoT). NTNs provide essential links that ensure continuous data exchange
and connectivity even when terrestrial networks are compromised [47]. The inclusion of
satellites as global interconnection nodes allows NTNs to function as critical infrastructures
in 5G and beyond, collecting data from areas with limited or disrupted connectivity [31, 82].
This capability is crucial for achieving the vision of ubiquitous, high-speed communication,
a foundational goal of 5G and future 6G networks.

NTNs comprise various communication platforms, including regenerative satellites, trans-
parent satellite access systems, and hybrid configurations seamlessly integrating terrestrial
and non-terrestrial components [102, 101]. Regenerative satellites carry network functions,
such as gNB-CU and gNB-DU, as payloads, enabling end-to-end connectivity and service
continuity even when terrestrial infrastructure fails. On the other hand, transparent satellites
act as relays between User Equipment (UE) and ground stations, facilitating communication
without processing the signal onboard.

LEO satellites mainly play a transformative role in NTNs. Unlike traditional Geosta-
tionary Earth Orbit (GEO) satellites, LEO satellites orbit closer to the Earth, significantly
reducing latency and enhancing data throughput. Companies like SpaceX’s Starlink and
OneWeb are leading this revolution by deploying dense constellations of LEO satellites to
provide global high-speed Internet access [11]. These constellations are designed to offer
resilient connectivity that supports low-latency, high-bandwidth applications, making them a
cornerstone of modern NTNs.
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1.3 Cloud-Native Technologies for 5G-NTN Networks

Cloud-native technologies are increasingly central to the deployment and management of
5G Non-Terrestrial Networks (NTNs), which include Low Earth Orbit (LEO) satellites,
Unmanned Aerial Vehicles (UAVs), and High Altitude Platform Systems (HAPS). These
technologies facilitate the design of scalable, flexible, and resilient network architectures
capable of supporting the complex, dynamic, and distributed nature of NTNs. By leveraging
principles such as containerization, microservices, orchestration, and virtualization, cloud-
native technologies enhance the efficiency and adaptability of 5G-NTNs, enabling them to
meet the stringent demands of modern and future communication networks.

Cloud-native technologies are pivotal for developing and deploying 5G Non-Terrestrial
Networks (NTN), which integrate satellite and aerial systems with traditional terrestrial
networks. This integration aims to enhance connectivity and service delivery across diverse
environments, particularly in areas with limited or non-existent terrestrial infrastructure.

1.3.1 Overview of Cloud-Native Technologies

Cloud-native architecture utilizes microservices, containers, and orchestration tools like
Kubernetes to build scalable, resilient, and easily deployable applications across cloud
environments. This methodology allows for rapid development and deployment of new
services, essential for meeting the dynamic demands of 5G networks. The cloud-native 5G
core, designed from the ground up for cloud environments, facilitates improved operational
efficiency and faster time-to-market for innovative services.

Key Components of Cloud-Native Technologies:
Containerization: Containerization, primarily enabled by platforms like Docker, pack-

ages network functions and applications into lightweight, portable units that can run consis-
tently across different environments. For NTNs, containerization ensures network services
can be deployed quickly and efficiently on various platforms, including satellite payloads
and edge computing nodes, without extensive reconfiguration. This flexibility is crucial in
NTNs, where computational resources are often limited and must be utilized optimally.

Microservices Architecture: The microservices approach decomposes traditional mono-
lithic applications into smaller, independent services that can be developed, deployed, and
scaled individually. In 5G-NTNs, this modular design allows specific network functions,
such as traffic management or security, to be updated or scaled without disrupting the entire
network. This adaptability is essential in dynamic NTN environments, where rapid changes
in traffic patterns or network conditions require immediate responses.
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Orchestration with Kubernetes: Kubernetes is the leading orchestration platform for
managing containerized applications at scale. In 5G-NTNs, Kubernetes automates network
functions’ deployment, scaling, and management across terrestrial and non-terrestrial nodes,
ensuring optimal performance and resource allocation. Kubernetes supports self-healing
capabilities, automatically detecting and replacing failed services, which enhances network
resilience and reliability, especially in NTNs where maintaining service continuity is critical.

Network Function Virtualization (NFV): NFV plays a pivotal role in the cloud-native
architecture of 5G-NTNs by virtualizing network functions traditionally implemented in
dedicated hardware. This virtualization allows network functions like gateways, firewalls,
and load balancers to run on generic hardware across the NTN infrastructure. NFV enhances
the flexibility and scalability of NTNs, allowing network operators to deploy and manage
services dynamically in response to changing demands.

Multi-Access Edge Computing (MEC): MEC brings cloud computing capabilities
closer to end-users by deploying compute resources at the network edge, such as at satellite
gateways or terrestrial base stations. In 5G-NTNs, MEC reduces latency by processing data
locally, minimizing the need for long-distance transmissions to centralized data centers. This
proximity is particularly beneficial for time-sensitive applications, such as remote monitoring,
autonomous vehicle coordination, and emergency response, where real-time data processing
is essential.

1.3.2 Importance and Challenges of Cloud-Native in 5G-NTN

a) Flexibility and Scalability: Cloud-native architectures enable communication service
providers (CSPs) to scale services efficiently, adapting quickly to changing market
demands and user needs. This is particularly important in NTN scenarios where
network conditions can vary significantly due to geographical and environmental
factors.

b) Resilience and Self-Healing: Cloud-native orchestration tools like Kubernetes en-
hance the resilience of NTNs by providing self-healing capabilities. In the event of
a network failure, such as a disrupted satellite link or malfunctioning network func-
tion, Kubernetes can automatically redeploy the affected services on alternative nodes,
maintaining service continuity and minimizing downtime.

c) Resource Efficiency: Cloud-native platforms’ dynamic resource allocation capabilities
allow 5G-NTNs to optimize limited computational resources on satellite payloads and
edge nodes. By virtualizing and orchestrating network functions, NTNs can adapt to
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real-time conditions, ensuring that resources are used efficiently and effectively across
the entire network.

d) Improved Network Management: Cloud-native technologies facilitate centralized
control and management of NTNs through tools like SDN controllers, which can
dynamically adjust traffic flows, reconfigure network paths, and optimize performance.
This centralized management capability is precious in NTNs, where complex interac-
tions between terrestrial and non-terrestrial components require continuous monitoring
and adjustment.

e) Enhanced Security and Isolation: Containerization and microservices provide en-
hanced security by isolating individual network functions, reducing the risk of systemic
failures from localized threats. This isolation is crucial in NTNs, where the distributed
nature of the network makes it vulnerable to various cyber threats. Cloud-native secu-
rity tools can also be integrated into the orchestration process, providing automated
monitoring and rapid response to potential security incidents.

f) Enhanced Service Delivery: By leveraging cloud-native technologies, CSPs can
implement network slicing, allowing them to customize network performance for
specific applications, such as IoT or emergency services, critical in NTN contexts.

g) Integration of Diverse Networks: The combination of cloud-native technologies with
NTN facilitates the seamless integration of satellite and aerial networks with terrestrial
systems. This integration supports a unified service delivery model to enhance global
connectivity and service availability, especially in remote or underserved areas.

h) Automation and Efficiency: Cloud-native approaches promote automation in network
management, reducing operational costs and improving service reliability. This is
crucial for managing the complexities introduced by NTNs, which must simultaneously
handle various connectivity and service requirements.

Cloud-native technologies are essential for the evolution of 5G NTN networks. They
enable greater flexibility, scalability, and efficiency in service delivery while addressing the
unique challenges posed by integrating non-terrestrial and terrestrial systems.

While cloud-native technologies offer numerous advantages for 5G-NTNs, they also
introduce challenges that must be addressed. The complexity of managing highly distributed,
dynamic environments requires advanced orchestration and automation tools that can handle
NTNs’ unique requirements. Additionally, the integration of AI/ML models to enhance
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orchestration decisions, optimize resource utilization, and ensure efficient management of
network functions is an area of ongoing research.

Future directions in cloud-native technologies for NTNs include the development of
lightweight containerization platforms specifically optimized for resource-constrained envi-
ronments, such as satellite payloads. Additionally, the integration of edge intelligence—embedding
AI capabilities directly at the edge nodes—can further enhance the adaptability and resilience
of NTNs, enabling real-time decision-making and proactive network management.

In conclusion, cloud-native technologies are foundational to the evolution of 5G-NTNs,
providing the scalability, flexibility, and resilience needed to support diverse and complex
communication services. By leveraging containerization, microservices, orchestration, and
edge computing, NTNs can meet the demands of modern and future networks, offering
reliable and efficient connectivity in even the most challenging environments.

1.4 5G-NTN Integration Networks and Standards

An NTN can be deployed in various configurations depending on the type of platform used,
as shown in Table 1.1. These platforms are broadly categorized into two main groups:
spaceborne and airborne. Spaceborne platforms are usually classified based on three key
factors: their altitude, the size of their beam footprint, and their orbital characteristics.

Table 1.1 Types of NTN platforms [5]

Platforms Altitude Range Orbit Beam Footprint Size
GEO satellite 35786 km Fixed position in terms 200-3500 km

of elevation/azimuth
MEO satellite 7000-25000 km Circular around Earth 100-1000 km
LEO satellite 300-1500 km Circular around Earth 100-1000 km
UAS platform 8-50 km Fixed position in terms 2-200 km

of elevation/azimuth

Spaceborne platforms can be differentiated as:
Geostationary Earth Orbiting (GEO): has a circular and equatorial orbit around Earth

at 35786 km altitude, and the orbital period is equal to the Earth’s rotation period. The GEO
appears fixed in the sky to the ground observers. GEO beam footprint size ranges from 200
to 3500 km.

Medium Earth Orbiting (MEO): has a circular orbit around Earth, at an altitude varying
from 7000 to 25000 km. MEO beam footprint size ranges from 100 to 1000 km.
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Low Earth Orbiting (LEO): has a circular orbit around Earth, at an altitude between
300 to 1500 km. LEO beam footprint size ranges from 100 to 1000 km.

LEO and MEO satellites, also known as non-GEO (NGSO) satellites, orbit the Earth in
less time than the Earth’s rotation period, ranging from 1.5 to 10 hours. The airborne category
includes Unmanned Aircraft Systems (UAS), typically operating at altitudes between 8 and
50 km, with High Altitude Platform Systems (HAPS) positioned around 20 km. Like
GEO satellites, UAS can maintain a fixed position in the sky relative to a specific ground
point, and their beam footprint sizes range from 5 to 200 km. Both spaceborne and airborne
platforms can be configured with either transparent or regenerative payloads, depending on the
functions carried onboard. The platform handles only radio frequency filtering, conversion,
and amplification in a transparent payload configuration. In contrast, the regenerative payload
configuration involves implementing all gNB functions directly onboard the satellite or UAS
platform.

In addition to space/airborne platforms, the NTN access is featured by the following
components:

• NTN terminal refers to either the 3GPP User Equipment (UE) or a specific satellite
terminal. Tiny aperture terminals operate in the radio frequency of the Ka-band (i.e.,
30 GHz in the uplink and 20 GHz in the downlink). In contrast, handheld terminals
operate in the radio frequency of S-band (i.e., 2 GHz).

• NTN gateway is a logical node connecting the NTN platform with the 5G core
network.

• Service link is the radio link between the NTN terminal and the NTN platform.

• Feeder link is the radio link between the NTN gateway and the NTN platform.

1.4.1 Non-terrestrial Networks in 5G Systems

Until a couple of decades ago, the satellite and terrestrial networks were considered to be
independent and were developing separately from each other. These two networks are viewed
differently from the current-generation wireless technology (i.e., 5G) onward. The 3GPP
standardization has already completed the first 5G NR specifications and progressed on
solutions to support the NTN in 5G NR systems [75]. In addition, several projects like
SAT5G [77], as part of the H2020 5G PPP initiative [102], targeted to propose cost-effective
solutions to provide 5G connectivity everywhere and to create new opportunities in the 5G
world market.
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Service continuity is one of the key requirements to be ensured when the 5G NTN
NG-RAN is integrated with the 5G NR terrestrial RAN or with another 5G NTN NG-RAN
[5]. The requirement of service continuity between the two NG-RANs means that the
specification support should enable a seamless handover between the systems without a
service interruption and a fluent IDLE mode UE operation for optimal network selection.

The NTN segment, when combined with the terrestrial network, plays an essential role in
achieving global coverage owing to boosting capacity (as a result of high-frequency reuse
and precoding techniques) and ensuring service continuity even when traveling. In [51],
architectural and technical issues have been discussed for 5G systems, including the NTN,
whereas in [129], the effect of NTN integration into the mobile systems has been assessed
through an experimental comparison in terms of the Key Performance Indicators (KPIs).

Integrating terrestrial and non-terrestrial networks is thus considered an attractive solution
for 5G technology development. In the past couple of years, multiple research works have
investigated a combination of two radio access networks. The authors in [78] were the first
to provide a review on Space-Air-Ground Integrated Networks (SAGIN), where the system
performance has been improved by exploiting deep learning methods for traffic balancing
purposes [64].

In [26], a new perspective on integrated systems has been presented by discussing
Software Defined Space-Terrestrial Integrated Networks based on Software Defined Net-
working (SDN) [102], which separates the control plane from the data plane. In [47], the
integration of non-terrestrial and terrestrial networks has been simplified by introducing a
new architecture that combines SDN and Network Function Virtualization (NFV), which
implements specific hardware functionalities via software.

Security is one of the essential concerns in NTN communications. Several works in the
literature tackled this issue in integrated NTN-terrestrial networks, wherein cognitive radio is
introduced to improve spectrum utilization when the NTN and the cellular network share the
same bandwidth. The authors in [71] investigated the physical layer security and proposed
a stochastic beamforming approach. Multi-antenna terrestrial base stations were employed
as a source of green interference to enhance the security of NTN communications in [14],
[72], and [123].

In [37], a cooperative secure transmission beamforming scheme has been designed to
assess the communications security in NTN-terrestrial systems and the secrecy rate has
been maximized under the power and transmission quality constraints. In [22], the secrecy
performance has been analyzed while considering the connectivity in a multiantenna NTN
with terrestrial recipients (i.e., downlink direction) via multiple cooperative relays and in the
presence of several eavesdroppers. In [13], different adaptive transmission schemes have



10 Introduction to 5G Non-Terrestrial Networks (5G-NTN)

been addressed to analytically obtain the expression for the achievable channel capacity in
hybrid NTN-terrestrial relay networks.

A joint opportunistic relay selection scheme has been proposed in [52] to enhance the
system’s protection against attacks. Three typical attack approaches have been described in
[56] to illustrate possible threats to NTN security. Unlike previous works where cooperation
has been adopted for cognitive NTN-terrestrial networks, in [29], a noncooperative game
with limited information exchange was constructed to address the power control problem in
the case of spectrum sharing between the NTN and the terrestrial network.

In [16], a standalone GEO satellite NG-RAN has been addressed to deliver multi-layer
video services in the forthcoming 5G NR deployments by following a novel RRM strategy
for efficient resource allocation that provides several multimedia video flows. Further, in
[48], path-based network coding has been proposed for achieving better reliability and
time-efficient distribution of traffic in NTN-terrestrial mobile systems. A standalone LEO
NG-RAN has been considered for 5G mMTC services in [67], where an uplink scheduling
technique has been outlined to make the differential Doppler shift tolerable by the MTC
devices.

However, integrating LEO satellites with the 5G technology is not straightforward because
of the challenging LEO features, such as the Doppler effect, high-speed mobility around Earth,
and a smaller coverage area than the GEO satellite. These factors lead to the construction of
LEO constellations for providing global coverage. In [34], an enabling network architecture
with dense LEO constellations has been designed to offer enhanced reliability and flexibility
in integrated NTN-terrestrial systems.

In a constellation, LEOs are interconnected via ISL, and owing to the onboard processing
capabilities of a regenerative payload-based LEO, data transmissions may occur directly
between the LEO satellites. In [88], analytical models have been coined for determining
the probabilities of call blocking and handover failure in a constellation of regenerative
payload-based LEOs. In the case of transparent payload-based LEO, data traffic must be
routed to the terrestrial network, thus entailing vertical handover situations.

To ensure connection transfers without harmful interruptions over the heterogeneous
wireless access technologies, seamless handover becomes a challenging matter. In [38], a
strategy based on positioning has been considered to minimize the delay and to manage the
inter-satellite handover in satellite communications (when a handover occurs, the nearest
satellite is selected as the access satellite), whereas in [118] stochastic and deterministic opti-
mization problems have been constructed to support handover in heterogeneous aeronautical
networks with an SDN controller.
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In addition to SDN and NFV [25, 74, 42], 5G supports Network Slicing [93] and Edge
Computing (EC) [40]. The former ensures better scalability, higher availability, and overall
resource optimization by providing specific network capabilities and characteristics with a
logical network customized based on service requirements. The latter shifts computing and
storage resources closer to the user, thus supporting lower latency. These two concepts were
also adopted for 5G satellite networks in [124], [106], and [15].

In [124], 5GsatEC has been proposed as a 5G satellite edge computing framework,
wherein a hardware platform optimizes resources (i.e., computing, storage, network) for
different services and users. In contrast, a software framework is built on a 5G satellite
edge computing service architecture based on microservices (i.e., system, basic, and user
services). In [106], edge computing has been introduced to support space-based cloud-fog
satellite network slices. In contrast, edge computing nodes have been added to the computing
architecture of a satellite network to reduce the delay in different slices. In [15], the authors
studied the integration of CubeSats into multi-tenant scenarios by designing an SDN/NFV
IoT platform based on EC that includes CubeSat constellations.

In summary, 5G technology envisions NTN’s involvement as a means to extend terrestrial
coverage and help provision advanced services whenever and wherever the traditional cellular
network is overloaded or unavailable.

1.4.2 5G NTN Use Cases

Currently, 5G networks are being widely deployed, and the seamless integration of terres-
trial networks (TN) with non-terrestrial network (NTN) components—including satellite
and High-Altitude Platform Station (HAPS)-based networks—will enable truly ubiquitous
global coverage. This integration ensures continuous service worldwide, enhancing service
reliability and availability. NTNs are anticipated to play a crucial role in 5G and beyond
systems by supporting a variety of verticals, such as transport, eHealth, energy, automotive,
and public safety, among others 1.1.

5G NTN use cases can be categorized into three main areas: service continuity, which
provides NTN access in regions where terrestrial networks are not feasible; service ubiq-
uity, which improves availability during disasters or temporary outages affecting terrestrial
networks; and service scalability, which helps to offload traffic from terrestrial networks,
especially during peak hours [3].

In the context of 5G and beyond, NTNs support all three usage scenarios defined by the
International Telecommunication Union (ITU) [60]: Enhanced Mobile Broadband (eMBB),
Massive Machine Type Communications (mMTC), and Ultra-Reliable and Low Latency
Communications (URLLC). However, providing URLLC services in NTNs is particularly
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challenging due to satellite propagation delays and stringent reliability, availability, and
latency requirements. Consequently, NTNs primarily focus on eMBB and mMTC as the
main enablers of 5G services, which guide the definition of use cases [4].

Fig. 1.1 5G NTN Use cases [102]

For Enhanced Mobile Broadband (eMBB) services, Non-Terrestrial Networks (NTNs)
aim to provide broadband connectivity in underserved and unserved areas and on moving
platforms such as vessels and aircraft. NTNs enhance network resilience by integrating
terrestrial and non-terrestrial systems, ensuring continuous service even in challenging
environments. Additionally, NTNs can offload terrestrial networks by providing a broadcast
channel to deliver broadcast/multicast content or public safety messages to handheld or
vehicle-mounted User Equipment (UEs) at home and on moving platforms.

In the context of Massive Machine Type Communications (mMTC), NTNs support IoT
services across both wide and local areas. NTNs facilitate connectivity between IoT devices
and the network platform for wide-area IoT services. This ensures service continuity via
satellites and terrestrial gNBs, particularly for telematics applications in the automotive, road
transport, energy, and agriculture sectors. For local area IoT services, NTNs connect the
mobile core network to gNBs that serve IoT devices, efficiently gathering data from sensor
groups deployed within the coverage of one or more cells.

NTNs are critical to 5G New Radio (NR) systems as they provide significant advantages
in urban and rural areas by enhancing targeted performance metrics such as experienced
data rate and reliability. They extend connectivity to unserved and underserved areas,
benefiting individual users and mMTC devices. Among the key applications, NTNs are
particularly valuable in maritime scenarios, where providing coverage through terrestrial
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networks is cost-prohibitive and capacity-limited. NTNs enable seamless communication in
the marine industry, supporting maritime space management and delivering continuous sea
traffic services to devices and users in collaboration with seaborne platforms. Furthermore,
NTNs can facilitate the transmission of important notifications, such as alerts about vessels
in danger and emergency requests during maritime incidents, thereby significantly enhancing
maritime safety [102], [7].

1.4.3 5G NTN architecture

New interfaces and protocols are being added to support NTNs in the next-generation radio
access network (NG-RAN). An NTN platform may act as a space mirror or gNB in the
sky. Consequently, two satellite-based NG-RAN architectures are possible: transparent
and regenerative. In the latter case, the NTN platform may implement partial or full gNB
functionality depending on whether the gNB functional split (i.e., the gNB comprises central
and distributed units [8]) is considered.

Another classification of the NTN architectures can be made based on the type of access
[5]. Hence, the NTN platform directly serves the NTN terminal in the satellite access
architecture. In contrast, the NTN terminal and the NTN platform communicate via a relay
node in the relay-like architecture.

A. Satellite Access Architecture
Figure 1.2 displays the transparent satellite-based architecture where the NTN platform

relays the NR signal from the NTN gateway to the NTN terminal and vice versa. The Satellite
Radio Interface (SRI) on the feeder link is the same as the radio interface on the service link
(i.e., NR-Uu). The NTN gateway can forward the NR signal of the NR-Uu interface to the
gNB. One or more transparent satellites may be connected to the same gNB on the ground.

Data Network

NG Radio Access Network

NR-Uu

Remote Radio Unit

Gateway

gNB 5GC
N6NG

NR-Uu

NR-UE

Fig. 1.2 Transparent payload based NTN

Figure 1.3 demonstrates the regenerative satellite-based architecture where the NTN
platform has onboard processing capabilities to generate/receive the NR signal to/from the
NTN terminal. The NR-Uu interface is on the service link between the NTN terminal and
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the NTN platform. The radio interface between the NTN platform and the 5G Core Network
(5GC) is NG over SRI in the air path between the NTN platform and the NTN gateway.
Inter-Satellite Links (ISLs) are transport links between the NTN platforms.

Data Network

NG Radio Access
Network

NG-over SRI

Gateway

gNB
5GC

N6NGNR-Uu

NR-UE

Fig. 1.3 Regenerative payload based NTN

As specified in the NG-RAN [8] architecture description, a gNB consists of a gNB
central unit (gNB-CU) and one or more gNB distributed units (gNB-DU). Figure 1.4 shows
a "5G NR friendly" NTN architecture based on the regenerative satellite. The gNB-CU on
the ground is connected via the F1 interface over SRI to the NTN platform, which acts as
a gNB-DU. The NR-Uu is the radio interface between the NTN terminal and the gNB-DU
onboard satellite, whereas the NG interface connects the gNB-CU on the ground to the 5GC.
gNB-DU on-board different NTN platforms may be connected to the same gNB-CU on the
ground.

Data Network

NG Radio Access Network

F1 over SRI

gNB-DU

Gateway

gNB-CU 5GC
N6NG

NR-Uu

NR-UE

Fig. 1.4 Regenerative NTN based gNB-DU

B. Relay-like Architectures
In Figure 1.5(a), the access network forwards the NR signal to the NTN terminal through

a relay node, which receives it from the transparent payload-based satellite. In Figure
1.5(b) and Figure 1.5(c), the regenerative payload-based satellite includes the whole and
part of the gNB, respectively. The relay node forwards the NR signal from the regenerative
payload-based satellite with the gNB functional split to the NTN terminal. For further study,
Integrated Access and Backhaul (IAB) architectures are described in [2], which relay the
access traffic when both access and backhaul links are considered.

Service Continuity & Multi-connectivity



1.4 5G-NTN Integration Networks and Standards 15

(a) Transparent payload-based satellite

(b) Regenerative payload-based satellite

(c) Regenerative satellite-based gNB-DU

Fig. 1.5 Relay-like architecture [102]

Integrating NTNs and terrestrial networks is essential to guarantee service continuity
and scalability in 5G and beyond systems. An integrated terrestrial-NTN system may offer
benefits in urban and rural areas in terms of the 5G performance targets (i.e., experienced data
rate and reliability), guarantee connectivity among dense crowds (such as concerts, stadiums,
city centers, and shopping malls) and for users traveling in high-speed trains, in airplanes,
and onboard of cruises.

However, 5G systems support service continuity between terrestrial NG-RAN and NTN
NG-RAN and between two NTN NG-RANs. 3GPP’s TR 38.821 [5] studies the multi-
connectivity feature to allow simultaneous access to the NTN and terrestrial NG-RANs or
two NTN NG-RANs. Therefore, the architectures supporting multiconnectivity are described
below.

In Figure 1.6, the ground terminal is connected simultaneously to the 5GC via transparent
NTN-based NG-RAN and terrestrial NG-RAN. The NTN gateway is located in the Public
Land Mobile Network (PLMN) area of the terrestrial NG-RAN.
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Fig. 1.6 A transparent NTN-based NG-RAN and a terrestrial NG-RAN

Figure 1.7 refers to combining two transparent NTN-based NG-RANs consisting of either
GEO or LEO or a combination of both. This scenario may be followed to provide services to
the UEs in unserved areas. In particular, LEO is employed to deliver delay-sensitive traffic
since it is characterized by lower propagation delay than GEO. The latter provides additional
bandwidth and, consequently, higher throughput.
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Fig. 1.7 Two transparent NTN-based RAN

Figure 1.8 demonstrates the combination of a regenerative NTN-gNB-DU-based NG-
RAN and a terrestrial NG-RAN. The functional split is applied in this type of architecture;
hence, the NTN platform represents a distributed unit of the gNB, and the related central unit
is on the ground. This scenario may be followed to provide services to the UEs in under-
served areas. Multi-connectivity can also involve two regenerative NTN-gNB-DU-based
NG-RANs, as shown in figure 1.9.
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Fig. 1.8 A regenerative NTN gNB-DU based NG-RAN and a terrestrial NG-RAN
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Fig. 1.9 Two regenerative NTN gNB-DU based NG-RAN

Figure 1.11 considers the combination of two regenerative NTN-based NG-RANs con-
sisting of either GEO or LEO or a combination of them interconnected with ISLs. Unlike
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the previous case, in this type of architecture, the NTN platform performs all the gNB tasks
(i.e., the functional split is not applied). Multi-connectivity can also involve regenerative
NTN-based NG-RAN and terrestrial NG-RAN, as shown in figure 1.10.
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1.5 Technological Enablers for 5G-NTN networks

1.5.1 Network Function Virtualization (NFV) and Software Defined
Networking (SDN)

NFV and SDN abstract traditional hardware-specific network functions and decouple the
control and data planes, allowing centralized control, programmability, and dynamic reconfig-
uration of network resources. NFV enables the deployment of virtualized network functions
(VNFs) across terrestrial and satellite nodes, enhancing scalability and flexibility by enabling
the allocation of resources based on current demand [87, 24]. SDN facilitates efficient traffic
management and failure recovery, allowing network operators to dynamically adjust traffic
flows and reroute data to maintain optimal performance across diverse network conditions.

1.5.2 Muli-Access Edge Computing (MEC)

MEC brings computational resources closer to the end users, significantly reducing latency
and supporting near-real-time processing for time-sensitive applications. MEC nodes can
be strategically deployed at satellite gateways or terrestrial edge points, providing localized
computing power essential for applications like autonomous driving, remote monitoring,
and real-time decision-making [39]. This proximity to the user reduces the dependency on
centralized data centers, enhancing overall service quality in NTNs.

1.5.3 Blockchain for secure 5G NTN communication

Blockchain Technology is increasingly integrated into NTNs to address security challenges,
such as unauthorized access and data tampering, which are prevalent due to satellite com-
munication links’ open and distributed nature. Blockchain provides a decentralized and
immutable ledger for securing data exchanges and satellite firmware updates, enhancing the
integrity and reliability of NTNs [44, 126]. Blockchain-based authentication mechanisms
ensure only authorized entities can interact with the network, reducing vulnerabilities and
enhancing the overall security framework. However, these benefits come with trade-offs,
including increased latency and computational overhead, which must be carefully managed
to balance security with performance [121].
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1.5.4 Artificial Intelligence and Machine Learning (AI/ML) Network
Management and Automation

Artificial Intelligence (AI) and Machine Learning (ML) techniques are critical in managing
the complexities of NTNs. For instance, Graph Neural Networks (GNNs) enable real-time
monitoring and optimization of disaggregated NGRANs by analyzing network topology and
traffic data [69]. GNNs can detect link failures, predict traffic patterns, and recommend
routing adjustments, enhancing network resilience and efficiency.

Long Short-Term Memory (LSTM) models predict resource utilization, enabling proac-
tive management of network functions. These models can forecast CPU, memory, and
bandwidth demands, allowing operators to allocate resources dynamically and prevent ser-
vice degradation. By integrating AI/ML techniques into NTNs, networks can adapt to
changing conditions more effectively, ensuring consistent performance across diverse and
challenging environments [111, 61].

Network Function Virtualization (NFV), Software-Defined Networking (SDN), Multi-
Access Edge Computing (MEC), blockchain, and advanced AI/ML models are pivotal
technologies that enhance the capabilities and resilience of Non-Terrestrial Networks (NTNs).
These technologies provide the flexibility, security, and efficiency required to manage com-
plex, dynamic network environments involving terrestrial and non-terrestrial components.

AI/ML Models are integral to managing the complexities of NTNs, optimizing resource
allocation, enhancing security, and ensuring network resilience. Essential AI/ML techniques
used in NTNs include:

Graph Neural Networks (GNNs): GNNs are employed to monitor and manage dis-
aggregated NGRANs by learning from network topology and traffic data. They enable
real-time detection of link failures, prediction of network performance, and optimization of
routing paths, thus enhancing the overall efficiency and resilience of NTNs [69, 61]. GNNs
are particularly effective in environments with dynamic topologies, such as LEO satellite
constellations, where they facilitate adaptive network management.

Long Short-Term Memory (LSTM) Networks: LSTM models are used to predict
resource utilization, such as CPU, memory, and bandwidth, in disaggregated RAN archi-
tectures. By forecasting resource needs, LSTMs enable proactive management of network
functions, minimizing service disruptions and improving the operational efficiency of NTNs
[19, 113, 114]. These models are advantageous in environments with fluctuating traffic
patterns, allowing for dynamic resource allocation that aligns with current demand.

Reinforcement Learning (RL) Techniques: RL models, including LSTM-A2C, opti-
mize the operational parameters of UAVs in NTN deployments, such as trajectory planning
and energy consumption. By learning from real-time environmental feedback, RL mod-
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els dynamically adjust UAV flight paths to maximize coverage while minimizing energy
use, enhancing the overall performance of NTN-enabled applications like surveillance and
emergency response [80].

Integrating these advanced technologies—NFV, SDN, MEC, blockchain, and AI/ML
models—gives NTNs the tools to overcome inherent challenges, such as high mobility,
limited computational capacity, and security vulnerabilities. Together, these enablers support
the development of robust, adaptive, and secure communication networks that can meet the
stringent demands of B5G and future 6G applications.

1.6 Importance and challenges of NTNs in 5G and 6G land-
scapes

1.6.1 Expanding Coverage and Connectivity

NTNs are essential for expanding the reach of 5G and future 6G networks, providing
continuous and reliable connectivity where traditional terrestrial networks fall short. NTNs
can quickly restore communication links in disaster-hit areas, enabling rescue and recovery
operations to proceed efficiently [9]. In rural and underserved regions, NTNs help bridge
the digital divide, providing vital Internet access that supports education, healthcare, and
economic development.

NTNs’ ability to alleviate congestion on terrestrial networks by offloading traffic dur-
ing peak periods further enhances overall network performance. By providing alternative
communication paths, NTNs reduce the burden on terrestrial infrastructure, enabling a more
balanced and efficient use of network resources.

1.6.2 Technical Challenges of Integrating NTNs

Integrating NTNs into existing communication frameworks presents several technical chal-
lenges. The high mobility of LEO satellites requires frequent handovers, which can introduce
service interruptions if not managed effectively [121, 68]. Propagation delays and Doppler
effects further complicate signal synchronization, particularly in applications demanding low
latency.

The limited computational capacity of satellite payloads necessitates advanced resource
management strategies to optimize available processing power and bandwidth. This is partic-
ularly challenging in LEO constellations, where satellites must handle large volumes of data
while maintaining stringent QoS requirements. To address these issues, disaggregated Next-
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Generation Radio Access Networks (NGRANs) offer a promising approach by separating
traditional base station functions into distinct units (CU, DU, RU), allowing for more flexible
and efficient resource deployment [110, 65].

1.6.3 Enhancing Resilience in 5G NTNs

Resilience is a fundamental requirement for NTNs, which must maintain reliable service
despite disruptions caused by natural disasters, technical failures, or dynamic environmental
conditions. Integrating SDN, MEC, and AI-driven monitoring solutions enhances resilience
by enabling the network to adapt in real-time [9]. For instance, SDN controllers can reroute
traffic from failed terrestrial nodes to satellite links, ensuring uninterrupted communication
during emergencies.

The deployment of MEC nodes close to the user further supports resilience by process-
ing critical data locally, reducing dependency on distant data centers, and minimizing the
impact of potential network outages. AI-driven monitoring systems continuously assess net-
work performance, detect anomalies, and trigger automatic adjustments to maintain service
continuity.

1.6.4 Security Challenges and Solutions

Security is a significant concern in NTNs due to the open nature of satellite communication
links, which are susceptible to unauthorized access, data breaches, and other cyber threats.
Traditional centralized security models are often inadequate in these decentralized and
distributed environments. Blockchain technology offers a promising solution by providing
a decentralized, transparent, and immutable framework for securing data exchanges and
satellite firmware updates [44, 126].

Blockchain-based authentication mechanisms enhance data integrity and prevent unautho-
rized modifications, making NTNs more secure. However, these security measures introduce
trade-offs, such as increased latency and computational overhead, which can impact overall
network performance. Balancing the need for robust security with operational efficiency is
critical in designing secure NTNs [121, 68].

1.6.5 Network Management and Orchestration

Network management in 5G Non-Terrestrial Networks (NTNs) involves coordinating and
optimizing a highly dynamic and distributed environment comprising satellites, UAVs, and
other aerial platforms integrated with terrestrial networks. Unlike traditional terrestrial
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networks, 5G NTNs must address unique challenges such as high mobility, variable link
quality, significant propagation delays, and frequent handovers due to the movement of LEO
satellites and UAVs. Effective network management is crucial for ensuring Quality of Service
(QoS), optimizing resource allocation, and maintaining seamless connectivity across these
heterogeneous components.

Key aspects of network management in 5G NTNs include:

Dynamic Resource Allocation

Efficiently managing the allocation of computational, communication, and energy resources
across the various network elements is critical. Techniques such as Network Function Virtu-
alization (NFV) and Software-Defined Networking (SDN) enable flexible and programmable
control over network resources, allowing real-time adjustments to changing traffic conditions
and network demands.

Traffic Management and Optimization

Advanced AI/ML models such as Long-Short-Term Memory (LSTM) and Graph Neural
Networks (GNNs) are employed to handle the dynamic and often unpredictable traffic
patterns in NTNs. These models predict traffic loads, detect anomalies, and optimize routing
paths, enhancing the network’s efficiency and resilience.

Seamless Handover and Mobility Management

Due to the high mobility of LEO satellites and UAVs, NTNs require robust mobility manage-
ment protocols to ensure seamless handovers between network nodes. SDN controllers play
a crucial role in managing these handovers by dynamically rerouting traffic and reconfiguring
network paths to maintain connectivity and minimize latency.

Fault Detection and Recovery

In NTNs, network components are susceptible to failures due to the harsh space environ-
ment and frequent movement. GNN-based monitoring systems can detect link failures and
other network anomalies in real time, allowing for rapid recovery and maintaining service
continuity.
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Security and Data Integrity

Security is a critical aspect of network management in NTNs due to satellite communication
links’ decentralized and open nature. Blockchain-based mechanisms and AI-driven threat
detection systems are integrated into the network management framework to secure data
exchanges and protect against unauthorized access and cyber threats.

Managing NTNs involves addressing the dynamic allocation of resources, optimizing
traffic flows, and ensuring seamless handovers between terrestrial and non-terrestrial nodes.
ML models, such as LSTM and reinforcement learning (RL) techniques, are instrumental in
this process. LSTM models predict resource demands, allowing for proactive adjustments
in resource allocation, which helps maintain network performance even under varying
conditions [19, 113, 114].

RL techniques, like LSTM-A2C, optimize UAV flight paths and energy consumption,
ensuring UAVs can maintain coverage and return safely to their base stations. These models
dynamically adjust operational parameters based on real-time feedback, improving the overall
efficiency of NTNs and reducing the risk of service interruptions [80].

1.7 Research Objectives and Contributions

Enhancing Network Resilience: This research leverages AI/ML techniques, such as GNN
and RL, to monitor and optimize the performance of disaggregated NGRANs in NTNs,
ensuring reliable service delivery in dynamic environments. These approaches enable
proactive failure detection and adaptive resource management, enhancing the resilience of
NTNs.

Improving Security: The study explores the integration of blockchain-based mechanisms
to secure NTNs against unauthorized access and data breaches. By balancing robust security
with performance trade-offs, this research aims to develop secure communication frameworks
that maintain high data integrity and confidentiality.

Optimizing Resource Management: Using LSTM models for resource prediction and
RL techniques for trajectory optimization, this research seeks to enhance the efficiency of
NTNs in connection-critical scenarios. These models enable dynamic resource allocation
and real-time adjustments to operational parameters, supporting efficient network operations.

These contributions aim to provide novel solutions that enhance the deployment and
management of NTNs, supporting the development of resilient, secure, and adaptive com-
munication systems for B5G and future 6G applications. The findings of this research are
expected to facilitate the seamless integration of NTNs into global communication networks,
providing reliable connectivity in even the most challenging environments.
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1.8 Thesis Organization

This thesis is organized into five chapters, each focusing on critical aspects of 5G Non-
Terrestrial Networks (5G-NTNs), including their architecture, resilience, security, resource
management, and optimization techniques. The organization reflects a comprehensive
approach to addressing the challenges and opportunities in integrating NTNs within the
Beyond-5G (B5G) and future 6G communication ecosystems. Below is an outline of the
thesis structure:

Chapter 1: Introduction to 5G Non-Terrestrial Networks (5G-NTN)
The first chapter introduces 5G-NTNs, highlighting their significance in extending con-

nectivity to remote, underserved, and connection-critical areas. It discusses the key enabling
technologies, such as Network Function Virtualization (NFV), Software-Defined Networking
(SDN), Multi-Access Edge Computing (MEC), and cloud-native architectures, which are
fundamental to the design and deployment of NTNs. The chapter also presents an overview
of the unique challenges associated with NTNs, including high mobility, resource constraints,
and security vulnerabilities, setting the context for the subsequent chapters.

Chapter 2: Multi-Access Edge Computing for Resilient 5G-NTN Networks
This chapter focuses on enhancing the resilience of 5G-NTNs through advanced archi-

tectures and technologies. It explores various strategies for maintaining service continuity,
particularly when terrestrial networks fail or are unavailable. The chapter discusses the inte-
gration of MEC to bring computational resources closer to end users, reducing latency and
enhancing the Quality of Service (QoS). It also covers using AI/ML models, such as LSTM
and GNN, for predictive maintenance, traffic management, and fault detection, demonstrating
how these technologies can dynamically optimize network performance and ensure reliable
service delivery.

Chapter 3: Blockchain for 5G Non-Terrestrial Networks
Chapter 3 addresses the security challenges in 5G-NTNs, emphasizing the need for robust

mechanisms to protect against unauthorized access, data breaches, and cyberattacks. The
chapter introduces a blockchain-based authentication framework designed to enhance the
security of data exchanges and satellite firmware updates, providing decentralized and im-
mutable protection for NTN communications. Blockchain integration is evaluated regarding
its impact on network performance, offering insights into how security enhancements can be
balanced with operational efficiency.

Chapter 4: AI/ML Based Resource Management and Optimization Techniques for
5G-NTNs

This chapter delves into the resource management and optimization techniques essential
for 5G-NTNs. It presents advanced AI/ML models, including LSTM-based resource pre-
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diction for disaggregated RANs, GNN-based monitoring and optimization of C-RAN, and
LSTM-A2C reinforcement learning for UAV trajectory optimization. These models address
the challenges of dynamic resource allocation, real-time monitoring, and efficient energy use
in NTNs, showcasing their potential to improve network scalability, adaptability, and overall
performance.

Chapter 5: Conclusion and Future Directions
The final chapter summarizes the key findings and contributions of the thesis, highlighting

the advancements made in enhancing the resilience, security, and resource management of
5G-NTNs. It discusses potential future research directions, including scaling AI/ML models
for more complex networks, integrating quantum computing for enhanced optimization, and
deploying real-world trials to validate the proposed frameworks. The chapter concludes
with a reflection on the broader implications of this research, emphasizing the critical role
of NTNs in the evolution of global communication networks and their capacity to support
next-generation B5G and 6G applications.

This thesis aims to understand 5G-NTNs and their role in future communication land-
scapes comprehensively. By integrating advanced technologies and innovative management
strategies, the research contributes to developing robust, secure, and adaptive NTN systems
that meet the diverse needs of an increasingly connected world.



Chapter 2

Multi Access Edge Computing for
Resilient 5G-NTN Networks

2.1 Introduction to Resilient 5G NTN Networks

Resilient 5G Non-Terrestrial Networks (NTN) represent a significant advancement in mobile
communication, integrating satellite and aerial platforms with traditional terrestrial networks
to enhance global connectivity. This innovative approach addresses the limitations of con-
ventional networks, particularly in remote and underserved areas, where access to reliable
communication services is often lacking [111].

One of the standout features of resilient 5G NTN networks is their ability to provide
extensive global coverage. By utilizing various satellite systems, such as Low-Earth Orbit
(LEO) and Medium-Earth Orbit (MEO) satellites, these networks can reach approximately
80% of land and 95% of marine areas that lack terrestrial network access. This capability
is crucial for ensuring connectivity in rural regions and during disasters when terrestrial
infrastructure may be compromised [76], [102].

In addition to coverage, 5G NTN networks enhance connectivity for IoT devices and smart
city applications [28]. Integrating non-terrestrial elements allows high-speed internet access
and reliable communication services, significantly improving real-time data exchange. This
enhancement supports various applications, including public services, resource management,
and automation, ultimately contributing to smarter and more efficient urban environments.

Another critical aspect of resilient 5G NTN networks is their redundancy and reliability.
By providing alternative communication channels, these networks ensure that connectivity
remains intact even if terrestrial networks fail. This redundancy is vital for critical applica-
tions, such as emergency communications and public safety, where uninterrupted service is
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essential. Maintaining communication during crises can save lives and facilitate effective
disaster response.

The deployment of advanced technologies further enhances the performance of NTN
networks. Innovations such as phased array antennas and adaptive beamforming help mitigate
common challenges in satellite communications, such as high latency and deep fade. These
technologies ensure a more stable and efficient network, allowing seamless communication
across diverse environments [111].

Despite the vast potential of 5G NTN networks, several challenges must be addressed to
realize their capabilities fully. Regulatory frameworks, spectrum allocation, and effective
network management systems are critical areas that require attention. Collaboration among
international stakeholders is essential for overcoming these hurdles and optimizing the
integration of NTN with existing terrestrial networks.

In summary, resilient 5G NTN networks promise to transform the connectivity land-
scape by providing reliable, global coverage and enhancing the resilience of communication
systems, particularly in challenging environments. Their ability to integrate advanced tech-
nologies and maintain connectivity during disruptions positions them as a pivotal component
in the future of mobile communication.

2.2 Non-Terrestrial 5G and Beyond Networks

Adopting virtualization technologies and cloud-based approaches within the new 5G Service
Architecture (SBA) [6] facilitates unparalleled flexibility in mobile networks, empowering
vertical markets. An NTN network utilizes satellite or unmanned aerial system (UAS)
platforms to expand the use of existing terrestrial 5G network services. By doing so, NTNs
can offer numerous advantages and improve the resilience of 5G network services. This
statement can be strengthened by the 3GPP technical specification [5], where NTN networks
are pointed out as a complement of the terrestrial network for ubiquitous coverage and service
availability.

The diagram in 2.1 illustrates typical regenerative NTN architecture with direct access
mode. The terrestrial user with satellite access capability can directly connect to the satellite
gNB via the service link to connect to the core network via the feeder link between the
satellite and terrestrial gateway.

Integrating non-terrestrial networks with terrestrial 5G networks is a topic of increasing
interest, as it promises to enable new use cases and applications that require global coverage
and high-speed connectivity. Network operators are exploring emerging technologies such as
NFV and SDN to overcome the architectural obstacles facing 5G networks [25] to achieve
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Fig. 2.1 Regenerative NTN architecture with direct access.

this goal. These technologies convert hardware-specific network functions into software-
based virtual functions that can be deployed as a virtual machine (VM) or a lightweight
containerized environment.

NFV and SDN are expected to play pivotal roles in the digital transformation of network
infrastructure. They enable the decoupling of software from hardware and the flexible
deployment of various network functions. This allows service providers to spin up new
functions automatically whenever a customer requests them, making the network more
flexible and agile.

One of the key benefits of NFV and SDN in non-terrestrial 5G networks is the ability to
support network slicing, which allows creating multiple virtual networks on top of a single
physical network infrastructure. This enables the customization of network resources and
services for different use cases, and applications, such as remote sensing, IoT, and smart
cities [24].

Integrating NFV and SDN with non-terrestrial networks also presents challenges and
future research directions. For example, the dynamic and rapidly changing nature of non-
terrestrial networks, such as LEO SatNets, requires the development of intelligent handover
algorithms that take into account the specific characteristics of satellite and terrestrial net-
works, such as latency, bandwidth and coverage [97]. Additionally, integrating NFV and
SDN with non-terrestrial networks requires the standardization of interfaces and protocols to
ensure interoperability and seamless handover.

The work in [117] delves into the application of 5G New Radio (NR) techniques
within three-dimensional (3D) Non-Terrestrial Networks (NTNs) to ensure reliable wireless
coverage, particularly in scenarios where connection reliability is paramount. The context
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of the research emphasizes the critical need for restoring connectivity swiftly in disaster-hit
areas, such as rural villages affected by natural disasters, to facilitate emergency rescue
operations. The study explores the utilization of Unmanned Aerial Vehicles (UAVs) as
integral components of these 3D NTNs. These UAVs function as transparent aerial networks,
performing signal amplification and frequency conversion between a satellite-based 5G
network and User Equipment (UE). The UAVs operate across various frequency bands,
including S-band, C-band, X-band, Ku-band, and Ka-band, ensuring robust and versatile
communication capabilities. The performance of the proposed setup is thoroughly evaluated
in the paper. Key metrics include achieving throughput rates ranging from 180 Mbps to 4.85
Gbps on the satellite-to-UAV link. Additionally, the research assesses simulated transmission
delay and average session time, adhering to a stringent delay budget of 2 ms. These results
underscore the efficacy and reliability of the proposed approach in maintaining high-quality
connections. The primary applications of this technology are centered around connection-
critical scenarios, such as emergency rescue operations and digital divide mitigation. The
findings of the paper confirm the viability and effectiveness of using 3D NTNs with UAVs
and 5G NR techniques in these contexts. By integrating 5G NR with radio access networks
and potentially leveraging FPGA and GPU-based implementations, the proposed topology
offers a robust solution for ensuring reliable and high-throughput wireless connectivity in
critical situations.

2.3 MEC for NTN Networks

Emerging edge computing solutions are replacing traditional centralized computing due to
massive increments of the 5G network users. MEC is an advanced computing technology that
provides cloud computing capabilities and an IT service environment close to the network
edge [86] [107]. MEC enables ultra-low latency, high bandwidth communication, and data
and radio networks for enhanced response time and processing capability.

The expansion of 5G through NTN aims to connect remote regions and busy urban areas
while introducing new possibilities for 5G applications. However, satellite networks often
struggle with extended delays and limited data capacity, causing connection issues. MEC
strives to address these problems by cutting latency, enhancing data capacity, and bolstering
security within 5G NTN, ultimately boosting the network’s efficiency [10].

MEC can overcome the limitations of cloud computing for applications that require high
QoS, computation-intensive, and delay-sensitive requirements because of its proximity to
end-users and geographically distributed deployment [92]. This means that MEC hosts are
deployed close to end-users, reducing the delay in data transmission and improving service
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quality. Additionally, MEC can handle computation-intensive applications that require
intensive processing power [96].

In the current NTN networks, regenerative architecture is gaining more attraction among
the telco industries. This regenerative architecture model raises payload complexity and
required computing power; however, incorporating MEC functionalities can substantially
reduce the RTT and improve the system QoS.

Integrating MEC with non-terrestrial networks presents opportunities for developing
intelligent handover algorithms that consider the specific characteristics of satellite and
terrestrial networks, such as latency, bandwidth, and coverage. MEC also enables applications
and services to be hosted ‘on top’ of the mobile network elements, i.e., above the network
layer. These applications and services can benefit from proximity to customers and receiving
local radio-network contextual information.

Some research works have discussed MEC in the context of non-terrestrial networks. A
survey of MEC in 5G and beyond discussed the role of MEC in the 5G network architecture
and reviewed related literature published in the last few years [30]. The survey highlighted
the potential of MEC to enable a wide variety of applications, such as driverless vehicles.
Another survey discussed MEC’s security, dependability, and performance in 5G networks
[99]. The survey considered the ETSI MEC as a reference but included works on alternative
edge computing solutions. The MEC initiative [41] is an Industry Specification Group (ISG)
within ETSI that aims to create a standardized, open environment that allows the efficient
and seamless integration of applications from vendors, service providers, and third parties
across multi-vendor MEC platforms.

2.4 Case Study: MEC-based 5G NTN Experimental Frame-
works

2.4.1 Methodology

To demonstrate the resiliency and service availability of the proposed NTN network, an
end-to-end experimental testbed that seamlessly integrates satellite and 5G network services
was developed. This testbed leverages open-source emulators to mimic various network
components, ensuring comprehensive testing and evaluation.

A regenerative LEO-based NG-RAN and terrestrial NG-RAN are considered to deploy a
virtualized NTN network as referred to in work [102]. To achieve network resiliency and
minimize end-to-end delay, MEC nodes have been utilized to implement the functionality of
the 5G core network UPF attached to a satellite terminal in proximity to the user equipment
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(UE). MEC can improve network resiliency by providing backup resources and ensuring
service continuity even in the case of network failure. It also plays a pivotal role in minimizing
RTT after the PDU session is established in a distributed core network deployment. MEC can
also help networks withstand and quickly recover from losses or changes in their environment,
dynamically adjust to changes in network topology, detect and respond to outages, and route
around faults to maintain connectivity and service level agreements (SLAs).

2.4.2 End-to-End Network model

Fig. 2.2 shows the end-to-end deployed network model. As can be seen from the figure,
the user equipment is assumed to be capable of connecting to both terrestrial and satellite
networks. It has indirect access to the NG-RAN across the satellite terminal to which the
MEC node is connected with 5G core network user plane functionalities. The 5G core
network is connected to the terrestrial access network and the NTN via the satellite gateway
feeder link extending the N2 (satellite gNB with AMF), N3 (satellite gNB with UPF and
MEC UPF (UPFMec)), and N4 (UPFMec with SMF) interfaces as shown in Fig. 2.4.
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Fig. 2.2 NTN network model.

It is assumed that the UE is capable of connecting to both terrestrial and satellite access
networks and an ideal service orchestrator, consisting of a multi-radio access terminal
(Multi-RAT) specific SDN, is capable of performing vertical handover from terrestrial to
satellite access when the terrestrial access suddenly collapses. The service orchestrator can
be considered as one of the 5G core virtual network functions (VNF) or an external network
function that integrates into the 5G core network.
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Fig. 2.3 depicts the SDN-based NTN model to show how SDN-enabled vertical handover
is performed. As also stated in the work [85], when the terrestrial gNB encounters unexpected
damage or the received signal strength becomes lower than the threshold value, a new service
will be established using the satellite access network. As stated earlier, we simulated the
damage of the terrestrial gNB and the vertical handover task using Linux commands such as
tc and iptables to drop traffic across the terrestrial network after the terrestrial PDU session
is established. The service orchestrator is ideally implemented in the network to show the
availability of a secondary access network with acceptable QoS requirements.

Satellite gNB Terrestrial
gNB

NR UE

Southbound interface

Northbound interface

Multi RAT specific
SDN Controller

AMF SMF UPF

Fig. 2.3 SDN controlled NTN.

2.4.3 Emulated Network Architecture

A comprehensive end-to-end architectural framework is developed to establish a dependable
5G network that seamlessly connects terrestrial and non-terrestrial networks by harnessing the
advantages of MEC. This framework is an ideal model for building a network infrastructure
that can withstand challenges and provide uninterrupted 5G services. The architecture
illustrates how various NTN components are strategically interconnected to provide resilient
5G network service. In essence, this endeavor aims to create a cutting-edge network system
that maximizes the potential of 5G technology, combining terrestrial and non-terrestrial
capabilities to deliver resilient connectivity and increase service availability.
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Fig. 2.4 End-to-end network architecture.

As seen from Fig. 2.4, the core network is connected to the satellite gateway and terrestrial
access network. Free5GC [43], is used as the 5G core network and Opensand [104] is used
as the satellite emulator network to emulate satellite communication scenarios. The emulator
is comprised of the gateway, satellite, and terminal. An ideal SDN orchestrator is assumed
to be connected to the satellite gateway to control traffic and perform vertical handovers
between terrestrial and satellite access. The satellite is considered to operate in regenerative
mode with satellite gNB as payload.

The satellite terminal connects the UE and the MEC network. The MEC consists of the
UPF of the core network. This intends to place core network functionalities close to the user
equipment to reduce latency.

It is assumed that the service orchestrator that performs vertical handover will be triggered
following users’ mobility information and the quality of received signal strength (RSS) from
the terrestrial gNB. The service orchestrator determines the suitable target network for
the handover based on factors such as network availability, quality of service, and user
requirements. To initiate the handover, the user’s device measures the signal strength and
mobility information to send a request to the core network. Once the target network (satellite
access) is selected, the service orchestrator coordinates the allocation and configuration of
resources in the target network to ensure seamless handover.

The vertical handover procedure involves establishing a PDU session with the terrestrial
gNB and ensuring its continuity when transitioning to the satellite gNB. Fig. 2.5 shows the
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procedure of PDU session re-establishment assuming a sudden collapse of the terrestrial
access network.

UPFMec SMF UPFTer
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RRC reconfiguration
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Fig. 2.5 PDU session establishment.

The methodology focuses on implementing NR-NTN to deploy resilient 5G service,
assuring service availability during terrestrial access failure. It demonstrates that the PDU
session that is initially established with the terrestrial gNB can continue seamlessly with the
satellite gNB without service interruptions. Different performance metrics, such as RTT,
throughput, and packet loss, are evaluated.

Implementing this methodology, the study aims to validate the feasibility and reliability
of terrestrial and satellite-connected gNBs, assuring uninterrupted service for users when
terrestrial access is suddenly damaged or unreachable.

2.4.4 5G core and RAN network

Both the core network control plane (CP) and user plane (UP) network functions have been
separately deployed in the framework of a container-based application approach, where each
5G core component is implemented as a cloud-native network function (CNF).

The 5G control plane functions are initiated as processes within a designated docker
container as a virtual network function (VNF). These VNFs are configured by dynamically
using their configuration files and shell scripts as an entry point to forward traffic and properly
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work with the satellite network. Specifically, the AMFs and SMFs have been configured to
work with terrestrial and satellite networks. The 5G user plane functions are also deployed
as a separate docker container and configured to handle terrestrial and satellite PDU sessions,
creating a separate GPRS tunnel. The 5G core data plane consists of two separate UPFs
related to the two network configurations and the data network applications. One of the two
UPFs is designated as UPFTer to handle terrestrial connectivity, and the other one UPFMec
to handle satellite connectivity. The UPFMec is connected to the satellite-emulated network
across the satellite terminal to be in proximity to the user’s equipment.

By deploying the control and user plane functions separately and leveraging MEC, our
approach aims to achieve a more efficient and flexible 5G core architecture in the non-
terrestrial network environment. Such an approach can yield better performance, lower
latency, and augmented scalability for non-terrestrial networks.

For the 5G RAN network, UERANSIM [53] is used to simulate the user equipment and
the gNB functionality. It is an open-source software framework for simulating UE behavior
in 5G networks. This simulator is chosen because of its flexibility and ease of use in a docker-
emulated environment. It is a valuable tool for researchers and network professionals to
conduct protocol testing, validate designs, and experiment with various 5G network scenarios.
This highly customizable tool allows users to configure and control network parameters
and is often employed for educational and research purposes. UERANSIM’s open nature
encourages community contributions and integration with other network simulation tools,
ensuring its relevance in the evolving landscape of 5G technology.

In this work, two separate gNBs are used to emulate the satellite and terrestrial connectiv-
ity: the former is connected to the satellite (gNBsat), and the latter is connected directly to
the core network (gNBter) for terrestrial access as a docker container.

2.4.5 Satellite Network

The Opensand emulator has been used to emulate the satellite network. Opensand [104]
is a user-friendly and efficient tool used to emulate satellite communication systems, pri-
marily DVB-RCS (Digital Video Broadcasting - Return Channel via Satellite) and DVB-S2
(Digital Video Broadcasting - Second Generation Satellite). It allows for the configuration
and monitoring of the emulated scenarios in real-time, enabling an efficient performance
evaluation.

To deploy an Opensand emulator, three hosts are used: the satellite emulator, gateway,
and terminal. In this work, the three hosts of the Opensand are deployed as a separate
docker container and configured properly to function with the deployed 5G network for
non-terrestrial scenarios. The gateway is connected to the main 5G core network, the satellite
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emulator is connected to the satellite gNB (gNBsat), and the terminal is connected to the
MEC emulated network and the user equipment.

2.4.6 The emulated application

The network is deployed using the docker-compose [1] tool, which creates a controlled and
replicable testing environment, ensuring flexible evaluation of multi-container services.

For end-to-end evaluation and seamless functioning of the satellite and 5G network, the
network elements have been configured. From the 5G core network, the AMF, SMF, and
UPF have been configured and rearranged to function in the integrated network. The SMF
of the 5G core control plane has been configured to handle both the terrestrial and satellite
PDU sessions with UPF reallocation (from terrestrial UPF to satellite UPF). The satellite,
terminal, and gateway of the Opensand emulator have also been configured to be connected
to the networks.

To test and validate the reliability of the deployed resilient 3D network, we analyzed
throughput, jitter, and packet loss of both terrestrial and satellite networks showing the degree
of acceptability of the achieved satellite network QoS in the presence of MEC nodes, when
the terrestrial access suddenly fails as shown in Fig. 2.5. We have also demonstrated the
advantages of using the MEC nodes in reducing the RTT of the LEO constellation.

To replace the function of the service orchestrator, Linux configuration commands, such
as ’tc’ and ’iptables’, have been used to simulate the failure of the terrestrial access.

To generate traffic, iperf3 and ping tools are used. VoIP traffic is generated by using
iperf3 with standard bitrate requirements to evaluate throughput, jitter, and packet loss. The
ping tool has been used to compute the RTT between the core and the NG-RAN network
components.

2.4.7 Experimental Results

Scenarios

The emulated network is deployed on a VM environment with an allocated CPU 4 on a
standard Linux OS laptop with Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz and 16 GB
RAM.

Three scenarios have been considered to test the emulated environment and show service
availability. The scenarios are terrestrial access and NTN access with and without the MEC
node. UDP VoIP traffic is generated by iperf3 for end-to-end performance assessment. The
collected traffic information is further analyzed to evaluate the typical Key Performance Indi-
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cators (KPIs) of networking systems: throughput, Jitter, and packet loss. Since the objective
of adding the MEC node is to reduce the RTT by placing core network functionalities near
the UE, a ping test is performed. The expected outcome is to show that NTN connectivity
with the MEC node has a lower end-to-end delay than the NTN without the MEC node.

LEO satellite constellation is considered with an altitude of 1000km, end-to-end target
latency of 80ms, and 10ms variable jitter. The LEO is configured to work in regenerative
mode having the satellite gNB as a payload which guarantees service availability [4], [2].
We consider a VoIP application scenario with a data rate of 128 Kbps for the test.

Performance assessment

Fig. 2.6, shows the throughput in logarithmic scale vs. simulation time related to the three
scenarios of the considered application. The throughput of terrestrial access exhibits better
performance with an 8% maximum deviation compared to the NTN access with and without
using the MEC node. Starting from 9ms of simulation time the terrestrial access performance
abruptly falls to 55 Kbps during a sudden terrestrial gNB damage. In such a case, the
NTN access without the MEC node exhibits lower performance since it uses the terrestrial
UPF (UPFter) of the core network data plane. Once the SMF reassigns to use UPF of the
MEC node (UPFmec) during PDU session recovery, the satellite-connected UE can access
the network with an acceptable performance through the NTN access exploiting the MEC
node. In any case, NTNs (with and without MEC node) demonstrated their effectiveness in
recovering acceptable throughput performance.
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Fig. 2.7, shows the jitter of the simulated network vs. simulation time. With the same
analogy of the throughput plot, the terrestrial access asymptotically overshoots to higher
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values when it becomes unavailable. On the other hand, the NTN access with the MEC node,
which exhibits around 10% of jitter variation, can assure service continuity.
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Fig. 2.8, shows the packet loss vs. simulation time for the tested scenarios. The terrestrial
access exhibits less than 5% of packet loss, clearly outperforming NTN access until the
collapse event occurs. After the PDU recovery, NTN access with the MEC node shows an
acceptable loss of below 10% again outperforming the NTN access without the MEC node.

As shown in Fig. 2.4, the NTN access with the MEC node scenario uses the UPFmec
attached to the satellite terminal. This scenario happens when the UE is connected to the
satellite gNB and the AMF and SMF from the terrestrial 5G core network must re-assign
the GPRS tunnel towards the UPFmec. The reallocation instruction has to route through
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the gateway and satellite emulator to reach the terminal. Therefore, from 4 to 6 seconds of
the simulation time, the NTN access without the MEC node performs similarly to that of
the NTN access with the MEC node. However, NTN access with the MEC node tends to
perform better with lower packet loss after the UE fully starts using the MEC node during
satellite radio access.
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Fig. 2.9 End-to-end delay with and without MEC node.

Fig. 2.9 shows the achieved end-to-end delay between NTN access with and without the
MEC node. It is mentioned that the NTN access without the MEC node uses the UPFter
located in the terrestrial 5G core network. In contrast, the NTN access with the MEC node
utilizes the UPFmec attached to the satellite terminal. Therefore, for the VoIP application
case, the ICMP packet sent from the UE has to travel across the satellite and the gateway
to reach the data network via the terrestrial 5G core for NTN access without an MEC node
scenario. During the NTN access with the MEC node, the ICMP packet has to travel only
across the satellite terminal to reach the data network across the UPFmec. Therefore, NTN
access with the MEC node can achieve an end-to-end delay ranging between 15ms and 27ms,
which is acceptable for the considered application compared to NTN access without the
MEC node. Performance improvement when using MEC in the NTN network will reduce
the signal travel time needed to reach the destination and increase the network’s overall
performance.

2.5 Summary

This chapter explored the integration of Multi-Access Edge Computing (MEC) with 5G
Non-Terrestrial Networks (NTNs) to enhance network resilience and service availability. The
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study presented a virtualized end-to-end experimental framework leveraging open-source 5G
and satellite emulators to create a robust 3D network model. The proposed setup highlighted
how, strategically placed near satellite terminals, MEC nodes improve network performance
by reducing latency and ensuring continuity during terrestrial network disruptions.

The framework demonstrated that resilient 5G-NTN networks could provide extensive
global coverage, particularly in remote and underserved areas, by utilizing Low Earth
Orbit (LEO) satellite constellations operating in regenerative mode with gNB payloads.
By integrating MEC with these satellite networks, the study illustrated the advantages
of a decentralized architecture that brings computational resources closer to end-users,
significantly enhancing response times and maintaining acceptable Quality of Service (QoS)
during critical scenarios.

Key findings include the efficacy of MEC in minimizing round-trip time (RTT) and
improving throughput, jitter, and packet loss metrics, particularly when terrestrial access
becomes compromised. Including MEC nodes in the NTN setup proved instrumental in
maintaining service availability, showcasing the potential of MEC to mitigate the inherent
limitations of satellite communication, such as high latency and reduced bandwidth.

The experimental results validated the proposed architecture’s capability to handle sudden
network failures and underscored the importance of integrating advanced computing solutions
like MEC in 5G-NTN environments. This chapter highlights the critical role of cloud-native
edge computing frameworks in future NTN deployments, emphasizing their capacity to
deliver resilient, high-performance communication networks that meet the growing demands
of modern digital applications.



Chapter 3

Blockchain for 5G Non-Terrestrial
Networks

3.1 Security Challenges in the 5G NTNs

Security challenges in 5G Non-Terrestrial Networks (NTN) are significant due to these
systems’ complex and interconnected nature. As 5G technology evolves, it introduces
new vulnerabilities alongside its advancements, necessitating robust security measures to
protect against potential threats. Besides, due to the decentralized, highly dynamic, and open
communication environment, the 5G NTN network faces significant security challenges [11].
One of the primary security challenges arises from Network Functions Virtualization (NFV),
which is integral to 5G architectures. NFV enables multiple network functions to run on
shared servers, increasing the attack surface. This necessitates stringent security protocols to
safeguard these virtualized functions from cyber threats, as any vulnerability in one function
could compromise the entire network [121], [126].

Key security concerns include:

a) Unauthorized Access and Data Breaches: The open nature of satellite communica-
tion links makes NTNs vulnerable to unauthorized access, eavesdropping, and data
interception, posing risks to data confidentiality and integrity.

b) Jamming and Spoofing Attacks: NTNs are susceptible to jamming and spoofing,
where adversaries can disrupt communications or impersonate legitimate nodes, leading
to service disruptions and compromised network reliability.
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c) Secure Firmware Updates: Ensuring the integrity of firmware updates in satellite
payloads is critical. Without robust authentication mechanisms, NTNs risk being
compromised through malicious updates that can introduce vulnerabilities.

d) Resource Constraints: Cloud-native approaches promote automation in network
management, reducing operational costs and improving service reliability. This is
crucial for managing the complexities introduced by NTNs, which must simultaneously
handle various connectivity and service requirements.

e) Decentralized Management: The distributed nature of NTNs complicates traditional
centralized security models, necessitating decentralized approaches like blockchain for
secure authentication and data management.

These challenges highlight the need for innovative security frameworks that integrate
advanced encryption, blockchain-based authentication, and AI-driven threat detection to
safeguard the integrity and reliability of 5G NTNs.

3.2 Blockchain-Enhanced Security Mechanisms

The proliferation of 5G technology promises to change the communication network paradigms
thanks to its unparalleled speed, reliability, and connection capabilities. Integrating 5G with
Non-Terrestrial Networks (NTN), particularly Low Earth Orbit (LEO) satellites, can consid-
erably extend coverage to remote and underserved regions. LEO satellite constellations have
significantly empowered global communication networks, enabling enhanced data exchange
and connectivity across various actors. Companies like SpaceX and OneWeb are leading
this revolution, launching thousands of satellites to create mega-constellations capable of
providing high-speed Internet [11].

Integrating LEO satellites within 5G infrastructures targets ubiquitous coverage and
enhanced connectivity. Nonetheless, the dynamic nature of satellite networks and the long
distances involved raise significant security concerns, such as unauthorized access and data
breaches [127].

Traditional centralized security mechanisms often fail to address these challenges,
thus necessitating innovative solutions. With decentralized and immutable characteristics,
blockchain technology is viable for enhancing security in 5G NTN. Utilizing blockchain
in LEO satellite networks presents its own set of challenges. Issues such as latency, com-
putational overhead, and network throughput require careful consideration. The trade-off
between the blockchain security gain and the Quality of Service (QoS) should be evaluated
to assess its viability [121], [68].
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This chapter discusses the implementation of a blockchain-based authentication mecha-
nism to enhance the security of data exchanges and remote firmware updates in LEO satellite
constellations in 5G NTN networks. Firmware updates are crucial for maintaining satellite
functionality and performance. Blockchain can provide a trustworthy framework for updating
satellite firmware, protecting the network from potential vulnerabilities introduced during
the update operations [44], [126].

The proposed setup will demonstrate effective traffic control across the satellite network
and ensure secure transactions between the local blockchain network and the 5G NTN. Such
a setup relies on the blockchain’s immutable nature, which enhances the network’s security
and integrity.

3.3 State of the artworks on blockchain-based 5G NTN
networks

Integrating blockchain technology with 5G and satellite networks has recently received
significant attention. Several studies have explored various aspects of this integration,
highlighting its potential benefits and challenges. [90] conducted a comprehensive survey on
blockchain application in "5G and beyond" networks [113], emphasizing network operations’
enhanced security and trust. This work provides a foundational understanding of how
blockchain can mitigate security threats in these advanced communication networks.

In the satellite communications context, [109] study outlines challenges and potential
solutions for integrating blockchain in the space industry. The paper discusses the role
of blockchain in ensuring secure and reliable communication through satellite networks
by addressing issues such as data integrity and authentication. Similarly, [120] explores
blockchain-empowered space-air-ground integrated networks, presenting solutions for seam-
less and secure data transmission across different network layers.

The work in [57] proposes a blockchain-based framework for securing over-the-air
firmware updates in IoT devices, which can be extended to satellite networks, to enhance
security during data transmission and software updates. Another notable paper is [54], which
focuses on blockchain-based authentication for 5G networks, regarded as crucial for main-
taining secure connections and preventing unauthorized access in satellite communication
systems.

In addition to these studies, [90] introduces a new framework, namely MSNET-Blockchain,
for securing mobile and satellite networks using blockchain. This framework addresses the
unique security requirements of satellite networks and proposes solutions for achieving
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robust and scalable security mechanisms. Furthermore, [130] examines the mitigation of
signaling storms in 5G networks using blockchain, highlighting the technology’s potential to
enhance network resilience and performance.

Our work builds on these foundational studies by implementing a blockchain-based traffic
authentication system for a 5G NTN network in the cloud-native emulated environment.
Unlike previous studies that primarily focus on theoretical frameworks and high-level solu-
tions, the approach considered in this work involves the practical deployment and evaluation
of blockchain technology in an end-to-end 5G NTN setup. More specifically, the tradeoff
between security (inherent to the utilization of blockchain) and achieved QoS is analyzed
by providing empirical data on the local blockchain’s throughput, latency, and authorization
efficiency. This insight will contribute to the existing literature by demonstrating the impact
of blockchain integration in 5G NTNs and its viability.

3.4 Case Study: Blockchain-Based Authentication Frame-
work

3.4.1 Overview

The distributed and decentralized nature of 5G and service-based architecture involve different
security and privacy challenges. The contrast to security threats is becoming a pivotal
research focus in academia and industry. Thanks to its decentralized nature, blockchain
is considered a promising technology that is anticipated to be part of the future "5G and
beyond" networking standards. 5G NTN networks will be open, virtualized, and scalable,
strengthening the necessity of countermeasures to achieve a high level of end-to-end security
and prevent inefficient centralized processing and decision. Such security enforcement should
pave the way to other network performance enhancement techniques, such as multi-access
edge computing (MEC) and federated learning (FL) [90]. Moreover, the decentralized
operation mode of blockchain has the advantage of deploying the network with transparent
and immutable storage.

Blockchain technology offers several key properties that significantly strengthen its appli-
cation in enhancing the security and reliability of satellite and 5G networks. The decentralized
nature of blockchain eliminates the need for a central authority, thereby reducing single
points of failure and enhancing resilience against attacks. The immutability of blockchain
ensures that once data is recorded, it cannot be altered or tampered with, which is critical for
maintaining data integrity and trust in communication networks. Additionally, blockchain’s
transparency and traceability enable real-time monitoring and auditing of network activities,
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ensuring that all transactions are verifiable and accountable. Finally, using smart contracts
automates enforcing security policies and protocols, reducing human error and enhancing
operational efficiency.

3.4.2 Ethereum-based local blockchain deployment

Ganache is a powerful tool developed by Truffle Suite that provides a local Ethereum
blockchain environment for developers to test, develop, and deploy smart contracts and
decentralized applications (DApps) without interacting with the live Ethereum network. It
simulates the blockchain on a developer’s local machine, offering a controlled, secure, and
customizable environment that accelerates the development process while eliminating the
costs and risks associated with using the main Ethereum network or public testnets. One of
Ganache’s key features is its ability to customize blockchain parameters, such as block time,
gas price, and gas limit, allowing developers to simulate various network conditions and
optimize their applications under different scenarios. It also generates personal Ethereum
accounts with predefined amounts of Ether, enabling users to test transactions and contract
interactions without real financial implications [105], [120].

Ganache offers both a Command Line Interface (CLI) and a Graphical User Interface
(GUI), catering to different developer preferences [105]. The CLI version provides a
lightweight tool for scripting and automation, while the GUI offers a more visual approach,
allowing users to monitor accounts, blocks, transactions, and logs in real time. This detailed
logging and debugging capability helps developers inspect transactions, check contract
states, and troubleshoot errors effectively. Another standout feature is Ganache’s instant
mining capability, which provides immediate feedback on transactions and smart contract
executions, significantly speeding up the development cycle compared to the live network,
where transaction confirmations can be delayed.

The platform supports forking from the main Ethereum network or other testnets, enabling
developers to work with the current state of the live blockchain in a local environment. This
is particularly useful for testing smart contract interactions with existing contracts and
state variables on the mainnet. Ganache’s environment is essential for various use cases,
including smart contract development, DApp testing, and integration testing of blockchain
applications with other software components. It allows developers to experiment in a risk-free
environment, optimize contract performance, and ensure seamless operation of the entire
application stack before deploying on public networks [54].

Ganache plays a crucial role in education by providing a simple and safe environment for
learning blockchain concepts and smart contract development. Its ability to simulate real-
world blockchain behavior in a controlled setting makes it an invaluable tool. The platform’s
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cost-effectiveness, speed, and extensive debugging capabilities make it an indispensable part
of the Ethereum development toolkit, supporting developers in building secure, efficient,
and optimized blockchain applications. Ganache empowers developers to confidently create
innovative solutions by offering complete control over the blockchain environment, ensuring
their applications are robust and ready for deployment in the rapidly evolving world of
decentralized technologies [33].

In this research, a private blockchain using Ethereum (Ganache) is implemented, which
offers controlled access and higher transaction throughput compared to public blockchains.
This choice is particularly suited for the 5G NTN emulation, where the speed and security
of transactions are paramount. The inherent properties of blockchain, such as decentraliza-
tion, immutability, transparency, and automation through smart contracts, provide a robust
foundation for securing the communication and authorization processes in our 5G NTN
setup.

Fig. 3.1 shows the general working principle of the Ethereum local blockchain during
the compilation of smart contracts.

The smart contract is written using Solidity language and compiled using Truffle Suite
IDE. After the smart contract is compiled, an Application Binary Interface (ABI) file and
the bytecode are generated. The smart contract is then deployed to the Ethereum Virtual
Machine (EVM), and a contract address is provided to the interacting applications. The ABI
file is then used as an interface between the applications that interact with the blockchain.
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3.4.3 Satellite firmware update strategy

Efficient firmware update strategies for Low Earth Orbit (LEO) satellites are essential for
maintaining satellite constellations’ operational efficiency, reliability, and security. LEO
satellites operate in dynamic and often harsh environments, making them susceptible to
hardware and software malfunctions that can significantly impact their performance. Regular
firmware updates are crucial to address software bugs, enhance functionality, improve
performance, and patch security vulnerabilities [127]. However, updating firmware in
LEO satellites poses several unique challenges due to their high-speed mobility, limited
connectivity, and stringent security requirements, as shown in Figure 4.22.

One prominent strategy for updating LEO satellite firmware is using over-the-air (OTA)
updates, similar to the methods used for IoT devices. OTA updates leverage the capabilities
of advanced communication networks, such as 5G, to transmit firmware updates directly to
the satellites in orbit. The high-speed and low-latency attributes of 5G networks facilitate
rapid and efficient deployment of updates, reducing the time and resources needed for
maintenance. This method is particularly advantageous as it allows updates to be pushed
remotely, eliminating the need for physical access to the satellites, which is impractical in
space. However, despite its efficiency, the OTA update approach introduces critical security
vulnerabilities that must be carefully managed [57].

One significant security concern with OTA firmware updates is the potential for traffic
interception and redirection attacks. As the update data flows from the 5G core network
to the satellite, malicious actors can exploit vulnerabilities in the network to redirect the
firmware update requests to unauthorized servers. This attack could lead to the satellite
receiving corrupted or malicious firmware, compromising its operations or rendering it
inoperable. Such security breaches can have severe implications, particularly in critical
applications where satellite performance is crucial, such as navigation, communication, or
military operations. The threat is exacerbated by satellites often operating autonomously and
lacking robust defenses against sophisticated cyberattacks [108].

To mitigate these security challenges, several strategies are employed alongside OTA
updates. One approach is the implementation of end-to-end encryption of firmware update
data. Encrypting the data transmitted between the ground control and the satellite reduces
the risk of interception, as the update packets cannot be easily modified or decoded by
unauthorized entities [23]. Additionally, robust authentication mechanisms are used to
verify the identity of the sending server and ensure that the firmware updates originate from
trusted sources. Techniques such as public-key cryptography and digital signatures play a
critical role in confirming the authenticity of the updated files before they are accepted by
the satellite.



50 Blockchain for 5G Non-Terrestrial Networks

Another strategy involves using blockchain technology to enhance the security and
integrity of firmware updates. Blockchain can provide a decentralized and immutable record
of all firmware update transactions, making it nearly impossible for malicious actors to
tamper with the update data. Smart contracts within a blockchain framework can automate
verification, ensuring only authenticated updates are applied to the satellite. By creating a
transparent and tamper-proof update history, blockchain technology can significantly enhance
the overall security of satellite firmware updates [131].

In addition to these security enhancements, network segmentation and traffic monitoring
are crucial in protecting the update process. Segmenting the network paths used for firmware
updates makes it more difficult for attackers to access and manipulate the data flows. Contin-
uous monitoring of the update traffic can also help detect any unusual patterns or anomalies
indicating an ongoing attack, allowing immediate countermeasures to be deployed.

Furthermore, developing a robust fallback mechanism is essential in the event of a failed
or compromised firmware update. Satellites should be able to revert to a previous stable
firmware version if an update fails validation checks or leads to unexpected behavior. This
rollback capability can prevent the satellite from being rendered inoperable due to faulty or
malicious updates, ensuring continued operation while the issue is resolved.

In summary, while OTA updates provide a rapid and efficient method for updating
LEO satellite firmware, the process must be safeguarded against security threats that can
compromise satellite operations. A combination of encryption, authentication, blockchain
technology, network segmentation, and robust fallback mechanisms is essential to a secure
firmware update strategy. These measures protect satellites from cyberattacks and enhance
their reliability and operational lifespan, contributing to satellite constellations’ overall
efficiency and security in the ever-evolving space environment.

3.4.4 Network Architecture and Methodology

The emulated network setup for the secure end-to-end 5G NTN leverages blockchain technol-
ogy to enhance security across satellite networks. As shown in Figs. 4.22 and 3.3 comprise a
5G core network, radio access network, satellite network, local blockchain node, and middle-
ware. The core network is emulated using Free5GC [43], an open-source, decentralized core
network set compliant with 3GPP release 15. The radio access network is simulated using
UERANSIM [53], which encompasses the gNB and the user equipment.

The access network (gNB) is considered to be located in the terrestrial segment. This last
is connected to the satellite gateway to extend 5G services via the LEO satellite constellation
to a remote UE. The satellite is a transparent node connecting the terrestrial gNB with the
destination UE.
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The satellite network is emulated using Opensand [104] emulator, and it consists of
three separate components: gateway, satellite, and terminal. The gateway is connected to
the terrestrial gNB to extend the 5G network services over the satellite radio interface (SRI)
[111].

Ethereum’s local blockchain environment (Ganache) [105] is used as a local blockchain
network to host the smart contact and interact with the 5G NTN network for securing
transactions between the 5G data plane network and the satellite network. The interaction
between the 5G NTN network and the Ethereum node is realized using the Flask Web
micro-framework, which is employed as a middleware.

3.4.5 Experimental Setup

The principle behind integrating the Ganache blockchain into the 5G NTN revolves around
leveraging the blockchain’s decentralized and immutable nature to enhance satellite network
security. Ganache is a local Ethereum blockchain environment used to test and deploy smart
contracts that manage and authorize servers from the 5G data network (see Fig. 3.3). The
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strategy involves using smart contracts to control access to the satellite network by verifying
data plane servers and ensuring that only authorized servers can be accessed to generate
traffic through the satellite network components. This approach prevents unauthorized access
and secures data integrity across the NTN.

Server1 UPF1 gNB1

Satellite

N6

SRI

NG

NR-UuServer2 UPF2 gNB2N6 NG
NR-Uu

Gateway
Terminal

Ganache (Ethereum)

NR UE

Middleware (Flask)

Fig. 3.3 Data plane authorization

All the network components are implemented in a docker-compose environment, properly
configured, and sequentially triggered to achieve the proposed objective. The first setup step
is to run the Ganache CLI environment as a docker container that listens at port 8545. Next,
we develop and compile a smart contract defining the server authorization rules. This smart
contract is then deployed to the Ganache using the Truffle suite compiler. An Application
Binary Interface (ABI) file is generated when a smart contract is compiled and deployed. The
ABI file allows external applications to interact with a deployed smart contract on the local
blockchain across the middleware. The Ganache and middleware containers are properly
networked to enable seamless communication between the deployed smart contract and the
NTN components.

Algorithm 1 Deploy and Interact with Smart Contract
1: Initialize Ganache CLI listens at port 8545
2: Compile Smart contract Authorization.sol
3: Deploy smart contract
4: Load contract ABI into the middleware
5: Configure the contract address and private key to the middleware
6: Start middleware container listens at port 5000

After the smart contract is deployed, the ABI file, contract address, and private key of the
Ganache account address will be provided to the middleware. The middleware, implemented
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using Flask and Web3, is configured to interact with the smart contract as shown in Algorithm
1. The middleware will be initialized as a docker container and exposed to listen at port
5000 so that the satellite components will interact with it at this port to access the smart
contract. It allows for querying the authorization status of data network servers and updating
the blockchain with the authorization changes.

Algorithm 2 Authorize Servers
1: procedure AUTHORIZE_SERVER(server_address)
2: Connect to Ganache via Middleware
3: Build transaction for authorizeServer function
4: Sign transaction with private key
5: Send transaction to Ganache
6: Update blockchain state
7: end procedure

Once the Ganache and the middleware start their communication, the NTN will be
deployed and the satellite components (Gateway, Satellite, and Terminal) will start interacting
with the blockchain to check whether the server from which the network is trying to access
should be authorized or not as can be seen from Algorithms 2 and 3.

Algorithm 3 Deauthorize Server
1: procedure DEAUTHORIZE_SERVER(server_address)
2: Connect to Ganache via Middleware
3: Build transaction for deauthorizeServer function
4: Sign transaction with private key
5: Send transaction to Ganache
6: Update blockchain state
7: end procedure

The gateway, satellite, and terminal configuration files will be updated to enable com-
munication with the middleware to check for authorization. These satellite components will
sign transactions using the Ganache network’s private key for integrity.

Algorithm 4 Check Authorization Status
1: procedure IS_AUTHORIZED(server_address)
2: Query blockchain for authorization status
3: Return authorization status
4: end procedure
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As seen from Algorithm 4, an authorization status will be provided to the satellite
network in boolean format, and the satellite network will accept or reject the incoming traffic
depending on the provided authorization status.

3.4.6 Result and Discussion

The emulated network setup showcases the integration of blockchain technology into 5G NTN
to enhance the security of satellite network communication. Using smart contracts for device
authorization provides a robust mechanism to ensure that only legitimate traffic traverses
the satellite network. This approach not only secures the communication channels but also
demonstrates the potential of blockchain in managing complex 5G NTN architectures.

Fig. 3.4 shows the latency between terrestrial gNB and user equipment located in
different locations and connected using an LEO satellite network. VoIP traffic is generated
from the 5G data network considering a maximum delay of 50 ms with 5% packet loss to
simulate the distance of the LEO constellation. Initially, traffic is collected without utilizing
the blockchain authentication setup for comparison. Then, a blockchain middleware service
is triggered, so the satellite components must make transactions with the blockchain to check
for authorization of incoming VoIP traffic. Considering the situation when the traffic is
authorized to pass through the satellite network, a maximum delay of 18 ms is recorded
between the terrestrial gNB and UE with a 5 ms deviation from the average NTN traffic delay.
This is due to the time required by the transaction of the satellite network to the blockchain
to generate the authenticated traffic flow.

Fig. 3.5 shows the computed throughput with and without blockchain authentication. The
result shows that the throughput achieved during the traffic authentication process exhibits
lower readings than those without blockchain authentication. This is because the traffic
forwarding capacity of the NTN network will degrade when the satellite components interact
with the local blockchain via the middleware. However, the primary goal of the blockchain
approach is to ensure the security of the NTN network for critical tasks, like e.g., the satellite
firmware update, rather than improving throughput performance.

Plots of Fig. 3.6 show the tradeoff related to the authorization attempts of multiple traffic
flows coming from different servers versus network performance. As the number of traffic
flows authorized to traverse across the satellite network increases, the network’s performance
tends to decrease, such as when the throughput degrades, and the latency between terrestrial
gNB and the UE increases. This is due to the overhead imposed by the authentication
process of the blockchain node. This suggests that while the network becomes more secure,
it becomes less efficient regarding data handling capacity and speed. The authorization
attempts can be expressed by the ratio of successful authorizations to the total number of
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Fig. 3.4 Latency with and without blockchain authentication

authorization attempts AAttempts(%) (both authorized and unauthorized traffic) as shown in
eq. 3.1.

AAttempts(%) =

(
Successful Authorizations

Total Attempts

)
×100 (3.1)

As can be seen from Fig. 3.6, a maximum throughput degradation TDegradation(%) (see
eq. 3.2) of 9.38% is exhibited with a maximum latency increase LIncrease(%) (see eq. 3.3)
of 16.5% through the course of increasing the number of authorized traffic flows. For the
sake of clarity, Tbaseline is the baseline VoIP throughput equal to 128 kbps, and Tcurrent is the
current throughput (measured from the network). Similarly, Lbaseline is the baseline latency
(20 ms), and Lcurrent is the current latency measured from the network.

TDegradation(%) =

(
Tbaseline−Tcurrent

Tbaseline

)
×100 (3.2)

LIncrease(%) =

(
Lcurrent−Lbaseline

Lbaseline

)
×100 (3.3)

Fig. 3.7 shows the packet loss measured by launching the iper3 command between the
terrestrial user equipment and the gNB across the satellite network. The higher packet loss
is recorded using Linux tc and iptables commands, which impose a high probability of
packet drop to mimic the distance of the LEO satellite from the earth’s surface and the loss
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Fig. 3.5 Throughput with and without blockchain authentication

imposed by the satellite component interaction with the Ganache for traffic authorization.
The simulation of 5G NTN with blockchain authentication exhibited more than 10% of
packet loss as compared to the normal simulation without blockchain.

Fig. 3.7 Packet loss with and without blockchain authentication
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Fig. 3.6 Tradeoff between authorization attempts, throughput, and latency

3.5 Summary

In this chapter, a secure end-to-end 5G Non-Terrestrial Network (NTN) is developed and
implemented using blockchain technology to enhance the security of the satellite network
segment. By leveraging the capabilities of the Ethereum-based local blockchain (Ganache)
and smart contracts, a robust and secure 5G NTN is developed, which ensures that only
authorized traffic sources can transmit data across the satellite network, thus significantly
enhancing the security and integrity of the satellite communication.

The experimental setup considered a Low Earth Orbit (LEO) satellite network integrated
with a 5G core and access network, where blockchain-based authorization mechanisms
are deployed to secure inter-satellite communications. The results demonstrated a tangible
improvement in the security of the NTN, albeit with a tradeoff in slightly decreased network
performance. Indeed, a throughput degradation ranging between 2.34% and 9.38% has
been observed, while the measured latency increase ranged from 3% to 16.5%. These
results highlight the price to be paid when implementing enhanced security countermeasures.
Despite these tradeoffs, the security gain, measured through successful authorization attempts,
fully justifies blockchain integration in scenarios (like satellite firmware updating) where
security is paramount. The study effectively demonstrates the feasibility of blockchain
in enhancing security in 5G NTN environments, setting a foundational basis for future
improvement and optimization.

Despite the promising results, there are areas for future research. Enhancements might
focus on reducing the latency introduced by the blockchain verification process and improving
the system’s scalability to handle several network components using the multi-agent concept
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[19], [112]. Further research could also explore the integration of advanced security features
and investigate the use of alternative platforms to optimize network performance.



Chapter 4

AI/ML Based Resource Management and
Optimization Techniques for 5G-NTNs

4.1 Introduction

The rapid advancement and deployment of 5G networks have revolutionized the telecom-
munications landscape, ushering in an era of ultra-reliable, high-speed, and low-latency
communications. This evolution is driven by the increasing demand for high-bandwidth
applications such as autonomous driving, smart cities, and the Internet of Things (IoT), which
require robust and efficient network infrastructures capable of handling heterogeneous and
dynamic traffic loads [46]. As the demand for seamless connectivity grows, integrating
Non-Terrestrial Networks (NTNs) with terrestrial 5G networks has emerged as a critical
strategy for enhancing global communication capabilities.

NTNs, which include satellite communications, UAVs, and High Altitude Platform
Systems (HAPS), complement terrestrial 5G networks by providing extensive coverage,
particularly in remote, underserved, and connection-critical areas [111]. By enabling
seamless communication across diverse environments, NTNs address key challenges such as
the digital divide and the need for resilient network infrastructures in disaster-hit regions [50].
However, integrating NTNs into existing 5G frameworks introduces significant challenges
related to resource management and optimization due to factors such as high propagation
delays, pronounced Doppler effects, and the need for frequent handovers.

In this context, disaggregated Radio Access Networks (RANs) have emerged as a pivotal
innovation in 5G-NTNs. Disaggregated RANs decompose the traditional monolithic base
station architecture into distinct components, including the Central Unit (CU), Distributed
Unit (DU), and Radio Unit (RU), which can be flexibly deployed across terrestrial and non-
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terrestrial nodes [110]. This separation facilitates efficient resource management, enhances
network performance, and improves scalability by allowing individual components to be
optimized independently [65]. However, managing disaggregated RANs in NTNs presents
new challenges, particularly in predicting and optimizing resource consumption to maintain
Quality of Service (QoS) and minimize Service Level Agreement (SLA) violations.

Accurate network traffic and resource usage prediction is essential for dynamic network
slicing, efficient traffic steering, and proactive failure management within NTNs [81]. In this
regard, Machine Learning (ML) models have demonstrated significant potential in enhancing
resource management through predictive insights and adaptive optimization strategies. Long
Short-Term Memory (LSTM) networks, a specific type of recurrent neural network (RNN),
have proven particularly effective in time-series prediction, capturing long-term dependencies
in data and accurately forecasting network resource needs [19, 113, 114]. LSTM models are
well-suited for predicting dynamic and complex traffic patterns, making them valuable tools
for optimizing resource allocation in disaggregated RANs within 5G-NTNs [45, 59].

This chapter focuses on developing LSTM-based resource prediction models for disag-
gregated RAN architectures in 5G-NTNs. By splitting the gNB into gNB-CU and gNB-DU
components across the satellite network, these models enable the extension of interfaces
like F1 and E1 over satellite radio interfaces (SRI), facilitating efficient management of
computational resources such as CPU, memory, and bandwidth. Proactive resource allocation
driven by LSTM-based predictions helps maintain network performance and prevent SLA
violations in highly dynamic NTN environments.

Additionally, this chapter explores the use of Graph Neural Networks (GNNs) for moni-
toring and managing disaggregated Centralized RAN (C-RAN) architectures within NTNs.
GNNs are leveraged to capture complex relationships between network nodes, enabling
real-time detection of link failures, prediction of network performance, and optimization of
traffic routing paths [69]. These capabilities are crucial for NTNs, where high mobility and
frequent topology changes demand continuous monitoring and rapid adaptation to evolving
conditions. The deployment of a cloud-native GNN-based monitoring framework enhances
network observability and resilience, providing valuable insights into resource utilization
and overall network health.

Resource optimization in NTNs extends beyond the core network to aerial components
such as UAVs, which are increasingly used to enhance coverage and connectivity in dynamic
and challenging environments. UAVs offer rapid deployment, flexible positioning, and
cost-effective coverage solutions, but optimizing their operational parameters, such as energy
consumption and flight trajectories, remains a complex challenge [94]. Reinforcement
Learning (RL) techniques, particularly the LSTM-A2C (Advantage Actor-Critic) approach,
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have shown great promise in addressing these challenges by dynamically adjusting UAV
paths based on real-time feedback [80]. By optimizing UAV trajectories, these models
minimize energy consumption while maximizing coverage, enhancing the overall efficiency
of NTNs in applications like 6G-enabled IoT surveillance networks.

This chapter’s contributions highlight the critical role of AI/ML models in transforming
resource management and optimization in 5G-NTNs. By integrating predictive and adaptive
techniques such as LSTM-based resource forecasting, GNN-based network monitoring, and
RL-driven UAV optimization, this research addresses the unique challenges of NTNs. It sets
the foundation for resilient, scalable, and efficient network architectures. These advanced
methodologies pave the way for future B5G and 6G networks, supporting the deployment of
critical communication services across diverse and often unpredictable environments.

4.2 LSTM-based Resource Prediction for Disaggregated
RAN in 5G-NTNs

4.2.1 Background and Motivation

Non-terrestrial networks (NTNs), including satellite communications, complement terrestrial
5G networks by providing extensive coverage, particularly in remote and underserved areas
[111]. Integrating NTNs with terrestrial networks promises to enhance global connectivity,
enabling seamless communication across diverse environments [50].

In this context, disaggregated radio access networks (RANs) have emerged as a pivotal
innovation. Disaggregated RANs separate the traditional monolithic base station architecture
into distinct components such as the Central Unit (CU), Distributed Unit (DU), and Radio
Unit (RU) [110]. This separation facilitates flexible deployment and efficient management
of network resources, thereby enhancing network performance and scalability [65].

One of the primary challenges in managing 5G NTNs with disaggregated RAN archi-
tectures is predicting and optimizing resource consumption to maintain Quality of Service
(QoS) and minimize Service Level Agreement (SLA) violations. Accurate network traffic
and resource usage prediction is essential for dynamic network slicing, efficient traffic steer-
ing, and proactive failure management [81]. In such a framework, Machine Learning can
offer valuable solutions. In particular, LSTM networks - a specific typology of recurrent
neural network (RNN) - have demonstrated remarkable success in time-series prediction due
to their ability to capture long-term dependencies in data [19, 113, 114]. LSTM models
are particularly well-suited for predicting network traffic and resource consumption in 5G
networks, where traffic patterns are dynamic and complex [45], [59].
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This section focuses on developing an LSTM-based resource prediction model for disag-
gregated RAN in 5G NTNs. We propose two architectures: the first involves splitting the
gNB into gNB-CU and gNB-DU across the satellite network, extending the F1 interface
over the satellite radio interface (SRI). The second architecture implements the F1 and E1
splits, with the gNB-CUUP as a satellite payload. These architectures are evaluated for their
resource consumption (CPU, memory, and bandwidth) and prediction accuracy using the
LSTM model.

By leveraging LSTM-based predictions, our approach aims to enhance network manage-
ment by providing insights into future resource requirements, facilitating proactive resource
allocation, and improving overall network performance. This research contributes to the
broader goal of developing resilient and efficient 5G NTNs capable of meeting the stringent
demands of modern communication applications.

Our research work uniquely addresses the prediction of resource consumption for split
NGRAN components across 5G NTN networks so that the prediction output will be used
by the network management section to decide which network function of the disaggregated
NG-RAN component can be considered as a satellite payload based on their previous resource
consumption. By considering both F1 and E1 splits and deploying gNB-DU and gNB-CUUP
as satellite payloads, our work aims to improve network resilience and readiness for future
network management decisions. This approach extends the existing LSTM-based prediction
methodologies to NTNs and provides a comprehensive solution for managing the complex
resource requirements of disaggregated RAN architectures in 5G NTN environments.

4.2.2 Disaggregated RAN Architecture

In the evolving landscape of 5G networks, the Next Generation Radio Access Network
(NGRAN) disaggregation has emerged as a key architectural innovation to modularize
and simplify network complexity and convert the centralized NGRAN functionality into
a disaggregated function. This will benefit network service providers and operators by
simplifying network monitoring tasks to maintain the required Quality of Service (QoS). The
3GPP TS 38.401 specification [8] discusses how the NGRAN can be functionally split into
distinct units, namely the Central Unit (CU) and Distributed Unit (DU), which can be further
divided into the CU-Control Plane (CU-CP) and CU-User Plane (CU-UP).
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Fig. 4.1 NGRAN Functional splitting architecture

This disaggregated approach enables operators to deploy network functions in a cloud-
native environment, optimizing resource allocation and reducing latency by strategically
positioning these components in the network. The disaggregated RAN supports more efficient
network traffic management by separating control and user plane functions. It facilitates the
integration of new technologies and services, making it a cornerstone of next-generation 5G
NTN networks.

As referenced in [8], [84], and [17], the gNB-CU and gNB-DU are connected via the
F1 interface. The gNB-CU consists of three layers: the packet data convergence protocol
(PDCP), radio resource control (RRC), and service data adaptation protocol (SDAP). The
RRC manages connection, mobility, security, and QoS between user equipment (UE) and the
network. PDCP handles data compression, security, sequencing, and reliable transfer, while
SDAP maps QoS flows to data radio bearers (DRBs) to prioritize traffic based on QoS re-
quirements. The gNB-DU hosts the radio link control (RLC), medium access control (MAC),
and physical layers. The RLC manages the segmentation, reassembly, and retransmission of
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data; the MAC layer handles scheduling, error correction, and multiplexing; and the physical
layer is responsible for transmitting and receiving data over the radio interface.

Figure 4.1 also shows a further split of the gNB-CU into gNB-CUCP and gNB-CUUP,
where the gNB-CUCP handles the RRC and the control plane tasks of PDCP (PDCP-C)
and the gNB-CUUP handles the SDAP and PDCP user plane (PDCP-U) tasks [66], [100].
The PDCP-C handles control plane tasks such as managing signaling messages, while the
PDCP-U is responsible for user plane data functions like header compression, encryption,
and integrity protection. This split allows for flexible network deployment and efficient
resource management to maintain QOS and efficient service level agreements (SLAs).

4.2.3 Proposed Network Architecture and Methodology

The payload capability of a typical LEO satellite in terms of available CPU and memory
capacity varies significantly based on the specific design and the intended application. This
work considers a typical LEO satellite working in a 5G NTN environment. Two network
architectures are considered in this work. The first architecture in Figure 4.2 shows the 5G
NTN network with gNB F1 interface over satellite radio interface (F1 over SRI) where the
gNB-DU is moved to the satellite payload.

Network
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5G Core Network

Leo Satellite
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gNB-DU

gNB-CU

NR-UE

ML(LSTM)

CAdvisorPrometheusGrafana
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overSRI

Fig. 4.2 5G NTN with F1 split

Figure 4.3 shows the second 5G NTN network architecture with gNB F1-E1 over SRI
(F1-E1 over SRI), where both the F1 and E1 splitting of gNB are deployed across the satellite
network. In this scenario, the gNB-CUUP will embark on the payload of the LEO satellite,
and the other network components will be placed in the terrestrial network.
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The network management section in both scenarios above relies on components like data
collection and preparation, LSTM-based prediction model, and network orchestrator. The
data collection section consists of open-source tools that can be used together to monitor
docker container-based networks. These components are used to collect and visualize the
resource consumption of the target network function. The first component of this section is
CAdvisor [49], which is used to collect, aggregate, and export information about containers
running on a host computer. It can collect metrics like CPU usage, memory usage, and
bandwidth utilization. The second component is Prometheus [36], which collects and stores
metrics as time series data that can be used for visualization. The third component is Grafana
[35], which queries and visualizes metrics from Prometheus.

The management section’s network orchestrator is assumed to decide on the network
functions based on the related historical resource utilization outputs provided by the LSTM
prediction model. A real orchestrator has not been implemented in our emulations. We
assumed an ideal orchestrator making ideal decisions driven by the prediction outcomes.
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The emulated network as shown in Figure 4.4 and Figure 4.5 depicts the two architectures
with only F1 split considering gNB-DU as the satellite payload and with both F1 and E1 split
considering gNB-CUUP as the satellite payload.
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Fig. 4.5 Emulated 5G NTN with F1_E1 split

Algorithm 5 below describes the resource utilization prediction of the LSTM model used
in this work.

4.2.4 Results and Analysis

Data on CPU usage, memory usage, and bandwidth utilization for the gNB-DU and gNB-
CUUP components were collected over 10 hours of simulation from Figures 4.2 and 4.3
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Algorithm 5 LSTM for Resource Consumption Prediction
1: Input: Data (CPU, Mem), seq_length, epochs
2: for each epoch do
3: Load data
4: data.columns← strip names
5: data(Bandwidth)← data[CPU ]·data[Mem]

106

6: Initialize: MinMaxScaler
7: scaled_data← scaler.fit(data)
8: x, y← create_sequences(seq_length)
9: x_train, x_test, y_train, y_test← split(scaled_data, 0.2)

10: Initialize: Sequential(LSTM, Dropout, Dense)
11: Initialize Adam
12: model.compile(loss=’mse’, optimizer=Adam)
13: early_stopping, reduce_lr← set callbacks
14: model.fit(x_train, y_train, callbacks=[early_stopping, reduce_lr])
15: test_loss, test_mae← model.evaluate(x_test, y_test)
16: Predictions← model.predict(x_test)
17: y_test_original← inverse_transform(y_test)
18: end for
19: Output: Trained model with metrics (test_loss, test_mae) and reconstructed labels

(y_test_original)

using Prometheus and Cadvisor. This data was normalized with a MinMaxScaler to scale
features between 0 and 1, essential for LSTM model performance. The normalized data was
transformed into sequences of 10 consecutive time steps, facilitating the learning of temporal
dependencies. The dataset was split 80-20 into training and testing sets, with the training set
further divided to include a validation subset to prevent overfitting.

An enhanced LSTM model, incorporating layers such as LSTM, BatchNormalization,
Dropout, and Dense, was trained for 300 epochs, employing early stopping and learning rate
reduction for optimization. Model performance was assessed on the test set using metrics
like Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R2).

This section presents simulation results, focusing on the resource utilization of the LEO
satellite payload components gNB-CUUP and gNB-DU within the disaggregated NG-RAN
5G NTN network. The network simulation uses OpenAirInterface for the disaggregated NG-
RAN and free5GC as the 5G core, while OpenSAND emulates the satellite network’s gateway,
satellite, and terminal components. The entire network is emulated in a Docker Compose
environment, equipped with data collection and visualization monitoring tools integral to the
LSTM model. The experiment is conducted on a Linux OS laptop with an Intel(R) Core(TM)
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i7-7500U CPU @ 2.70GHz, four allocated CPUs, and 16 GB of RAM. The complete code
for the experiment is available at https://github.com/HenokBerhanu/disag_vcc.

Analysis on the resource consumption of gNB-DU on F1 split

This subsection considers the architecture shown in Figure 4.4, where the gNB-DU is the
payload of the LEO satellite, and its resource consumption will be analyzed. Video traffic of
4 Mbits/s is generated across the network using iperf3 to collect data.

Figure 4.6 compares the actual and predicted CPU usage of the gNB-DU component
over a specific time window. This plot demonstrates how the LSTM model can effectively
capture the temporal patterns in CPU usage, with a mean absolute percentage error (MAPE)
of 12.24% showing acceptable prediction accuracy. An average predicted value of 0.5% CPU
utilization is recorded.

Fig. 4.6 CPU Usage for gNB-DU F1 split

Figure 4.7 illustrates the memory usage of the gNB-DU, following the same format as
the CPU usage plot. It compares the actual memory usage to the related predicted values,
with a MAPE of 0.72% with a highly reliable prediction performance. The average predicted
memory usage by the LSTM model is around 20 MiB.
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Fig. 4.7 Memory Usage in byte for gNB-DU F1 split

Figure 4.8 shows the bandwidth utilization, comparing actual versus predicted values
with a MAPE of 11.96%, an MSE of 0.0002, MAE of 0.0111, and an R-squared value of
0.3743 showing acceptable prediction accuracy of satellite gNB-DU.

Fig. 4.8 Bandwidth utilization for gNB-DU F1 split

The error distribution plots in figure 4.9 provide a detailed view of the discrepancies
between each feature’s predicted and actual values. By visualizing these errors through
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histograms and the ML model loss as shown in figure 4.10, we can assess the accuracy of
our predictions and identify any patterns or anomalies in the prediction errors.

Fig. 4.9 Error Distribution for CPU, Memory, and Bandwidth usages for gNB-DU F1 split

Fig. 4.10 Model Loss gNB-DU F1 split

The training vs. validation Mean Absolute Error (MAE) plot in Figure 4.11 compares the
model performance on the training and validation sets across different epochs. The training
MAE indicates how the model error decreases on the training data as it learns over epochs.
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Fig. 4.11 Training vs Validation Accuracy for gNB-DU F1 split

Analysis on the resource consumption of gNB-CUUP on F1-E1 split

Figure 4.12 compares the actual and predicted CPU usage of the gNB-CUUP component
over a specific time window. The model has moderate predictive accuracy with an ideal
MSE of 0, MSE of 0.0004, and an R-squared value of 0.0126, indicating that the model has
efficiently learned the provided data pattern.

Fig. 4.12 CPU Usage of gNB-CUUP for F1-E1 split
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As can be seen from Figure 4.6 and Figure 4.12, there is a higher CPU demand for the
gNB-DU, as compared to the CPU demand of gNB-CUUP of the F1-E1 split. This indicates
that it is technically better to consider the gNB-CUUP of the disaggregated NG-RAN as
moved to the LEO satellite payload.

Figure 4.13 shows the memory usage of the gNB-CUUP of the LEO satellite payload.
With a MAPE of 0.9% and an R-squared value of 0.9985, the prediction accuracy of the
proposed model exhibits better performance in memory prediction.

Fig. 4.13 Memory Usage for gNB-CUUP F1-E1 split

Figure 4.14 shows bandwidth utilization, comparing actual versus predicted values. The
MAPE is 13%, showing acceptable prediction accuracy with an MSE of 0.0007, MAE of
0.0214, and R-squared error of 0.5428.
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Fig. 4.14 Bandwidth utilization for gNB-CUUP F1-E1 split

The training vs. validation Mean Absolute Error (MAE) plot in Figure 4.15 compares
the model’s performance on the training and validation sets across different epochs. This
visualization helps us understand how well the model generalizes unseen data.

Fig. 4.15 Training vs. Validation Accuracy for gNB-CUUP F1-E1 split
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The training MAE indicates how the model’s error decreases on the training data as it
learns over epochs. The validation MAE reflects the model’s performance on validation data
and can reveal if the model is overfitting or underfitting.

4.3 Graph Neural Network-based C-RAN Monitoring for
Beyond 5G-NTNs

4.3.1 Introduction

Non-terrestrial networks (NTN) are instrumental in shaping the development of ubiquitous,
reliable, and scalable B5G networks. It extends beyond traditional terrestrial communication
systems by providing connectivity to remote and isolated regions that are otherwise chal-
lenging to access due to geographical constraints. Additionally, it helps alleviate congestion
on primary links during periods of high traffic demand. However, integrating NTN into
existing communication frameworks presents some peculiar challenges, including significant
propagation delays, pronounced Doppler effects, resource allocation complexity, and the
need for rapid and frequent handovers. These obstacles pose significant challenges to the
effective deployment of NTN.

The discussion on challenges and potential solutions in 5G satellite networks is comple-
mented by utilizing Artificial Intelligence/Machine Learning (AI/ML) and edge computing
technologies to efficiently monitor and manage future cloud-native beyond 5G (B5G)/6G
networks. Within the context of Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) in 5G NTN, the network orchestrator of the satellite and terrestrial
network can benefit from the utilization of efficient AI/ML mechanisms to minimize the data
processing and traffic routing overhead on the satellite thereby automating the NTN network.

The work by [111] presents a virtualized end-to-end experimental testbed employing
Multi-Access Edge Computing (MEC) functionalities for a 5G NTN network. Considering
Low Earth Orbit (LEO) small satellites, the deployment utilizes open-source 5G and satellite
emulators with network functions distributed as Docker containers and orchestrated using
Docker Compose. Optimization of the routing path in the LEO satellite constellation can
be achieved by considering various Key Performance Indicators (KPIs) such as routing
re-computation time, satellite altitude, distance from user equipment, inter-satellite links, and
input/output packet rates.

Advancing towards inclusive 6G systems involves leveraging AI/ML for network manage-
ment, routing, resource allocation, and integrating cloud services into NTN networks [32]. A
comprehensive survey of AI-powered satellite-based NTN for 6G network services is exten-
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sively discussed in [83]. Furthermore, [20] compares satellite emulators for experimental
setups, evaluating Mininet and Opensand for a VoIP scenario.

OpenAirInterface (OAI), a widely adopted open-source 3GPP-compliant protocol stack
based on software-defined radio (SDR), plays a crucial role within the research community
for conducting experiments and testing within 5G networks [83]. The work in [91] discusses
the development of a virtualized Cloud Radio Access Network (C-RAN) orchestration using
a Kubernetes cluster using OAI, deploying an LTE RAN stack component and allocating
resources based on the proposed network scenario. The work in [63] outlines the OAI 5G
New Radio (NR) project roadmap to achieve a fully standard-compliant implementation of
5G NR.

This work focuses on monitoring disaggregated NGRAN between terrestrial and LEO
satellite constellations using a graph convolution network (GCN) based cloud-native 5G
network deployed in a four-node Kubernetes cluster. An end-to-end 5G network is de-
ployed using OAI and Opensand satellite emulator with the NGRAN split among centralized
(gNB-CU) and distributed units (gNB-DU). The gNB-CU is deployed in the terrestrial net-
work, while the gNB-DU is incorporated as a payload of LEO satellite constellations. The
GCN module can generalize any topology once trained offline with an arbitrary topology.
GCN gathers network information from the core network data plane components and the
disaggregated NGRAN across the FlexRAN controller. Mosaic5G operator and flexible
software-defined RAN controller (FlexRAN) will automate the network.

4.3.2 Motivation and Challenges

Radio access deployment based on disaggregated NGRAN is becoming a significant trend
in the integrated NTN architecture. Considering an LEO satellite constellation that works
in regenerative mode, the satellite payload faces substantial challenges due to the limited
resources available for data processing and traffic routing capability.

This work considers the distributed unit of the radio access network (gNB-DU) to be
carried on the satellite board with multiple LEO constellations [102], while the centralized
radio access units (gNB-CU) are to be deployed on the terrestrial network in different
geographical locations. Therefore, it is believed that a Machine-Learning-based approach
should be employed in the NTN network to identify faulty nodes and links across the
disaggregated NGRAN and find the shortest traffic routing path from the terrestrial core
network to the user equipment via the satellite network. The high mobility of LEO satellites
and the limited processing capability will be optimized by adding GNN for resilient and
monitored service.
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GCN can learn a condensed representation of each node in the network that contains
information about the node, its neighbors, and their interconnecting topology [61]. Here,
the nodes are assumed to be container network functions or pods deployed in a four-node
Kubernetes cluster. The GCN module can generalize on any topology once it’s trained
offline with an arbitrary topology, which benefits the frequently changing topology of the
LEO satellite network. Graph-based terrestrial and satellite network information such as the
location, distance from the user equipment, link information between network components,
and received signal strength can be used to train the proposed GCN model to optimize the
NTN network performance. For instance, the GCN can identify which radio unit of the LEO
constellation failed and which satellite node is closest to the user equipment to route traffic
by identifying the shortest path for delay-sensitive services.

Considering the shortcomings of the NTN network mentioned above, a four-node Kuber-
netes cluster is deployed to implement NTN network services utilizing a software-defined
service orchestrator and ML techniques to monitor the network. The deployed network
is fully cloud-native, utilizing a Mosaic5G operator to automate the end-to-end service by
configuring the network and instantiating a new network function into the NTN network
service.

The F1 interface over the satellite radio link failure detection and automatic traffic routing
strategies are implemented in the end-to-end NTN-based 5G network utilizing a graph
convolution network-based monitoring solution. This strategy effectively compensates for
LEO satellites’ limited computational resources and payload capacity.

4.3.3 Background Work

The present work is in a state-of-the-art framework dealing with innovative NTN architectures
and related non-conventional monitoring and management techniques.

In [102], Rinaldi et. al target at surveying NTNs and their potential role in 5G and
beyond New Radio (NR) systems. This article reviews the 3GPP NTN features and assesses
their capability to meet user expectations in 5G and beyond networks. A detailed analysis of
service availability, continuity, and scalability within integrated T-NTN networks is provided.
In particular, NTNs play a crucial role in ensuring uninterrupted service to mission-critical
applications with minimal tolerance for failure. An architectural view of an integrated
T-NTN network is computed for various use cases applying a functional splitting of gNB
into a distributed unit (gNB-DU) and central unit (gNB-CU), which provides service for
user equipment (UEs) located in under-served areas involving multi-connectivity between
multiple regenerative gNB-DU based NGRANs.
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Similarly, a cloud-native 5G disaggregated network using Openairinterface [95] and
FlexRIC controller is considered in [115]. FlexRIC, a flexible software-defined RAN
(SD-RAN) controller for network programmability, enforces slice decisions issued by an
ML model built into the network. The primary objective of the work is to develop a
service-aware dynamic slice allocation scheme supported by supervised learning. The
decision of slice allocation is enforced on the network through the FlexRAN controller in
a Kubernetes environment. The work in [122] deploys an end-to-end 5G network service
using a Kubernetes cluster. The authors demonstrate the implementation of the Mosaic5G
operator using OpenairInterface-based 5G services supporting network slicing.

The concept of leveraging cloud-native technologies and automation to manage and
optimize 5G networks is addressed in [18]. A two-node Kubernetes cluster is implemented to
deploy the Openairinterface core and disaggregated NGRAN with the Mosaic5G operator as
an automation tool. The major task planned for this work is to switch dynamically between
monolithic and disaggregated RAN with auto-configuration. However, the specific usage
scenario of the Mosaic5G platform is not explicitly discussed.

A tutorial [110] presents the emerging challenges and possible applications of AI/ML
techniques in NTN networks. Densification of satellites may involve high-complexity
problems, such as resource allocation and routing path selection. AI/ML methods are
expected to automatically solve such problems in a near-optimal fashion without causing
service interruption. In the same framework, [12] discusses the possible ML models that can
serve as a 6G enabler.

The work in [79] presents a near-optimal onboard routing for a large constellation of
LEO satellites by using a graph neural network (GNN). GNN can learn the graph structure
of satellites and find a shorter path for routing traffic. The dynamic topology and limited
processing resources onboard make the routing challenging to manage. The GNN model
learns offline data, minimizing the on-board decision-making tasks and saving processing
resources.

4.3.4 System Architecture

To deploy the emulated cloud-native 5G NTN network to test the graph convolution network
(GCN)-based C-RAN monitoring, a four-node Kubernetes cluster is developed on virtual
machines using the vagrant tool. The cluster consists of three worker nodes and one master
node. One of the worker nodes is with the OAI 5G core, namely Mosaic5G, and the ML
section. The second worker node is for gNB-CU deployment, and the third worker node
is dedicated to deploying the satellite emulator (Opensand) with a gNB-DU as a payload.
The implementation embarks a cloud-native containerized 5G disaggregated network, using
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Fig. 4.16 C-RAN monitoring topology.

open-source 5G and satellite emulators. A network of geographically distributed terrestrial
gNB-CU and satellite gNB-DU is realized using the GCN model to identify the faulty
NGRAN component based on link delay and the shortest traffic routing path. Figure 4.16
and 4.17 illustrate the system architecture, highlighting the comprehensive structure of the
containerized 5G network. It includes the applications, the integrated machine learning unit
featuring the proposed GCN model, and the interactions among all the components involved.
This architecture is implemented at the target facility, which supports the development,
deployment, and testing of the containerized 5G network equipped with GCN capabilities.

For the ML section, traffic data is collected using Wireshark from the 5G core user plane
function (UPF) and the decentralized access network of both terrestrial and satellite sections
using the FlexRAN controller. The collected data is processed, while a training and test
dataset is prepared to train the GCN module to detect failure based on link delay in the access
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Fig. 4.18 Graph data representation.

network. NetworkX generates graph-based datasets containing delay metrics on the edges,
representing links between nodes.

These datasets are used for both training and testing. NetworkX is used to convert
the dataset into graph data for model training. The training data is labeled as normal and
anomalous based on the threshold delay metrics of the graph edge attribute. The GCN model
in the ML section of figure 4.16 will be trained offline, and the related failure detection
probability will be computed. Here, the mosaic5G operator will be imposed to reroute the
traffic to a path where the delay is not compromised, thus fulfilling the QoS requirements.

4.3.5 Graph Convolution Network Representation

A Graph Convolution Network (GCN) is a typology of deep learning graph neural network
specifically designed for handling data represented in graph structures. It excels at perform-
ing fault detection tasks of the network of nodes. Graph data can be represented by two
fundamental elements: nodes/vertices and edges/links. A graph can be denoted as G = (V, E),
where V represents the set of nodes, E represents the link connecting the nodes as shown in
the figure 4.18.
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GCNs are well-suited for anomaly detection in networks modeled as graph-structured
data. In these applications, the disaggregated C-RAN of the NTN network is represented as
a graph, with the nodes representing the terrestrial gNB-CU and satellite gNB-DU and the
edges featuring the connections between them. The key advantage of using GCNs for this
task is their ability to effectively capture the local neighborhood information around each
node and identify faulty edges based on the training data.

The mathematical expression that relates the gNB-CU and gNB-DU as node entities of
the graph data and the link between them as edges with their feature elements in a GCN is
formulated in the equation below:

x(l+1)
v = σ

(
∑

w∈N (v)

1√
|N (v)|

√
|N (w)|

W(l)x(l)w

+W(l)
e e(l)vw +b(l)

)
(4.1)

Where:

• x(l+1)
v is the output feature vector of node v in the (l +1)th layer

• N (v) is the set of neighbors of node v including v itself

• W(l) is the layer-specific trainable weight matrix for node features

• x(l)w is the input feature vector of node w in the lth layer

• e(l)vw is the edge feature vector between nodes v and w in the lth layer

• W(l)
e is the trainable weight matrix for the edge features

• b(l) is the layer-specific trainable bias vector

• σ is a nonlinear activation function

.

4.3.6 Methodology

Different open-source software is utilized for the testbed; Openairinterface [95] is used as a
5G core and disaggregated gNB with splitting functionality into centralized and distributed
units inside the Kubernetes cluster. The satellite network is emulated using Opensand [104]
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satellite emulator with three pods (Gateway, Satellite, and Terminal). The satellite emulators
work in regenerative mode with gNB-DU as a payload. Mosaic5G is used as a network
operator to configure, deploy, and instantiate the network components together with a flexible
software-defined RAN (FlexRAN) controller, which is used to manage the disaggregated
access network as shown in the figure 4.19.

For what concerns the Kubernetes cluster, Flannel and Multus are used as the container
network interface (CNI) plugin, and Contained is used as the container runtime interface
(CRI) compliant with the OAI core and radio access network requirements. The OAI core,
NGRAN, Mosaic5G operator, and FlexRAN controller network functions are configured to
function with the Opensand satellite emulator.

The OAI core will be deployed on worker node 1, while the Mosaic5G operator and
the FlexRAN will be deployed on worker node 2. At the same time, the Opensand satellite
emulator and the disaggregated NGRAN will be deployed on worker node 3. Then, an
end-to-end NTN network will be set up in the cluster as shown in figure 4.19. The network’s
connectivity is tested by generating traffic using iperf3, which is also used for collecting data
traffic to train the GCN model.

To prepare the dataset for training and evaluating the GCN model, we first represented
the network as a graph G(V,E) using NetworkX, where V represents the nodes (gNB-CU
and gNB-DU) and E represents the edges (links) between them. Then, we loaded the delay
metrics collected from the emulated network into the generated graph as edge attributes. This
allows the link features to be incorporated into the model. Next, we used NetworkX’s built-in
functions as node degree to show the number of links a node acquires and edges to describe
link attributes to analyze the graph structure and extract relevant features for the GCN. Then
the dataset is split into training, validation, and test sets. To prepare the target labels for
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training, we labeled the training data as normal or anomalous based on thresholds on the
delay metrics of edge attributes collected from the emulated network. We then exported the
training and test data in the format required by the GCN library, such as adjacency matrix and
feature matrix. After that, we created the GCN layers and data generator using StellarGraph’s
FullBatchNodeGenerator.

Finally, we built and trained the GCN model using TensorFlow Keras, compiling it with
the appropriate optimizer, loss function, and metrics.

4.3.7 Result and Discussions

Network failure detection is based on link delay metrics collected from the deployed network
to generate and train the ML model. The GCN model is trained offline using the network
data. The training data is prepared by collecting topological and traffic information on
the NTN network from both the distributed gNB-CU of the terrestrial network and the
satellite-connected gNB-DU.

Figure 4.20 shows the end-to-end delay plot of the emulated network using two scenarios.
The first is the default scenario, where a link delay is imposed across the F1 link between the
terrestrial and satellite gNBs. The second one is computed assuming the Mosaic5G operator
receives an order from the ML section to re-route the traffic across nodes closer to the user
equipment. The traffic data is collected using Wireshark and plotted using the Gnuplot tool.

As shown in figure 4.21, the overall jitter decreases across the simulation time to show
the user experience of jitter during the extended F1 link delay and after the delay is reduced
from the detection of faulty link and the Mosai5G operator routes the traffic using a shorter
routing path.

Traffic data collected from the emulated network environment uses a delay scenario
where the F-1 over satellite radio interface link between the terrestrial gNB-CU and satellite
gNB-DU has different delay metrics simulated using Linux tc command. The Mosaic5G
operator will be instructed to re-route the traffic across other nodes to deliver the traffic to
the destination to fulfill the QoS requirements of user equipment. This strategy is crucial
in achieving service continuity and network resiliency, ensuring service level agreements
(SLAs).
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4.4 UAV Trajectory Optimization for Resilient 3D NTN
networks

The proliferation of wireless communication technologies has driven the need for innovative
solutions to enhance network coverage and efficiency. Unmanned Aerial Vehicles (UAVs)
have emerged as a versatile tool in wireless networks, offering rapid deployment, flexible
positioning, and cost-effective coverage solutions. However, optimizing the operational pa-
rameters of UAVs, particularly their energy consumption and user coverage, poses significant
challenges, especially in dynamic and unpredictable environments [94].

Energy efficiency is critical for UAV operations, given their limited battery capacity.
Balancing the need to maximize coverage of mobile users while ensuring that the UAVs
can return to their landing sites before battery depletion requires sophisticated planning and
optimization techniques [55]. Traditional approaches often fail to address the complexity
and variability of real-world scenarios [62].

Reinforcement Learning (RL) has shown great promise in tackling complex optimization
problems through its ability to learn optimal policies from interaction with the environment
[80]. UAVs can dynamically adjust their flight paths and operational parameters using RL
techniques to achieve desired outcomes. In this study, we explore the application of advanced
RL methods, including Q-learning, Double Deep Q-Network (DDQN), and Actor-Critic
approaches, to optimize the energy consumption and coverage of UAVs in dynamic wireless
networks [58].

Our research investigates the performance of these RL techniques under various condi-
tions, such as different starting positions and environmental factors like wind. We aim to
develop a robust framework that enables UAVs to cover as many users as possible while
conserving energy efficiently. Through extensive simulations, we demonstrate the potential
of these RL approaches to achieve convergence and optimize UAV performance [125]. How-
ever, we also identify and analyze inconsistencies in reproducing optimal results, suggesting
areas for further improvement in reward structures and hyper-parameter tuning [103].

The key contributions of this paper are as follows: (1) We develop and implement
a novel LSTM-A2C reinforcement learning approach for UAV trajectory optimization in
dynamic 6G-enabled IoT environments. (2) In various challenging scenarios, We conduct
a comprehensive comparative analysis of our LSTM-A2C method against state-of-the-art
RL techniques, including Q-learning, DDQN, and traditional Actor-Critic methods. (3) We
demonstrate the superior performance of our approach in terms of coverage optimization,
energy efficiency, and adaptability to dynamic user distributions and adverse environmental
conditions. Our findings significantly advance UAV-based surveillance capabilities in next-
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generation wireless networks, paving the way for more efficient and resilient communication
systems in complex, real-world environments.

4.4.1 Literature Overview

Optimizing UAV operations, especially energy consumption and coverage, is extensively
studied in wireless communication and IoT networks. However, the dynamic nature of
6G-based IoT environments demands more adaptive solutions. Energy efficiency is crucial
for UAVs, particularly during long flights for data collection. Early research focused on
optimizing UAV trajectories to reduce energy use. Zeng et al. [128] created a framework
that optimizes propulsion and communication energy, balancing mission goals with energy
efficiency. Adaptive strategies for UAVs have advanced to handle real-time environmental
changes. For instance, Mozaffari et al. [89] investigated UAV deployment strategies that
adjust dynamically to user distribution and demand fluctuations. However, these methods
often rely on static models and may struggle with real-world unpredictabilities, such as
sudden wind or unexpected obstacles. Effective surveillance and data collection depend
on maximizing coverage. Traditional optimization techniques use geometric models or
heuristics to ensure UAVs cover the area efficiently. Gupta et al. [27] proposed a path-
planning algorithm that segments the area to guarantee full coverage. Reinforcement Learning
(RL) has recently been increasingly applied to UAV systems for autonomous decision-making
in complex environments. RL enables UAVs to learn optimal strategies through interaction,
aiding energy management and coverage optimization tasks.

Q-Learning is a core RL algorithm for UAV path planning and obstacle avoidance. Chen
et al. [116] demonstrated its effectiveness in learning navigation policies without prior
environment knowledge. However, more advanced methods have been developed due to its
slow convergence and inefficiency in high-dimensional spaces.

The Double Deep Q-Network (DDQN) improves upon Q-Learning by reducing over-
estimation bias through separate action selection and evaluation, resulting in more stable
learning. Wang et al. [119] applied DDQN to multi-UAV coordination, showing it outper-
forms traditional Q-Learning in complex scenarios.

Recent advances in deep reinforcement learning (DRL) have enhanced UAV path planning
and collision avoidance. Ramezani et al. [98] proposed an LSTM-MPC method integrated
with the Deep Deterministic Policy Gradient (DDPG) algorithm, which stores future states
and actions in a predicting pool. This method improves learning robustness, efficiency, and
convergence rates compared to traditional RL approaches.

While the LSTM-MPC-DDPG approach enhances prediction and control in path planning,
our research employs LSTM-Advantage Actor-Critic (LSTM-A2C) to optimize UAV energy
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consumption and coverage in dynamic 6G-based IoT networks. Unlike LSTM-MPC’s
deterministic policy, LSTM-A2C balances exploration and exploitation to find optimal
trajectories for maximizing user coverage and energy efficiency. This shows LSTM-based
RL methods’ adaptability to various UAV objectives, from path planning to mission-critical
tasks.

Lee et al. [70] introduced SACHER, a Soft Actor-Critic (SAC) algorithm with Hindsight
Experience Replay (HER) for UAV path planning and collision avoidance. SACHER im-
proves exploration and robustness over earlier DRL methods but may compromise learning
optimality due to SAC’s entropy-augmented objective.

In contrast, our study uses an LSTM-Actor Critic approach to capture sequential de-
pendencies in dynamic 6G-based IoT environments. Unlike SACHER, which focuses on
immediate path planning and collision avoidance, our method prioritizes long-term energy
efficiency and coverage by modeling the problem as an episodic, un-discounted RL task.

The LSTM-Advantage Actor-Critic (LSTM-A2C) method has shown its robustness in
sequential decision-making across various dynamic systems. For instance, Wang et al. [73]
applied LSTM-A2C to network slicing with user mobility, demonstrating its effectiveness in
adapting to changing demands and conditions for real-time resource optimization.

Despite its success in network settings, LSTM-A2C’s application to UAV energy and
coverage optimization has been explored less. Our research addresses this gap by applying
LSTM-A2C to UAV trajectory optimization in 6G-based IoT networks, aiming to improve
energy efficiency and coverage in dynamic environments through the sequential learning
capabilities of LSTM.

While Q-Learning and DDQN have advanced UAV energy and coverage optimization,
they often face scalability and adaptability issues in real-world scenarios, especially with the
sequential dependencies of complex UAV operations in 6G-based IoT networks.

Our research introduces a novel LSTM-Actor Critic approach to address gaps in UAV
operations. LSTM networks, known for capturing temporal dependencies, are ideal for
sequential decision-making in dynamic settings [19, 113, 114]. Integrating LSTM with the
Actor-Critic framework aims to improve UAV efficiency in 6G and Non-Terrestrial Networks
(NTN).

We use Q-Learning and DDQN as benchmarks to evaluate our LSTM-Actor Critic model.
Extensive simulations show that our approach enhances convergence speed, stability, and
energy efficiency, especially in uncertain and variable environments.
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4.4.2 Optimization Formulation

This study optimizes a UAV’s trajectory for surveillance over a 20×20 meter grid. The UAV’s
task is to capture images of individuals while managing constraints such as limited energy,
upward winds, and no-fly zones, as shown in Figure 4.22.

To simplify control dynamics, the UAV flies at a fixed altitude and speed, reducing the
problem to a 2D plane and lowering computational complexity. Starting from a designated
point, the UAV must land within a specified area before its battery depletes. It can make up
to 25 discrete movements in four directions: up, down, left, or right.

The main goal is to maximize the number of unique individuals captured while adhering
to energy limits and avoiding restricted zones.

Take-off 
Area

Landing 
Area

UAV Path

User 

Upward wind

Fig. 4.22 System Model

The surveillance area features a high-rise building within a 20x20 meter grid that the
UAV must avoid. Additionally, upward wind in certain regions pushes the UAV’s movement
one unit up, complicating path planning.

People’s locations are distributed according to 2D Gaussian distributions, redrawn each
episode, introducing stochasticity into trajectory planning.

This path planning problem is a combinatorial optimization challenge with constraints
and dual objectives: maximizing observed people and ensuring the UAV lands within the
target area before battery depletion. Due to its constraints and dynamic environment, the
problem is NP-hard. Its complexity grows with grid size and battery capacity, resulting in a
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state-space complexity of O(400×420), where 400 is the number of grid locations and 420

represents the action sequences in 25 steps.
The UAV’s trajectory optimization problem can be formulated as a multi-objective

optimization problem with the following objective function and constraints, as illustrated in
Equation 4.2.

Objective: max
T

∑
t=1

Nt

Subject to: (xt+1,yt+1) = (xt ,yt)+ action(At)+

wind(xt ,yt),

1≤ xt ,yt ≤ 20, ∀t,
(xT ,yT ) ∈ SL,

(xt ,yt) /∈ SB, ∀t,
T

∑
t=1

et ≤ 25.

(4.2)

Where:

• (xt ,yt) represents the UAV’s position at time step t.

• At is the action taken at time step t, with At ∈ {up,down, left, right}.

• Nt is the number of new individuals observed in the image taken at time step t.

• SL = {(x,y) | 7≤ x≤ 9,18≤ y≤ 20} is the designated landing area.

• SB= {(x,y) | 8≤ x≤ 14,10≤ y≤ 13} is the no-fly zone corresponding to the high-rise
building.

• wind_shift(xt ,yt) adjusts the UAV’s movement in regions affected by wind, defined
for specific x,y coordinates.

• T is the total number of steps the UAV can take, limited by its battery.

This optimization problem involves searching through a large state space with dynamic
constraints, making it challenging to solve using brute-force methods.



90 AI/ML Based Resource Management and Optimization Techniques for 5G-NTNs

4.4.3 Advanced RL Based Approach

Given the UAV surveillance problem’s complexity and dynamic nature, we propose a new
Reinforcement Learning (RL) framework for optimal or near-optimal solutions. RL effi-
ciently handles large state spaces and dynamic environments, making it suitable for UAV
path planning. This approach aims to maximize surveillance effectiveness while meeting
constraints on energy, landing, and obstacle avoidance.

RL utilizes Markov Decision Processes (MDPs) to model the environment and optimize
actions. MDPs formalize sequential decision-making, where the UAV learns a policy, π , to
maximize cumulative rewards by interacting with its environment.

In our UAV surveillance problem, the RL agent learns a policy to maximize unique
observations while managing energy and ensuring a safe landing. Reformulated in RL terms,
this involves maximizing the expected cumulative reward, which represents the number of
new people observed, while adhering to constraints (see Equation 4.3 and Equation 4.4).

Objective: max
π

Eπ

[
T

∑
t=1

Rt

]
(4.3)

Subject to: (C1), (C2), (C3), (C4), (C5) (4.4)

Where:

• π is the policy that maps states to actions, π : St → At .

• Rt is the reward obtained at time step t, which corresponds to the number of new
individuals observed in the image taken at time step t (Nt).

To effectively model the UAV surveillance problem using the RL framework, we define the
key components of the Markov Decision Process (MDP).

we define the state space St to encapsulate all relevant information needed for decision-
making as in Equation 4.5

St = (xt ,yt ,bt) (4.5)

At any given location, The UAV has four available actions action At at time step t
corresponding to the possible directions of movement: up, down, left, right. Each action
consumes one energy unit.

The reward function is designed to reflect the multi-objective nature of the problem
(Equation 4.6):

Rt = Nt(St ,At)−λ1E(At)−λ2I[St+1 /∈ SL and t = T ] (4.6)
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Where:

• λ1 is a penalty factor for energy usage, encouraging energy-efficient paths.

• λ2 is a penalty for failing to land in the designated area at the end of the episode.

• I[·] is an indicator function that adds a penalty if the UAV does not land in the landing
zone SL at the end of the episode.

Further, it can be modified, as in Equation 4.7:

Rt =



−5−λ1E(At) if (xt ,yt) is out of bounds

or in a no-fly zone,

20−λ1E(At)−λ2I[t = T ] if (xt ,yt) is in the landing

zone,

Nt(St ,At)−λ1E(At)−1 if new people are observed,

−10−λ1E(At) if (xt ,yt) is revisited.

(4.7)

This model’s reward function combines penalties for invalid actions and energy use with
rewards for key achievements. It promotes efficiency by minimizing unnecessary movements,
managing energy well, and rewarding successful observations and strategic landings.

4.4.4 LSTM-A2C

The Advantage Actor-Critic (A2C) is a key RL algorithm for optimizing UAV surveillance
policies. It combines policy-based and value-based methods to balance exploration and
exploitation in complex environments. A2C employs two neural networks (see Equation
4.8):

• Actor: Updates the policy πθ to maximize expected cumulative rewards by adjusting
θ based on the critic’s feedback. It increases the probability of actions that lead to
higher rewards, guided by the advantage estimate from the critic.

• Critic: Evaluates the value function Vφ to estimate expected returns for given states
and actions. It calculates action advantages by comparing predicted and actual returns,
updating φ to minimize temporal difference (TD) error and stabilize learning.

δt = Rt + γVφ (St+1)−Vφ (St)

θ ← θ +α∇θ logπθ (At | St)δt

φ ← φ +βδt∇φVφ (St)

(4.8)
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To improve UAV path planning and surveillance, we integrate Long Short-Term Memory
(LSTM) networks with the A2C framework (see Figure 4.23). LSTMs, a recurrent neural
network (RNN), excel in capturing temporal dependencies and long-term patterns, making
them ideal for dynamic environments. They mitigate vanishing gradient issues using memory
cells and gating mechanisms to retain relevant information over extended periods.

• State Representation: In the integrated model, at each time step t, the LSTM receives
an input that represents the current state of the UAV, such as st = [xt ,yt ,bt ]. This
sequence can be represented as in Equation 4.9:

St ={st−n, . . . ,st−1,st} (4.9)

where st−n to st represent the sequence of states up to the current time step t, and n the
sequence of length. This sequence provides the LSTM context on the UAV’s historical
behavior, allowing it to make informed decisions based on past observations.

• Hidden State: The LSTM retains a hidden state ht and a cell state ct at each time step.
The hidden state ht incorporates information from previous steps, while the cell state
ct maintains long-term dependencies for informed decision-making.

• Feedback Mechanism: Both actor and critic networks use the LSTM’s hidden state
ht . The actor refines the policy πθ based on this state, enhancing responsiveness to
temporal patterns. The critic uses it to improve the accuracy and stability of its value
function Vφ .

Algorithm 6 demonstrates how integrating LSTM networks with the A2C algorithm enhances
UAV adaptability in complex environments, leading to improved surveillance and path
planning. This integration boosts performance by better managing temporal sequences and
dependencies, optimizing both operations and planning.

4.4.5 Simulation Scenario

To evaluate our DRL approach, we created a simulation environment representing urban
surveillance scenarios within a 20x20 meter area, with 100 individuals distributed across five
clusters:

The distribution of individuals is as follows:

• Cluster 1: 40 users are distributed randomly around (17, 4) with a standard deviation
of 5.
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Fig. 4.23 LSTM-Actor Critic Network Architecture

Algorithm 6 LSTM-A2C for UAV Surveillance

1: Initialize: LSTM-A2C model with parameters θ (actor), φ (critic), LSTM state (h0,c0),
replay buffer D

2: for each episode do
3: Initialize UAV position in Take-off Area
4: Randomize people locations
5: for each step t until battery depletion or Landing Area do
6: Update LSTM state (ht ,ct)
7: Select action At ∼ πθ (· | St ,ht)
8: Compute value Vφ (St ,ht)
9: Execute At , observe Rt , St+1

10: if |D|< n then
11: D← D∪ (St ,ht ,At ,Rt ,St+1)
12: else
13: Remove oldest entry from D
14: D← D∪ (St ,ht ,At ,Rt ,St+1)
15: end if
16: Compute TD error: δt = Rt + γVφ (St+1,ht+1)−Vφ (St ,ht)
17: Update actor: θ ← θ +α∇θ logπθ (At | St ,ht)δt
18: Update critic: φ ← φ +βδt∇φVφ (St ,ht)
19: end for
20: end for
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• Cluster 2: 15 users are distributed randomly around (12, 6) with a standard deviation
of 4.

• Cluster 3: 15 users, similar to Cluster 2, are distributed around the same parameters.

• Cluster 4: 20 users are distributed randomly around (15, 15) with a standard deviation
of 5.

• Cluster 5: 10 users are distributed randomly around (7, 16) with a standard deviation
of 3.

The UAV’s trajectory and coverage were optimized using an actor-critic network with
an LSTM architecture. The model’s fully connected layers, featuring 256 units and ReLU
activation, effectively handle complex features and time-dependent sequences.

In training, the key parameters include a learning rate of 0.01 and a discount factor (γ) of
0.99, totaling 1000 episodes. The Adam Optimizer is utilized, also with a learning rate of
0.01. The loss function used is Huber Loss. Penalty factors are set with λ1 at 0.1 for energy
consumption and λ2 at 10 for failing to reach the landing area by the end of the episode.

4.4.6 Discussion

Our experiments demonstrate that the LSTM-based Advantage Actor-Critic (A2C) method
optimizes UAV operations in a 6G IoT network. The goal was to maximize coverage, defined
by the number of unique individuals captured, while ensuring a safe landing before battery
depletion. We compared our approach with Q-learning, DDQN, and traditional Actor-Critic
methods. The results are presented in Figures 4.24, 4.25, and 4.26.

We assessed key performance metrics, including coverage, which refers to the number of
unique individuals detected; energy consumption, the total energy used during flight; and
completion rate, representing the percentage of successful landings within the target area.
Adaptability measures the ability to adjust to changing conditions, such as wind and user
distribution. Convergence indicates the speed and stability of reaching an optimal policy,
while computational performance evaluates the training time required for each algorithm.

As depicted in Figure 4.26, the LSTM-A2C algorithm effectively navigates the UAV
through the dynamic environment. The LSTM-A2C method consistently outperformed
Q-learning, DDQN, and traditional Actor-Critic in coverage. It detected 15-20% more unique
individuals in dynamic conditions due to its ability to model temporal dependencies and
adapt to environmental changes as seen in Figure 4.24.

Figure 4.24 also shows that the LSTM-A2C method achieved faster and more stable
convergence to an optimal policy than the baseline methods. It reached a steady state
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with fewer episodes and demonstrated less reward variance during training. In complex
environments, LSTM-A2C outperformed other methods, which converged more slowly and
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Fig. 4.26 Optimal UAV Path snapshot at one of the episodes

with greater performance fluctuations, thanks to its ability to capture temporal correlations
for improved decision-making.

In Figure 4.25, the LSTM-A2C method achieved an approximately 80% completion rate,
outperforming Q-learning and DDQN, highlighting its effectiveness in balancing exploration
and exploitation for UAV landing. While some methods initially focused on reaching the
landing quickly, this often led to fewer users being discovered. Our reward mechanism
penalized such behavior, encouraging broader exploration. LSTM-A2C quickly adapted,
maintaining a high completion rate while increasing user discovery and effectively balancing
multiple objectives.

We evaluate energy efficiency by the number of individuals discovered per 25-unit battery.
The LSTM-A2C method maximizes coverage within this limited battery, uncovering more
people than other methods. Its adept balance of exploration and efficiency enhances discovery
and ensures the UAV reaches the landing station effectively before battery depletion.

The LSTM-A2C method had comparable training times to DDQN and traditional Actor-
Critic methods. The additional computational cost of LSTM layers was outweighed by the
improvements in coverage and energy efficiency, making it practical for real-world UAV
applications.

Our experiments show that the LSTM-A2C method significantly outperforms traditional
RL algorithms in optimizing UAV operations in dynamic environments. By modeling se-
quential decision-making effectively, LSTM-A2C excels in coverage, energy efficiency,
convergence, and mission success. This highlights its potential for advancing UAV surveil-
lance in 6G-enabled IoT networks with variable conditions and dynamic user distributions.
Future work will focus on extending this research to 3D contexts and multi-UAV scenarios,
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aiming to improve scalability and robustness for complex surveillance tasks. We will also
explore integrating advanced neural network architectures, such as Transformers, to enhance
performance in large-scale, dynamic environments.

4.5 Summary

This chapter presents an LSTM-based approach for predicting resource utilization in disag-
gregated RAN architectures within 5G Non-Terrestrial Networks (NTNs). By comparing two
configurations—one with a gNB-CU and gNB-DU split over the F1 interface and another
adding F1 and E1 splits with gNB-CUUP as a satellite payload—we demonstrate LSTM’s
effectiveness in predicting CPU, memory, and bandwidth usage. These predictions enable
proactive resource management, ensuring efficient network utilization and high QoS. The
combined F1 and E1 split configuration offers greater flexibility and resource efficiency
while integrating critical network functions into satellite payloads, which enhances network
resilience, particularly in remote areas. This work underscores LSTM’s potential in improv-
ing 5G NTN management, especially in handling dynamic traffic patterns. Future work will
scale these models for larger networks and incorporate additional ML techniques for fault
detection and energy efficiency.

The primary objective of the Beyond 5G (B5G)/6G network is to ensure ubiquitous
service availability by leveraging non-terrestrial networks (NTN). Efficient detection of
network function failures and automatic traffic routing strategies are essential to compensate
for LEO satellites’ limited computational resources and payload capacity. This work monitors
disaggregated NGRAN between terrestrial and LEO satellite constellations using a GCN-
based cloud-native 5G network deployed on a Kubernetes cluster. The testbed utilizes
OpenairInterface and Opensand satellite emulators with the NGRAN split functionality.
GCN gathers network information from the core network user plane function (UPF) and
disaggregates NGRAN components across the FlexRAN controller. The preliminary results
discussed in the paper show that the GCN module can learn the graph data representation of
disaggregated NGRAN and detect the F1 link failure over the NTN network to optimize the
QoS requirements and impose service level agreements (SLAs). Once the GCN is trained
offline with the generated graph dataset, it can be generalized over new topology, making it a
promising solution for the frequently changing topology of the LEO satellite constellation.
As the future extension of this work, A physical testbed of the emulated environment will be
implemented for a cloud-native 5G NTN network employing software-defined radio (SDR)
applications.



Chapter 5

Conclusion and Future Directions

5.1 Conclusion

This thesis has explored the integration of Non-Terrestrial Networks (NTNs) within Beyond-
5G (B5G) and future 6G ecosystems, focusing on enhancing their performance, efficiency,
and security. NTNs, including Low Earth Orbit (LEO) satellites, Unmanned Aerial Vehi-
cles (UAVs), and High Altitude Platform Systems (HAPS), expand the reach of terrestrial
networks by providing connectivity in remote, underserved, and connection-critical sce-
narios. However, integrating NTNs into existing communication infrastructures presents
unique challenges, such as high mobility, propagation delays, resource constraints, and
security vulnerabilities. This research has addressed these challenges through innovative
approaches leveraging cloud-native technologies, AI/ML models, and blockchain-based
security mechanisms.

The research work significantly focused on resource management and optimization
techniques for NTNs. The research developed Long Short-Term Memory (LSTM) models for
predicting resource utilization in disaggregated Radio Access Network (RAN) architectures,
enabling proactive allocation of CPU, memory, and bandwidth resources to maintain Quality
of Service (QoS) and prevent Service Level Agreement (SLA) violations. Additionally,
Graph Neural Networks (GNNs) were employed to monitor and manage disaggregated
Centralized RAN (C-RAN) components, enhancing network observability and adaptability
by detecting link failures and optimizing traffic routing in real-time. The thesis also explored
reinforcement learning, specifically the LSTM-A2C model, for optimizing UAV trajectories,
which improved coverage and energy efficiency in dynamic 6G-enabled IoT surveillance
networks.

Security remains a critical concern in NTNs due to open and decentralized satellite
communications. To address these vulnerabilities, this work proposed a blockchain-based
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authentication framework that secures data exchanges and satellite firmware updates, ensuring
data integrity and protection against unauthorized access. The integration of blockchain
technology demonstrated robust security benefits, albeit with trade-offs in terms of increased
latency and computational overhead. These findings underscore the importance of balancing
security enhancements with network performance.

Furthermore, this thesis demonstrated the importance of Multi-Access Edge Comput-
ing (MEC) in enhancing NTNs by bringing computational resources closer to end users,
reducing latency, and improving the Quality of Service (QoS). Experimental testbeds showed
that MEC-based deployments effectively maintained service availability during terrestrial
network outages, supporting seamless transitions to satellite access networks. This approach
significantly improved network resilience, particularly in critical emergency response and
remote healthcare applications.

Overall, the proposed research highlights the transformative role of advanced technologies
in optimizing the performance and security of NTNs. By integrating predictive and adaptive
AI/ML models, cloud-native architectures, and decentralized security mechanisms, this thesis
provides a comprehensive framework for managing the complex dynamics of 5G-NTNs. The
findings demonstrate that NTNs, when effectively managed and optimized, can significantly
enhance global connectivity and support the deployment of critical communication services
across diverse and challenging environments.

Looking forward, several areas warrant further investigation to fully leverage the poten-
tial of NTNs in future 6G networks. Scaling AI/ML models to handle more prominent and
complex networks, integrating quantum computing for enhanced optimization and security,
and exploring advanced blockchain mechanisms are promising avenues for future research.
Additionally, developing edge intelligence capabilities, enhancing UAV optimization tech-
niques through multi-agent and federated learning, and focusing on sustainability and energy
efficiency will be crucial for the next generation of NTNs. Real-world deployment and
validation of the proposed models will also be essential to assess their practical performance
further and refine these approaches. By addressing these future directions, NTNs can evolve
into highly resilient, secure, and adaptive communication systems, paving the way for an
increasingly connected world.

5.2 Future Directions

While this thesis provides substantial advancements in the field of 5G-NTNs, several areas
warrant further investigation to fully realize the potential of NTNs in future 6G networks.
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5.2.1 Scalability of AI/ML Models

Future work should focus on scaling the AI/ML models developed in this thesis to handle
more prominent and complex 5G NTN environments. This includes enhancing the models’
ability to learn from more extensive datasets, incorporating additional variables, and adapting
to the rapidly changing conditions characteristic of NTNs.

5.2.2 Integration of Quantum Computing

Integrating quantum computing with NTNs could provide new avenues for optimizing
resource management and security. Quantum algorithms could enhance the speed and
accuracy of predictive models, offering more robust solutions for network optimization and
data encryption.

5.2.3 Advanced Blockchain Mechanisms

While blockchain has enhanced security in NTNs, future research should explore advanced
blockchain mechanisms, such as sharding and off-chain solutions, to reduce latency and
computational overhead. These approaches could provide more efficient security frameworks
that better balance performance and protection.

5.2.4 Enhanced UAV Optimization Techniques

Further investigation into advanced reinforcement learning algorithms, such as multi-agent
reinforcement learning (MARL) and federated learning, could improve the efficiency and
adaptability of UAVs in NTNs. These approaches could enable UAVs to collaborate more
effectively, enhancing overall network performance.

5.2.5 Edge Intelligence for NTNs

Edge Intelligence for Non-Terrestrial Networks (NTNs) refers to the integration of Artificial
Intelligence (AI) and Machine Learning (ML) algorithms directly at the edge of the network,
such as at satellite payloads, Unmanned Aerial Vehicles (UAVs), or Multi-Access Edge
Computing (MEC) nodes. By processing data closer to the source, edge intelligence reduces
the need for extensive back-and-forth communication with centralized data centers, signifi-
cantly lowering latency and improving real-time decision-making. This is particularly crucial
for NTNs, which often operate in remote or connection-critical environments where rapid
response times are essential for maintaining Quality of Service (QoS) and ensuring network
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efficiency. Edge intelligence empowers these edge nodes to autonomously manage network
traffic, optimize resource allocation, and predict network conditions, thereby enhancing the
overall performance and resilience of NTNs.

One of the significant benefits of deploying AI/ML algorithms at the network edge is the
ability to handle complex, real-time applications in dynamic environments. For instance, edge
intelligence can detect network anomalies and adjust parameters to reroute traffic through
satellite or aerial platforms in disaster recovery scenarios or remote healthcare, where
connectivity must be maintained despite disruptions. Additionally, edge nodes equipped
with intelligence can predict traffic patterns and proactively allocate resources, ensuring
efficient bandwidth usage and reducing the risk of congestion. This is especially beneficial in
Non-Terrestrial Networks, where communication links are prone to delays and fluctuations
in connectivity due to the movement of satellites or UAVs.

However, integrating edge intelligence into NTNs presents several challenges. Edge
nodes, such as satellite payloads, typically have limited computational power and energy re-
sources, making it challenging to run resource-intensive AI algorithms. This necessitates the
development of lightweight AI models that can function efficiently within these constraints
while maintaining high levels of accuracy. Furthermore, given the decentralized nature
of NTNs, edge intelligence must be designed to operate in a distributed manner, allowing
multiple edge nodes to collaborate and share insights without overwhelming the network.
Future research in this area could focus on optimizing AI algorithms for edge environments,
enhancing energy efficiency, and ensuring that edge intelligence is seamlessly integrated with
the broader network infrastructure.

5.2.6 Standardization and Interoperability

As NTNs evolve, standardization and interoperability between terrestrial and non-terrestrial
components will be crucial. Future research should explore frameworks facilitating seamless
integration and communication between diverse network elements, ensuring consistent
performance across various technologies and platforms.

5.2.7 Sustainability and Energy Efficiency

With sustainability’s growing importance, future work should prioritize energy-efficient
designs for NTNs, focusing on reducing the carbon footprint of satellite constellations and
UAV operations. Exploring green AI techniques and energy-aware routing algorithms could
contribute to more sustainable NTN deployments.
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5.2.8 Real-World Deployment and Validation

Finally, the proposed models and frameworks must be deployed and validated in the real
world. Field trials and pilot projects could provide valuable insights into NTNs’ practical
challenges and performance, inform future refinements, and guide the development of
industry standards.

We have built a physical testbed for the work "Graph Neural Network-based C-RAN
Monitoring for Beyond 5G Non-Terrestrial Networks." using our laptop and USRPs. The 5G
emulated network using a four-node Kubernetes cluster was connected to USRPs for further
analysis and experimentation.

The findings and contributions of this thesis lay a strong foundation for advancing NTNs
as a core component of future communication networks. By addressing the outlined future
directions, researchers and industry stakeholders can further enhance NTNs’ capabilities,
paving the way for resilient, secure, and adaptive communication systems that meet the needs
of an increasingly connected world.
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