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Abstract—The lack of an orange band (∼620 nm) in the im-
agery captured by Landsat-8/9 and Sentinel-2 restricts the de-
tection and quantification of harmful cyanobacterial blooms in
inland waters. A recent study suggested the retrieval of orange
remote sensing reflectance, Rrs (620), by assuming green, red, and
panchromatic (Pan) bands of Landsat-8 as predictors through a
linear model. However, this method is not applicable to Sentinel-2
imagery lacking a Pan band. Moreover, the Pan-based method
does not account for the nonlinear relationships among the Rrs

data at different wavelengths. We propose a deep-learning model
called Deep OrAnge Band LEarning Network (DOABLE-Net) that
leverages a large training set of Rrs data from radiative transfer
simulations and in situ measurements. The proposed DOABLE-
Net is structured as five fully connected layers and implemented
either with or without the Pan band as an input feature, which
only the latter applies to Sentinel-2. DOABLE-Net provided more
accurate and robust retrievals than the Pan-based method on a
wide range of independent validation datasets. The performance
of DOABLE-Net on Landsat-8/9 data was minimally impacted by
including the Pan band. The results from Sentinel-2 data analysis
also confirmed that the DOABLE-Net provides promising results
without using a Pan band.

Index Terms—Cyanobacteria, deep learning, inland waters,
Landsat-8/9, orange band, phycocyanin, Sentinel-2.

I. INTRODUCTION

R EMOTE sensing of water quality in inland and nearshore
coastal waters has undergone significant progress over

the past decade with the launch of Landsat-8/9 and Sentinel-2
satellites [1], [2]. Operational land imager (OLI) and multispec-
tral imager (MSI) sensors aboard Landsat-8/9 and Sentinel-2,
respectively, are not originally designed for aquatic applications.
However, their spatial resolution (OLI 30 m, MSI 10−60 m)
and dynamic range (12−14 bit) have been favorable in various
studies conducted in optically complex inland and coastal wa-
ters [3], [4], [5]. OLI and MSI capture five and seven bands,
respectively, within the visible and near-infrared portion of
the spectrum (< 800 nm), which are useful for water quality
studies. Although OLI and MSI opened up new opportunities,
their spectral band designations are not optimal for retrieving

Manuscript received 11 January 2023; revised 24 March 2023; accepted 11
April 2023. Date of publication 13 April 2023; date of current version 28 April
2023. (Corresponding author: Milad Niroumand-Jadidi.)

The authors are with the Digital Society Center, Fondazione Bruno Kessler,
38123 Trento, Italy (e-mail: mniroumand@fbk.eu; bovolo@fbk.eu).

Digital Object Identifier 10.1109/JSTARS.2023.3266929

some water constituents. In particular, mapping and quantifying
cyanobacteria have appeared challenging due to the lack of an
orange band in these sensors [6].

Cyanobacterial harmful algal blooms (cyano-HABs) can de-
velop dense biomasses producing toxins that severely endan-
ger the aquatic habitat and associated ecosystem services [7],
[8]. Given the substantial adverse effects of cyano-HABs, the
accurate and timely monitoring of cyanobacteria biomass by
means of satellite remote sensing is a high priority. Most ocean
color sensors, such as ocean and land color instrument onboard
Sentinel-3, capture an orange band centered at ∼620 nm that
facilitates the detection of phycocyanin, which is the character-
istic pigment of cyanobacteria [9], [10]. However, the spatial
resolution of these sensors (hundreds of meters) is too coarse
for studying inland waters. On the other hand, the acquisition
of images from spaceborne hyperspectral missions, such as
PRISMA [11], [12], is not regular despite the sufficient spa-
tial resolution (30 m). Therefore, Landsat-8/9 and Sentinel-2
remain the key satellites for studying inland and coastal wa-
ter quality, offering suitable spatial and temporal resolutions
(5–8 days).

Phycocyanin is a photosynthetic pigment with a unique spec-
tral response of an absorption peak at∼ 620 nm and a reflectance
peak at ∼650 nm that distinguishes cyanobacteria from other
phytoplankton communities [13], [14]. However, OLI and MSI
lack such an orange band that undermines their utility for map-
ping cyanobacteria. A recent study proposed an approach to
retrieve the remote sensing reflectance at 620 nm, Rrs(620), for
Landsat-8 imagery based on a linear relation incorporating the
panchromatic (Pan), green, and red bands [9]. Note that Rrs is
the ratio of water-leaving radiance to downwelling irradiance
just above the surface and has units of inverse steradians (sr−1)
[15]. The Pan-based orange band retrieval technique provided
promising results in mapping phycocyanin concentration in
Lake Erie [16] and Eagle Creek Reservoir [17] and has been im-
plemented in the ACOLITE processor [18]. The main hypothesis
of this method is to exploit the spectral information available
in the panchromatic band, which is a wide band overlapping
with multispectral channels. However, this method, called the
Pan-based method hereafter, is built upon a simple linear model
that employs Pan, green, and red bands as predictors for the
orange band retrieval. Thus, it does not account for the complex
nonlinear relations among Rrs data at different wavelengths,
which are typical in optically complex waters [19]. Moreover,
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the Pan-based method is not applicable to the imagery from
sensors, such as MSI, which does not capture a panchromatic
band.

This study aims to develop an advanced deep-learning-based
model called Deep OrAnge Band Learning Network (DOABLE-
Net) for retrieving a virtual orange band from multispectral
bands of Landsat-8/9 or Sentinel-2. Our proposed method is
grounded in the high level of spectral interdependence of Rrs

data [20], [21], [22] and the ability of deep models to learn
complex nonlinear features from a large set of training data. In a
recent study, a deep-learning model is developed for retrieving
near-blue ultraviolet Rrs bands from the visible ones obtained
by ocean color sensors and provided encouraging results [19].
We build upon this new line of research to advance the state-
of-the-art in orange band retrieval by pursuing the following
objectives.

1) Develop DOABLE-Net for Landsat-8/9 and Sentinel-2
with high generalization capability by leveraging a large
training dataset of radiative transfer simulations and in situ
spectral measurements.

2) Examine the impact of involving the Landsat-8/9 Pan band
on the performance of the proposed DOABLE-Net.

3) Evaluate the accuracy of orange band retrieval in a wide
range of bio-optical conditions and perform comparisons
with the Pan-based method [9].

The rest of this article is organized as follows. The training
and validation datasets are presented in Section II. Section III
introduces the proposed DOABLE-Net and briefly describes
the existing Pan-based method and its calibration for retrieving
the orange band from Landsat-8/9 data. Section IV illustrates
the validation results of DOABLE-Net compared with the Pan-
based method. Finally, Section V concludes this article.

II. DATASETS

One of the key aspects of developing supervised deep-learning
models is creating a large and representative training dataset. In
aquatic applications, the in situ data are quite limited in space
and time, which hinders building a comprehensive training set.
Complementary to in situ data, deep-learning models can largely
benefit from radiative transfer simulations [23], [24] provid-
ing a massive dataset spanning diverse bio-optical conditions.
The radiative transfer models account for the absorption and
backscattering properties of pure water and its constituents.
The simulation allows the creation of a large set of Rrs spec-
tra spanning a wide range of inherent optical properties and
concentrations of constituents [23].

We use a large set of hyperspectral Rrs for training DOABLE-
Net consisting of radiative transfer simulations (100 000 sam-
ples) up to 800 nm representing a wide range of bioptical
conditions, which are taken from the article presented in [19],
and shipborne reflectance measurements (5805 samples) up
to 950 nm in the optically complex Baltic Sea conducted by
Tilstone et al. [25].

We employ four independent datasets (4311 samples in total)
representing very diverse bio-optical conditions to examine
the prediction performance of DOABLE-Net. The validation
datasets and the sources are summarized in Table I. The data

TABLE I
IN SITU HYPERSPECTRAL DATASETS USED FOR THE VALIDATION OF

DOABLE-NET AND PAN-BASED METHODS

originally used for training and validation of the Pan-based
method, acquired at Belgian and Dutch lakes, are also among
our validation datasets. The abbreviations of the datasets (see
Table I) are taken from the data sources.

Although the four in situ Rrs datasets provide an independent
and comprehensive means of evaluating the performance of
orange band retrieval methods, we also apply DOABLE-Net
to Landsat-9 (OLI-2) and Sentinel-2 (MSI) imagery from San
Francisco Bay (see Fig. 1). The images from the two sensors are
acquired on the same day (December 10, 2021). The ACOLITE
processor [18], [30] is used to apply dark spectrum fitting atmo-
spheric correction. As shown in Fig. 1, the bay and surrounding
coastal area show a wide range of color gradients representing
various water types from clear blue to turbid waters with sed-
iment plumes. We perform a consistency analysis between the
results of the DOABLE-Net and Pan-based methods, retrieving
the Rrs(620) for the Landsat-9 image. Moreover, the consis-
tency of Rrs(620) retrieval for Sentinel-2 is assessed relative to
Landsat-9.

III. METHODS

The generic workflow of this study is summarized in Fig. 2.
The main steps include the following.

1) Preparation of training data by spectral resampling of
the hyperspectral Rrs data: This step provides the input
multispectral Rrs data of the DOABLE-Net. The workflow
is shown for the OLI data that includes the Pan band
allowing for training two different individual networks
with and without including this band as an input feature.
In the case of MSI, the training does not involve a Pan
band. The Rrs(620), created from spectral resampling of
the hyperspectral Rrs, serves as the response variable of
the network.

2) Training the DOABLE-Net with an architecture described
in Section III-A.

3) Prediction of the orange band using the trained model and
accuracy assessment compared with the reference data.
Once the DOABLE-Net is trained, it is applied to the
validation OLI or MSI datasets to predict the orange band.
The validation set is not seen through the training and
allows for assessing the model’s generalization capability.
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Fig. 1. True color composites of (a) landsat-9 and (b) sentinel-2 images derived
from ACOLITE atmospheric correction.

Fig. 2. Workflow of the study based on the proposed DOABLE-Net to retrieve
an orange band at 620 nm for OLI and MSI sensors. In the case of MSI, only
the version of DOABLE-Net without using a Pan band is applicable.

Fig. 3. Relative spectral response of (a) OLI and (b) MSI sensors for the bands
up to 800 nm. The dashed orange line shows the virtual orange band (620 nm)
taken from the article presented in [9].

The rest of the section describes the details of each step.
We first elaborate the proposed DOABLE-Net method. Then,
the Pan-based method is presented in its original and calibrated
versions. Finally, the accuracy metrics are provided for assessing
results and consistency analysis among the methods.

A. Proposed DOABLE-Net

Neural networks (NNs) have been proven to be powerful in
learning complex and nonlinear relations between input features
and the target parameter [31]. Moreover, deep models handle
the feature extraction automatically and can leverage low- and
high-level features [32], [33]. Given the nonlinear relationships
of Rrs at different wavelengths [19], we also build upon a deep
NN architecture to enable predicting the orange band from
multispectral Rrs data.

An initial step for the development of supervised deep models
is the preparation of the training dataset. The hyperspectral
training data (see Section II) are resampled with the Landsat-8/9
and Sentinel-2 spectral response functions for the bands up to
800 nm. Every multispectral band is calculated by a weighted
averaging of the hyperspectral Rrs data. The weights are taken
from the spectral response function of either OLI or MSI sensors.
Similarly, an orange band is obtained from the hyperspectral
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Fig. 4. Architecture of the proposed DOABLE-Net for predicting the orange band, Rrs(620), using multispectral bands of landsat-8/9 or sentinel-2.

data equivalent to the one considered in the Pan-based method
[9]. The relative spectral responses of OLI and MSI sensors
and the orange band centered at 620 nm are shown in Fig. 3
[34].

The proposed DOABLE-Net comprises multiple fully con-
nected hidden layers. We adapted this architecture from the
article presented in [19] that provided promising results in a
similar task, i.e., retrieving near-blue ultraviolet Rrs from vis-
ible bands. Although the types of layers are taken from the
article presented in [19], the number of layers and hidden units
are optimized through a tuning process. Similar architectures
have shown outstanding results also in other aquatic applica-
tions (e.g., bathymetry and water quality retrieval), dealing with
comparable regression tasks using data without spatial context
information [35], [36], [37], [38].

The first layer is supplied with the multispectral Rrs bands of
either Landsat-8/9 or Sentinel-2 created from the hyperspectral
training data. Thus, the input layer involves four Rrs bands of
Landsat-8/9 [b1–b4, Fig. 3(a)] or seven bands of Sentinel-2
[b1–b7, Fig. 3(b)]. We have implemented another version of
DOABLE-Net for Landsat-8/9 that includes the Pan band as an
extra input feature (five features in total). The latter version is
termed DOABLE-Net-Pan, hereafter, which is applicable only
to Landsat-8/9 data. The last fully connected layer is connected
to the output layer that produces the Rrs(620) as the response pa-
rameter of the network. As typical fully connected architectures,
every layer multiplies the input by a weight matrix followed by
adding a bias vector. The working mechanism of such NNs is
well-documented in the literature [39].

The hyperparameters of DOABLE-Net, including the number
of layers, the number of neurons in each layer, and the type of
activation function, are tuned through a Bayesian optimization
[40], [41]. The hyperparameter tuning investigates a search
space for every parameter to find the optimal value that min-
imizes the cross-validation error. The tuned architecture of the
proposed DOABLE-Net for Landsat-8/9 consists of five fully
connected layers with 250, 174, 96, 85, and 22 neurons at each
layer, successively.

A similar architecture is defined for Sentinel-2 with layer sizes
of 239, 205, 105, 34, and 15 neurons. The tuning is performed
in a search space with layer sizes of up to 500 neurons that are
large enough for this task [19]. The rectified linear unit is con-
sidered as an activation function that effectively tackles gradient

TABLE II
ACCURACY OF ORANGE BAND RETRIEVAL FROM IN SITU VALIDATION

DATASETS BASED ON DOABLE-NET AND PAN-BASED METHODS

explosion and disappearance [42]. A schematic representation
of the DOABLE-Net architecture is shown in Fig. 4.

B. Original and Calibrated Pan-Based Method for Retrieving
Orange Band for Landsat-8/9

The Pan-based method is the only study in the literature that
addresses the orange band retrieval for Landsat-8/9 [9]. This
approach relies on a simple linear regression model considering
the green (RGreen

rs ), red (RRed
rs ), and Pan (RPan

rs ) bands as predictors
of the orange band Rrs(620) formulated in (1). The linear model
is originally trained using 428 in situ hyperspectral Rrs spectra
resampled to Landsat-8 bands and the orange band. The training
set represents a wide range of bio-optical conditions in Belgian
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Fig. 5. Validation of the proposed DOABLE-Net in retrieving Rrs(620) compared with the pan-based method for landsat-8/9 (L8/9) and Sentinel-2 (S2) in situ data
measured at diverse bio-optical conditions. The impact of including the Pan band is investigated on the performance of the proposed method (DOABLE-Net-Pan).

and Dutch lakes [9], which is used as a validation set in this
study (see Table I)

ROrig
rs (620) = 2.2861×RPan

rs − 0.9467×RGreen
rs

− 0.1989×RRed
rs . (1)

The coefficients of the Pan-based method are assumed to be
generic and implemented in ACOLITE processor [34], although
one may update the coefficients using other training datasets. In
this study, we compare the performance of the Pan-based method
with the proposed DOABLE-Net considering both original and
calibrated coefficients. The calibration of the Pan-based model
is based on the same dataset used for training DOABLE-Net.
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Hereafter, we refer to this version of the model as Pan-based-Cal.
The calibrated coefficients are provided as follows:

RCal
rs (620) =3.0807× 10−4+ 3.703×RPan

rs − 1.6714×RGreen
rs

− 0.82475×RRed
rs . (2)

Although the Pan-based method is originally developed for
Landsat-8, it can be directly applied to Landsat-9 data due
to the identical spectral designation of OLI and OLI-2 [43].
However, this method does not apply to Sentinel-2 data that
lacks the Pan band. Note that the Pan-based method aims to
enhance the spectral resolution and does not involve any pan
sharpening to enhance the spatial resolution. Thus, in the image
analysis, the Pan band is downsampled to the spatial resolution
of multispectral bands (i.e., 30 m).

C. Accuracy Assessment Metrics

We use a set of metrics to quantify the accuracy of orange
band retrieval, including coefficient of determination (R2), root-
mean-square error (RMSE), normalized RMSE (NRMSE), and
bias

R2 =

∑n
i=1

(
Ei − Ō

)2∑n
i=1

(
Oi − Ō

)2 , Ō =
1

n

n∑
i = 1

Oi (3)

RMSE =

(∑n
i=1 (Ei −Oi)

2

n

)1/2

(4)

NRMSE [%] =
RMSE

max (O)− min (O)
× 100 (5)

bias = 10

∑n

i=1
log10(Ei/Oi)

n . (6)

Ei and Oi stand for the estimated and observed/known values
of the Rrs(620), respectively. The NRMSE indicates the percent-
age of the RMSE relative to the range of the retrieved parameter
(orange band). The bias is computed in a log-transformed space
that accounts for the proportionality of the errors [44]. Bias > 1
implies an overestimated Rrs(620), whereas bias < 1 denotes
an underestimation error. For instance, a 15% overestimation
in Rrs(620) translates into a bias of 1.15. So, the closer the
bias values to 1, the lower the systematic errors. The accuracy
metrics are computed for the four validation datasets (see Table I)
by comparing the orange band retrievals with the reference in
situ observations. In the case of image analysis (San Francisco
Bay), the consistency of the maps derived from different meth-
ods is assessed by quantifying the pixel-by-pixel agreement
in terms of R2 and normalized root-mean-square difference
(NRMSD).

IV. RESULTS AND DISCUSSION

The validation scatterplots of retrieved versus measured
Rrs(620) are shown in Fig. 5 for the four validation Rrs datasets
(see Table I). The accuracy statistics based on different met-
rics are reported in Table II. The proposed DOABLE-Net for
Landsat-8/9, without incorporating the Pan band, provides better
or comparable retrievals of Rrs(620) relative to the Pan-based

Fig. 6. Samples of retrieved Landsat-8/9 spectra around 620 nm for
(a) SpecWA, (b) SeaSWIR, (c) NORCOHAB, and (d) Belgian-Dutch lakes
datasets compared with the reference spectra.

method. For instance, DOABLE-Net improved the NRMSE of
orange band retrieval by ∼3% for the NORCOHAB dataset.
Inclusion of the Pan band through DOABLE-Net-Pan improves
the results but not significantly. In the case of the Belgian-Dutch
lakes dataset, the DOABLE-Net provides very close Rrs(620) re-
trievals compared with the Pan-based method, even without us-
ing the Pan band. This is a promising result for the DOABLE-Net
as this dataset was originally used for developing the Pan-based
method, whereas it is totally independent for DOABLE-Net
(unseen through training). The results also indicate that the
calibration of the Pan-based method slightly drops the accuracy
of the Rrs(620) retrieval. For instance, the NRMSE for SeaSWIR
dataset increases from 3.8% to 6.5% when using the calibrated
version of the Pan-based method instead of the original one (see
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Fig. 7. Rrs(620) band retrieved from landsat-9 (L9) and sentinel-2 (S2)
imagery of San Francisco Bay based on DOABLE-Net and pan-based methods.

Table II). This can be attributed to the nonlinear and complex
interrelationships among the Rrs data at different wavelengths
that are more pronounced in the large training set from diverse
biooptical conditions. So, deep models, such as the proposed
DOABLE-Net, are preferred to provide robust retrievals. The
orange band retrievals from the Sentinel-2 data are comparable
with those of Landsat-8/9 data (see Fig. 5 and Table II). This
finding indicates that the proposed DOABLE-Net can reason-
ably retrieve the Rrs(620) for Sentinel-2 data in the lack of a Pan
band.

Examples of randomly selected Landsat-8/9 spectra from dif-
ferent datasets, including the retrieved virtual orange band, are
shown in Fig. 6 compared with the reference spectra from the hy-
perspectral in situ data. The original Landsat-8/9 spectra, with-
out the orange band, are also illustrated to better understand the
impact of the retrieved Rrs(620) in capturing the spectral shape of
water-leaving radiance. As evident, the proposed DOABLE-Net,
even without incorporating the Pan band, provides stronger or
comparable agreements with the reference spectra relative to
the Pan-based method. As evident, the retrieved Rrs(620) based
on DOABLE-Net enables better capturing of the spectral shape
around 620 nm.

Fig. 7 shows the Rrs(620) maps retrieved from the Landsat-
9 and Sentinel-2 imagery acquired over San Francisco Bay.
There are strong agreements among different cases derived from
DOABLE-Net and Pan-based methods (R2> 0.97, RMSD <
0.0018 sr−1, NRMSD < 6%, and 0.98 <bias< 1.03 for any pair
of maps). The orange band retrieved based on the Pan-based-Cal
for the Landsat-9 image is slightly noisy in the coastal area
implying again that the calibration of the linear regression model
based on large training data (2) is not helpful. This experiment
also conveys that the inclusion of the Pan band has minimal
impacts on retrieving the Rrs(620) from the Landsat-9 image
over diverse water types. Similarly, the orange band retrieval
from Sentinel-2 in the lack of a Pan band is comparable with
that of Landsat-9.

V. CONCLUSION

Multispectral satellite sensors, such as OLI and MSI, are yet
the main sources of imagery for studying inland waters from
space. However, their limited spectral bands hinder the retrieval
of specific bio-optical attributes. The lack of an orange band is a
key limitation in these sensors’ spectral designation, making the
detection and quantification of cyano-HABs challenging. This
issue has motivated the idea of retrieving a virtual Rrs(620) with
some potentials previously demonstrated based on the Pan-based
method [9]. However, this method is not applicable in the lack
of a Pan band, which is the case for Sentinel-2. Furthermore, the
Pan-based method is based on a simple linear model, neglecting
the complexity and nonlinearity of interrelationships among the
Rrs data at different portions of the spectrum. We proposed
DOABLE-Net, which is based on a deep regression model that
allows for automatically capturing the informative features from
multispectral data to predict the Rrs(620) either with or without
using a Pan band. Although the results indicate the minimal
impact of the Pan band on the performance of the proposed
DOABLE-Net, there is no reason to exclude this band when it is
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available, such as for Landsat-8/9 data. However, these results
encourage retrieving the orange band for Sentinel-2 without a
Pan band. The calibration of the Pan-based model using the
same training set of DOABLE-Net degraded the performance
of Rrs(620) retrieval. This is because our training set is much
larger (∼ 250 times) and more diverse than the dataset used in
computing the Pan-based method’s original coefficients, am-
plifying the nonlinearity and complexity of the orange band
retrieval. Thus, the proposed DOABLE-Net provides a more
robust means of retrieving Rrs(620) by automatically extracting
nonlinear features.

We focused on developing a methodology for Rrs(620) re-
trieval that is evaluated with diverse datasets. Future studies
need to assess the impact of the proposed DOABLE-Net in re-
trieving phycocyanin concentration and mapping cyano-HABs.
However, the benefits of Rrs(620) retrievals from the Pan-based
method have previously been demonstrated in some studies
[16], [17]. Thus, such benefits can also be expected with more
promises for DOABLE-Net, given its robustness and less depen-
dency on the Pan band. The DOABLE-Net can also potentially
be extended for any other multispectral sensor lacking the orange
band that requires more investigation. Although we employed a
five-layer fully connected network, other deep architectures can
also be assessed through orange band retrieval.
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