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A Crak Identi�ation Mirowave Proedure based on aGeneti Algorithm for Non-Destrutive TestingSalvatore Caorsi*, Member, IEEE, Andrea Massa**, and Matteo Pastorino**, SeniorMember, IEEE*Department of Eletronis,University of Pavia, Via Ferrata 1, 27100 Pavia - ItalyTel. +39 0382 505661, Fax +39 0382 422583, E-mail: aorsi�ele.unipv.it**Department of Biophysial and Eletroni Engineering,University of Genoa, Via Opera Pia 11/A, 16145 Genoa - ItalyTel. +39 010 3532796, Fax +39 010 3532245, E-mail: pastorino�dibe.unige.it,andrea�dibe.unige.itKey words: Nondestrutive Testing, Mirowave Imaging, Geneti AlgorithmsAbstrat - This paper is aimed at exploring the possibility of using a mirowave approahbased on a geneti algorithm to detet a defet inside a known host objet. Startingfrom the knowledge of the sattered �eld, the problem solution is reast as a two stepproedure. After de�ning a ost funtion depending on the geometri parameters of therak, a minimization proedure based on a hybrid-oded geneti algorithm is applied.The in�uene of the noise as well as of the geometry of the defet on the rak detetionand reonstrution is investigated. Moreover, the numerial e�etiveness of the iterativeapproah is examined. 1



1 IntrodutionThe use of mirowaves for material haraterization and nondestrutive testing and evalu-tation (NDT/NDE) is now rather ommon in several appliations involving the inspetionof dieletris or onduting materials oated by dieletri layers. The reader an refer topapers [1℄[2℄[3℄[4℄ and referenes therein to have an idea of the diretions followed by theresearh in this �eld. However, in the NDE ommunity, mirowaves are used in generalto interrogate a sample and the information on the status of this sample is retrieved fromtransmission/re�etion data. At the same time, deeper studies have been made onern-ing the potentialities of using mirowaves as an imaging methodology in other areas (e.g.,medial imaging [5℄). Sine the interation of mirowave and dieletris with marosopidimension omparable with the wavelength gives rise to sattering phenomena, the infor-mation on the "image" of the objet is ontained in rather omplex way into the sattered�eld. The resulting problem is higly nonlinear and ill-posed, and simple and e�ient so-lution an be found only in partiularly simple ases in whih the objet represents onlya weak disontinuity in the propagating medium. In those ases, linearization tehniquesan be applied, whih are usually based on Born-type approximations.On the ontrary, to inspet (for imaging purposes) stronger satterers more omplex it-erative tehniques (both deterministi and stohasti) must be used. It should be stressedthat a number of iterative tehniques have been proposed in reent years, essentially fromresearhers in the mirowave ommunity, who have no strong intersetions with the NDEommunity. Those iterative proedures are usually very time onsuming and, at present,are far from allowing a real or quasi-real time proessing. Sometime, the use of parallelomputers has also been suggested.However, in the NDE area, a omplete image of a satterer may often onstitute aredundant (although not undesired) information and a faster omputation or a simpli�edproessing is often preferred. In many ases the objet to be inspeted is ompletely2



known exept for a defet. The loalization and shaping of the defet may onstitutea su�ient information. Combining the above requirements with the e�ieny of someof imaging-oriented methodologies, it is possible to develop a rather e�ient tool forinspeting dieletris in the NDE �eld.In the authors' opinion, a key role for the hoie of the methodologies most suitableto be "adapted" to the new problem in hand, is played by the possibility of inluding"a priori" information into the model. Conerning this point, stohasti approahes areusually superior to deterministi ones. Moreover, stohasti approahes are in prinipleable to get a global solution of the problem (the "orret" solution), whereas deterministiapproahes an often be trapped in loal solutions ("false" solutions). On the ontrary,in imaging-oriented appliations, deterministi approahes are usually muh faster thanstohasti methods. However, the time of onvergene of these methods an be stronglyredued if the number of unknowns (whih is of ourse very high in eah imaging-basedappliation) an be signi�antly limited, as it ours in the presently proposed approah.To this end, in the present paper we explore the possibility of using a stohastiproedure based on a geneti algorithm to detet defets in a known host objet. A two-dimensional tomographi on�guration is assumed and the defet is approximated by avoid of �xed shape (retangular). Position, dimensions and orientation of the defet insidethe objet ross-setion are unknowns to be determined by measuring the sattered �eld.The inverse problem is redued to an optimization one in whih a suitable funtionaldepending on only �ve geometri parameters de�ning the rak, have to be minimized. Inthis framework, geneti algorithms are very e�etive and reah the minimum (potentially,the global minimum) in a very short time.In the following, the approah will be disussed and some results also for noisy envi-ronment provided, in whih the main emphasis is on the orret defet loalization andin the retrieval of its dimensions. 3



2 Mathematial FormulationLet us onsider a two dimensional geometry where a ylindrial inhomogeneous sattereris embedded in a homogeneous external medium (Figure 1). The satterer is haraterizedby a salar permittivity " (x; y) and a ondutivity � (x; y) and is suessively illuminatedby a number of known inident �elds Evin, v = 1; :::; V . The working frequeny is indiatedby f0. The inident �elds are linearly polarized with the eletri �eld direted along theaxis of the satterer: Evin (r) = Evin (x; y)z (TM polarization).The sattered eletri �eld, Evsatt (x; y), (de�ned as Evsatt (x; y) = Evtot (x; y)�Evin (x; y),being Evtot (x; y) the total �eld orresponding to the inident �eld Evin (x; y)) is olletedin an observation domain, S, external to the satterer. The following integral equationholds: Evsatt (x; y) = Z ZD � (x0; y0)Evtot (x0; y0)G2D (k0�) dx0dy0 (x; y) 2 S (1)where D is the objet ross-setion; � (x; y) denotes the sattering potential de�ned as� (x; y) = " (x; y)�1� j �(x;y)2�f0"0 ; G2D is the two-dimensional free-spae Green's funtion [6℄;and � = q(x� x0)2 + (y � y0)2. The problem is that of deteting the presene of a voidrak in the original satterer. In more detail, we searh for the position, the orientationand the size of a rak present in the original struture. The rak is approximated by anobjet of retangular shape and parameterized by length, `, width, w, orientation, �, andenter oordinates, (x0; y0) (Figure 1).The approah used is a two step proedure, in whih a detetion phase preedes anidenti�ation phase. Firstly, we hek whether there exists a rak in the struture byusing the following objet funtion:�detetion = 1V VXv=18><>:R RS ���Evsatt(f) (x; y)� Evsatt() (x; y)���2 dxdyR RS ���Evsatt(f) (x; y)���2 dxdy � 
noise9>=>; (2)4



where Evsatt(f) (x; y) and Evsatt() (x; y) are the sattered eletri �eld measured in theobservation domain for a rak-free ase and when the defet is present, respetively;
noise is a measure of the noise level de�ned as follows:
noise = R RS ���Evsatt(f) (x; y)� Ev(noiseless)satt(f) (x; y)���2 dxdyR RS ���Ev(noiseless)satt(f) (x; y)���2 dxdy (3)where the super-sript noiseless indiates the �eld values for the noise-free ase. Ifthe value of the objet funtion is less than a �xed threshold �, then the investigatedsatterer is assumed rak-free. Otherwise the identi�ation phase starts. It should bepointed out that the value of the detetion threshold is a funtion of the sensitivity of themeasurement system.The rak-identi�ation problem is that of �nding the parameters of the rak, x0, y0,w, �. The objet funtion when the defet is present is given by:�() (x; y) = 8>><>>: �0 if X 2 h� 2̀ ; 2̀i and Y 2 h�w2 ; w2 i�(f) (x; y) otherwise (4)where X = (x� x0) os�+(y � y0) sin�, Y = (x0 � x) sin�+(y � y0) os� , �(f) (x; y)and �0 are the objet funtion for the rak-free geometry and for the void rak, respe-tively. Moreover, the eletri internal �eld for the �aw on�guration is unknown. Wesearh for the array 	 = fx0, y0, `, w, �; Evtot() (x; y)g minimizing the following ostfuntion:�identifiation f	g =�V VXv=18><>:R RS ���Evsatt() (x; y)� R RD �() (x0; y0)Evtot() (x0; y0)G2D (k0�) dx0dy0���2 dxdyR RS ���Evsatt(f) (x; y)���2 dxdy 9>=>;+
5



�V VXv=18><>:R RD ���Evin (x; y)� Evtot() (x; y) + R RD �() (x0; y0)Evtot() (x0; y0)G2D (k0�) dx0dy0���2 dxdyR RS jEvin (x; y)j2 dxdy 9>=>;(5)The �rst term is the normalized error in �tting the measured data (�data); the seondterm is a measure of the error in satisfy the state equation (�state); � and � are tworegularizing onstants.By the Rihmond method [7℄, the following disretized version of the funtional (4) isobtained:�identifiation f g =�MV VXv=1 MXm=18><>:���Evsatt() (xm; ym)�PNn=1 �() (xn; yn)Evtot() (xn; yn) RDn G2D (k0�mn) dx0dy0���2���Evsatt() (xm; ym)���2 dxdy 9>=>;+
�NV VXv=1 NXn=18><>:���Evin (xn; yn)� Evtot() (xn; yn) +PNp=1 �() (xp; yp)Evtot() (xp; yp) RDp G2D (k0�np) dx0dy0���2jEvin (xn; yn)j2 dxdy 9>=>;(6)where  = nx0; y0; `; w; �;Evtot() (xn; yn) ; n = 1; :::; No; (xn; yn) denotes the enter ofthe n-th disretization domain; (xm; ym) indiates the m-th measurement point; �ij is thedistane between the i -th and j -th enters and Dl the area of the l -th sub-domain. Theonsidered problem disretization suggests the assumption that `, w, � belong to �nitesets of values: ` 2 fLj; j = 1; :::; Lg, w 2 fwi; i = 1; :::;Wg, � 2 fp��; p = 1; :::; Pg. Inpartiular, ` and w are multiple of the side of the disretization ell and � of the angularstep used for the multiview proess.�identifiation f g is minimized by an iterative proedure able to generate a sequeneof trial on�gurations  (k); k = 1; :::; K, being k the iteration number, whih onverges tothe extremum of the funtional. Beause of the nature of the unknowns, it is neessary6



to hoose a method able to treat simultaneously disrete and ontinuous variables. More-over, due to the nonlinearity of the funtional (the nonlinearity arises from the multiplesattering phenomena), an algorithm able to avoid loal minima is neessary. A GA [8℄seems to be a good hoie. In general, GAs have demonstrated their e�etiveness in treat-ing nonlinear funtion with many unknowns [9℄ and avoiding the solution to be trappedin loal minima.
3 Appliation of the Geneti AlgorithmGeneti algorithms [8℄[10℄[11℄[12℄ are e�ient and robust population-based searh andoptimization tehniques. An individual in a GA population (alled hromosome) is a�nite-length string ode orresponding to a solution of a given problem (in our ase,  ).Eah individual has a �tness value (in our ase, �identifiation f g) assoiated with it, thatis a measure of its loseness to the atual solution. Iteratively, an initial population of NPindividuals (population size) evolves through suessive generations by the appliationof geneti operators namely, seletion, rossover and mutation until some terminationriterion is satis�ed.In order to design a geneti algorithm for a spei� problem the following points mustbe taken into aount:1. An enoding proedure must be de�ned in order to provide a one-to-one mappingbetween the parameter spae and the hromosomes;2. Variation operators must be de�ned that obey the mathematial properties of thehosen representation and permit to reate new individuals starting from the existingones; 7



3. A termination riterion is needed.This setion desribes the hoies onsidered when a geneti algorithm is applied for theidenti�ation of a rak.3.1 Enoding ProedureIn general, GAs use a binary representation of the individuals as �xed-length stringsover the alphabet f0; 1g [10℄, suh that they are well suited to handle pseudo-Booleanoptimization problems. For optimization problems with disrete parameters, an integer-valued parameter is typially represented by a string of q bits, where q = log2�, being� the number of values that the disrete variable an assume. In this work, `, �, and w,are oded in binary strings of Q = log2L bits, T = log2P , and R = log2W , respetively.Moreover, after disretization of the investigation domain, also the enter oordinatesof the rak are onsidered as disrete parameters, then x0 and y0 are represented withC = log2Nl bits, where Nl = pN . For simpliity, a square ross-setion is assumed.Furthermore, a real-valued representation is used for the eletri �eld Evtot() (xn; yn) ; n =1; :::; N . This hoie seems to be partiularly suitable in this ase [13℄[14℄[15℄[16℄. Theuse of the �oating-point representation for real unknowns results in a redution of theomputational load (the binary oding/deoding proedure is avoided) without violat-ing the algorithmi framework [17℄. Then eah unknown array results in a hybrid-odedindividual (hromosome) obtained onatenating the ode of eah parameter (gene), asshown in Figure 2.3.2 Geneti OperatorsBinary tournament seletion [18℄ and binary double point rossover [19℄ are used forseletion and rossover, respetively. Then, the mutation is performed with probabilityPm on an individual of the population. This mutation onsists in perturbing, aording to8



an assigned probability funtion Pbm, only one element of the hromosome. If the elementis a bit, it is hanged from zero to one or vieversa; otherwise the following mutation ruleis onsidered
= nEv(k+1)tot() (xn; yn)o =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
= nEv(k)tot() (xn; yn)o+r ���maxn h= nEvtot() (xn; yn)oi� = nEv(k)tot() (xn; yn)o���if p � 0:5= nEv(k)tot() (xn; yn)o�r ���= nEv(k)tot() (xn; yn)o�minn h= nEvtot() (xn; yn)oi���otherwise

(7)
where =fg indiates the imaginary or the real part; r and p are random values be-longing to the range [0; 1℄, with a uniform distribution generated by a pseudo-randomnumber generator; (minn= nEvtot() (xn; yn)o; maxn= nEvtot() (xn; yn)o) is the aeptanedomain for the unknown = nEvtot() (xn; yn)o.3.3 Termination CriterionSine the amount of omputing time required to obtain solution of a desired quality is notknown a-priori, the halting riterion for the iterative algorithm is taken to be a ertainmaximum number of generations (Kmax), or when a �xed threshold (�) for the �tnessfuntion is ahieved (�identifiation f g � �).In this work, in order to keep the population diversity among new generations andavoiding a premature onvergene, we de�ne a new proedure alled refresh step. Thisis arried out whenever the �tness di�erene between the �ttest and weakest individualsof the population is below a spei�ed trigger level,  (i.e., a measure of the premature9



onvergene for the algorithm) or when the value of the optimal �tness is stationaryfor more than K0 = 0:1Kmax generations. Starting from the best individual generated, (opt) ={x(opt)0 ,y(opt)0 , `(opt), w(opt), �(opt), Ev(opt)tot() (xn; yn) ; n = 1; :::; N}, we generate a newpopulation aording to the following rules:� the best individual is opied into the new population;� Np2 individuals are randomly generated inside the searh spae� one hromosome (alled Born-type hromosome) is generated. The �rst B-bits arethe same of the best individual, whereas the last bits are obtained by onsidering aseond-order Born approximation [20℄:Ev(K0)tot (xn; yn) = Evin (xn; yn)+ NXp=1 � (opt)() (xp; yp)Evin (xp; yp) ZDp G2D (k0�np) dx0dy0+
NXp=1 � (opt)() (xp; yp)8<: NXq=1 � (opt)() (xq; yq)Evin (xq; yq) ZDq G2D (k0�pq) dx0dy09=;ZDp G2D (k0�np) dx0dy0(8)� the others �Np2 � 1� hromosomes are randomly generated by onsidering multiplemutations in the Born-type hromosome.

4 Numerial ResultsIn the following, some numerial results are shown in order to assess the e�etiveness butalso urrent limitations of the proposed approah. Let us onsider a square homogeneousylinder lD-sided with an area equal to AD. M equally spaed measurement points are10



loated on a irle r in radius (r > lDp2). The values of the sattered eletri �eld at themeasurement points are synthetially obtained by the moment method. V inident planewaves are assumed: Evin (x; y) = e�jk0(xos#v+ysin#v), where the angles #v = (v � 1) 2�V ,v = 1; :::; V de�ne the propagation diretions. As far as the parameters for the GA areonerned, the following values are hosen: NP = 80, P = 0:7, Pm = 0:4, Pbm = 0:01,Kmax = 1000.4.1 De�nitionsThe signal-to-noise (SNR) ratio is de�ned asSNR = 10log10PVv=1PMm=1 jEvsatt (xm; ym)j22MV �2noise (9)where �2noise is the variane of the additive Gaussian noise with zero mean value.The errors in the rak identi�ation are quanti�ed by the following �gures.1) Error in the loation of the enter of the rak, Æ:Æ = q(x0 � bx0)2 + (y0 � by0)2dmax � 100 (10)being (bx0; by0) the estimated oordinates of the rak, and dmax = p2lD the maximumerror in de�ning the rak enter when it belongs to the host satterer.2) The same error as in 1) but normalized to the wavelength:Æ0 = q(x0 � bx0)2 + (y0 � by0)2�0 � 100 (11)3) Error in the estimation of the rak area:ÆA = A � bAA � 100 (12)where bA and A are the estimated and atual rak areas, respetively.11



4) Errors in prediting the eletri �eld are quanti�ed by:��Etot(xn; yn) = ������ bEvtot (xn; yn)���� jEvtot (xn; yn)j���jEvtot (xn; yn)j � 100 (13)where bEvtot is the estimated eletri �eld.4.2 Crak DetetionIn the �rst example, the aim is to explore the possibility of deteting the rak presenefrom the knowledge of the measured sattered eletri �eld in a noisy environment har-aterized by di�erent values of the signal-to-noise ratio. Let us onsider a square objet0:214�-sided, being � the free-spae wavelength orresponding to the working frequenyf . The objet is haraterized by a dieletri permittivity " (x; y) = 2:0"0. The satteredeletri �eld is olleted in M = 81 measurement points plaed in a irle r = 3215� inradius and V = 4 views are onsidered. The oordinates of the enter of the square rakare x0 = y0 = �30 and its area assumes di�erent values. Figure 3(a) shows a olor-level rep-resentation of the detetion funtion for di�erent values of the rak area and for varioussignal-to-noise ratios in the range 5�50dB. We an observe that when the SNR is greaterthan 10dB, as the rak area inreases the detetion funtion proportionally inreases. Onthe ontrary, when the noise amplitude inreases, the value of �detetion tends to beomemore and more small and almost onstant whatever the rak dimensions. Consequently,the possibility of deteting the presene of the rak is onsiderably redued. As an ex-ample assuming a threshold value � = 30, the �detetion region� (de�ned as the range ofvalues of SNR and A for whih �detetion � �) is limited to SNR � 10:5 for raks ofarea greater than 10% of the area of the objet ross setion.The e�etiveness of the detetion proess is inreased when an higher frequeny isused as an be inferred from Figure 3(b) where a frequeny f0 = 3f is onsidered. In thisase, the values of the detetion funtion are higher, even for SNR values less than 10dB.12



For � = 30, the detetion area is limited by SNR = 6dB and for raks of area greaterthan 3% of the whole ross setion.4.3 Crak Identi�ation.In the �rst example, let us onsider an objet ross setion 45�0-sided, and a rak enteredat point x0 = y0 = �010 . The rak is square and its area is hanged in the range between0:1% to 10% of AD. The measurement domain is a irle r = 1625�0 in radius. SNR variesbetween 5dB and 50dB. Figure 4 shows the error �gures in the rak identi�ation and�eld predition. Sine the GA-based proedure is non-deterministi, eah data point inthe following �gures is based on the average of the results obtained with twenty indepen-dent runs of the algorithm. Therefore slight variations may be observed among urvesrepresenting runs with similar parameters. From Figure 4, it an be observed that theerrors in the enter loation are less than 3% of dmax for all the raks when SNR � 20dBand for rak with area greater than 4% of AD when SNR � 6dB. For the region de-�ned by 8dB � SNR � 20dB and 2 � 10�3 � AAD � 4 � 10�2, a greater error results(Æ �= 10). The rak loation results very di�ult otherwise. Figure 4(b) gives an idea ofthe evaluation of the rak area performed by the algorithm. It an be observed that thedistribution of the amplitude of ÆA is similar to that of Æ, but generally the error valuesare greater.The third example is aimed at assessing the e�etiveness of the algorithm for di�erentrak positions inside the host medium. The position of a rak with an area equal to0:04AD is hanged along the diagonal of the square investigation domain. All the plotsreported in Figure 5 show that the reonstrution is independent of the position of therak. The amplitude of the errors are determined from the signal-to-noise value. Inpartiular, Æ � 10, jÆAj � 20, and ÆEtot � 2 for SNR � 14dB.The e�etiveness of the algorithm in loating the rak is then evaluated when the13



dimensions of the objet ross setion are hanged. A square rak 0:05�0-sided andloated in x0 = y0 = lD4 is onsidered. Figure 6 gives the plot of Æ0 for di�erent dimensionsof lD and for various values of SNR. The enter of the rak is determined with greatauray for 0:1 � lD�0 � 1:0 (Æ0 � 10). For greater dimensions of the investigation domain,the error inreases about linearly (Æ0 = 114 lD�0 � 100).In order to give some indiations about the iterative proess, Figure 7 shows the behav-ior of the �tness funtion versus the iteration number for the same geometry onsideredin the previous example and for a noiseless ase. The dereasing of the �tness funtionin orrespondene with the best individual (�identifiation f optg) is about three order ofmagnitude in the �rst 400 iterations. Then the rate of onvergene onsiderably reduesand the refresh proedure operates aording to the rule stated in Setion 3. Generally,large variations in the average of the �tness values of the individuals of the population(< �identifiation f kg >) are due to the generation of new individuals whih are very dif-ferent from the other individuals of the previous population. The mutation but espeiallythe refresh proedure are responsible of this fat. For ompleteness also the plots of thetwo terms of the identi�ation funtion are shown.An idea of the data �tting obtained with the presented approah is given in Figure 8,where the amplitude of the estimated sattered eletri �eld (� = 1) in the observationdomain is presented for di�erent noisy ases. In all ases the agreement between measuredand reonstruted amplitude pro�les is quite good starting from the iteration k = 100.Figure 9 gives the plot of the error in estimating the rak area during the iterativeproess, respetively. It should be pointed out that, starting from k = 100, the enterof the rak is loated quite orretly and Æ � 10 whatever the noisy ase onsidered.On the ontrary, the estimation of the area of the rak results more di�ult and the�nal reonstrution is performed with an error amplitude whih ranges from jÆAj = 0 to|ÆAj = 25 (SNR = 20dB).Finally, Figure 10 gives an idea of the predition of the eletri �eld distribution14



inside the investigation domain during the iterative proess. Figures 10(a) and 10(b)show the amplitude of �eld distribution for the rak free on�guration and with therak, respetively. In the following, the error ��Etot(xn; yn), � = 1 in reproduing theatual distribution is reported at the iterations k = 0 (Fig. 10()), k = 100 (Fig. 10(d)),k = 300 (Fig. 10(e)), and k = 800 (Fig. 10(f )). As an be seen, initially the preditionis very poor and related errors are large. Starting from iteration k = 100 the estimatedvalues of the eletri �eld tend to beome more and more similar to the atual ones. Thenot uniform distribution that the error keeps at the �rst iterations (Figs. 10()-(d)),tends to disappear as k inreases, as shown in Figure 10(e) and the solution agree verywell with the referene one as learly indiated in Figure 10(f ).5 ConlusionsA mirowave imaging approah has been applied for 2D rak detetion using synthetidata. An iterative proedure based on a geneti algorithm whih allows for an use of the a-priori knowledge, has been presented. Partiular attention has been devoted to hoose anappropriate representation of the unknowns of the problem and suitable geneti operatorshave been de�ned. The validity of the approah has been veri�ed by using noisy dataand urrent limitations pointed out. In order to avoid these drawbaks and inrease therange of the appliability of the proposed approah, further investigations will be devotedto de�ne suitable penalty terms in order to favor a physially reasonable solution.
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FIGURE CAPTIONS� Figure 1.Problem Geometry.� Figure 2.Example of a hromosome used in the geneti algorithm proedure.� Figure 3.Color-sale representation of the detetion funtion. (a) Operating frequeny f . (b)Operating frequeny f0 = 3f .� Figure 4.Errors in the reonstrution for di�erent areas of the rak and for di�erent valuesof the signal-to-noise ratio: (a) Æ, and (b) jÆAj.� Figure 5.Errors in the reonstrution for di�erent positions of the rak and for di�erentvalues of the signal-to-noise ratio: (a) Æ, and (b) jÆAj.� Figure 6.Plot of the loalization error, Æ0, versus the side dimension of the host objet.� Figure 7.Behavior of the �tness funtion versus the number of iterations.� Figure 8.Amplitude of the sattered eletri �eld in the observation domain. Atual, rak-free and reonstruted �eld distributions (k iteration number). (a) SNR = 40dband (b) SNR = 20db.
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� Figure 9.Behavior of the error parameters in (a) the rak loalization and in (b) the raksizing versus the number of iterations and for di�erent signal-to-noise ratio.� Figure 10.Predition of the eletri �eld inside the investigation domain. Images of the eletri�eld amplitude for (a) the rak- free ase and (b) with the rak. Images of theerror ��Etot(xn; yn), � = 1, at the iteration: () k = 0, (d) k = 100, (e) k = 300,and (f ) k = 800.
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