THE IDENTITY G(D)f = F FOR A LINEAR PARTIAL
DIFFERENTIAL OPERATOR G(D). LUSIN TYPE AND
STRUCTURE RESULTS IN THE NON-INTEGRABLE CASE

S. DELLADIO

ABSTRACT. We prove a Lusin type theorem for a certain class of linear partial differential
operators G(D), reducing to [1, Theorem 1] when G(D) is the gradient. Moreover we
describe the structure of the set {G(D)f = F'}, under assumptions of non-integrability on
F, in terms of lower dimensional rectifiability and superdensity. Applications to Maxwell
type system and to multivariable Cauchy-Riemann system are provided.

1. INTRODUCTION

To introduce the subject of this work, let us first consider a particularly simple situation.
Let Q C R? be an open set and let F' = (F, Fy)" € C'(Q,R?) be an irrotational field, i.e.,
such that

oF, oF,
Ry
0xs 0,
Suppose then that we are interested in finding f that maximizes the size of the set

Looking for f in C*(Q) is expected to be “more productive” than looking for it in C?*(12),
which is a smaller and more rigid class of candidate functions. But in any case the
non-integrability condition (1.1) has the effect of strongly shaping the structure of Ay p.
Indeed, if £? denotes the Lebesgue measure in R? and B, (z) is the open disc of radius r
centered at x € R?, then the following properties are verified:

(1.1) (x) # 0, for all z = (x1,z5) €

e Whatever the choice of f € C'(Q), the set A r has no 3-density points, that is
(B A
ey £ B (@) \ Arr)

r—0+ 73

cf. Theorem 2.1 in [5]. Recall that, despite this, one has

sup EZ(AﬂF) = £2(Q)
reci(Q)

>0, forall z € Ay p,
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by Theorem 1 in [1].

e For all f € C?*(Q), this structure theorem even holds: The set A;p is covered
by a finite family of C! curves regularly imbedded in R?, by Proposition 3.1 and
Theorem 4.1 of [9].

The purpose of this paper is to provide a wide generalization of the properties above.
To make the main statements below understandable, we need to introduce some notation
on systems of linear partial differential operators. Let G = [G};] and S = [5};] be two
matrices of polynomials in C[&;, ... ,§,] of dimension N x k and h x N, respectively. If
(%1,...,x,) denotes the standard coordinates of R”, let G;(D) be the linear partial differ-
ential operator with constant coefficients obtained by replacing each &; in G;i(&, ... , &)
with —i0/0z; and define G(D) as the system [G;;(D)]. Analogously we can define S(D).
Let p (resp. gq) be the greatest of the degrees of the polynomials G (resp. Sj) and as-
sume p,q > 1. Now consider an open set Q C R*, F' € C4(Q2, CY) and recall the following
obvious property: If there exist f € CPT4(Q, C*) such that the set

App = {z € QUG(D)f)(x) = F(x)}
has an interior point xg, then one has (S(D)F)(xy) = 0 whenever S is chosen in such a
way that SG = 0.
We are finally ready to summarize the main results of this work:
Section 3. Let us assume that F' € C(Q), CY) satisfies the following condition of non-
integrability:
There exists S such that SG = 0 and (S(D)F)(x) # 0 for all x € Q.

If £™ denotes the Lebesgue measure in R™ and B, () is the open ball of radius r centered
at x € R", then the following facts concerning the structure of Ay hold:

e Whatever the choice of f € CP(Q, CF), the set A; r has no (n + q)-density points,
that is
LM(Br(x) \ Ayrp)

rntaq

lim sup
r—0+

>0, forall z € Ay p,

ct. Corollary 3.2 below.
e For all f € CPT4(Q,C"), the set A;r is covered by a finite family of (n — 1)-
dimensional regularly imbedded C' submanifolds of R™, cf. Theorem 3.1 below.

It is worth adding that the proof of Theorem 3.1 is based on the implicit function theorem
and that a similar argument has been used in [10] to simplify the proof of the main result
of [3], about the Hausdorff dimension of the tangency set of a submanifold with respect
to a non-involutive distribution. It should be stressed, however, that in this application
to the context of Frobenius theorem, the differential system to be studied is not linear,
but only semilinear (c.f. [10, Section 3]).
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Section 4. The main goal of this section is to prove Theorem 4.1, which provides a
Lusin type result for any linear partial differential operator G(D) = (G1(D), ... ,Gn(D))!
subject to the following assumptions:

e There exist aM, ..., a®™) € N" such that

s 0 if s £r
G (D)2 =
(D)e {CTEC\{O} if s=r
and min; [a9| > p := max; deg G;. One can easily verify that under this assum-
ption, if r # s then G, # G, and one has also that a(r) < a(s) cannot occur (in
particular a(r) # a(s)), cf. Remark 4.1.

e There exist a nonnegative integer m < p, a constant ¢, > 0 and an bounded open
set 2 C R™ such that

IG(D)pllcoe = ¢ max [0l

[a]=m

for all p € C°(2,C).

Then, this result states that, for every bounded function F € C(£2,C") and for every
e € (0,1), there exist an open set O C Q, f € Cf"(Q,C) and ® € Cy(Q2,C") satisfying
the following properties:

) £7(0) < eL™();

) &=FinQ\O;

) The equality G(D)f = ® holds in the sense of distributions;

) In the special case m = p one has G(D) f = ® in the usual sense, hence G(D)f = F
in 2\ O.

Section 5. We give two examples of application, respectively to Maxwell type system
(cf. Corollary 5.2) and to multivariable Cauchy-Riemann system (cf. Corollary 5.3).

2. NOTATION AND PRELIMINARIES

2.1. General notation. The constants depending only on p,q,... are indicated by
C(p,q,-..), while B.(x) is the open ball in R™ with center z and radius r. The open
cube of side 2r centered at x in R™, that is (—r,r)” + x, is denoted by @Q,(z). For
z=(21,...,2n) € CN weset |z| :== (a1 >+ + [onHY2. f ECR"and f: E — CV,
then we define

[ flloc,2 := sup [ f(z)].
el
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The coordinates of R™ are denoted by (xy,... ,z,) and we set for simplicity 0; := 9/0x;.
For a = (aq,...,a,) € N, define

olel
aq n °
Oxi* - - 0x&

lal i =a1+ ...+ a,, aol=aol ), 0%:=

Similarly, if (&1,...,&,) € R™ then we write

Eim g
We can also define a partial order in N by saying that (ay,...,ay) < (61,...,0n) if
a; < p; for all 5. If o, B € N" satisfy o < 8 and « # (3, then we simply write o < .

If Q2 is an open subset of R”, p € N and k € N\ {0}, then we set
CP(Q,C) :={utwl|u,veC?(Q)}, C?’QC):={u+t+iv|uveC?(Q)}

and

CP(Q,CH) = {(fr,..., f) | fr,--., fr € CP(Q,C)},

CoC) = {(fro-o SO [ oo s fe € CE(Q, O}
For a € N" and f = (f1,..., fr)! € Cl*(Q,CF), we set

Of = (0%f1,...,0%fr)".
The norm in C?(Q, C*) is defined as

CP(Q(Ck) > f = Iflleracry == Z 10%f || 0. 2-

aeN™
|a|<p

The closure of C2°(Q,C*) in (CP(Q,CF); || - [|er,cr)) Will be denoted by CF(£2, CF).
For simplicity, we will write C(2, CF), C.(Q,CF) and Cy(2, C*) in place of C°(Q, CF),
Co%Q, Ck) and CQ(Q,C*), respectively. If E C R"™ is a Lebesgue measurable set and

v : E — R are Lebesgue integrable (resp. summable, locally summable) on E, then
we say that u + v is Lebesgue integrable (resp. summable, locally summable) on E and
define (omitting for simplicity to specify explicitly the measure, which is obviously the

Lebesgue measure L")
/(u+iv)::/u—l—i/v.
B B B

The space of these locally summable functions will be denoted by LL (E,C). If fi,... , fx:
E — C are Lebesgue integrable (resp. summable, locally summable) on E, then we say
that f = (f1,..., fx)" is Lebesgue integrable (resp. summable, locally summable) on F

and define
Lo (o)

We also set L10C<E7(Ck) = {(fb s 7fk)t | fj S Llloc(E>C) for 1 < ] < k}
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2.2. Linear partial differential operators. Let

P(fl,... ,fn) = Z Caga 6@[61,... ,gn]

a€eNT
|a|<p

If ¢, # 0 for some o € N" with || = p, then the number p is said to be the total degree
of P and is denoted by deg P. As usual, P(D) is the differential operator obtained by
replacing each variable §; with —i0;, namely

(2.1) P(D) = > (—i)c, 0.

aeN?
la|<p

If M = [M,;] is a matrix of polynomials in C[y, ... ,&,], then M (D) := [M;;(D)]. More-
over, we set

deg M := 1{;3@( deg M;;.
Z7j

Also define
P& =P(=&) = Y (-1l ¢ e Cléy, ... &)

a€eNT
|o|<p

and observe that if P,Q € C[¢, ... ,&,] then these identities follows by a standard argu-
ment:

(2.2) (P+Q)=P"+Q, (PQ)=PQ".
If p € CP(R™,C), v € CP(R",C) and P € C[¢y, ... ,&,] then (P(D)Y)p and (P*(D)p)y

are obviously Lebesgue summable on R™ and a standard computation shows that

(2.3) [Py = [(Pr(D)g)w.

2.3. Distributions. Let €2 be an open subset of R”. We recall that a linear functional
T :Cx(,C) — C is said to be a distribution on € if one has lim;_,., T'(¢;) = T'(¢) for
every sequence {¢;}32; C C°(2,C) and ¢ € C°(92,C) such that

(i) There exists a compact set K C € such that supp ¢; C K, for all j;
(ii) One has lim;_, [|0%¢0; — 0Y¢||coo = 0, for all & € N™.

If conditions (i) and (ii) are satisfied we say that the sequence {¢;}52, converges to ¢
in C°(€2,C). The set of all distributions on €2, denoted by D’(£2), is obviously a vector
space with addition and scalar multiplication defined by

(Ty 4+ T)(¢) = Ti(p) + Ta(p), (AT)(p) = AT(p)

for all 71,75, T € D'(Q), A € C and ¢ € C(Q,C). For every u € L;..(©2,C) one can
define T,, € D'(2) as

Tu(p) :Z/pr, p € Cr(Q,C).
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We recall that, if P € C[&y,...,&], T € D'(2) and set

[P(D)T](¢) :=T(P* (D)), ¢ C2(,C)
then P(D)T € D'(Q). In particular, if u € L{. (2, C) then one has

[P(D)T() = [ (P*(D)e)u, ¢ € CX(Q,0)

Hence, in the special case when u € CP(£2,C) with p = deg P, recalling (2.3), we find the
following regularity identity
(2.4) P(D)T, = Tp(pyu-
We shall use the weak topology in D'(2)

, so that lim;_, T; = T means that
lim T(p) = T(¢), for all ¢ € C*(Q,C).
Jj—o0

The map

LL.(Q,C)>u— T, € D(Q)
is continuous. More precisely, if {u;}32, converges to u in Li.(Q,C), namely uj,u €
Li . (Q,C) and

lim/ lu; —u| =0
K

J—00

for all compact set K C €2, then one has

(2.5) lim T, = T.,.
j—00
If G = [G}] is a matrix of polynomials in C[{y, ... ,&,] of dimension N x k and

f=0f, ) €LL.(Q,CH, &= (dy,...,0y5)" € L] (Q,CY)
then we say that the equality G(D)f = ® holds in the sense of distributions if

k
Z Gim(D)Ty,, = Ty,
=1

forall [ =1,...,N, that is

(2.6) i_l (G (D / oD,

— Jo
for all p € C*(2,C) and I =1,...,N.

2.4. Superdensity. A point z € R" is said to be a m-density point of E C R™ (where
m € [n,400)) if

L"(B.(x)\ E) =o(r™) (as r — 04).
The set of all m-density points of E is denoted by E(™

Remark 2.1. The following properties hold:

e Every interior point of £ C R" is an m-density point of E, for all m € [n,+00).
Thus, whenever E is open, one has E C E™ for all m € [n, +00);
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o If EC R" and n < my < my < +00, then E(™2) ¢ E(™) In particular, one has
EM) c E™ for all m € [n, +00);

o If A/ B C R" then (AN B)™ = A™ N B for all m € [n, +00);

e Forall A C R" and m € [n, +00), the set A is L"-measurable (cf. [8, Proposition
3.1]).

Remark 2.2. Let £ C R™. Then one has the following inequality
LB NE) | LYB,(x)\ )
Lr(B,(z))  — L(B,(z))

where equality holds if F is £™measurable. Hence:

(r>0)

o If x € E™_ then x is a Lebesgue density point of E;
e If F is £L™measurable and x is a Lebesgue density point of E, then z € E™.

In particular, if E is £ -measurable, then € E™ if and only if z is a point of Lebesgue
density of E. Moreover

LY(EAE™) =0

e.g., cf. Corollary 1.5 in [19, Chapter 3]. Then one has £"(B,(z)\ E™) = L"(B,(z)\ E),
for all » > 0, hence

(B — o,

A remarkable family of superdense sets is the class of finite perimeter sets. From Theorem
1in [12, Section 6.1.1] it actually follows that almost every point in a set £ C R" (with
n > 2) of finite perimeter is a mg-density point with

my:=n-+1+

n—1
which is also the maximum order of density common to all sets of finite perimeter. More
precisely one has this result, cf. [5, Lemma 4.1] and [8, Proposition 4.1].

Proposition 2.1. The following facts hold (n > 2):

(1) If E is a set of locally finite perimeter in R™, then L"-almost every point in E
belongs to E™o);

(2) For all m > myg there exists a compact set F,, of finite perimeter in R"™ such that
LY(F,) >0 and F™ = .

2.5. A class of cut-off functions. Consider r > 0, p € (0,1) and a function ¢ € C*°(RR)
such that

0< 1/} < 17 w‘(foo,()] = 17 w|[1,+oo) =0.
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If define ¢,, : R* — R by

- |Z‘j!—PT>
Ypr(T) = w< , forall z = (x41,... ,2,) € R",
prl2) }1 (1—p)r (@ )

then one obviously has

(2'7) Ppr € OOO(Rnﬁ [07 1])7 Spp,r|Qpr(0) =1, @p,r‘R”\Qr(O) = 0.
Moreover, a standard computation yields

N 1 ) (12— pr
o0 = i 117 (G557

for all @ € N® and x = (21, ... ,2,) € R", hence

. Clo)
(2.8) 10%@p,rlloorn < (1= p)lelyel

for all @ € N, where C'(«) is a number depending only on « (and n).

3. STRUCTURE OF THE SET OF SOLUTIONS OF
DIFFERENTIAL IDENTITIES SUBJECT TO A CONDITION OF NON-INTEGRABILITY

Throughout this section, G = [Gj] and S = [S};] are matrices of polynomials in C[{y, ... ,&,]
of dimension N x k and h x N, respectively. Let

p:=degG > 1.

Moreover (2 is an open subset of R™. Finally, for any given f € CP(Q,C*) and F €
C(Q,CN), we define
Arp={r € Q[(G(D)f)(x) = F(x)}.

Remark 3.1 (Integrability condition). Let us consider F' € C4(2,CY). Then a necessary
condition for the existence of f € CPT4(Q2, C*) such that the set A; r has an interior point
xo is obviously that

(3.1) (S(D)F)(zo) =0, for all S such that SG =0 and 1 < degS < q.

In Theorem 3.2 below, we shall prove a generalization of this property, by suitably adap-
ting the proof of [5, Theorem 2.1].

Remark 3.2. In general, the problem of determining S such that SG = 0 is not easy and for
an account about its resolution we refer the reader to algebraic analysis literature, e.g., [4]
(and the references therein), where it is addressed also through the use of specific softwares.
In this regard it must be remembered that a particularly significant case is when S is the
matrix yielded by the first syzygies of G, also considered in Corollary 3.1, Corollary 3.3,
Example 3.1, Section 5.2 (Maxwell type system) and Section 5.3 (multivariable Cauchy-
Riemann system) below. In this case, the identity (S(D)F)(z) = 0 for each z € €, under
the further assumption that €2 is convex, is a necessary and sufficient condition for the
existence of a solution f to the partial differential equation G(D)f = F in the framework
corresponding to a large class of sheaves of functions, cf. [4, Theorem 2.1.1].
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3.1. Structure of A;r under assumptions of non-integrability of F. The case
of f € CPri(Q, CF).

Theorem 3.1. Let F = (Fy,... ,Fy)' € C9(Q,CY), f € CP*4(Q,C") and define A} as
the set of all x € Ay saisfying the following property: There exists S, possibly depending
on x, such that

(3.2) 1 <degS <gq, SG=0 and (S(D)F)(x) # 0.

Then the set A} f is covered by a finite family of (n—1)-dimensional regularly imbedded o
submanifolds of R™. In particular, if H"'(Ayp\ A} ) = 0 then Ay p is (n—1)-rectifiable
(cf. [13, 17)).

Proof. First of all, let us define
b= (0y,...,dy5)" :=F—-G(D)f € CUQ,CY).
Also consider x € A% p and let S = [Sj] (possibly depending on x) be such that (3.2) is
satisfied. Then
S(D)F =S(D)(®+G(D)f)=95(D)9.
Since Ay = ®71(0), it follows, in particular, that
S(D)F =5°(D)®, in Ay p
where S° = [S5] is the matrix of dimension i x N whose entries are defined as
(& 6n) = S5 6n) = (0, ,0) € Cléy, -, &0l

for all (j,1) € {1,... ,h} x {1,...,N}. Hence, by also recalling the non-integrability
condition (3.2), we find

(S°(D)®)(x) # 0.

This implies the following

Property: For all z € A} there exist a € N* with 1 < |a| < ¢ and
j€{1,...,N} such that 9°®;(z) # 0.

Now let 0°® := &, while, for [ = 1,...,q, let 9'® denote the vector field obtained by
ordering (in some arbitrarily chosen way) the set

{0°®; |a e N" with || =1, j=1,... ,N}.
Then, for [ =0,...,q — 1, define

(3.3) Afp={w e A} |0 0(x) £0, 9 D(x) =0}
and observe that
q—1
* l
(3.4) Ay p=J APy,
=0

by Property above. By virtue of (3.4) we are reduced to prove that if [ € {0,... ,¢ — 1}
then A;l)F is covered by a finite family of (n — 1)-dimensional regularly imbedded C*
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submanifolds of R™. For this purpose, let K; denote the number of components of 9'®
and define

U0 = @W®, .. uld) = Red'® € CIH(Q, RN,

v = (uP,... ,U%)t = Imd'® € CTHQ,RM).
Moreover, set for simplicity

{rk(DU(l)) > 1} = {w € Q| DUY(x) has rank > 1},
{rk(DV(l)) > 1} = {x € Q| DVY(z) has rank > 1} :

{0 =0} ={xecu@) =0}, {VvU=0}:={rec|vO(z) =0}
and observe that, by definition (3.3), one has
APy € {ik(DUD) > 1} U {ik(DVY) > 1}

and
AP c{u =0} n{v® =o}.
Hence
APy < ({u =0} n {k(DUD) > 1}) U ({VO = 0} n {ik(DVD) > 1}).
Moreover
{0 =0} n{rk(pU®) > 1} = {U =0} n G {zeq|vu(x) # 0}
j=1
C 6 {zeQ|uf(@) =0, Vi’ () £ 0}
j=1
and analogously
{V(Z) = 0} N {rk(DV(l)) > 1} C @ {x € Q| Uj(l)(x) =0, VUJ(»I)<I> # O}.
j=1
Thus
K
AV, c (U r ) (U1A§l))
j=
where

I = {zeQul’(x) =0, Vu{’(z) £ 0},

AP = {z e ol (z) =0, Vol (z) # 0}

We conclude by observing that, for all j = 1,..., K;, the sets Fg-l) and Agl) are (n —
1)-dimensional regularly imbedded C9! submanifolds of R® (by the implicit function
theorem). O
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Corollary 3.1. Let us consider the special case when k =1, namely G := (Gy,... ,Gy)*
and p == deg G > 1. Moreover, let F = (Fy,... ,Fy)t € CP(Q,CY), f € C?*(Q,C) and
assume that for all x € Ay p there exist j,l € {1,... , N} such that

(3.5) (G;(D)F)(x) # (Gi(D)Fj)(x).

Then Ay r is covered by a finite family of (n — 1)-dimensional regularly imbedded C* sub-
manifolds of R™. In particular, A is (n — 1)-rectifiable so that its Hausdorff dimension
18 less or equal to n — 1.

Proof. Let S = [S};] be the matrix yielded by the first syzygies of G (cf. Example 2.1.1
in [4]), which can be obtained as follows. First of all, set h := N(N — 1)/2 and let
{(r,5;)}_; be the set of all the couples

(r,s) €N?, with 1 <r<s<N

ordered in some way (e.g. lexicographically). Then S = [S};] is the matrix of polynomials
in C[&,...,&,] of dimension h x N such that

st if [ = T;
Sjl = —GT]. ifl:Sj (]ZL ,h)
0 otherwise.
Observe that deg.S = p and (S(D)F)(x) # 0 for all x € Ay p, by (3.5). Since SG = 0,
the conclusion follows at once from Theorem 3.1. U

Remark 3.3. The result established in Theorem 3.1 is very general, but we expect that in
many special cases its conclusions can be correspondingly improved. This expectation is
confirmed, for example, by [9, Corollary 4.1] where a suitable adaptation of the argument
used to prove Theorem 3.1 allowed to get the following result of interest for the context
of the Heisenberg group H™ over R*™! (cf. also [2]): Consider F : R*™ — R?*™ defined
as

F(xy, ... Zom) = 2Tmit, - 5 2Tom, =21, ... , —2T0)"

and let Q be an open subset of R*™. Then, for all f € C*(2), the set A; r is covered by a
finite family of m-dimensional regularly imbedded C! submanifolds of R*™. In particular,
Ay p is m-rectifiable so that its Hausdorff dimension is less or equal to m.

3.2. Structure of A;r under assumptions of non-integrability of F'. The case of
f € CP(Q2,CF). In Section 3.1 we have proved that (under assumptions of non-integrability
of F') the set Ay is (n—1)-rectifiable, whenever f € CP7(2, C*). If we extend the class of
functions f under consideration to C?(€2, C*), then, as we shall see below, it can happen to
bump into f such that L*(Asr) > 0 (cf. Theorem 4.1 and Corollary 4.1). However, even
in this case, the non-integrability condition strongly shapes the structure of A . Indeed
the following result, which is the main goal of the present section, holds (cf. Corollary
3.2): A point xy at which the condition (3.1) is not verified cannot be a (n + ¢)-density
point of A; . From this property it follows in particular that no function f € C?(Q, CF)
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can exist such that G(D)f equals F' € C*(Q2,CY) at almost every point of a subset of
with locally finite perimeter (cf. Corollary 3.4).

Theorem 3.2. Let €2 be an open subset of R™ and consider
f=(fi..o f) €C(QCTH, &= (Py,...,Pn)" €C(Q,CY)

such that G(D) f = ® holds in the sense of distributions. Moreover, let F = (F,... ,Fy)' €
C1(Q,CNY) with ¢ > 1 and define

Bre = {z € Q|®(z) = F(z)}.

If z0 € QN By, ("1 then one has (S(D)F)(xo) = 0 for all S such that 1 < deg S < q and
SG =0.

Proof. Let us consider 2o € QN B(nﬂ)7 p € (1/2,1) and r € (0,1) small enough so that

Q,(79) C Q. Recall from Section 2.5 that a function ¢, ,,, € C=(R", [0,1]) has to exist
such that

praol@um@e) = L PpraoRMQ (o) = 0

and

o C(a)
(3.6) 10 p.r.20lloo e < (1= p)lelyiel

for all @ € N*, where C'(«) is a number depending only on « (and n). In the formulas
below we set for simplicity

Qr = Qr(Io), Qpr = Qpr(xo)a Pp,r = Pprao-
Then, by (2.3), we obtain (for all j € {1,... ,h})

| (SO0, = z/ Si(DYR)gpr = z/ D)eur)Fi
—Z/ \chp SH( QOerl—i‘Z/ D)y, )P

7ﬂBF<1>
that is
N
(37) L SO0 =Ly + 3 [ (Si(D)epn)(Fi = @)
T =1 r\BF,<I>
where

N
I = Z/ ( ;l(D)SOp,r)q)z-
1=17Qr
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Observe that, by (2.2), (2.3), (2.6) and the assumption SG = 0, one has

Sm»ﬁﬁ%»ﬁﬁ%»

Hence it follows from (3.6) and ( 7) that

[, 5O = |

D)pr)(F1 — ®1)

r\BF<1>

1
<0y Ln(QT \ BF@) Zﬂ m

lal<q

L£"(Qr \ Bro)
(1= p)ire

where C; and Uy are positive constants which do not depend on r and p. On the other
hand

L SOz 2| [ (SOF)2p| = | [ (SDIF)s
= |, SOIF| = [ (SDIF)ig,
and thus
o, O < g (|, O]+ [ sOIF)])
< Cﬁ”ﬁ%);ﬂii@) C (T”;P”T”)

where C' does not depend on r and p. Passing to the limit for » — 04 and recalling that
Ty € B(n+Q) we obtain

P |(S(D)F)j(x0)] < C(1—p").

We conclude by passing to the limit for p — 1—. U

Corollary 3.2. Let f € CP(Q,CF) and F € CY(Q,CN) with g > 1. Ifxg € QN A "+q),
then one has (S(D)F)(xg) = 0 for all S such that 1 < degS < q and SG = 0. As
a consequence, if g € Q and there exists S such that 1 < degS < ¢q, SG = 0 and
(S(D)F)(x0) # 0, then o & AV,

Proof. We simply set ® := G(D)f and apply Theorem 3.2. O
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Corollary 3.3. Let k = 1, namely G := (Gy,... ,Gy)" and p := deg G > 1. Moreover
let F = (F,... ,Fy)t € CP(Q,CN), 29 € Q and assume that there exist j,l € {1,... ,N}
such that

(Gj(D)F)(w0) # (Gi(D) Fj)(x0)-
Then xo & A;?;p), whatever the choice of f € CP(Q,C).

Proof. Let S = [S};] be the matrix of polynomials in C[{y, . .. , &, that we have considered
in the proof of Corollary 3.1. Then SG = 0 and (S(D)F)(zo) # 0, hence the conclusion
follows at once from Corollary 3.2. U

From Corollary 3.2 (with ¢ = 1) and (1) of Proposition 2.1, we obtain at once the following
result.

Corollary 3.4. Assume degS = 1 and SG = 0. Let €0 be an open subset of R" and
consider ' € CY(Q,C"N) such that S(D)F # 0 at L™ a.e. point of a set E of locally
finite perimeter in R, with E C Q. Then there is no function f € CP(Q2,CF) such that
G(D)f =F at L™ a.e. point of E.

Example 3.1. From Corollary 3.3 with N = n and G;(&,... ., &) = &, we get im-
mediately the following result already proved in [5] (cf. also [7]) which generalizes the
classical Schwarz theorem about equality of mized partial derivatives: Let f € C'Y(Q)
and F € C*(Q,R"). Then, for all zg € QN{x € Q : Vf(x) = F(2)}™V, one has
0;Fi(xo) = 0,F;(zo) for all 3,1 = 1,... ,n. In particular, by recalling (1) of Proposition
2.1, one obtains this property: If the Jacobian matriz of F € C*(2,R") is nonsymmetric
at L™ a.e. point of a set E of locally finite perimeter in R™, with E C €0, then there is no
function f € CY(Q) such that Vf = F at L™ a.e. point of E (cf. [15, Corollary 2|, [6,

Theorem 1.3]). These arguments can obviously be restated for C valued functions.

4. A LUSIN TYPE RESULT FOR A CLASS OF
LINEAR PARTIAL DIFFERENTIAL OPERATORS

The proofs of the following Lemma 4.1 and Theorem 4.1 are adaptations of those of [1,
Lemma 7] and [1, Theorem 1].

Lemma 4.1. Let Gy,... ,Gn € Cl&, ... ,&,) and define G(D) := (G1(D),... ,Gn(D))".

Assume that there exist oV, ... a®™) € N such that
s 0 '
6Dy = yorr
¢ € C\{0} ifs=r

and

(4.1) min |a¥| > p := maxdeg G;.
J J
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Moreover consider an open set Q@ C R"™ such that L"(2) < 400, a bounded function
f=, . fn)te(Q,CN), ee (0,1/2) and n > 0. Then there exist a compact set
K C Q, a function v € C*(Q,C) and a constant ¢y which does not depend on f,e,n such
that

(1) LMQ\ K) < eL(Q);
(2) |G(D)o = fllooc < m;
(3) 1G(D)vllsco < (1 +coe™)||flloc0-

Proof. According to the first steps in the proof of [1, Lemma 7], we can find § € (0, 1)
and a compact set K C () with the following properties:

e The estimate (1) holds and

jeJ

where {Q;};e is a finite family of closed cubes of side (1 —¢/2n)d, whose centers
y; belong to the lattice (0Z)";

e For j € J, let T} be the closed cube of side d centered at y;. Then, for all j € J,
one has T; C €2 and

(4.2) |f(z) — f(y)| <n, whenever z,y € T;.

Now, for all j € J and z € R", set
Q;(x) == @ps/2(x —y;), with p:=1—¢/2n,
and observe that
(4.3) o; € C(R™,[0,1]), @jlg, =1, Pjlrmz, =0,
by (2.7). Moreover
(4.4 10, e < Cla)e1olg71e
for all @ € N™, by (2.8). Then define the function v : Q@ — R as follows
(@) = () i ”y)@s —y)™, zeq
jel s=1 Cs

One obviously has v € C(Q,C), by (4.3). To prove (2) and (3), we need the explicit
expressions of the polynomials G,, that is

Grl(&r,... &) = > e () eC)

aeN™
|a|<p
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where the coefficients c{) are assumed to be zero when |a| exceeds the degree of G,.

Recalling (2.1), we find (for z € Q)

| ‘C 9
D)) = 33 3 TG g )5y o)

j€J s=1 aeN? Cs
la|<p

where, for suitable integer coefficients k;éa) (which coincide with 1 for § =0 and § = «),
one has

0 [05(2) (@ — )" ] = 3 k§000;(2) 0P [(w — ;)]

BBE<N7L
e’ als) o a— al®)
= ®;(2) 0"z — )" "1+ X k§07R(2) 0w — )™,
OiEBNga
It follows that
(4.5)
G ( o, £sWi) « p al®)
| =S 0> P9 6 )@ - )
JjeJ s=1 s
ole® fy(y;) k(a)aﬁ o Ne)
+ZZ Z > ®;(z) [(z —y;)* ]
j€J s=1 aeNm Cs BENT
1<|a|<p 0<B<a
= () fr(y;)
jeJ
)\al (T)k-ﬁ 5 s o
+ZZ > > —fs(y;)a D;(x) 0% "[(x —y)™ ).
jeJ s=1 aecNn  BeNn Cs
1<|a|<p 0<B<La
In the formulae below, C, Cy, ... will denote constants which do not depend on f, ¢, 9,

j. From the previous identity, it follows that (for all j € J)
|G(D)vlooz; < [f(y;)]

FOUWIE S Y 190, sup |7z — )"

s=]1 a«aeNm" BENT
1<|a|<p 0<B<La

where

a— al®) a®|—|a
sup |0 ﬁ[(m—yj) | < Cy 817 1= lad+1Al,
:BGTJ'

Hence, by also recalling (4.4):

||G<D>v||oo,TjS|f<yj>|+03|f<yj>|i >3 eyl glatizlal s,

s=1 a€eN"  BeNn
1<|al<p 0<B<La
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Since ¢ € (0,1) and (4.1) holds, it follows that

N
IGD)vlloom, < [fy)l [1+C3Y S ovlel 3
s=1 «a€eNm? BENT
1<]al<p 0<B<La
||
<|fly)l|1+Cy > vy et
sem

where (since 0 < e < 1/2)

] 1— €|a|

—h
eh—-—"°
5T

3

6_|a| S 2€—|Oé‘ .

Thus (since 0 < €0 < 1/2)

IGDle, < 1515 (1 N> <ea>°‘) < 110 1+ G (e

1<|al<p

< [F(y)| (1 + Cro7(e8) ")

that is

IG(D)llooz, < 1F(y)] (14 o).
Hence (3) follows from the arbitrariness of j € J and recalling that v vanishes outside
UsesTy, by (4.3).
To prove (2), observe that one has

[G(D)v](z) = f(y;), forallz € Q; and j € J

by (4.5) and (4.3). Recalling also (4.2), we get

|G(D)o = flloog, <n, for all j € J
which yields the conclusion. 0

Remark 4.1. Let N > 2 be an integer and consider N polynomials in C[{y, ... ,&,] given
explicitly as

Go(&ryoo &)=Y e (r=1,...,N).

aeN™
lal<p

Then the family Gy, ..., Gy satisfies the condition of Lemma 4.1 if and only if one has
(forallr=1,... ,N)

CEI(% 70
=0 forall a < al
A =0 forall a <al®, with s #r
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cf. (2.1). From this observation it follows that if Gy,... Gy satisfies the condition of
Lemma 4.1 and r # s, then
G, # G

and
a(r) < a(s) cannot occur (in particular a(r) # a(s)).

Theorem 4.1. Let Gy,... ,Gy € Cl&y,... ,&,] satisfy the same hypotheses as in Lemma
4.1. Moreover, consider a bounded open set 2 C R"™ and assume that there exist a non-
negative integer m < p = deg G and a constant ¢, > 0 such that

(4.6) IG(D)¢llsc.2 > cx max [[09¢]l .0
la=m
for all p € C=(Q,C). Then, for every bounded function F € C(Q,CN) and for every
€ (0,1), there exist an open set O C Q, f € Cy(Q,C) and ® € Co(Q, CN) with the
following properties:

LM0) <eLr(Q);
®=FinQ\O;
The equality G(D)f = ® holds in the sense of distributions;

In the special case m = p one has G(D)f = ® in the usual sense, hence G(D)f =
FinQ\O.

(1)
(2)
(3)
(4)

Proof. We can assume F' # 0 (if F' = 0 the result trivially holds with O =0, f =0 and
® = 0), so that || F||eco > 0. Then define f, := F' and let us prove, first of all, that there
exist two sequences of functions

{fi}52 c C(@,CY)nL>(Q,CY), {vy;}3, € C2(Q,C)

and a sequence {K;}52, of compact subsets of () satisfying the following properties, for
all j > 1:

(i) L"(Q\ K;) <2772 L™(Q);

(iD) IG(D)v; = fizilloous, < 277V Floo,0;

(iii) |G(D)vjllcor < (14 2P P)|| fi—1|lco.2, Where ¢g is the constant in Lemma 4.1;
(iv) fi(z) = fi-1(z) = [G(D)v;](z) for all z € K; and || filloc = [ fi-1 = G(D)vjlsc x;-

Such a statement is proved by the following induction argument:

e First of all, use Lemma 4.1 to get a compact set K; C 2 and vy € C2°(2,C) such
that (i), (ii) and (iii) hold with j = 1. Then we get f; € C(Q,CN) N L>(Q,CY)
satisfying (iv) with j = 1, by extending the function

fo(@) = [G(D)u](z), =€ K

by means of Tietze’s theorem [18, 20.4].
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e Now suppose to have
{fiHE co@,CMynL=(Q,C"), {v}L, cCr(Q,C)

and a family { K }le of compact subsets of €2 such that the properties (i-iv) above
are satisfied for j = 1,... , H, where H is any positive integer. By using again
Lemma 4.1 we can find a compact set Kg1 C Q and vy, € C°(Q2,C) such that
(i), (ii) and (iii) hold with j = H + 1. Moreover, by Tietze’s theorem [18, 20.4],
we get i1 € C(Q,CN) N L>(Q, CY) which satisfies (iv) with j = H + 1.

Now let
(4.7) 0:=0Q\ ) K;
j=1

and note that (1) follows at once from (i) above. Moreover, from (ii), (iii), (iv) and
recalling that ¢ € (0,1), we get this estimate

i co2P 002 —(i—
> 16D el = (14 5 WPl + 3 (14 257 ) 2000
j=1

— W i (1 + Cogjp> 9—(-1(p+1)
j=1

Fllooo & ;
< [l ST (1 +cp2r) 27

ep

ep ;
7=0
_ 201+ ¢2°) || Fllso0
= o

so that the series 332, G(D)v; converges totally in L>(€2, CV). Hence, if define upy :=
Y v e CR(Q,C) (for H=1,2,...):

e There exists ® = (®,...,Py)t € Cp(2,CY) such that
(4.8) I}l_rgo |G(D)ug — @||con = 0;

e By recalling assumption (4.6) and Poincaré’s inequality (cf. Theorem 3 of [11
Sect. 5.6]), we find that f € C7*(€2,C) has to exist such that

(4.9) Jim Jjug = fllem@e) = 0.

Now, recalling (iv) above, one can easily prove by induction on k that if z € N2, K; and
H > 1 then the following identity

H

F(z) = [G(D)unl(z) = fu(z) = >_ [G(D)v](z)

I=k+1
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holds for all £ =0,...,H — 1. Hence, recalling also (4.7) and (ii) above, we obtain
IF = G(D)un||or0 = [[F' = G(D)us oo, x;
(4.10) = || fu-1 — G(D)villcon; x;
<27 1P| Pl .
From (4.8), (4.10) and the inequality
IF = @0 < [[F = G(D)usllo.oro + [G(D)un = Pllcar0

we get assertion (2).

By (4.8), (4.9), recalling the regularity identity (2.4) and the continuity property (2.5) for
distributions, we obtain

G](D)Tf = 1}1—{%0 GJ(D>TUH == I}lm TG]-(D)uH == quj (j = 1, e ,N)
which proves (3). Finally (4) follows immediately from (3) and (2). O

Remark 4.2. The conclusions of Theorem 4.1 do not extend to families of polynomials
G1,...,Gy in which there are repeated elements (compare Remark 4.1). To prove it,
let’s assume that there is a repetition, namely G, = G4 with r # s, and consider any
F = (Fy,...,Fy)" such that F, = 0 and F, = 1. Then at least one of statements
(1),(2),(3) of Theorem 4.1 must fail to be true. Indeed (3) yields Ty, = Ts,, hence
¢, = &,. Then 1 =01in Q\ O, by (2). But this implies O = Q, which contradicts (1).

From Theorem 4.1 we get immediately the following property.

Corollary 4.1. Let Gy,... ,Gy € C[&, ... ,&,] satisfy the same hypotheses as in Lemma
4.1.  Moreover, consider a bounded open set Q C R"™ and assume that there exists a
constant ¢, > 0 such that

IG(D)¢llss. > cx max [|07¢]|oc,0
la|=p
for all o € C=(Q,C). Then, for every bounded function F € C(Q,CY), one has

sup L"(Arrp) = L"(Q).
fecr(Q,c)

5. EXAMPLES OF APPLICATION

5.1. Alberti’s Theorem. Given a positive integer k, let T denote the set of n-tuples
o € N” such that |a| = k and set Ny, := #7Tz. Moreover let j — a) be an arbitrarily
chosen bijection from {1,... , Ny} to Agx. Then we obtain the following well known result
(cf. [1, 14)).

Corollary 5.1. Let € be a bounded open subset of R™ and k be a positive integer. Then,
for every bounded function F = (Fy,... ,Fy.)T € C(Q,R™) and for every e € (0,1),
there exist an open set O C 2 and f € CE(Q) with the following properties:
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(1) £"(0) < eL™();
(2) 0V f=F; in Q\ O, forall j=1,... Ny

Proof. The family of polynomials
Gy &) =i e Cley, .. 6] (=1,... , Ny)

verifies the assumptions of Lemma 4.1, in that

0 if s#£r
aMl ifs =7

G (D)™ = 90" = {

and
deng:|Oé(j)|:k (]:177Nk)

so that p = max; deg G; = k. Moreover condition (4.6) is trivially satified with m = k = p.
The conclusion follows from (1) and (4) of Theorem 4.1. O

5.2. Maxwell type system. Let us recall that the electromagnetic field is characterized
by the system

VxE+9B=0
VxB-0FE=j

where E, B, p and j are the electric field, the magnetic field, the electric charge density
and the electric current density, respectively. The symbol of this system is the following
matrix of polynomials in C[&;, &, &3, &4

ST SIS 0 0 0 7
0 0 0 & & i
0  —i& & & 0 0
G(fla 527 537 54) = [Gﬂ(£17 627 £37 54)] = _2522 221 _651 8 254 224 )
-1y 0 0 0 =& il
0 —i& 0 &3 0  —i&
0 0 —i€4 —Zfz Zfl O

where &7, &y, &5 are the symbols of the spatial differential operators —i0,,, —i0,,, —i0,,,
while &, is the symbol of the time differential operator —id,, (for consistency with the
notation introduced in the previous sections, we denote the time variable with x4). In
this case, a remarkable example of S such that SG = 0 is the matrix associated to the
first syzygies (cf. [4, Section 5.1])

5(61752a§3a§4) = [ﬁjl(§1’§2’€37€4)] = 224 Z€4 Zgl 232 263 221 Zg2 7,23 :
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Corollary 5.2. Let 2 be a bounded open subset of R*. Then, for every bounded function
F=(F,..., F)'eC(Q,C® and for every e € (0,1), there exist an open set O C Q and
[ € CH(, C®) with the following properties:

(1) £YO) < eLY();
(2) GD)f = F in Q\ O.

Moreover:

(3) Let F € CY(Q,C¥). Then for all (zg,ty) € QN A}E’%ﬂ one has (S(D)F)(zo,ty) =0
whenever deg S =1 and SG = 0. In particular, (S(D)F)(zo,t0) =0, i.e.,
0
0

8tF2<x07 tO) + Vx : (F37 F47 F5)($07t0) =
O F1 (o, to) + V- (Fs, Fr, Fs)(x0,t0) =

for all (zg,ty) € QN Ag:r’%

(4) Let F € CY(Q,C¥), g € C*(Q,C% and assume that (S(D)F)(z) # 0 for all
x € Ay p. Then the set Ay p is covered by a finite family of 3-dimensional reqularly
imbedded C' submanifolds of R*. In particular, A, is 3-rectifiable so that its
Hausdorff dimension is less or equal to 3.

Proof. Let

H = (H17H2,H3,H4)t = (Gn,G41,G51,G61)t
and

K = (KlaK2aK3,K4)t = (G247G347G747G84)t'
Then:

e The polynomials Hy, Hy, H3, Hy verify the assumptions of Lemma 4.1 with
aM =(1,0,0,0), a® =(0,0,1,0), ¥ = (0,1,0,0), o =(0,0,0,1).
Moreover H satisfies condition (4.6) with m = deg H = 1.
e Analogously, K1, Ky, K3, K4 verify the the assumptions of Lemma 4.1 with
aM =(1,0,0,0), & = (0,0,0,1), «® = (0,0,1,0), o =(0,1,0,0),
and K satisfies condition (4.6) with m = deg K = 1.

Hence, by Theorem 4.1, there exist two open sets Oy, Oy C Q and fi, f4 € C}(22,C) such
that

54(01) S %;64(9), H(D)fl = (F17F47F5,F6)t in Q \ 01

and

LYO,) < 354@), K(D)fys = (Fy, Fy, Fr, F)t in Q\ O,.
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Statements (1) and (2) follow by setting O := O; U Oy and f := (f1,0,0, f4,0,0)". As
for (3), it follows immediately from Corollary 3.2. Finally, we obtain (4) from Theorem
3.1. 0

5.3. Multivariable Cauchy-Riemann system. Let Gy,... ,Gy € C[, ..., &n]| be
defined as

i 1 .
Gi(&1,. .., &n) 32552]‘—1—252]' (j=1,...,N).
Then G = (Gy,...,Gy)" is the symbol of the Cauchy-Riemann system in N complex
variables z; = xg;_1 +ix9; (j = 1,..., N), namely
o 100+ 10,
GD)=| : |= :
B?N % Oan—1 + % Oan

Observe that p = deg G = 1. Analogously as we have done for the Maxwell type system,
we can consider the matrix associated to the first syzygies, namely the one of dimension

w x N used in the proof of Corollary 3.1. Also in this case we denote such a matrix

by S.

Corollary 5.3. Let € be a bounded open subset of RN . Then, for every bounded function
F e C(Q,CN) and for every e € (0,1), there exist an open set O C Q, f € Cy(R,C) and
P € Co(Q, CN) such that:

(1) L2V(0) < eL2M(Q);
(2) =F inQ\O;
(3) The equality G(D)f = ® holds in the sense of distributions.

Moreover:

(4) Let F € C*(Q,CN). Then for all zy € QN ngﬂ) (in particular, for all xy €
QN (09N one has (S(D)F)(xo) = 0 whenever degS = 1 and SG = 0. In
particular, (S(D)F)(zo) =0, i.e.,

oF B OF;
672]-(%) = 9z (7o)

for all 3,1 € {1,... ,N} and for all xy € QN ngﬂ) (in particular, for all
o € QN (Oc)(2N+1)).

(5) Let F € CY(Q,CN), g € C*Q,C) and assume that for all v € A, one has
(S(D)F)(x) # 0, that is the matriz [g—g(az)] is not symmetric. Then the set A, p
is covered by a finite family of (2N — 1)-dimensional reqularly imbedded C* sub-
manifolds of R*N. In particular, A, r is (2N — 1)-rectifiable so that its Hausdorff
dimension is less or equal to 2N — 1.
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Proof. Observe that GGy, ... , Gy verify the hypothesis of Lemma 4.1 with
o) = (ozgj), e ,04;]]‘\),) c N2V
defined by

Gy Jo ifh#£2j
Pl if k=24

Moreover we can easily prove that (4.6) holds with m = 0, as follows. First of all, let us
consider R > 0 such that

Q C Br(0) = {(z1,... ,2on) € RV [} + -+ + 2}y < R*}.
Moreover, let ¢ € C°(Q2,C) and define ¢ € C°(Bg(0),C) by

v e) ifreQ
Pla) = {o if + € Br(0)\ Q.

In the special case when N = 1, from a well known classical representation formula (cf.
[16, Corollary 1.1.5]) we obtain
- 1 9¢(¢) 1 F
=—— —(C — d¢ Nd
R e M S (S R

for all z € Br(0), hence (4.6) with m = 0 follows at once. Then assume N > 2. In such
a case let us consider the projection

IT : RZN — RQN_Q, H(Qfl, e ,QTQN) = (273, e ,QTQN).

Moreover, for y € R*¥=2 guch that |y| < R, let D, denote the open disc in R? of radius
(R? — |y|>)"/? centered at 0 and define the map

oy Dy — Br(0), oy(ti,ts) == (t1,t2,9).

Applying the representation formula mentioned above to the function ¢ oo, : D, — C
and observing that (¢ o oy)|ap, = 0, we get

~ b d(poay)(¢) -1 37
(5.) Fooy(s) =~ [ FEGE (=) Al AdG
for all z € D,. Now, for all x = (x1,... ,z2n) € Bg(0), one has

(1'1,552) S DH(JE)? 95(37) = @(xlax%r[(x)) =gpo UH(x)(‘TlaxZ)

and hence also

0z aC
Thus, if € Bg(0) and set y := II(x) in (5.1), we find

o1 05(¢, 11(z))
P =g /DH( G

05(z) _ 0@ 0 onw))(w1,2)

(¢ — (1 +dx2)) " dC A dC.
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Since Dry(y) is contained in the disc 5(:701, x9) of radius 2R centered at (1, x2), it follows
that

_ 11 0p _
e e I N (SR (RN (AR e Ve (W
s Z1 00, B(0) D(z1,z2)
=4RH8¢

namely
[@lloc S AR[|G1(D)l| o0 0

This yields (4.6) with m = 0, so the hypotheses of Theorem 4.1 are all verified and thus
(1), (2), (3) follow. To prove (4), we observe that

by (2). Hence
QN (0N canBpg Y

and we get the conclusion from Theorem 3.2. Finally, we immediately get (5) from
Theorem 3.1. U
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