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A B S T R A C T

This study investigates an analytical beam model to improve the analyses of welded thin plates with welding-
induced curved distortions. The model addresses the rigidity of a butt-welded joint and its effect on plate
bending and structural stress by including a rotational spring at the welded end. The spring rotational
stiffness, 𝑘𝑎, is replaced by the fixity factor, 𝜌𝑎. The validity of the model is based on the assumption of small
displacement and moderate rotation of the mid-plane of the welded plate. Using the Finite Element Analysis of
a two-dimensional model, a semi-analytical method for the fixity factor computation is developed. Compared
with the numerical analysis, the beam model showed a maximum error of 3% in deflection and hot-spot
structural stress. Results suggest that the fixity factor is mainly dependent on the width of the weld bead and
the far-end constraint. The introduction of 𝜌𝑎 can improve the analytical solution by 9% in the evaluation
of the hot-spot structural stress. Neglecting the non-ideal joint rigidity may lead up to 54% underestimation
in terms of fatigue life, when the S–N curve slope, 𝑚, equals 5. However, the relevance of 𝜌𝑎 decreases for
increasing geometric slenderness of the welded plates.
. Introduction

Lightweight design is essential in different engineering fields where
tructural optimisation aims at reduced economic and environmental
mpact, whilst enhancing the technical performance [1].

Thin-walled structures made of high-strength steel are an attractive
olution to achieve the lightweight design in the shipbuilding indus-
ry, where the use of steel is well-established in the manufacturing
rocess. However, the thickness reduction causes higher susceptibility
o welding-induced distortions, which lead to a geometric non-linear
esponse under axial loading. Research in the field of marine structures
ointed out that the geometric non-linearity is a major source of un-
ertainty in the fatigue assessment of structural components [2–5]. For
n efficient and flexible routine at the early design stages, the current
ecommendations for the fatigue assessment of welded components
rovide analytical solutions based on the nominal or structural hot-
pot stress approach [6,7]. For butt-welded plates, the latter evaluates
he structural stress at the weld (i.e., the hot-spot) as the nominal
tress, 𝜎𝑁 , multiplied by a stress magnification factor, 𝑘𝑚. The nominal
tress must satisfy the global equilibrium conditions, while the stress
agnification factor encompasses the local stress concentration caused

y the initial distortion. The current solutions for the 𝑘𝑚 factor account
nly for a flat distortion, i.e. for a global angular misalignment that
s constant between plate supports [8]. This simplification limits the
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validity of the solutions to plate thicknesses, 𝑡, of at least 5 mm [5,9].
On the other hand, the mechanics of welded thin-plates with curved
distortion is not fully understood, yet. Thereby, the lack of a proper
analytical solution has made the Finite Element Analysis (FEA) the only
computational approach for the design of these lightweight solutions.
Moreover, for large structures like passenger ships, a time-consuming
FEA is highly inefficient in the early stages of the design process. For
these reasons, the shipbuilding design standards are still preventing the
use of thin plates, i.e. plates with 𝑡 ≤ 5 mm [10]. Although the need
for improved analytical models emerged especially in the shipbuilding
field, the study concerns any application of thin-plate butt-welded
joints with a curved initial distortion.

In order to analyse the effect of a welding-induced curved distor-
tion, several studies have proposed improved solutions focusing on
an angular misalignment with a local variation; see [11–16]. These
solutions simplify the curved distortion as shown in Fig. 1. In the
figure, the curvature on the welded plates induces a local angle, 𝛼𝐿, at
the weld fusion-line, superimposed to the global angle, 𝛼𝐺, of the flat
distortion. It should be noted that the plates have equal length 𝑙 and
thickness 𝑡. The studies consider a linear-elastic, one-dimensional (1D)
beam idealisation of the structural problem. In fact, thin and slender
(i.e. 𝑙∕𝑡 > 20) isotropic plates generally show negligible out-of-plane
141-0296/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
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Fig. 1. Definition of global, 𝛼𝐺 , and local, 𝛼𝐿, angular misalignment in a simplified
welding-induced curved distortion on butt-welded thin plates of equal length 𝑙 and
thickness 𝑡.

normal and shear stresses (i.e., 𝜎𝑦 and 𝜏𝑥𝑦 over the plate thickness,
respectively). Moreover, the transverse in-plane shear stress (i.e., 𝜏𝑥𝑧)
has negligible contribution in terms of deflections for plates with an
aspect ratio larger than 10 (i.e. plate strips) [17,18]. Thereby, the beam
well-approximates deflections over the main axis of a thin plate strip,
which also neglects any initial distortion in the transverse direction.

A further improvement is proposed by Mancini et al. [16], where
the beam analysis is extended to non-ideal rotational constraints at
the beam ends (𝑎 and 𝑏). The study models rotational constraints (or
boundary conditions, BCs) through rotational springs with stiffness 𝑘𝑎,𝑏.
Since the stiffness varies between 0 and ∞ (i.e., ideally pinned to fixed
rotation, respectively), it is conventionally substituted by fixity factors,
𝜌𝑎,𝑏 [19–21]. The use of fixity factors is usually found in the stability
analysis of columns in frames. The role played by these terms is to
account for the interaction of an isolated member with the neighbour-
ing structure, which modifies its actual rotational stiffness [21]. In the
present analysis, the interacting members are the beam and the joint
itself. The end 𝑏 is ideally constrained, as the variation of 𝜌𝑏 shows
a minor impact on the 𝑘𝑚 factor, if compared with the constraint at
weld location [16]. Instead, a fictitious spring is located at the weld
fusion-line, which becomes the origin of the beam model, namely 𝑎. The
spring can only weaken the rotational constraint at the beam origin if
compared to the ideally clamped condition. In terms of the fixity factor,
the interesting range remains within 0 (i.e., pinned condition) and 1
(i.e., clamped condition). A fixity factor approaching 0 would suggest
that the deformation of the weld area dissipates the majority of the
bending action, reducing the moment reaction needed at the left edge
of the welded plate. On the contrary, a more rigid weld has a higher
moment capacity, thus conveying the moment reaction to the left edge
of the plate with minimum deformation of the welded area.

This paper further develops the previous research [16] by proposing
a semi-analytical method for the computation of the fixity factor at the
welded end of a thin plate strip under uniaxial tensile load. The fixity
factor is computed by FEA of a two-dimensional (2D) thin plate model,
including the weld shape. The FEA provides the nodal slope of the mid-
plane at the weld fusion-line (i.e. the boundary between the welded
region and the plate). This slope is equalled to its analytical expression
to evaluate 𝜌𝑎. The analytical model is validated in terms of mid-
plane deflection and structural hot-spot stress by comparison against
the numerical solution. The numerical hot-spot stress is provided by
the structural stress approaches of through-thickness linearisation and
surface stress quadratic extrapolation to the hot-spot, as recommended
in [7]; see Section 2.2.1. Additionally, a sensitivity analysis shows the
impact of different weld and plate geometries, load levels, and far-end
constraints on the fixity factor 𝜌𝑎. Finally, the validity of the results is
studied for different geometric slenderness ratios.

2. Methodology

2.1. Analytical model

The 1D beam model in Fig. 2 represents the longitudinal (and main)
direction of one of the two butt-welded plates. In the figure, the left-end
𝑎 of the beam corresponds to the weld fusion-line, while the right end
2

𝑏 is loaded by a tensile force, 𝑃 . As only half of the welded structure of f
Fig. 2. Beam model with an initial curved distortion described by a linear lateral sway
superimposed to a half-sine curvature. A tensile load, 𝑃 , is applied at the right end, 𝑏
(or far-end with respect to the weld location 𝑎).

Fig. 1 is modelled, the angles are defined based on the baseline (i.e., the
beam without any distortion) as a reference. Consequently, the angles
are indicated with lowercase subscripts. When the welded structure is
fully symmetric with respect to the weld line, 𝛼𝑙 = 𝛼𝐿∕2 and 𝛼𝑔 = 𝛼𝐺∕2.
The distorted shape 𝑤0(𝑥) over the beam length 𝑙 is simplified to a
superposition of a linear lateral sway 𝑤0,𝑦0 (𝑥) and a half-sine curvature
𝑤0,𝑎0 (𝑥) of maximum amplitudes 𝑦0 and 𝑎0, respectively (see Eq. (1)).

𝑤0(𝑥) = 𝑤0,𝑦0 (𝑥) +𝑤0,𝑎0 (𝑥) =
𝑦0𝑥
𝑙

+ 𝑎0 sin
(𝜋𝑥

𝑙

)

, (1)

The analytical model follows the Bernoulli–Navier hypotheses [17]
and uses the von-Kármán axial strain definition. The latter accounts
for secondary bending effects and applies to a kinematic of small
displacements and moderate rotations (commonly, up to 10 deg). The
strain is defined as [18]:

𝜀𝑥 =
[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

− 𝑧𝑑
2𝑤
𝑑𝑥2

. (2)

The differential equations related to the beam axial displacement, 𝛿𝑢,
and deflection, 𝛿𝑤, are derived according to the Hooke’s Law for linear-
elastic materials (i.e., the normal stress is 𝜎𝑥 = 𝐸𝜀𝑥, whit 𝐸 Young’s
modulus of the material) and the principle of virtual displacement; see
Eq. (3) [22], where 𝑁 and 𝑀 are the internal axial force and bending
moment, respectively.

⎧

⎪

⎨

⎪

⎩

𝛿𝑢 ∶ − 𝑑𝑁
𝑑𝑥

= 0

𝛿𝑤 ∶ − 𝑑
𝑑𝑥

(𝑑𝑤
𝑑𝑥

𝑁
)

− 𝑑2𝑀
𝑑𝑥2

= 0
(3)

In Eq. (3), the bending moment can be approximated by Eq. (4), where
the superscript (′) indicates a derivative with respect to 𝑥, and 𝑟 is
he radius of curvature of the deflected beam. In the equation, 𝐸𝐼𝑥𝑥
s the flexural stiffness of the beam, where 𝐼𝑥𝑥 is the second moment
f inertia. The approximation 1∕𝑟 ∼ 𝑤′′ is commonly accepted in the
ase of moderate rotations and results in 1% error if 𝑤′ does not exceed
.08, i.e. is less than 5 deg [17].

(𝑥) = −
𝐸𝐼𝑥𝑥
𝑟

≈ −𝐸𝐼𝑥𝑥𝑤
′′(𝑥) (4)

Considering Eq. (4), the ordinary differential equation (ODE) in terms
of beam deflection is obtained by integrating twice the second expres-
sion in Eq. (3), substituting 𝑤(𝑥) with 𝑤(𝑥) + 𝑤0(𝑥), and applying the
problem boundary conditions. For simplicity, it is possible to apply the
principle of linear superposition to treat the flat and curved distortions
separately. Then, the two ODEs for the beam model with half-sine
curvature and the beam with linear lateral sway are, respectively:

𝑤′′
1 (𝑥) − 𝑘2𝑤1 (𝑥) = +𝑘2𝑎0 sin

(𝜋 𝑥
𝑙

)

, (5)

𝑤′′
2 (𝑥) − 𝑘2𝑤2 (𝑥) = −

𝑀𝑎
𝐸𝐼𝑥𝑥

+
𝑀𝑎 +𝑀𝑏 − 𝑃 (𝑌 − 𝑦0)

𝐸𝐼𝑥𝑥𝑙
𝑥. (6)

In the equations, 𝑘 = √(𝑃∕𝐸𝐼𝑥𝑥), 𝑀𝑎 and 𝑀𝑏 are the bending
oments at the beam ends, while 𝑌 is the final vertical position of the

ar-end 𝑏 of the beam. The derivation of a closed-form solution of the
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Fig. 3. Deflection 𝑤(𝑥) and slope-deflection 𝑤′(𝑥) boundary condition configurations for the beam model of length 𝑙 with a rotational spring of stiffness 𝑘𝑎 at the left end (i.e., at
𝑥 = 0).
Fig. 4. Definition of the beam rotation angle 𝛷𝑎 and the spring rotation angle 𝜃𝑎 at
the left end, 𝑎, of the beam.

ODEs first needs the deflection BCs. Consequently, the deflection equa-
tions 𝑤1(𝑥) and 𝑤2(𝑥) (and their derivatives) are linearly superimposed,
i.e., 𝑤(𝑥) = 𝑤1(𝑥)+𝑤2(𝑥), where 𝑤(𝑥) becomes the total deflection of the
curved beam. As the flat and curved beams are first analysed separately,
the possible deflection BCs (i.e. 𝑤(0) and 𝑤(𝑙)) in the actual structural
problem can be considered only once. In this case, the half-sine curved
beam is always fixed at both ends, i.e. 𝑤1(0) = 𝑤1(𝑙) = 0. Instead, the
deflection of the beam with linear lateral sway is 0 at weld location,
while it can be either free or fixed at the far-end (i.e., 𝑤2(𝑙) = [0, 𝑌 −𝑦0],
as for the actual structure). Finally, the slope-deflection BCs are applied
on the total slope 𝑤′(𝑥) = 𝑤′

1(𝑥) + 𝑤′
2(𝑥). The BC at the welded end is

determined by the action of the rotational spring, while the far-end
rotation is either zero or free. Combining these total deflection and
slop-deflection BCs, all the possible deformation mechanisms of the
structural system of interest are covered. This study considers all these
combinations, which are summarised in Fig. 3.

In Fig. 3, the term 𝑘𝑎 represents the rotational stiffness of the spring
at the welded beam end. In the analytical derivation, 𝑘𝑎 is included in
terms of the fixity factor 𝜌𝑎. The relation between the two terms is based
on two definitions. First:

𝑘𝑎 = −
𝑀𝑎
𝜃𝑎

, (7)

where 𝜃𝑎 is the spring rotation. The stiffness is positive when the
moment counteracts the end rotation (i.e., when they have opposite
direction). Second:

𝜌𝑎 =
𝛷𝑎

𝛷𝑎 + 𝜃𝑎
, (8)

where 𝛷𝑎 is the slope depending on the beam flexural stiffness and its
BCs at both ends; see Fig. 4.

For a generalised formulation of the slope at the welded end, it is
useful to consider the analysis of a straight, ideal, simply supported
beam subjected to external end moments 𝑀𝑎 and 𝑀𝑏 (if 𝑀𝑏 ≠ 0). These
moments correspond to the internal moment reactions derived for the
beam in Fig. 2. As shown by Hellesland [21], if the slope BCs are solved
for 𝑀𝑎,

𝑀𝑎 =
𝐸𝐼𝑥𝑥
𝑙

𝛷𝑎

[

4
(

1 + 0.5
𝛷𝑏
𝛷𝑎

)]

. (9)

In Eq. (9), the term in square brackets can be substituted by a new term
𝑏∗. The latter becomes very useful in the case of non-ideal rotational
constraints. In fact, by substituting the ratio 𝛷 ∕𝛷 by the actual slope
3

𝑏 𝑎
ratio, it is possible to use the term 𝑏∗ as a correction to the ideal flexural
stiffness of the beam. In this study, 𝛷𝑏∕𝛷𝑎 = 𝛷𝑏∕(𝛷𝑎+𝜃𝑎). Accordingly,
𝑏∗(1)(2) = 4, and 𝑏∗(3)(4) = 3, with subscripts referring to BC configurations

of Fig. 3. According to the above equations,

𝜌𝑎 =
𝛷𝑎

𝛷𝑎 + 𝜃𝑎
= 1

1 + 𝜃𝑎
𝛷𝑎

= 1
1 + −𝑀𝑎

𝑘𝑎
𝑏∗𝐸𝐼𝑥𝑥
𝑀𝑎𝑙

= 1
1 − 𝑏∗𝐸𝐼𝑥𝑥

𝑘𝑎𝑙

. (10)

Finally, the rotational stiffness of the spring can be substituted in the
slope BCs in Fig. 3 as:

𝑘𝑎 =
𝑏∗

1
𝜌𝑎

− 1

𝐸𝐼𝑥𝑥
𝑙

. (11)

Notice that these definitions are used with consistency with the right-
hand rule for both the numerical and analytical models. When the beam
kinematics is solved, the hot-spot structural stress can be defined as in
Eq. (12), where 𝜎𝑚 and 𝜎𝑏 are the membrane and bending moment,
respectively, and 𝐼𝑥𝑥 = 𝑏𝑝𝑡3∕12.

𝜎𝐻𝑆 = 𝜎𝑚 + 𝜎𝑏(0)|𝑦=𝑡∕2 =
𝑃
𝑏𝑝𝑡

+
𝑀𝑎
𝐼𝑥𝑥

𝑡
2

(12)

Consequently, the stress magnification factor is defined as:

𝑘𝑚 =
𝜎𝐻𝑆
𝜎𝑚

= 1 +
6𝑀𝑎
𝑃 𝑡

. (13)

The final formulations for the 𝑘𝑚 factor with and without non-ideal
rotational constraint at the welded end are shown in Appendix A. In
this study, 𝜎𝑚 = 𝜎𝑁 , since uniaxial load is considered.

2.2. Finite element analysis

In this study, the FEA provides the slope at the weld fusion-line,
which is needed for the computation of the fixity factors for selected
geometries of the welded joint. Furthermore, the FEA is utilised to
calculate a reference solution in order to study the mechanics of the
welded thin plates with initial curvature.

2.2.1. The finite element (FE) structural stress approaches
The reference solution in terms of structural stress is assessed ac-

cording to fatigue design recommendations for welded plates [7]. The
commonly accepted approaches are the through-thickness linearisation
(TTL), the surface stress linear or quadratic extrapolation to the hot-
spot (LE or QE), the Haibach’s approach and Yamada’s method. These
approaches allow for the determination of the hot-spot stress in the
presence of local effects due to the notch area. This study applies the
TTL at the hot-spot location and the QE approach in the validation of
the analytical model, as they are shown to be suitable methods for thin
plates; see e.g. [23].

According to the TTL approach, the local non-linear stress distribu-
tion near the weld toe must be equilibrium-equivalent to a linear stress
distribution away from the weld [24]. In the case of 2D thin plate mod-
els, the linearisation will only depend on the normal stress (see Eq. (14),
where 𝐴 = 𝑏𝑝𝑡 and 𝑊 = 𝑦∕𝐼𝑥𝑥, with 𝑡 and 𝑦 defined in Fig. 5(a),
and 𝑏𝑝 representing the plate width), thus dropping the shear effect
contribution introduced by Dong et al. [24]; see, for instance, [23,25].
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Fig. 5. Representation of (a) Through-Thickness Linearisation (TTL) and (b) Quadratic Extrapolation to the hotspot (QE) for the structural stress assessment.
Fig. 6. Geometric dimensions of an ideally symmetric butt welded joint.

In this paper, the stress is linearised through trapezoidal integration in
Eq. (15), where 𝑓 (𝑦) is a general function of 𝑦 and 𝑁 is the number of
nodes over the thickness. The TTL approach is usually preferred, being
the most physically correct among the structural stress approaches.

𝜎𝑠 =
𝑃
𝐴

+ 𝑀
𝑊

→ 𝜎𝑠 =
𝑙
𝑡 ∫

𝑡

0
𝜎(𝑦)𝑑𝑦 + 6

𝑡2 ∫

𝑡

0
𝜎(𝑦)

( 𝑡
2
− 1

)

𝑑𝑦 (14)

∫

𝑡

0
𝑓 (𝑦)𝑑𝑦 = 𝑡

2𝑁
[

𝑓 (𝑦0) + 2𝑓 (𝑦1) +⋯ + 2𝑓 (𝑦𝑁−1) + 𝑓 (𝑦𝑁 )
]

(15)

The method of surface stress extrapolation to the hot-spot was initially
developed for thick tubular joints. Since the local stress concentration
typically affected the stress distribution up to (0.3, 0.4) ⋅ 𝑡 away from
the weld location (i.e. the hot-spot), reference points for a linear
extrapolation approach were selected accordingly. Based on the same
observations, the QE approach refers to points at (0.4, 0.9, 1.4) ⋅ 𝑡; see
Eq. (16). Here, the quadratic solution is preferred to the linear one
because of the steeper stress gradients expected in thin plates with local
angular misalignment; see Fig. 5(b).

𝜎𝐻𝑆 = 2.52𝜎0.4𝑡 − 2.24𝜎0.9𝑡 + 0.72𝜎1.4𝑡 (16)

2.2.2. The FE model of welded joints
The curvature and the weld shape are modelled in a parametric

sketch using a Python script. The weld is assumed symmetric, both in
𝑥 and 𝑦 direction, with respect to the system origin indicated as 0 in
Fig. 6. The symmetry with respect to the 𝑦 axis is applied through a
fully rigid kinematic constraint over the left edge of the model, so that
only half of the weld shape is modelled, as in Fig. 7.

The initial curvature of the plate is described by Eq. (1), as for the
analytical model. Such distortion applies to the plate field to the right of
the weld fusion-line, i.e. the centreline within the weld region (about
at least 25 times smaller than the plate field) remains horizontal; see
Fig. 7.

A 2D, homogeneous shell section is assigned to the profile, the
thickness of which is uniform and equal to the plate width 𝑏 . Thereby,
4

𝑝

Fig. 7. FE model profile sketch of weld region and distorted plate. The mid-points at
side edge surfaces are shown.

the section described constitutes the middle surface of the 2D FE model.
The material is linear-elastic with elastic modulus 𝐸 = 207 GPa and
Poisson’s ratio 𝜈 = 0.3. The model edges are constrained by imposing
displacement/rotation boundary conditions at mid-points of the side
edges (see Fig. 7), and by defining coupling interactions between
the edge surfaces and the mid-points. The coupling interactions are
defined so that the edge surface is free to strain over the 𝑦-direction.
The uniaxial tension is applied as concentrated force 𝑃 at the mid-
point of the right edge, positive in the 𝑥-direction. Any out-of-plane
deformation is avoided by constraining the related degree of freedom
over the whole model. The ABAQUS solver (v6.14−1) performs a static,
non-linear geometric analysis of the model using the modified RIKS
method with a fixed arc length increment of 1𝑒−4 and a maximum load
proportionality factor equal to 1. The 2D model has a structured mesh
of 4-noded 𝑆4 shell elements of thickness 𝑏𝑝 in plane-stress condition.
This condition imposes zero transverse stress over the thickness of the
elements, i.e., over the width of the welded plate. This well represents
the behaviour of plate strips. The elements are distributed over the
length and thickness directions of the welded plate geometry as in
Fig. 8(b). This model corresponds to the blue shaded area depicted in
Fig. 8(a), i.e. to the modelled side transversely cut near the weld region
by a plane normal to the longitudinal (i.e., 𝑋) direction. In Fig. 8(b), the
middle surface is highlighted with solid red lines, and it represents the
sketch of the 2D model presented in the other figures (see, e.g., Fig. 7).

The mesh is defined in order to capture possible non-linearity in the
stress distribution over the model thickness as a consequence of both
weld shape and initial distortion. The mesh is uniform and the element
size (both in 𝑥− and 𝑦−direction) is 0.2 mm. This means that the mesh
has more than 5 elements in length between the constrained edge and
the hot-spot location, and 20 elements through the model thickness.
Such a fine mesh over the thickness guarantees reliable stresses at the
top free surface, where the averaged nodal stresses may depart from
the expected linear distribution as a consequence of the numerical
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Fig. 8. (a) Schematic representation of the welded plates; (b) view cut of the FE model near the weld region. Geometry parameters and mesh distribution are shown, along with
definitions and locations of interest for the present analysis. The origin of the coordinate system is indicated as ‘‘𝑜’’. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 9. Post-processing of the normal stress 𝑆11 by TTL at the weld location HS and
at the extrapolation points for the QE approach, i.e. at 𝑥 = (0.4, 0.9, 1.4) ⋅ 𝑡.

integration scheme. The mesh was selected based on a convergence
analysis, where a reference mesh of 0.05 mm-element length and 20
elements over the thickness is considered, along with coarser meshes
up to 2 mm-element size. Although the present study uses a very fine
mesh, it is noticeable that square elements of size 0.4 or 0.5 mm
would be equally good for the concerned model, provided that the
mesh remains uniformly distributed. An element aspect ratio of 1 is also
preferable for the structural stress extrapolation approach [26]. The
convergence analysis is shown in details in Appendix B. With reference
to the nomenclature used in Abaqus, the deflection 𝑈2 in 𝑦-direction
of the centreline, the slope 𝑈𝑅3|𝑐 about the 𝑧-axis of the centreline at
the weld fusion-line (i.e. at point 𝑐 = [𝑥 = 0.5𝑤𝑤, 𝑦 = 0] in Fig. 8),
and the normal stress 𝑆11 in 𝑥-direction needed for the TTL and QE
approach (see Section 2.2.1) are the results of interest from the FEA.
These values are taken at the middle surface shown in Fig. 8. Before the
comparison against the analytical model, the stress is linearised through
the thickness. For the sake of clarity, this procedure is shown in Fig. 9.

2.3. Fixity factor computation

In this study, the fixity factor is the key parameter that allows
the 1D analytical model to consider the weld shape and its effect on
plate bending and structural stress. Currently, this parameter cannot
be computed analytically. Here, the procedure to compute the fixity
factor depends on the FE model response. In particular, on the slope
value 𝑈𝑅3|𝑐 at point 𝑐, which corresponds to the origin of the analytical
beam model (i.e. 𝑥 = 0), as shown in Fig. 10. Since the weld region is
represented by a rotational spring, the beam length, 𝑙, becomes the FE
model length, 𝑙𝑇𝑂𝑇 , reduced by the width of the weld region (i.e., half
of the weld width 0.5𝑤 ).
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𝑤

Fig. 10. Geometric equivalence between FE and analytical models, with coordinate
systems in capital and italic letters, respectively.

Based on these definitions, the numerical solution is equalled to the
analytical expression of the slope, where 𝜌𝑎 remains the only unknown.

𝑤′
|𝑥=0 = 𝑈𝑅3|𝑐 (17)

From the analytical model, 𝑤′ depends on the term 𝑘 = √(𝑃∕𝐸𝐼𝑥𝑥),
the BC configuration, and the amplitudes of the initial distortion (𝑦0
and 𝑎0). The value 𝑈𝑅3|𝑐 from the FEA is affected by the weld shape,
i.e. by the parameters 𝑤𝑤, ℎ𝑤, and 𝜃𝑤. Thereby, the fixity factor can be
seen as a function of several parameters, as in Eq. (18).

𝜌𝑎 = 𝑓 (𝑤𝑤, ℎ𝑤, 𝜃𝑤, 𝐵𝐶𝑠, 𝑘, 𝑎0, 𝑦0) (18)

Since it is not possible to define 𝜌𝑎 analytically, the influence of these
parameters is revealed through a sensitivity analysis in Section 5.

3. Case studies for the FE model

In Section 2.3, the weld shape, load level, boundary conditions and
initial curvature are indicated as influencing parameters of the fixity
factor. About the weld shape, the sensitivity analysis compares three
cases of butt-joints in thin plate strips obtained on small-scale thin
specimens from literature; see e.g, [27]. The specimens have thickness
𝑡 = 4 mm, length 𝑙𝑇𝑂𝑇 = 125 mm, and width 𝑏𝑝 = 20 mm. The
specifications for each case are summarised in Table 1 (see Fig. 6
as reference) together with the nomenclature to easily refer to the
different weld beads later in the manuscript. The abbreviations SB, MB,
LB stand for Small, Medium and Large Bead. These definitions have no
general validity, thus being limited to the scope of the present work. A
Small Bead corresponds to a small area of the excess weld metal. This
area is commonly approximated as 𝑤𝑤ℎ𝑤∕2 for both the weld toe and
root. In the table, the areas 𝑎𝑟𝑒𝑎𝑁 are normalised with respect to the
base plate area in the weld region, 𝑤𝑤𝑡.

The SB and LB weld shapes are also assessed for different weld
widths, while 𝜃 and ℎ are varied for the MB case. All case studies are
𝑤 𝑤
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Fig. 11. Comparison between the FE and analytical solutions for (a) deflection 𝑤 over the beam length and (b) through-thickness structural stress 𝜎𝑠 at weld fusion-line of the
fully clamped SB model; 𝛼𝑙∕𝛼𝑔 = 2 and 𝜎𝑁 = 300 MPa.
Fig. 12. Comparison between the FE and analytical solutions for (a) deflection 𝑤 over the beam length and (b) through-thickness structural stress 𝜎𝑠 at weld fusion-line of the
fully clamped LB model; 𝛼𝑙∕𝛼𝑔 = 5 and 𝜎𝑁 = 300 MPa.
Table 1
Geometric dimensions of the weld bead for three case studies, i.e. 𝑠𝑚𝑎𝑙𝑙 (SB), 𝑚𝑒𝑑𝑖𝑢𝑚
(MB), and 𝑙𝑎𝑟𝑔𝑒 (LB) 𝑤𝑒𝑙𝑑 𝑏𝑒𝑎𝑑𝑠 (see Fig. 6 as reference).

Weld bead 𝑤𝑤 [mm] ℎ𝑤 [mm] 𝜃𝑤 [deg] 𝑎𝑟𝑒𝑎𝑁
SB 2.6 0.3 13 0.075
MB 5 0.5 20 0.125
LB 10.6 1.5 30 0.375

simulated for two different amplitudes of the curved distortion, i.e. for
𝛼𝑙∕𝛼𝑔 = [2, 5], always being 𝛼𝑔 = 2.5 deg. Furthermore, the BCs in
Fig. 3 are considered. The maximum load level applied in simulations is
𝜎𝑁 = 300 MPa, which is the highest load experienced in extreme service
conditions. This high load is considered given the interest in using high
strength steels in the concerned thin-walled structures. The other load
levels used in the analysis are 100 MPa, an average standard load range
for the given structures, and 200 MPa, as a reference for a high load
level in normal service conditions [4]. Although such a broad range is
not meaningful in view of low-strength steel applications, it does not
prevent the proposed model to be used for these materials, as long as
the assumption of elasticity is valid. In fact, as the analysis disregards
any nonlinear behaviour of the material, this significant variation of
the load is mainly used to point out the sensitivity of the fixity factor
computation to such parameter. Notice also that the use of the static
RIKS analysis with a fixed arc length increment does not guarantee
convergence at the exact applied load. Thereby, the text refers to the
load applied to the model, which not necessarily corresponds to the
final load level in the simulations. As will be explained in Section 5.1,
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the analysis of the fixity factor is not sensitive to this fluctuation in the
load level.

Finally, Section 6.1 extends the discussion to the variation of the
fixity factor in relation to the geometric slenderness 𝑙𝑇𝑂𝑇 ∕𝑡 of the
welded plate. Therefore, data shown in that section refer to a unitary
plate width 𝑏𝑝.

4. Validation of the beam model

The comparison between numerical (FEA) and analytical (AS) re-
sults is carried in terms of mid-plane deflection (𝑤, where the variable
𝑥 is omitted) and hot-spot structural stress 𝜎𝐻𝑆 . The comparison shows
that the procedure to compute the fixity factor allows the 1D beam to
well approximate the elastic deformation of a 2D model of the welded
plate.

In Fig. 11(a), the deflections are compared for the SB model,
i.e. model with a small weld bead. The model has an angle ratio equal
to 2, fully clamped BCs and a load of 300 MPa. The consistency between
dashed (FEA) and solid (AS) lines is obtained in the hot-spot location,
while a difference of approximately 1% is observed for the maximum
displacement. The same difference would appear under different BCs. In
terms of structural stress, Fig. 11(b) shows that the analytical solution
is less than 1% different from the numerical solutions (TTL and QE
results indicated by ▵ and ∗, respectively).

The same comparison is shown in Fig. 12 for the LB model, i.e. the
model with a large weld bead. The model has angle ratio 𝛼𝑙∕𝛼𝑔 =
5, BC configuration number 1 in Fig. 3 (i.e., fixed loaded end), and
load level of 300 MPa. Overall, this model revealed the largest relative
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Fig. 13. Fixity factor 𝜌𝑎 computed under different load levels and BC configurations for (a) SB and (b) LB models. The variation of 𝜌𝑎 due to the load level is indicated as 𝛥𝜎𝑁 .
error in terms of deflections. The analytical model underestimates the
maximum displacement from FEA by 3%; see Fig. 12(a). Considering
the other BCs, this difference remains approximately 3%. The AS value
in the stress comparison is 1% higher than the QE result and is in
excellent agreement with the TTL result.

In Figs. 11(b) and 12(b), the maximum relative difference between
the two numerical solutions (i.e. TTL and QE) is negligible (around
1%). Moreover, notice that both the figures also show the analytical
hot-spot structural stress computed using 𝜌𝑎 = 1, i.e. the ideal analytical
solution (iAS). For the SB model, the iAS value has a very good accuracy
of approximately 2%. However, for the LB model, the iAS is nearly
11% higher than the extrapolated value. Accordingly, the accuracy of
the analytical model improves by up to 9% when the fixity factor is
computed.

5. Results of the sensitivity analysis

5.1. Influence of load level and far-end constraint

In case of nonlinear geometry, it is interesting to study the effect
of load variation on the rotation, as secondary bending takes place.
That is, the moment–rotation curves may anticipate some degrees of
nonlinearity as the applied load increases. This could result in a visible
variation of the fixity factor 𝜌𝑎 due to the considered load level.
Thereby, in Fig. 13(a) and (b), the fixity factor is computed considering
the four different BC configurations and three load levels for the SB
and LB model, respectively. The results under the high load level of
300 MPa are shown with red triangles, while black squares and blue
circles indicate results under 200 and 100 MPa, respectively. Despite the
said nonlinearity, Fig. 13 shows that the load variation only causes a
maximum of 0.2% difference in the fixity factor. For this reason, further
discussions based on moment–rotation curves are not presented in the
context of this study.

About the far-end constraint, the rotational degree of freedom has
more influence than the deflection. In percentage, the overall difference
between configurations 3 and 2 is around 1% and 2.3% for the SB and
LB models, respectively.

The 𝑘𝑚 factor for the same models is plotted as a continuous
function of the fixity factor in Fig. 14(a) and (b). The plot highlights
the difference between the analytical model under analysis and the one
with 𝜌𝑎 = 1 (in red triangles). Only the BC configuration number 2 is
considered, as it provides the lower values for the fixity factor. It is
shown that assuming 𝜌𝑎 = 1 means overestimating the stress by around
3% and 6% for the SB and LB models, respectively.
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Fig. 14. Stress magnification factor 𝑘𝑚 vs. fixity factor 𝜌𝑎 under different load levels
and BC configuration 2 in Fig. 3 for (a) SB and (b) LB models. 𝛥𝑚𝑎𝑥 is the maximum
percentage difference between 𝑘𝑚 factors for 𝜌𝑎 = 1 and 𝜌𝑎 as computed in this study.

5.2. Influence of the initial distortion

The influence of the initial distortion is addressed in Fig. 15. The
applied load level is 300 MPa, and all the constraint configurations
(from 1 to 4, see Fig. 3) are considered for the LB model. The figure
shows that the angle ratio has a relatively small influence on 𝜌𝑎. The
maximum error reaches 𝛥𝛼𝑙∕𝛼𝑔 = −0.5% for increased angle ratio.

Recalling the results in Fig. 12, the maximum percentage difference
between the analytical solutions (i.e., AS and iAS values) is about 9%
for an angle ratio equal to 5 and fully clamped BCs, if 𝜌𝑎 is assumed to
be 1.

5.3. Influence of the weld shape

The influence of the weld shape is shown in Fig. 16, where the
fixity factors for the SB, MB and LB models are related to the weld
normalised areas (𝑎𝑟𝑒𝑎𝑁 in Table 1). The figure also illustrates the
different geometries of the weld beads. The results in this section refer
to an angle ratio of 2. It is possible to appreciate a relevant change in
the fixity factor, which ranges between 0.92 and 1. To understand what
is the impact of the single weld parameters, these are varied one-by-one
in Sections 5.3.1 and 5.3.2 .
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Fig. 15. Fixity factor 𝜌𝑎 computed for different angle ratios and BC configurations in
Fig. 3. The variation of 𝜌𝑎 due to the angle ratio is indicated as 𝛥𝛼𝑙∕𝛼𝑔 ; the numbers
indicate the BC configuration.

Fig. 16. Comparison between fixity factors 𝜌𝑎 for different weld normalised areas
𝑎𝑟𝑒𝑎𝑁 ; see Section 3. The BC configuration 2 in Fig. 3 is considered.

5.3.1. Influence of the weld width
Fig. 17(a) and (b) show the influence of the weld width on the

fixity factor for the SB and LB models, respectively. According to the
results, by doubling the weld width, 𝜌 is reduced by around 3%.
8
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Fig. 18. Stress magnification factor 𝑘𝑚 vs. fixity factor 𝜌𝑎 for different widths of the
weld bead and BC configuration 2 in Fig. 3 for (a) SB and (b) LB models. 𝛥𝑚𝑎𝑥 is the
maximum percentage difference between the 𝑘𝑚 factor for 𝜌𝑎 = 1 and 𝜌𝑎 as computed
in this study.

Fig. 18 analyses the variation of the 𝑘𝑚 factor for different weld widths,
including results for 𝜌𝑎 = 1, for the BC configuration 2. A maximum
difference of about 5% is shown between the solutions for 𝜌𝑎 = 1 and
the 𝜌𝑎 value computed. Notice that the solid and dashed lines indicating
shorter and wider weld, respectively, are almost overlapped. In fact,
differently from BCs, load levels, and the angle ratio, weld parameters
do not have a direct effect on the 𝑘𝑚 factor.

5.3.2. Influence of flank angle and weld reinforcement
The flank angle is responsible for the sharpness of the model transi-

tion from the plate cross-section to the weld shape. A larger flank angle
results in a sharper transition, i.e., a more severe singularity at the hot-
spot location. For a given 𝜃𝑤, higher weld reinforcement also means a
faster transition from the thin plate cross-section to the weld region. It
also implies an increment in the flexural stiffness of the model in the
weld region. However, the data in Fig. 19 show negligible effects of
these parameters on the fixity factor. The figure refers to the MB model
(i.e. the model with a medium weld bead dimensions) under an applied
load level of 300 MPa. The fixity factor changes by around 0.2% when
the angle increases from 10 to 30 deg, see Fig. 19(a), and increases by
0.65% for doubled ℎ𝑤, see Fig. 19(b). The amplitudes of 𝜃𝑤 and ℎ𝑤
have negligible effect in terms of stress magnification factor.
Fig. 17. Fixity factor 𝜌𝑎 computed for different widths of the weld bead and the BC configurations in Fig. 3 for (a) SB and (b) LB models. The variation of 𝜌𝑎 due to the weld
width is indicated as 𝛥𝑤𝑤

.
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Fig. 19. Fixity factor 𝜌𝑎 computed for (a) different amplitudes of the weld flank angle and (b) different heights of the weld; numbers indicate the BC configurations in Fig. 3.
The variations of 𝜌𝑎 due to the flank angle and the height of the weld are indicated as 𝛥𝜃𝑤 and 𝛥ℎ𝑤

, respectively.
6. Discussion

The analysis in Section 5 resulted in 𝜌𝑎 values higher than 0.92
(see, e.g., Fig. 15). According to the classification in the Eurocode 3
for the design of steel structures [20,28], a connection in an unbraced
frame is assumed as ideally rigid when the ratio between the rotational
stiffness of the connection and the beam stiffness (𝐸𝐼𝑥𝑥∕𝑙) is at least
25, i.e. when 𝜌𝑎 ≥ 0.87 (and even smaller for braced frames). In the
stability analysis of frames, this assumption has trivial effects on the
displacement field. However, a negligible error on the deflection leads
to higher inaccuracy of the results in terms of hot-spot structural stress.
In fact, as shown in Section 5, considering an ideally rigid BC at the
weld location results in nearly 9% error in the stress magnification
factor 𝑘𝑚. On one hand, the assumption of ideal BC (i.e. 𝜌𝑎 = 1)
affects the structural stress computation in a conservative way, thus
remaining a safe option. On the other hand, a 9% overestimation in 𝑘𝑚
leads to an underestimation in terms of fatigue life. The error reaches
about 54% for an S–N curve with slope 𝑚 = 5, which is recommended
for thin and flexible welded plates [29]. This would mislead on the
reliability of the structures and hinder the development of lightweight
solutions. Thereby, this discussion disregards the assumption of ideally
rigid connection suggested by the classification for joints with 𝜌𝑎 ≥ 0.87.

Given that the observed results are limited to the three case studies
described in Table 1, it is interesting to observe the trend of the fixity
factor as a function of the slope of the mid-plane at the weld fusion-line
(i.e., 𝑈𝑅3|𝑐 , where 𝑐 = [0.5⋅𝑤𝑤, 0] is shown in Fig. 8(b)), so as to have a
general understanding that goes beyond the characteristics of the weld
beads. In Fig. 20, the fixity factors of the SB and LB models are shown
with circles on solid lines and squares on dashed lines, respectively, for
BC configuration 1 (in blue) and 2 (in black). The applied load level is
100 MPa. When the fixity factor is plotted as a function of the slope at
the hot-spot location, the main role is played by the BC at the loaded
end rather than by the shape of the weld bead. However, it is possible to
observe that the SB model results in a more rigid rotational constraint,
in consistency with Fig. 16. This happens because the hot-spot location
is closer to the rigid left-edge of the model, due to narrower weld and
narrower deforming zone in the 2D-FE model. This explains a smaller
slope value at the hot-spot of the SB model, despite the weld of the LB
model has a higher stiffness provided by a larger weld reinforcement.
This confirms that the weld width 𝑤𝑤 has a major impact on the fixity
factor variation. A different BC configuration at the far-end determines
a different trend for the fixity factor in relation to the slope. Although
the blue and black lines all converge to 𝜌𝑎 = 1 when the slope is 0,
the blue lines (related to the BC configuration 2) tend to 𝜌𝑎 = 0 faster
than the others when the slope magnitude increases. As a result of the
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Fig. 20. Slope 𝑈𝑅3|𝑐 vs. fixity factor 𝜌𝑎 at a load level of 100 MPa for SB and LB
models with BC configurations 1 and 2. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Slope 𝑈𝑅3|𝑐 vs. fixity factor 𝜌𝑎 at a load level of 300 MPa for SB and LB
models with BC configurations 1 and 2. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

different convergence rates, the blue lines also show a non-linear trend,
while the black lines remain visually linear. As a physical explanation,
the fully fixed boundary condition implies a higher moment reaction,
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Fig. 22. Influence of the slenderness ratio 𝑙𝑇𝑂𝑇 ∕𝑡 on (a) fixity factor 𝜌𝑎 and (b) spring rotational stiffness 𝑘𝑎; (c) moment–slope relationship (𝑀𝑎 vs. 𝑈𝑅3|𝑐 ). BC configuration 2
in Fig. 3 and 𝜎𝑁 = 100 MPa are considered.
which is due to the contribution from the shear force preventing the
vertical deflection at the far-end. Thereby, the actual slope is reduced,
thus resulting in a higher fixity factor, at same load level and for the
same weld shape. This also means that, at the same given conditions,
a fully fixed beam would reach the same slope of a beam free to
deflect only in the case of lower rotational stiffness of the weld region
(i.e. lower fixity factor). In addition, the slope range shown in the
figure is so that the maximum allowed rotation over the whole beam
length reaches 10 deg, which is considered a threshold for the validity
of the von-Kármán kinematic assumption of moderate rotations. Thus,
the straight dashed red lines in the figure indicate the validity range of
the analytical solution (AS) presented in this paper.

In Fig. 21, the same functions are plotted for an applied load level
of 300 MPa. In this case, the blue lines reach a zero fixity factor when
the maximum slope over the beam length is around 5 deg (see dashed
red lines).

Notice that the validity ranges indicated by the dashed red lines in
both the figures are far from affecting the use of the present analytical
model for the considered structural problem. According to the given
validity limits, the semi-analytical computation of the fixity factor is
generally reliable as long as the global behaviour of the structure
remains elastic. Thereby, in applying the proposed procedure, it is
advised to check that any effect due to the singularity remains local,
i.e., the mid-plane of the plate undergoes small displacements and
moderate rotations (as for the von-Kármán assumption). This is a more
general approach than considering the elastic range in terms of load
limits, as it does not depend on additional factors (e.g., in-plane stress
redistribution, imperfections) that may alter the load analysis.
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6.1. Generalisation of the results

To understand the general validity of the results in Section 5, the
impact of the plate geometric slenderness, 𝑙𝑇𝑂𝑇 ∕𝑡, on the fixity factor
is now discussed. Fig. 22(a) and (b) show the fixity factor 𝜌𝑎 and the
corresponding rotational stiffness 𝑘𝑎 for increasing 𝑙𝑇𝑂𝑇 ∕𝑡, respectively.
The model considered for this analysis has unitary plate width 𝑏𝑝. The
weld width is kept constant and equal to 𝑤𝑤 = 10.6 mm, while the
flank angle and the weld height are adapted to the thickness variation,
i.e. ℎ𝑤 = 0.75 ⋅ 𝑡∕2 and 𝜃𝑤 = arctan [ℎ𝑤∕(𝑤𝑤∕2)], respectively. The angle
ratio is equal to 2 and the load applied is 100 MPa. The plot refers
to the BC configuration number 2 in Fig. 3, which gives the lowest
fixity factors overall. The slenderness ratio varies both in thickness and
length. From the lowest (∼21) to the highest (∼166) ratio, the fixity
factor increases by 7%, which is mainly due to the variation of the
beam length. At given length, the increase of 𝑡 is responsible for less
than 1% decrease in 𝜌𝑎. On the contrary, 𝑘𝑎 decreases by an order of
magnitude with a decrease in the beam thickness, while the increase in
the beam length only causes a 0.4% decrease in stiffness. This is also
explained by Eq. (11), where the parameter 𝑘𝑎 is proportional to 𝑡3∕𝑙.
It is observed that for the same ratio but different values of 𝑙𝑇𝑂𝑇 and
𝑡, the results are different (see values in yellow circles). This suggests
that at a fixed slenderness ratio, larger dimensions of the plate results
in a more rigid solution.

In Fig. 22(c), the moment–slope relationship (𝑀𝑎 vs. 𝑈𝑅3|𝑐) at the
welded end of the beam is shown. The figure also indicates trend lines
at constant thickness and varying length (i.e., iso-𝑡 lines in dashed
grey). While these lines show a linear trend, the proportionality be-
tween the moment–slope relationship and 𝑡 is of a higher order. This
reflects the beam elementary mechanics, for which the slope of a
simply supported beam subjected to end moments is defined as in
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Fig. 23. Moment–slope relation based on elementary beam mechanics.

Fig. 23 [20,21]. Notice that Fig. 22(c) does not show a clear third-order
proportionality with 𝑡 due to slightly different load levels in the RIKS
analysis of the models.

Based on Fig. 22, an increased slenderness ratio means a higher
fixity factor, despite the moderate increase in slope for shorter beams.
This means that the weld has a minor effect on the bending behaviour
of components with higher slenderness ratios. In response, the term 𝑘𝑎
can be seen as a modified flexural stiffness of the beam. Accordingly,
in the case under analysis, 𝑘𝑎 mainly depends on the beam geometric
characteristics (i.e., by 𝐼𝑥𝑥∕𝑙) rather than the spring. Thereby, the
assumption of non-ideal BC at the weld location becomes less relevant
for increased geometric slenderness ratio. This extends the validity of
this study to the treatment of thin and slender plate strips. In fact, the
inaccuracy of the analytical model in evaluating the mechanics of thin
and slender plates would remain under the 3% showed in Section 4.

7. Conclusion

The present study investigated an analytical beam model for the
analysis of thin plate butt-welded joints with an initial curved distor-
tion. A rotational spring allowed the 1D beam model to account for the
rotational rigidity of the butt-joint in terms of a fixity factor 𝜌𝑎. The
study proposed a semi-analytical method to compute the fixity factor
of the spring for the beam under uniaxial tension load. The validity
of the method is based on the assumption of small displacement and
moderate rotation of the mid-plane of the welded plate.

The beam model was validated with a maximum inaccuracy of 3%
against a 2D FE model of the welded plate. The consistency between the
analytical and numerical models suggests that the difference between
the 2D model and the analytical solution for ideal BCs (i.e., 𝜌𝑎 = 1) is
mainly due to the rotational rigidity at plate supports, rather than ad-
ditional phenomena such as in-plane shear effects. As the present study
focused on thin and slender plate strips, large-scale structures with
transverse normal and shear stresses would need further investigations.
Furthermore, these future developments could consider an extensive
analysis on the variation of the proportional limit for the concerned
connection in order to understand the effect of stress redistribution due
to local plasticity under high loading conditions. Finally, the validation
of the beam analytical model for a 2D FE model is still limited to
simplified curved initial distortions of plates and to the assumption of
fully symmetric shapes of the weld bead.

According to a sensitivity analysis, 𝜌𝑎 is mainly affected by the weld
width and the far-end constraint. Overall, data resulted in 𝜌𝑎 values
between 0.92 and 1. The corresponding variation in terms of stress
magnification factor 𝑘𝑚 showed generally small differences. However,
assuming 𝜌𝑎 = 1 may lead to a stress overestimation up to around
9% with respect to the analytical model with the non-ideal constraint.
This means a conservative underestimation in terms of fatigue life of
components (up to nearly 54%, for 𝑚 = 5). Although these numbers
suggest the need of retaining the fixity factor in the analytical solution,
it is noticeable that considering 𝜌𝑎 = 1 at the welded end provides only
slightly conservative, thus reliable, estimation of the 𝑘𝑚 factor for high
slenderness ratios.
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Appendix A. Stress magnification factor formulations

A.1. Formulations for 𝜌𝑎 = 1

When ideal BC is assumed at the weld location, i.e. 𝜌𝑎 = 1, the stress
magnification factor for welded plates with local angular misalignment
can be computed as in Eqs. (A.1), (A.2), (A.3), and (A.4) [15]. In
the equations, 𝛽 = (2𝑙∕𝑡)

√

3𝜎𝑚∕𝐸, where 𝜎𝑚 is the tensile membrane
stress applied to the structure. Notice that 𝑘𝑚,𝑥 indicates the 𝑘𝑚 factor
onsidering the BC configuration number 𝑥 in Fig. 3.

𝑚,1 = 1 +
6𝑎0𝜋
𝑡

𝛽

(𝜋2 + 𝛽2) tanh
(

𝛽
2

) (A.1)

𝑚,2 = 1 +
3𝑦0
𝑡

tanh
(

𝛽
2

)

𝛽
2

+
6𝑎0𝜋
𝑡

𝛽

(𝜋2 + 𝛽2) tanh
(

𝛽
2

) (A.2)

𝑚,3 = 1 +
6𝑎0
𝑡

𝜋𝛽 tanh(𝛽)
(𝜋2 + 𝛽2)

(A.3)

𝑚,4 = 1 +
6𝑦0
𝑡

tanh(𝛽)
𝛽

+
6𝑎0
𝑡

𝜋𝛽 tanh(𝛽)
(𝜋2 + 𝛽2)

(A.4)

.2. Formulations for 𝜌𝑎 ≠ 1

As a non-ideal rotational constraint at the weld location is con-
sidered, the equations depend on the unknown parameter 𝜌𝑎. The
formulations for the stress magnification factor are provided as a
Matlab script. Below, k_mx indicates the 𝑘𝑚 factor considering the BC
configuration number x in Fig. 3.

S_n=; %Applied nominal stress [Pa], S_n > 0 for tensile stress

E=; %Young’s modulus [Pa]

l=; %beam length [m]

t=; %beam thickness [m]

angle_ratio=;

alpha_g=; %global angle $\alpha_g$ [deg]

alpha_l=angle_ratio*alpha_g; %local angle $\alpha_l$

y_0=(tan(alpha_g)*l);

a_0=((tan(alpha_l-alpha_g))*l/pi);

beta=(2*l/t)*sqrt(3*S_n/E);

rho_a=;%fixity factor
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Fig. B.24. (a) Deflections 𝑤, (b) structural stress 𝜎𝑁 , and (c) fixity factor 𝜌𝑎 as a function of the total number of elements used (in log scale), for the BC configuration 1; the final
mesh selected for the current study is highlighted by a green box. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
%BC configuration 1

k_m1_num=24*a_0*rho_a*beta*pi*(cosh(beta)*beta+beta-2*sinh(beta));

k_m1_den=-t*(beta^2+pi^2)*(((-1+rho_a)*beta^2+8*rho_a)*cosh(beta)...

+(-5*rho_a+1)*beta*sinh(beta)-8*rho_a);

k_m1=1+k_m1_num/k_m1_den

%BC configuration 2

k_m2_num=24*(((-a_0*pi-y_0)*beta^2-pi^2*y_0)*cosh(beta)...

+(-a_0*pi+y_0)*beta^2+pi^2*y_0)*rho_a;

k_m2_den=-t*(-beta^2*(-1+rho_a)*cosh(beta)+beta*4*rho_a*sinh(beta))...

*(pi^2+beta^2);

k_m2=1+k_m2_num/k_m2_den

%BC configuration 3

k_m3_num=-18*sinh(beta)*pi*a_0*beta^2*rho_a;

k_m3_den=-(pi^2+beta^2)*t*(((+1-rho_a)*beta^2-3*rho_a)*sinh(beta)...

+3*cosh(beta)*beta*rho_a);

k_m3=1+k_m3_num/k_m3_den

%BC configuration 4

k_m4_num=18*rho_a*sinh(beta)*((-a_0*pi-y_0)*beta^2-pi^2*y_0);

k_m4_den=-(pi^2+beta^2)*t*(-beta*(-1+rho_a)*sinh(beta)...

+3*cosh(beta)*rho_a)*beta;

k_m4=1+k_m4_num/k_m4_den
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Appendix B. Convergence analysis

The results of the convergence analysis are shown for BC 1 in
Fig. B.24. The selected mesh (0.2 mm × 20 el.s through the thickness,
i.e. 12 500 elements in total) is indicated by a green box. Fig. B.24(a),
(b) and (c) show that coarser meshes of 0.4 and 0.5 mm would be
equally reliable in terms of deflections, structural stress, and fixity
factor, respectively. Although the results for deflections and fixity
factors seemed to be rather independent on the element size, a clear
convergence curve can be observed for the stress in Fig. B.24. Above 1
mm-element mesh, the stress error overcomes the 6% and increases up
to 26% for the coarsest mesh. When the selected mesh (0.2 mm-element
mesh) is compared to a finer mesh with 𝑆4 elements of 0.05 mm
length, and 0.2 mm height (i.e., 20 elements through the thickness),
deflections, stresses and fixity factors only differ by less than 0.1%. The
same is true for different BC configurations.
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