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Background: The mechanisms driving primary progressive and relapsing–remitting multiple sclerosis (PPMS/RRMS) phenotypes
are unknown. Magnetic resonance imaging (MRI) studies support the involvement of gray matter (GM) in the degeneration,
highlighting its damage as an early feature of both phenotypes. However, the role of GM microstructure is unclear, calling for
new methods for its decryption.
Purpose: To investigate the morphometric and microstructural GM differences between PPMS and RRMS to characterize
GM tissue degeneration using MRI.
Study Type: Prospective cross-sectional study.
Subjects: Forty-five PPMS (26 females) and 45 RRMS (32 females) patients.
Field Strength/Sequence: 3T scanner. Three-dimensional (3D) fast field echo T1-weighted (T1-w), 3D turbo spin echo
(TSE) T2-w, 3D TSE fluid-attenuated inversion recovery, and spin echo-echo planar imaging diffusion MRI (dMRI).
Assessment: T1-w and dMRI data were employed for providing information about morphometric and microstructural fea-
tures, respectively. For dMRI, both diffusion tensor imaging and 3D simple harmonics oscillator based reconstruction and
estimation models were used for feature extraction from a predefined set of regions. A support vector machine (SVM) was
used to perform patients’ classification relying on all these measures.
Statistical Tests: Differences between MS phenotypes were investigated using the analysis of covariance and statistical
tests (P < 0.05 was considered statistically significant).
Results: All the dMRI indices showed significant microstructural alterations between the considered MS phenotypes, for
example, the mode and the median of the return to the plane probability in the hippocampus. Conversely, thalamic vol-
ume was the only morphometric feature significantly different between the two MS groups. Ten of the 12 features
retained by the selection process as discriminative across the two MS groups regarded the hippocampus. The SVM classi-
fier using these selected features reached an accuracy of 70% and a precision of 69%.
Data Conclusion: We provided evidence in support of the ability of dMRI to discriminate between PPMS and RRMS, as
well as highlight the central role of the hippocampus.
Level of Evidence: 2
Technical Efficacy Stage: 3
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Multiple sclerosis (MS) is an inflammatory-
neurodegenerative disease of the central nervous

system (CNS) characterized by demyelinating lesions and axo-
nal loss in both the brain and the spinal cord, leading to severe
symptoms such as loss in physical function, fatigue, and cogni-
tive decline.1 Several major MS types have been identified so
far, among which primary progressive MS (PPMS) and
relapsing–remitting MS (RRMS) are the two most common
forms.2 While the PPMS form is characterized by progressive
worsening with minor or no remissions, RRMS is characterized
by acute inflammatory attacks followed by remission.2,3 Demy-
elinating lesions and regional brain atrophy are generally
observed in both cases, but recent studies provided evidence of
the existence of distinct patterns of demyelination in these two
forms,4 suggesting the presence of different subserving mecha-
nisms, albeit still largely unclear.3

During the last decades, non-invasive neuroimaging
techniques have been increasingly exploited to shed light on
the multiple changes induced by MS disease.5 In particular,
while MS has traditionally been considered as a chronic
inflammatory-demyelinating condition affecting almost exclu-
sively the white matter (WM), pathology studies have shown
an extensive involvement of the gray matter (GM) in different
forms of MS, as confirmed by several magnetic resonance
imaging (MRI) studies detecting both demyelination and
atrophy in cortical and deep GM structures.6

In this context, valuable information can be derived from
diffusion MRI (dMRI) which allows to quantify, in vivo, the
microstructural properties of brain tissues.7 In recent years, dif-
ferent models have been proposed to numerically describe
microstructural properties. Among the several taxonomies pro-
posed in the literature, we refer to the two main classes as com-
partmental models and analytical models, respectively.8

Compartmental models rely on predefined assumptions
on the biophysical properties of the tissue, while analytical
models look at the diffusion signal as a function that can be
represented on a given basis. Among the compartmental
models, NODDI (neurite orientation dispersion and density
imaging) and CHARMED (composite hindered and
restricted model of diffusion) are the most widespread, espe-
cially for clinical applications.9,10 However, these models rely
on strict assumptions about the tissue microstructure that bias
their descriptive power and have strong implications on the
interpretability as well as on the specificity of the results.11

On the other hand, signal models are based solely on the ana-
lytical representation of the dMRI signal in a given basis of
functions, making no assumptions on the tissue structure.8,12

As a consequence, signal representations can be applied to
any condition and tissue type, providing an indirect measure
of the tissue properties through the coefficients of the series
expansion from which microstructural descriptors are
derived.13 For a complete overview of these methods, we refer
to some recent reviews on the topic.7,8

In light of these considerations, our study focused on
analytical signal models and, specifically, on those that rely on
the estimation of the ensemble average propagator (EAP).12,13

This function characterizes the restricted displacement of water
molecules as defined by the local microscopic properties of
brain tissues. Among these, diffusion tensor imaging (DTI) is
the simplest and is widely used in clinical practice.14 Nonethe-
less, DTI assumes a Gaussian model for the diffusion process
and, therefore, its applicability is precluded in brain areas
where this assumption fails, such as in those brain regions hav-
ing complex structure (e.g. WM fibers crossings). The simple
harmonic oscillator-based reconstruction and estimation
(SHORE) model allows overcoming these limitations.13 Several
indices can be derived in the analytical form, which have
proved to be effective for characterizing brain tissues in vivo15

in healthy subjects as well as in pathological populations.16

The three-dimensional (3D)-SHORE model has demonstrated
good performance in probing stroke-induced microstructural
modulations occurring over several GM areas.17 Moreover, in
some recent studies it has been shown to be sensitive to GM
alterations pointing to different MS stages and to be associated
with cognitive impairment.18

Altered diffusivity and anisotropy patterns in the normal-
appearing GM have been detected in several DTI-based studies
on RRMS, PPMS, and secondary progressive MS patients.19,20

In this respect, advanced models have revealed an increased spec-
ificity and sensitivity to neurodegeneration when compared to
conventional DTI derived measurements. In particular, Granberg
et al21 explored the NODDI model for the characterization of
normal-appearing WM and GM. They found focal abnormalities
in the cortex and more diffusively in the WM in the early stages
of MS. In addition, De Santis et al22 investigated several
dMRI biomarkers from basic (DTI) to advanced (NODDI,
CHARMED, and diffusion kurtosis imaging) models, though in
a small cohort of MS patients compared to controls. They dem-
onstrated that advanced models have increased specificity and
sensitivity to neurodegeneration when compared to DTI
measurements.

Our study aimed at investigating whether both classical
statistics and machine learning would allow the detection of
GM differences between PPMS and RRMS, relying on 3D-
SHORE microstructural indices and taking DTI and conven-
tional brain morphometry as benchmarks.

Materials and Methods
Participants
All patients gave their written informed consent prior to participat-
ing in the study. All procedures were performed in accordance with
the Declaration of Helsinki (2008) and the study protocol was
approved by the local Ethical Committee. The study population
included two groups of MS patients (45 PPMS and 45 RRMS) rec-
ruited in our center. Inclusion criteria were: diagnosis of PPMS or
RRMS based on McDonald 2010 diagnostic criteria23 and the
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availability of a standard anatomical 3T MRI scan acquired near the
most recent neurological examination for excluding the concomitant
presence of any other brain condition. Exclusion criteria were any
condition that prevented the execution of an MRI acquisition, in
particular: presence of any metal implant or objects known to be
non-compatible with MRI, such as pacemakers, medication pumps,
aneurysm clips, metallic prosthesis, cochlear/retinal implants, hearing
aids; claustrophobia; pregnancy. All imaging and clinical data were
collected between the years 2015 and 2018. The physical disability
status of each participant was measured with the Expanded Disabil-
ity Status Scale (EDSS).24 The detailed demographic and clinical
data are reported in Table 1.

MRI Data Acquisition
MRI data acquisition was performed on a 3T Philips Achieva scanner
(Philips Medical Systems, Best, The Netherlands) equipped with an
8-channel head receiver coil. The following sequences were included in
the protocol: 1) 3D T1-weighted fast field echo for structural images
(T1-w, repetition time [TR]/echo time [TE] = 8.1/3 msec, flip angle
[FA] = 8�, field of view [FOV] = 240 mm � 240 mm, 1 mm isotro-
pic resolution, 180 slices); 2) 3D turbo spin echo T2-w for structural
images (TR/TE = 2500/228 msec, FA = 90�,
FOV = 256 mm � 256 mm, 1 mm isotropic resolution, 180 slices);
3) 3D fluid-attenuated inversion recovery (FLAIR) acquisition (TR/
TE = 8000/290 msec, TI = 2356 msec, FA = 90�,
FOV = 256 mm � 256 mm, 0.9 mm � 0.9 mm � 0.5 mm resolu-
tion, 180 slices); 4) dMRI acquisition with multiple b-values (TR/
TE = 9300/109 msec, FA = 90�, FOV = 112 mm � 112 mm,
2 mm isotropic resolution, 62 slices, b-values = 700/2000 s/mm2 with
32/64 gradient directions respectively and 7 b0 volumes).

Image Processing
All dMRI data were initially preprocessed using the Tortoise
DIFFPREP pipeline (https://tortoise.nibib.nih.gov/tortoise) includ-
ing denoising, image re-sampling, corrections for motion, eddy-cur-
rent, and EPI distortions. FSL software (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/) was then used for brain extraction and masking. In
addition, the T1-w image of each participant was rigidly registered
to the mean b0 volume in order to estimate the transformation
matrix. DTI and 3D-SHORE models were fitted to the preprocessed
data using DIPY (https://dipy.org/).

For each subject, the FLAIR images were rigidly registered
to the T1-w ones using the FSL’s flirt tool. The FLAIR-
hyperintense lesions were automatically segmented and filled in
the T1-w images using the Lesion Prediction Algorithm (LPA)
available in the Lesion Segmentation Toolbox (LST) for SPM12
(www.statistical-modelling.de/lst.html). This operation was per-
formed to avoid biased morphometric measurements due to the
lesioned tissue.25 Of note, LPA does not require to set any man-
ual threshold, and it is currently the recommended option consid-
ering its fast processing and high sensitivity in lesion detection.26

Each individually filled T1-w image was then imported in the
FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/, Harvard
University, Boston, MA, USA) to perform a complete brain
parcellation with 112 anatomical regions of interests (ROIs). A
subset of these cortical and subcortical ROIs that were considered
particularly relevant for the pathology were retained for further
analyses based on the literature: thalamus, caudate, putamen, hip-
pocampus, insula, precuneus, superior-frontal gyrus, posterior
cingulate cortex, lateral occipital cortex, lingual cortex, and
pericalcarine.6,27

Feature Extraction
Eight microstructural indices were calculated for each subject. The
fractional anisotropy (FA) and mean diffusivity (MD)14 were derived
from the DTI model (fitted only to data acquired at b-
value = 700 s/mm2), while generalized fractional anisotropy (GFA),
propagator anisotropy (PA), mean square displacement (MSD),
return to the origin/axes/plane probability (RTOP, RTAP, and
RTPP, respectively) were estimated from the 3D-SHORE
model.13,28,29 The 11 ROIs, indicated in the previous section, were
used as masks to extract the regional microstructure values for each
dMRI index, after having projected the Freesurfer parcellation in the
dMRI native space using the previously estimated transformation
matrices. Starting from these values, for each participant and ROI
the following statistical moments were extracted: mean, median,
mode, skewness, SD, and kurtosis.

Regarding morphometry, volume (subcortical ROIs), and
thickness (cortical ROIs) were obtained by Freesurfer. All measures
were averaged across the two hemispheres, and volume measures
were also normalized by the total intracranial volume (eTIV) as esti-
mated from the T1-wimages in Freesurfer.

TABLE 1. Demographic and Clinical Variables of the Studied Populations

Variables RRMS PPMS P-Value

Female/male 32/13 26/21 0.053

Age (years) 42.8 � 9.9 (21–61) 47.4 � 10.9 (23–69) 0.040

Disease duration (years) 7.3 � 6.2 (1–26) 12.1 � 7.8 (1–32) 0.002

EDSS score 2.8 � 1.2 (0–5) 4.7 � 1.3 (2–7) <0.001

Data are shown as mean � SD and numbers in parentheses indicate the range.
RRMS = relapsing–remitting multiple sclerosis; PPMS = primary progressive multiple sclerosis; EDSS, Expanded Disability Status Scale
(EDSS).
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Support Vector Machine Analysis
A complementary analysis was performed relying on a linear support
vector machine (SVM) classifier with the twofold goal of identifying
the most eloquent features and performing the two-class classifica-
tion task based on those.30 The underlying assumption is that con-
sistency across methods in feature ranking would provide evidence
of the robustness of the outcomes. To this end, a three-step proce-
dure was followed. In the first step, the optimal number of features,
n_opt, was determined based on leave one out cross validation
(LOOCV). In the second step, the n_opt features were selected by a
ranking consensus criterion across all the tested models (539 � 90),
and in the third step the resulting feature set was used to feed a
SVM to check their discriminative power on the overall classification
problem. An illustration of the three steps is reported in Fig. 1 and
more details are provided hereafter.

Step 1—In order to choose the optimal number of features,
LOOCV was repeated 539 times, corresponding to the total number of
features, including both dMRI and morphometric descriptors.11 Using
a progressively increasing number of features n with unit step, n = 1,
2, …, 539 (i.e., one feature was added at a time), for each run of the
LOOCV the Feature Selection Code Library31 was applied to calculate
the Fisher scores of all the 539 features. The first n features of the
resulting ranking were then used to train and validate a linear SVM
with standardization of the observations, sequential minimal optimiza-
tion as solver, and cost 0.4662. This step resulted in a feature ranking
for each of the 539 � 90 tested models, as well as the mean and the
variance of the accuracy values for each n. The optimal cost was chosen
by searching for the best accuracy reached by applying a linear SVM
fitting with LOOCV, where the cost varied in a space defined by a vec-
tor of 100 evenly spaced points between 0.0005 and 512.

Step 2—The optimal number of features n_opt was obtained
by looking for both the highest possible accuracy and the lowest pos-
sible variance. More in detail, the best accuracy and variance were
first initialized as the ones obtained for n = 1, and updated when a
higher or equal accuracy and a lower or equal variance were found
for increasing values of n.

Step 3—The most occurring features in the first n_opt posi-
tions across all the model rankings were retained for feeding the final
SVM. This was evaluated through LOOCV, and the corresponding
confusion matrix along with accuracy, sensitivity, specificity, and
precision indicators were calculated.

Statistical Tests
Differences between the two MS phenotypes (RRMS, PPMS) were
tested for age, disease duration, and EDSS distributions using an
unpaired two-sample t-test, while a chi-square test was performed to
check for gender distribution differences.

Differences between the extracted dMRI features (the 6 distri-
bution moments times the number of ROIs, resulting in 66 features)
were evaluated by performing an analysis of covariance (ANCOVA),
separately for each microstructural index. In particular, the MS dis-
ease staging (DISEASE), ROI, and distribution central and non-
central moments of different orders (FEAT) were used as factors,
while age, disease duration, and EDSS were used as covariates. Post-
hoc tests adjusted for multiple comparisons with Bonferroni correc-
tion were computed for the significant interactions. Accordingly, the
morphometry information was analyzed with a two-way ANCOVA
using only DISEASE and ROI as factors, and age, disease duration,
and EDSS as covariates. Also in this case, the significant interactions
were further investigated with adjusted post hoc tests (Bonferroni).

FIGURE 1: Representation of the three steps performed to obtain a feature selection and the final support vector machine (SVM) to
classify primary progressive and relapsing–remitting multiple sclerosis patients, evaluated through leave one out cross validation
(LOOCV). The variables M and N correspond to the number of subjects (90) and the total number of features explored in this study
(539), respectively.
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For all statistical tests, P < 0.05 was chosen as the threshold for
significance.

Results
Group Comparison—Demographic and Clinical
Information
Significant differences between the RRMS and PPMS groups
were present in terms of age, disease duration, and EDSS. In
particular, the PPMS group revealed significantly higher age,
disease duration, and EDSS scores compared to RRMS. Con-
versely, gender distributions were not significantly different.
A summary of these results is reported in Table 1.

Group Comparison—dMRI Indices
The microstructural indices derived from the DTI and 3D-
SHORE models for two representative patients, one per
group, are illustrated in Fig. 2. MD and MSD were
hyperintense in areas of unrestricted diffusion, such as the
cerebrospinal fluid, where all the other six indices were
hypointense. High values in FA, GFA, and PA (bright areas)
can be observed in regions where diffusion mostly happens

along one preferred direction, such as the corpus callosum,
and show the same type of contrast as RTPP, RTAP, and
RTOP, though to a different extent.

A significant three-way interaction (DISEASE*ROI*FEAT)
was found for all the microstructural indices. Several significant
between-group differences, as shown in Fig. 3, were noted for the
RTPP index (see Figs. S1–S7 in the Supplemental Material for
the other indices). In particular, RTPP was different in two mea-
sures of centrality that are median and mode. In detail, the hippo-
campus was the only ROI whose RTPP-median value for PPMS
group was significantly lower for RRMS ones. Regarding RTPP-
mode, PPMS values were significantly lower than RRMS ones
when considering the ROIs where this measure was significantly
different between groups (including the hippocampus). Observing
all the microstructural indices of the study, mode was significantly
different between MS stages exclusively in the indices of restric-
tion (RTOP, RTAP, and RTPP), while only kurtosis was found
to be discriminative for all the other dMRI measurements. Excep-
tions were reported for the thalamus which also exhibited a signif-
icant between-group difference for MD- and MSD-skewness, and
RTAP-SD. We further noticed that, for all dMRI indices, the

FIGURE 2: Microstructural indices from diffusion MRI (dMRI). For ease of comparison across RTOP, RTAP, and RTPP maps, the cubic-
and square-root of RTOP and RTAP were displayed. Axial slices of two representative patients (one primary progressive and one
relapsing–remitting multiple sclerosis [PPMS and RRMS]) are reported for all microstructural indices. Images are displayed in
radiological convention. FA = fractional anisotropy; MD = mean diffusivity; GFA = generalized fractional anisotropy;
PA = propagator anisotropy; MSD = mean square displacement; RTOP = return to the origin probability; RTAP = return to the axis
probability; RTPP = return to the plane probability.
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subcortical structures (thalamus, caudate, putamen, and hippo-
campus) were more frequently included among the ROIs
highlighting any significant difference across groups.

Group Comparison—Morphometric Descriptors
In terms of regional morphometric differences, a significant two-
way interaction (DISEASE*ROI) was detected for both volume
and thickness values. As evidenced in Fig. 4, the thalamus was
the only ROI featuring a significant difference between the two
MS phenotypes, with PPMS group values significantly lower
than RRMS ones. Conversely, no thickness values were deemed
as statistically significant after multiple comparison correction

(pericalcarine: PBonf = 0.109; superior-frontal gyrus:
PBonf = 0.409; lingual cortex: PBonf = 0.437; insula, precuneus,
posterior cingular cortex, lateral occipital cortex: PBonf = 1.000).

SVM
SVM analysis resulted in 12 features among which 10 cor-
responded to the hippocampus, while 2 were related to the
thalamus. The selected features corresponding to the hippo-
campus were MSD- and MD-SD, MSD- and MD-mean,
RTOP-mode, RTPP-skewness, RTOP-, RTAP- and RTPP-
median, and RTPP-mean. The selected features
corresponding to the thalamus were RTAP- and RTPP-SD.

FIGURE 3: Return to the plane probability (RTPP) features for primary progressive and relapsing–remitting multiple sclerosis (PPMS and
RRMS). For each region, mean, median, mode, skewness, SD, and kurtosis are reported as mean � SD values across subjects (**
PBonf < 0.01, *** PBonf < 0.001). Thal = thalamus; Cau = caudate; Put = putamen; Hipp = hippocampus; LOC = lateral occipital cortex;
LgG = lingual gyrus; PC = pericalcarine; PCC = posterior cingulate cortex; Pre = precuneus; SFG = superior frontal gyrus; Ins = insula.

FIGURE 4: Morphometric measures for primary progressive and relapsing–remitting multiple sclerosis (PPMS and RRMS). Volume
(left) and thickness (right) are reported as mean � SD values across subjects (***PBonf < 0.001). Thal = thalamus; Cau = caudate;
Put = putamen; Hipp = hippocampus; LOC = lateral occipital cortex; LgG = lingual gyrus; PC = pericalcarine; PCC = posterior
cingulate cortex; Pre = precuneus; SFG = superior frontal gyrus; Ins = insula.
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Figure 5 summarizes the performance of the SVM,
alongside the corresponding receiver operating characteristic
curve (area under the curve = 0.83). The values of the confu-
sion matrix demonstrated no particular imbalance in classify-
ing one class with respect to the other (31 correctly classified
PPMS vs. 32 correctly classified RRMS).

Discussion
We investigated whether classical DTI and 3D-SHORE
microstructural descriptors were able to depict differences
between PPMS and RRMS patients in a set of GM regions,
as compared with standard morphometric measures. This
intra-pathology investigation is particularly challenging as
subtle differences between highly similar descriptors need to
be captured when missing a cohort of matched healthy con-
trol subjects. Our findings revealed that differential GM
microstructure alterations between PPMS and RRMS can be
detected using quantitative multiparametric MRI. This was
particularly evident for dMRI-derived indices, especially for
the restriction ones (RTAP, RTOP, RTPP) which reported
significantly different mode and median values.

The link between the observed dMRI measures and the
underlying microstructural biophysical properties is not
straightforward, mainly due to the inherent limitations in sen-
sitivity due to the acquisition scheme,7 which makes the
interpretation of these results particularly challenging. For this
reason, the analysis of the distributions of the microstructural
measures can better inform on the tissue modulations since it
offers a more complete picture of the underlying process with
respect to analyzing solely the mean value which is more sen-
sitive to the presence of outliers.

Microstructural Properties Distinguish PPMS
from RRMS
While probing GM microstructural differences between
PPMS and RRMS with dMRI, we used the classical DTI and
the 3D-SHORE models. The exploitation of 3D-SHORE

based measures in clinical studies has been proven to provide
a detailed and specific tissue characterization, allowing to dis-
entangle different conditions where DTI indices take the
same values.12,13 For instance, DTI cannot distinguish
whether a reduction of FA is caused by crossing fibers or by a
decrease of neural density in a voxel. Conversely, the joint
exploitation of RTAP and RTPP can allow disentangling such
ambiguity, as RTAP and RTPP both diminish in the case of
neuronal density reduction, while RTAP decreases and RTPP
increases for crossing fibers.12 Moreover, a decrease in anisot-
ropy could indicate the presence of neuroinflammation or loss
of myelination and neuronal loss. Therefore, irrespectively of
the exact interpretation of the biophysical meaning of such
indices, what it is relevant in the context is that they can cap-
ture the modulations of the tissue microstructural properties
that subtend the two phenotypes of the pathology. The pres-
ence of GM microstructural abnormalities is in line with pre-
vious literature findings showing several microstructural
alterations, in terms of either diffusivity, anisotropy, volume
fraction, or mean kurtosis in lesion and normal-appearing
GM tissues in MS patients.21,22 In particular, dMRI-based
indices have proven to detect earlier focal cortical pathological
changes and provide a better assessment of the microstruc-
tural integrity, further highlighting the clinical value of corti-
cal imaging, in line with recent recommendations.32

Investigating the dMRI measurement distributions sta-
tistics allowed to observe group differences otherwise not visi-
ble by using only the mean value. Median and mode are
direct measures of the microstructural indices and they were
significantly different between PPMS and RRMS only for
descriptors of restriction, and more precisely RTPP. Among
the ROIs, hippocampus appeared to be a key region showing
group microstructure variations in both median and mode.
The significant decrease in RTPP in PPMS in this region
might be related to lower restriction to diffusion or reduction
in neuronal density in hippocampus,12,17 which was recently
shown to be a significant feature in MS.33 Moreover, a recent

FIGURE 5: Performance of the leave one out cross validation evaluating the linear support vector machine using the features
resulting from Fisher score based selection as predictors for classifying primary progressive vs. relapsing–remitting multiple sclerosis
(PPMS and RRMS, respectively) patients. The confusion matrix (left) and related performance indicators (middle) are shown,
alongside the corresponding receiver operating characteristic (ROC) curve (right) and the area under the curve (AUC) value.
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study highlighted the early and central role of microstructural
alterations in hippocampus as the first region undergoing
microstructural changes. In addition, this study predicted sig-
nificant hippocampal tissue loss after 1-year of follow-up in
patients with clinically isolated syndrome, the premorbid
phase of MS.34 Similarly, Rocca et al35 highlighted the
importance of this region and suggested that the hippocam-
pus might be one of the main potential targets for treatment.
Rocca et al based their hypothesis on previous evidence dem-
onstrating the hippocampus involvement in brain plasticity
and neurogenesis, as in Ref. 36, as well as on several patho-
logical studies that have shown regional alterations in terms
of myelin, neuronal, and connectivity damage.

Brain Morphometry Is Less Sensitive to PPMS and
RRMS Differences Than dMRI
Different results were observed for the morphometric mea-
sures, as no significant group differences could be detected
except for the thalamus, where PPMS volume values were sig-
nificantly lower than RRMS ones. This agrees with previous
studies suggesting that volume loss is a more prominent fea-
ture in PPMS, particularly in deep GM structures.37 On the
other hand, several studies observed similar patterns of GM
atrophy in MS subtypes.6,27 In particular, Calabrese et al
showed that, although the temporal evolution of cortical thin-
ning differed among MS subtypes, insula, hippocampus, supe-
rior frontal gyrus, and cingulate cortex appeared atrophic in
both RRMS and secondary progressive MS.6 Moreover, a recent
study reported that thalamus, hippocampus, precuneus, and pos-
terior cingulate cortex were affected early by atrophy in both
PPMS and RRMS, whereas caudate and putamen showed late
atrophy in PPMS and early atrophy in RRMS.27 Thus, these
studies emphasized the consistent regional atrophy patterns in
different presentations of MS appearing at the early or late phase
of a given subtype. Our results agree with these findings,
supporting the hypothesis that PPMS and RRMS might have
common regional atrophy processes although the sequence of
atrophy progression might depend on the disease duration.27

Hippocampal Microstructural Properties Classify
PPMS and RRMS
The relevance of dMRI-derived indices in subcortical struc-
tures and especially in the hippocampus was confirmed by
the features selected based on the Fisher score and the perfor-
mance of the linear SVM. In fact, morphometric descriptors
did not survive the selection process, and only RTAP- and
RTPP-SD in the thalamus were retained in addition to the
other 10 features related to the hippocampus. Among these
features, RTOP-mode and RTPP-median in the hippocam-
pus, and RTAP-SD in the thalamus also appeared as signifi-
cantly different between the two MS stages in the statistical
analysis. The SVM analysis thus provided additional evidence
of the importance of the hippocampus region and the

irrelevance of the anisotropy (FA, GFA, PA) and morphomet-
ric descriptors in favor of diffusivity (MD, MSD) and restric-
tion (RTOP, RTAP, RTPP) ones. Several machine learning
approaches have been applied in the current literature to dis-
tinguish MS from other pathologies or patients vs. healthy
controls, generally relying on different MRI data and multi-
modal approaches.38 Among these, SVM is a classical and
well-established machine learning technique that has been
widely used due to its simplicity and ease of use, associated with
competitive performance. Thanks to these advantageous aspects,
it is commonly used for benchmarking of more advanced/com-
plex algorithms to provide evidence of the improvement of the
costs/benefits (i.e., complexity vs. performance) trade-off. In this
study, we contrasted SVM to multivariate modeling with the
twofold aim of providing first evidence of the suitability of
machine learning methods for the problem at hand and to probe
the persistency of the results across methods. Only a few studies
have attempted to classify PPMS from RRMS using SVM with
dMRI measures so far, exploiting global graph metrics derived
from DTI-based structural connectomes as predictors,39,40 such
as graph density, assortativity, and transitivity. In the first
study,39 results obtained with unweighted connectivity graphs
were considered more stable and less dependent on the patho-
logical conditions with respect to those obtained with weighted
ones. In view of this, the performance of our SVM was in line
with the accuracy reached by Stamile et al in classifying PPMS
and RRMS (accuracy = 68.3%), although using different fea-
tures. Interestingly, Stamile et al classified more than two pheno-
types (RRMS, PPMS, and secondary progressive MS)
performing binary classifications and obtaining the highest vari-
ability for RRMS vs. PPMS. They hypothesized that the reason
could be due to the substantial difference in the pathological
processes underlying the PPMS and RRMS phenotypes. A wider
analysis using several graph metrics was published in a second
study,40 showing that a SVM having all these measures as pre-
dictors could reach a F-measure = 0.706 (i.e., the weighted
average of precision and recall) when distinguishing PPMS from
RRMS. The performance of our SVM is in line with the values
reported by these authors, although some differences in the
study design should be emphasized, firstly the usage of measures
derived from GM instead of WM, informing on the specific
microstructural tissue properties instead on the global properties
of the structural brain networks, and of a more complete set of
dMRI indices rather than the classical DTI ones. Another
important difference was in cardinality of the cohort. Indeed,
90 subjects balanced across the two phenotypes were analyzed in
our work, while 24 RRMS and 17 PPMS were present in both
the abovementioned studies. Finally, the SVM kernel was differ-
ent (linear vs. graph39 and radial basis function kernels40).

Of note, the lack of a control group makes the classifi-
cation task particularly challenging, as these two phenotypes
might share some common patterns and features. However,
efforts in this respect remain important especially for

January 2022 161

Boscolo Galazzo et al.: Microstructural Signatures Behind PPMS and RRMS

 15222586, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.27806 by C
ochraneItalia, W

iley O
nline L

ibrary on [08/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



translational and precision medicine and for predicting the
possible conversion to secondary progressive MS stage.

Limitations
We acknowledge the limited sample size and the lack of a
healthy control group as main limitations of the current
study. Our cross-sectional study design, involving two patient
groups, is intrinsically more challenging to interpret com-
pared to a patient vs. control group design since subtle differ-
ences are difficult to capture. The inclusion of a control
group could help to reveal which ROIs are more affected by
the pathology and guide further comparative analyses though
not being informative of the differential tissue modulations
between the two disease manifestations.

Moreover, in this study only two analytical models were
considered for probing MS-related GM microstructure dam-
age, while many other models currently exist, such as
NODDI and CHARMED, and could be similarly investi-
gated for detecting MS-related tissue alterations.

Conclusion
Our study provides evidence for the higher sensitivity of
dMRI in differentiating PPMS from RRMS based on
regional GM microstructure properties compared to mor-
phometry measures. Noteworthy, the GM region most
sensitive to group differences was the hippocampus,
suggesting a central role of this region in disease progression
and calling for further investigation.
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