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1Centre for Integrative Biology, University of Trento, Trento, Italy
2Biological Research Center, Madrid, Spain

3Department of Mathematics, University of Trento, Trento, Italy
4The Microsoft Research – University of Trento Centre for Computational and Systems Biology, Rovereto, Italy

ozan.kahramanogullari@unitn.it

Abstract

The bacteria E. coli have developed one of the most efficient
regulatory response to phosphate starvation that is known in
detail. Achieving a mechanistic understanding of this system,
realized by Pho regulon at the genetic level, has implications
for applications in artificial life and for others in biotechnol-
ogy that exploit such mechanisms. To this end, we present
a dynamical model of Pho regulon, coupled with a layered
description of its regulation in the experimental conditions of
phosphate starvation. The model describes the dynamics of
two-component regulatory system together with the key reg-
ulatory promoter PhoB and experimental data on promoter
PhoA. The model is parameterized according to the feasi-
ble range given in the literature, and fitted to the dynamic
response of our experimental data on alkaline phosphatase
production, coded as Gfp. Sensitivity analysis demonstrates
that the rate of Pho transcription has a significant influence
over the expression of Pho-controlled genes. Variations in the
transcription rates alter the sensitivity of the phosphate star-
vation response to external phosphate concentration, whereas
variations in the translation rates affect the gain of the sys-
tem. Our model provides a dynamic description of the core
determinants of Pho regulon and promoter activities and their
response to the change of external phosphate level. As the
model architecture is intrinsically open to integrate supple-
mentary layers, together with experimental findings, it should
provide insights in investigations on engineering new dy-
namic sensors and regulators for living technologies.

Introduction
Water pollution is one of the global problems with great im-
pact. Industrial and daily life waste contain inorganic and
organic matters, such as heavy metals, which cause the con-
tamination of groundwater (Liandong, 2014). In this re-
spect, the development of eco-friendly bioreactors that input
waste water, carbon dioxide, and sunlight to output clean
water, electricity, biomass and other mineral resources is a
frontier in biotechnology with important implications. We
are exploring how the coupling of modeling at different
scales with modular architectural design can lead to the pro-
duction and use of such bioreactors in living technology and
synthetic biology applications.

The aim of this project in the context of the European
project Living Architecture (LIAR) is to provide an inte-

grated modeling framework across different scales to use
metabolites and biochemical transformations to feedback to
larger scale outputs of the entire system. To this aim we
construct detailed polyphosphate regulation and transcrip-
tional regulatory network models to enable Escherichia coli
to sense pollutants and relocate towards them. For this pur-
pose, we refine and extend our models with varying levels
of detail, e.g., to incorporate equations for ATP efficiency
and polyphosphate synthesis and storage, or other aspects of
the regulatory mechanism that are relevant for potential ap-
plications. For example, for applications in bioremediation
and biotechnology industries, it is desirable to control the
amount of polyphosphate that can be stored by the cell. The
mechanisms controlling such processes as biological phos-
phorus removal by polyphosphate indicate that metabolic
engineering can be used to elucidate some of these mech-
anisms. A broader understanding of the mechanisms con-
trolling such processes resulting from our framework should
lead to improvements in wastewater treatment.

Phosphorous, which is one of the major causes of water
quality problems, occurs in wastewater almost solely in the
form of phosphates such as inorganic phosphate (Pi) (Lian-
dong, 2014). Microorganisms, which are key players in
bioremediation, have potential to treat large amounts of the
pollutants and hold promise for renewable sources (Mosa
et al., 2016). In particular, the bacteria E. coli can take inor-
ganic phosphate and store excess inorganic phosphate in the
form of polyphosphates (Wanner, 1996).

In E. coli, there are two major phosphate transport sys-
tems. One is the low affinity phosphate inorganic transport
(Pit) system, and the other is the phosphate specific trans-
port (Pst) system (Wanner et al., 1995). Pit depends on the
proton motive force. In other words, it is a coupled trans-
porter of two different ions through the membrane (Wanner,
1996; Harris et al., 2001). Pst system, on the other hand, is
Pi-repressible and is induced when the external Pi concen-
tration is depleted (Jansson, 1988).

It is known that Pst system is part of the Pho regulon,
which is a global regulatory circuit involved in bacterial
phosphate management (Wanner, 1996; Lamarche et al.,
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2008). Pst system is controlled by a two-component regu-
latory system (TCRS), which comprises a histidine kinase
(HK) sensor protein and a transciptional response regula-
tor (RR). Pst system’s members are induced by pst operon,
comprised by Pho regulon (Wanner, 1996; Lamarche et al.,
2008; Gardner et al., 2014). The E. coli Pho regulon com-
prises more than 30 genes. Moreover, the expression of
these genes has been shown to require the transcription fac-
tor PhoB, which upon phosphorylation activates the binding
to a consensus promoter region (Wanner, 1996). The final
step in this pathway is the induction of many genes includ-
ing PhoB, PhoR and alkaline phosphatase.

The Pho regulon has been well studied in E. coli. All ex-
perimental evidence strongly indicates that Pho regulon is
controlled by external phosphate limitation rather than in-
ternal (Van Dien and Keasling, 1997). When the surround-
ing environment has abundant phosphate, E. coli uses as few
resources as possible to facilitate phosphate intake. How-
ever, when inorganic phosphate (Pi) becomes low outside
the cell, it turns into a growth limiting factor and the cell
spends energy to up-regulate the expression of target genes
that are used to acquire phosphate. Previous studies have
shown that the two-component system, the sensor kinase
PhoR and the response regulator PhoB, participate in sens-
ing the Pi level in the environment and regulate the expres-
sion of genes that are directly involved in phosphorus as-
similation, forming a Pho regulon (Wanner, 1996; Lamarche
et al., 2008). Although much is known about the molecular
aspects of this signal transduction pathway, a comprehensive
and structured mechanistic model of the Pho regulon is cur-
rently not available (Van Dien and Keasling, 1997). A better
understanding of the Pho regulon controlling such processes
resulting from our framework should thus lead to improve-
ments in wastewater treatment.

In our initial model, presented here, we detail a mathe-
matical model for simulating the phosphate starvation re-
sponse at the genetic level. In a subsequent model, we will
extend and refine the purposeful detail of the model to cap-
ture temporal and spatial dynamics of the system such as os-
cillatory behavior that can be supported and propagated by
a matrix of interconnected bioreactors. This will allow us
to ask whether the system as a whole may function more ro-
bustly and operate as an artificial biological organ capable of
programmed responsiveness towards the desired outcomes.

In the following, we describe our model, where the behav-
ior of Pho regulon system is expressed within a chemical re-
action network representation, and implemented as systems
of ordinary differential equations via mass action kinetics.
The model includes TCRS members and activation of the
Pho regulon by the promoters pPhoB and pPhoA. Experi-
mental data is used to fit the parameters to the feasible phys-
iological range given in the literature, and to determine the
relative sensitivity of the simulation to each of these param-
eters. The simulations with our model provide a seamless

dynamic description of the mechanisms. Moreover, sensitiv-
ity analysis on parameters demonstrate the influence on the
expression of Pho-controlled genes and the gain of the sys-
tem under variations in transcription efficiency in response
to external phosphate concentration.

Material and Methods
Mechanistically, Pi signaling is a negative process. Exces-
sive Pi is required for turning the system off. Activation is
the default state and occurs in conditions of Pi limitation
(Wanner, 1996; Wanner et al., 1995; Gardner et al., 2014).

Signal transduction by environmental Pi requires seven
proteins, which are thought to interact in a membrane associ-
ated signaling complex. These Pi signaling proteins include
(Wanner, 1996; Wanner et al., 1995)

1. two that are members of the large family of two compo-
nent systems (TCSs), a sensor histidine kinase PhoR and
a response regulator PhoB;

2. four components of the ABC transporter Pst (PstSCAB)
an extracellular binding protein (PstS), two transmem-
brane proteins (PstC, PstA) that form the transmembrane
domain (TMD), and a dimer of cytosolic peripheral pro-
teins (PstB), i.e., the nucleotide-binding domain (NBD);

3. the chaperone-like PhoR/PhoB inhibitory protein PhoU.

In Fig. 1, the system mechanism is shown. In the star-
vation condition, when phosphate (Pi) is limited in quantity
outside the cell, PstS protein binds to the external phosphate
(Pext) following its diffusion to the cell surface (Ps) (Wan-
ner, 1996; Wanner et al., 1995; Lamarche et al., 2008).

Pext←→ Ps (1)

Pst + Ps←→ Pst Ps (2)

The transmembrane domain of the ABC transporter, that
is, PstC and PstA are integral membrane proteins that span
the entirety of the membrane. They regulate the transloca-
tion of Pi from PstS to the inner membrane, becoming Pm.

Pst Ps + PstCA −→ PstCA + Pst + Pm (3)

Pi intake happens with the conformational changes in
the PstB as a result of ATP binding, also known as ATP-
switch model. Principal conformations of the PstB are as
follows: (i.) the formation of a closed dimer upon binding
two ATP molecules; (ii.) dissociation to an open dimer fa-
cilitated (PstBo) by ATP hydrolysis. The switching between
the open and closed dimer conformations induces conforma-
tional changes in the TMD resulting in substrate transloca-
tion of Pi transport from inner membrane (Pm) to the cy-
tosol. This causes an increase in the amount of phosphate in
the cell (Pin) (Wanner, 1996; Wanner et al., 1995).

2PstB + 2ATP −→ PstBo + 2ADP (4)

Pm + PstBo −→ Pin + 2PstB (5)
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Figure 1: Control of the Pho regulon and transmembrane
signal transduction when environmental inorganic phos-
phate (Pi) is depleted. External Pi binds to the PstS com-
ponent of the ABC transporter. It is then translocated to the
inner membrane domain of the transporter through PstCA.
Following this, with the ATP consuming conformational
changes of the PstS, Pi is internalized an released to the cy-
tosol. According to current biological model in the litera-
ture, PhoR assesses Pi availability by monitoring the activ-
ity of Pst transporter. This is done by relaying a signal from
PstB via PhoU to PhoR. When the Pi influx is reduced, PhoU
does not stabilize PhoR. As a result of this, PhoR becomes
free to perform its auto-kinase-phosphotransferase activity,
whereby it phosphorylates PhoB. Phosphorylated PhoB then
acts in dimers as transcription factor for the operon.

In many eukaryotic receptor families, receptor signaling
occurs through signal-mediated dimerization of kinase do-
mains (Gao and Stock, 2009). However, in E. coli the per-
ception of stimuli causes alterations in protein-protein inter-
actions within the preformed PhoR dimer. That is, the mem-
brane localized sensor-kinase PhoR is in dimer structure and
the signal is relayed to the kinase core domains (Gao and
Stock, 2009). PhoR is essential for the control of the PhoB
activity as a transcription factor.

Although the exact mechanism is unknown, the current
evidence suggests that PhoR and eventually PhoB assess Pi
availability by monitoring the activity of Pst transporter via
PhoU. That is, PhoU responds to mechanical forces in its
interaction with the PstSCAB transporter and transmits that
information to PhoR through the PAS domain. This way
the signal is relayed from PstB to PhoB (Lamarche et al.,
2008). When there is sufficient Pi flux, PhoU stabilizes
PhoR (Gardner et al., 2014). The resulting stable confor-
mation of PhoR prevents PhoR from auto-phosphorylation.

Experimental evidence indicates that when PhoU is
deleted, PstB not only continues to spend ATP, and trans-

ports Pi, but PhoR is a constitutive PhoB kinase leading to
high expression of the Pho regulon genes (Wanner, 1996;
Wanner et al., 1995). In mechanistic terms, the low activity
of the ABC transporter PstSCAB causes autophosphoryla-
tion of the sensor kinase PhoR, which relays the signal to
the transcription factor PhoB. That is, when the Pi flux is re-
duced, PhoU is deactivated. Consequently, the stable inter-
action between PhoU and PhoR does not take place. PhoR is
an auto-kinase and phosphotransferase; PhoR is thus capa-
ble of binding ATP, autophosphorylate itself and become ac-
tive (DiPhoRpp) (Wanner, 1996; Wanner et al., 1995). The
inactivation of PhoU allows PhoR to autophosphorylate in
dimers, and transfer its phosphoryl group to PhoB resulting
in PhoB activation as a DNA binding response regulator, and
regulate the operon as an active transcription factor. PhoB
has been reported to exist primarily as monomers and phos-
phorylation greatly enhances dimerization (Jansson, 1988).

DiPhoR←→ DiPhoRp (6)

DiPhoRp←→ DiPhoRpp (7)

DiPhoRpp + PhoB←→ DiPhoRpp PhoB (8)

DiPhoRpp PhoB −→ DiPhoRp + PhoBp (9)

DiPhoRp + PhoB←→ DiPhoRp PhoB (10)

DiPhoRp PhoB −→ DiPhoR + PhoBp (11)

PhoBp + PhoBp←→ DiPhoBpp (12)

In E. coli, the sensor histidine kinase PhoR is a bifunc-
tional (paradoxical) enzyme. It catalyzes the phosphoryla-
tion of response regulator PhoB and also the dephosphory-
lation of PhoBp (Shinar et al., 2007; Gao and Stock, 2012).

DiPhoR + PhoBp←→ DiPhoR PhoBp (13)

DiPhoR PhoBp −→ DiPhoR + PhoB (14)

Phosphorylated dimer structure PhoB (DiPhoBpp) is en-
abled for activating Pho regulon by binding to a consensus
promoter region. Here, we focus on PhoA and PhoB pro-
moters based on experimental data on PhoA promoter regu-
lation. PhoB and PhoR play important roles in Pho regulon
and the phoBR operon is autogenously regulated (Wanner,
1996; Wanner et al., 1995). Thus, the synthesis of the reg-
ulatory proteins PhoB and PhoR is under Pho regulon con-
trol (Wanner, 1996; Wanner et al., 1995; Warner and Chang,
1987). PhoR expression during phosphate limitation is de-
pendent on the upstream phoB promoter. In fact, the operon
structure indicates that phoR gene function requires expres-
sion from the phoB promoter (Warner and Chang, 1987).

DiPhoBpp + pPhoA←→ pPhoAa (15)

DiPhoBpp + pPhoB←→ pPhoBa (16)

Active promoters pPhoAa and pPhoBa lead to the tran-
scription of mRNA, which carries the information for the
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subsequent translation, resulting in protein synthesis.

pPhoAa −→ pPhoAa + mRNAa (17)

mRNAa −→ Gfp + mRNAa (18)

pPhoBa −→ pPhoBa + mRNAb (19)

mRNAb −→ PhoB + mRNAb (20)

mRNAb −→ DiPhoR + mRNAb (21)

With the inclusion of the degradation/dilution terms, we
obtain the following reactions.

Gfp −→ ∅ (22)

PhoB −→ ∅ (23)

DiPhoR −→ ∅ (24)

mRNAa −→ ∅ (25)

mRNAb −→ ∅ (26)

In the following, we investigate the causal relationship be-
tween external phosphate-starvation level, the Pho regulon
signaling cascade, and the promoter activity. The model is
composed of a set of ordinary differential equations (ODE),
which are derived from the chemical reaction network above
by using the standard translation based on stochiometries
and reaction rates. To build the simulation model, we have
selected the part of the network from the TCRS, given with
PhoB and PhoR, to gene regulation, which is active in star-
vation conditions. The set of ODEs derived from the chem-
ical reaction network above is listed in Figure 2.

We have ran simulations with the model with an initial
state representing the phosphate starvation case. The initial
values of the model variables have been derived from the lit-
erature or obtained from experimental data. The simulations
have been performed for an initial culture containing 0 µM
Pext. Prior to Pi starvation, the concentrations of proteins
PhoR and PhoB are approximately 0.22 µM. The concentra-
tions of active PhoR and active PhoB are 4 · 10−8 µM and
6 · 10−8 µM, as determined by Keasling et al. (Van Dien
and Keasling, 1997). With a single plasmid, average mRNA
number is 2-3 in E. coli (OpenWetWare, 2007). Therefore,
the initial states of mRNAa and mRNAb are set to 0.0016
µM, and the initial promoters numbers are set to 10 for each.

The rates of chemical reactions are obtained in accor-
dance with the variability of physiological ranges given in
the literature (OpenWetWare, 2007; Alon, 2007; Bloch and
Schlesinger, 1973). The extended model includes 26 reac-
tions. The models have been used to reproduce the data and
the unknown parameters. We carried out a deterministic pa-
rameter estimation procedure, based on using a multi-start
approach together with a least squares method. Parameter
values taken from literature and the given ranges for the rates
are listed in Table 1. The rate values have been selected with
respect to the best fit to the physiological range, listed in Ta-
ble 1, and the dynamics in accordance with the experimental
findings in order to avoid discontinuities or states with unre-
alistic variable values.

dGfp(t)/dt = r18.mRNAa(t)− r22.Gfp(t)

dDiPhoR(t)/dt = r6r.DiPhoRp(t)− r6.DiphoR(t)

+r11.DiPhoRp PhoB(t) + r21.mRNAb(t)

−r24.DiPhoR(t)− r13.DiPhoR(t).PhoBp(t)

+r13r.DiPhoR PhoBp(t) + r14.DiPhoR PhoBp(t)

dDiPhoRp(t)/dt = r6.DiPhoR(t)− r6r.DiPhoRp(t)

−r7.DiPhoRp(t) + r7r.DiPhoRpp(t)

+r9.DiPhoRpp PhoB(t) + r10r.DiPhoRp PhoB(t)

−r10.DiPhoRp(t).PhoB(t)

dDiPhoRp PhoB(t)/dt = r10.DiPhoRp(t).PhoB(t)

−r10r.DiPhoRp PhoB(t)− r11.DiPhoRp PhoB(t)

dDiPhoRpp(t)/dt = r7.DiPhoRp(t)− r7r.DiPhoRpp(t)

−r8.DiPhoRpp(t).PhoB(t) + r8r.DiPhoRpp PhoB(t)

dDiPhoRpp PhoB(t)/dt = r8.DiPhoRpp(t).PhoB(t)

−r8r.DiPhoRpp PhoB(t)− r9.DiPhoRpp PhoB(t)

dPhoB(t)/dt = −r8.DiPhoRpp(t).PhoB(t)

+r8r.DiPhoRpp PhoB(t)− r10.DiPhoRp(t).PhoB(t)

+r10r.DiPhoRp PhoB(t) + r20.mRNAb(t)

−r23.PhoB(t) + r14.DiPhoR PhoBp(t)

dPhoBp(t)/dt = r9.DiPhoRpp PhoB(t)− 2.r12.PhoBp(t)2

+r11.DiPhoRp PhoB(t) + 2.r12r.DiPhoBpp(t)

+r13r.DiPhoR PhoBp(t)− r13.DiPhoR(t).PhoBp(t)

dDiPhoR PhoBp(t)/dt = r13.DiPhoR(t).PhoBp(t)

−r13r.DiPhoR PhoBp(t)− r14.DiPhoR PhoBp(t)

dDiPhoBpp(t)/dt = r12.PhoBp(t)2 − r12r.DiPhoBpp(t)

−r15.DiPhoBpp(t).pPhoA(t) + r16r.pPhoBa(t)

+r15r.pPhoAa(t)− r16.DiPhoBpp(t).pPhoB(t)

dpPhoA(t)/dt =

−r15.DiPhoBpp(t).pPhoA(t) + r15r.pPhoAa(t)

dpPhoAa(t)/dt =

r15.DiPhoBpp(t).pPhoA(t)− r15r.pPhoAa(t)

dpPhoB(t)/dt =

−r16.DiPhoBpp(t).pPhoB(t) + r16r.pPhoBa(t)

dpPhoBa(t)/dt =

r16.DiPhoBpp(t).pPhoB(t)− r16r.pPhoBa(t)

dmRNAa(t)dt = r17.pPhoAa(t)− r25.mRNAa(t)

dmRNAb(t)/dt = r19.pPhoBa(t)− r26.mRNAb(t)

Figure 2: The ODEs for the model reactions.
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The unbinding rate of an active transcription factor can
vary over many orders of magnitude, depending on its con-
centration and affinity to the promoter (Alon, 2007). In our
model, by assuming that active transcription factors are sat-
urating, we have considered only the forward reactions 15
and 16 for this, and assumed that reverse reactions are neg-
ligible within the considered time interval.

Reaction N. Rate Fit Value Literature Value
6 r6 25.3658 10-100 1/s

6 reverse r6r 8.1165 � 10 1/s
7 r7 25.3658 10-100 1/s

7 reverse r7r 8.1165 � 10 1/s
8 r8 100 100 1/µMs

8 reverse r8r 74.9411 NA
9 r9 21.3718 17-23 1/s

10 r10 100 100 1/µMs
10 reverse r10r 74.9411 NA

11 r11 21.3718 17-23 1/s
12 r12 100 100 1/µMs

12 reverse r12r 74.9411 NA
13 r13 100 100 1/µMs

13 reverse r13r 74.9411 NA
14 r14 12.95 < 17 1/s
15 r15 10000 10000 1/µMs
16 r16 10000 10000 1/µMs
17 r17 0.0510 0.0025-0.2 1/s
18 r18 0.0302 0.0006-0.05 1/s
19 r19 0.0510 0.0025-0.2 1/s
20 r20 0.0302 0.0006-0.05 1/s
21 r21 0.0302 0.0006-0.05 1/s
22 r22 0.0001 0.000096-0.00079 1/s
23 r23 0.0001 0.000096-0.00079 1/s
24 r24 0.0001 0.000096-0.00079 1/s
25 r25 0.0055 0.0055 1/s
26 r26 0.0055 0.0055 1/s

Table 1: Reactions and deterministic rates obtained from the
physiological ranges in (OpenWetWare, 2007; Alon, 2007;
Bloch and Schlesinger, 1973).

Experimental Procedure
PhoA promoter was PCR amplified from E. coli MG1655
genome and transcriptionally fussed to the translational cou-
pler BCD2 (Mutalik et al., 2013) and the fluorescent ms-
fgfp gene. Subsequently the PphoA::BCD2-msfgpf frag-
ment was cloned using the PacI/HindIII restrictions sites in
pSEVA234 plasmid (http://seva.cnb.csic.es/), generating the
pSEVA237PphoA vector.

The synthetic promoter Pliar00117 was obtained by
PCR using a degenerated primer and the promoter pBG42
(Zobel et al., 2015) as template. The Pliar00117 promoter

Figure 3: Model fitting and simulation for different concen-
trations of Pext with respect to experimentally obtained Gfp
levels. Each curve represents Gfp dynamics in response to
variable Pext concentrations. The experimental data on dif-
ferent Pext conditions are represented as 0 µM Pext with
circle©; 10 µM Pext with cross ×; 20 µM Pext with aster-
isk ∗; 50 µM Pext with plus sign +; 75 µM Pext with square
2; 100 µM Pext with star ?; 200 µM Pext with diamond ♦.
The simulation time course represents the first 4.5 hours.

was transcriptionally fussed to BCD2 and msfgfp gene.
The Pliar00117::BCD2-msfgpf fragment was cloned using
the PacI/HindIII restrictions sites in pSEVA234 plasmid,
generating the pSEVA237Pliar00117 vector. E. coli DH10B
was used for cloning and for express MsfGFP protein under
PphoA or Pliar00117 regulation.

Activity assay of the PphoA and Pliar00117 pro-
moters. E. coli DH10B carrying pSEVA237PphoA or
pSEVA237Pliar00117 were grown over night at 37◦C in
MOPS medium (Neidhardt et al., 1974) containing 100 µM
KH2PO4 to OD600 of 2.0. The bacterial cells were pel-
let at 1500 xg, room temperature, 10 min and washed twice
in MOPS medium without KH2PO4. The cells were sus-
pended in 250 µl of MOPS buffer with increases in concen-
trations of KH2PO4 from 0 to 50 mM. The bacterial cell
suspensions were loaded in 96-well plates and incubated at
37◦C, 200 rpm. The expression of MsfGFP was monitored
at different times in a Varioskan Flash spectral scanning
multimode reader (Thermo Scientific). αExcitation 488 nm;
αEmission 509 nm.

Results
Our main result is the mathematical descriptions of the Pho
regulon in phosphate-starvation and the promoter efficiency
under the conditions of varying Pext concentrations.

The model has been fitted to the experimental data for
different concentration levels of external phosphate that are
described by variations in promoter activity rate estimates
(Fig. 3). With the optimization fitting model, we have in-
stantiated the promoter activity rates to simulate such varia-
tions in external phosphate levels with respect to the data.

The interactions of the TCRS and the operon have been
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simulated for 4.5 hours. In Fig. 4, we display the simulation
results of the model species dynamics for Pext 0 µM condi-
tion. In these simulations, in response to external Pi levels,
PhoR dimers are activated, and they are doubly phosphory-
lated. This results in the activation of the response regulator
PhoB, and the consequent dimerization of active PhoB. As
a consequence, the promoter activity for PhoA and PhoB
rapidly increase. The resulting mRNA production leads to
an increase in the concentrations of PhoR and PhoB. The
output of the model, in terms of gene regulation, coincided
with the input PhoR and PhoB phosphorylation, which re-
sulted in the expected simulation dynamics without the need
for external intervention.

Synthetic biology methods provides the means to synthe-
size constitutive promoters with different activation charac-
teristics. For E. coli, a library of synthetic promoters, which
sense Pi with a broad range of sensitivity, have been created.
The availability of such a range of promoter activities in-
creases the number of potential regulatory combinations that
can be used in the development of Pi-dependent bio-sensors.

We have used the model to explore the effect of the syn-
thetic promoter, where the transcription rate provides a mea-
sure of gene expression. The simulation results in Fig. 5
depict the data set with the synthetic promoter Pliar00117
(pPliar00117). As expected, the selected Pliar00117 syn-
thetic promoter has a similar behavior as the pPhoA pro-
moter in starvation conditions; it provides comparable green
fluorescent protein expression levels. In other words, syn-
thetic promoter, pPliar00117, is able to express the desired
level of Gfp. The simulation results indicate that, within a
modular framework, individual promoters can be easy re-
placed for various tasks.

Fig. 5 depicts the expression profiles at 5 time points with
this promoter, whereby the transcription rate of Pho syn-
thetic promoter differs, and the simulations reproduce the
experimental data for the promoter. The simulations predict
how changes in the genetic components affect the behav-
ior of the circuit. Of all the parameters examined, the rate
constant for the promoter activity had the greatest effect on
the behavior of the system. Importantly, in starvation condi-
tions, the two component system responds in the same way
to the signal with the synthetic promoter or with the PhoA
promoter. This suggests that the promoter parameter can be
varied to adjust the sensitivity of the Pho regulon to Pext, for
example, when all other parameters used for transcription,
translation, and degradation of the heterologous protein are
the same as those used for the PhoA promoter model.

Sensitivity Analysis
To assess the effect of the estimated rate parameters on the
model dynamics, we have performed a parametric sensitiv-
ity analysis. For this, we have considered for each reaction
the estimated rate in isolation and varied it under mass action
law. In the analysis, we have excluded the rate parameters

Figure 4: Simulation results with the model for 0 µM Pext.
The experimental data is represented with circle ©. The
time course for each species until 4.5 hours is depicted.

that have been taken from literature as these parameters have
not been estimated. Conversely, the effect of each estimated
rate parameter has been analyzed by considering their esti-
mate according to the values in Table 1.

For computing the analysis, each rate parameter estimate
has been perturbed by multiplying its value by a factor such
that parameters remained within their physiological range.
For each value of the parameter, we ran a simulation and
measured the impact on the system dynamics on model
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Figure 5: Simulation time course until 4.5 hours for the syn-
thetic promoter Pliar00117 activity and 0 µM Pext. The ex-
perimental data is represented with circle ©.

Figure 6: Representative simulation plots of Gfp expression,
modeling variations under different conditions. The rate r18
of reaction 18 is varied within the physiological range.

species. We ran simulations by varying these fold change
values, and we measured the impact of these changes to the
system in terms of the area under the curve (AUC) ratio
provided by the corresponding simulated behavior in time.
AUC ratios computed with the maximum and the minimum
considered value of factor and changes are represented with
the heatmap in Fig. 7. Below, we consider the most effective
reaction rates in further detail.

Translation rates. The translation of mRNA is modeled
by the reactions 18, 20 and 21 in the model, and these reac-
tions are governed by the rate constants r18, r20 and r21 in
Table 1. The protein concentrations become proportional to
the mRNA levels once the transcription reaches a significant
level in the simulations. This becomes the case when suffi-
cient active PhoB (DiPhoBpp) is present in the system to sat-
urate the promoter. The genes encoding PhoR and PhoB are
transcribed from the Pho promoter, so a reduction in mRNA
resulted in a reduction in DiPhoBpp. This further inhibited
alkaline phosphatase production, quantified as Gfp (Fig. 6).

PhoR autophosphorylation. The reactions 6 and 7 with
the estimated rates r6 and r7 model PhoR phosphorylation.
We have applied fold changes within an interval starting
from 10 up to 100 that cover possible metabolic perturba-
tions. An increase in these rate constants results in a greater
increase in the sensor kinase activity in comparison to the re-
sponse regulator. Moreover, a greater phosphorylation rate
induces a response that is similar to the starvation conditions
even with a relatively high external phosphate concentration.
These results suggest that the effects of r6 and r7 play a sig-
nificant role in phosphorylation of sensor histidine kinase
and the consequent phosphate intake.

Boundaries of disassociation rate. We have provided re-
sults that correlate an estimation of the model parameters
and their physiological ranges. However, the disassociation
rate values depend on the strength of the chemical bonds,
which lack ranges. Therefore, we have analyzed these pa-
rameters with respect to their impact on the simulation out-
come. We have compared the AUC for different values for
the rates r8r, r12r and r12r to demonstrate their effect. We
have observed that when the values of rates are smaller than
20 1/s, they do not have any visible effect on the system.
Moreover, when they are greater than 3.8·105 1/s, they ham-
per the increase in Gfp.

Discussion
Synthetic life becomes now feasible with the emergence of
systems and synthetic biology. While systems biology fa-
cilitates the global understanding of natural living systems,

Figure 7: Heatmap displaying the results of the sensitiv-
ity analysis by considering the computed parameter esti-
mates. For each parameter, the maximum and minimum
values within its physiological range are considered for sim-
ulation, and the area under the curve (AUC) for each species
is computed. The difference of the AUC for the maximum
and minimum parameter values are then normalized with the
AUC of the original model. Red represents the decreasing
effect and blue represents the increasing effect.
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synthetic biology takes advantage of this better understand-
ing and focuses on the design, construction and optimiza-
tion of new-to-nature biological functions. Pioneer forward-
engineering efforts have addressed the implementation of
individual synthetic modules such as logic gates, oscilla-
tors, cascades and biosensors (Nielsen et al., 2016; Daniel
et al., 2013). However, implementation of complex syn-
thetic biological functions is still challenging as it demands
a deep hierarchical control engineering analysis and network
integration (He et al., 2016). Analogous to electronic engi-
neering, the implementation of complex synthetic biological
functionalities require the integration of sensing, computing
and operator modules including signaling, regulatory and
metabolic networks. Therefore, new design principles en-
abling the handling of such complexity, which make model-
based approaches mandatory, are needed.

Within this context, a very attractive endeavor for the near
future is the possibility of implementing multi-tasks and
completely automated synthetic biological devises. For in-
stance the phosphate sensing model constructed here pro-
vides an excellent computational framework guiding the
construction of a synthetic biological devise for sensing and
properly responding to external concentration of phosphate.
Further construction of model-based a la carte Pi-regulated
promoters, when integrated into synthetic regulatory cir-
cuits, can be used for driving metabolic modules towards
autonomous functions such as Pi-removal and the produc-
tion of added-value products as a function of the Pi available
in domestic gray waters.
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