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Abstract

Several constrained optimization problems have been adequately solved over the years thanks to the advances in the area
of metaheuristics. Nevertheless, the question as to which search logic performs better on constrained optimization often
arises. In this paper, we present Dual Search Optimization (DSO), a co-evolutionary algorithm that includes an adaptive
penalty function to handle constrained problems. Compared to other self-adaptive metaheuristics, one of the main advantages
of DSO is that it is able auto-construct its own perturbation logics, i.e., the ways solutions are modified to create new ones
during the optimization process. This is accomplished by co-evolving the solutions (encoded as vectors of integer/real values)
and perturbation strategies (encoded as Genetic Programming trees), in order to adapt the search to the problem. In addition
to that, the adaptive penalty function allows the algorithm to handle constraints very effectively, yet with a minor additional
algorithmic overhead. We compare DSO with several algorithms from the state-of-the-art on two sets of problems, namely: (1)
seven well-known constrained engineering design problems and (2) the CEC 2017 benchmark for constrained optimization.
Our results show that DSO can achieve state-of-the-art performances, being capable to automatically adjust its behavior to
the problem at hand.

Keywords Co-evolutionary algorithm - Swarm intelligence, Constrained optimization - Self-adaptation - Engineering design

1 Introduction

Constrained optimization, i.e., the search for an optimal solu-
tion to a given optimization problem, subject to one or more
constraints, is a key element in many applications. Examples
of constrained optimization can be found in various areas
of engineering (De Melo and Carosio 2013; Kashan 2011;
Zhang et al. 2008; Wang et al. 2009), where in most cases
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the systems at hand have specific physical or economical
requirements that may limit the feasibility of the possible
solutions.

Without loss of generality, in this kind of problems the
goal is to find x that minimizes (or maximizes) a given f(X),
subject to:

hix)=0i =
gix)<ei=1...p

.o

I
— =

where f(x) is the objective function to be optimized, x € R”
is asolution vector x = [x ... xp]T, € is the tolerance factor
(that in this paper we set to zero, unless specified other-
wise), and h;(x) and g;(x) are the equality and inequality
constraints, respectively, with m and p being their number.
In addition to these constraints, each variable x;, k=1... D
is usually bounded by lower and upper bounds L B; < x; <
U By, which define the search space. In general, the solu-
tion may contain both integer and continuous variables, and
the equality and inequality constraints can be either linear or
non-linear. It is important to note that, in general, the presence
of constraints makes the optimization process more difficult,
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since the region of the search space where the feasible solu-
tions lie can very narrow compared to the total volume of the
search space, and as such hard to find.

Much research effort in the last three decades has been
put in the attempt of defining efficient Computational Intel-
ligence algorithms for solving constrained optimization
problems. Broadly speaking, this research has focused on
two directions, namely: (1) the definition of specific con-
straint handling techniques (CHTs), such as those surveyed
in (Coello Coello 2002; Mezura-Montes and Coello Coello
2011; Michalewicz 1995; Salcedo-Sanz 2009) and (2) the
incorporation of such CHTs into various algorithmic schemes
falling under the broad umbrella of Evolutionary Computa-
tion and Swarm Intelligence, or hybrids thereof. A complete
survey of this vast research area is out of the scope of this
paper, however in the following we briefly summarize some
of the main achievements in the field, to provide the context
of this work.!

Evolutionary Computation: The first works in this area
date back to the late 90 and early 2000, when research
focused especially on Genetic Algorithms (GA) (Coello
Coello and Mezura-Montes 2002; Coello Coello 2000;
Michalewicz et al. 1996; Rasheed 1998). More recently,
while some researchers have focused on specific CHTs
for GA (Long 2014) and applications thereof, such as in
Gutérrez-Antonio et al. (2011), most of the research atten-
tion has shifted towards Differential Evolution (DE) Das
et al. (2016) and Evolution Strategies (ES) Mezura-Montes
and Coello Coello (2005). Among DE-based algorithms,
it is worth mentioning two proposals by Mezura-Montes
et al. (2006, 2004), who introduced the use of feasibil-
ity rules and diversity preservation mechanisms specifically
designed for constrained optimization. Another powerful
algorithm, named £-DE, was introduced and further extended
in Takahama and Sakai (2006, 2010, 2012); Takahama and
Sakai (2013). This algorithm ranks the solutions such that
infeasible solutions are considered only if they violate the
constraints at most by a given e-value. A number of works
have devised self-adaptive variants of DE (De Melo and
Carosio 2013; Huang et al. 2006; Mezura-Montes et al. 2010,
Mezura-Montes and Palomeque-Ortiz 2009a,b; Zou et al.
2011) or adaptive penalty functions (Ali and Zhu 2013; de
Melo and Carosio 2012). As for ES, the current literature
focuses mostly on Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and variants thereof. For instance, adap-
tive penalty functions for CMA-ES have been proposed in
(Collange et al. 2010; de Melo and Tacca 2014; de Melo and
Tacca 2014), whereas Arnold and Hansen (2012) proposed a
(1+1)-CMA-ES that, starting from a feasible solution, adapts

LA constantly updated list of references on the topic, maintained by
Carlos A. Coello Coello, is available at: http://www.cs.cinvestav.mx/
~constraint/.
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the covariance matrix to decrease the likelihood of sampling
infeasible solutions. Other algorithms are based on multi-
ple rankings (Kusakci and Can 2013), or surrogate models
(Gieseke and Kramer 2013; Kramer et al. 2009, 2013) specif-
ically meant for expensive optimization. Finally, a recent
work has evaluated the effectiveness of a diversity-driven
evolutionary algorithm, named MAP-Elites, for solving con-
strained optimization problems (Fioravanzo and lacca 2019).

Swarm Intelligence: Most of the works falling in this
category are based on Particle Swarm Optimization (PSO)
and several of its variants (Aguirre et al. 2007; Cagnina
et al. 2008; Coelho, L.d.S, 2010; He and Wang 2007; Hu
et al. 2003; Pant et al. 2009; Machado-Coelho et al. 2017;
Guedria 2016; Mazhoud et al. 2013). However, more recently
also other Swarm Intelligence paradigms have been applied
to solve constrained optimization, for instance Ant Colony
Optimization (ACO) Leguizamoén and Coello Coello (2009),
Cuckoo Search (CS) Yang and Deb (2010), Artificial Bee
Colony (ABC) (Akay and Karaboga 2012; Brajevic et al.
2011), Social Spider Optimization (SSO) Cuevas and Cien-
fuegos (2014), Artificial Immune System (AIS) Zhang et al.
(2014), Crow Search Algorithm (CSA) Askarzadeh (2016),
Gravitational Search Algorithm (GSA) Purcaru et al. (2013),
and Simulated Societies (Ray and Liew 2003).

Hybrid algorithms: Lastly, it is worth mentioning the
recent research on constrained optimization tackled by
hybrid algorithms, for instance Memetic Computing (MC)
algorithms (Barkat Ullah et al. 2011; Noman and Iba 2008;
Pescador Rojas and Coello 2012). Some hybrid algorithms
combine GA and AIS (Bernardino et al. 2007), PSO and
Simulated Annealing (SA) He and Wang (2007), PSO and
GA (Takahama et al. 2005), PSO and DE (Liu et al. 2010),
or (I+1)-CMA-ES and DE (Maesani et al. 2016). Other
studies have proposed the use of gradient-based informa-
tion (Hamza et al. 2014; Handoko et al. 2010; Sun and
Garibaldi 2010), which however can only be applied when
the mathematical formulation of the optimization problem
is available and its functions are differentiable. Of note, this
idea is also used in one of the most complex hybrid algo-
rithms from the literature, which combines gradient-based
mutations with PSO, DE, CMA-ES, and e-constrained opti-
mization (Bonyadi et al. 2013).

Here, we contribute to this research field by proposing a
self-adaptive metaheuristic we refer to as Dual Search Opti-
mization (DSO), which couples a co-evolutionary algorithm
with an adaptive penalty function for solving constrained
optimization problems. The main idea of the proposed algo-
rithm is that a population of candidate solutions evolves to
solve the optimization problem, however this evolution is not
conducted based on predefined perturbation logics (i.e., how
solutions are modified to generate new ones, e.g. mutation
and crossover in Evolutionary Algorithms, or position update
rules in Particle Swarm Optimization), but rather it is based
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on evolved ones. In particular, the algorithm evolves groups
of solutions (encoded as vectors of integer/real values), and
each group is associated to a perturbation logic (encoded
as a Genetic Programming tree), which in turn evolves at
runtime. This form of co-evolution of solutions and pertur-
bation logics allows the algorithm to explore the search space
according to different dynamic strategies, that self-adapt to
the problem at hand. This provides a powerful means for
solving black-box constrained optimization problems. From
this point of view, this work pushes forward the study of self-
adaptive (and auto-constructive) algorithmic structures, one
of the most recent trends in the metaheuristics research field.
Finally, the adaptive penalty function allows the DSO algo-
rithm to handle constraints very effectively, yet with a minor
algorithmic overhead.

As shown in the experimental section of the paper, we have
evaluated DSO on seven well-known constrained engineer-
ing design problems, as well as the CEC 2017 benchmark for
constrained optimization (Wu et al. 2017). For both problem
sets, we performed a comparative analysis which includes a
large body of computational intelligence optimization algo-
rithms from the most recent literature. Our results show
that DSO can achieve in most cases state-of-the-art perfor-
mances, with the additional advantage of being capable to
automatically adjust its behavior to the problem at hand.

The paper is organized as follows: In Sect. 2, we introduce
the proposed algorithm. Section 3 describes the experimental
setup, i.e., the tested problems, the configuration of the algo-
rithm, and the computational environment. Section 4 presents
the numerical results. Finally, in Sect.5 we draw the con-
clusions of the paper and we mention some possible future
research directions.

2 Proposed algorithm

The common idea of co-evolutionary frameworks is to have
two (or more) kinds of entities that evolve jointly in order to
solve a certain problem. This concept has been explored so far
in various ways in the Evolutionary Computing community.
For instance, an early paper by Schmidt and Lipson intro-
duced the idea of co-evolving solutions and fitness predictors,
i.e., a kind of dynamic fitness model used to approxi-
mate especially expensive fitness computations (Schmidt and
Lipson 2008); more recently, Sipper et al. introduced a frame-
work named Solution and Fitness Evolution (SAFE), in the
attempt to co-evolve solutions and fitness functions (Sipper
et al. 2019). In this direction, the same authors have made
another step forward, co-evolving representations and encod-
ing (i.e., a genotype-phenotype mapping) (Sipper and Moore
2019). Co-evolution has also been applied to agent-based
reinforcement learning, as a means to create a curriculum of
increasingly more difficult environments in order to evolve

the controller of a bipedal walker (Wang et al. 2019). Lately,
a first attempt to co-evolve solutions and perturbation logics
was made in de Melo and Banzhat (2017), who devised an
“artifact-inspired” algorithm for solving unconstrained opti-
mization problems. Motivated by these successes, here we
continue the research line initiated in de Melo and Banzhaf
(2017), by introducing an adaptive penalty function into a
co-evolutionary algorithm specifically meant for constrained
optimization. The goal is to co-evolve solutions and pertur-
bation logics in a way that the algorithm solves a certain
constrained optimization problem while it learns to do so.

It should be noted that so far co-evolutionary concepts
have been adopted in various forms in the field of con-
strained optimization. However, to the best of our knowledge,
no prior work has proposed a co-evolution of solutions
and perturbation logics for solving constrained optimization
problems. The related works on co-evolutionary concepts
applied to constrained optimization have indeed explored
quite different directions. Some works focused on problem
decomposition: this idea led, for instance, to the surrogate-
assisted memetic algorithm with random decomposition
proposed in Goh et al. (2011), and to the Comprehensive
Learning Particle Swarm Optimizer (CLPSO) hybridized
with Sequential Quadratic Programming (SQP) proposed in
Liang et al. (2010). Algorithms based on problem decompo-
sition have been devised also for solving specific problems,
such as train timetabling (Kwan and Mistry 2003) and
Dynamic Constraint Satisfaction Problems (DCSPs) Handa
etal. (1999). More recently, a decomposition-based approach
has been proposed in the area of large-scale constrained
optimization (Xu et al. 2021), while in Cai et al. (2022) a
knowledge-based dynamic variable decomposition has been
presented. Another interesting recent work (Hu et al. 2023)
proposed combining deep learning with DE, with the deep
neural network supporting the DE for the choice of suitable
parents and corresponding archives for mutation.

Other works focused on the co-evolution of populations
optimizing objective function and constraints separately.
This is the case for instance, of CCS (Co-evolutionary
approach to Constraint Satisfaction) proposed in Paredis et al.
(1994), or the DE-based co-evolutionary approach proposed
inLiuetal. (2007) and later extended in Liu et al. (2007) (with
the inclusion of a memetic component based on Gaussian
mutation), where two independent populations, one evalu-
ated only in terms of objective functions, and one in terms
of constraints, are evolved and mixed through migrations. A
similar DE-based dual population scheme has been explored
also in Gao et al. (2014). Older attempts at using dual popu-
lation schemes were focused instead on evolving separately
one population handling linear constraints and another one
handling all (including non-linear) constraints (Michalewicz
and Nazhiyath 1995). In more recent works (Liu et al. 2022;
Bao et al. 2023), dual population approaches have been
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proposed instead for solving Constrained multi-objective
optimization problems (CMOPs), while other attempts have
been made at using more than two populations (Ming et al.
2022).

Other authors have introduced custom co-evolutionary
mutations (Kou et al. 2009), or proposed algorithms based
on co-evolving sub-populations (Guo et al. 2007; Sergienko
and Semenkin 2010). However, the largest part of the related
literature focuses on co-evolution of solutions and penalty
factors, e.g. based on PSO (He and Wang 2007; He et al.
2008) or DE (Fz et al. 2007; Fan and Yan 2012), or co-
evolution of solutions and Lagrangian multipliers, achieved
e.g. through GA (Barbosa 1999; Tahk and Sun 2000), PSO
(Krohling and dos Santos Coelho 2006; Mohemmed et al.
2010), or DE (Ghasemishabankareh et al. 2016), and applied
e.g. to constrained min-max problems, as in Kim and Tahk
(2001).

The proposed algorithm, that we dub as Dual Search Opti-
mization (DSO), is based on a Genetic Programming (GP)
algorithm (Koza 1993). In DSO, a structured (i.e., divided in
groups) population of candidate solutions evolves during the
optimization process. Furthermore, each group of solutions
is associated to a perturbation logic, that is a GP individual,
which is in turn evolved during the optimization process.

All solutions within each group are updated with the same
perturbation logic, while different groups are updated with
different perturbation logics. The perturbation logic encodes
the procedure to perform the search, i.e., each group has
its own particular way of “moving” from the current set of
solutions to new ones (target solutions). At each iteration
of the algorithm, each solution in each group calculates its
target solution, based on its own group’s perturbation logic,
and collects the information to be used in the GP part of the
algorithm, i.e., a computation of the objective function and
the constraint violations at the target solution. It should be
noted that even though the solutions within each group share
the same perturbation logic, they are, in general, different,
so that they can reach different target solutions. On the other
hand, even though some solutions from different groups may
be the same, due to the different perturbation logics they may
reach different target solutions.

The update of the perturbation logics can be activated
based on different criteria, such as with a certain periodicity
(as we did in our experiments, see below), a convergence or
diversity metric, or some other condition on the population.
In any case, the most important characteristic of DSO is that
its GP part generates the code of the perturbation logics on-
the-fly. Furthermore, the GP part of the algorithm can learn
from the search (by using the information on the objective
function and constraint violations), in order to generate better
perturbation logics at each iteration.

Let us now discuss more in detail the algorithm, whose
complete pseudo-code is shown in Algorithm 2. The main
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structures that the DSO maintains are the set of the current
best solutions (i.e., the best solution found by each element
of the population), CBC, and the related objective functions
and aggregated constraint violations, respectively CBOFV
and CBCV. It then uses the perturbation logic associated
to each group to generate a set of trial solutions (which are
not evaluated), TC, which in turn are used to generate the
target solutions, TmC, for which the associated objective
functions and aggregated constraint violations, respectively
TmCV and TmOFYV, are calculated. All the symbols men-
tioned in what follows are summarized in Table 1.

The generation of the target solutions in TmC proceeds
as follows. Each solution in each group computes its trial
solution (trial) by applying its group’s perturbation logic
(P), which is based on the following general scheme:

P =base+ Of fset() (D
trial = calculate(P) (2)

where base is a base solution and Offset() is a function
that returns the actual perturbation movement. The GP part
of DSOmodifies the base solution and the O f f set () function
(thus a perturbation logic P) differently for each group, to
enable different ways of performing the search. For instance,
two possible perturbation logics might be:

P :GBCH+ ¢ x (GBC - CBCgr()up,.\‘()Iurinn) (3)

Py CBCgroup,.s'r){mifm + G(Oa ]-) X ( U(O, ]-a N, D)+
CBCgr()up,.wn'minn ) (4)

where CBCy,oup,solurion indicates the best solution of the
focal element in the focal group, ¢ is a user-defined con-
stant, G(0, 1) is a scalar value sampled from a Gaussian
distribution with zero mean and unit standard deviation, and
U(0, 1, N, D) returns an N x D matrix of numbers sam-
pled from a uniform distribution in [0, 1]. This added noise
due to G() and U () is used to avoid that the search converges
towards the origin of the search space. Here it can be seen that
the two expressions differ in the base solutions, respectively
GBC and CBCy,oup solution, and in the O f fset () functions.

Since generating effective perturbations from scratch is
hard (as also noted in de Melo and Banzhaf (2017)), the
GP part of the algorithm is initialized with a set of prede-
fined reference perturbations (in our experiments we used
just one, see Table 6) that are used as initial perturbations for
all groups, instead of randomly generated expressions. Dur-
ing the optimization process, these perturbations are then
modified by means of GP to better adapt to the problem at
hand.

To further improve the exploitation capabilities of DSO,
after each solution applies its perturbation logic to generate
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Table1 Main symbols and

acronyms used in the paper Term Meaning
D Number of dimensions (variables) of the optimization problem
FES Function evaluations
FEScurr Current number of FES
FESmnax Maximum number of FES
GBCV Global best constraint violation value
GBOFV Global best objective function value
Ttereurr Current number of iterations
Ttermax Maximum number of iterations

Itersiagnation Maximum number of iterations without improvement

N Number of solutions in each group

P Perturbation logic

Puce Probability of accepting a solution worse than the ones in CBC
std Standard deviation

t Number of groups

w Number of worst perturbation logics to be replaced

BoundsDiff Array obtained by UB — LB (size: | x D)
BoundsSum Array obtained by |[UB + LB/ (size: | x D)

CBC Tensor containing the current best solutions (size: t x N x D)

CBCV Matrix containing the aggregated constraint violation of each solution in CBC (size: t x N)
CBOFY Matrix containing the objective function values of each solution in CBC (size: t x N)
GBC Array containing the global best solution, i.e., the best solution found so far (size: 1 x D)
LB Array containing the problem lower bounds (size: 1 x D)

TC Tensor containing the trial solution for each solution in each group (size: t x N x D)

TQ Array containing the quality of the groups (size: 1 x ¢)

TmC Tensor containing the target solution for each solution in each group (size: t x N x D)
TmCV Matrix containing the aggregated constraint violation of each solution in TmC (size: t x N)
TmOFV Matrix containing the objective function values of each solution in TmC (size: t x N)

UB Array containing the problem upper bounds (size: 1 x D)

the trial solution (TCgroup sotution), it generates the target
solution TmCyroup. soturion by performing either a recom-
bination of TC,oup.soiution With the global best solution
found so far (G BC), or no recombination at all (in this case
Tmcgr(mp,.m[urirm = Tcgrr)up,.s'()furifm)- Three recombina-
tion procedures (including no recombination) are available,
with the same probability of being selected:

1. Uniform crossover [GA] / crossover bin [DE];
2. One or two-point crossover [GA] / crossover exp [DE];
3. No recombination.

2.1 Boundary constraint handling

Another important aspect of DSO is the way the bound-
ary violations are handled. In fact, as recently outlined in
Nordmoen et al. (2020); Kononova et al. (2020), this is a
fundamental aspect that can heavily affect the performance
of a search algorithm. In DSO, the target solutions TmC

are corrected by a given pool of correction techniques, ran-
domly selected with the same probability, whenever there are
boundary violations (i.e., the target solutions fall outside the
lower or upper bounds). Three techniques are available:

1. The out-of-bound j-th element of the solution gets the
value of the (closest) corresponding bound, thatis: if x; >
UB;, then x; = UB;; if x; < LB, thenx; = LB;.

2. The out-of-bound j-th element of the solution gets a new
random value uniformly sampled inside the correspond-
ing bounds, that is: if x; > UB; or x; < LB, then

3. The out-of-bound j-th element of the solution gets the
value of the (closest) corresponding bound, plus the
remainder of the division of the element by |[UB; — LB;|,
that is: if x; > UB;, then x; = UB; — rem(x, |UB; —
LB;|);ifx; < LB;, thenx; = LB; + rem(x, [UB; —
LB; ).
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Then, the group-wise boundary violations, i.e., the sum of
the boundary violations of all the solutions in each group,
are computed as:

N D
ViOIationgroup = Z Z{Tmcgmup,sofuri(m,j - UB,‘)
solution=1 j=1
+ {LB,‘ - Tmcgraup,.\'()l'uri(m,j) (5)

where TmCroup solurion, j indicates the j-th element of the
focal target solution in the focal group. The () notation indi-
cates that the calculation considers only violations (i.e., either
Tmcgn)up,.mfuri(m,j = UB]’ or Tmcgr()up,.\‘m'mi()n,j <

LB)).
2.2 Constraint handling

The technique employed to handle the (non-boundary) con-
straints can also directly affect the search, as it should guide
the optimization to the feasible region (FR). As briefly
discussed in the introduction, various techniques exist to
handle the constraints. For instance, an infeasible solution
may be simply removed from the population, or it might be
repaired to become a feasible one. However, the most com-
mon CHT are the penalty-based techniques (Michalewicz
and Schoenauer 1996). These simply consist in applying a
penalty function to the infeasible solutions, in order to gen-
erate a low-quality objective function value:

ifx € FR

otherwise

e

F(x) =
F(X) + penalty()

The penalty may be static, i.e., set to a fixed value, or
dynamic, i.e., it can change during the optimization process.
Either way, the idea is that due to the penalty any infea-
sible solution found during the search should be removed
from the population during the selection phase. Such sim-
ple yet effective technique was adopted also in this work.
In particular, here we use an adaptive (i.e., dynamic, with
feedback from the search itself) penalty function similar to
the one introduced in de Melo and lacca (2014). According
to this scheme, first an infeasibility level proportional to the
magnitude of the constraint violations is calculated for each
solution, as follows:

infeasibility(x) = Zg,'(x) if gix)>€,i=1...m+p
(6)

It is important to highlight that with this scheme equality

constraints are treated as inequality constraints, with a given

tolerance factor € (that we setto zero). Thus, i; (x) = Oiscon-
verted into | g; (x)| < e. After this calculation, the penalized
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objective function of each solution is calculated as the global
best function value, plus the (absolute) difference between
its function value and the current global best function value,
plus infeasibility() divided by the maximum infeasibil-
ity value in the current population. This form of adaptation
requires then the evaluation of the entire population, in order
to obtain the maximum infeasibility value. The pseudo-code
of the adaptive penalty function is shown in Algorithm 1.

One important characteristic of this technique is that
an infeasible solution may present a better objective func-
tion value than a feasible solution, if the former has small
constraint violations. However, if the best solution in the
population is feasible, then all infeasible solutions must be
penalized to have a worse objective function value than that
of the best feasible solution. This way, the CHT allows infea-
sible solutions to get close to an optimum solution located
near the border of the feasible region.

2.3 GP update

After each solution computes its target solution, the cal-
culation of the objective function and constraint violations
is performed, and the constraints are handled as discussed
above, the information on the function value and constraint
violations obtained at the target solutions are used in the GP
part. More specifically, at each iteration the quality of each
group is computed as:

TnguP = Rankg, ,,, + violation,, (7

where, in addition to the rank regarding the objective func-
tion value (see Table 2 for an example of how Rankg,
is calculated), the group violation calculated according to
Eq. (5) is considered. This is important because good solu-
tions may be generated by the correction techniques just by
chance, while TmC had, in fact, large violations. TQ values
represent, in practice, the GP solutions’ quality, i.e., the “fit-
ness” of the GP individuals corresponding to the perturbation
logics associated to all groups.

The perturbation logics update process is then triggered
when a certain criterion is met: in our experiments, this is
done periodically (see the parameter 7gp in Table 5). The
update replaces the w worst perturbation logics (i.e., the ones
displaying the highest TQ values) by variations of the w best
perturbation logics. In particular, we set w = 1,1.e., the group
with the worst rank has its perturbation logic updated with a
variation of the best group’s perturbation logic.

As said earlier, in order to evolve the perturbation log-
ics we employ GP, where variations of the perturbations are
obtained by random replacing a sub-tree of the best group’s
perturbation logic and applying the following rules:
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Algorithm 1 Pseudo-code of the adaptive penalty function.

: & The code below starts at row 10 in Algorithm 2

1
22 GBOFV = max Penalty = An arbitrary big constant
3 maxInfeasibility =0 > Maximum infeasibility in the current population
4: hasFeasible = False = True if one feasible solution has been found so far, false otherwise
5:
6: - The code below starts at row 26 in Algorithm 2
7- for group =1...t do
8  for solution=1...N do
9: Tmcvgr()up.m[mi(m = infeusibility(Tng,-(),,,L_;(,;,m-m,), see Eq. (6)
10: if TmCV g 5up soturion > € then = Infeasible solution
11: TmOFvgrau,u.s()[mi(m = Tmcvgmup.saimi(m
12: if has Feasible = False and TmOFV ¢ oup soturion < GBOFYV then
13: GBOFV = TmOFVgl'()H.U.S():'HIf()l?
14: GBCV = Tmcvgmup,mimi(m
15: GBC = Tmcgr(mp..m(’mi(m
16: end if
17: if TmCV g, 0up solution > maxInfeasibility then
18: maxInfeasibility = TmCV group solution
19: end if
20: else = Feasible solution
21 TmOFvgr()u,ﬂ.mimi(m = f(Tmcgr()up‘m(’un'(m)
22: if has Feasible = False then
23: has Feasible = True
24: end if
25: it TmOFvgmup.mimi(m < GBOFV or Tmcvgmup.miu!i(m < GBCV then
26: GBOFV = TmOFVgl'()H.U.S():'HIf()l?
27 GBCV = Tmcvgr()up.m[mi(m
28: GBC = Tmcgr(mp..m(’mi(m
29: end if
30: end if
31:  end for
32: end for
33:
34: for group =1.. .1 do
35 for solution=1...N do
36: if TmCV g, 0up solution > € then - Penalize infeasible solution
37 TmOFvgmup.miu!i(m =GBOFV +|GBOFV — TmOFvgr(mp.soiuu'(m |+
TmCV g oup soturion / maxInfeasibility
38: end if
39:  end for
40: end for
41:
42: - Continue the content starting at row 27 of Algorithm 2
1. The size of the new perturbation, i.e., the number of nodes As a consequence, an improvement is expected when the
in the corresponding GP tree, must be in the interval perturbation logics associated to the worst ranked groups are
(Smins Smax ), Where Sy and s,,4, are user-defined param- replaced by a variation of the ones that achieved the best
eters; results.
2. The new perturbation has to be distinct (in terms of syn-
tactic difference) from the original one;
3. A function is not allowed to receive the same value for its .
) 2.4 Stagnation control
two arguments,
4. The reference perturbations must not be replaced, i.e., o . .
they are fixed perturbations needed to make sure that at Almn.lg to he?" solutions - escape ffom local opFlma,
. : . DSO includes different convergence avoidance mechanisms,
any step of the algorithm there is at least one working B 3 ’ . .
perturbation; in particular generation of opposite solutions (see Table 6),
5. The perturbation scheme of Eq. (1) must hold. stagnation control and restart. These mechanisms are meant

to allow the search to move to regions far from the current
neighborhood, expanding the overall exploration capability
of the algorithm at the cost of possibly slowing down the

@ Springer



V. V.de Melo et al.

Table2 Example of ranking on

a minimization problem for two TmOFV: TmOFV2 Rank Ranks
groups with three solutions each 50 5.0 1.0 1.0
7.0 3.0 2.0 1.0
10.0 1.0 2.0 1.0
Rank 1.67 1.0
(a) Values (b) Ranks

The (unsorted) objective function values of the solutions in each group are compared, pairwise, and a rank of
1 is given to the lower-fitness solution. In case of tie, the same (lower) rank is assigned

speed of reaching the optimum solution and/or reducing its
accuracy (as we will show in Sect.4).

Stagnation control is implemented as follows. Normally,
a hard selection mechanism (see Algorithm 2, row 35) is
used to select the best between the current solution and
the new one, considering their objective function values.
However, a stagnation mechanism detects if the objective
function value of the global best solution remains the same
for a certain number of iterations ({ferstagnarion)- If this hap-
pens, DSO uses soft selection to allow further exploration: if
(TmOFvbe.\‘IGrr)up,be.\'fS()Iurinn < CBOFVgr()up,.\‘m'minn
or U(0,1) < Py.) then
CBCgr()up,.\‘()Iurinn = Tmee.\'rGr()up,be.\‘rSm'mi(m
end if
where (bestGroup, bestSolution) are the indexes of the
best solution among all groups, U (0, 1) is a random number
sampled from a uniform distribution in [0, 1], and P, is
the probability of accepting a worse solution. Thus, lower-
quality solutions can be inserted in the population, replacing
higher-quality solutions. However, elitism is applied in order
to keep the global best solution.

Finally, a simple restart mechanism is used to detect if
the variable-wise standard deviation of the solutions in CBC
becomes smaller than a given threshold thresholdyesiare. In
this case, the entire algorithm and all its data structures —
including the GP trees— are reinitialized (keeping however
the global best solution) and continued for the remaining
number of FES.

3 Experimental setup

In this section, firstly we briefly describe the optimization
problems, namely seven engineering design problems and
the whole suite of CEC 2017 benchmark problems, used to
assess the DSO’s performance. The chosen problems pose a
broad range of optimization challenges, in terms of number
and types of constraints as well as problem dimensionality,
thus providing indications on the possible applicability and
limitations of the proposed method. Then, we present the
details of the configuration of DSO and the computational
environment used for the experimentation.

@ Springer

3.1 Engineering design problems

For this part of the experimentation, we selected seven well-
known real-world constrained engineering design problems,
which have been used as benchmark problems in a number
of research papers in the field of engineering optimization.
These seven problems have been chosen as they have been
used in several recent papers on metaheuristics for con-
strained optimization and given the availability of benchmark
results for comparison purposes. For each of these problems,
we also report the best known value found in the literature,
that we consider the value-to-reach (VTR).

1. Design of a three-bar truss
This problem consists in minimizing the volume of a
three-bar planar truss structure, subject to constraints
related to the stress on each truss member. The problem
presents two continuous design variables xq and x;, with
ranges 0 < x; < 1 and 0 < x2 < 1 (the detailed prob-
lem formulation can be found in Kashan (2011); Ray and
Liew (2003); Liu et al. (2010); Gandomi et al. (2011)).
This problem has a linear objective function and three
non-linear inequality constraints. The best known value
is currently 263.895843376468 (Liu et al. 2010).
2. Design of a speed reducer

This problem consists in the minimization of the weight
of a speed reducer, subject to constraints related to the
bending stress of the gear teeth, the surface stress, the
transverse defections of the shafts, and the stresses in
the shaft. The problem presents seven design variables
(x1...x7), withranges 2.6 < x1 € 3.6,0.7 < x2 € 0.8,
17 < x3 € 28,73 < xg < 83,73 < x5 < 8.3,
2.9 < xg £3.9,and 5 < x7 < 5.5. All variables are con-
tinuous except x3, that is integer (the detailed problem
formulation can be found in (Zhang et al. 2008; Mezura-
Montes et al. 2006; Cagnina et al. 2008; Brajevic et al.
2011; Ray and Liew 2003; Liu et al. 2010)). This prob-
lem has a non-linear objective function and 11 non-linear
inequality constraints. The best known rounded value
reported in the literature is 2, 994.471066 (Zhang et al.
2008).
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Algorithm 2 Pseudo-code of the DSO algorithm.

1:
2
3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37
38:
39:
40:
41:
42:
43:
EZS
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

Input: objective function, problem bounds (LB, UB), user-defined constants,

GP configuration (see Table 6), number of groups (¢), number of solutions per group (N),
maximum number of iterations (/7ermqy ), maximum number of iterations without
improvement (Ifersagnarion ). Options for the perturbation logics (see Table 6)

: Output: Best solution (GBC) and best objective function value (GBOF V')

: Initialize GP with reference perturbations (see Table 6)

: Initialize solutions (randomly sampled in [LB,UB])

. Initialize groups (assigning each solution randomly to a group)
Initialize adaptive penalty data (see row 1 in Algorithm 1)

Compute objective function and constraint violations at the initial solutions
Select the N best solutions to be CBC

while stopping criteria are not met do

for group =1...1do
for solution =1...N do

Generate TCgoup,solurion using the perturbation scheme of the current group, see Eq. (1) and Eq. (2)

Choose randomly the recombination technique and apply it to combine
Tcgr(mp.s().’mi(m with CBCgr()u,u.sa[u!i(ms resulting in Tngr()u,u.soimi(m
Choose randomly the out-of-bounds correction technique and apply it to TmC g, oup sotution-
saving the violations that occurred
Tmcvgr()u,m.mimi(m = constraint violations at Tngr(m;Lsm’mi(m
TmOFvgr()u,ﬂ.mimi(m = DbJEC[lVB function value at Tmcgr(mp..m(’mi(m
end for
end for

Apply adaptive penalty function (see row 6 in Algorithm 1)

(bestGroup, best Solution) = indexes of the best solution in TmOFV
Rank groups according to TmOFYV, see e.g. Table 2
improved = false
for group =1...1do
Calculate violationg, ), see Eq. (5)
Update TQ, see Eq. (7)
for solution =1... N do
if TmOFvbeslGr()up.be.ﬂS()[uu'(m < CBOFvgmup..m.’mi(m then
CBOFVgr()up.sa.’mi(m = TmOFVbe.nGr(mp.be.nS()[mi(m
CBCgr()u,u.sa[u!i(m = TmcbesrGraup.beer().’mi(m
if TmOFvbesrGr()u,ﬂJ)esrSm’mi(m <GBOFYV then
improved = true
GBOFV = TmOFvbesrGr()u,ﬂj)esrS()(’mi(m
GBC = TmcbeslGr(mp.be.nS()[u!i(m
end if
end if
end for
end for

if improved = false then

Apply stagnation control (soft selection) if no. of iterations without improvement > I'teryugnarion
end if
if Std(CBC) < thresholdyesiars then

Restart algorithm (reinitialize GP, solutions, and groups, and adaptive penalty data)
end if
if GP activation condition triggered then

Update the perturbation logics based on TQ (replace worst w logics with variations of the w best)
end if

56: end while

3. Design of a pressure vessel
This problem consists in minimizing the fabrication cost
of a cylindrical pressure vessel with two hemispherical

heads, subject to constraints derived from the Ameri-
can Society of Mechanical Engineers (ASME) standards
on pressure vessels. The problem presents four contin-
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uous variables (xj...x4), with ranges 1 < x; < 99,
1< x0<99,10 < x3 < 200, and 10 < x4 < 200 (the
detailed problem formulation can be found in Coello
Coello (2000); Mezura-Montes et al. (2006); Coelho,
L.d.S, (2010); He and Wang (2007); Ray and Liew (2003);
Shen et al. (2009)). This problem has a non-linear objec-
tive function and four inequality constraints, of which
three are linear and one is non-linear. It should be noted
that in the original formulation (Coello Coello 2000)
x1 and x> are integer variables (multiplied by 0.0625),
while x3 and x4 are continuous. However, we noticed that
there are inconsistencies in the literature: some authors
ignore that x; and x7 are integer variables and achieve
results close to 5885, 57, such as Dhiman and Kumar
(2017). Other authors use instead different bounds for
the problem, and achieve even lower results (Maesani
et al. 2016). Here, we employ the most used formulation,
with the above mentioned bounds and x; and x; treated
as integer variables, for which the best known value is
6, 059.701660 (Mezura-Montes et al. 2006), although it
should be noted that this value contrasts with a recent work
from Yang at al., who proved analytically that the global
optimum is 6, 059.714335048436 (Yang et al. 2013).

. Design of a tension/compression spring

This problem consists in the minimization of the weight
of a tension/compression spring, subject to constraints on
the shear stress, the minimum deflection, the surge fre-
quency. The problem presents three continuous design
variables (x, x2, x3) with ranges 0.25 < x; < 1.3,
0.05 < x» < 2.0,and 2 < x3 < 15 (the detailed prob-
lem formulation can be found in (Coello Coello 2000;
Mezura-Montes et al. 2006; Coelho, L.d.S, 2010; He and
Wang 2007; Ray and Liew 2003; Shen et al. 2009)).
This problem has a non-linear objective function and four
inequality constraints, of which one is linear and three are
non-linear. The best known rounded value is 0.012665
(Coelho, L.d.S, 2010), and the closed-form optimum is
0.0126652327883 (Celik and Kutucu 2018).

. Design of a welded beam

This problem consists in minimizing the fabrication cost
of a welded beam, subject to constraints on the shear
stress, the bending stress in the beam, the blocking load
on the bar, the end deflection of the beam, and side con-
straints. The problem has four continuous design variables
(x1...x4), withranges 0.1 < x; < 2.0,0.1 < xp < 10.0,
0.1 €< x3 £10.0and 0.1 < x4 < 2.0 (the detailed prob-
lem formulation can be found in (Coello Coello 2000;
Mezura-Montes et al. 2006; He and Wang 2007, ?; Coello
Coello and Becerra 2004). This problem has a non-linear
objective function and seven inequality constraints, of
which two are linear and five are non-linear. The best
known rounded value is 1.724852 (Mezura-Montes et al.
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2006; He and Wang 2007; Coello Coello and Becerra
2004)).
6. Design of a rolling element bearing
This problem consists in maximizing the dynamic load
carrying capacity of a rolling element bearing, subject
to constraints based on kinematic and manufacturing
considerations. This problem has a non-linear objective
function and 11 inequality constraints, of which seven
are linear and four are non-linear. The problem presents
10 decision variables (x| ...xjp), which are all continu-
ous except x3 (the detailed problem formulation can be
found in Eskandar et al. (2012)). However, similarly to
what we observed on the pressure vessel problem, we
noted some inconsistencies in the literature: in particu-
lar, the most recent works addressing this problem report
results obtained assuming x3 as a continuous variable
(Eskandar et al. 2012; Dhiman and Kumar 2017). The
best known value is 85, 538.48 (Eskandar et al. 2012),
although under the assumption of continuity of x3. Under
the same assumption, we found that DSO is able to find a
feasible solution with a fitness value of 85, 539.07823091,
that is thus better than the best solution previously found in
the literature. Considering x3 as aninteger variable, on the
other hand, leads to a fitness value of 85, 533.18278573.
7. Design of a multiple disk clutch brake

This problem consists in minimizing the mass of a mul-
tiple disk clutch brake, subject to mechanical constraints.
It is important to state that, contrarily to all the pre-
vious problems, for this problem the constraint values
must be positive. The problem presents five integer design
variables, namely inner radius (r; = 60, 61, 62, ... 80),
outer radius (r, = 90,91,92,...110), disk thick-
ness (r = 1, 1.5, 2, 2.5, 3), actuating force (F =
600, 610, 620, ... 1000), and number of friction surfaces
(Z =2,3,...,9) (the detailed problem formulation can be
found in Balande and Shrimankar (2017); Eskandar et al.
(2012)). This problem has a non-linear objective function
and a total of eight inequality constraints, of which one is
linear and seven are non-linear. The best known value is
0.313656 (Balande and Shrimankar 2017).

For the reader’s convenience, a summary of the main
details of the seven engineering design problems is reported
in Table 3.

3.2 CEC 2017 benchmark

In addition to the engineering design problems, we consid-
ered the 28 scalable problems included in the CEC 2017
benchmark on constrained optimization (Wu et al. 2017),
in four dimensionalities: 10D, 30D, 50D and 100D. In the
benchmark, all variables are assumed continuous. A sum-
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Table3 Details of the

engineering design problems Problem Variables Objective Constraints
E 1

1. Three-bar truss 2C L 0 3L

2. Speed reducer 6C 11 N 0 1IN
3. Pressure vessel 2C 21 N 0 3L IN
4. Tension/compression spring 3C N 0 1L 3N
5. Welded beam 4C N 0 2L 5N
6. Rolling element bearing 9C 11 N 0 7L 4N
7. Multiple disk clutch brake 51 N 0 1L 7N

I is the number of inequality constraints, £ is the number of equality constraints. The symbols “L” and “N”,
indicate respectively linear and non-linear functions, while “C” and "'I" indicate respectively continuous and

integer variables

mary of the main features of the benchmark functions is
reported in Table 4. Please note that all problems in this
benchmark are formulated as minimization problems. In the
table, it can be seen that the benchmark functions differ
mainly as for what concerns the kind of objective function,”
and the number and kind of equality and inequality con-
straints. We refer the interested reader to Wu et al. (2017) for
the complete mathematical details of the benchmark.

3.3 Configuration of the algorithm

The list of DSO’s parameters used in the experiments is
shown in Table 5. We should remark that no specific param-
eter tuning was performed: instead, we set the parameter
values empirically based on previous observations reported
in de Melo and Banzhaf (2017). In all the algorithm runs,
all groups start with one reference perturbation, that is the
“rand/1” mutation scheme used in DE (Das et al. 2016). For
the engineering design problems, the maximum number of
FES (F ESpax) was chosen to be compatible with the lit-
erature and present competitive performance, see the next
section for details. For the CEC 2017 benchmark, it was set
as indicated in Wu et al. (2017), i.e., 20, 000 x D, where
D is the problem dimensionality. In all the experiments, we
increased the function evaluation counter by one whenever
a newly generated solution was evaluated either in terms
of objective function or constraints.’ For each engineering
design problem, we performed 50 independent runs of DSO.
For the CEC 2017 problems, we performed 25 independent
runs, as indicated in Wu et al. (2017). For reproducibility
reasons, we started the random seed of each run with its own

2 In this regard, it should be noted that the benchmark characterizes the
objective and constraint functions as being separable, non-separable, or
rotated, i.e., obtained via the application of a rotation transformation to
another given function, rather than being linear or non-linear.

3 One possible optimization could be to pre-calculate the constraint
violations before evaluating the objective function, thus excluding the
evaluation of infeasible solutions from the FES.

progressive id; thus, run number 1 used seed 1, run number
2 used seed 2, and so on.

As for the GP part of the algorithm, its main settings (i.e,
the terminal and non-terminal nodes from which the pertur-
bation logics can be composed, see Eq. (1), as well as the
“rand/1” reference perturbation) are shown in Table 6. With
reference to the table, the non-terminal nodes include both
single and double argument functions, namely:

— square(): returns the element-wise squared arg;

— plus(), minus(), times(), avg(): return the element-
wise sum, difference, multiplication and average of arg,
and arg,, respectively.

The terminal nodes include various constants, (matrices of)
random numbers, and a diverse set of calculated weights,
base vectors and differential vectors, namely:

— U(min, max, N, D): returns a matrix of numbers sam-
pled from a uniform distribution in [min, max] (size:
N x D);

— G(mean, variance, N, D): returns a matrix of numbers
sampled from a Gaussian distribution with given mean
and variance (size: N x D);

— Sigma(-): returns ¢ x G(0, 1, N, D) x BoundsDiffT x
U (0, 0.5) (saturated within the problem bounds), as used
in de Melo and Tacca (2014), where o0 = 0.04 X prerp %
llpe|l (with g being the mean calculated on the best 50%
solutions in CBC and p.f¢ being its variance-effective
size), as in de Melo and Banzhaf (2017) (size: N x 1);

— RandDiag(-): returns a matrix containing N rows ran-
domly selected (with possible duplicates) froma D x D
identity matrix (size: N x D);

— Std(-):returns a tensor containing the variable-wise stan-
dard deviation calculated within each group in CBC
(size: t x N x D),

— MV N S(-): returns new random solutions sampled from a
multivariate Gaussian distribution with mean and covari-
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Table4 Details of the CEC

2017 benchmark functions Problem Objective Constraints

E 1
CO01 N 0 18
C02 N.R 0 IN,R
C03 N 18 18
C04 S 0 28
CO05 N 0 2N,R
C06 S 68 0
Cco7 S 28 0
CO08 S 2N 0
C09 S 1IN 1IN
Cl10 S 2N 0
Cl1 S 1IN 1IN
Cl2 S 0 28
Cl3 N 0 38
Cl4 N 18 18
Cl5 S 1IN 18
Cl6 S 1IN 18
Cl17 N 1IN 18
Cl18 S 1IN 2N
Cl19 S 0 2N
C20 N 0 28
C21 R 0 2R
C22 R 1R 1R
Cc23 R 1R 1R
C24 R 1R 1R
C25 R 1R 1R
C26 R 1R 1R
Cc27 R 1R 2R
C28 R 0 2R

I is the number of inequality constraints, E is the number of equality constraints. The symbols “S™, “N”,
and “R” indicate respectively separable, non-separable and rotated functions. All variables are assumed
continuous. All problems are scaled for D = 10, 30, 50, and 100 variables

Table5 Configuration

of DSO used in the numerical Parameter Value
experiments Constants C;1=050C=03,C,=07
Groups () D (problem dimensionality)
Solutions per group (N) 10
Perturbation logics to replace (w) 1
Update GP period (Tgp) 2 iterations
Prob. of accepting a worse solution (P ) 0.9
Stagnation period (Iterstagnarion) 10% Itermyax
Convergence threshold to restart (threshold,eseare) le-6
Crossover rate (CR) U.1,0.6)
Maximum number of FES (F ESy.x) Depending on the problem
Maximum number of iterations (Iteryqy ) FESpax/(t x N)
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ance matrix calculated on the best 50% solutions in either
CBC or TmC (size: N x D),

— Opposition(-): returns a tensor containing the opposite
solutions w.r.t. to the problem bounds, i.e., BoundsSum—
CBC or BoundsSum — TmC (size: t x N x D);

— Mean(-): returns a tensor containing the variable-wise
means calculated within each group in CBC (size: t x
N x D);

— Median(-): returns a tensor containing the variable-wise
medians calculated within each group in CBC (size: t x
N x D);

— Shift(-): returns a tensor containing the variable-wise
differences between TmC and CBC (size: t x N x D).

3.4 Computational environment

The code* was developed and tested in MATLAB R2015a
(8.5.0.197613) 64-bit. The experiments were performed on
an Intel 19-7940x workstation running Ubuntu Linux 19.10.

4 Results and discussion

First, we provide an overall analysis of DSO’s performance
alone, i.e., without comparing it to other algorithms. Then,
for each problem, we compare our results with those from
the literature.

4.1 Engineering design problems

Asa preliminary experiment, we tried to address the question
as to whether evolving the perturbations via GP is actually
beneficial for solving constrained optimization problems. In
fact, the entire rationale of the proposed DSO is that, since
there are several possible ways to conduct the search (which
means, in other words, to apply perturbations to existing solu-
tions in order to generate new ones), but it is hard to state a
priori which algorithm may work better on a certain prob-
lem (or set of problems), using a self-constructing algorithm
can be an advantage. In our proposal, the self-constructing
capability is implemented by GP. To verify if the use of
GP provides a benefit, we considered the seven engineer-
ing design problems described above and executed for each
of them 50 runs of the full version of DSO (i.e., including
GP) against a version of DSO where the GP part is disabled
and a different perturbation is randomized for each group of
solutions at the beginning of the algorithm. We believe that
this simple comparison can shed some light on our intuition
regarding the advantage of using GP.

As we expected, our results show that the version of the
algorithm using GP to optimize the perturbation statisti-

# The source code is available upon request.

cally outperforms, in terms of fitness function, the version
with randomized perturbation. Table 7 shows the median of
the best fitness values (including the adaptive penalty, i.e.,
some of the corresponding solutions may be infeasible) found
across 50 runs of DSO vs DSO with randomized perturba-
tion. The Wilcoxon rank-sum test (&« = 0.05) rejects the null
hypothesis of statistical equivalence of the two algorithms for
all the seven problems. The symbol “+” in the table indicates
a statistical superiority of the median fitness value obtained
by DSO w.r.t. the one obtained by DSO with randomized per-
turbation. This superiority can be seen also in Fig. 1, which
shows the distribution of the best fitness values found in each
of the 50 independent runs for the two DSO with and with-
out GP. For all the problems, it can be immediately noticed
that the distributions obtained by DSO with randomized per-
turbation are much larger, and skewed towards worse values.
Thus, we can conclude that using GP to automatically evolve
the perturbations can be beneficial.

The next step of our analysis is to analyze in depth the
results obtained by the full version (i.e., with GP) of DSO.
In the following, we will consider only DSO with GP and
omit to specify this. Table 8 shows the descriptive statistics
of DSO results on the seven engineering design problems,
and the VTR reported in the previous section. Of note, the
best results found by DSO are very close to the VIR for
all problems, being even superior to the VIR on problem
6 (considering x3 as a continuous variable). Furthermore,
the Median and Mean values are close to the best value
(Min or Max, depending on the problem) value, which indi-
cates a high robustness of the algorithm. In order to quantify
this aspect, we calculated std/Mean to obtain a rate on the
same scale for all problems. It can be noted that the largest
std/Mean occurred on problem 5, followed by problem 3.
On the other hand, the lowest std/Mean values were obtained
on problems 1 and 2, where DSO was very effective in all
runs, except a few runs in which the algorithm got trapped in
local optima. This can be seen again in Fig. I, where it can
be observed that DSO presented robust performances also on
problems 4 to 6. The lowest robustness (i.e., highest variation
across 50 runs) was shown on problem 3 and 7: this might
be due to the presence of multiple integer variables (two in
problem 3 and five in problem 7), which makes the problem
harder. To increase the algorithm robustness on these prob-
lems, one possible solution is to include additional elements
for creating perturbation logics more specific for this case
(see Table 6). For the sake of completeness, we report the
best results obtained by DSO in Table 9. It can be observed
that all the best solutions are feasible (g(x) < 0 for problems
1 to 6 and g(x) > 0 for problem 7).

3 Note that the solution reported for problem 6 assumes x3 as a con-
tinuous variable. With x3 considered as an integer variable, the best
solution found by DSOis: x = {125.72271843,21.42330097,11,0.515,
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Table6 Information made
available to the GP part of the
algorithm to generate
perturbation logics

Table7 Engineering design
problems: median of the best
fitness values found across 50
runs of DSO vs DSO with
randomized perturbation (i.e.,
with the GP part disabled)

Seftting

Value

Single argument functions

Double argument functions

Constants

Random numbers

Calculated weights

Base vectors

Differential vectors

Reference perturbation

square(arg)

plus(arg,, arg,). minus(arg,, arg,),

times(arg,arg,), avg(arg,, arg;)

C1, C2, C3, BoundsDiff, BoundsSum
(L.O/1tercypr), (LO/FESeyr)

U, 1,N,D),U(0.5,1,N, D),
GO, 1,N, D), G(0,0.1, N, D),
G, Itercyrr . N, D), GO, FEScyurr. N, D)

Sigma(CBC, CBOFV, N, BoundsDiff),

RandDiag(N, D),
Std(CBC)

MV N S(CBC) + Sigma(CBC, CBOFV, N, BoundsDiff),

Opposition(CBC, BoundsSum),

Mean(CBC), Median(CBC), GBC, CBC

MV NS(CBC) + Sigma(CBC, CBOFV, N, BoundsDiff),
MV NS(TmC) + Sigma(CBC, CBOFV, N, BoundsDiff),

Shift(TmC, CBC), TmC,|, TmC,,, TmC, 3,
TmC,;. TmC,s, CBC,,, CBC,,,

CBC,3,

CBC,4, CBC,s, GBC, Opposition(CBC, BoundsSum),

Opposition(TmC, BoundsSum)
CBC, | + € x (CBC,; — CBC,3)

rl, r2, etc. are indices of solutions chosen randomly. For more details, see the symbols in Table 1 and the
explanation in the text

DSO DSO (random) w
263.8958 264.7022 +
2994.4713 3050.9444 +
6635.7096 10400.7578 +
0.0127 0.022021 +
1.8673 3.1048 +
84.831.3275 56649.7132 +
0.3263 0.34091 +

Problem 6 is a maximization problem (the values reported in the table are the actual function values)

Table8 Engineering design problems: descriptive statistics of the DSO results

Prob. Min Median Mean Max std std/Mean VTR

1 263.89584338 263.89584630 263.89705299 263.93992706 6.30e-03 2.387e-05 263.895843376468
2 299447106770 2994.47132983 2994.69165169 3004.42909435 1.406 4.697e-04  2994.471066

3 6059.71433565 6635.70963326 6713.56036966 7544.49251821 4.777e+02  7.116e-02  6059.701660

4 0.01266539 0.01274725 0.01288959 0.01407721 3.245e-04 2.517e-02  0.012665

5 1.72485332 1.86735435 2.00059370 3.18904036 3.401e-01 1.700e-01 1.724852

6 74,345.08450340  84.831.32750597 83,173.11537690 85,539.07823091 3.154e+403 3.792e-02  85.538.48

7 0.31365661 0.32634990 0.32881603 0.38815000 1.450e-02 4.409e-02  0.313656

Problem 6 is a maximization problem (the values reported in the table are the actual function values)
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Fig. 1 Engineering design problems: violin plots of the best fitness values found across 50 runs of DSO vs DSO with randomized perturbation
(i.e., with the GP part disabled). Note: problem 6 is a maximization problem (the values shown in the plot are negated)

The performance of DSO in terms of best objective func-
tion value at each step of the algorithm (including the adaptive
penalty, i.e., at each step the best function value may corre-
spond to an infeasible solution) in each of the 50 runs on
each problem is shown in Fig.2. In Fig.2, DSO plateaus
quite fast on problems 1 to 4. However, it can also be noticed
that DSO keeps refining the solutions throughout the entire
computational budget, and that on some problems it suddenly
“jumps” to better solutions. This behavior has two explana-
tions: on the one hand, as noted earlier problem 7 is fully
integer (with 5 integer variables), while problem 3 is mixed-
integer (with 2 integer variables and 2 continuous ones). The
presence of multiple integer variables (all other problems
have at most one integer variable) thus justifies these discon-
tinuities in the fitness trends. On the other hand, this behavior
also depends on how the solutions are located in the search
space, and what are the current perturbation logics evolved
by DSO.In fact, itcan happen that a certain perturbation logic
becomes effective only in some specific search conditions.

Another thing that can be noted in Fig. 2 is that DSO shows
a quite visible variation across the 50 runs on problems 5 to
7. This indicates that either those fitness landscapes con-
tain multiple optima, or that the feasible regions are hard to
find, thus requiring a continuous refinement of the search.
Finally, one notable aspect of the figure is that on problems
2 and 5, f(x) increases in the first iterations and then starts
to decrease, until it plateaus. Such behavior is caused by the
adaptive penalty function. At the beginning of the search,

0.515, 0.48494889, 0.68389258, 0.3, 0.02711788, 0.63056305}, with
f(x) = 85,533.18278573.

usually all solutions are infeasible, thus the one presenting
the lowest constraint violation is chosen as the best solution
and all the other solutions are penalized according to the
adaptive penalty function. Then, when a feasible solution is
found, it becomes the best solution and gets the best f(x).
Therefore, all the infeasible solutions are penalized accord-
ing to this best f(x) value, and their f(x) is increased to be
worse than that. On the other hand, any other feasible solu-
tion present in the population is not penalized, as explained
earlier. Still, some infeasible solutions may have better f(x)
than feasible solutions, which allows them to get close to an
optimum solution near the border of the feasible region.

Next, we compare the results obtained by DSO on each
problem with those from the literature. The list of the com-
pared algorithms is presented in Table 10. To make a fair
comparison, for each algorithm we considered the original
results reported in the corresponding paper. However, we
included in the comparisons only those algorithms for which
the paper reports at least the descriptive statistics (in terms of
Best, Mean, Worst and std) and the FES used in the original
experiments. It should also be noted that the results reported
in the literature often have different precision (while our
results include 8 decimal digits), thus we report them here
as they appear in the original papers, with zero-padding on
Best, Mean, and Worst for a better visualization.
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Fig.2 Engineering design problems: fitness trends of DSO. The x-axis
and y-axis show, respectively, the number of function evaluations and
the fitness value (including the adaptive penalty). Every plot shows the

trends of 50 runs, their mean (thick red line) and median (thick blue
line). Note: problem 6 is a maximization problem (the values shown in
the plot are negated)

Table9 Engineering design problems: best feasible solutions (g(x) < 0 for problems 1 to 6 and g(x) > 0 for problem 7) found by DSO

Problem
1 2 3 4 5 6 7
fx) 263.89584338 2994 .47106770 6059.71433565 0.01266539 1.72485332 85,539.07823091 0.31365661
X 0.78867591 35 0.8125 0.05162531 0.20572949 125.72268595 70
0.4082461 0.7 0.4375 0.35518461 3.47049516 21.42328816 90
17 42.09844559 11.37947206 9.03662185 11.00115487 1
7.3 176.63659588 0.20572974 0.515 780
7.71531991 0.51500014 3
3.35021467 0.46931813
5.28665447 0.66235054
0.30000015
0.03817113
0.6031354
g(x) 0 —0.07391528 0 — 5.4e-07 — 0.00767042 — 6.78e-006 0
— 146410411 —0.19799853 — 0.03588083 — 2.98e-06 —0.00024919 —9.99430708 24
— 0.53589589 —0.49917225 — 8.858e-05 — 4.05072819 — 2.5e-07 —3.51796116 0.92241197
—0.9046439 —63.36340412 —.72879339 — 3.43298284 —3.32922616 9.83665365
0 — 0.08072949 —0.72268595 7.89469659
0 —0.23554032 — 8.82009599 0.16908322
—0.7025 — 0.00747431 — 2.337e-05 34.0875
0 0 14.83091678
—0.79583333 — 1.4e-07
—0.05132575 — 6.6e-06
0 — 3.6e-06

Problem 6 is a maximization problem (the fitness reported in the table is the actual function value)
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4.1.1 Problem 1—three-bar truss

Table 11 shows the results of DSO and the compared meta-
heuristics from the literature. We configured DSO to run for
the same maximum number of FES as MVDE (De Melo and
Carosio 2013). DSO found a near-optimum solution, outper-
forming several state-of-the-art algorithm while using only
7,000 FES, compared to more than 10, 000 required by the
others. The Mean and Worst results are also competitive,
indicating that DSO is very effective at solving this problem,
reaching high-quality solutions in a low computing time.

4.1.2 Problem 2—speed reducer

Table 12 reports the comparison with the state-of-the-art
algorithms. Again, DSO had the same maximum number of
FES as MVDE (De Melo and Carosio 2013). With 24, 000
FES, the proposed algorithm achieved a Mean value of
2,994.69165169, outperforming most algorithms included
in the comparison. Even though DSO got trapped in sub-
optimal solutions in a few runs, the compared algorithms
show in general much larger Mean and Worst values, indi-
cating that DSO was more effective than the other algorithms
at escaping local optima.

4.1.3 Problem 3—pressure vessel

As seen earlier, this problem presents two integer variables.
However, several authors treat them as continuous, which
makes the problem relatively easier. We report here also
these results, for the reader’s reference. In Table 13, it can
be observed that none of the algorithms (including DSO)
achieved the VTR reported in Mezura-Montes et al. (2006).
This was a hard problem for DSO: although using 30, 000
FES, DSO failed to find high-quality solutions in most of the
runs, resulting in a low average performance. DSO would
probably need a specific configuration for this problem w.r.t.
the number of groups and the number of solutions per group
in order to improve the optimization performance.

4.1.4 Problem 4—tension/compression spring

For this problem, DSO was configured to perform a maxi-
mum of 10, 000 FES as MVDE (De Melo and Carosio 2013).
In Table 14, it can be seen that the VTR (up to 6 decimal
places, as reported in the literature) was reached at least once,
while many algorithms failed. DSO showed better Mean and
Worst values than several algorithms, such as SC, PSO, MFO,
MVO and GSA. Furthermore, we noted that the Mean value
of DSO is biased because of a few outliers, which may have
happened because DSO used less than half FES compared to
most of the other algorithms. When one takes FES into con-
sideration, the results of DSO get even more competitive.

4.1.5 Problem 5—Welded beam

As it can be seen in the statistics reported in Table 15, DSO
achieved the VTR using only 15, 000 FES (set as for MVDE
(De Melo and Carosio 2013)), outperforming most of the
compared algorithms. However, it was unable to obtain an
adequate average performance. Nonetheless, DSO outper-
formed other algorithms such as PSO, GSA and GA. In the
more detailed descriptive statistics shown in Table 8, it can
be noticed that the Median value was considerably lower
than the Mean value because three runs did not find good
solutions.

4.1.6 Problem 6—rolling element bearing

As discussed earlier, the results available in the literature
show arather serious inconsistency in how x3 is treated, with
the most recent works that seem to relax it as a continu-
ous variable, rather than integer. Here, for completeness we
report the results of DSO obtained in both cases, i.¢., assum-
ing x3 either as an integer or a continuous variable. For this
problem, there is an important finding: considering x3 con-
tinuous, DSO found a better solution than the one reported
in the literature as VTR (see Table 16). In fact, DSO out-
performed in terms of Best function value all the other 11
algorithms (which also make an assumption of continuity on
x3), even though this new VTR was found only once. Fur-
thermore, it should be noticed that DSO was tested with a
much lower number of FES than the majority of algorithms.

Considering instead x3 as an integer variable, DSO was
still able to find a feasible solution, whose objective value
is actually very close to the VTR reported in Eskandar et al.
(2012). However, clearly these two values are not directly
comparable due to the different handling of x3, which makes
the problem different.

4.1.7 Problem 7—muiltiple disk clutch brake

Even though this problem is well-known in the Evolution-
ary Computation research community, it has been tested less
often than the other engineering design problems. Thus, there
are only a few results in the literature. Here, we set the
maximum number of FES as the same value used by WCA
(Eskandar et al. 2012). Of note, this is a very small value,
since with the tested settings DSO has only 10 iterations to
run, during which also the perturbation strategies have to
evolve. Nevertheless, as presented in Table 17, DSO suc-
ceeded in reaching the VTR several times and showed the
lowest Mean value. DSO resulted also quite robust, although
its std was several orders of magnitude higher than that
of WCA, due to a single outlier run corresponding to the
Worst value. To summarize, this problem is useful to show
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Table 10 Engineering design

problems: algorithms included Short namelLong name

in the comparisons (in

. AATM  Accelerating adaptive trade-off model (Wang et al. 2009)

alphabetic order) and references ) ) o

from which the corresponding CPSO Co-Evolutionary Particle Swarm Optimization (He and Wang 2007)

results were taken CSs Cuckoo Search Algorithm (Gandomi et al. 2011)
DE Differential Evolution (Mezura-Montes et al. 2006)
DEDS Differential Evolution with Dynamic Stochastic Selection (Zhang et al. 2008)
GA Genetic Algorithm (Dhiman and Kumar 2017)
GSA Gravitational Search Algorithm (Dhiman and Kumar 2017)
GWO Grey Wolf Optimizer (Dhiman and Kumar 2017)
HEAA Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique (Wang et al. 2009)
HPSO Hybrid Particle Swarm Optimization Algorithm (He and Wang 2007)
HS Harmony Search (Dhiman and Kumar 2017)
-GSO Improved Group Search Optimizer (Shen et al. 2009)
LCA League Championship Algorithm (Kashan 2011)

MAL-FA Modified Augmented Lagrangian Firefly Algorithm (Balande and Shrimankar 2017)

MFO Moth-Flame Optimization (Dhiman and Kumar 2017)

MVDE  Multi-View Differential Evolution (De Melo and Carosio 2013)

MVO Multi-Verse Optimizer (Dhiman and Kumar 2017)

PSO Particle Swarm Optimization (Dhiman and Kumar 2017)

QPSO Gaussian Quantum-Behaved Particle Swarm Optimization (Coelho, L.d.S, 2010)
SC Society and Civilization (Ray and Liew 2003)

SCA Sine Cosine Algorithm (Dhiman and Kumar 2017)

SHO
WCA

Spotted Hyena Optimizer (Dhiman and Kumar 2017)
Water Cycle Algorithm (Eskandar et al. 2012)

Note that not all algorithms are compared on all problems

that DSO may find good quality solutions even with a small
number of FES.

4,2 CEC 2017 benchmark

The detailed results of the DSO algorithm on the CEC 2017
benchmark are reported in Tables 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37. The tables
are formatted as indicated in Wu et al. (2017), to facilitate
a comparison with the other algorithms tested on the same
benchmark. More specifically, for each problem (C1, C2,
..., C28) we collected the best feasible solution (i.e., the
one with the minimum function value), or, in case of missing
feasible solutions, the best infeasible solution (i.e., the one
with the minimum mean constraint violation) found at the
end of each of the 25 runs of DSO (i.e., within a budget of
20, 000x D FES). Then, we sorted these 25 solutions by rank-
ing the feasible solutions (sorted according to their function
values) before the infeasible ones (sorted according to the
mean value of their constraint violations). In the tables, we
report for each problem the function value of the Best, Worst
and Median solution according to this sorting. We also report
the average function value (Mean) across the 25 solutions
(please note that this value in general does not correspond

@ Springer

to an actual solution), as well as the corresponding standard
deviation (std). As for the other metrics reported in the tables,
v indicates the mean constraint violation at the median solu-
tion, ¢ indicates the number of violated constraints at the
median solution (divided based on their values, i.e., respec-
tively bigger than 1.0, in the range [0.01, 1.0], and in the
range [0.0001, 0.01]), vio indicates the mean constraint vio-
lation of the 25 solutions, and finally SR is the feasibility
(or “success”) rate, i.e., the % of runs in which at least one
feasible solution was found within the allotted budget.

For the sake of brevity, we do not report here the complete
results obtained by the algorithms that participated in the
CEC 2017 competition, which are available online.® Instead,
we highlight the main strengths and weaknesses of the pro-
posed algorithm in comparison with the algorithms from
the competition,” as well as another recent algorithm named
HECO-DE (Xu et al. 2020), which currently represents the
state-of-the-art on the CEC 2017 benchmark.

6 A summary of the results is available at: https:/github.com/P-N-
Suganthan/CEC2017.

7 For further analysis, we make our raw data available at: https://bit.ly/
2XBHqCm.
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Table 11 Engineering design problems: comparison of results for Problem 1—Three-bar truss (VTR: 263.895843376468 (Liu et al. 2010))

Algorithm Best Mean Worst std FES
DSO 263.89584338 263.89705299 263.93992706 6.30e-03 7.000
MVDE (De Melo and Carosio 2013) 263.89584337 263.89584338 263.89585480 2.58e-07 7.000
MAL-FA (Balande and Shrimankar 2017) 263.89584300 263.89610100 263.89584700 9.70e-07 4,000
WCA (Eskandar et al. 2012) 263.89584300 263.89590300 263.89620100 8.71e-05 5.250
LCA (Kashan 2011) 263.89584340 263.89584340 263.89584340 5.68e-14 10,000
DEDS (Zhang et al. 2008) 263.89584300 263.89584900 263.89584300 9.70e-07 15,000
HEAA (Wang et al. 2009) 263.89584300 263.89609900 263.89586500 4.90e-05 15,000
AATM (Wang et al. 2009) 263.89584350 263.89660000 263.90041000 1.10e-03 17,000
SC (Ray and Liew 2003) 263.89584660 263.90330000 263.96975000 1.26e-02 17,610
PSO-DE (Liu et al. 2010) 263.89584338 263.89584338 263.89584338 4.50e-10 17,600
Table 12 Engineering design problems: comparison of results for Problem 2—Speed reducer (VTR: 2994.471066 (Zhang et al. 2008))
Algorithm Best Mean Worst std FES
DSO 2994.47106770 2994.69165169 3004.42909435 1.406 24,000
MVDE (De Melo and Carosio 2013) 2994.47106600 299447106600 2994.47106900 2.819316e-7 24,000
WCA (Eskandar et al. 2012) 2994.47106600 2994.47439200 2994.50557800 7.4e-03 15,150
DE (Mezura-Montes et al. 2006) 2996.35668900 2,996.36722000 2,996.39013700 8.2e-03 24,000
SHO (Dhiman and Kumar 2017) 2998.55070000 2999.64000000 3003.88900000 1.93193 30,000
GWO (Dhiman and Kumar 2017) 3001.28800000 3005.84500000 3008.75200000 5.83794 30,000
GSA (Dhiman and Kumar 2017) 3051.12000000 3170.33400000 3363.87300000 92.5726 30,000
HS (Dhiman and Kumar 2017) 3029.00200000 3295.32900000 3619.46500000 57.0235 30,000
MFO (Dhiman and Kumar 2017) 3009.57100000 3021.25600000 3054.52400000 11.0235 30,000
PSO (Dhiman and Kumar 2017) 3067.56100000 3186.52300000 3313.19900000 17.1186 30,000
AATM (Wang et al. 2009) 2994.51677800 2994.58541700 2994.65979700 3.3e-02 40,000
PSO-DE (Liu et al. 2010) 2996.34816700 2996.34817400 2996.34820400 6.4e-06 54,350
SC (Ray and Liew 2003) 2994.74424100 3001.75826400 3009.96473600 4.0 54,456

First of all, it can be seen that DSO performs very well
in terms of SR at 10D, but its performance degrades when
the dimensionality increases. This seems to indicate that as
the dimensionality grows more complex perturbations are
needed, thus requiring more iterations for the GP to evolve
them. Using a “avg/oneFeas/allFeas” notation, where “avg”
indicates the average SR across all problems, “oneFeas” indi-
cates the no. of problems in which the algorithm found a
feasible solution in at least one run, and “allFeas” the no. of
problems in which the algorithm found a feasible solution
in all runs, we observe the following results in comparison
with the winner of the CEC 2017 competition, L-SHADE44
(Polakova 2017):

10D: DSO 83.71%/24 /20, L-SHADE44 72.43%/21/18;
30D: DSO 73.14%/22/19, L-SHADE44 74.28% /21 /19,
50D: DSO 67.43%/21/17, L-SHADE44 74.86%/21/20;,
100D: DSO 62.43% /19/16, L-SHADE44 71.14%/21/19.

Of note, there are two cases in which, compared to the
algorithms from the competition (L-SHADE44 (Polakova
2017), UDE (Trivedi etal. 2017), L-SHADE-44-IDE (Tvrdik
and Poldkovd 2017), CAL-SHADE (Zamuda 2017)), DSO
is the only algorithm capable of finding feasible solutions:
C18 and C27. These two functions have both one equality
constraint and two inequality constraints (all non-separable
orrotated). In 10D, DSO is able to solve (i.e., find at least one
feasible solution) both functions with a high SR (88% and
68% respectively), whereas all the CEC 2017 competition
algorithms fail. In 30D, DSO solves C18 and C27 with SR
56% and 16% (zero for the other competition algorithms).
In 50D, DSO solves C18 with SR 4% (zero for the other
algorithms) but not C27. In 100D, DSO solves C18 with SR
16% (zero for the other algorithms), but again not C27. This
might indicate that the perturbation logics evolved in the GP
part of DSO deal favorably with these two functions. It is
quite likely that, including other perturbation elements to the
ones listed in Table 6, also other benchmark functions —
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Table 13 Engineering design problems: comparison of results for Problem 3—Pressure vessel (VTR: 6059.701660 (Mezura-Montes et al. 20006),
analytical optimum: 6059.714335048436 (Yang et al. 2013))

Algorithm Best Mean Worst std FES
DSO#* 6059.71433565 6713.56036966 7544.49251821 477.7 30,000
MVDE (De Melo and Carosio 2013)* 6059.71438700 6059.99723600 6090.53352800 291028 15,000
QPSO (Coelho, L.d.S, 2010)* 6059.71100000 6464.81660000 7544.49250000 465.1386 8,000
DE (Mezura-Montes et al. 2006)* 6059.70166000 6059.70166000 6059.70166000 1.0e-12 24,000
[-GSO (Shen et al. 2009)* 6059.71400000 6238.80100000 6820.41000000 194.315 26,000
AATM (Wang et al. 2009)* 6059.72550000 6061.98780000 6090.80220000 4.7 30,000
CPSO (He and Wang 2007)* 6061.07770000 6147.13320000 6,363.80410000 86.4545 32,500
CS (Gandomi et al. 201 1)* 6059.71400000 6447.73600000 6495.34700000 502.693 375,000
SHO (Dhiman and Kumar 2017)%*# 5885.57730000 5887.44410000 5892.32070000 2.893 30,000
GWO (Dhiman and Kumar 2017)** 5889.36890000 5891.52470000 5894.62380000 13.91 30,000
PSO (Dhiman and Kumar 2017)%* 5891.38790000 6531.50320000 7394.58790000 534.119 30,000
MFO (Dhiman and Kumar 2017)** 6055.63780000 6360.68540000 7023.85210000 365.597 30,000
MVO (Dhiman and Kumar 2017)** 6011.51480000 6477.30500000 7250.91700000 327.007 30,000
SCA (Dhiman and Kumar 2017)** 6137.37240000 6326.76060000 6512.35410000 126.609 30,000
GSA (Dhiman and Kumar 2017)%# 11,550.29760000 23,342.29090000 33,226.25260000 5790.625 30,000
GA (Dhiman and Kumar 2017) 5890.32790000 6264.00530000 7005.75000000 496.128 30,000
HS (Dhiman and Kumar 2017)** 6550.02300000 6643.98700000 8005.43970000 657.523 30,000

Gés sy

References marked with “#” (

) come from papers that treat both x| and x» as integer (continuous) variables

Table 14 Engineering design problems: comparison of results for Problem 4—Tension/compression spring (VTR: 0.012665 (Coelho, L.d.S, 2010),

analytical optimum: 0.0126652327883 (Celik and Kutucu 2018))

Algorithm Best Mean Worst std FES
DSO 0.01266539 0.01288959 0.01407721 3.245e-04 10,000
MVDE (De Melo and Carosio 2013) 0.01266500 0.01266700 0.01271900 2.452e-06 10,000
QPSO (Coelho, L.d.S, 2010) 0.01266600 0.01299600 0.01586900 6.280e-04 2,000
WCA (Eskandar et al. 2012) 0.01266500 0.01274600 0.01295200 8.060e-05 11,750
DE (Mezura-Montes et al. 2006) 0.01266500 0.01266600 0.01267400 2.000e-06 24,000
AATM (Wang et al. 2009) 0.01266800 0.01270800 0.01286100 4.500e-05 25,000
SC (Ray and Liew 2003) 0.01266900 0.01292300 0.01671700 5.900e-04 25,167
GSO (Shen et al. 2009) 0.01266500 0.01270800 0.01299400 5.100e-05 26,000
SHO (Dhiman and Kumar 2017) 0.01267400 0.01268400 0.01271500 2.700e-05 30,000
GWO (Dhiman and Kumar 2017) 0.01267800 0.01269700 0.01272100 4.100e-05 30,000
PSO (Dhiman and Kumar 2017) 0.01319300 0.01481700 0.01786300 2.272e-03 30,000
MFO (Dhiman and Kumar 2017) 0.01275400 0.01402400 0.01723700 1.390e-03 30,000
MVO (Dhiman and Kumar 2017) 0.01281700 0.01446400 0.01784000 1.622e-03 30,000
SCA (Dhiman and Kumar 2017) 0.01271000 0.01284000 0.01299800 7.800e-05 30,000
GSA (Dhiman and Kumar 2017) 0.01287400 0.01343900 0.01421200 2.870e-04 30,000
GA (Dhiman and Kumar 2017) 0.01303600 0.01403600 0.01625100 2.073e-03 30,000
HS (Dhiman and Kumar 2017) 0.01277600 0.01307000 0.01521400 3.750e-04 30,000
CPSO (He and Wang 2007) 0.01267500 0.01273000 0.01292400 5.198e-05 32,800
HPSO (He and Wang 2007) 0.01266500 0.01270700 0.01271910 1.582e-05 81,000
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Table 15 Engineering design problems: comparison of results for Problem 5—Welded beam (VTR: 1.724852 (Mezura-Montes et al. 2006; He and

Wang 2007; Coello Coello and Becerra 2004))

Algorithm Best Mean Worst std FES
DSO 1.72485332 200059370 3.18904036 3401e-01 15,000
MVDE (De Melo and Carosio 2013) 1.72485200 1.72486200 1.72492100 7.883e-06 15,000
GA (Coello Coello and Mezura-Montes 2002) 1.72822600 1.79265400 1.99340800 7471e-02 24,000
DE (Mezura-Montes et al. 2006) 1.72485200 1.72485300 1.72485400 1.000e-15 24,000
SHO (Dhiman and Kumar 2017) 1.72566100 1.72582800 1.72606400 2.870e-04 30,000
GWO (Dhiman and Kumar 2017) 1.72699500 1.72712800 1.72756400 1.157e-03 30,000
PSO (Dhiman and Kumar 2017) 1.82039500 223031000 3.04823100 3.245e-01 30,000
MFO (Dhiman and Kumar 2017) 1.73254100 1.77523100 1.80236400 1.240e-02 30,000
MVO (Dhiman and Kumar 2017) 1.72547200 1.72968000 1.74165100 4.866e-03 30,000
SCA (Dhiman and Kumar 2017) 1.75917300 1.81765700 1.87340800 2.754e-02 30,000
GSA (Dhiman and Kumar 2017) 2.17285800 2.54423900 3.00365700 2.559%-01 30,000
GA (Dhiman and Kumar 2017) 1.87397100 2.11924000 232012500 3.482e-02 30,000
HS (Dhiman and Kumar 2017) 1.83625000 1.36352700 2.03524700 1.395e-01 30,000
CPSO (He and Wang 2007) 1.72802400 1.74883100 1.78214300 1.292e-02 >30,000
WCA (Eskandar et al. 2012) 1.72485600 1.72642700 1.74469700 4.290e-03 46,450
HPSO (He and Wang 2007) 1.72485200 1.74904000 1.81429500 4.004e-02 81,000

Table 16 Engineering design problems: comparison of results for Problem 6—rolling element bearing (VTR: 85, 538.48 (Eskandar et al. 2012))

Algorithm Best Mean Worst std FES
DSO## 85,539.07823091 83,173.11537690 74,345.08450340 3.154e+03 10.000
DSO* 85,533.18278573 81,645.37176370 39,532.06145658 7913E+03 10.000
WCA (Eskandar et al. 2012)** 85,538.48000000 83,847.16000000 83,942.71000000 4.883e+02 3.950
MAL-FA (Balande and Shrimankar 2017) 81,701.00000000 81,476.57000000 81,346.26500000 7.100e-01 4,000
SHO (Dhiman and Kumar 2017)%* 84,807.11000000 84,791.61000000 84,517.92000000 1.867e+02 30.000
GWO (Dhiman and Kumar 2017)*# 81,691.20000000 50,435.02000000 32,761.55000000 1.372e+02 30.000
PSO (Dhiman and Kumar 2017)%#* 84,002.52000000 82,357.49000000 83,979.25000000 1.396e+04 30.000
MFO (Dhiman and Kumar 2017)#* 84,491.27000000 84,353.69000000 84,100.83000000 1.402e+03 30.000
MVO (Dhiman and Kumar 2017)#*# 83,431.12000000 81,005.23000000 77,992.48000000 3.924e+02 30.000
SCA (Dhiman and Kumar 2017)%#* 82,276.94000000 78,002.11000000 71,043.11000000 1.711e+03 30.000
GSA (Dhiman and Kumar 2017)%* 82,773.98000000 81,198.75000000 80,687.24000000 3.120e+03 30.000
GA (Dhiman and Kumar 2017) 81,569.53000000 80,398.00000000 79.412.78000000 1.679e+03 30.000
HS (Dhiman and Kumar 2017)%* 81,569.52700000 80,397.99800000 79.412.77900000 1.757e+03 30.000

[P ELl

References marked with *“*” (
problem

)come from papers that treat x5 as integer (continuous) variable (not specified for MAL-FA). Thisisa maximization

Table17 Engineering design problems: comparison of results for Problem 7—Multiple disk clutch brake (VTR: 0.313656 (Balande and Shrimankar

2017))

Algorithm Best Mean Worst std FES
DSO 0.31365661 0.32881603 0.38815006 1.450e-02 500
MAL-FA (Balande and Shrimankar 2017) 0.31365300 0.34365600 0.32862800 1.400e-02 400
WCA (Eskandar et al. 2012) 0.31365600 0.31365600 0.31365600 1.690e-16 500

@ Springer



V. V.de Melo et al.

Table 18 Function values at FES = 2 x 10% for 10D Problems C01-C06

FES Co1 co2 C03 co4 C05 Co6
2 x 10° Best 8.5003e-09 3.8635e-09 6014.9972 13.5728 0.00086714 133.2047
Median 6.0009¢-08 3.8772e-08 102386.8624 159192 0.2293 1024.2589
¢ 0,0,0 0,0,0 0.0,0 0.0,0 0,0,0 0.0,0
v 0 0 0 0 0 0
Mean 6.7529¢-08 4.6765e-08 163371.5295 15.484 0.83822 1022.4469
Worst 2.5314e-07 1.5482e-07 556604.1303 169142 3.8604 1463.3025
std 5.0583e-08 3.5216e-08 146200.0583 1.2828 1.171 403.7313
SR 100% 100% 100% 100% 100% 92%
vio 0 0 0 0 0 0.0060728
Table 19 Function values at FES = 2 x 10° for 10D Problems C07-C12
FES Co7 Co8 C09 C10 Cl1 Cci12
2 x 10° Best — 161.6822 — 0.0013465 — 0.0049745 — 0.0005071 —0.1688 3.9879
Median — 69.4884 — 0.0012262 0.96806 — 0.00048191 —0.16848 3.988
¢ 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0
Mean —46.7 0.67998 1.2764 — 0.00044859 —0.1618 7.8585
Worst 105.5481 17.0261 8.9903 — 0.00011869 —0.091634 22.9351
std 742285 3.4054 1.8491 8.4269¢-05 0.02113 7.2881
SR 100% 96% 100% 100% 100% 100%
vio 0 5.9944 0 0 0 0
Table20 Function values at FES = 2 x 107 for 10D Problems C13-C18
FES C13 Cl4 Cl15 Cl16 C17 C18
2 x 10° Best 0.00013357 2.5246 11.7809 51.8361 1.3086 29.25
Median 0.36329 34162 18.0641 69.1149 1.008 945,75
¢ 0,0,0 0,0,0 0,0,0 0,0,0 1,0,0 0,0,0
v 0 0 0 0 5.5 0
Mean 3.71 3.3558 17.3101 68.8008 1.0501 522.4887
Worst 76.0457 3.9163 27.4889 81.6813 1.1789 148.2915
std 15.1055 0.37239 4,6491 7.1553 0.21836 435.246
SR 100% 100% 100% 100% 0% 88%
vio 0 0 0 0 53 6.153

where instead DSO shows a slightly worse performance—
might be solved more efficiently.

Another interesting achievement of DSO —which is also
linked to its efficiency on C18 and C27— is that it obtains
the overall lowest mean vio (averaged across all problems at
all dimensionalities), up to four orders of magnitude smaller
that the other competition algorithms. A similar difference in
performance is observed on the mean value of v, again aver-
aged across all problems and dimensionalities. On the other
hand, DSO appears less efficient at refining the optimization
of the function value: in fact, the average Mean function value
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(averaged across all problems and dimensionalities) obtained
by DSO is up four orders of magnitude higher than that the
lowest Mean function value obtained by the other compe-
tition algorithms. Similar considerations apply also to the
mean Median function value averaged across all problems
and dimensionalities. This might indicate that, in the tested
settings, DSO is configured to be too explorative and less
exploitative, but this is inherently caused by the concurrent
GP evolution.

As for the comparison vs HECO-DE (for which we consid-
ered the original results reported in Xu et al. (2020)), consid-
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Table21 Function values at FES = 2 x 10% for 10D Problems C19-C24

FES ci19 C20 C21 C22 C23 C24
2 x 10° Best 0.00054195 0.23906 3.9879 1.4689 3.1009 8.6393
Median 0.0010589 0.57814 4.099 65.2193 3.7242 14.9225
¢ 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
T 6633.5922 0 0 0 0 0
Mean 0.0011544 0.56777 12.1423 11632.9114 3.6759 16.0535
Worst 0.0017538 0.94109 23.8621 151466.3095 4.0567 21.2057
std 0.00030301 0.16487 9.0357 38839.4005 0.29251 3.3787
SR 0% 100% 100% 100% 100% 100%
vio 6633.5922 0 0 0 0 0
Table22 Function values at FES = 2 x 10° for 10D Problems C25-C28
FES C25 C26 C27 C28
2 x 10° Best 43.9822 1.3724 36.5994 22.3268
Median 75.3981 1.004 37.7648 53.6628
¢ 0,0,0 1,0,0 0,0,0 1,0,0
i 0 5.5 0 6658.5922
Mean 72.1937 1.0297 1189.4464 38.0683
Worst 89.5353 1.004 14049.5047 60.0794
std 10.022 0.074811 2902.8158 12.3019
SR 100% 0% 68% 0%
vio 0 5.46 725.6411 6659.118
Table23 Function values at FES = 6 x 10 for 30D Problems CO1-C06
FES Co1 co2 Co3 co4 C05 C06
6 x 10° Best 8.453e-06 1.9174e-06 171102.9095 13.5728 0.0025315 2810.7647
Median 6.1005e-05 6.6596e-05 781454.008 17.9096 42816 4807.3263
¢ 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
T 0 0 0 0 0 0
Mean 0.025879 0.012179 1171659.9264 24.3729 9.6818 4804.2279
Worst 0.48651 0.29902 6962134.1742 71.6372 69.2083 6698.6136
std 0.097796 0.05976 1355950.6868 15.2702 14.9798 1120.1365
SR 100% 100% 100% 100% 100% 100%
vio 0 0 0 0 0 0

ering the above mentioned “avg/oneFeas/allFeas™ notation,
the results can be summarized as follows:

10D: DSO 83.71%/24 /20, HECO-DE 84.14%/24/23;
30D: DSO 73.14%/22/19, HECO-DE 82.14% /23 /23;
50D: DSO 67.43%/21/17, HECO-DE 81.14% /23 /22;
100D DSO 62.43%/19/16, HECO-DE 77.71%/23/19.

From these values, apart from noting that HECO-DE per-
forms and scales better than the L-SHADE44, it can be
appreciated that DSO performs very similarly to HECO-

DE, at least in 10D. As said earlier though, the proposed
method shows a performance decrease when the problem
dimensionality increases. Looking at the specific benchmark
functions, we note that in 10D HECO-DE cannot find any fea-
sible solution on C17, C19, C26 and C28 (the same as DSQO),
while it has a 56% SR on C11 (DSO: 100%). On the other
hand, DSO shows a lower SR on C06, CO8 and C18. In 30D,
both HECO-DE and DSO cannot find any feasible solution
onC11,C17,C19, C26 and C28, but DSO is not able to solve
C22 either; other than that, DSO shows a lower SR on CO08,
C18and C27.In 50D, both HECO-DE and DSO are again not
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Table 24 Function values at FES = 6 x 10° for 30D Problems C07-C12

FES Cco7 Cco8 C09 Cl10 Cill Cl12
6 x 10° Best — 270.2746 0.00097483 — 0.0025974 0.0002627 9.631 3.9825
Median — 75.5792 0.0050751 0.99726 0.00054468 4.3195 3.98260
¢ 0,0,0 0,0,0 0,0,0 0,0,0 0,1,0 0,0,0
v 0 0 0 0 0.027341 0
Mean — 72.7935 0.0090872 1.8104 0.00066987 19.2712 6.4639
Worst 163.8242 0.050826 47199 0.0023757 95.2633 14.6142
std 93.7991 0.011202 1.5952 0.00042909 32,7531 3.5911
SR 100% 76% 100% 100% 0% 100%
vio 0 0.00013405 0 0 0.094463 0
Table25 Function values at FES = 6 x 103 for 30D Problems C13-C18
FES C13 Cl4 Cl15 Cl6 C17 C18
6 x 10° Best 0.00024162 1.6983 18.0641 1822122 1.0317 36.5348
Median 81.9116 2.0504 24.3473 207.345 1.0298 2327
¢ 0,0,0 0,0,0 0,0,0 0,0,0 1,0,0 0,0,0
) 0 0 0 0 15.5 0
Mean 2586.4445 2.0566 25.6039 210.9264 1.025 1094.0255
Worst 40291.4088 23174 33.7721 252.8981 1.0317 192.9101
std 8977.7742 0.13712 4.4429 16.7931 0.045713 1372.9936
SR 100% 100% 100% 100% 0% 56%
vio 0 0 0 0 15.5 10.4419
Table 26 Function values at FES = 6 x 103 for 30D Problems C19-C24
FES C19 C20 C21 c22 C23 C24
6 x 10° Best 0.0057808 1.3897 3.9826 472366.7077 1.8988 18.06041
Median 0.0090854 2.0793 14.8219 4495136.9067 2.1222 21.2057
¢ 1,0,0 0,0,0 0,0,0 2,0.0 0,0,0 0,0,0
v 21374.9081 0 0 199.1447 0 0
Mean 0.010911 2.0461 17.117 5521644.1785 2.1277 22.0853
Worst 0.019743 2.634 42272 205208103312 2.2926 30.6305
std 0.0041677 0.32058 11.6841 5302415.5362 0.11789 2.6472
SR 0% 100% 100% 0% 100% 100%
vio 21374.9081 0 0 214.8362 0 0

capable to solve C11,C17, C19, C26 and C28, but DSO can-
not solve C22 and C27 either, and shows a lower SR on CO8,
C09, C10 and C18. In 100D both HECO-DE and DSO are
again not capable to solve C11, C17, C19, C26 and C28,
but DSO cannot solve C08, C10, C14, C15 and C16, and
shows alower SR on C09 and C13 yet a slightly higher (16%
vs 12%) SR on C18. Finally, concerning the comparisons on
the Mean/Median function values, DSO seems slightly less
efficient than HECO-DE, confirming our previous observa-
tion on the lack of a powerful exploitative behavior.
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For the sake of completeness, we report in the Appendix
the trends of the minimum fitness error w.r.t. the known opti-
mum at each step of the algorithm (note that the reported
error values also include the adaptive penalty, i.e., at each
step the minimum fitness error may correspond to an infea-
sible solution) for each of the 25 DSO runs on the 28 CEC
2017 benchmark problems in 10, 30, 50 and 100D. First of
all, it should be noted that the non-monotonic trend observed
on some problems depends on the fact that as soon as one
feasible solution is found, the fitness values are penalized
and this produces an increase in the current generation’s fit-
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Table27 Function values at FES = 6 x 107 for 30D Problems C25-C28

FES C25 C26 C27 C28
6 x 10° Best 196.3494 1.03 41.8851 140.4125
Median 232.4777 1.0295 28.0164 161.4249
¢ 0,0,0 1,0,0 0,2,0 1,0,0
v 0 15.5 0.07691 21499.3984
Mean 230.8441 1.0296 3254.5829 172.7516
Worst 257.6105 1.0286 72155.0331 205.8246
std 12.8853 0.007088 14381.6831 209351
SR 100% 0% 16% 0%
vio 0 15.5 1492.7456 21498.0893
Table28 Function values at FES = | x 10° for 50D Problems C0O1-C06
FES Co1 co2 C03 co4 C05 Co6
1 % 10° Best 0.00014351 0.0014707 463518.1607 13.5731 0.014921 5282.5561
Median 0.070805 0.20531 4355251.7543 16.927 8.9586 8555.1688
¢ 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
T 0 0 0 0 0 0
Mean 0.58552 0.82372 6052482.0065 25.1435 26.6579 8391.8881
Worst 4.5867 3.989 26106372.8152 58.7027 136.981 10446.3331
std 1.1252 1.2521 5768824.335 14.2925 35.6857 1281.6453
SR 100% 100% 100% 100% 100% 100%
vio 0 0 0 0 0 0
Table29 Function values at FES = 1 x 10° for 50D Problems C07-C12
FES C07 Co8 Cco9 Cl10 Cl11 Cci12
1 x 106 Best — 524.5674 0.0039624 0.56145 0.00064744 —3.1424 3.9815
Median — 42,4644 0.18226 5.2945 0.00091045 155.6623 7.0732
c 0,0,0 0,2,0 0,0,0 0,0,0 0,1,0 0,0,0
v 0 0.04045 0 0 0.31157 0
Mean — 88.6934 0.28231 6.4206 0.0015667 153.6773 7.4132
Worst 270.9917 0.99163 18.0743 0.009474 1157.4845 18.0238
std 193.9724 0.29316 4.0997 0.0019254 232.8098 4,342
SR 100% 4% 88% 92% 0% 100%
vio 0 0.13185 0.038173 4.9524¢-05 1.1556 0

ness values. Apart from this, we can observe that DSO is
quite robust across the different runs on each problem, apart
from a few selected cases (e.g. C06, C22 and C27 in 10D,
C07 in 50D, and C28 in 50D and 100D). The effect of the
restart mechanism is also quite evident in some cases, such as
C09 in 30D, 50D and 100D, or C18 in 10D and 30D, where
the trends show some negative “peaks” corresponding to the
various restarts.

To conclude, the proposed DSO algorithm appears very
efficient at finding the feasible solutions on a larger spectrum
of problems, even more effectively than some of the best algo-

rithms from the CEC 2017 competition, but less than a very
modern algorithm such as HECO-DE. Interestingly, thereis a
group of problems (C11, C17, C19, C26 and C28) that espe-
cially in larger dimensions seem to be harder to solve, even
for the state-of-the-art methods. Therefore, the poor perfor-
mances on these benchmark functions cannot be considered
an intrinsic weakness of DSO. As we said, what can be seen
instead as a major weak point of the proposed algorithm, at
least in the currently tested settings, is that it seems less good
than the state-of-the-art methods at performing a “deeper”
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Table30 Function values at FES = 1 x 10° for 50D Problems C13-C18

FES Cl13 Ci4 Cl15 cile6 C17 Ci8
1 x 108 Best 94.8067 1.3197 21.2057 282.7432 1.0501 58.0271
Median 772.183 1.5742 30.6305 376.991 1.0498 168.8352
¢ 0,0,0 0,0,0 0.0,0 0,0,0 1.0,0 1,0,0
v 0 0 0 0 25.5 21.2554
Mean 3024.7477 1.5641 29.8765 366.8122 1.0496 1676.156
Worst 20380.0438 1.686 43.1968 408.4069 1.04 3495.342
std 4729.1676 0.085476 6.1696 28.2092 0.0032775 1898.3861
SR 100% 100% 100% 100% 0% 4%
vio 0 0 0 0 25.5 217.6237
Table31 Function values at FES = | x 10 for 50D Problems C19-C24
FES c19 C20 C21 c22 C23 C24
1 % 10° Best 0.013138 2.7883 3.9815 417569.6433 1.4136 21.2057
Median 0.022806 3.6814 14.6177 15322311.9692 1.5869 24.3473
c 1,0,0 0,0,0 0,0,0 2,0,0 0,0,0 0,0,0
bl 36116.224 0 0 509.5447 0 0
Mean 1.3726 3.7006 16.4359 16987279.2639 1.5731 24.4729
Worst 33.3324 4.5507 80.2935 31057134.2101 1.6798 27.4889
std 6.6585 0.46184 17.9704 12801199.3995 0.067978 2.3086
SR 0% 100% 100% 0% 100% 100%
vio 36117.9157 0 0 494.909 0 0
Table32 Function values at FES = 1 x 10° for 50D Problems C25-C28
FES C25 C26 C27 C28
1 x 100 Best 370.7078 1.0503 34.9441 290.5316
Median 395.8405 1.05 89.1198 328.6172
¢ 0,0,0 1,0,0 1,0,0 1,0,0
v 0 25.5 20.9596 36335.845
Mean 396.9715 1.05 1318.3487 306.2171
Worst 427.2565 1.05 16234.3393 331.4477
std 14.5706 0.00094931 3330.9514 23.8294
SR 100% 0% 0% 0%
vio 0 25.5 391.9888 36334.7914

exploitation of the function value once the feasible region is
found.

5 Conclusions

We introduced Dual Search Optimization (DSQ), a kind of
co-evolutionary algorithm with adaptive penalty function for
solving constrained optimization problems. The most impor-
tant aspect of the proposed algorithm is its capability to
adapt its own perturbation logics to the problem. However,
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such adaptation takes time because these perturbations are
evolved at runtime during the optimization process. In other
words, DSO can discover efficient perturbations to solve the
problem at hand, provided a sufficient computational budget.

Our experimental analysis investigated how DSO, which
can be seen as a self-improving algorithm, compares to algo-
rithms carefully designed by researchers. When compared
to a large number of state-of-the-art metaheuristics on vari-
ous engineering design problems, DSO achieved in general
a comparable —and in some cases better— performance.
Furthermore, DSO was in general able to achieve or approx-
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Table33 Function values at FES = 2 x 10° for 100D Problems C01-C06

FES Co1 co2 C03 C04 C05 Co06
2 x 10° Best 0.013257 1.4065 3959978.9328 15.9192 16.2678 15223.8344
Median 63.6956 61.5066 16960993.7838 15.9214 94.1919 18084.1767
¢ 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v 0 0 0 0 0 0
Mean 178.4512 327.9204 25169748.4402 33.29 112.6778 18099.5698
Worst 1154.8345 5752.8437 80829455.9264 154.2943 232.6623 21107.8144
std 255.6544 1141.4825 24516520.9291 35.2685 49.6186 1585.0829
SR 100% 100% 100% 100% 100% 100%
vio 0 0 0 0 0 0
Table34 Function values at FES = 2 x 106 for 100D Problems C07-C12
FES Co7 Co8 co9 C10 Cl1 Cci12
2 x 109 Best — 778.1561 0.31191 8.9883 0.0037086 89.0433 3.9807
Median — 55.7547 1.7718 19.1106 0.030235 408.2119 5.0433
¢ 0,0,0 2,0,0 0,1,0 0,2,0 1,0,0 0,0,0
7 0 4.9403 0.31667 0.018535 0.57879 0
Mean — 99.8666 1.9368 14.6308 0.064294 351.8465 7.6933
Worst 313.6538 4.1631 17.8999 0.40532 1283.1591 30.9209
std 319.2343 1.1337 3.6931 0.083882 396.8124 6.1863
SR 100% 0% 449, 0% 0% 100%
vio 0 7.3911 0.21897 0.11634 0.94302 0
Table35 Function values at FES = 2 x 10° for 100D Problems C13-C18
FES Cl13 Cl4 Cl15 Cl6 C17 C18
2 x 100 Best 92.7113 0.93216 21.2057 703.7166 1.0994 40.6712
Median 1946.2338 1.0386 27.4889 735.1325 1.0999 278.6418
c 0,0,0 0,0,0 0,0,0 0,0,0 1,0,0 1,0,0
bl 0 0 0 0 50.5 42,2872
Mean 601739.974 1.0336 31.2588 740.7874 1.0998 332.2223
Worst 14232606.8413 1.1009 43.1968 791.6812 1.0997 579.9318
std 2841012.372 0.044822 5.807 28.3796 0.0013193 486.1305
SR 88% 100% 100% 100% 0% 16%
vio 9.6522 0 0 0 50.5 34.0337

imate the VTR of each problem in a smaller number of FES
(compared to the other algorithms), despite the additional
computational costdue to the self-adaptation. Itis also notice-
able that DSO found a new best solution for one of the tested
engineering design problems, i.e., the design of a rolling ele-
ment bearing (under the assumption of continuity of x3, made
to compare our results with the most recent literature).
Tested on the CEC 2017 benchmark for constrained opti-
mization, DSO also showed very good results, especially on
the lower dimensionality (10D), where itresulted on par with
the state-of-the-art and even capable of solving —albeit not in

all runs— two problems that could not be solved by the CEC
2017 competition algorithms. Overall, DSO seems to be very
good at finding feasible solutions on most of the problems
at different dimensionalities, while the additional overhead
introduced by the search for optimal perturbations represents
an obstacle to a better exploitation, especially at larger dimen-
sionalities. As said, in fact, the adaptation of the perturbation
logics can be time-consuming, and its benefits can be more
evident only on some particularly hard-to-solve problems. In
simpler optimization cases, using handcrafted perturbations
may be more effective. In this study, we partially addressed
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Table36 Function values at FES = 2 x 10° for 100D Problems C19-C24

FES C19 C20 C21 C22 C23 C24
2 x 10° Best 0.047496 6.498 3.9808 34637373.1793 0.96582 24.3473
Median 0.14808 7.701 14.7001 238489225.9708 1.0529 27.4889
¢ 1,0,0 0,0,0 0.0,0 1,0,0 0,0,0 0,0,0
T 72969.5147 0 0 2641.3478 0 0
Mean 5.131 7.8226 31.527 189869263.6285 1.0475 29.2482
Worst 112.9504 8.7549 216.0218 341046165.0936 1.1107 36.9136
std 22.5901 0.57438 56.0827 100806341.4905 0.042057 3.152
SR 0% 100% 100% 0% 100% 100%
vio 72976.0029 0 0 2587.5993 0 0
Table37 Function values at FES = 2 x 106 for 100D Problems C25-C28
FES C25 C26 C27 C28
2 x 109 Best 735.1325 1.1005 264.8755 691.1446
Median 785.398 1.0998 1549.9332 603.2635
c 0,0,0 1,0,0 1,0,0 1,0,0
T 0 50.5 1231.9415 73429.7383
Mean 781.5653 1.1003 11163.3156 645.3978
Worst 824.6679 1.1012 32259.4912 673.6193
std 22.9836 0.00075745 9487.5884 32.1787
SR 100% 0% 0% 0%
vio 0 50.5 2539.6674 73430.421

this issue by including a reference perturbation (namely, the
“rand/1” mutation strategy from DE) so to avoid the GP part
of the algorithm to start from scratch, hence requiring even
more time to find effective perturbations. Another possibility
would be to include a richer pool of reference perturbations,
e.g. including other well-known mutations used in DE as well
as other perturbation mechanisms used in other metaheuris-
tics such as PSO, ES (including CMA-ES), etc. This pool
would provide a rich material for further evolution through
mutations and crossover in the GP part. Other alternative
would be to design proxies for the evaluation of the perturba-
tions, i.e. ways to immediately discard invalid perturbations
without actually applying them to the current solutions. All
these possibilities should be further investigated in future
works.

Overall, our results prove that DSO is a viable alternative
for solving engineering optimization problems, especially
when the number of variables is moderate (i.e., less than 30).
From a practitioner’s point of view, the most attractive feature
of the proposed algorithm is its self-improving capability, as
the user is not required to perform any specific tuning.

Still, there are several directions that could be followed to
improve the algorithm presented in this paper. For instance,
here we employed an adaptive constraint handling technique,
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but other CHTSs (or ensembles thereof) could be included
in the algorithm. In principle, even the CHT itself could
be evolved by means of GP, which might be an interesting
research question. Another possible improvement would be
to add one or more local search algorithms, or include addi-
tional perturbation elements in the GP part of the algorithm,
to improve its exploitation capabilities or exploit algorith-
mic/domain knowledge and guide the GP part towards more
effective perturbations.

A fitness error trends on CEC 2017 problems

Figures 3, 4, 5, 6 show the fitness error trends (taking into
account the adaptive penalty) of each of the 25 DSO runs
on the 28 CEC 2017 benchmark problems in 10, 30, 50 and
100D. The figures also report the mean and the median error
trend for each problem, depicted respectively as thick red and
blue lines.
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Ci15

Fig.3 Fitness trends of DSO on the CEC 2017 benchmark functions (D = 10). The x-axis and y-axis show, respectively, the number of function
evaluations and the fitness error (including the adaptive penalty, log scale). Every plot shows the trends of 25 runs, their mean (thick red line) and
median (thick blue line)

c22

Fig. 4 Fitness trends of DSO on the CEC 2017 benchmark functions
(D = 30). The x-axis and y-axis show, respectively, the number of func-
tion evaluations and the fitness error (including the adaptive penalty, in
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log scale). Every plot shows the trends of 25 runs, their mean (thick red

line) and median (thick blue line)
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Fig.5 Fitness trends for DSO on the CEC 2017 benchmark functions
(D = 50). The x-axis and y-axis show, respectively, the number of func-

tion evaluations and the fitness error (including the adaptive penalty, in

log scale). Every plot shows the trends of 25 runs, their mean (thick red
line) and median (thick blue line)
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Fig.6 Fitness trends for DSO on the CEC 2017 benchmark functions
(D = 100). The x-axis and y-axis show, respectively, the number of

it

function evaluations and the fitness error (including the adaptive penalty,
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C28

in log scale). Every plot shows the trends of 25 runs, their mean (thick
red line) and median (thick blue line)
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