

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIO NE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

A SAT-BASED TOOL FOR SOLVING CONFIGURATION
PROBLEMS

Stefano Sgorlon

February 2009

Technical Report # DISI-09-013

.

UNIVERSITÀ DEGLI STUDI DI TRENTO

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

A SAT-based tool for solving
configuration problems

Relatore Laureando
Prof. Roberto Sebastiani Stefano Sgorlon

Correlatore
Prof. Zhanshan Li
(Jilin University, Changchun, China)

Anno Accademico 2007 - 2008

Contents

1 Preface 3

I Background and state of the art 5

2 SAT and SAT solving 6

2.1 Basics on propositional logic 6

2.2 SAT . 8

2.3 Conjunctive normal form . 9

2.3.1 Classical CNF conversion 9

2.3.2 Labeling CNF conversion 9

2.3.3 DIMACS format . 12

2.4 The DPLL algorithm . 12

2.4.1 Modern conflict-driven DPLL 14

2.4.2 The Abstract-DPLL logical framework 19

2.5 The MiniSat solver . 22

3 CSPs and configuration problems 24

3.1 Basics on constraint programming 24

3.1.1 Constraint satisfaction 25

3.2 Configuration problems . 27

3.2.1 Preferred relaxations and preferred conflicts 29

3.3 The QuickXplain algorithm 32

3.3.1 QuickXplain pseudocode for the preferred conflict . . . 35

1

3.3.2 QuickXplain pseudocode for the preferred relaxation . 37

3.4 The CLab library . 37

3.4.1 The CP language . 38

3.5 Related work . 40

II Original contributions 42

4 Solving CSPs via SAT encoding 43

4.1 The Boolean encoding . 43

4.2 CNF conversion and incremental SAT solving 46

5 The tool 49

5.1 Technologies used . 49

5.2 Architecture of the system . 50

5.3 Benchmarks used . 52

5.4 Functionalities . 52

5.5 GUI . 53

5.5.1 A typical user session 53

6 Empirical results 62

7 Conclusions 67

A Comparison of time spent by classic and incremental SAT
solving 68

2

Chapter 1

Preface

Configuration problems typically describe situations in which a user has to
buy a configurable product selecting its features. The user wants to con-
figure the product in the best way, selecting most of his favourite features
and options for the product, but taking into account also the cost and other
aspects. The idea is to find the best configuration of the product. Config-
uration problems are optimization problems in which the “best” solution is
found according to some criterion, which in our case is based on the user
preferences. They have application in scheduling, configuration, planning,
timetabling tasks.

For a simple example of configuration problem we can consider a laptop with
some of its features, including the screen size, the screen model, the processor
model, the video card and the webcam. The choice of the product features
and the budget of the user are expressed by rules, called constraints. A
configuration problem describes a product defining variables (the features of
the product) and constraints, which are expressions involving the variables.
Constraints are necessary to deny some configurations (think for example a
very expensive laptop). The constraints are split into two sets, the set of
the constraints that must be satisfied (background) and the set of the other
remaining constraints (foreground), which can be satisfied or relaxed. In the
laptop example the background includes the fundamental features and the
constraint regarding the budget, while the foreground includes the optional
features.

The work explained here is a tool for solving configuration problems 〈X, D, B,
F〉 where X is a set of variables, D is the set of the variables domains, B is the
background and F is the foreground. In particular the tool implements the
QuickXplain algorithm (§3.3) for configuration problems on which is defined a

3

binary preference relation ≺ among the foreground constraints. This relation
expresses the fact that some constraints are more important than other ones,
and the satisfaction of the first ones is preferred to the satisfaction of the
latter ones.

The QuickXplain algorithm returns the preferred conflict and the preferred
relaxation. Given a configuration problem 〈X, D, B, F, ≺〉, the preferred
relaxation is a subset of F which is consistent with respect to B, and maxi-
mizes the selection of the most important constraints according to ≺, while
the preferred conflict is a subset of F which is not consistent with respect to
B, and minimizes the selection of the least important constraints according
to ≺.

The problems of finding the preferred relaxation and the preferred conflict for
a configuration problem are optimization problems that, in order to compute
the “best”, here called preferred, consider a lexicographic extension of the
preference relation ≺. Relaxations and conflicts are dual concepts defined in
§3.2.1.

The implemented tool returns also a solution for the configuration problems,
namely an assignment variables-values that satisfies the constraints contained
in the background and in the preferred relaxation.

QuickXplain is a recursive and dichotomic algorithm that uses a CSP con-
sistency checker to see whether a set of constraints has solutions or not. The
idea and the approach here is to use a SAT solver as CSP solver, solving
the satisfiability of the formulas encoded from the constraints defined in the
configuration problems. MiniSat, an efficient SAT solver, is used for this
purpose.

The problems taken into account are written in CP language (§3.4.1), and
compose the Configuration Benchmarks Library (CLib) [7]. The tool is im-
plemented in Java and encodes the constrains of every configuration problem
into a propositional formula (an instance of the SAT problem) which can
solved by a SAT solver.

I started this work in the College of Computer Science and Technology at
the Jilin University [2], in Changchun (China). In 2008 I studied there as
exchange student under the framework of the EASTWEB project [1].

The chapters of the first part gives a brief introduction on the topics related
to this work, mainly SAT and CSP. The second part focuses on the tool,
explaining its functionalities and components.

4

Part I

Background and state of the art

5

Chapter 2

SAT and SAT solving

The aim of this chapter is to give some ideas and definitions in order to
contextualize the implemented tool.

2.1 Basics on propositional logic

A Boolean variable is a variable whose value can be > or ⊥. These two
values are respectively known as true and false, or, equivalently, 1 and 0. A
Boolean variable is called also Boolean atom. We use the notation of the
capital letters Ai’s and Bi’s to represent Boolean atoms.

A propositional formula (or Boolean formula) is a formula composed of Boolean
variables, parentheses and the following basics operators:

• ¬, called not, which represents the negation of a propositional formula

• ∨, called or, which represents the disjunction of propositional formulas

• ∧, called and, which represents the conjunction of propositional formu-
las

• ⇒, called implies, which represents the logical implication between two
propositional formulas

• ⇔, called iff, which represents the logical equivalence between two
propositional formulas

6

Propositional logic is a formal system in which formulas (representing propo-
sitions) can be formed by combining Boolean variables (representing atomic
propositions) by means of the above operators. Propositional logic has many
applications in electronics, computer hardware and software, and it is the
base of digital electronics.

A literal is a Boolean variable x or its negation ¬x. It is called respectively
positive literal or negative literal.

A formula is in negative normal form (NNF) if it is written using only the
operators ¬, ∨ and ∧ in such a way that ¬ occurs only in front of Boolean
variables. Every formula can be translated into an equivalent one in NNF
substituting all occurrences of ⇔ and ⇒:

• ϕ1 ⇔ ϕ2 is rewritten into (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

• ϕ1 ⇒ ϕ2 is rewritten into ¬ϕ1 ∨ ϕ2

and pushing down negations recursively, applying the following three rules:

• the first De Morgan’s law: ¬(ϕ1 ∧ ϕ2) is rewritten into ¬ϕ1 ∨ ¬ϕ2

• the second De Morgan’s law: ¬(ϕ1 ∨ ϕ2) is rewritten into ¬ϕ1 ∧ ¬ϕ2

• the double negative law: ¬¬ϕ1 is rewritten into ϕ1

A propositional formula can be represented as a tree or as a directed acyclic
graph (DAG).

A total (partial) truth assignment is a function that maps all the (some)
variables of a propositional formula into {>, ⊥}.
A clause is a disjunction of literals. If l1, l2, . . . , ln are literals, a simple
example of a clause is the propositional formula l1 ∨ l2 ∨ · · · ∨ ln. A clause
composed of a single literal is called unit clause.

Given a propositional formula ϕ, the polarity of a sub-formula ψ contained
in ϕ is positive (negative) if ψ occurs in ϕ under the scope of an even (odd)
number of negations. A sub-formula is called positive (negative) if its polarity
is positive (negative).

Given a propositional formula ϕ, and two arbitrary sub-formulas ϕ1 and ϕ2

contained in ϕ, we have that:

• ϕ occurs positively in ϕ

7

• if ¬ϕ1 occurs positively (negatively) in ϕ, then ϕ1 occurs negatively
(positively) in ϕ

• if ϕ1 ∧ϕ2 or ϕ1 ∨ϕ2 occur positively (negatively) in ϕ, then ϕ1 and ϕ2

occur positively (negatively) in ϕ

• if ϕ1 ⇒ ϕ2 occurs positively (negatively) in ϕ, then ϕ1 occurs negatively
(positively) in ϕ and ϕ2 occurs positively (negatively) in ϕ

• if ϕ1 ⇔ ϕ2 occurs in ϕ, then ϕ1 and ϕ2 occur both positively and
negatively in ϕ

2.2 SAT

Satisfiability is the problem of determining if the variables of a given proposi-
tional formula can be assigned in a way that makes the formula evaluated to
true. Equally important is to determine whether no such assignments exist,
which would imply that the function expressed by the formula is identically
false for all possible variable assignments. In this latter case, we would say
that the function is unsatisfiable; otherwise it is satisfiable. The satisfiability
problem is also known as SAT.

More formally, a propositional formula ϕ is satisfiable if and only if there
exists a truth assignment µ that makes ϕ evaluated to >. If such assignment
exists, µ is called model for the formula ϕ and we write µ |= ϕ. Dually, ϕ is
unsatisfiable if and only if there are no models for ϕ, or, equivalently, if and
only if all truth assignments of ϕ make the formula evaluated to ⊥.

The formula ϕ is valid if and only if all the possible truth assignments make
ϕ evaluated to true.

Two propositional formulas ϕ and ϑ are equivalent if and only if, for every
truth assignment µ, we have that µ |= ϕ ⇔ µ |= ϑ.

In complexity theory, SAT is a decision problem, whose instance is a propo-
sitional formula written using only ∧, ∨ ¬, variables, and parentheses. The
question is: given a propositional formula, is there an assignment of true
and false values to the variables that make the entire expression true? The
satisfiability problem is an NP-complete problem [17]. Hence, there are no
known polynomial algorithms for solving SAT. This problem is of central
importance in various areas of computer science, including theoretical com-
puter science, algorithmics, artificial intelligence, hardware design, electronic
design automation, and verification.

8

Determining whether a propositional formula in CNF is satisfiable is still
NP-complete.

2.3 Conjunctive normal form

A propositional formula is in conjunctive normal form (CNF) if it is a con-
junction of clauses. Conjunctions of literals and disjunctions of literals are
in CNF, as they can be seen as conjunctions of one-literal clauses and dis-
junctions of a single clause, respectively.

2.3.1 Classical CNF conversion

Every propositional formula can be converted into a CNF equivalent formula.
The classical conversion is based on the NNF rules and on the following rules:

• the first distributive law: ϕ1 ∨ (ϕ2 ∧ ϕ3) is rewritten into (ϕ1 ∨ ϕ2) ∧
(ϕ1 ∨ ϕ3)

• the second distributive law: ϕ1 ∧ (ϕ2 ∨ϕ3) is rewritten into (ϕ1 ∧ϕ2)∨
(ϕ1 ∧ ϕ3)

This conversion preserves the validity of formulas, namely ϕ is valid if and
only if its correspondent CNF formula, computed using the classical conver-
sion, is valid. The classical CNF transformation is rarely used because it is
exponential in the worth case. In the next session it is explained a faster
CNF conversion, linear in the worst case: the labeling CNF conversion.

2.3.2 Labeling CNF conversion

The labeling CNF conversion is a faster CNF conversion that preserves the
satisfiability of formulas, namely ϕ is satisfiable if and only if its correspon-
dent CNF formula, computed using the labeling conversion, is satisfiable. It
can be applied for every propositional formula.

This conversion introduces a label, which is a new Boolean variable, for each
nontrivial sub-formula. Given a formula ϕ, and a sub-formula ψ contained
in ϕ, the labeling CNF conversion draws on this fact:

• ϕ is encoded into ϕ[ψ|H] ∧ CNF ∗(ψ ⇔ H)

9

where ϕ[ψ|H] represents the formula ϕ in which the label H replaces all the
instances of ψ in ϕ, and CNF ∗(ϑ) is the formula ϑ converted in CNF applying
the classical rules (see §2.3).

In particular, the sub-formula ψ contained in ϕ can be a disjunction, a con-
junction, a logical implication, or a logical equivalence. Hence, computing
the classical CNF conversion of ψ, for every literal l1, l2, . . . , ln, we have
that:

• CNF ∗((l1 ∨ l2 ∨ · · · ∨ ln)⇔ H) is encoded into (¬l1 ∨H)∧ (¬l2 ∨H)∧
· · · ∧ (¬ln ∨H) ∧ (l1 ∨ l2 ∨ · · · ∨ ln ∨ ¬H)

• CNF ∗((l1 ∧ l2 ∧ · · · ∧ ln)⇔ H) is encoded into (l1 ∨¬H)∧ (l2 ∨¬H)∧
· · · ∧ (ln ∨ ¬H) ∧ (¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln ∨H)

• CNF ∗((l1 ⇒ l2) ⇔ H) is encoded into (l1 ∨ H) ∧ (¬l2 ∨ H) ∧ (¬l1 ∨
l2 ∨ ¬H)

• CNF ∗((l1 ⇔ l2) ⇔ H) is encoded into (¬l1 ∨ l2 ∨ ¬H) ∧ (l1 ∨ ¬l2 ∨
¬H) ∧ (l1 ∨ l2 ∨H) ∧ (¬l1 ∨ ¬l2 ∨H)

The algorithm for computing the labeling CNF conversion is recursive. For
each formula ϑ it introduces a label H (a new Boolean variable) that replaces
ϑ, and it adds the condition ϑ ⇔ H (ϑ is true if and only if H is true).
This is done recursively for all the nested sub-formulas, starting from the
whole formula ϕ, and ending when the formula to analyze is atomic or it
can be trivially converted into an equivalent CNF formula using the classical
conversion.

Let’s see now how the algorithm works for a simple example.

Example 2.3.1. Let’s take the formula ¬x1 ∨ (x2 ∧ x3 ∧ x4 ∧ (x5 ⇔ x6)),
where x1, x2, x3, x4, x5, x6 are Boolean variables. In order to label the sub-
formulas, the algorithm introduces chronologically three new variables: b1, b2
and b3.

In particular:

• b1 is the label for the whole formula ¬x1 ∨ (x2 ∧ x3 ∧ x4 ∧ (x5 ⇔ x6))

• b2 is the label for the sub-formula x2 ∧ x3 ∧ x4 ∧ (x5 ⇔ x6)

• b3 is the label for the sub-formula x5 ⇔ x6

10

At the beginning the label b1 is introduced. Then, in the next steps, b2 and
b3 are used to label the other two internal sub-formulas. The resulting CNF
formula given by this conversion is b1∧CNF ∗((¬x1∨b2)⇔ b1)∧CNF ∗((x2∧
x3 ∧ x4 ∧ b3)⇔ b2) ∧ CNF ∗((x5 ⇔ x6)⇔ b3), where:

• CNF ∗((¬x1 ∨ b2)⇔ b1) is rewritten into (x1 ∨ b1)∧ (¬b2 ∨ b1)∧ (¬x1 ∨
b2 ∨ ¬b1)

• CNF ∗((x2 ∧ x3 ∧ x4 ∧ b3) ⇔ b2) is rewritten into (x2 ∨ ¬b2) ∧ (x3 ∨
¬b2) ∧ (x4 ∨ ¬b2) ∧ (b3 ∨ ¬b2) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬b3 ∨ b2)

• CNF ∗((x5 ⇔ x6)⇔ b3) is rewritten into (¬x5 ∨ x6 ∨ b3) ∧ (x5 ∨ ¬x6 ∨
b3) ∧ (x5 ∨ x6 ∨ ¬b3) ∧ (¬x5 ∨ ¬x6 ∨ ¬b3)

The labeling CNF conversion can be improved if we take into account the
polarity of the sub-formulas. In fact, we have that:

• if ψ is positive, then ϕ is rewritten into ϕ[ψ|H] ∧ CNF ∗(H ⇒ ψ)

• if ψ is negative, then ϕ is rewritten into ϕ[ψ|H] ∧ CNF ∗(ψ ⇒ H)

This improved version returns a CNF formula with a smaller number of
literals. In fact:

• CNF ∗((l1∨ l2∨ · · ·∨ ln)⇒ H) is rewritten into (¬l1∨H)∧ (¬l2∨H)∧
· · · ∧ (¬ln ∨H)

• CNF ∗(H ⇒ (l1 ∨ l2 ∨ · · · ∨ ln)) is rewritten into l1 ∨ l2 ∨ · · · ∨ ln ∨ ¬H

• CNF ∗((l1∧ l2∧· · ·∧ ln)⇒ H) is rewritten into ¬l1∨¬l2∨· · ·∨¬ln∨H

• CNF ∗(H ⇒ (l1∧ l2∧ · · ·∧ ln)) is rewritten into (l1∨¬H)∧ (l2∨¬H)∧
· · · ∧ (ln ∨ ¬H)

• CNF ∗((l1 ⇒ l2)⇒ H) is rewritten into (l1 ∨H) ∧ (¬l2 ∨H)

• CNF ∗(H ⇒ (l1 ⇒ l2)) is rewritten into ¬l1 ∨ l2 ∨ ¬H

• CNF ∗((l1 ⇔ l2)⇒ H) is rewritten into (l1 ∨ l2 ∨H) ∧ (¬l1 ∨ ¬l2 ∨H)

• CNF ∗(H ⇒ (l1 ⇔ l2)) is rewritten into (¬l1∨ l2∨¬H)∧(l1∨¬l2∨¬H)

11

2.3.3 DIMACS format

DIMACS format is widely accepted as the standard format for propositional
formulas in CNF.

An input file in DIMACS format starts with comments (each line begins with
the lower case letter ‘c’). The number of variables and the number of clauses
are defined by the line

p cnf variables clauses

Each of the next lines specifies a clause: a positive literal is denoted by the
corresponding number, and a negative literal is denoted by the corresponding
negative number. The last number in a line should be zero.

For example, to express in DIMACS format the CNF formula (x1 ∨ ¬x2) ∧
(x2 ∨ ¬x1 ∨ ¬x3), we write a text file containing these lines:

c A simple DIMACS CNF file

p cnf 3 2

1 -2 0

2 -1 -3 0

2.4 The DPLL algorithm

The DPLL (Davis-Putnam-Logemann-Loveland) algorithm is a backtracking-
based algorithm for solving the SAT problem. DPLL is a highly efficient
procedure that forms the basis for most efficient SAT solvers.

The basic backtracking algorithm runs by choosing a literal, assigning a truth
value to it, simplifying the formula and then recursively checking if the sim-
plified formula is satisfiable. If this is the case, the original formula is satisfi-
able, otherwise, the same recursive check is done assuming the opposite truth
value. This is known as the splitting rule, as it splits the problem into two
simpler sub-problems. The simplification step essentially removes all clauses
which become true under the assignment from the formula, and all literals
that become false from the remaining clauses.

The DPLL algorithm enhances over the backtracking algorithm using at each
step two procedures: the unit propagation and the pure literal elimination.
Unit propagation is based on the fact that if a clause is a unit clause, then it
can only be satisfied by assigning the necessary value to make its literal true.

12

Thus, no choice is necessary on this literal. In practice, this often leads to
deterministic cascades of unit propagations, thus avoiding a large part of the
naive search space. Pure literal elimination is based on the fact that pure
literals 1 can always be assigned in a way that makes all clauses containing
them true. Thus, these clauses do not constrain the search anymore and can
be deleted. While this optimization is part of the original DPLL algorithm,
most current implementations omit it, because the effect for efficient imple-
mentations now is negligible or, due to the overhead for detecting purity,
even negative.

The unsatisfiability of a given partial assignment is detected if one clause
becomes empty, namely if all its variables have been assigned in a way that
makes the corresponding literals false. The satisfiability of the formula is
detected either when all variables are assigned without generating the empty
clause, or, in modern implementations, if all clauses are satisfied. The un-
satisfiability of the complete formula can only be detected after exhaustive
search.

The DPLL algorithm can be summarized in the following pseudocode, where
ϕ is the CNF formula.

Algorithm 2.4.1: DPLL(ϕ)

if ϕ is a consistent set of literals
then return (true)

else



if ϕ contains an empty clause
then return (false)

else



while ϕ has unit clauses

do

{
l := next unit clause in ϕ
ϕ := unit-propagate(l, ϕ)

while ϕ has pure literals

do

{
l := next pure literal in ϕ
ϕ := pure-literal-assign(l, ϕ)

l := choose-literal(ϕ)
if DPLL(ϕ ∧ l)

then return (true)
else return (DPLL(ϕ ∧ ¬l))

In this pseudocode, unit-propagate(l, ϕ) and pure-literal-assign(l, ϕ) are func-
tions that return the result of applying unit propagation and the pure literal

1Given a propositional formula ϕ, a Boolean variable is called pure if it occurs with
only one polarity in ϕ.

13

procedure, respectively, to the literal l and the formula ϕ. In other words,
they replace every occurrence of l with true and every occurrence of ¬l with
false in the formula ϕ, and simplify the resulting formula. The DPLL func-
tion only returns whether the final assignment satisfies the formula or not.
In a real implementation, the partial satisfying assignment typically is also
returned on success. This can be derived from the consistent set of literals
of the first if-statement of the function.

The DPLL algorithm depends on the choice of the branching literal, which
is the literal considered in the backtracking step. For this reason DPLL is
a family of algorithms, one for each possible way of choosing the branching
literal. Efficiency is strongly affected by the choice of the branching literal:
there exist instances for which the running time is constant or exponential
depending on the choice of the branching literals.

2.4.1 Modern conflict-driven DPLL

This section is taken from [22, 23].

A SAT solver is a procedure which decides whether an input Boolean formula
ϕ is satisfiable, and returns a satisfying assignment if this is the case.

Most state-of-the-art SAT procedures are evolutions of the DPLL procedure
[30, 29]. Unlike with “classic” representation of DPLL [30, 29], modern
conflict-driven DPLL implementation are non-recursive, and are based on
very efficient data structures to handle Boolean formulas and assignments.
They benefit of sophisticated search techniques, smart decision heuristics,
highly-engineered data structures and cute implementation tricks, and smart
preprocessing techniques [46].

Modern DPLL engines can be partitioned into two main families: conflict-
driven DPLL [43], in which the search is driven by the analysis of the con-
flicts at every failed branch, and look-ahead DPLL [37], in which the search
is driven by a look-ahead procedure evaluating the reduction effect of the
selection of each variable in a group. Hereafter we restrict our discussion to
the conflict-driven DPLL schema, and in the next sections we often omit the
adjective “conflict-driven” when referring to DPLL.

A high-level schema of a modern conflict-driven DPLL engine, adapted from
[46], is reported in Figure 2.1. The Boolean formula ϕ is in CNF; the as-
signment µ is initially empty, and it is updated in a stack-based manner.
The function preprocess(ϕ, µ) simplifies ϕ into a simpler and equi-satisfiable

14

1. SatValue DPLL (Bool formula ϕ, assignment & µ) {
2. if (preprocess(ϕ, µ)==Conflict);
3. return Unsat;
4. while (1) {
5. decide next branch(ϕ, µ);
6. while (1) {
7. status = deduce(ϕ, µ);
8. if (status == Sat)
9. return Sat;

10. else if (status == Conflict) {
11. blevel = analyze conflict(ϕ, µ);
12. if (blevel == 0)

13. return Unsat;
14. else backtrack(blevel,ϕ, µ);
15. }
16. else break;
17. } } }

Figure 2.1: Schema of a modern conflict-driven DPLL engine.

formula, and updates µ if it is the case 2 . If the resulting formula is unsat-
isfiable, then DPLL returns Unsat.

In the main loop, decide next branch(ϕ, µ) chooses an unassigned literal l
from ϕ according to some heuristic criterion, and adds it to µ. This operation
is called decision, l is called decision literal and the number of decision literals
in µ after this operation is called the decision level of l.

In the inner loop, deduce(ϕ, µ) iteratively deduces literals l deriving from the
current assignments and updates ϕ and µ accordingly; this step is repeated
until either µ satisfies ϕ, or µ falsifies ϕ, or no more literals can be deduced,
returning Sat, Conflict and Unknown respectively. The iterative application
of Boolean deduction steps in deduce is also called Boolean constraint prop-
agation (BCP).

In the first case, DPLL returns Sat. In the second case, analyze conflict(ϕ, µ)
detects the subset η of µ which caused the conflict (conflict set) and the deci-
sion level blevel to backtrack. If blevel==0, then a conflict exists even with-
out branching, so that DPLL returns Unsat. Otherwise, backtrack(blevel,ϕ, µ)
adds ¬η to ϕ (learning) and backtracks up to blevel (backjumping), updating

2 More precisely, if ϕ, µ, ϕ′, µ′ are the formula and the assignment before and after
preprocessing respectively, then ϕ′ ∧ µ′ is equisatisfiable to ϕ ∧ µ.

15

ϕ and µ accordingly. In the third case, DPLL exits the inner loop, looking
for the next decision.

We look at these steps with some more detail.

The function preprocess implements simplification techniques like, e.g., de-
tecting and inlining Boolean equivalences among literals, applying resolutions
steps to selected pairs of clauses, detecting and dropping subsumed clauses
(see, e.g., [25, 27, 31]). It may also apply BCP if this is the case.

The function decide next branch implements the key non-deterministic step
in DPLL for which many heuristic criteria have been conceived. Old-style
heuristics like MOMS and Jeroslow-Wang [35] used to select a new literal at
each branching point, picking the literal occurring most often in the minimal-
size clauses (see, e.g., [34]). The heuristic implemented in SATZ [36] selects
a candidate set of literals, performs BCP, chooses the one leading to the
smallest clause set; this maximizes the effects of BCP, but introduces big
overheads. When formulas derive from the encoding of some specific problem,
it is sometimes useful to allow the encoder to provide to the DPLL solver a
list of “privileged” variables on which to branch first (e.g., action variables in
SAT-based planning [32], primary inputs in bounded model checking [44]).
Modern conflict-driven DPLL solvers adopt evolutions of the VSIDS heuristic
[39, 24, 13], in which decision literals are selected according to a score which is
updated only at the end of a branch, and which privileges variables occurring
in recently-learned clauses; this makes decide next branch state-independent
(and thus much faster, because there is no need to recomputing the scores at
each decision) and allows it to take into account search history, which makes
search more effective and robust.

The function deduce is mostly based on the iterative application of unit-
propagation. Highly-engineered data structures and cute implementation
tricks (like the two-watched-literal scheme [39]) allow for extremely efficient
implementations. Other forms of deductions (and formula simplification)
are, e.g., pure literal rule (now obsolete), on-line equivalence reasoning [38],
and variable and clause elimination [31].

It is important to notice that most modern conflict-driven DPLL solvers do
not return Sat when all clauses are satisfied, but only when all variables
are assigned truth values 3 . As a consequence, modern conflict-driven SAT
solvers typically return total truth assignments, even though the formulas
are satisfied by partial ones.

3 This is mostly due to the fact that the two-watched-literal scheme [39] does not allow
for an easy check of clause satisfaction (e.g., if a non-watched literal l in the clause C ∨ l
is true, then the clause it satisfied but DPLL is not informed of this fact).

16

The functions analyze conflict and backtrack work as follows [43, 26, 47, 46].
Each literal is tagged with its decision level, that is, the literal corresponding
to the nth decision and the literals derived by unit-propagation after that
decision are labeled with n; each non-decision literal l in µ is tagged by a link
to the clause Cl causing its unit-propagation (called the antecedent clause of
l). When a clause C is falsified by the current assignment, in which case we
say that a conflict occurs and C is the conflicting clause, a conflict clause C ′

is computed from C such that C ′ contains only one literal lu which has been
assigned at the last decision level. C ′ is computed starting from C ′ = C by
iteratively resolving C ′ with the antecedent clause Cl of some literal l in C ′

(typically the last-assigned literal in C ′, see [46]), until some stop criterion
is met. E.g., with the first UIP strategy it is always picked the last-assigned
literal in C ′, and the process stops as soon as C ′ contains only one literal lu
assigned at the last decision level; with the last UIP strategy, lu must be the
last decision literal.

Graphically, building a conflict set/clause corresponds to (implicitly) building
and analyzing the implication graph corresponding to the current assignment.
An implication graph is a DAG such that each node represents a variable
assignment (literal), the node of a decision literal has no incoming edges,
all edges incoming into a non-decision-literal node l are labeled with the

antecedent clause Cl, such that l1
Cl7−→ l,...,ln

Cl7−→ l if and only if Cl =
¬l1 ∨ ... ∨ ¬ln ∨ l. When both l and ¬l occur in the implication graph we
have a conflict; given a partition of the graph with all decision literals on
one side and the conflict on the other, the set of the source nodes of all arcs
intersecting the borderline of the partition represents a conflict set. A node
lu in an implication graph is a unique implication point (UIP) for the last
decision level if and only if any path from the last decision node to both the
conflict nodes passes through lu

4 ; the most recent decision node is a UIP
(the last UIP); the most-recently-assigned UIP is called the first UIP. E.g.,
the last (first) UIP strategy corresponds to using as conflict set a partition
corresponding to the last (first) UIP.

After analyze conflict has computed the conflict clause C ′ and added it to
the formula, backtrack pops all assigned literals out of µ up to a decision
level blevel deriving from C ′, which is computed by analyze conflict according
to different strategies. In modern conflict-driven implementations, DPLL
backtracks to the highest point in the stack where the literal lu in the learned
clause C ′ is not assigned, and unit-propagates lu. We refer the reader to [47]
for an overview on backjumping and learning strategies.

4 An UIP is also called an articulation point in graph theory (see, e.g., [28]).

17

c1 : {¬A1 ∨ A2}
√

c2 : {¬A1 ∨ A3 ∨ A9}
√

c3 : {¬A2 ∨ ¬A3 ∨ A4}
√

c4 : {¬A4 ∨ A5 ∨ A10}
√

c5 : {¬A4 ∨ A6 ∨ A11}
√

c6 : {¬A5 ∨ ¬A6} ×
c7 : {A1 ∨ A7 ∨ ¬A12}

√

c8 : {A1 ∨ A8}
√

c9 : {¬A7 ∨ ¬A8 ∨ ¬A13}
...

last UIP 1st UIP

Conflict!

A5
A6

A5

A6

c6

c5

¬A6

c5

c4

c4

A4

c3

c3

A4

¬A4

A2
A3

A2

A3

c2

c2

c1

A1

A1

¬A11

A12

A13

¬A10

¬A9

A12

A13

¬A9 ¬A11

¬A10

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

Figure 2.2: Example of learning and backjumping based on the first UIP
stategy.

Example 2.4.1. Consider a Boolean formula containing the clauses c1 . . . c9
in Figure 2.2, and assume at some point µ := {. . . ,¬A9, . . . ,¬A10, . . . ,¬A11,
. . . , A12, . . . , A13, . . . , A1} 5 . After applying BCP on c1 . . . c8 a conflict on
c6 occurs. Starting from the conflicting clause c6, the conflict clause/set is
computed by iteratively resolving the current clause C ′ each time with the
antecedent clause of the last-assigned literal l in C ′, until it contains only
one literal assigned at the current decision level (first UIP):

c4︷ ︸︸ ︷
¬A4 ∨ A5 ∨ A10

c5︷ ︸︸ ︷
¬A4 ∨ A6 ∨ A11

conflicting clause︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4︸︷︷︸
1st UIP

∨A10 ∨ A11
(A5)

This corresponds to the first UIP cut of the implication graph in Figure 2.2.
Then DPLL learns the conflict clause c10 := A10 ∨A11 ∨¬A4, and backtracks
up to below ¬A11, it unit-propagates ¬A4 on c10, and proceeds.

Learning must be used with some care, because it may cause an explosion in
the size of ϕ. In order to avoid this problem, modern conflict-driven DPLL
tools implement techniques for discharging learned clauses when necessary

5 Here and in other examples “...” mean that there may be possibly many other literals
in the assignment, which play no direct role in the discourse.

18

[43, 26]. Moreover, in order to avoid getting stuck into hard portions of the
search space, most DPLL tools restart the search from scratch in a controlled
manner [33]; the clauses which have been learned avoid exploring the same
search tree again.

2.4.2 The Abstract-DPLL logical framework

This section is taken from [22].

[45, 41, 40, 42] proposed an abstract rule-based formulation of DPLL (Ab-
stract DPLL). In this framework, DPLL is modeled as a transition system.
A state is either fail or a pair 〈µ | ϕ〉, ϕ being a CNF Boolean formula and µ
being a set of annotated literals, representing the current truth assignment.
All DPLL steps are seen as transitions in the form 〈µ | ϕ〉 ⇒ 〈µ′ | ϕ′〉, and
are applications of the conditioned transition rules described in Figure 2.3 6 .
The first five rules represent respectively the unit-propagation step of de-
duce, the literal selection in decide next branch, the failure step of row 12-13
in Figure 2.1, the backjumping and learning mechanisms of analyze conflict
and backtrack. The last two rules represent the discharging and restart mech-
anisms described, e.g., in [26] and [33].

The only non-obvious rule is Backjump, which deserves some more explana-
tion: if a branch µ ∪ {l} ∪ µ′ falsifies one clause C (the conflicting clause),
and a conflict clause C ′ ∨ l′ 7 can be computed from C such that (C ′ ∨ l′) is
entailed by ϕ∧C, ¬C ′ ⊆ µ, l′ 6∈ µ, and l′ or ¬l′ occur in ϕ or in µ∪{l}∪µ′,
then it is possible to backjump up to µ, and hence unit-propagate l′ on the
conflict clause (C ′ ∨ l′).

Example 2.4.2. Consider the problem in Example 2.4.1 and Figure 2.2.

6The formalization of the rules in [41, 40, 42] changes slightly from paper to paper.
Here we report the most-recent one from [42].

7Also called the backjump clause in [42].

19

if

{
µ |= ¬C
l is undefined in µ

Unit-Propagate: 〈µ | ϕ,C ∨ l〉 ⇒ 〈µ, l | ϕ,C ∨ l〉

if

{
l or ¬l occurs in ϕ
l is undefined in µ

Decide: 〈µ | ϕ〉 ⇒ 〈µ, l | ϕ〉

if

{
µ |= ¬C
µ contains no decision literals

Fail: 〈µ | ϕ,C〉 ⇒ fail

if



µ, l, µ′ |= ¬C
there is some clause C ′ ∨ l′ s.t. :
ϕ,C |= C ′ ∨ l′ and µ |= ¬C ′
l′ is undefined in µ
l′ or ¬l′ occurs in ϕ or
in µ ∪ {l} ∪ µ′

Backjump: 〈µ, l, µ′ | ϕ,C〉 ⇒ 〈µ, l′ | ϕ,C〉

if

{
all atoms in C occur in ϕ or in µ
ϕ |= C

Learn: 〈µ | ϕ〉 ⇒ 〈µ | ϕ,C〉

if
{
ϕ |= C

Discharge: 〈µ | ϕ,C〉 ⇒ 〈µ | ϕ〉

Restart: 〈µ | ϕ〉 ⇒ 〈∅ | ϕ〉

Figure 2.3: The Abstract-DPLL logical framework from [42]. In the Back-
jump rule, C and C ′ ∨ l′ represent the conflicting and the conflict clause
respectively.

20

The execution can be represented in Abstract-DPLL as follows:

...

〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .. |c1, ..., c9〉
⇒ (Decide A1)

〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1 |c1, ..., c9〉
⇒ (UnitP. A2)

〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2 |c1, ..., c9〉
⇒ (UnitP. A3)

...

〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2, A3, A4, A5, A6|c1, ..., c9〉
⇒ (Learn c10)

〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2, A3, A4, A5, A6|c1, ..., c9, c10〉
⇒ (Backjump)

〈..,¬A9, ..,¬A10, ..,¬A11,¬A1 |c1, ..., c9, c10〉
⇒ (...)

...

c1, ..., c10 being the clauses in Figure 2.2.

If a finite sequence 〈∅ | ϕ〉 ⇒ 〈µ1 | ϕ1〉 ⇒ . . . ⇒ fail is found, then the
formula is unsatisfiable; if a finite sequence 〈∅ | ϕ〉 ⇒ . . . ⇒ 〈µn | ϕn〉 is
found so that no rule can be further applied, then the formula is satisfiable.
Different strategies in applying the rules correspond to different variants of
the algorithm. [41, 42] provide a group of results about termination, correct-
ness and completeness of various configurations. Importantly, notice only
the second, third and fourth rules are strictly necessary for correctness and
completeness [41]. We refer the reader to [41, 40, 42] for further details.

21

2.5 The MiniSat solver

MiniSat is at the moment one of the most efficient SAT solvers. MiniSat was
recently awarded in the competitive events for SAT solvers, SAT Competition
[11] and SAT-Race 2006 [12]. It employs conflict-driven learning and uses a
two-watched-literal scheme [39] for efficient BCP. It is an open-source SAT
solver. Easy to modify, it can be integrated as a backend to another tool
that needs a SAT solver.

MiniSat solves satisfiability problems that are in DIMACS conjunctive nor-
mal form (see §2.3.3).

In order to run MiniSat we need to launch the MiniSat executable file from
a shell passing as argument the path of the file that stores the DIMACS
CNF formula we want to solve the satisfiability. MiniSat checks the formula
and returns Sat if the formula has a model, otherwise it returns Unsat. It is
possible also to obtain the output in a file, passing to MiniSat a second argu-
ment, the path of the output file. MiniSat will print in the file Sat or Unsat,
depending on the satisfiability of the formula. If the formula is satisfiable,
MiniSat will return also the model that it has found for the formula.

Let’s see now how MiniSat works internally [13]. First MiniSat creates an
instance of the solver. Then it adds many variables as indicated in the first
valid (not commented) row of the input file. The variables indexes are stored
in a queue. Then it adds one clause at a time in a list. After the addition
of each clause, MiniSat checks if there are some trivial conflicts between the
current clause and the previous ones (for example it is able to detect the
conflict between the simple clauses x1 and ¬x1). If a conflict is detected,
MiniSat exits and returns Unsat.

Otherwise, when all the clauses are added to the solver, MiniSat makes some
simplifications on the original formula. Also here MiniSat can sometimes
detect conflicts and exit returning Unsat.

At the end it solves the satisfiability problem of the simplified propositional
formula, and it returns Sat or Unsat.

Every time MiniSat resets its data structures for a new SAT instance to solve.
If we have to solve a set of related SAT instances {φ1, φ2, . . . , φn}, which can
share variables and clauses, we may use MiniSat incrementally, achieving a
big performance gain.

A useful feature of MiniSAT is the so called incremental SAT solving. The
idea behind this is that one uses the solver to find a solution for a general
problem and then uses the result from this computation to solve similar,

22

more specific problems in a very short time. Instead of adding the additional
problem clauses directly, they are passed to the solver as a parameter of
additional clauses, called assumptions. The advantage of this approach is
that the solver can easily distinguish the general problem clauses from the
special problem clauses, so if the problem is unsatisfiable the solver can return
to the initial, general problem state by discarding all changes that were made
based on the assumptions. In order to perform incremental SAT solving in
MiniSat we need to use the source code of MiniSat. We have to write a
program in C or C++ that uses the application programming interface (API)
of MiniSat.

23

Chapter 3

CSPs and configuration
problems

3.1 Basics on constraint programming

Constraint programming is a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial in-
telligence, computer science, databases, programming languages, and opera-
tions research. Constraint programming is currently applied with success to
many domains, such as scheduling, planning, vehicle routing, configuration,
networks, and bioinformatics.

Constraint programming is the use of constraints as a programming language
to encode and solve problems. This is often done by embedding constraints
into a programming language, which is called the host language.

Constraints differ from the common primitives of imperative programming
languages in that they do not specify a step or a sequence of steps to execute,
but rather the properties of a solution to be found. This makes the constraint
programming a form of declarative programming. Constraint programming
began with constraint logic programming, which embeds constraints into a
logic program.

The constraints used in constraint programming are of various kinds, and are
typically over some specific domains. Some popular domains for constraint
programming are:

• Boolean domains

• integer domains

24

• linear domains

• finite domains

• mixed domains

Finite domains is one of the most successful domains of constraint program-
ming. Finite domain solvers are useful for solving constraint satisfaction
problems.

3.1.1 Constraint satisfaction

Some parts here follow [15]. In artificial intelligence and operations research,
constraint satisfaction is the process of finding a solution to a set of con-
straints that impose some conditions on a certain number of variables. A
solution is therefore a set of assignments of values to each variable that sat-
isfies all the constraints.

The techniques used in constraint satisfaction depend on the kind of con-
straints. There are many possible kind of constraints. Often used are con-
straints on a finite domain.

Constraint satisfaction problems on finite domains are typically solved using
search algorithms. The most used techniques are variants of backtracking,
constraint propagation, and local search. The latter techniques are used on
problems with nonlinear constraints.

Variable elimination and the simplex algorithm are used for solving linear
and polynomial equations and inequalities, and problems containing variables
with infinite domain.

Many problems in computer science and mathematics can be formulated as
constraint satisfaction problems. Moreover, many real-life problems can be
represented as constraint satisfaction problems.

A constraint satisfaction problem (CSP) is defined as a triplet 〈X, D, C〉,
where:

• X = {x1, x2, . . . , xn} is a set of n variables

• D = {D1, D2, . . . , Dn} is a set of n domains

• C = {c1, c2, . . . , ck} is a set of k constraints

• for each i ∈ {1, . . . , n}, Di is the domain of the variable xi

25

• n, k ∈ N

We are interested on CSPs where:

• X is a finite set

• D is a finite set

• C is a finite set

• every Di is a finite and discrete set

• every xi is an integer variable

Every constraint ci is defined on a set of variables V (ci) ⊆ X. The constraint
ci restricts the domains of the variables V (ci). For each i, ci defines implicity
a relation R(ci) on V (ci). Such R(ci) is the set of all the tuples that satisfy the
constraint ci. A constraint is defined by an expression in a certain language.

An example of CSP is the n-queens problem, the problem to place n queens
on a n x n chessboard so that they do not threat one another. Assuming
that each queen is in a different column, we have a set of n variables, {x1,
x2, . . . , xn}, and each variable xi is assigned to the queen in the ith column
and indicates the row position of the queen. Obviously each variable xi has
domain Di = {1, 2, . . . , n}. The constraints have to encode the fact that
two arbitrary queens cannot be on the same row, column or diagonal. Since
we have already assumed that each queen is in a different column, it follows
that for each i, j ∈ {1, 2, . . . , n}, such that i 6= j, we have:

• xi 6= xj

• xi - xj 6= i - j

• xj - xi 6= j - i

An assignment for a CSP is an element of the cartesian product D1 x D2 x . . .
x Dn. An assignment is a solution of a CSP if it satisfies all the constraints
in C. The set of all the solutions of a CSP is called solution space.

A set K ⊆ C is defined consistent if and only if K has a solution. K is
inconsistent if and only if K has no solution.

The arity of a constraint is the number of variables it involves. The arity of
a CSP is equal to the arity of its highest-arity constraint. Most of the CSPs

26

are binary (with arity two). We call multiple CSP a CSP with arity greater
than two.

A binary CSP can be represented by a constraint graph (called also constraint
network), where the vertices correspond to the CSP variables and the arcs
correspond to the CSP constraints. Similarly, a multiple CSP can be instead
represented by a constraint hypergraph, where hypervertices correspond to
the variables and the hyperedges correspond to the constraints 1 . Two
hypervertices are in the same hyperedge if the two related variables occur in
a constraint.

A CSP solver is a program that takes in input a certain kind of CSPs and,
if the CSP is consistent (has some solutions), returns one or all the solutions
of the CSP. This is a decision problem. It is possible also to formulate
the optimization version of the problem, where the solver returns only the
optimal solution (or the optimal solutions), according to a certain criterion.

Reformulation of multiple CSPs in lower arity CSPs is a common procedure
because CSPs of low arity are considerably simpler to treat. Most of the
algorithms for solving CSPs restrict to binary CSPs.

Solving a constraint satisfaction problem on a finite domain is an NP-complete
problem in general. For some special kind of CSPs there are polynomial-time
algorithms that solve them.

3.2 Configuration problems

We take into account [3, 4, 5, 6].

The structure of a configuration problem derives from the CSP structure.
The set of constraints is split into two sets: B, which is called background
and represents the set of the constraints that must be always satisfied, and F,
which is called foreground and represents the set of the dynamic constraints.
Dynamic constraints can be added to B, but the background B must be
consistent. If there is a conflict, some dynamic constraints must be relaxed
in order to restore the consistency in B. Typically B ∪ F is not consistent.

Formally, a configuration problem is defined as 〈X, D, B, F〉, where:

1 A hypergraph is a generalization of a graph, where edges can connect any number of
vertices. Formally, a hypergraph H is a pair (X, E) where X is a set of elements, called
hypervertices, and E is a set of non-empty subsets of X, called hyperedges. Practically, a
hypergraph can be seen as a graph, where an edge can connect more than two vertices.
Graphs are hypergraphs where the hyperedges connects two hypervertices.

27

• X has the same meaning of X for a CSP

• D has the same meaning of D for a CSP

• B is the background

• F is the foreground

In a configuration problem it is defined also a partial order relation 2 on
the constraints set (a binary preference relation ≺ among the constraints,
in order to express the fact that some constraints are more important than
other ones). If c1 and c2 are constraints, we write c1 ≺ c2 to mean that the
satisfaction of c1 is preferred to the satisfaction of c2. Sometimes ≺ could
be a strict partial order relation (every preference defined in the relation ≺
involves two distinct constraints). When ≺ is a total order relation (all the
constraints can be listed in an ordered sequence) we denote it as <. A CSP is
a decision problem while a configuration problem is an optimization problem.
We will see that the criterion to find the optimum is based on the preference
relation ≺.

In §3.4.1, a simple structure of configuration problem is given using the CP
language. Splitting the constraints set into background and foreground, and
assigning some preferences between the constraints, we can build a partial
order relation ≺.

2 A partial order is a binary relation E over a set G which is reflexive, antisymmetric,
and transitive, i.e., for all a, b, c ∈ G, we have that:

• a E a (reflexivity)

• if a E b and b E a, then a = b (antisymmetry)

• if a E b and b E c, then a E c (transitivity)

A partial order is a total order if the binary relation E is total, i.e., for all a, b ∈ G, we
have that:

• a E b or b E a (totality)

In a total order, any pair of elements in the set G are mutually comparable under
the relation E. A partial order lacks the totality condition, and only some elements are
comparable between each other.

A strict partial (total) order is a partial (total) order that is not reflexive. In a strict
partial (total) order the relation is denoted as C, to mean the lack of reflexivity.

28

3.2.1 Preferred relaxations and preferred conflicts

A set T ⊆ F is a relaxation of a configuration problem 〈X, D, B, F〉 if and
only if B ∪ T has a solution. In other words, a relaxation is a subset of F
that is consistent with respect to B. A relaxation exists if and only if B is
consistent.
A set Q ⊆ F is a conflict of a configuration problem 〈X, D, B, F〉 if and
only if B ∪ Q has no solution. In other words, a conflict is a subset of F
that is inconsistent with respect to B. A conflict exists if and only if B ∪ F
is inconsistent.
We assume that the partial order relation ≺ among the constraints is always
strict. We extend this partial order to a linearization < of ≺, which is
a strict total order. The linearization < is a superset of ≺ and it fulfills
the preferences among the constraints. It is a complete specification of this
ranking, and it respects the partial order ≺, which is incomplete. Typically
the partial order ≺, and therefore the linearization <, are defined only among
the dynamic constraints, the constraints in F.

A total order defined on elements can be extended to a total order defined
on sets of elements. Hence, in order to compare two relaxations and two
conflicts, we introduce two lexicographic extensions of <, denoted by <lex

and <antilex, and defined over sets of constraints. With these two extensions
we will be able to compare lexicographically two arbitrary sets of constraints.

Given a strict total order < defined on F, we can enumerate the elements
of F in increasing <-order c1, . . . , cn (starting with the most important
constraints) and compare two subsets X, Y of F lexicographically:

X <lex Y

⇔

∃ j : cj ∈ X \ Y and X ∩ { c1, . . . , cj−1 } = Y ∩ { c1, . . . , cj−1 }

A preferred relaxation is a relaxation that respects the preference relation
≺ and maximizes the selection of the most important constraints. Given a
configuration problem P = 〈X, D, B, F, <〉 where < is a strict total order
defined on F, a relaxation T of P is a preferred relaxation of P if and only if
there is no other relaxation T ∗ of P such that T ∗ <lex T.

As we already know, in general the preference relation ≺ defined on F is a
partial order. In this case a relaxation T of P = 〈X, D, B, F, ≺〉 is a preferred

29

relaxation of P if and only if there is a linearization < of ≺ such that T is a
preferred relaxation of 〈X, D, B, F, <〉. In order to compute the preferred
relaxation of a configuration problem P = 〈X, D, B, F, ≺〉, first we have to
build from ≺ a linearization <, which is a strict total order.

If ≺ is a strict total order and B is consistent, then P has a unique preferred
relaxation. Otherwise, in general, different linearizations provide different
preferred relaxations.

A preferred relaxation is maximal (non-extensible) because all its proper su-
persets have no solution. If there are no preferences among the constraints,
namely ≺ is the empty relation, then the maximal relaxations and the pre-
ferred relaxations coincide.

In the same way we define now the preferred conflicts. Given a strict total
order < defined on F, we can enumerate the elements of F in increasing <-
order c1, . . . , cn (starting with the most important constraints) and compare
two subsets X, Y of F lexicographically in the reverse order:

X <antilex Y

⇔

∃ j : cj ∈ Y \ X and X ∩ { cj+1, . . . , cn } = Y ∩ { cj+1, . . . , cn }

A preferred conflict is a conflict that respects the preference relation ≺ mini-
mizing the selection of the least important constraints. Given a configuration
problem P = 〈X, D, B, F, <〉 where < is a strict total order defined on F,
a conflict Q of P is a preferred conflict of P if and only if there is no other
conflict Q∗ of P such that Q∗ <antilex Q.

In the general case, when the preference relation ≺ defined on F is a strict
partial order, a conflict Q of P = 〈X, D, B, F, ≺〉 is a preferred conflict of
P if and only if there is a linearization < of ≺ such that Q is a preferred
conflict of 〈X, D, B, F, <〉. As before, to compute the preferred conflict
of a configuration problem P = 〈X, D, B, F, ≺〉, first we have to build a
linearization < of ≺.

If ≺ is a strict total order and B ∪ F is inconsistent, then P has a unique
preferred conflict. Otherwise, in general, different linearizations provide dif-
ferent preferred conflicts.

A preferred conflict is minimal (irreducible) because all its proper subsets
have a solution. If there are no preferences among the constraints, then the
minimal conflicts and the preferred conflicts coincide.

30

There is a strong duality between relaxations and conflicts. Given X, Y ⊆
F, the relationship between <antilex and <lex is the following:

X <antilex Y ⇔ Y (<−1)lex X

If the constraints in F are mutually independent (e.g. have the form of
assignments xi = vi), conflicts correspond to the complements of relaxations
of the negated problem with inverted preferences.

Let F be a set of variable-value assignments of the form xi = vi, and let ¬cj
�∗ ¬ci ⇔ ci ≺ cj, T is a preferred relaxation (conflict) of P = 〈X, D, B, F,
≺〉 if and only if {¬c | c ∈ F \ T} is a preferred conflict (relaxation) of P ∗

= 〈X, D, ¬B, {¬c | c ∈ F}, �∗〉.
We see now the constructive definitions of preferred relaxations and preferred
conflicts. Let P = 〈X, D, B, F, <〉 be a configuration problem such that < is
a strict total order defined on F, B is consistent and B ∪ F is inconsistent. We
enumerate the elements of F in increasing <-order c1, . . . , cn. The preferred
relaxation T of the problem P is Tn, where:

• T0 := ∅

• for each i ∈ {1, . . . , n} we have:

Ti =

{
Ti−1 ∪ {ci} if B ∪ Ti−1 ∪ {ci} has a solution
Ti−1 otherwise

The preferred conflict Q of P is constructed in the reversed order and it
corresponds to Q0, where:

• Qn := F

• for each i ∈ {0, 1, . . . , n-1} we have:

Qi =

{
Qi+1 \ {ci} if B ∪Qi+1 \ {ci} has no solution
Qi+1 otherwise

From these definitions we can affirm that the first (with the lowest index) con-
straint of the <-enumeration c1, . . . , cn that is not contained in the preferred
relaxation is the last (with the highest index) constraint of the preferred con-
flict. More formally, given a configuration problem P = 〈X, D, B, F, <〉,
where < is a strict total order defined on F, if Q is a preferred conflict of P

31

and T is a preferred relaxation of P, then the <-minimal element of F \ T is
the <-maximal element of Q.

Finding the preferred relaxation and the preferred conflict for a configuration
problem P are optimization problems that consider the lexicographic exten-
sions <lex and <antilex. In order to compute the preferred relaxation and the
preferred conflict of a configuration problem we follow the constructive defi-
nitions of preferred relaxation and preferred conflict. We choose an arbitrary
linearization < of the preference relation ≺, defined on the foreground F, and
then we take into account one constraint at a time. We need also a consis-
tency checker which is able to verify whether an arbitrary set of constraints
is consistent (has a solution) or not.

We observe now two trivial cases for a configuration problem. If a config-
uration problem has an inconsistent background B, then there is only one
preferred conflict, the empty set, and there are no relaxations. If B ∪ F
is consistent, then F is the only one preferred relaxation, and there are no
conflicts.

In the general case, as discussed previously, in order to find the preferred
relaxation T a straightforward algorithm is to start from the background B,
and add iteratively (if we don’t detect inconsistencies) the constraints of the
foreground F in the increasing <-order c1, . . . , cn. For the preferred conflict
Q a straightforward algorithm is to start instead from the whole set B ∪ F,
and we remove iteratively (if we don’t find solutions) the constraints of the
foreground F in the decreasing <-order cn, . . . , c1.

3.3 The QuickXplain algorithm

We just saw how to find the preferred relaxation and the preferred conflict for
a configuration problem where the dynamic constraints are partially ordered.
We have already defined two algorithms that works iteratively. We want now
to reduce the number of consistency checks. In order to achieve this goal we
will use the strategy to add and remove whole sets of constraints.

Let us split the foreground F into two subsets F1 and F2 (F = F1 ∪ F2). If
F1 and F2 are disjoint (F1 ∩ F2 = ∅) and if there are no constraints in F2

that are preferred to a constraint of F1, we have that:

• if T1 is a preferred relaxation of 〈X, D, B, F1, ≺〉 and T2 is a pre-
ferred relaxation of 〈X, D, B ∪ T1, F2, ≺〉, then T1 ∪ T2 is a preferred
relaxation of 〈X, D, B, F1 ∪ F2, ≺〉.

32

• if Q2 is a preferred conflict of 〈X, D, B ∪ F1, F2, ≺〉 and Q1 is a
preferred conflict of 〈X, D, B ∪ Q2, F1, ≺〉, then Q1 ∪ Q2 is a preferred
conflict of 〈X, D, B, F1 ∪ F2, ≺〉.

We introduce now the QuickXplain algorithm. This algorithm computes the
preferred relaxation and the preferred conflict for a configuration problem
with dynamic constraints partially ordered. It uses the above properties and
we will show it in two different versions, one for the preferred relaxation, and
the other for the preferred conflict. The algorithm is recursive and uses the
divide-and-conquer paradigm. QuickXplain works by recursively breaking
down a problem into two sub-problems of the same type, until these become
simple enough to be solved directly.

QuickXplain is a meta-algorithm, parametric on two functions: isConsis-
tent() and split().

The function isConsistent() is a consistency checker on a set of constraints.
It returns true if the set of constraints has solutions, otherwise it returns
false.

The function split() gives a positive number smaller than n, and can be
chosen in different ways. In order to exploit in the best way the properties
of QuickXplain, we will divide the foreground F in two smaller sets of the
same size, choosing split(n) := n/2.

The input of this algorithm is a configuration problem with a background B,
a foreground F, and a strict partial order ≺ defined on F, which expresses
some preferences among the foreground constraints. As we discussed before,
in order to compute preferred relaxations and preferred conflicts we need a
strict total order <, an extension of ≺ that enumerates all the constraints in
F. The QuickXplain algorithm chooses arbitrarily <.

For our configuration problems we consider only strict partial orders and
strict total orders. We do not allow a constraint to be in relation with itself.
In fact, the binary relation ≺, defined among the foreground constraints,
expresses the preference between two constraints and the reflexivity of ≺
makes no sense (a constraint can not be preferred to itself).

In the implementation of QuickXplain, a directed graph is used for com-
puting the linearization. Every vertex of the graph represents a different
foreground constraint, and a directed arc between two vertexes represents
the fact that the constraint of the first vertex is preferred to the constraint
of the second vertex. The transitive property of ≺ ensures that, for any path
in the graph, the constraints of the first vertexes are preferred respect the
constraints represented by the vertexes at the end of the path.

33

The linearization algorithm returns the total order, the enumeration of all the
constraints, as follows. The first constraints of the enumeration correspond to
two different kinds of constraint: constraints that are not in relation with any
other constraints, and the most preferred ones (constraints that are preferred
to other constraints, but no other constraints can be preferred to them).
Depending on a user setting, the algorithm can returns these first constraints
respecting the same order in which they are stored or in a different shuffled
order. Then, all the other constraints are enumerated. The algorithm uses
a queue which stores the vertexes to enumerate. At the beginning all the
“first” constraints are added to the queue. Then the algorithm traverses the
preferences graph in breadth-first search (BFS), and it appends 3 at the end
of the queue only those vertexes having no incoming edges from vertexes not
yet included in the queue. The enumeration of the constraints is obtained
listing the elements of the queue, from the first to the last.

It is important to observe that for each step the foreground F is divided
into two disjoint sets, F1 and F2, where, due to the linearization <, all
the constraints contained in F1 are more important to any constraint of F2.
Hence, we can use the properties stated above, applying the divide-and-
conquer strategy.

Let us start first with the preferred conflict version of QuickXplain. Initially
all the constraints (background B and foreground F) are passed to the con-
sistency checker. If they are all satisfied, the whole configuration problem is
consistent and there are no conflicts.

If instead B ∪ F is inconsistent, we try to remove some dynamic constraints.
At each step the foreground F is split in two smaller sets: F1 and F2. There
are two recursive calls where the problem size is simpler. In the first one it
is used B ∪ F1 as background and F2 as foreground, while in the second one
it is used B ∪ Q2 as background and F1 as foreground. The first call returns
Q2 as preferred conflict, while the second one returns Q1.

Using the divide-and-conquer technique we reduce the number of consistency
checks. When we split the foreground F in F1 and F2, if the half problem
with F2 as foreground has an inconsistent background (B ∪ F1), then we can
remove all the dynamic constraints contained in F2 with only a single con-
sistency check 4 . Otherwise, if the current background B ∪ F1 is consistent,

3 The queue does not contains duplicates. A vertex is added to the queue only if the
queue does not contain it.

4 The parameter ∆ represents the set of dynamic constraints that the previous iteration
of QuickXplain has added to the background B. When ∆ = ∅, no constraints are added
to B in the previous iteration, and therefore we skip the consistency check because the
algorithm has already called the method isConsistent() on that consistent background B.

34

we try to re-add some dynamic constraints that are in F2.

The recursion stops when the foreground contains only one constraint or
when the background is not consistent. In these cases we do not split again
the foreground. At each step, foreground and background change, the dy-
namic constraints move from the foreground to the background and back.

The output, which is built step by step after the recursive calls (Q1 ∪ Q2),
is the preferred conflict for a configuration problem with a background B, a
foreground F, and a preferences partial order ≺ defined on F.

3.3.1 QuickXplain pseudocode for the preferred con-
flict

Algorithm 3.3.1: QuickXplain C(B, F, ≺)

if isConsistent(B ∪ F)
then return (no conflicts)

else


if F = ∅

then return (∅)
else return (QuickXplain C∗(B, B, F, ≺))

Algorithm 3.3.2: QuickXplain C∗(B, ∆, F, ≺)

if ∆ 6= ∅

then

{
if ¬isConsistent(B)

then return (∅)
else if F = {c}
then return ({c})

else



let {α1, α2, . . . , αn} an enumeration of F that extends ≺
comment: a strict total order that extends the partial order ≺
k := split(n) (with k ∈ {1, . . . , n− 1})
comment: we will choose the function split(n) := n/2

F1 := {α1, . . . , αk}
F2 := {αk+1, . . . , αn}
comment: F is split in 2 smaller sets: F1 and F2

Q2 := QuickXplain C∗(B ∪ F1, F1, F2, ≺)
Q1 := QuickXplain C∗(B ∪Q2, Q2, F1, ≺)
return (Q1 ∪Q2)

35

We see now the other version of QuickXplain, for computing the preferred
relaxation. It works in a similar way of the previous version, using the duality
between relaxations and conflicts.

Initially we check the consistency of the background B. If some constraints in
B are not satisfied, there is a conflict in B (the background B has no solution)
and the configuration problem has no relaxations.

Otherwise, B is consistent, and therefore we try to add some dynamic con-
straints to B. As before, at each step the foreground F is split in two smaller
sets: F1 and F2, and the algorithm is recursively called on the two sub-
problems.

In the first call the background is still B and the foreground becomes F1,
while in the second call the background is B ∪ T1 and the foreground is F2.
The first call returns T1 as preferred relaxation, while the second one returns
T2.

Here, when we split the foreground F in F1 and F2, if the first half problem
is such that all the constraints in the background and in the foreground
are satisfied (B ∪ F1 is consistent), then we can add to B all the dynamic
constraints contained in F1 with only a single consistency check 5 . Otherwise,
we try to remove some dynamic constraints that are in F1.

The recursion stops when the foreground contains only one constraint or
when B ∪ F is a consistent set. In these cases we do not split again the
foreground.

The output is the preferred relaxation for a configuration problem with a
background B, a foreground F, and a preferences partial order ≺ defined on
F.

5 This time we introduced a new parameter, Ω, which is the foreground in the calling it-
eration. The parameter ∆ still represents the incremental addition of dynamic constraints
to the background B. When ∆ ∪ F = Ω, the previous iteration has added all the fore-
ground constraints of the first subproblem, hence we skip the consistency check because
the algorithm has already called the method isConsistent() on that set B ∪ F.

36

3.3.2 QuickXplain pseudocode for the preferred relax-
ation

Algorithm 3.3.3: QuickXplain R(B, F, ≺)

if ¬isConsistent(B)
then return (no relaxations)

else


if F = ∅

then return (∅)
else return (QuickXplain R∗(B, B, F, F, ≺))

Algorithm 3.3.4: QuickXplain R∗(B, ∆, F, Ω, ≺)

if ∆ ∪ F 6= Ω

then

{
if isConsistent(B ∪ F)

then return (F)
else if F = {c}
then return (∅)

else



let {α1, α2, . . . , αn} an enumeration of F that extends ≺
comment: a strict total order that extends the partial order ≺
k := split(n) (with k ∈ {1, . . . , n− 1})
comment: we will choose the function split(n) := n/2

F1 := {α1, . . . , αk}
F2 := {αk+1, . . . , αn}
comment: F is split in 2 smaller sets: F1 and F2

T1 := QuickXplain R∗(B, ∅, F1, F, ≺)
T2 := QuickXplain R∗(B ∪ T1, T1, F2, F, ≺)
return (T1 ∪ T2)

3.4 The CLab library

CLab 6 is an open source C++ library for fast backtrack-free interactive prod-
uct configuration.

Here, a problem describes a product, and it consists of two parts: a set of
variables with finite domains denoting the product free parameters, and a
set of rules (the constraints) defining the legal product configurations.

6This chapter draws on the CLab 1.0 user manual [9]

37

We are not interested on how CLab works or how it is made. We are only
interested on the problems syntax required by CLab. This language is called
CP.

3.4.1 The CP language

We explain now the CP language, a language to define problems. Here we
make two simplifications on the language (for simplicity we will call it also
CP): we will deal with only one kind of expressions, the logical expressions,
and we will take into account only natural numbers. In the original definition
of CP language, the user can define also arithmetical expressions and it is
possible to use all the integer numbers.

CP has three types: Boolean, range and enumeration. A range is a consecu-
tive and finite sequence of natural numbers. An enumeration is a finite set of
values, where a single value is like an identifier: a sequence of digits, capital
letters, small letters and underscore characters ‘ ’ that must not begin with
a digit. Range and enumeration are useful to define user types.

CP implicitly defines the Boolean type (bool) which is a range type from 0 to
1, where 0 represents false and 1 represents true. A CP description consists
of a type declaration, a variable declaration, and a rule declaration. The type
declaration is optional if no range or enumeration types are defined. Square
brackets indicate an optional part, with the only exception of a range type
declaration, that requires explicitly ‘[’ and ‘]’. A natural number is of course
a sequence of digits. A rule is an expression, namely a combination of round
brackets, identifiers, numbers and operators.

Here is the complete CP syntax:

cp ::= [type { typedecl }] variable { vardecl } rule { ruledecl }

typedecl ::= identifier [number . . number] ; [typedecl]
| identifier { idlst } ; [typedecl]

vardecl ::= vartype idlst ; [vardecl]

vartype ::= bool
| identifier

idlst ::= identifier [, idlst]

38

ruledecl ::= exp ; [ruledecl]

exp ::= number
| identifier
| ! exp
| (exp)
| exp op exp

op ::= >>| || | && | == | != | !

The semantics of the operators is defined as in C/C++ language. Hence, !,
==, !=, &&, and || denote logical negation, equality, inequality, conjunction,
and disjunction, respectively. The only exception is the operator >> that
denotes logical implication.

The only unary operator is the negation. Equality, inequality and implication
are binary operators, while conjunction and disjunction can have two or more
operands.

Precedence order and associativity of the operators are defined in this way:

Operators Associativity
! right to left
!= == left to right
&& left to right
|| left to right
>> left to right

If another order is required, parentheses can be used in the conventional way.

In order to become familiar with this syntax, we show now a simple problem
written in CP language. A school gives the possibility to the students to learn
a foreign language in the afternoon or in the night. Four possible languages
can be chosen: Japanese, Chinese, Korean and Russian. Unfortunately at
the moment no Chinese teachers have been found by the school, hence only
Japanese, Korean and Russian language are available. Each student must
attend one and only one language course. For each language, the students
can choose the level of difficulty of the course. Five possible levels have been
thought by the school, but only the first three levels are available to the
students.

39

Hence, in CP we have three types to enumerate languages, levels, time, and
the correspondent three variables to express the choices of the students. The
rules describe formally the constraints of the problem. Here is the CP syntax
for the example above:

type

language {Japanese, Chinese, Korean, Russian};

level [1 .. 5];

when {morning, afternoon, night};

variable

language lang;

level le;

when w;

rule

(le == 1 || le == 2 || le == 3);

lang != Chinese;

w != morning;

3.5 Related work

There exist several commercial tools to solve constraint satisfaction problems
and configuration problems. There are also free libraries that allow to develop
configuration or constraint-based applications. Some of these tools/libraries
are:

• ILOG [54], which includes many commercial tools that solve and man-
age complex CSPs and configuration problems

• Configit Product Modeler [55], a shareware tool for developing cus-
tomized configurator applications

• Choco [56], a free software architecture for variables domains, con-
straints, propagation and tree search

• Comet [57], a free tool for solving complex combinatorial optimization
problems in areas such as resource allocation and scheduling

40

• JaCoP [58], a Java library for modeling and solving specific CSP do-
mains

• Cream [59], a Java library useful to develop programs requiring con-
straint satisfaction or optimization on finite domains

• Koalog [60], a commercial tool for solving CSPs and complex problems
in areas such as scheduling, routing, configuration

• CLab [8], a C++ library for fast backtrack-free interactive product con-
figuration

• Gecode [61], a C++ library for developing constraint-based systems and
applications

41

Part II

Original contributions

42

Chapter 4

Solving CSPs via SAT encoding

In order to implement the QuickXplain algorithm we need a consistency
checker (see the function isConsistent() in §3.3), which is able to verify
whether an arbitrary set of constraints is consistent (has a solution) or not.
The first idea that comes to mind is obviously to use a CSP solver as con-
sistency checker. Although there exists free CSP solvers (see §3.5), no free
solvers have been found for the chosen CP problems. However, a CSP can
be transformed into SAT. In fact, given a CSP 〈X, D, C〉, each constraint
ci ∈ C can be encoded into a propositional formula ϕci , and the set of all the
constraints C becomes the conjunction of all the correspondent constraints
formulas: ϕc1 ∧ ϕc2 ∧ · · · ∧ ϕcn .

A propositional formula can be converted in CNF and a SAT solver can check
whether it is satisfiable or not. Hence, the CSP 〈X, D, C〉 is consistent (has
solutions) if and only if ϕc1∧ϕc2∧· · ·∧ϕcn is satisfiable. In the same way, the
set K = {cj, cj+1, . . . , ck} ⊆ C is consistent if and only if the propositional
formula ϕcj ∧ ϕcj+1

∧ · · · ∧ ϕck is satisfiable.

In this chapter we will explain in details how to encode a CSP in a propo-
sitional formula. First of all the rules of the constraints are converted using
only Boolean variables and then a CNF conversion is made.

4.1 The Boolean encoding

As explained in §3.4.1, a problem written in CP language can have variables
of only three possible types: Boolean, range or enumeration. The range
type has a domain of n consecutive natural numbers, while an enumeration
domain is composed in general by n different alphanumeric values. The first

43

step of our Boolean encoding is to convert every non-Boolean domain of n
elements in the set 0, 1, . . . , n-1, realizing a bijective map, a correspondence,
from the original domain to the first n natural numbers, and vice-versa.

The second step is to represent every value in the set 0, 1, . . . , n-1 using only
Boolean values.

Every natural number k>1 can be written in binary representation using
dlog2(k)e bits 1 , namely a sequence of dlog2(k)e digits in {0, 1}.
Following this idea, if a non-Boolean domain D needs y = dlog2(|D|)e 2

bits to encode its elements, every value d ∈ D can be represented in binary
as an array of Boolean values d = (dy−1, . . . , d1, d0). Analogously, every
non-Boolean variable x which has domain D can be encoded by an array of
Boolean variables x = (xy−1, . . . , x1, x0).

Thus, the formula x = d can be represented as the Boolean formula xy−1 =
dy−1 ∧ · · · ∧ x1 = d1 ∧ x0 = d0, which can be written also as x = d, and
the formula x 6= d can be represented as the Boolean formula xy−1 6= dy−1 ∨
· · · ∨ x1 6= d1 ∨ x0 6= d0, which can be written also as x 6= d. In the real
implementation, each sub-formula xi = di is simplified in one of the two
atomic sub-formulas xi and ¬xi, depending on the Boolean value of di, that
can be respectively 1 or 0. Analogously, we simplified every xi 6= di as ¬xi
or xi.

In CP language, the only operators that involve non-Boolean operands are
equalities (==) and inequalities (!=). But now we know how to convert such
expressions into Boolean formulas. Hence, since logical negation (!), con-
junction (&&), disjunction (||) and logical implication (>>) are defined only
among Boolean formulas, any CP expression can be rewritten as a Boolean
formula.

It is important to observe that this encoding does not guarantee surjectivity.
In particular, the encoding is surjective only when the domain D to encode
has a cardinality |D| which is a multiple of the number two. In fact, if the
domain D contains k values (namely, |D| = k), then the Boolean variables
introduced by the encoding can represent the set of the first 2dlog2(k)e natural
numbers, whose cardinality is in general greater than k. Hence, the encoding
introduces Boolean variables that can represent non-allowed values 3 . The

1 The d e function, called “ceiling”, maps every number to the next higher integer.
Formally, dxe = min{n ∈ Z | n ≥ x}.

2 In this context, the notation | | represents the cardinality of a set, which is the number
of its elements.

3 As before, we consider only the case of k>1. When k = 0, the domain D is empty
and we do not need to encode it. When k = 1, we use only one bit to represent D, and

44

number of these extra-values are 2dlog2(k)e− k. For example, a domain of five
elements is encoded using three bits (dlog2(5)e = 3), but three bits encode
the first eight natural numbers (23 = 8).

Therefore, in our implementation the Boolean encoding adds a “domain con-
straint” that forbids the 2dlog2(k)e − k unwanted combinations.

Overall, in order to encode a CSP into a Boolean formula we have to:

1. convert the domain of each non-Boolean variable in a set of consecutive
natural numbers

2. introduce an array of Boolean variables for each non-Boolean variable

3. add the domain constraint

4. replace all the equalities and inequalities among non-Boolean operands
(variables and/or values) in each expression defined in the constraints

For example, the domain {Monday, Tuesday, Wednesday, Thursday, Friday}
is first converted in {0, 1, 2, 3, 4}. Then, using three bits, all the variables
and the values of this domain are encoded. Here is the binary encoding of
the domain values:

original value number binary encoding
Monday 0 000
Tuesday 1 001
Wednesday 2 010
Thursday 3 011
Friday 4 100

The domain constraint forbids the values that are not allowed in the domain.
Here are the values that are not allowed:

number binary encoding
5 101
6 110
7 111

we have one non-allowed value.

45

Due to the domain constraint, it is possible to convert any expression in
a Boolean formula and vice-versa: from any Boolean formula, knowing the
domain of the variables involved in the formula, it is possible to go back to
the original non-Boolean formula. This will be useful when we have to find
the solution of the original problem from a solution of the correspondent
encoded propositional formula, returned by a SAT solver.

4.2 CNF conversion and incremental SAT solv-

ing

We have seen how to represent a problem using only Boolean variables and
Boolean values. The next step is to convert in CNF the Boolean formulas
representing the constraints expressions. This step is fundamental because
MiniSat, the SAT solver used, accepts only formulas in CNF. In the im-
plementation the labeling CNF conversion is used. In particular the first
algorithm explained in (§2.3.2) is implemented.

All the constraints are converted in CNF Boolean formulas. Checking the
consistency of a constraints set is equivalent to verify if the related Boolean
formulas are satisfiable. When the QuickXplain algorithm is called (§3.3),
every consistency check (function isConsistent()) calls MiniSat on the con-
junction of the CNF Boolean formulas converted from the constraints rules
that are selected.

The tool can be set to use classic or incremental SAT solving. By default it
uses MiniSat incrementally.

From §4.1 and §2.3.2 we know that every constraint ci of the configuration
problem has an associated CNF Boolean formula ϕci , that includes in general
more than one clause. During the CNF conversion new Boolean variables are
introduced in order to represent the labels needed by the CNF conversion
algorithm, and every ϕci is stored for each constraint ci in two representations:
the classic one with Boolean variables, operators and parentheses, and that
one in DIMACS format.

If QuickXplain is called using the classic SAT solving option, for every con-
sistency check on a set of constraints K = {cj, cj+1, . . . , ck}, the correspon-
dent formulas ϕcj , ϕcj+1

, . . . , ϕck are selected, and the clauses of the formula
ϕcj ∧ ϕcj+1

∧ · · · ∧ ϕck are written in DIMACS format in a textfile. Hence,
MiniSat checks the satisfiability of the Boolean formula written in the textfile.

When the tool is set to the incremental SAT solving option, a C++ program

46

interfaces with MiniSat, which is used with the mechanism of the assump-
tions. As seen in §2.5, incremental SAT solving is useful when we want to
solve the satisfiability of a set of related formulas {φ1, φ2, . . . , φn}. In this
modality MiniSat stores a general formula from which is possible, passing
some assumptions to the solver, to check the satisfiability of the formulas in
{φ1, φ2, . . . , φn}.
In our case, after the creation of a solver instance, we add to the solver all
the Boolean variables and all the clauses of the formula ϕc1 ∧ϕc2 ∧ · · · ∧ϕcn ,
which represents the problem with all its constraints. In order to check the
consistency of a certain constraint ci we need to say to the solver to check
the formula ϕci .

From the labeling CNF conversion we know that there is a Boolean variable
bi for each formula ϕci . Since the CNF conversion adds the clause bi ⇔ ϕci
for each constraint ci, bi is a label for the whole formula ϕci (and hence for
the constraint ci), and it is true if and only if ϕci is true. In order to select
some constraints, we just need to assign true to the Boolean variables that
label the constraints to select. This mechanism corresponds to make the
assumptions in MiniSat.

For example, in order to check the consistency of the constraint cj we pass the
assumption bj, and to check the consistency of the set {ϕcj ∧ϕcj+1

∧· · ·∧ϕck}
we have to assume bj ∧ bj+1∧ · · ·∧ bk. Every time we want to solve a formula
we need to reset from the solver the old assumptions and insert the new ones.

In order to perform incremental SAT solving we need to remove, for each
constraint ci, the first clause of the associated formula ϕci . The first clause of
ϕci corresponds to the Boolean variable bi (unit clause) that labels the whole
formula ϕci . This is done because at the beginning all the CNF Boolean
formulas of all the constraints must be added to the SAT solver, but no
conditions on the constraints consistency must be specified. The assumptions
are useful to select the constraints. In fact, when QuickXplain checks the
consistency on a certain set of constraints, it first selects the first clauses
(the labels) of the constraints involved, and it adds to the SAT solver the
assumptions. These assumptions say that these Boolean variables must be
true, and correspond to say that some constraints must be satisfied. Before
any check consistency, all the previous assumptions are deleted and new
assumptions are added.

In order to understand better, let’s see again the example §2.3.1. From
the formula b1 ∧ CNF ∗((¬x1 ∨ b2) ⇔ b1) ∧ CNF ∗((x2 ∧ x3 ∧ x4 ∧ b3) ⇔
b2) ∧ CNF ∗((x5 ⇔ x6) ⇔ b3) we have to remove the first clause, b1. Now
the formula CNF ∗((¬x1 ∨ b2) ⇔ b1) ∧ CNF ∗((x2 ∧ x3 ∧ x4 ∧ b3) ⇔ b2) ∧

47

CNF ∗((x5 ⇔ x6)⇔ b3) can be added to the SAT solver. When we want to
check the satisfiability of this formula, we first add the assumption b1 to the
SAT solver that simplifies the formula on that assumption. It is important to
notice that all the formulas are already added in the SAT solver, adding and
removing the assumptions correspond to select and deselect formulas from
the solver.

48

Chapter 5

The tool

5.1 Technologies used

NetBeans [51] has been used as integrated development environment (IDE)
to develop the system. The system is implemented in Java [50] programming
language. There is also a small C++ program which uses the C source code
of MiniSat 2.0 [10]. This program manages directly the variables, the clauses
and the assumptions used internally by MiniSat and is invoked by the tool
using Java Native Interface (JNI), a framework that allows Java applications
to call and be called by native applications and libraries written in other
languages, such as C, C++ and Assembly.

Since Java applications are multi-platform, to run the tool in a certain op-
erating system you need to recompile the C++ program and build a shared
native library that allows the JNI bridge between the Java Virtual Machine
(JVM) and the C++ process.

The tool has been tested in Ubuntu [48] 8.04 (Hardy Heron), a free operating
system based on Debian [49], a popular Linux distribution.

The application is written using Java 6 Standard Edition, and other two
Java libraries: ANTLR [52] and JGraphT [53]. ANTLR is a lexer and parser
generator that uses LL parsing. It generates a lexical analyzer (lexer) and a
syntactic analyzer (parser) from a grammar file. The lexical analyzer scans
a string and return it as a sequence of tokens that are used by the syntactic
analyzer to produce a parse tree which represents the syntactic structure of
the string according to the formal rules defined in the grammar.

JGraphT is instead a free Java class library that provides mathematical
graph-theory objects and algorithms. JGraphT supports various types of

49

graphs. In the implementation simple directed graphs are used.

5.2 Architecture of the system

We show now the architecture of the realized system; first of all an overview
of the components (Figure §5.1), and then a detailed description for each
component (Figure §5.2).

Figure 5.1: General architecture

On the highest level there is a Graphical user interface (GUI) which inter-
acts with the user. The GUI is built on top of a middleware. This level
is responsible to represent internally the configuration problem and call the
QuickXplain algorithm. It provides many functions to the user in order to
manage the configuration problems. There is also another module, the im-
plementation of the QuickXplain algorithm, needed to compute the outputs
to the user. This module calls the MiniSat solver to check the consistency
of the constraints sets. The input is a configuration problem 〈X, D, B, F〉,
with the foreground F partially ordered, and the outputs are the preferred
conflict Q and the preferred relaxation T, with a solution for the set B ∪ T.

The whole system is realized in Java, a part the program that interfaces to
MiniSat, realized in C++. Using the GUI, the user can load a problem, which
is taken from CLib (Configuration Benchmarks Library) [7]. Every problem
is written in CP language and is composed by a set of variables and a set
of constraints. The latter set is for each benchmark a consistent set (has
solutions) and it represents the background of the configuration problem.
The foreground constraints and the preferences among them can be loaded,
saved and/or can be added and modified using the GUI.

50

Figure 5.2: Detailed architecture

The middleware uses the ANTLR tool to scan and parse all the constraints
(contained in background and in the foreground) and the JGraphT library
to represent every constraint expression as a tree. There is a module, the
Boolean encoder, that encodes all the benchmark variables in Boolean vari-
ables and rewrites all the constraints expressions as Boolean formulas, using
the new Boolean variables. The Boolean encoder implements the algorithm
explained is §4.1.

Hence, each constraint is a Boolean formula that can be translated in con-
junctive normal form. This task is done by the CNF encoder, another module
of the middleware. This module implements what is explained in §4.2.

The Linearization module collects the preferences between the foreground

51

constraints, a partial order set, and extends it in a total order, an ordered
sequence of all the foreground constraints. This module has been developed
using JGraphT library and uses a directed graph to store the preferences
between constraints.

When the user wants to compute the preferred relaxation or the preferred
conflict of a configuration problem, the middleware calls the QuickXplain
algorithm, module that needs MiniSat in order to check the consistency of
sets of constraints. MiniSat can be called in two ways, directly as a process
(in the case of classic SAT solving option), or using JNI and a C++ interface
for the MiniSat solver (in the case of incremental SAT solving).

5.3 Benchmarks used

The benchmark problems used are taken from CLib (Configuration Bench-
marks Library) [7]. CLib offers many benchmarks written in four different
languages.

We took into account problems written in CP language that have no con-
straints defined with arithmetical operators.

These benchmarks have a list of variables and a list of constraints. There
are no restrictions on the arity of the constraints. Since every benchmark is
consistent, all the constraints are classified as background constraints. The
foreground constraints are added by the user and are required to make the
whole problem, or better, the set of all the constraints, as inconsistent. The
user has also to insert some preferences between the foreground constraints,
defining a strict partial order relation on the foreground.

5.4 Functionalities

The tool allows the user to:

• load a specific configuration problem, which is composed by a bench-
mark (the benchmark describes the variables and the background of the
problem), a foreground and a set of preferences among the foreground
constraints

• insert, modify, delete temporally or permanently, constraints in the
foreground

52

Figure 5.3: The main window

• insert, modify, delete temporally or permanently, preferences among
the foreground constraints

• extend the preferences partial order to a total order

• set the SAT solving mode: classic or incremental

• set the way how the linearization algorithm computes the total order:
ordered or shuffled

• compute the preferred conflict, the preferred relaxation and the related
solution, for a configuration problem

• verify effectively that a solution of MiniSat corresponds to a solution
of the problem

• save foreground, preferences, and the outputs (conflicts, relaxations
and solutions) to files

We will explain in details these functionalities.

5.5 GUI

5.5.1 A typical user session

At the beginning the user sees the main window of the tool. The user may
need to set some configurations. It is possible to enable the verification of the
solution (this option is disabled by default), choose the SAT solving mode

53

Figure 5.4: Setting the SAT solving mode

Figure 5.5: Setting the linearization mode

54

Figure 5.6: Loading a configuration problem

and decide the option about the linearization algorithm (enumerate the first
constraints in an ordered or shuffled sequence). At anytime these settings
can be changed.

A part the settings, the first operation is to load the configuration problem.
Once the “Load Inputs” item is selected, a new window will appear. From
this window the user can choose the benchmark, the foreground and its pref-
erences. While a benchmark needs to be chosen, foreground and preferences
can be left empty. In Figure §5.7 the user chooses the benchmark “fs” with
non-empty foreground and preferences. Once the configuration problem has
been loaded, four windows will appear in the screen:

• the variables window

• the background constraints window

• the foreground constraints window

• the preferences window

The variables window shows, for each variable of the benchmark, the name,
the type and the values allowed. The background and foreground constraints
windows show respectively the expressions of the background and foreground
constraints. In the preferences window there is the list of all the preferences
among the foreground constraints. The variables and the background con-
straints windows do not allow the user to modify the rows of the table. In
fact, the tool forbids the user to modify the benchmark. At the contrary, the
foreground and the preferences windows provide to the user many functional-
ities to manage and modify the foreground constraints and their preferences.
Foreground constraints can be added, modified, removed temporally (see the

55

Figure 5.7: Loading “fs” configuration problem

“Hide” button) or permanently, and saved to files (the user can later reload
the same foreground). The same operations can be done on the preferences.
Alterations on the foreground update the preferences structure: for example,
if the user removes a foreground constraint, the preferences on this constraint
will be removed. Figure §5.12 shows a foreground where the user has removed
temporally some constraints, while Figure §5.13 shows the window to insert
a preference (it appears when the user presses the “Insert” button on the
preferences window).

The configuration problem is loaded, and the user can perform operations on
the foreground and on the preferences. Pressing the “Compute” item, the
user can choose what to compute, the preferences total order, the preferred
conflict or the preferred relaxation. A new window will show the result of the
computation that we have asked. The preferences total order is computed
running the linearization algorithm. The algorithm extends the preferences
partial order and returns the list of all the foreground constraints in a new
order. If we alter the preferences or the foreground structure, the lineariza-
tion algorithm returns in general a different preferences total order. This
operation is useful to see which total order QuickXplain will use to compute
the preferred relaxation and the preferred conflict. When the user presses the
specific items to compute the preferred conflict or the preferred relaxation,
the tool first computes the total order (because the user can anytime alter
the foreground or the preferences structure) and then it calls the QuickX-

56

Figure 5.8: Benchmark variables window

Figure 5.9: Background constraints window

plain algorithm. In the case of the preferred relaxation, the set of constraints
composed of the background and the preferred relaxation is a consistent set,
and the tool will also show a window with the solution (list of the value as-
signments to the benchmark variables) of this constraints set. The solution
is found computing the values to the original variables from the values of the
new Boolean variables introduced to encode the problem into SAT, values
that form the model given by MiniSat. The user can anytime hide or show
the tool windows, selecting them from the “View” item or closing the related
windows.

57

Figure 5.10: Foreground constraints window

Figure 5.11: Preferences window

58

Figure 5.12: Example of foreground with some “hidden” constraints

Figure 5.13: Inserting a preference between two foreground constraints

Figure 5.14: Computing something

59

Figure 5.15: The preference total order returned by the linearization algo-
rithm

Figure 5.16: The preferred conflict

Figure 5.17: The preferred relaxation

60

Figure 5.18: Variables solution

Figure 5.19: To view some windows

61

Chapter 6

Empirical results

We performed a simulation on the selected benchmark problems using a
Pentium Dual-Core 1.60 GHz machine with 2GB of memory, running Linux
Ubuntu Hardy Heron. Here we show the obtained results. A script generated
fifteen different sets of foreground constraints for each problem and fifteen
sets of preferences for each foreground. More precisely, each foreground has
a random number of constraints, whose formulas are composed by a finite
number of variables, operators ad values. These elements are chosen ran-
domly with respect to the domain of the benchmark variables. In the same
way, preferences between the foreground constraints are generated randomly.
In this way we had two hundred twenty-five (fifteen times fifteen) instances
for each benchmark problem. Each instance is composed by a background, a
foreground and a set of preferences. Hence we had two hundred twenty-five
runs for each configuration problem.

In the table §6.1 every row summarizes the statistics for a distinct configu-
ration problem. The columns of the table are:

• benchmark: the name of the benchmark problem

• bgs: the number of background constraints

• fgs: the average number of foreground constraints

• pfs: the average number of preferences among the foreground con-
straints

• cf: the average number of foreground constraints contained in the pre-
ferred conflict

62

• %cf: the average percentage of foreground constraints contained in the
preferred conflict

• rx: the average number of foreground constraints contained in the pre-
ferred relaxation

• %rx: the average precentage of foreground constraints contained in the
preferred relaxation

• time: the average of the total execution times in milliseconds (times
required to parse and encode an instance of the problem, and solve it
finding its outputs) 1

Moreover, for each instance of the configuration problems, we ran the tool
using both the incremental SAT solving and the classic SAT solving. We
took into account the total times required by MiniSat to solve all the encoded
formulas (time needed to perform all the calls to the method isConsistent())
incrementally and in the classic way. Hence, we made a comparison between
these two different ways to use the SAT solver. We drew a scatter plot for each
problem. In the plot, each problem instance is represented by a point, whose
coordinates are the times in milliseconds spent by MiniSat using the classic
SAT solving (x-axis) and the incremental SAT solving (y-axis). Figures §6.1
and §6.2 show the scatter plots for the benchmarks “chinese” and “fs”. In the
appendix §A we report the scatter plots for all the configuration problems.

Looking into the results we can affirm that the execution time grows with
respect to the constraints complexity: problems with many constraints, and
problems with constraints described by long formulas, are complicated to
solve. For the reasons explained in §2.5 and §4.2, the incremental SAT solving
modality is generally faster respect the classic SAT solving. Another fact to
observe is that while preferred conflicts have only one or two foreground
constraints, preferred relaxations contain at least the 65% of the foreground
constraints.

1Since incremental SAT solving is quicker than classic SAT solving, the execution times
are computed running MiniSat incrementally

63

benchmark bgs fgs pfs cf %cf rx %rx time
baobab3 107 68 26 2 2.94% 49 72.06% 807
chinese 36 38 16 2 5.26% 25 65.79% 305
das9201 82 90 39 2 2.22% 66 73.33% 1247
das9202 36 45 19 2 4.44% 32 71.11% 382
das9203 30 45 18 1 2.22% 33 73.33% 366
das9204 30 37 14 1 2.70% 28 75.68% 322
das9205 20 35 13 1 2.86% 28 80.00% 291
das9206 112 109 41 1 0.92% 79 72.48% 1674
das9207 324 291 127 2 0.69% 201 69.07% 11396
das9208 145 136 54 2 1.47% 91 66.91% 2584
das9209 73 86 37 1 1.16% 65 75.58% 1102
edf9201 132 129 51 2 1.55% 89 68.99% 2510
edf9202 435 434 176 2 0.46% 290 66.82% 27661
edf9203 475 381 163 2 0.52% 241 63.25% 22372
edf9204 375 331 131 2 0.60% 219 66.16% 15246
edf9205 142 193 76 2 1.04% 133 68.91% 4896
edf9206 362 319 131 1 0.31% 220 68.97% 13265
edfpa14b 290 235 99 1 0.43% 162 68.94% 8378
edfpa14o 173 270 113 2 0.74% 196 72.59% 9406
edfpa14p 101 112 46 2 1.79% 79 70.54% 1984
edfpa14q 194 279 109 2 0.72% 200 71.68% 10341
edfpa14r 132 115 48 2 1.74% 79 68.70% 2077
edfpa15b 249 254 105 2 0.79% 174 68.50% 8892
edfpa15o 138 232 95 2 0.86% 171 73.71% 7148
edfpa15p 80 106 45 2 1.89% 76 71.70% 1664
edfpa15q 158 257 106 2 0.78% 192 74.71% 8532
edfpa15r 110 88 39 2 2.27% 61 69.32% 1700
elf9601 242 190 84 2 1.05% 125 65.79% 4913
esvs 32 12 5 1 8.33% 9 75.00% 220
fs 25 14 6 1 7.14% 9 64.29% 201
ftr10 94 100 36 1 1.00% 78 78.00% 1387
isp9602 122 106 43 2 1.89% 75 70.75% 1671
isp9603 95 94 36 2 2.13% 66 70.21% 1324
isp9604 132 176 72 2 1.14% 125 71.02% 4146
isp9606 41 75 29 2 2.67% 57 76.00% 876
isp9607 65 60 26 2 3.33% 45 75.00% 623
jbd9601 315 351 146 2 0.57% 260 74.07% 17164

Table 6.1: Statistics for all the benchmark problems

64

Figure 6.1: “chinese” benchmark

65

Figure 6.2: “fs” benchmark

66

Chapter 7

Conclusions

We have explained here a possible way to solve configuration problems, by im-
plementing the QuickXplain algorithm and using a SAT encoding approach.
The problems we solved are taken from the Configuration Benchmarks Li-
brary (CLib) [7].

The realized tool implements the QuickXplain algorithm and computes the
preferred conflict and the preferred relaxation for configuration problems on
which is defined a binary preference relation among the constraints, in order
to express the fact that some constraints are more important than other
ones. MiniSat, an efficient SAT solver, is used to solve the satisfiability of
the encoded formulas (propositional formulas that represent the constraints
rules in the SAT encoding), and represents the consistency checker of the
QuickXplain algorithm.

67

Appendix A

Comparison of time spent by
classic and incremental SAT
solving

Here there are the scatter plots for all the configuration problems. Every
plot shows the problem instances as points, whose coordinates are the times
in milliseconds spent by MiniSat using the classic SAT solving (x-axis) and
the incremental SAT solving (y-axis).

68

Figure A.1: “baobab3” benchmark

69

Figure A.2: “chinese” benchmark

70

Figure A.3: “das9201” benchmark

71

Figure A.4: “das9202” benchmark

72

Figure A.5: “das9203” benchmark

73

Figure A.6: “das9204” benchmark

74

Figure A.7: “das9205” benchmark

75

Figure A.8: “das9206” benchmark

76

Figure A.9: “das9207” benchmark

77

Figure A.10: “das9208” benchmark

78

Figure A.11: “das9209” benchmark

79

Figure A.12: “edf9201” benchmark

80

Figure A.13: “edf9202” benchmark

81

Figure A.14: “edf9203” benchmark

82

Figure A.15: “edf9204” benchmark

83

Figure A.16: “edf9205” benchmark

84

Figure A.17: “edf9206” benchmark

85

Figure A.18: “edfpa14b” benchmark

86

Figure A.19: “edfpa14o” benchmark

87

Figure A.20: “edfpa14p” benchmark

88

Figure A.21: “edfpa14q” benchmark

89

Figure A.22: “edfpa14r” benchmark

90

Figure A.23: “edfpa15b” benchmark

91

Figure A.24: “edfpa15o” benchmark

92

Figure A.25: “edfpa15p” benchmark

93

Figure A.26: “edfpa15q” benchmark

94

Figure A.27: “edfpa15r” benchmark

95

Figure A.28: “elf9601” benchmark

96

Figure A.29: “esvs” benchmark

97

Figure A.30: “fs” benchmark

98

Figure A.31: “ftr10” benchmark

99

Figure A.32: “isp9602” benchmark

100

Figure A.33: “isp9603” benchmark

101

Figure A.34: “isp9604” benchmark

102

Figure A.35: “isp9606” benchmark

103

Figure A.36: “isp9607” benchmark

104

Figure A.37: “jbd9601” benchmark

105

Bibliography

[1] EASTWEB: Building an integrated leading Euro-Asian higher edu-
cation and research community in the field of the SemanTic WEB
http://www.eastweb.eu/

[2] Jilin University http://en.jlu.edu.cn/

[3] U. Junker. QuickXplain: Preferred Explanations and Relax-
ations for Over-Constrained Problems. AAAI (2004): 167-172.
http://wikix.ilog.fr/wiki/pub/Main/UlrichJunker/pxpl.pdf

[4] U. Junker. QuickXplain: Preferred Explanations and
Relaxations for Over-Constrained Problems (slides).
http://wikix.ilog.fr/wiki/pub/Main/UlrichJunker/pxpl-talk.pdf

[5] U. Junker. QuickXplain: Conflict Detection for Arbitrary Constraint
Propagation Algorithms. IJCAI (2001).

[6] J. Amilhastre, H. Fargier, P. Marquis. Consistency Restora-
tion and Explanations in Dynamic CSPs - Application to Con-
figuration, Artificial Intelligence 135(1-2): 199-234 (2002).
ftp://ftp.irit.fr/pub/IRIT/RPDMP/AIJfinal1.pdf

[7] CLib http://www.itu.dk/research/cla/externals/clib/

[8] CLab http://www.itu.dk/people/rmj/data/systems/clab10/

[9] R. M. Jensen. CLab 1.0 User Manual, Technical Re-
port ITU-TR-2004-46, IT University of Copenhagen (2004)
http://www.itu.dk/people/rmj/data/systems/clab10/man.pdf

[10] MiniSat http://minisat.se/

[11] SAT Competition http://www.satcompetition.org/

106

http://www.eastweb.eu/
http://en.jlu.edu.cn/
http://wikix.ilog.fr/wiki/pub/Main/UlrichJunker/pxpl.pdf
http://wikix.ilog.fr/wiki/pub/Main/UlrichJunker/pxpl-talk.pdf
ftp://ftp.irit.fr/pub/IRIT/RPDMP/AIJfinal1.pdf
http://www.itu.dk/research/cla/externals/clib/
http://www.itu.dk/people/rmj/data/systems/clab10/
http://www.itu.dk/people/rmj/data/systems/clab10/man.pdf
http://minisat.se/
http://www.satcompetition.org/

[12] SAT-Race 2006 http://fmv.jku.at/sat-race-2006/

[13] N. Eén, N. Sörensson. An Extensible SAT Solver. Proceedings of the
6th International Conference on Theory and Applications of Satisfiability
Testing, SAT (2003)

[14] N. Eén, N. Sörensson. Temporal Induction by Incremental SAT Solving.
Proceedings of the First International Workshop on Bounded Model
Checking, 2003.

[15] R. Dechter. Constraint Processing, Morgan Kaufmann (2003).

[16] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness, Freeman (1979).

[17] S. A. Cook. The Complexity of Theorem-Proving Procedures. Proceed-
ings of the Third Annual ACM Symposium on Thoery of Computing
(1971): 151-158.

[18] S. Subbarayan, R. M. Jensen, T. Hadzic, H. R. Andersen, H. Hul-
gaard, J. Møller. Comparing Two Implementations of a Complete and
Backtrack-Free Interactive Configurator. Proceedings of Workshop on
CSP Techniques with Immediate Application, CP04 (2004): 97-111.
http://www.itu.dk/people/sathi/papers/cspia2004.pdf

[19] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, J. Møller,
H. Hulgaard. Fast Backtrack-Free Product Configuration Using
a Precompiled Solution Space Representation. Proceedings of the
International Conference on Economic, Technical and Organisa-
tional Aspects of Product Configuration Systems (2004): 131-138.
http://www.itu.dk/people/sathi/papers/PETO2004.pdf

[20] S. Subbarayan, H. R. Andersen. Integrating a Variable Ordering Heuris-
tic with BDDs and CSP Decomposition Techniques for Interactive Con-
figurators (2005) http://www.itu.dk/people/sathi/papers/tob-var.pdf

[21] S. Subbarayan. Integrating CSP Decomposition Techniques and BDDs
for Compiling Configuration Problems. Proceedings of the International
Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, CPAIOR (2005):
351-365 http://www.itu.dk/people/sathi/papers/icode.pdf

[22] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on
Satisfiability, Boolean Modeling and Computation 3 (2007): 141-224.
http://jsat.ewi.tudelft.nl/content/volume3/JSAT3 9 Sebastiani.pdf

107

http://fmv.jku.at/sat-race-2006/
http://www.itu.dk/people/sathi/papers/cspia2004.pdf
http://www.itu.dk/people/sathi/papers/PETO2004.pdf
http://www.itu.dk/people/sathi/papers/tob-var.pdf
http://www.itu.dk/people/sathi/papers/icode.pdf
http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf

[23] A. Cimatti, R. Sebastiani. Building Efficient Decision Procedures on
Top of SAT Solvers. 6th International School on Formal Methods for the
Design of Computer, Communication and Software Systems: Hardware
Verification (2006). Volume 3965 of LNCS, Springer Verlag.

[24] E. Goldberg, Y. Novikov. BerkMin: A Fast and Robust SAT-Solver.
Proceedings DATE ’02, page 142, Washington, DC, USA, 2002. IEEE
Computer Society.

[25] R. Brafman. A Simplifier for Propositional Formulas with many Binary
Clauses. Proceedings IJCAI01, 2001.

[26] R. J. Bayardo, R. C. Schrag. Using CSP Look-Back Techniques to Solve
Real-World SAT instances. Proceedings AAAI’97, pages 203-208. AAAI
Press, 1997.

[27] F. Bacchus, J. Winter. Effective Preprocessing with Hyper-Resolution
and Equality Reduction. Proceedings Sixth International Symposium on
Theory and Applications of Satisfiability Testing, 2003.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to
Algorithms. MIT Press, 1998.

[29] M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem
Proving. Journal of the ACM, 5(7), 1962.

[30] M. Davis, H. Putnam. A Computing Procedure for Quantification The-
ory. Journal of the ACM, 7:201-215, 1960.

[31] N. Eén, A. Biere. Effective Preprocessing in SAT Through Variable
and Clause Elimination. Proceedings SAT’05, volume 3569 of LNCS.
Springer, 2005.

[32] E. Giunchiglia, A. Massarotto, R. Sebastiani. Act, and the Rest Will
Follow: Exploiting Determinism in Planning as Satisfiability. Proceed-
ings AAAI’98, pages 948-953, 1998.

[33] C. P. Gomes, B. Selman, H. Kautz. Boosting Combinatorial Search
Through Randomization. Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI’98), pages 431-437, Madison,
Wisconsin, 1998.

[34] John N. Hooker, V. Vinay. Branching Rules for Satisfiability. Journal
of Automated Reasoning, 15(3):359-383, 1995.

108

[35] R. G. Jeroslow, J. Wang. Solving Propositional Satisfiability Problems.
Annals of Mathematics and Artificial Intelligence, 1(1-4):167-187, 1990.

[36] C. M. Li, Anbulagan. Heuristics Based on Unit Propagation for Satisfia-
bility Problems. Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), pages 366-371, 1997.

[37] C. M. Li, Anbulagan. Look-Ahead Versus Look-Back for Satisfiability
Problems. Principles and Practice of Constraint Programming, volume
1330 of LNCS, 1997.

[38] C. M. Li. Integrating Equivalency Reasoning into Davis-Putnam Proce-
dure. AAAI: 17th National Conference on Artificial Intelligence. AAAI
/ MIT Press, 2000.

[39] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, S. Malik. Chaff:
Engineering an Efficient SAT solver. Design Automation Conference,
2001.

[40] R. Nieuwenhuis, A. Oliveras. DPLL(T) with Exhaustive Theory Prop-
agation and its Application to Difference Logic. Proceedings CAV’05,
volume 3576 of LNCS. Springer, 2005.

[41] R. Nieuwenhuis, A. Oliveras, C. Tinelli. Abstract DPLL and Abstract
DPLL Modulo Theories. Proceedings LPAR’04, volume 3452 of LNCS.
Springer, 2005.

[42] R. Nieuwenhuis, A. Oliveras, C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Proce-
dure to DPLL(T). Journal of the ACM, 53(6):937-977, November 2006.

[43] J. P. M. Silva, K. A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. Proceedings ICCAD’96, 1996.

[44] O. Strichman. Tuning SAT Checkers for Bounded Model Checking.
Proceedings CAV00, volume 1855 of LNCS, pages 480-494. Springer,
2000.

[45] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo
Theories. Proceedings JELIA-02, volume 2424 of LNAI, pages 308-319.
Springer, 2002.

[46] L. Zhang, S. Malik. The Quest for Efficient Boolean Satisfiability
Solvers. Proceedings CAV’02, number 2404 in LNCS, pages 17-36.
Springer, 2002.

109

[47] L. Zhang, C. F. Madigan, M. W. Moskewicz, S. Malik. Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver. ICCAD, pages 279-
285, 2001.

[48] Ubuntu http://www.ubuntu.com/

[49] Debian http://www.debian.org/

[50] Java http://java.sun.com/

[51] NetBeans IDE http://www.netbeans.org/

[52] ANTLR: ANother Tool for Language Recognition
http://www.antlr.org/

[53] JGraphT http://jgrapht.sourceforge.net/

[54] ILOG http://www.ilog.com/

[55] Configit A/S http://www.configit.com/

[56] Choco http://choco-solver.net/

[57] Comet http://www.comet-online.org/

[58] JaCoP http://jacop.cs.lth.se/

[59] Cream http://bach.istc.kobe-u.ac.jp/cream/

[60] Koalog http://www.koalog.com/

[61] Gecode http://www.gecode.org/

110

http://www.ubuntu.com/
http://www.debian.org/
http://java.sun.com/
http://www.netbeans.org/
http://www.antlr.org/
http://jgrapht.sourceforge.net/
http://www.ilog.com/
http://www.configit.com/
http://choco-solver.net/
http://www.comet-online.org/
http://jacop.cs.lth.se/
http://bach.istc.kobe-u.ac.jp/cream/
http://www.koalog.com/
http://www.gecode.org/

Acknowledgments

I acknowledge Prof. Roberto Sebastiani for his accurate supervision of my
whole work, the implementation of the tool and the writing of the thesis.
Many thanks also go to Prof. Zhanshan Li, Yanggong Zhang, Wencheng
Han and Michele Vescovi that helped me several times in the understanding
of some theoretical parts and in the design of the tool. Moreover I want to
remember my parents because they always supported me for my studies.

111

	Preface
	I Background and state of the art
	SAT and SAT solving
	Basics on propositional logic
	SAT
	Conjunctive normal form
	Classical CNF conversion
	Labeling CNF conversion
	DIMACS format

	The DPLL algorithm
	Modern conflict-driven DPLL
	The Abstract-DPLL logical framework

	The MiniSat solver

	CSPs and configuration problems
	Basics on constraint programming
	Constraint satisfaction

	Configuration problems
	Preferred relaxations and preferred conflicts

	The QuickXplain algorithm
	QuickXplain pseudocode for the preferred conflict
	QuickXplain pseudocode for the preferred relaxation

	The CLab library
	The CP language

	Related work

	II Original contributions
	Solving CSPs via SAT encoding
	The Boolean encoding
	CNF conversion and incremental SAT solving

	The tool
	Technologies used
	Architecture of the system
	Benchmarks used
	Functionalities
	GUI
	A typical user session

	Empirical results
	Conclusions
	Comparison of time spent by classic and incremental SAT solving

