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ABSTRACT

Multi-cellular organisms typically originate from a single cell, the zygote, that then develops into a multitude
of structurally and functionally specialized cells. The potential of generating all the specialized cells that make
up an organism is referred to as cellular “totipotency”, a concept introduced by the German plant physiologist
Haberlandt in the early 1900s. In an attempt to reproduce this mechanism in synthetic organisms, we present
a model based on a kind of modular robot called Voxel-based Soft Robot (VSR), where both the body, i.e., the
arrangement of voxels, and the brain, i.e., the Artificial Neural Network (ANN) controlling each module, are
subject to an evolutionary process aimed at optimizing the locomotion capabilities of the robot. In an analogy
between totipotent cells and totipotent ANN-controlled modules, we then include in our model an additional
level of adaptation provided by Hebbian learning, which allows the ANNs to adapt their weights during the
execution of the locomotion task. Our in silico experiments reveal two main findings. Firstly, we confirm the
common intuition that Hebbian plasticity effectively allows better performance and adaptation. Secondly and
more importantly, we verify for the first time that the performance improvements yielded by plasticity are in
essence due to a form of specialization at the level of single modules (and their associated ANNs): thanks to
plasticity, modules specialize to react in different ways to the same set of stimuli, i.e., they become functionally
and behaviorally different even though their ANNs are initialized in the same way. This mechanism, which
can be seen as a form of totipotency at the level of ANNs, can have, in our view, profound implications in
various areas of Artificial Intelligence (AI) and applications thereof, such as modular robotics and multi-agent
systems.

1. Introduction

only key to the success of multi-cellular life forms. In fact, structurally
specialized cells can also become behaviorally specialized, i.e., they can

One of the most striking properties of multi-cellular organisms is
the fact that they typically originate from a single cell that, starting
from a single common “code”, the genome, develops into a multitude
of structurally and functionally specialized cells. The ability of non-
reproductive cells (called stem cells) to produce, by repeated divisions,
all the specialized cells that make up an organism is generally referred
to as cellular “totipotency”, a concept introduced by the German plant
physiologist Haberlandt in the early 1900s [1], and later on further
elaborated in several works [2-4].

Thanks to this mechanism, stem cells have the ability to develop
into any kind of cells of the body, from the muscular fibers to the
different kinds of blood cells, and, ultimately, the neurons in the
nervous system. Of note, this kind of cellular specialization is not the
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adapt their behavior during their lifetime. For instance, muscle cells
adapt their behavior based on the kind of training they undergo (e.g.,
endurance vs. strength training) [5]; white blood cells memorize the
menaces to our system and adapt their behavior to properly contrast
them [6]; neurons rearrange their connections through learning, and
generate new synapses through the synaptogenic process [7].

In the light of these observations, it is clear that both structural and
behavioral adaptation — at various spatial scales, from cells to body - is
a key element for the success of an organism. Not only that: adaptation
acts also at various temporal scales, playing a crucial role both during
the lifetime of an organism and beyond it, through evolution. Eiben
and Hart have recently captured the synthesis of the adaptation during
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and beyond the individual lifetime with one concept: “if it evolves it
needs to learn” [8]. Of note, while this concept has been introduced
specifically in the field of morphologically evolving robot systems [9],
we can argue that it may apply also to other domains, including the
biological one, where there is an interplay between evolution and
adaptation/learning.

In this work, we further extend this concept, by specifically focus-
ing on the interplay between specialization, learning, and evolution (in
particular, body-brain co-evolution). More specifically, we attempt to
reproduce the totipotency mechanism in a special kind of (simulated)
modular robot, called Voxel-based Soft Robots (VSRs) [10], whose
body, i.e., the arrangement of voxels, and brain, i.e., the ANN control-
ling each module, are subject to a co-evolutionary process aimed at
optimizing the locomotion capabilities of the robot. The modularity of
these robots provides, in fact, an excellent opportunity for replicating
in silico, and studying, the specialization mechanism: we hypothesize
that, in the specific case of modular evolving entities, the concept of
“if it evolves it needs to learn” must be extended to the concept of “if
it evolves and learns, it needs to specialize at the level of its modules”.
In essence, we draw an analogy between totipotent cells in living or-
ganisms and totipotent ANN-controlled modules, where specialization
is achieved through Hebbian learning [11], which allows to adapt,
differently for each module, the ANNs weights during the execution of
the locomotion task.

To the best of our knowledge, this work is the first one to unify,
into a single model, @ modularity (and hence specialization at the
level of modules), @ learning (particularly, Hebbian learning), and @
evolution (particularly, body-brain co-evolution). Previous works [8,
12,13] already showed that learning is beneficial to the body-brain co-
evolution of robots, possibly because through adaptation during their
lifetime, robots under evolution explore a larger search space than the
one which would be explored by non-plastic agents—a form of Baldwin
effect [14,15]. Here, we take a step further and let learning operate
independently on the components (i.e., the modules) of the robot, where
the various, different modules must cooperate to reach a common goal.
Of note, this can be seen as an instance of collective intelligence [16,
17]. In particular, since the modules in our robots are identical in terms
of mechanical properties, structure, and initial weights of their ANN-
based controllers, the use of Hebbian learning allows us to disentangle
the effect of specialization (i.e., verify if, and how, identical modules
behave differently) from that of the co-evolution of the body and brain
of the robots.

Moreover, we remark that Hebbian learning is a form of unsupervised
learning: during their lifetime, the ANNs that control the modules of
the robots are not driven by an externally dictated reward signal, but
adapt according to emerging rules that are the result of the evolution.
In this regard, we find through a set of ad hoc experimental analyses
that the differentiation of the modules (w.r.t. their position and access
to sensory information) in the body of the robot is crucial for driving
adaptation through Hebbian learning.

The present paper is a natural prosecution of our ongoing research
on VSRs, and it builds principally on our previous works [18,19].
In particular, in [18] we focused on the evolution of Hebbian ANN-
based controllers, keeping the VSR morphologies fixed. The goal of that
work was to compare Hebbian learning with the direct evolution of
the weights of a feed-forward ANN, investigating primarily the ability
to generalize and the robustness of the evolved Hebbian controllers.
Whereas, in [19] we focused on the co-evolution of the body and
controller of VSRs, with a direct encoding of the ANNs weights, co-
evolved along with the parameters of the body. However, that work did
not include any form of Hebbian learning in the ANNs. In essence, the
present work combines [18,19] in that it investigates for the first time
the co-evolution of body and controller (previously studied in [19])
with Hebbian learning (previously studied in [18]), focusing on the
emergence of specialization as a consequence of both mechanisms.
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The rest of the paper is structured as follows. In the next section,
we briefly overview the related works. In Section 3, we present the
methods used in this study. In Section 4, we discuss the experiments
we performed and the main findings derived from our results. Finally,
in Section 5 we conclude the work and suggest some possible future
research directions.

2. Related works

In the following, we briefly review the literature related to the three
main concepts mentioned earlier which are used in our work, namely
(D) specialization, (2) learning, and (3) body-brain co-evolution.

2.1. Specialization

As discussed earlier, a totipotent cell is a stem cell that can differen-
tiate into any other cell. Of note, neurons can further differentiate their
behavior, a process called neural differentiation [20], hence becoming
functionally specialized according to their position in the brain and,
more in general, in the nervous system.

In the field of ANNSs, different works analyzed a similar form of
specialization at neural level, both in the case of a single task, e.g., object
recognition [21], and in the case of a single ANN optimized for multiple
tasks [22]. These works reached the same conclusion: after training, the
ANN is divided into functionally specialized areas.

Beyond the ANN domain, another recent work [17] has shown that,
in the context of Multi-Agent Reinforcement Learning (MARL) in which
the goals of a group of agents are aligned, specialization emerges as
an enabler for cooperation. Similar considerations have been made
in [23], where authors found that, in the context of public games, social
sanctioning can be a way to regulate specialization in a group of agents.
Last, Kosak et al. [24] proposed a mobile multi-robot system where
agents can autonomously reconfigure themselves, practically achieving
a form of totipotency, both in silico and with real robots: the cited study
focuses more on the hardware and system organization which allows
for the reconfigurability of robotic agents, rather than on the adaptation
mechanisms that actually make specialization emerge, as we do in our
study.

In the context of modular robotics, Auerbach and Bongard [25]
have focused on the specialization of different parts of the body of the
agent for performing a task composed of two sub-tasks, highlighting
how the modules would specialize for either or both sub-tasks. More
recently, Whitman et al. [26] experimented with specialization on
modular soft robots. Yet, this study differs from ours in that modules
were designed by hand, and then assembled to achieve specialization
patterns in the ensemble agent.

To summarize, while specialization has been widely studied in
Multi-Agent Systems (MASs) and at the level modules in modular
robots, with few other works studying instead the specialization at
neural levels (i.e., specialization of specific neurons — or groups thereof
— within a given ANN), to the best of our knowledge no prior works
have studied the specialization of a single ANN to multiple ANNs for
the control of modular robots, which is instead a distinctive feature of
our model. Note that this kind of specialization differs from the case
where a single ANN learns to perform multiple tasks, which has the
known drawback of leading to the so-called “catastrophic forgetting”
effect [27-29], i.e., whenever an ANN specializes for a new task, it
tends to forget how to perform the previous tasks.

2.2. Learning

A well-established fact in the evolutionary theory is that learning
during the lifetime, namely adapting the brain (i.e., the controller) of
an agent during the execution of a given task, is a crucial element to
achieve improved results compared to approaches based on evolution
alone, especially when facing complex scenarios. The importance of
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learning has been acknowledged in both natural [14] and artificial
evolution [30,31]. In both cases, learning essentially boils down to
changing how the agent’s brain elaborates the information received
from the environment during the agent’s lifetime (i.e., in the case of
artificial evolution, during the execution of the task). This capability
is called neural plasticity, and it can be differentiated in structural or
functional plasticity [32].

In the former case, plasticity affects the structure of the ANN, e.g.,
by pruning some connections [33,34], or developing the ANN from
scratch [35].

In the functional case, plasticity affects only the parameters of the
ANN, having its structure fixed. The parameters are usually changed
through plasticity rules, for which the main mechanism used is Hebbian
learning, that is the method we use in this work, see Section 3.2. It is
also possible to indirectly encode the plasticity rules, like in Adaptive
HyperNEAT [36], where a smaller ANN learns the weights and the plas-
ticity rules for the main controller. Other approaches instead directly
optimize the parameters of fixed plasticity rules [37-39] or completely
evolve new functions [40]. Recently, two works have proposed to
reduce the amount of plasticity rules/parameters in an ANN, namely
by clustering rules [41] or by grouping rules by neuron [42].

Finally, some approaches take into consideration both structural
and functional plasticity. For example, SBNN [43] takes inspiration
from synaptogenesis by applying both a pruning algorithm and a
plasticity mechanism to incrementally modify the ANN during the
agent’s life. Dresp-Langley [44] provides a survey exploring various
biologically inspired learning models for robot control; we refer the
reader to this work for further details and pointers on the topic.

2.3. Body-brain co-evolution

Body-brain co-evolution (where the body is typically described in
terms of some mechanical parameters of the robot, while the brain has
the form of an ANN) has been extensively studied in the evolutionary
robotics field, under the premise that co-evolving (i.e., co-optimizing)
the brain and the body of a robot reduces the bias and effort of human-
made design. This is particularly important in the field of modular
robotics, where the morphological search space can be very wide [45]
and non-trivial to explore. In particular, recent studies on the analysis
of the fitness landscape of morphologically evolving robots [46] have
noted the importance of choosing suitable representations for achieving
high-quality results when jointly optimizing the body and brain.

Another advantage of co-evolving the brain and body of a robot is
the capability to find a balance between the morphological and con-
troller complexity [12,47,48], as opposed to evolving either the mor-
phology or the controller alone [49,50]. Notably, Pagliuca and Nolfi
[51] have highlighted how the superior performance of co-evolution
often arises from the possibility of co-adapting the morphological traits
to the control traits and vice versa. Yet, interestingly, Mertan and
Cheney [52] have remarked how body-brain co-evolution might lead
to premature convergence to sub-optimal solutions.

In fact, using a single, centralized, controller, as typically done in
body-brain co-evolution studies, can lead to a mismatch between the
structure of the ANN and the body [8]. One possible solution is the use
of a modular controller, in which different controllers are instantiated
to operate each module of the body, thus reducing the complexity of
adapting a single controller to the new shape and the number of param-
eters to optimize [53,54]. This is the approach we take in the present
work. On the other hand, to the best of our knowledge most body-
brain co-evolution studies have focused on the offline optimization of
the body, while none of these previous works applied lifetime learning
during the task execution to perform online adaptation.

As a final note, it is important to remark that when a modu-
lar controller is used different input—output settings are possible. For
instance, each module can take as input the inputs of the adjacent
controller [55]. Or, it can take as input also the outputs of the adjacent
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controllers [28,56]. Some recent works have proposed using a self-
attention mechanism [57]. Moving even further, Pontes-Filho et al.
[58] proposed a modular controller based on Neural Cellular Automata,
which could be used to first encode the body, during an initial develop-
mental phase, and then control the agent behavior, during the working
phase.

3. Methods
3.1. Voxel-based Soft Robots (VSRs)

VSRs are a class of modular soft robots, originally introduced
in [10]. They are composed of an ensemble of elastic blocks, named
voxels, which constitute the modules and can actively contract and
expand w.r.t. their resting state. These actions, if properly synchronized
among all the voxels, determine the VSR movement, in a way that is
similar to what happens in the biological muscular tissue. A VSR is
defined by two main components (the body and the controller), which
we describe in deeper detail in the following two subsections.

In this work, we consider the simulated 2-D variant of VSRs initially
proposed by Medvet et al. [59], in which simulation occurs in continu-
ous space and discrete time (with a frequency f;,, = 60 Hz). Hence, in
our case, the voxels become squares, rather than cubic blocks, which
can change area, rather than volume, over time.

Although we simulate VSRs in 2-D, we deem our results to be
conceptually portable to the 3-D case, and, eventually, to the real
world. In fact, there exist a few examples of physical implementations
of these robotic systems. Starting from the seminal work by Hiller and
Lipson [10], most realizations of VSRs have relied on pneumatic actua-
tion [60-62], in conjunction with silicone-based materials. However,
the latest frontiers of innovation in the field even encompass VSRs
realized out of living matter [63].

3.1.1. Body

The body of a VSR defines its external aspect, ie., its shape and
its constituting material, and its sensory apparatus. We define the
shape of a VSR as a polyomino, ie., a plane geometric figure formed
by joining one or more equal squares edge to edge. Concerning the
material constituting the VSR, its nature boils down to the way in
which we model the voxels in the simulation. Here, following the model
introduced in [59], we simulate the voxel elasticity with a number of
spring-damper systems, with constraints on the maximum voxel length
to prevent excessive deformation, linking four masses at the corners;
we also use the masses to allow the welding of adjacent voxels into a
single connected system.

Concerning the sensory apparatus of a VSR, we equip its voxels
with sensors, which are embodied, and confer to each individual voxel
both external environment perception and proprioception capabilities.
Note that in this study the sensor apparatus is predefined, differently
from previous works where it was subjected to evolutionary optimiza-
tion [64,65]. At every time step k, each jth sensor reads a value 9 e
[0, 1]. In this study, we employ three types of sensors that collect various
types of information about the VSR status and its relationship with the
environment, namely:

1. area sensors, that perceive the ratio between the current area of
the voxel they are placed in and its rest area;

2. touch sensors, that determine if a voxel is in contact with the
ground (r;k) = 1) or not, (r;k) =0);

3. velocity sensors, that measure the velocity of the voxel center of
mass along the voxel x- and y-axes.

Hence, in total, the cardinality of the sensor inputs for each voxel is 4
(one value for the area sensor, one for the touch sensor, and two for the
velocity sensors). For the area and velocity sensors, we rely on a soft
normalization of the raw readings, based on the tanh function, followed
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by re-scaling, to ensure that each sensor reading lies in [0, 1]. Lastly, in
order to simulate sensor noise, we add a Gaussian noise with zero mean
and ¢ = 0.01 to each reading.

The body of a VSR is also responsible for achieving movement. As
previously anticipated, the motion of a VSR derives from the rhythmical
contraction and expansion of its voxels, which is actively guided by a
control signal, but also influenced by external forces exerted on the
voxel, e.g., gravity. In our simulation, we model actuation with an
instantaneous variation of the rest length of the spring—damper systems
embedded in the voxel. The control signal dictating the actuation, ci(k) S
[-1,1] for each voxel i at every time step k, is computed by the VSR
controller, and instructs the voxel to contract to its maximum capability

when cfk) =1 and to expand to its maximum capability when cfk) =-1.

3.1.2. Controller

The controller of a VSR computes the control signals for the voxels
to the extent of guiding their motion. Although simple open-loop con-
trollers usually suffice for achieving elementary movements [66], given
the availability of sensors placed along the VSR body, here we rely on
a form of closed-loop controller. Namely, we consider the distributed
neural controller proposed by Medvet et al. [67], which resorts to an
ANN placed in each voxel to process the local sensory information
and compute the local control signal. Moreover, to allow coordination
of the individual ANN-based controllers, so that a form of collective
intelligence can arise [16], we enable communication between adja-
cent voxels. Such communication occurs in terms of targeted message
passing between neighbors: each voxel controller computes the local
control signal, together with 4 numerical values to be passed to its
neighbors (one value per neighbor), and receives as inputs the 4 local
sensor readings along with the 4 communication values received by the
adjacent voxels.

Formally speaking, each controller operates according to the follow-

ing equation at each control time step k:
[c(k> o® oik) o® O(Tk)] = ANNy ([r(k) i(Tk_l) i*=D iik_l) if_l)] ) , 1)
where ¢® is the local control signal, o, o(lk), o and o are the
communication values for the right, bottom, left, and top neighbors,
r® is the vector of local sensor readings, i*™, {*=1 ;%=1 apq ;*=D
are the communication values computed by the top, left, bottom, and
right neighbors at the previous time step, and 0 are the parameters
of the ANN—when a neighbor voxel is not present, we set to 0 the
corresponding incoming communication value.

We report a graphical representation of the ANN controller em-
bedded in a voxel in Fig. 1. In the example shown in the figure, for
simplicity, we have r = [, r,], such that |r| = 2 (recall that, in our
experiments, we instead have 4 sensor readings, hence |r| = 4). As we
can notice from both the figure and Eq. (1), the considered ANN has
5 outputs and |r| + 4 = 6 inputs (in our experiments, we have instead
Ir| +4=8).

It should be noted that, as a consequence of the communication
connecting adjacent ANNs, the overall controller of a VSR is recurrent,
hence stateful, regardless of the types of the individual ANNs employed
in all the voxels.

In this work, we consider two variants of ANNs as controllers. (1)
The first controller that we consider is a MLP, ie., a fully connected
feed-forward ANN where neurons are organized in layers and those in
adjacent layers are fully connected. @ The second controller, instead,
is a plastic MLP, in which Hebbian learning occurs during the lifetime
of the agent, governed by a set of predefined rules.

For both controllers, we set the control frequency to 4Hz, i.e.,
the controller computes the control and communication values every
15 simulation time steps, to prevent high-frequency vibrating behav-
iors [68], which would not represent realistic motion patterns. Of note,
both MLPs and hMLPs have been used previously as controllers for the
kind of VSRs used in this work [18,69]. We keep the architecture of the
ANN fixed, thus for the MLP the parameters vector 6 coincides with the
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Fig. 1. Schematic of a voxel with an ANN controller within it.

vector of synaptic weights, whereas for the hMLP it corresponds to the
vector of the parameters of the rules dictating the adaptation of the
synaptic weights (more on this in Section 3.2).

For both the MLP and the hMLP, we instantiate a controller with
the same 0 in all voxels. This means that for the static MLP, all voxels
possess the same weights, whereas in the hMLP all voxels are governed
by the same Hebbian learning rules; however, for the hMLPs, the
synaptic weights can change independently for each synapse, depending
on the signals traveling across synapses in each hMLP and triggering the
activation of the rules. We remark that using the same parameters 6 for
each controller is a key feature of our study: since voxels also share the
same material and local sensors, all the modules of the modular robot
are identical. This greatly increases the potential applicability of our
results in a real scenario, as fabricating and deploying modular robots
composed of identical modules is easier than assembling different
modules that require careful placement in the overall body plan. As we
will show in Section 4, this versatility is achieved without sacrificing
the capability of the robot to perform its task, because modules do
specialize during the life of the robot, thanks to the adaptation of the
controller allowed by hMLPs.

3.2. Hebbian learning

Hebbian learning is a form of plasticity that allows an ANN to
adapt, i.e., to change its synaptic weights when processing a sequence
of inputs. This adaptation is based on the idea put forward by Hebb
[70] that the strength of a synapse should change depending on the
strength of the activation of the two neurons it connects. Importantly,
this form of adaptation is agnostic w.r.t. any overall measure of the
degree to which the ANN is performing its task (i.e., it does not use
any reward signal), because it is based only on the local knowledge of
each synapse, in particular the activation of the pre-synaptic and post-
synaptic neurons. In these terms, Hebbian learning can be considered
a form of unsupervised learning.

In detail, we used a form of Hebbian learning called the ABCD
model (named after the four coefficients defining the update rule) [11]
applied to an MLP. More specifically, at each time step k, the weight
wy;; of a synapse connecting the ith neuron of the / - 1-th layer with
the jth neuron of the /th layer is updated as follows:

k) _ (k=1 (k=1) (k—1) (k=1) (k=1)
Wy =Wy, T (Aal—l,i +Bay "+ Ca a7+ D>’ (©))

: : (k=1) _ (k=1) (k=1) (k=1) ) +
where 7 is the learning rate, @, = tanh (Z, wyal rwy ) s

the post-synaptic activation value at the previous time step, and 05]: 1[_) is
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the pre-synaptic value at the previous time step. The role of the learning
rate 5 is to make the adaptation of the synaptic weights faster or slower:
the larger its value, the faster the adaptation.

The A, B, C, and D coefficients determine how each synaptic
weight updates over time, starting from a w?,i, ; these coefficients can
hence be optimized to achieve a desired behavior. Based on previous
works [18,39], we use a different set of ABCD coefficients for each
synapse in the hMLP, instead of sharing the same four values across
all the synapses. Moreover, we start each task execution by setting all
weights to zero. It follows that the number of optimizable parameters
(ie., |60]) in an hMLP with n synapses is |0| = 4n; for reference, a
MLP with the same architecture where the synaptic weights are directly
optimized has a number of optimizable parameters of |0| = n.

3.3. Body-brain co-evolutionary optimization of VSRs

As introduced before, we optimize at the same time the body and
the brain of a VSR, to make the robot effective at solving a given task,
in this case locomotion. For this purpose, we rely on an Evolutionary
Algorithm (EA), described in detail in Section 3.3.2, that explores a
space of candidate solutions, i.e., VSRs differing in body and brain.

We take a similar approach to previous works which evolved con-
currently the body and the brain of a VSR [19,71]. Namely, we rep-
resent each candidate solution as a numerical vector g € R” which
describes both the body and the brain of the corresponding VSR: we
present this representation in detail in Section 3.3.1.

Finally, in Section 3.3.3 we describe the locomotion task for which
we optimize the VSRs and the way we measure the degree to which
they accomplish it, i.e., their fitness used in the evolutionary process.

3.3.1. VSR representation

As said, we represent a VSR as a numerical vector g € R?, called
genotype in the context of the evolutionary optimization, which de-
scribes both its body and its brain. In particular, g = [gbody 8brain] 1S
the concatenation of a vector goqy describing the body and a vector
8brain describing the brain. For the latter part, we simply set gp.in = 0,
i.e., we directly encode the parameters of the ANNs constituting the
brain: we recall that 6 contains the synaptic weights for the MLP and
the values of the ABCD coefficients for the hMLP.

For the body, we use an indirect generative representation, as done
in [71] and inspired by Cheney et al. [66]. Let 4 x w be the size of the
largest body that can be represented: since a VSR body is a polyomino,
it can be seen as a Boolean matrix B € ({true,false}"*® of h x w
elements in which each element b, , encodes the presence or absence
of a voxel at position x, y. We use an ANN to fill B and directly encode
the parameters 6 in gp,qy,.- Namely, we use an MLP with 2 inputs and 1
output and compute each b, , as:

b = true, ifMLP9<l§J,HJ) > @)
e false, otherwise,

where 7 is the median value given as output by the MLP when applied
to all the elements of the matrix. Finally, to ensure that the body is
a proper polyomino, we only consider the largest portion of adjacent
‘true’ values in B.

3.3.2. Evolutionary Algorithm (EA)

To optimize the body and the brain of a VSR, i.e., to search in the
space R? of vectors describing the VSR, we use a simple EA that has
already been used in previous related works [19,71]. In particular, we
use a form of ES that, starting from an initial population of candidate
solutions, i.e., vectors in R?, iteratively generates new solutions from
the best ones for a predefined number of iterations. Our ES, shown in
Algorithm 1, works as follows.

First, we build a population P of n,,, solutions by sampling U(-1,
1)?, ie., by randomly setting each element of each vector to a value
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Algorithm 1 The simple ES used for evolutionary optimization. The
function Best(P, n) returns the best n solutions, in terms of fitness, of a
population P.

function evoLve()
Py
while |P| < Npop do
P« PU{U(-1,1)}
end while
¢« |P|
while ¢ < ngyy do

Pparents < BEST(P, {%J)
K= |Ppall'ents| ZZEEP parents &
P’ < BEST(P, 1) > add previous best solution
while |P/| < fpop dO > build and add new solutions
P« P'U{ji+ N(0,6)"}
c—c+1
end while
PP
end while
return BesT(P, 1)
end function

> population initialization

> iterations

in [-1,1]. Then, at each iteration: (1) we select the best quarter of
P solutions, ie., the % numerical vectors with the largest fitness,
as parents Pyarent> (2) we compute their element-wise mean p, (3) we
generate n,,, — 1 new solutions, each one by adding some Gaussian
noise (N(0,0)” in Algorithm 1) to u, and, finally, (3) we set the new
population P for the next iteration by adding the previous best solution
to the newly generated solutions. Finally, after n,, fitness evaluations,
i.e., after ng,, solutions have been generated and evaluated, we take
the solution with the largest fitness in the final population P as the
optimized solution g*.

3.3.3. Locomotion task

We measure the performance of the VSRs in a locomotion task, a tra-
ditional task in evolutionary robotics [72-74]. In the locomotion task,
the VSR has to move as fast as possible along the positive x-direction on
a flat terrain. We use this task mainly for two reasons. Firstly, as said
this is a common task in the evolution robotics field. Secondly, this task
can offer useful insights, but at a reasonable computational cost.

To measure the degree of accomplishment of the task, we use the
average velocity of the VSRs in a simulation lasting #5,,; time steps,
computed considering the center of mass of the VSR and discarding
the initial #;,;; time steps in which the robot might exhibit a transitory
behavior.

4. Experimental evaluation

We performed an experimental evaluation aimed at answering the
following two research questions:

RQ1 Does Hebbian learning have a positive impact on the body-brain
co-evolution? Are the resulting VSRs more effective than those
without Hebbian learning?

RQ2 Why is Hebbian learning beneficial? Does its effectiveness depend
on how hMLP-based controller leverage specialization?

To address these questions we conducted a two-fold analysis. First,
we performed the body-brain co-evolution (as detailed in Section 3.3)
of several VSRs, optimizing them for the task of locomotion, and
comparing the performance obtained by MLPs and hMLPs (RQ1). Then,
we examined the evolved VSRs and their controllers, looking for moti-
vations for the difference in performance between those equipped with
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Fig. 2. Screenshots of 2D-VSR-Sim at different frames of the simulation, showing an example of VSR made of 37 voxels performing locomotion on a flat terrain. Each voxel’s

color depends on its action (red indicates contraction, green expansion, and yellow rest).
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Fig. 3. Median + standard deviation (across 30 runs) of the velocity v} of the best individual during the evolution. VSRs equipped with hMLPs are in general faster than those

equipped with MLPs.

MLPs and those using hMLPs; in particular, we looked for signs of
specialization of the controllers embedded in different voxels (RQ2).
All the experiments were executed using the 2D-VSR-Sim simula-
tor [59]% for the simulation of the robots and JGEA [75]° for the
evolutionary optimization, leaving the parameters to the default values
unless otherwise specified. For the sake of visualization, we provide a
screenshot of 2D-VSR-Sim showing a simulated VSR in Fig. 2.

4.1. RQ1 : effectiveness of Hebbian controllers

We performed 30 independent runs of the EA described in Algorithm
1 with npo, = 40, ney,s = 25000, and o = 0.35. We set the values of
these parameters, and those of the following parameters specific to the
task, based on the results obtained in previous experiments with this
kind of robots [18,71]. Concerning the task, we set #5,,; = 180s and
tinit = 5. Concerning the representation, we set w = h = 10 (i.e., the
evolved VSRs are at most 10 x 10 voxel large) and we used, for both the
MLP and hMLP controllers, a fixed architecture with one single hidden
layer with the same number of input neurons: the latter choice resulted
in having (4+4+1)x(4+4)+(4+4+1)x5 = 117 synapses (given |r| +4
inputs, +1 for the bias, ie., w,;(, and 5 outputs) in both types of ANN,
hence giving p = |0| = 117 parameters to optimize for the MLP and
4% 117 = 468 for the hMLP. We used the same architecture also for the
MLP employed in the indirect representation for the body, resulting in
other 2+ 1) X2+ (2 + 1) x 1 = 9 parameters. Therefore, overall we
performed the body-brain optimization in R'? for the MLP case and
in R*”7 for the hMLP case.

Since the parameter 5 (the learning rate, see Eq. (2)) plays a key
role in determining the adaptation of the hMLP-based controllers, we
performed the experiments with two values: 0.01 and 0.1. We chose
these two values as they are typically employed in similar studies, as,
e.g., [41] or [18], and we deem them representative of two different
learning dynamics (i.e., a slower and a faster learning process).

Fig. 3 summarizes the results of these experiments. It shows the
fitness v} of the best individual in the population during the evolution,
one line for each of the three variants: MLP (that we used as a
comparison baseline), hMLP with n = 0.01, and hMLP with # = 0.1.

2 The code is available at https://github.com/ericmedvet/2dhmsr.
3 The code is available at https://github.com/ericmedvet/jgea.

The first observation we draw from Fig. 3 is that the adaptation en-
abled by Hebbian learning is beneficial to the body-brain co-evolution
of VSRs. The robots equipped with hMLPs are on average faster, regard-
less of the value of n than those equipped with MLPs. We remark that
this result is obtained with the same EA (and the same number of fitness
evaluations) and notwithstanding a much larger search space in the
case of hMLP (R*"7 vs. R'2%), For each pair of variants, we performed
a statistical significance test, namely a one-sided Mann Whitney U
rank test (after having verified the adequate hypotheses) with the null
hypothesis that the distribution of v} for the first variant is statistically
lower than or equal to the distribution of v} for the second variant.
We obtained a p-value of 0.0007 for MLP vs. hMLP (5 = 0.01), 5x 1077
for MLP vs. hMLP (4 = 0.1), and 0.01 for hMLP (y = 0.01) vs. hMLP
(n = 0.1), meaning that all differences are statistically significant.

We attempted to explain the better effectiveness of robots using
Hebbian learning in terms of body-brain coupling. As already observed
by Nadizar et al. [76], finding a unique controller for each module of
a modular robot while, at the same time, searching for a good body is
hard [77]. This is even harder for modular soft robots, because softness
makes the body more important in determining the behavior, and hence
the brain more sensible to body changes [68]. However, we speculate
that the ability of hMLP to adapt the synaptic weights depending on
what the ANN processes allows the initially identical hMLPs to become
different in different voxels, hence better coping with the variability
of the body during the evolution. We discuss this speculation more in
detail in Section 4.2.

To gain more insights into the results summarized in Fig. 3, we
analyzed more in detail the behaviors of the 30 best VSRs obtained for
each of the three variants. In particular, we computed their average
speed in different subsequent phases of their “life”, which, we recall,
lasts 180s: namely, four periods lasting 30s. The result of this analysis
is summarized in Fig. 4 which shows, in the form of box plots, the
distribution of the average speed v, for the three variants in the four
phases.

There are two observations we can draw from Fig. 4. First, VSRs
equipped with hMLPs do learn. That is, they adapt, improving, during
their life: the average speed v, in the first 30s is clearly lower than their
speed in later phases; some much lighter improvement is also visible
between 30-60s and 60-90s. This form of adaptation is not visible in
VSRs equipped with MLPs.
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Fig. 4. Distributions (across 30 runs) of the average velocity of the best robots during four consecutive intervals in the task (each lasting 30s). VSRs equipped with hMLPs do
learn: they are faster after 30s than at the beginning. With a lower learning rate #, they take longer (w.r.t. greater ) to become equally fast.
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Fig. 5. Samples of bodies evolved with the three variants (for seeds 1 to 10). There are no apparent differences between variants in terms of the shape of evolved bodies.

Second, while, as expected, the variant with # = 0.01 results in
slower learning, the final speed achieved by hMLP-equipped robots is
approximately the same, regardless of the value of 5. As a consequence,
the difference between the two lines of Fig. 3 corresponding to hMLP
variants can be explained more in terms of speed of learning than in
terms of actual search effectiveness.

Regarding the bodies, in Fig. 5, we show a representative subset
of the evolved solutions (namely, those corresponding to seeds 1 to
10). We can visually observe that there are no apparent differences.
For example, we can observe that the “stair” shape appears in all three
settings (the 5-th for MLP, the 9-th for hMLP (y = 0.1), and the first
hMLP (7 = 0.01)).

We further analyzed the bodies using the same descriptors presented
in [19]. In particular, we measured the elongation and the compactness
of the bodies. Intuitively, the former measures the ratio between the
width and height of the body, while the latter describes how much the
body presents empty spaces. We performed a two-sided Mann-Whitney
U rank test that confirmed no statistical differences for the descriptors
used”.

In the next section, we discuss an additional set of experiments and
analyses we carried out in order to understand the reasons behind the
better performance of hMLP-equipped robots w.r.t. those not exploiting
Hebbian learning.

4.2. RQ2 : specialization in Hebbian controllers

Having observed a neat performance increase with the introduction
of Hebbian learning, we conducted additional analyses to investigate
the deep causes of such an improvement. In fact, we speculated that,
since Hebbian learning confers each voxel the capability to learn based
on its experience, this could lead to specialization, which in turn could
facilitate the evolution and enhance the overall VSR performance.

To test our hypothesis, we performed two experiments on the
evolved VSRs: an online one and an offline one. In the former one, we
observed the hMLP embedded in the voxels and analyzed them while
working inside the robots; in the latter, we pulled the hMLP out of the
voxels and then performed further analyses. Namely, we detached the

4 Some selected videos of the VSRs performing the locomotion task are
available at https://tinyurl.com/4ye6nkpu.

hMLPs from the simulator and studied their behavior using artificially
generated inputs. For simplicity, we performed these experiments on a
subset of 10 (out of 30) VSRs evolved in the experiment described in
the previous section, due to the significant computational cost needed
for the analysis. Namely, we selected those corresponding to seeds 1 to
10 (i.e., those for which the body is shown in Fig. 5).

4.2.1. Online analysis

Our first analysis aimed at verifying that: (H1) learning is actually
occurring in Hebbian controllers, and (H2) there is some form of
specialization in the voxels guided by the learning process.

By “learning is actually occurring” we mean that Hebbian learning
is guiding the weights towards values that are able to lead the VSR
to the accomplishment of its task, even if no additional learning is
performed; this is in contrast with an alternative hypothesis according
to which the VSRs runs successfully only because of the dynamics
induced by Hebbian learning. By specialization, we mean that voxels
ANNs become functionally different from one another after the learning
process.

To test these two hypotheses (H1 and H2), for each of 10 + 10
VSRs equipped with hMLP (10 for each value of #), we proceeded as
follows. First, we performed a simulation of 60s where we let the VSR
learn according to its evolved Hebbian rules. Then, we considered three
different re-assessment conditions, namely:

1. With learning: In this case, for each seed, we cloned the resulting
VSR (with its learned weights) and we re-assessed it in another 60s
simulation, where we allowed the VSR to continue learning.

2. Without learning: As in the previous setting, but in this case we
disabled Hebbian learning in the new 60 s simulation, i.e., we “froze”
all the weights to their values reached after the initial learning
phase.

3. Homogeneous controller: In this case, for each seed we copied the
weights of one of the voxels ANNs into all the other ANNs, obtaining
a homogeneous controller. We repeated this evaluation for each of
the voxels ANNs, hence obtaining as many clones as the number
of voxels. Each of these clones was then re-assessed in another 60s
simulation, disabling Hebbian learning.

We show the results of this online analysis in Fig. 6, where we
report, for each of the evolved VSRs (one per subplot, divided by 5
values on the rows), the velocities v, achieved in each of the three
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Fig. 6. Velocities measured during the re-assessment of the evolved VSRs: one row per learning rate 5, one column per VSR (seeds 1 to 10), one color per re-assessment condition.

aforementioned cases. Note that, while in the first two settings (“With
learning” and “Without learning”) we have one re-assessment per each
original VSR (i.e., for each seed), hence one single value per subplot,
in the third setting (“Homogen. controller”) we obtain a distribution of
velocities for each seed, with a number of values equal to the number
of voxels constituting the VSR (hence, a boxplot).

By comparing the first two velocities in each plot (ie., those
achieved with the Hebbian learning enabled and disabled, respectively)
we can reach a conclusion regarding the occurrence of actual learning.
In fact, in all but one case (n = 0.01, 8-th robot) the two values are close
to each other, which means that, after the initial learning phase, the
weights of each ANN have converged to values that are able to properly
control the VSR, and Hebbian learning is not necessary anymore
(although not detrimental). Hence, we can confirm the occurrence of
actual learning (H1).

Moving on to our second hypothesis (H2), which is the one regard-
ing specialization, we can draw some conclusions by looking at the
rightmost distribution of each subplot. Among these distributions, we
can identify two main scenarios: one with eminent spread and another
one with less spread. In the first case (largely spread distributions),
the velocities usually extend from very low values, corresponding to
almost idle VSRs, to values comparable to those achieved without any
controller alteration. These distributions hint that some voxels ANNs
have specialized so much that they are not suitable for controlling
any other voxel, leading to a significant performance drop if they
are employed in a homogeneous controller. However, the tops of the
distributions indicate that for some other voxels, specialization has
occurred less strongly, making the local ANNs versatile enough to be
able to effectively control every voxel in the VSR.

Concerning the latter case, the one with denser distributions, we
can still identify cases with high and low specialization: when the
distribution is centered at high-velocity values we can conclude that
specialization is low, and hence all the ANNs are versatile, whereas
when the distribution is centered at low velocities we deduce that
specialization is high, and almost every ANN can only control the voxel
it was evolved for. We remark that we never enabled learning when re-
assessing the VSRs in the homogeneous controller condition: in fact, the
rationale was to measure the impact of an ANN being forced to operate
in different conditions w.r.t. the one it had (possibly) specialized for. If
we had enabled learning, the ANN might have had a chance to re-adapt
to the new conditions, possibly making this experiment’s results harder
to interpret.

Summarizing, we can confirm that in the hMLPs some of the vox-
els have specialized, although the specialization phenomenon is not
uniform, neither across VSRs, nor across the voxels of a single VSR,
and even though all voxels are governed by the same Hebbian rules.
In fact, it could be the case that the amount of specialization and its
uniformity across a VSR depend not only upon the particular Hebbian
rules configuration achieved at the end of the evolution, but also on

the particular experiences undergone by each voxel (and hence by each
hMLP embedded in it). To further investigate this matter, we performed
an offline analysis, described in the following section.

4.2.2. Offline analysis

Building upon the findings of the previous section, we speculated
that specialization in a voxel could be driven by its “experience”, ie.,
by the stimuli to which a given hMLP is subjected while it is learning,
in conjunction with the set of evolved learning rules. To test this
hypothesis we conducted an offline analysis, aimed at: (a) assessing
how different the stimuli of different voxels are and at (b) evaluating
how diverse the hMLPs become in terms of responses to the same set
of stimuli.

As a preparatory phase for our analysis, we gathered the 10+10+ 10
VSRs obtained with the experiment of Section 4.1 (again, in particular,
those related to seeds 1 to 10), in this case both with MLP and hMLP
controllers, and simulated them for 60s. During these simulations, at
each control time step, we collected and saved the input vector of each
ANN of the VSR. Moreover, for the VSRs controlled by hMLPs, we also
saved a clone of the VSR with its achieved weight configuration at ¢, €
{0.25,15,30,45}. Following this data collection phase, we proceeded
with the offline analysis.

To tackle the first point (difference in stimuli), we started by exam-
ining the collected inputs, i.e., the various stimuli to which the different
ANNSs are subjected. We recall that at each time step k the input vector
of an ANN, x® e [0, 113, is defined as the concatenation of the sensor
readings (r® € [0, 1]*) and the communication values coming from its
four direct neighbors:

x® = [r(k) e R Sl Q)

To evaluate how different the experiences of the voxels of the same
VSR are throughout their lifetime, we relied on the inputs distance
matrix D. For each VSR, we computed D as:

n
D=d; = t g) ”xﬁ") - x;wuz ’ 6]

where n,, = 240 corresponds to the total amount of control time steps
performed in a 60's simulation, and xf.k> indicates the input vector of the
ith voxel at the kth control time step. In plain words, we introduced a
matrix where each element quantifies the average distance between the
inputs of each pair of ANNs of a VSR. By observing these matrices for
all the considered VSRs, we can draw some conclusions regarding how
diverse the inputs of different ANNs are.

We report all the computed matrices in Fig. 7, grouped by controller
type (MLP and the hMLP with the two different values for n) on the
rows and VSRs on the columns. In order to ease the visualization
and the discovery of patterns in the matrices, we ordered the voxels
according to their connectivity, i.e., the presence or absence of neighbor
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Fig. 7. Average pairwise distance between inputs observed by the ANNs of each VSR (grouped by controller type on rows, and VSR on columns (seeds 1 to 10), during a simulation
of 60s. The ANNs embedded in different voxels of the same VSR experience different inputs.

voxels on the four sides (with 2% —1 different values). As a consequence,
each pair of voxels i and i + 1 considered when computing D are either
of the same types in terms of connectivity (i.e., they have the same free
and connected sides), or usually differ by at most one connected side
(e.g., the ith voxel has all sides connected while the (i + 1)-th has the
top side free).

Given this representation choice, we can clearly highlight a checked
pattern in the matrices of Fig. 7, which hints that similar connectivity
corresponds to similar experiences in the voxels. This likely descends
from the fact that sharing the same connectivity usually corresponds
to playing the same role in the robot: for instance, “back” voxels will
only have the upper side free, whereas “core” voxels will have all
sides connected. In fact, square-colored blocks indicate that the average
distance in the input space is approximately the same between pairs of
voxels belonging to the same two connectivity families, i.e., having the
same role. As a further confirmation, we can note that the checks are
lighter (i.e., the distance is smaller) around the diagonals, where the
distance is computed between voxels of the same type.

If we look at the various matrices in a comparative manner, we
can also notice that for some VSRs the distances are larger (i.e., the
map is darker in some points) than for others. This does not appear
to be correlated with learning, as we can see some darker maps on
all three rows. Instead, we believe that this descends from the diverse
gaits achieved by the VSRs, which might determine weaker or stronger
differences in the inputs seen by the voxels.

Given these results, we can conclude that different voxels do indeed
experience different stimuli during their lifetime and that these differ-
ences depend mostly on two factors, namely: (1) the role of the voxel,
expressed by its connectivity, and the (2) the gait achieved by the VSR.

To proceed with evaluating how diverse the learned ANNs become
in terms of response to the same stimuli, we started by identifying a
set of representative inputs. To this end, we partitioned the space of
collected inputs into n, = 25 clusters® with the K-Means clustering
algorithm and selected the n, resulting centroids as representative
stimuli for the later analysis.

Having obtained n, representative inputs, we employed them to
compute the specialization matrix § of all the saved VSRs. We com-
puted the specialization matrix .S of a VSR as:

S=s;;= ni ZC HANN,-(xC) — ANN;(x,) )
¢ x,€

5’

where C indicates the set of n, previously computed centroids, and
ANN; indicates the ANN pertaining to the ith voxel. Simply put, each
element of S quantifies the average distance in the output space across
some representative inputs for the two considered voxels. Clearly, the
larger the average distance, the more functionally different the voxels:
ie., for the same inputs, they produce different outputs. As for the
input distance matrices D, we ordered the voxels according to their

5 We repeated the analysis with various values of n,, observing negligible
differences in the final outcomes.

connectivity when computing each S, to ease the visual discovery of
patterns.

We show the specialization matrices for all the considered VSRs
in Fig. 8. We organize the figure in two sub-figures, one per value
of 7—we do not compute this matrix for VSRs equipped with MLP-
based controllers, as their ANNs are all the same by design. Within each
subfigure, every column corresponds to a given VSR with the ANNs
sampled at different control time steps (reported on the left of each
row).

We start our analysis by focusing on each column of the figure, to
assess how the functional difference of the ANNs of a VSR develops
throughout its lifetime. We can neatly notice that all columns start
with very light matrices, corresponding to no functional differences,
which become darker as time passes. This is a clear indicator of
specialization: even though all the ANNs are initialized in the same
way, they specialize to react in different ways to the same set of stimuli,
i.e., they become functionally and behaviorally different.

Comparing the various maps, we can note that specialization does
not occur in the same way in all cases. In fact, some maps become
darker quickly, whereas some others remain lighter even after 45s.
This confirms our previous deduction about the non-uniformity of
specialization across different individuals. However, in general, the
matrices of the first subfigure appear to achieve darker colors than
those of the second subfigure, meaning that a higher value of » may
lead to a stronger specialization. This naturally descends from Eq. (2),
as the parameter n regulates the intensity of the weights alteration
performed with Hebbian learning.

Focusing on the final rows of Fig. 8, we observe the same checked
patterns detected in Fig. 7. As before, this is an indicator that special-
ization is strongly tied to the connectivity of a voxel. Anyway, here the
patterns are denser than before, meaning that in some cases there are
functional differences even within the same connectivity family.

To summarize, we have confirmed that Hebbian learning induces
specialization as a form of behavioral and functional difference in
the resulting ANNs. Moreover, we have highlighted a threefold en-
tanglement between (1) the role and connectivity of a voxel, (2) its
experience, and (3) its specialization.

5. Conclusions and broader impact

We considered the case of the concurrent optimization of the body
and the brain of Voxel-based Soft Robots (VSRs), a kind of modular
robot in which the collective behavior of several identical modules al-
lows the robot to perform complex tasks. We optimized both the body,
i.e., the way the modules are organized together, and the brain, ie.,
the parameters of an ANN embedded in each module, through an EA.
For the ANNSs constituting the brain, we adopted Hebbian learning, a
form of unsupervised learning according to which the synaptic weights
of the ANN change during the life of the agent depending on the
signals running over the synapses. We found experimentally that robots
employing Hebbian learning are more effective than those without this
form of plasticity. Moreover, through extensive experiments, we found
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Fig. 8. Specialization matrices S. The ANNs embedded in different voxels of the same VSR become functionally and behaviorally different over time.

that: (1) robots with Hebbian learning do learn, i.e., they retain their
abilities even if the plasticity is disabled, provided this is done after a
long enough learning period; (2) Hebbian learning results in specializa-
tion, ie., modules which are initially identical become different after
learning, with their ANNs processing differently the same inputs—in
brief, we observed a first form of totipotency in artificial organisms and
in the ANNs controlling them; (3) specialization is mostly related to the
role of the modules, namely, their position, in the overall body of the
robot.

The proposed approach, in which we achieve specialization of mod-
ules through Hebbian learning, may have in our opinion broad implica-
tions in various areas of Al and applications thereof. Beyond modular
robotics, which is the scope of the present work, this mechanism could
be applied in principle to various autonomous complex systems com-
posed of simple (but initially identical) modules, that require some form
of adaptation at runtime. One possible example is represented by net-
worked systems, such as Wireless Sensor Networks and other instances
of the Internet of Things. In recent work, Yaman and Iacca [78] have
attempted to apply embodied evolution in this kind of system, however
adaptation through Hebbian learning-based specialization may be an
interesting opportunity for future investigations.

Another potential field of application is that of MAS, particularly
MARL, a growing area in Al [79-82], and the even more recent explain-
able MARL field [83,84]. To some extent, the modular robots studied
in the present work can be seen as a form of MAS, with communication
mediated both implicitly (through actuation and perception of adjacent
voxels) and explicitly (through ad hoc communication signals). On
the other hand, our model could be applied to other instances of
MAS, including systems with more specific means of communication

10

through, e.g., symbolic or sub-symbolic signals [85,86] or parameter
sharing [87].

As a final note, it would be interesting to consider in our sys-
tem also non-connectionist neural models, such as Spiking Neural
Networks, for which recent works have established promising meta-
learning plasticity-based frameworks [29,40].
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