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A B S T R A C T   

The study of the behaviour of masonry arches represents a complex problem, which involves different aspects 
that can significantly affect the load bearing capacity of such structures. In this regard, geometrical imperfec
tions, such as the irregular shape of the arch blocks, the initial position of the first and last voussoirs (boundary 
conditions), the alignment between the adjoining blocks and the rounded corners of each block, play an 
important role. An experimental campaign was conducted on a toy arch made by eleven irregular blocks, with 
the aim of evaluating the effect of such irregularities. A numerical model was developed basing on lower bound 
(LB) and upper bound (UB) limit analysis approaches (referred to as the static and the kinematic theorem, 
respectively). A linear programming (LP) solving algorithm was implemented in the software MATLAB and used 
to solve the minimization/maximization problems. The probability distribution of each considered nonlinearity 
was estimated, the results of the numerical analysis were correlated with the experimental outcomes and a 
Montecarlo simulation was carried out to validate the hypothesised probability distributions.   

1. Introduction 

Masonry arches and vaults are largely diffused throughout Europe, 
especially in Italy. Such structures play an important role in historical 
constructions and monuments as well as in ordinary residential build
ings, bridges and other infrastructures. The widespread use of masonry 
arches is due to their capability to cover large spans and carry relatively 
heavy gravity loads. Their structural efficiency is attributed to the cur
vature of the arch, which transfers vertical loads laterally along the 
curved structure to the abutments at each end. The curvature of the arch 
and the restraining provided by the abutments cause a combination of 
flexural stress and axial compression. The arch geometry can be 
manipulated to keep stresses primarily compressive [1], in order to take 
advantage of the good masonry compressive strength. 

The following sets of equations provide useful tools for the structural 
analysis of masonry arches and vaults: i) equilibrium (statics), ii) ge
ometry (compatibility) and iii) material (stresses). It is worth evidencing 
that in masonry voussoir arches, the stress level is typically much lower 
than that corresponding to the material failure, making the adoption of a 
simplified material behaviour quite convenient. Therefore, a stability or 
equilibrium approach carried out according to limit analysis procedures 

-usually specialized to no-tension materials-, appears as the natural 
choice to assess the safety of curved masonry structures in general [2–7] 
and of arches in particular [8–11]. Within Heyman’s hypotheses, to 
apply classic limit analysis, three main assumptions should be adopted 
[12]: 1) masonry has no tensile strength, 2) it can resist infinite 
compression, and 3) sliding phenomena do not occur [13]. 

The limit analysis problem could be simplified using the infinitely 
resistant block method, adopted specifically for masonry structures and 
used by many authors for the determination of their collapse load 
[14–16]. Using this method, the structure is schematized as an assembly 
of infinitely resistant (and infinitely stiff) blocks and the problem’s 
nonlinearity is concentrated at the interface of two adjacent blocks. 

Equilibrium in a masonry arch could be visualized using the so-called 
line of thrust [17,18], a theoretical line representing the path of the 
resultants of the compressive forces throughout the arch. Structural 
stability is guaranteed when this line remains contained entirely within 
the section. The thrust line can also give information about possible 
collapse mechanisms. Structural curved elements exhibit failure modes 
caused by the formation of a sufficient number of flexural hinges, which 
arise where the thrust line touches the boundaries of the structure. Such 
considerations are helpful in particular for arches loaded in-plane. 
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However, it is worth noting that a safety assessment can be provided 
using the line-of-thrust (or via limit analysis in general) not only for 
gravity and vertical point loads [19], but also for the in-plane static 
application of horizontal forces mimicking a seismic action [20]. For 
arches and bridges subjected especially to out-of-plane seismic excita
tion or when 3D out of plane effect cannot be disregarded, the analysis 
becomes more difficult and typically Finite or Distinct Elements are used 
[21–28], albeit very recently some extensions to the classic approach 
based on thrust lines have been proposed [29]. 

Despite the large diffusion of masonry arches and vaults, not all the 
aspects related to their structural behaviour are completely known. Even 
if the most probable failure mode corresponds to the formation of four 
hinges, the collapse of such masonry structural elements represents a 
complex problem, which involves many aspects, such as the role played 
by the infill [30,31], the geometry skewness, the slenderness, the pres
ence of point loads, the imperfect shape of the voussoirs [32–34] (see  
Fig. 1) and the already existent state of damage [35,36]. 

These last two issues are critical and to some extent related one each 
other. As experimental and numerical literature show, indeed, they have 
a great influence in the decrease of the load bearing capacity and in the 
modification of the active failure mechanism [37]. 

In the present work, the theme of the influence of geometrical 
imperfection of both the voussoirs and the springing is analysed in 
detail, using classic lower and upper bound numerical approaches. As 
reference, a toy imperfect arch is considered. In particular, the results of 
a series of experimental tests carried out on a small-scale model of a 
masonry arch are reported and analysed. This experimental campaign 
was performed during the Summer School “From Corbel Arches To Double 
Curvature Vaults: Data Acquisition, Structural Analysis, Conservation And 
Restoration Of Architectural Heritage Masonry”, which took place at Villa 
Grumello, Como Lake (Italy) in 2021 [40]. After the data acquisition, the 
arch model was schematized in the software MATLAB, and an upper and 
a lower bound limit analysis with infinitely resistant voussoirs were 
carried out to evaluate numerically the collapse load. Large scale Monte 
Carlo simulations were performed taking into account some geometric 
imperfections, which proved to affect considerably the behaviour of the 
real tested model at collapse. 

2. Experimental campaign 

A small-scale model of a masonry arch was hand built using eleven 
wood blocks (wood density of 842 kg/m3) labelled from 1 to 11, as 
illustrated in Fig. 2. Each block was realized by the union of five wood 
wedges with a radius of 60 mm, a thickness of 12 mm and a width of 
50 mm. The wedges were glued together to form a single block, which 
was later divided into two trapezoidal sections. The biggest one, with the 
global dimensions reported in Fig. 3, was used to construct the curved 
structure, after sandpaper was applied to the block-to-block contact 
surfaces in order to avoid sliding between contiguous voussoirs, as the 
blocks were stacked on top of each other dry. Such construction process 
of the single arch’s unit was adopted to obtain blocks with the same 
average dimensions but characterized by an appreciable geometrical 
non-uniformity as typical of the existing arched structures. 

After the construction of the eleven wood blocks, the arch was 
assembled trying to find the optimal stable configuration. The result was 
a structure with a span and a height of about 268 mm and 81 mm, 
respectively. The model was supported on two wedges covered with 
sandpaper, which ensured that sufficient static friction was transferred 
to the end blocks, as friction was the only mechanism keeping the blocks 
from sliding. Finally, two plastic springing separated the structure from 
the reaction floor. The construction phase was performed each time by a 
different experimenter. This was another way to increase the geomet
rical non-linearity that characterized the real existing arches. 

After the construction phase, the structural stability and the correct 
disposition of the blocks were checked, and the resulting geometry was 
photographed. Then, the arch was incrementally loaded until the 
collapse by piling a series of fishing weights (weighing 5 g each) in a 
small plastic bucket hanging from the structure. As can be seen in Fig. 2, 
the container was fixed to the structure by means of a lace connected to 
block 9, applying a vertical concentrated load Pexp. After the collapse, 
the weights were counted and the value of Pexp was recorded. The 
container weight was not considered in the recorded value of Pexp 
because considered negligible (less than 5 g). 

The test was repeated 28 times, collecting the results reported in  
Table 1. The arch collapsed with an ultimate load that ranged from 415 
to 880 g. It is important to notice the large scatter of the experimental 

Fig. 1. Examples of stone arches with imperfect geometry of the voussoirs. (a) Titus tunnel bridge, Hatay, Turkey (b) Etruscan arch [38,39] (c) Cernadela 
Bridge, Spain. 
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data, certainly related to the accuracy with which the structure was 
built. The average value of Pexp resulted equal to 542.7 g (COV
Pexp=0.19). Specifically, the authors performed three tests, namely A01, 
A02 and A03, obtaining three values of Pexp equal to 545, 590 and 535 g, 
respectively. 

During the loading application, the evolution of each failure mech
anism was monitored by taking videos. Fig. 4 illustrates an example of 
collapse. A four-hinges mechanism was observed: a failure mode that is 
typical for full-scale unreinforced masonry arches. 

3. Numerical model 

After the experimental phase, a numerical model based on the limit 
analysis theorems was created using the software MATLAB [41]. Two 
different numerical approaches were adopted: the lower bound (LB) 
approach which uses the static theorem and the upper bound (UB) 
approach which is based on the kinematic theorem [42]. The mini
mization/maximization problem was solved using the linear program
ming solving algorithm implemented by default in MATLAB [43–45]. 
The two approaches should bring to the same solution and consequently 
it is possible to check if the two models are correctly implemented by 
means of a comparison between the obtained outcomes. 

3.1. Lower Bound Linear Programming (LBLP) approach 

The LBLP approach relies on the static theorem. All the possible so
lutions were evaluated under the hypothesis that each block must 
remain in equilibrium and that the internal actions on the interfaces 
must not violate the strength domain (i.e., the thrust line lies within the 
arch profile). The maximum collapse multiplier λST was calculated using 
a linear programming algorithm. Fig. 5 shows the forces acting on the 
block k and the interfaces i, i-1 of the arch. Each interface between 
contiguous blocks k and k + 1 exchanges a normal force Ni, a shear force 
Vi and a bending moment Mi. The loads acting on each block k are the 
vertical load Wk, the horizontal load Hk and the bending moment Mk. 

The equilibrium equations for each block in the horizontal, vertical 
ad rotational directions can be written in a matrix form as in Eqs. 1 and 
2. The matrix Gk allows correlating the internal actions of the interface i 
and i-1 applied to the centroid of the interface (vectors Xi and Xi-1) with 
the external loads (vector Fk) and the loads dependent by the collapse 

Fig. 2. Experimental test set up.  

Fig. 3. Assembling process of the single arch block.  

Table 1 
Experimental results in terms of vertical load Pexp [grams].  

ID Pexp [grams] ID Pexp [grams] 

A01  545 A15  445 
A02  590 A16  560 
A03  535 A17  515 
A04  575 A18  495 
A05  485 A19  560 
A06  435 A20  485 
A07  585 A21  580 
A08  625 A22  440 
A09  880 A23  415 
A10  485 A24  475 
A11  595 A25  540 
A12  640 A26  765 
A13  580 A27  445 
A14  490 A28  430 

Mean µPexp= 542.7 g; Standard Deviation σPexp = 102.1 g. 

Fig. 4. Evolution of the experimental failure mode.  
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multiplier λ (vector Fλ,k) which act on the centroid of the block k. The 
static admissibility condition was imposed on each interface as indicated 
in Eqs. 3 and 4, where t is the thickness of the interface i. 

⎡

⎣
cos(ϑi− 1) sin(ϑi− 1) 0 cos(ϑi) sin(ϑi) 0
sin(ϑi− 1) cos(ϑi− 1) 0 sin(ϑi) cos(ϑi) 0

a b − 1 c d 1

⎤

⎦ •

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni− 1
Vi− 1

Mi − 1
Ni
Vi
Mi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
Hk
Wk
Mk

⎤

⎦+

⎡

⎣
Hλ,k
Wλ,k
Mλ,k

⎤

⎦

where :

a = dx,k− 1sin(ϑi− 1) − dy,k− 1cos(ϑi− 1)

b = − dx,k− 1cos(ϑi− 1) − dy,k− 1sin(ϑi− 1)

c = dx,ksin(ϑi) − dy,kcos(ϑi)

d = − dx,kcos(ϑi) − dy,ksin(ϑi) (1)  

Gk

[
Xi− 1
Xi

]

= Fk +Fλ,k (2)  

⎡

⎢
⎢
⎣

ti

2
0 1

ti

2
0 − 1

⎤

⎥
⎥
⎦

⎡

⎣
Ni
Vi
Mi

⎤

⎦ ≤

[
0
0

]

(3)  

Gint,iXi ≤ bint,i (4) 

The LBLP problem can be written as indicated in Eqs. 5 and 6, where 
the matrixes Gabs and Gabs,in and the vectors Fabs,w, Fabs and babs,in can be 
obtained assembling the matrixes indicated in Eqs. 1 and 2 (see Eqs. 
7–11). The maximum collapse multiplier λST and the corresponding 
vector of the internal actions X (3ni × 1) can be solved using the linear 
programming approach. The results can be visualized by means of the 
line of trust which is determined by calculating the eccentricity ei of the 
axial load in every interface i as indicated in Eq. 12. 

max(λ)
{

GabsX = Fabs,W + Fabs,λ

Gabs,inX ≤ babs,in

(5)  

max

(

[ 01∗3Ni 1 ]

[
X

λ

])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[Gabs − Fabs,λ ]

[
X

λ

]

= Fabs,W

[Gabs,in 02Ni∗1 ]

[
X

λ

]

≤ babs,in

(6)  

Gabs =

⎡

⎢
⎢
⎣

Gk=1 0 ⋯ 0
0 Gk=2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Gk=nb

⎤

⎥
⎥
⎦(3nb × 3ni) (7)  

Gabs,in =

⎡

⎢
⎢
⎣

Gint,i=1 0 ⋯ 0
0 Gint,i=2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Gint,i=ni

⎤

⎥
⎥
⎦(2ni × 3ni) (8)  

Fabs =

⎡

⎢
⎢
⎣

Fk=1
Fk=2
⋮

Fk=nb

⎤

⎥
⎥
⎦(3nb × 1) (9)  

Fλ,abs =

⎡

⎢
⎢
⎣

Fλ,k=1
Fλ,k=2
⋮

Fλ,k=nb

⎤

⎥
⎥
⎦(3nb × 1) (10)  

babs,in =

⎡

⎢
⎢
⎣

bint,i=1
bint,i=2
⋮

bint,i=ni

⎤

⎥
⎥
⎦(2nib × 1) (11)  

ei =
Mi

Ni
(12)  

3.2. Upper bound linear programming (UBLP) approach 

The UBLP approach is based on the use of the kinematic theorem. All 
the possible solutions were evaluated by considering that there is no 
interpenetration nor sliding between contiguous blocks. The minimum 
collapse multiplier λKIN was calculated using a linear programming al
gorithm. Fig. 6 shows the velocities of the nodes of the blocks k, k + 1 
and the interface i of the arch. For each block three independent vari
ables can be identified (vector Yk): the velocity of the block in the 

Fig. 5. Forces acting on blocks and interfaces.  

Fig. 6. Block velocities.  
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horizontal direction uk, the velocity of the block in the vertical direction 
vk and the rotation speed rate around the centroid φk. 

The horizontal and vertical velocities of the four vertices of each 
block k (points Ak, Bk, Ck and Dk) can be determined as a function of uk, 
vk and φk and considering the geometry of the block. Eqs. 13 and 14 
report an example of the calculation of the velocities of the nodes A and 
C of the blocks k and k + 1, in order to introduce the adopted notation of 
the correlation matrixes GA,k and GC,K+1. The compatibility equations for 
each interface can be written in matrix form as two inequalities and two 
equalities: Eq. 15 represents the condition of no interpenetration of the 
nodes (positive difference of velocities in the direction normal to the 
interface n Dun,k), while Eq. 16 reports the assumption of no sliding (no 
difference of velocities in the direction parallel to the interface t Dut,k). 

uA,k+1 = nT
[

uA,k+1
vA,k+1

]

= nT
[

1 0 −
(
yA,k − yG,k

)

0 1
(
xA,k − xG,k

)

]
⎡

⎣
u1
vk
φk

⎤

⎦ = nT ⋅GA,kYk

(13)  

uC,k+1 = nT
[

uC,k+1
vC,k+1

]

= nT
[

1 0 −
(
yC,k+1 − yG,k+1

)

0 1
(
xC,k+1 − xG,k+1

)

]
⎡

⎣
uk+1
vk+1
φk+1

⎤

⎦

= nT ⋅GC,k+1⋅Yk+1 (14)  

[
DunA,k
DunB,k

]

= [ n n ]T
[
− GA,k GC,k+1
− GB,k GD,k+1

][
Yk

Yk+1

]

≥ 0 (15)  

[
DutA,k
DutB,k

]

= [ t t ]T
[
− GA,k GC,k+1
− GB,k GD,k+1

] [
Yk

Yk+1

]

= 0 (16)  

where : n =

[
cos(ϑi)

sin(ϑi)

]

; t =
[

sin(ϑi)

− cos(ϑi)

]

;

The UBLP problem is reported in Eqs. 17 and 18, where the matrixes 
Aeq,ass and Aass,in and the vector W0 can be obtained assembling the 
matrixes indicated in the Eqs. 15 and 16 (see Eqs. 19–22). The minimum 
collapse multiplier λKIN and the corresponding vector of the block ve
locities Y (3ni × 1) can be solved using the linear programming 
approach. The LP problem is normalized defining the power expended 
by the collapse multiplier equal to one when the collapse multiplier P1 is 
set unitary. The results can be visualized by plotting the collapse 
mechanism, which is known up to a magnification factor. 

min(λ)
⎧
⎪⎪⎨

⎪⎪⎩

Aeq,assY = 02Ni∗1

P1Y = 1

Ain,assY ≥ 02Ni∗1

(17)  

min( − W0Y)
⎧
⎪⎪⎨

⎪⎪⎩

Aeq,assY = 02Ni∗1

P1Y = 1

Ain,assY ≥ 02Ni∗1

(18)  

Ain,ass =

⎡

⎢
⎢
⎢
⎢
⎣

DunA,k=1 0 ⋯ 0
DunB,k=1 DunA,k=2 ⋱ ⋮

0 DunB,k=2 ⋱ 0
⋮ ⋱ ⋱ DunA,k=nb
0 ⋯ 0 DunB,k=nb

⎤

⎥
⎥
⎥
⎥
⎦
(2ni × 3nb) (19)  

Aeq,ass =

⎡

⎢
⎢
⎢
⎢
⎣

Dut A,k=1 0 ⋯ 0
Dut B,k=1 DutA,k=2 ⋱ ⋮

0 DutB,k=2 ⋱ 0
⋮ ⋱ ⋱ Dut A,k=nb
0 ⋯ 0 Dut B,k=nb

⎤

⎥
⎥
⎥
⎥
⎦
(2ni × 3nb) (20)  

W0 = [ Wk=1 Wk=2 ⋯ Wk=nb ](3nb × 1) (21)  

P1 = [ 0 0 P1,k=3 = (0 − 10) 0 ⋯ 0 ](3nb × 1) (22)  

4. Numerical Analyses 

4.1. Regular configuration 

The numerical model was initially used to study the behaviour of an 
arch constructed with regular blocks (block lengths at the extrados, 
intrados and interface equal to 36 mm, 30 mm and 30 mm, respectively) 
with the final dimensions reported in Fig. 3. The results of the analysis 
reported in Fig. 7, shows the collapse mechanism and the line of trust 
obtained using the kinematic (UBLP) and static (LBLP) approaches. The 
obtained value of the collapse load (Pexp = 895.6 g) is noticeably higher 
than the average load obtained experimentally (µPnum = 542.7 g; COV
Pnum = 0.19), and also higher than the maximum measured value 
(880 g). As expected, the geometric nonlinearity considerably affected 
the load bearing capacity of the analysed arch, with a mean reduction of 
the collapse load of 55%. 

4.2. Imperfections of the block geometry 

In this work, four types of geometrical nonlinearities were consid
ered: the irregular shape of the arch blocks, the initial position of the 
first element, the alignment between the adjoining blocks and the 
rounded corners of each block. 

4.2.1. Irregular shape of the arch blocks 
Photo rectifications of the pictures of the unloaded models A01, A02 

and A03 were performed with the software RDF [46]. The measured 
length of the span and the raise were used as reference to define the 
shape of the arch. Each block was represented by four points, corre
sponding to the four edges of the unit. In this way, models A01, A02 and 
A03 could be correctly drawn and imported in MATLAB as places of 
points in the xy plane. In the model, the contact surfaces between the 
voussoirs were assumed to be flat and the effect of possible small surface 
unevenness were neglected. Such approximation is compatible with the 
response of the tested arch. Once the arch approached its maximum 
load-bearing capacity, in fact, the failure mechanism starts activating 
with small rotations of the critical voussoirs. As such rotations develop, 
contact points at the voussoir interfaces shift to the edges of the block 
independently from the presence of irregularities on the interface. After 
the assembly phase, the boundary conditions and the interface proper
ties of the arch were assigned, following either the LBLP or the UBLP 
approach, as detailed in Section 3 . Fig. 8 displays the corrected photo 
and the geometry imported into MATLAB for model A02. As depicted in  
Fig. 9, the irregular shape of the arch blocks was quantified using three 
different parameters: the length at the extrados l (µl = 36.1 mm; COVl =

0.09), the planar area A (µA = 975 mm2; COVA = 0.11) and the angle 
between the interfaces α (µα = 11.6◦; COVα = 0.13). 

Fig. 7. Standard configuration results (Pexp=895.6 g).  
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4.2.2. Initial position of the first element 
The initial interface angle of block 1 was considered as a variable due 

to the different positions of the wedge inserted between block 1 and the 
plastic springing. As shown in Fig. 10, a mean value equal to 25.5◦ was 
estimated for this parameter and a normal distribution with a standard 
deviation of 2.5◦ was assigned to the interface angle. Such values of 
mean and standard deviation were calibrated in accordance with the 
experimental values measured by means of photo rectification. 

4.2.3. Alignment between the adjoining voussoirs 
The arch blocks were not perfectly aligned due to their different 

shape and the positioning errors arising during construction. The 
extrados corner was considered as reference for the blocks alignment, 
exactly as it was done in the construction stage. A normal distribution, 
with a mean value and a standard deviation of 0 mm and 2.5 mm, 

respectively, was assumed for the positioning of the blocks, as reported 
in Fig. 11. Such values were defined in accordance with the experi
mental outcomes. 

4.2.4. Rounded corners of each block 
The blocks used in the small-scaled arch were characterized by 

rounded corners, which were consequently considered in the model.  
Fig. 12 depicts how the interface length corresponding to each corner 
was reduced of 1.3 mm to account such imperfections. This nonlinearity 
was due to the construction phase previously illustrated (Fig. 3) and, 
therefore, a constant value was assigned to all the blocks corners. 

4.3. Model validation 

The behaviour of the arch specimens A01, A02 and A03 were ana
lysed and the obtained numerical outcomes were compared with the 
experimental ones (see Fig. 13, Fig. 14 and Fig. 15). For each experi
mental test, the arch geometry and the block positions were detected 
from the photo rectification, while the rounded block corners were 
considered as previously described. 

The numerical models provided results consistent with the experi
mental evidence, with the collapse load of the three specimens being 
accurately estimated. The percent deviation was in fact equal to -0.28%, 
0.34%, and -0.48% for model A01, A02, and A03, respectively. Such a 
level of accuracy was reached despite the minimum weight increment 
during testing being equal to 5 g. In addition, for each arch, the nu
merical model was able to capture the failure mode observed 
experimentally. 

4.4. Montecarlo simulation 

Once the geometrical non-linearities had been considered, a statis
tical analysis (Montecarlo simulation) was performed, as illustrated in  
Fig. 16. The correct geometry and the corner rounding of the blocks 
experimentally measured were used in the simulations. Ten-thousand 
arch specimens were generated, compatibly with the above-described 
probability distribution of the initial position of the first element and 
the alignment between each adjoining block. The analysis was per
formed using a 16 Gb RAM computer, with a total computational time 
equal to 32 min. Fig. 17 reports the resulting histogram and the curves of 
the normal probability distribution obtained both numerically (µPnum =

544.3 g; COVPnum = 0.19) and experimentally (µPexp = 542.7 g; COVPexp 
= 0.19). The numerical results appeared consistent with the experi
mental data, with a percent deviation smaller than 0.57%, suggesting 
that the considered probability distribution of the geometrical non- 
linearities had been properly calibrated. 

Among the ten-thousand models, the arch configurations that lead to 
the largest and the smallest collapse loads are reported in Fig. 18. It can 
be noticed how the geometrical non-linearities considerably affected the 
ultimate load and the relative failure mode by varying the value of the 
collapse load up to 87% from the average value. As expected, the range 
between the minimum and maximum values of the collapse load ob
tained from the simulation contained all the experimental values re
ported in Table 1 due to the different number of analysed configurations. 

Fig. 8. Example of photo rectification of the arch.  

Fig. 9. Definition of the irregular shape of the arch blocks.  

Fig. 10. Initial position of the first element.  Fig. 11. Alignment between the adjoining blocks.  
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5. Conclusions 

An experimental campaign was conducted with the aim of evaluating 
the effect of the geometrical non-linearities on the load bearing capacity 
of a small-scale arch, made of eleven irregular voussoirs. With such 
purpose, a numerical analysis was performed using the software MAT
LAB, considering as geometrical non-linearities the irregular shape of 
the arch blocks, the initial position of the first element, the alignment 
between the adjoining blocks and the rounded corners of each block. 
The following conclusions were drawn:  

• When assessing real full-scale arched structures, it is quite common 
to refer to an idealized geometry characterized by identical vous
soirs. The results presented herein show, albeit with reference to a 
small-scale toy arch, that an accurate geometric survey is critical to a 
correct assessment of the load-carrying capacity of voussoir arches.  

• The outcomes of twenty-eight tests performed on the small-scaled 
arch specimens were collected. The measured collapse load values 
(µPexp = 542.7 g; COVPexp= 0.19) showed that the geometrical non- 
linearities considerably influenced the response of the arch, sug
gesting how such non-linearities should be considered when ana
lysing curved structures.  

• A numerical model, based on limit analysis theorems, was developed 
and validated on the experimental data both in terms of ultimate 
load and failure mode. Two numerical approaches were used: the 
lower bound (LB) and the upper bound (UB) approach which are 
referred to the static and the kinematic theorem, respectively. The 
minimization/maximization problem was solved with a linear pro
gramming solving algorithm.  

• A non-negligible difference between the failure load values of the 
regular and the irregular configurations was noticed, leading to a 

Fig. 12. Rounded corners of each block.  

Fig. 13. Results of the specimen A01.  

Fig. 14. Results of the specimen A02.  

Fig. 15. Results of the specimen A03.  
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reduction of 55% of the load-bearing capacity due to the presence of 
irregularities. 

• The main geometrical-nonlinearities which could affect the behav
iour of the tested small-scaled structure were identified and their 
probability distributions were estimated according to the experi
mental results. 

• Among the twenty-eight performed tests, three selected configura
tions of blocks were analysed in detail (with their real geometry) to 
validate the numerical model.The probability distribution of 
geometrical nonlinearities involved in the problem was validated by 
means of a Montecarlo simulation, generating additional ten- 
thousand arch configurations. The obtained numerical probability 
distribution resulted to be consistent with the experimental 
outcomes. 
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[27] Sarhosis V, Forgács T, Lemos JV. A discrete approach for modelling backfill 
material in masonry arch bridges. Comput Struct 2019;224:106108. 
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[46] RDF, CIRCE - IUAV Università degli Studi di Venezia, 1999. 

D. Cassol et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref5
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref5
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref5
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref6
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref6
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref7
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref7
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref8
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref8
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref9
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref9
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref10
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref10
https://doi.org/10.1016/j.softx.2018.05.006
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref12
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref13
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref13
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref14
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref14
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref15
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref15
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref16
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref16
https://doi.org/10.1515/cls-2021-0003
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101553000&amp;doi=10.1515%2fcls-2021-0003&amp;partnerID=40&amp;md5=adc9dee1df799d1c61d14e48620ba6c5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101553000&amp;doi=10.1515%2fcls-2021-0003&amp;partnerID=40&amp;md5=adc9dee1df799d1c61d14e48620ba6c5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101553000&amp;doi=10.1515%2fcls-2021-0003&amp;partnerID=40&amp;md5=adc9dee1df799d1c61d14e48620ba6c5
https://doi.org/10.1016/j.istruc.2021.07.009
https://doi.org/10.1016/j.istruc.2021.07.009
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111281318&amp;doi=10.1016%2fj.istruc.2021.07.009&amp;partnerID=40&amp;md5=efe94320a0a3c69bb753ee843cd15991
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111281318&amp;doi=10.1016%2fj.istruc.2021.07.009&amp;partnerID=40&amp;md5=efe94320a0a3c69bb753ee843cd15991
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111281318&amp;doi=10.1016%2fj.istruc.2021.07.009&amp;partnerID=40&amp;md5=efe94320a0a3c69bb753ee843cd15991
https://doi.org/10.1016/j.istruc.2021.06.057
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108867870&amp;doi=10.1016%2fj.istruc.2021.06.057&amp;partnerID=40&amp;md5=f6d6c78bb4477182ac723dbfe570c4c6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108867870&amp;doi=10.1016%2fj.istruc.2021.06.057&amp;partnerID=40&amp;md5=f6d6c78bb4477182ac723dbfe570c4c6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108867870&amp;doi=10.1016%2fj.istruc.2021.06.057&amp;partnerID=40&amp;md5=f6d6c78bb4477182ac723dbfe570c4c6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108867870&amp;doi=10.1016%2fj.istruc.2021.06.057&amp;partnerID=40&amp;md5=f6d6c78bb4477182ac723dbfe570c4c6
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref20
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref20
https://doi.org/10.1016/j.istruc.2022.09.059
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139322500&amp;doi=10.1016%2fj.istruc.2022.09.059&amp;partnerID=40&amp;md5=b8cd77876944cc5c19171217437df2e1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139322500&amp;doi=10.1016%2fj.istruc.2022.09.059&amp;partnerID=40&amp;md5=b8cd77876944cc5c19171217437df2e1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139322500&amp;doi=10.1016%2fj.istruc.2022.09.059&amp;partnerID=40&amp;md5=b8cd77876944cc5c19171217437df2e1
https://doi.org/10.1016/j.istruc.2022.03.063
https://doi.org/10.1016/j.istruc.2022.11.101
https://doi.org/10.1016/j.istruc.2022.11.101
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143510495&amp;doi=10.1016%2fj.istruc.2022.11.101&amp;partnerID=40&amp;md5=b6661c4069bf4875bde309e8ba4d244b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143510495&amp;doi=10.1016%2fj.istruc.2022.11.101&amp;partnerID=40&amp;md5=b6661c4069bf4875bde309e8ba4d244b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143510495&amp;doi=10.1016%2fj.istruc.2022.11.101&amp;partnerID=40&amp;md5=b6661c4069bf4875bde309e8ba4d244b
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref23
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref23
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref24
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref24
https://doi.org/10.1016/j.cma.2022.115304
https://doi.org/10.1016/j.engstruct.2021.113189
https://doi.org/10.1016/j.engstruct.2021.113189
https://doi.org/10.1007/978-3-030-50460-1_27
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090513436&amp;doi=10.1007%2f978-3-030-50460-1_27&amp;partnerID=40&amp;md5=56a455f75ac93dd9f0a0a3c8436a0248
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090513436&amp;doi=10.1007%2f978-3-030-50460-1_27&amp;partnerID=40&amp;md5=56a455f75ac93dd9f0a0a3c8436a0248
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090513436&amp;doi=10.1007%2f978-3-030-50460-1_27&amp;partnerID=40&amp;md5=56a455f75ac93dd9f0a0a3c8436a0248
https://doi.org/10.1007/978-3-030-41057-5_164
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083969824&amp;doi=10.1007%2f978-3-030-41057-5_164&amp;partnerID=40&amp;md5=da9290b54d6e2e428c5eed9a84ea42dd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083969824&amp;doi=10.1007%2f978-3-030-41057-5_164&amp;partnerID=40&amp;md5=da9290b54d6e2e428c5eed9a84ea42dd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083969824&amp;doi=10.1007%2f978-3-030-41057-5_164&amp;partnerID=40&amp;md5=da9290b54d6e2e428c5eed9a84ea42dd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083969824&amp;doi=10.1007%2f978-3-030-41057-5_164&amp;partnerID=40&amp;md5=da9290b54d6e2e428c5eed9a84ea42dd
https://doi.org/10.1007/s11071-017-3897-z
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032792785&amp;doi=10.1007%2fs11071-017-3897-z&amp;partnerID=40&amp;md5=c50d6f12ddb149cba3ac721f6f16f7e9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032792785&amp;doi=10.1007%2fs11071-017-3897-z&amp;partnerID=40&amp;md5=c50d6f12ddb149cba3ac721f6f16f7e9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032792785&amp;doi=10.1007%2fs11071-017-3897-z&amp;partnerID=40&amp;md5=c50d6f12ddb149cba3ac721f6f16f7e9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032792785&amp;doi=10.1007%2fs11071-017-3897-z&amp;partnerID=40&amp;md5=c50d6f12ddb149cba3ac721f6f16f7e9
https://doi.org/10.1016/j.istruc.2020.08.008
https://doi.org/10.1016/j.istruc.2020.08.008
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://doi.org/10.1016/j.compstruc.2018.07.001
https://doi.org/10.1016/j.istruc.2020.08.008
https://doi.org/10.1016/j.istruc.2020.08.008
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090051358&amp;doi=10.1016%2fj.istruc.2020.08.008&amp;partnerID=40&amp;md5=26152b474af222f1804953df624df61e
https://doi.org/10.11588/diglit.2021
https://doi.org/10.11588/diglit.2021
https://doi.org/10.1007/s00004-006-0016-8
https://doi.org/10.1007/s00004-006-0016-8
https://doi.org/10.1007/978-3-031-12873-8_1
https://doi.org/10.1007/978-3-031-12873-8_1
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref33
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref33
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref34
http://refhub.elsevier.com/S2352-0124(24)00253-4/sbref34

	Experimental and numerical evaluation of geometrical imperfection effects on the load bearing capacity of small-scaled vous ...
	1 Introduction
	2 Experimental campaign
	3 Numerical model
	3.1 Lower Bound Linear Programming (LBLP) approach
	3.2 Upper bound linear programming (UBLP) approach

	4 Numerical Analyses
	4.1 Regular configuration
	4.2 Imperfections of the block geometry
	4.2.1 Irregular shape of the arch blocks
	4.2.2 Initial position of the first element
	4.2.3 Alignment between the adjoining voussoirs
	4.2.4 Rounded corners of each block

	4.3 Model validation
	4.4 Montecarlo simulation

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


