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BSTRACT 

Background: Ticks have medical and economic importance due to their ability to transmit 

pathogens to humans and animals. In tropical and sub-tropical countries, tick-borne diseases 

(TBD) are among the most important diseases affecting livestock and humans. The fast 

spread of ticks and TBD requires a quick development and application of efficient prevention 

and/or control programs. Therefore, prior investigations on TBD and related vectors 

epidemiology, for instance through accurate epidemiological models are mandatory. This 

study aims to develop models to forecast suitable habitat for Rhipicephalus microplus 

distribution in West Africa. Methods and principal findings: Tick occurrences were 

assembled from ten different studies carried out in six West African countries in the past 

decade. Six statistical models (Maximum Entropy in a single model and Generalized Linear 

Model, Generalized Additive Model, Random forest, Boosted Regression Tree and Support 

Vector Machine model in an ensemble model) were applied and compared to predict the 

habitat suitability of R. microplus distribution in West Africa. Each model was evaluated with 

the area under the receiver operating characteristic curve (AUC), the true skill statistic (TSS) 

and the Boyce index (BI). The selected models had good performance according to their 

AUC (above 0.8), TSS (above 0.7) and BI (above 0.8). Temperature played a key role in 

MaxEnt, while normalized difference vegetation index (NDVI) was the most important 

variable in the ensemble model. The model predictions showed coastal countries of West 

Africa as more suitable for R. microplus. However, some Sahelian areas seems also 

favourable. Conclusions and significance: We stress the importance of vector surveillance 

and control in countries that have not yet detected R. microplus but are in the areas predicted 

to host suitable habitat. Indeed, awareness-raising and training of different stakeholders must 

be reinforced for better prevention and control of this tick in these different countries 

according to their status.  

Keywords: Rhipicephalus microplus; West Africa; Maximum Entropy; Random forest; 

Generalized Linear Model; Generalized Additive Model; Boosted Regression Tree; Support 

Vector Machine; Ensemble modelling. 

 

INTRODUCTION  

Livestock plays a key role in the macroeconomy of West Africa and provides livelihoods for 

millions of people. The main cattle rearing strategy in West Africa is pastoralism, including 

transhumance: i.e. a seasonal migration of cattle with their herders. This adaptive strategy 
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aims to optimize livestock access to water and pastures. However, it can favour pathogens 

and vectors transboundary spread.  

Ticks are an important threat to livestock and human health worldwide. These vectors are of 

medical and economic importance due to their ability to transmit various pathogens to 

animals and humans (Jongejan and Uilenberg, 2005; Duvallet et al., 2017). Tick-borne 

diseases (TBD) including protozoan diseases (e.g. theileriosis and babesiosis), rickettsial 

diseases (e.g. anaplasmosis and heartwater), viral disease (e.g. Tick-Borne Encephalitis, 

Crimean Congo Haemorrhagic Fever and Lumpy Skin Disease) and bacterial diseases (e.g. 

dermatophilosis and Q fever) represent major health and management problems of livestock 

in many developing countries. In Tanzania, Kivaria, (2006) reported economic losses from 

tick-borne diseases in livestock of US$ 364 million. These losses included the deaths of 1.3 

million cattle representing 7.34% of the country's livestock population (Kivaria, 2006). 

The most important Ixodidae ticks species hampering livestock improvement in West Africa 

belong to the genera Hyalomma, Rhipicephalus and Amblyomma (Frans, 2000). Among these 

species, the invasive tick, Rhipicephalus microplus was the most studied during the last two 

decades since its introduction in West Africa in 2002-2004 (Maxime Madder et al., 2007 and 

2012). Rhipicephalus microplus, the cattle tick originating from Asia is distributed in the 

tropical and subtropical regions of the world and has commercial importance (Frisch, 1999; 

Labruna et al., 2009). Initially in Africa, this tick has been established in southern and eastern 

countries such as South Africa, Mozambique, Zimbabwe, Malawi, Zambia, Tanzania, and 

Kenya (Walker et al., 2003). Its first occurrence in West Africa was reported in Ivory Coast 

(Maxime Madder et al., 2007) and  Benin (de Clercq et al., 2012; Maxime Madder et al., 

2012). After its introduction in this part of Africa, it has spread to several other countries such 

as Burkina Faso, Togo, Mali (Adakal et al., 2013), Nigeria (Opara and Ezeh, 2011; Musa et 

al., 2014; Adedayo and Olukunle, 2018), and Cameroon (Silatsa et al., 2019).  

The complex epidemiology of TBD includes relationships with environmental factors (e.g. 

temperature, humidity, and vegetation) that influence vector abundance, host availability, and 

pathogen transmission (Robinson et al., 2015). The rapid spread of ticks and TBD suggests 

the need for implementing rapid and efficient prevention and/or control programs. 

Developing relevant control programs for ticks spread and the various TBD requires a deep 

understanding of the biology of these ticks and related TBD and the use of accurate 

epidemiological models. 
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Modelling is a powerful tool for informing policies development for the prevention and 

control of animal diseases. It has become a widely used tool to support the evaluation of 

various disease management activities (Eisen and Eisen, 2011). For animal health domain, 

models may be useful in various ways like retrospective analysis, contingency planning, 

resource planning, training, surveillance targeting, and real-time decision support (Taylor, 

2003).  

Ticks are not host-permanent parasites. They alternate between non-parasitic and parasitic 

phases. Therefore, their survival and development are strongly related to the characteristics of 

the biotic (e.g. host) and abiotic (e.g. host habitat, temperature, and humidity) environment 

(Duvallet et al., 2017). To study the distribution of ticks, it is important to use models that are 

best suited to their biology, such as species distribution models (SDM). These later, also 

known as climate envelop models, habitat suitability models and ecological niche models, use 

the environmental records for sites of occurrence (presence) of a species to forecast a 

response variable. This may be, for instance, suitability for a site where the environmental 

conditions are appropriate for the survival of that species and therefore where it can be 

reasonably expected to be found. SDM compare the locations where a species has been 

observed to other location where i) it has not been observed (true absence), ii) it is not 

believed to be observable (pseudo-absences), iii) the background environment (background 

points) (Guisan et al., 2017).  

One of the main applications of this method is to predict the ranges of vector species with 

climatic data as predictors. Modelling the habitat of a vector species requires prior knowledge 

of its biology and ecology. In the lifetime of ticks, they alternate between non-parasitic life 

phases, during which metamorphosis, egg-laying and incubation take place, and parasitic 

phases, during which they feed on the blood of their vertebrate host (Duvallet et al., 2017). 

During their non-parasitic life, they need climatic and environmental conditions (e.g. 

temperature, humidity, vegetation) adapted to each species to fulfil the different off-host 

phases of their biological cycle. The availability of suitable and specific hosts is also crucial 

for their survival in a given environment, as these ectoparasites are exclusively 

haematophagous. These conditions are therefore very important for the installation and 

expansion of a tick species in an environment (Sonenshine and Roe, 2013). A risk assessment 

of the introduction and spread of a tick species must address these different biological 

parameters.  
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Rhipicephalus microplus is widely distributed in tropical and subtropical areas of the world 

where it is responsible for a major problem for livestock owners as it causes important 

economic losses to animal production. It is present in Africa, Southeast Asia, South and 

Central America, including Argentina, Brazil, Cambodia, Malaysia, Mozambique, Panama, 

Philippines, Taiwan and Texas, South China, Bangladesh, India, Myanmar, Nepal, and 

Pakistan (Labruna et al., 2009; Agustín Estrada-Peña et al., 2012; Burger et al., 2014; Low et 

al., 2015; Roy et al., 2018). It is a species native to South East Asia which spread elsewhere 

through the cattle trade (Walker et al., 2003). To improve the African cattle breed 

productivity, dairy cattle from Brazil were introduced in West Africa in the 2000s. 

Unfortunately, the invasive tick species has been also introduced through Côte d’Ivoire 

(Maxime Madder et al., 2007) and Benin (Maxime Madder et al., 2012). Since its 

introduction in the West African sub-region in the 2000s, R. microplus has not stopped 

spreading. New locations for its establishment have been reported over the last ten years 

(Boka et al., 2017; Kamani et al., 2017). Then, thanks to transhumance, R. microplus 

distribution area increased.  

The objective of this study was to highlight the current extent of the spread of R. microplus in 

West Africa and to show the suitability of the parts of West African environment for the 

habitat of R. microplus using species distribution models. These models were used 

individually or gathered (ensemble modelling) according to analyses. 

 

MATERIALS AND METHODS 

 

Study area  

The study area included the West African countries located between 18°E - 15°W and 4°N - 

16°N (Fig. 1). West Africa has three major climatic zones: the Guinean zone which extends 

approximately between 6°- 8°N, the Sudanian zone approximately between 8°- 12°N and the 

Sahelian zone between 12°- 16°N (Kouassi et al., 2010). 

One of the main assumptions of correlative species distribution modelling applied to invasive 

species is the niche conservatism of the native environmental niche into the invaded area 

(Pearman et al., 2008). While usually tested using ordination techniques, here, due to lack of 

a sufficient number of occurrences in the native area with temporal consistency with the 

occurrences in West Africa, we proposed a qualitative analysis based on the similarity of the 
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Koppen-Geiger climatic classification for the native (South East Asia, Appendix S1) and the 

invaded areas (South America and sub-Saharan Africa) to test this assumption (Romero et al., 

2021).  

 

Data 

Tick occurrence data  

A collection of the sampling locations was built and used here as occurrence (i.e. presence) 

and non-occurrence (i.e. absence) data (Fig 1). These different surveys, conducted between 

2008 and 2017, revealed the presence of R. microplus in 316 locations (Table 1).  

Table 1. Rhipicephalus microplus distribution studies in West Africa since its 

introduction  

Place of ticks collection Period of ticks 

collection 

Number of 

occurrences 

References 

Côte d’Ivoire 2008 21 Madder et al., 2011 

Benin 2008 33 Madder et al., 2012 

Benin 2011 52 de Clercq et al., 2012 

Burkina Faso; Mali and Togo 2011 12 Adakal et al., 2013 

Ivory Coast 2011 to 2012 25 Toure et al., 2014 

Burkina Faso  2013 23 Unpublished 

Benin and Burkina Faso 2012 to 2013 8 Biguezoton et al., 2016 

Ivory Coast 2015 99 O. Boka et al., 2017 

Nigeria 2014 to 2015 4 Kamani et al., 2017 

Benin and Burkina Faso 2017 39 Ouedraogo et al., 2021 

 

Predictors 
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A set of 13 relevant variables (Table 2) related to the environment of the tick and its host 

were selected. The biotic predictor selected was cattle density, as R. microplus was described 

as a specific and the most significant parasite for cattle (Bellgard et al., 2012). The abiotic 

predictors selected were temperature, rainfall, vegetation index and land cover. Vegetation 

(pasture for herds) were considered as dependent on climatic factors (rainfall and 

temperature). It plays a key role in the life of the tick host (cattle). The availability of pasture 

and water are determinants for the presence of cattle in an area.  

Abiotic factors (temperature, humidity, vegetation index and land cover) are crucial for the 

survival of the tick during its off-host stages (Apanaskevich and Oliver, 2014).     

The rainfall and the temperature data used in this study were climate data set for the earth 

land surface areas at a spatial resolution of 1 km. The rainfall data and the temperature data 

were annual mean patterns for the period of 1979-2013; http://chelsa-climate.org/bioclim/ 

(Table 2). 

 

The cattle density dataset contains the global distribution of cattle in 2010 expressed in the 

total number of cattle per pixel (5 min of arc) according to the Gridded Livestock of the 

World database (GLW 3) (Table 2). 

The Normalized difference vegetation index (NDVI) data used here is the calculation of the 

mean of the NDVI raster of the twelve months of 2015 downloaded from the MODIS NDVI; 

https://lpdaac.usgs.gov/products/mod13a3v006/ with a resolution of 1 km (Table 2). 

The annual (2015) land cover variables (Cropland, Mosaic tree and shrub, Mosaic herbaceous 

cover, Shrubland, Grassland, Sparse vegetation, Urban areas, Bares areas and Water bodies) 

were downloaded from https://www.esa-landcover-cci.org, with a resolution of 1 km (Table 

2). 

Variable pre-processing 

A collinearity test on the predictors was used to check for linear associations between two or 

more explanatory (predictors) variables. Two variables are perfectly collinear if there is an 

exact linear relationship between them. For the diagnosis of collinearity, we used the 

Variance Inflation Factor (VIF) method to see which variables are really necessary for the 

https://www.esa-landcover-cci.org/
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computation of the different models (Akinwande et al., 2015). A VIF in the range of 5 to 10 

shows a high correlation which can be problematic. If the VIF rises above 10, it can be 

argued that the regression coefficients are misestimated because of multi-collinearity, which 

must be treated appropriately (Akinwande et al., 2015). Variables with VIF greater than five 

will not be used further. The correlation of the predictors with the presence of the tick was 

highlighted by the multivariate regression preceding the VIF analysis and included in the 

collinearity analysis. This helped in the selection of relevant predictors for the modelling 

(Table 2). Variables with many missing values were removed from the list of predictors. The 

number of presence and absence data was balanced accordingly. In our data, the number of 

absence points was higher than the number of presence points, so we randomly sampled 316 

points (total number of presence points) from all absence points. In addition, all predictors’ 

rasters resolutions were harmonized at the spatial resolution of 10 km. 

 

Table 2. Rhipicephalus microplus potential predictors and associated variables, sources, 

and their variance inflation factors 

Predictors Description VIF Type Period Sources 

Rainfall Annual rainfall 

[mm/year] 

2.17 Climatic 1979-

2013 

http://chelsa-

climate.org/bioclim/ 

Temperature Annual Mean 

Temperature [°C*10] 

2.15 Climatic 1979-

2013 

http://chelsa-

climate.org/bioclim/ 

Cattle  Cattle density 

(Head/Km
2
) 

1.32 Host 2010 https://dataverse.harvard.edu/d

ataset.xhtml?persistentId=doi:1

0.7910/DVN/GIVQ75; 

(Nicolas et al., 2016; Gilbert et 

al., 2018) 

NDVI Normalized difference 

vegetation index 

2.23 Environmental 2015 https://lpdaac.usgs.gov 

/products/mod13a3v006/ 

Crop 

(code: 10) 

Cropland 2.29 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Mosaic 

TSHC 

(code: 100) 

Mosaic tree and shrub 

(>50%) / herbaceous 

cover (<50%) 

1.03 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Mosaic Mosaic herbaceous cover 1.01 Environmental 2015 https://www.esa-landcover-

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIVQ75
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIVQ75
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIVQ75
https://lpdaac.usgs.gov/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
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Predictors Description VIF Type Period Sources 

HCTS (code: 

101) 

(>50%) / tree and shrub 

(<50%) 

(Land cover) cci.org 

Shrub  

(code: 120) 

Shrubland 1.47 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Grass  

(code: 130) 

Grassland 1.31 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Vegetation  

(code: 150) 

Sparse vegetation (tree, 

shrub, herbaceous cover) 

(<15%) 

0.00 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Urban  

(code: 190) 

Urban areas 56.54 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Bare  

(code: 200) 

Bare areas 0.00 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Water  

(code: 210) 

Water bodies 0.00 Environmental 

(Land cover) 

2015 https://www.esa-landcover-

cci.org 

Legend: VIF, Variance inflation factors; NDVI, Normalized difference vegetation index; 

HCTS, Mosaic herbaceous Cover Tree and Shrub. 

 

Modelling 

Six models were used in this study. The Maximum Entropy Model (MaxEnt) was used alone 

with only R. microplus presence data, while five other models, i.e. Generalized Linear Model 

(GLM), Generalized additive model (GAM), Random Forest (RF) model, Boosted regression 

tree (BRT) and Support vector machine model (SVM), were used to produce an ensemble 

model using R. microplus presence and absence data via the R package ―sdm‖ (Naimi and 

Araújo, 2016).  

In addition, a sensitivity analysis was carried out to assess the contribution of each predictor 

used in models through the variables importance analysis in each modelling technique. The 

variable importance was addressed in the Maximum Entropy (MaxEnt) model by the 

permutation importance values.  

https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
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Maximum Entropy (MaxEnt) 

MaxEnt is a machine learning technique using a set of environmental grids and georeferenced 

locations of occurrence to model niches and species distributions (Phillips et al., 2006; Jane 

Elith et al., 2011; Zeng et al., 2016; Phillips et al., 2017). Our MaxEnt model was trained and 

tuned using the ENMeval package (Muscarella et al., 2014). We used the function 

ENMevaluate with nine arguments: ―occ‖, env, ―bg.coords‖, ―method‖, ―algorithm‖, ―kfold‖, 

―RMvalues‖, ―fc‖ and ―parallel‖. The ―occ‖ argument here was R. microplus occurrences 

data. The predictor layers were stacked in the argument ―env‖ and we sampled 10000 

background coordinates for the argument ―bg.coords‖. We chose the ―block‖ method for data 

partitioning, the algorithm of ―maxent.jar‖ and the number of bins used in the k-fold cross-

validation was k=10. The features combination used in the argument ―fc‖ were: L, LQ, LQP 

and LQPH (L=linear, Q=quadratic, P=product and H=hinge). The selected model was the one 

with the lowest Akaike information criterion (AIC) (Warren et al., 2010). The MaxEnt 

model’s running and prediction were made with the following arguments: "replicates=10", 

"replicatetype=crossvalidate", "doclamp=FALSE", "extrapolate=TRUE", 

"maximumiterations=5000", "betamultiplier=1.5", "randomseed", "removeduplicates", 

"writeplotdata", and "pictures". 

Ensemble modelling 

Various methods exist for ensemble modelling and can be defined in the method 

specification. In this study, the R package ―sdm‖ was used for the ensemble modelling 

(Naimi and Araújo, 2016). First, we created a data object ―d‖ with the function ―sdmData‖ 

including the argument ―species‖ and ―predictors‖. The arguments of ―species‖ summarize 

the presence and absence points of R. microplus and ―predictors‖ the seven selected 

explanatory variables. We used the "weighted average" method and the evaluation statistic 

was the TSS.  The selected models are Generalized linear model (GLM), Generalized 

additive model (GAM), Random Forest, Boosted regression tree (BRT) and Support vector 

machine model (SVM). The validation methods used were cross-validation with (cv.folds=5) 

and bootstrapping (n=10).  

Generalized linear model (GLM) 
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Generalised Linear Models (GLM) highlight the relationship between the response variable 

and a set of predictor variables by searching for the most suitable and parsimonious model 

(Thuiller et al., 2003).  

Generalized additive model (GAM) 

GAMs are useful when the relationship between variables is expected to be of a more 

complex form, not easily fitted with standard parametric functions of the predictors (e.g. 

GLM with a linear or quadratic response), or where there is no priori reason for using a 

particular shape (Hastie and Tibshirani, 1990; Guisan et al., 2017). A GAM can be used in 

addition to a GLM, to explore the general shape of the response function and to implement it 

in the best possible way in a GLM  (Guisan et al., 2002). 

Random Forest (RF) 

Random forest (RF) is a supervised learning algorithm. The "forest" that it builds is a set of 

decision trees, usually trained by the "bagging" method (Peters et al., 2011).  

Boosted regression tree (BRT) 

The BRT is a technique that aims to improve the performance of a single model by fitting 

many models and combining them for prediction. This technique uses two algorithms: the 

classification and regression tree (decision tree) group of models, and boosting builds and 

combines a collection of models (Elith et al., 2008). 

Support vector machine model (SVM) 

The SVM model is able to strike the most rational balance between species adaptability and 

complexity in order to achieve the most likely distribution given the constrained information 

in the data sample (Drake et al., 2006). 

 

Cross-validation and bootstrapping 

Cross-validation is a resampling procedure used to evaluate machine learning models on a 

limited data sample. The procedure has a single parameter called k that refers to the number 

of groups that a given data sample is to be split into. The model will train k models, each with 
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k-1 folds, and the k
th

 (last fold) will be used to test it (Hijmans, 2012). Overall accuracy is 

calculated by the average of the accuracy from all k models. 

Bootstrapping replicates a sampling method with replacement, each time a sample of equal 

size to the original data is drawn and used as training data. Observations that are not selected 

are used for evaluation in each round (Naimi and Araújo, 2016). 

To evaluate the performance of the models three parameters were considered: the Area Under 

the receiver operating Curve (AUC), the True Skill Statistics (TSS) and the Boyce Index. We 

use AUC, TSS and Boyce index for the MaxEnt model and AUC and TSS for the ensemble 

modelling.  

A model with no predictive power would have an AUC of  0.5 (e.g. a diagonal line), while a 

perfect model would correspond to an AUC of 1 (Boyce et al., 2002; Allouche et al., 2006). 

A TSS value of  +1 indicates perfect agreement and values of zero or less indicate 

performance no better than random (Allouche et al., 2006). 

Boyce's index is an evaluation tool adapted for models predicting species distribution based 

on presence-only data (Di Cola et al., 2017). The Boyce index is ranged from -1 to +1 and 

positive values indicate consistent predictions of species presences. Values close to zero 

mean that the pattern is no different from a random pattern and negative values indicate 

counter-predictions, i.e. prediction of areas of presence more frequent as it is highly relevant 

to the species (Boyce et al., 2002; Hirzel et al., 2006).   

 

Softwares 

Analyses were carried out with R software version 4.0.5 (R Core Team 2021). The following 

R packages were used: dismo, ENMeval, and sdm (Hijmans and Elith, 2013). The MaxEnt m

odel was implemented using R packages rJava and dismo. The ensemble modelling with the f

ive models (GLM, GAM, RF, BRT and SVM) was implemented using the R package ―sdm‖ (

Naimi and Araújo, 2016). 

The cartographic outputs were computed using the software QGIS version 3.18.1 (Quantum 

GIS Development Team, 2021).  
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RESULTS 

Variables and models selected 

The collinearity analysis revealed that only one variable (urban area) had a variance inflation 

factor above 10 (i.e. 56.54). This variable that was showing a high multi-collinearity 

furthermore did not significantly correlate with the presence of R. microplus.   

Seven out of the 13 predictors were significantly (p-value < 0.05) correlated with the 

presence of R. microplus through multivariate analysis preceding the VIF. These predictors 

are Rainfall, Temperature, NDVI, Cattle density, Cropland, Grassland and Shrubland. 

Characteristics of the predictors according to presence or absence of R. microplus in the 

study area 

The investigation to check if there was difference between the various predictors according to 

areas where the tick was found or not revealed that the rainfall was significantly (p<0.001) 

higher in areas where R. microplus was present (annual rainfall average: 1202.23 +/-252.24 

mm) than areas where it was absent (annual rainfall average: 881.62+/- 231.71 mm). The tick 

was found in areas with higher rainfall than where it was absent (Appendix S2). Temperature 

was significantly (p<0.001) higher in areas where R. microplus was absent (annual 

temperature average: 27.99+/-0.99°C) than areas where it was present (annual temperature 

average: 26.44+-/0.77°C). Areas where the tick was found, are cooler than places where it 

was absent (Appendix S2). On the other hand, cattle density was significantly (p<0.001) 

higher in areas where R. microplus was absent (average head/Km
2
: 229.32+/-196.48) than in 

area where it was present (average head/Km
2
: 99.76 +/-118.02). The hosts were more 

concentrated in areas where the tick was absent (Appendix S2). The NDVI was significantly 

(p<0.001) higher in areas where R. microplus is present (monthly NDVI average: 

5681.17*10
-4

+/-1024.29*10
-4

) than in area where it is absent (monthly NDVI average: 

3837.59*10
-4

). The NDVI was better in places the tick was found than where it was absent 

(Appendix S2). The cropland was significantly (p<0.001) more important in areas where R. 

microplus was absent (annual cropland classes unit average: 0.73 +/- 0.35) than in area where 

it was present (annual cropland classes unit average: 0.52 +/- 0.41). The tick was found more 

frequently on cattle living in uncropped areas than cropped ones. The proportion of grassland 

was significantly higher (p<0.001) in areas where R. microplus was absent (annual grassland 

classes unit average: 0.05 +/- 0.18) than in area where it was present (annual grassland 
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classes unit average: 0.00 +/-0.01). The tick was found more frequently on cattle living in an 

environment where there was less grassland (Appendix S2). 

And lastly, shrublands were found more (p<0.001) in areas where R. microplus is present 

(annual shrubland classes unit average: 0.09 +/- 0.18) than areas where it was absent (annual 

shrubland classes unit average: 0.06 +/-0.01). The tick was found more frequently on cattle 

living in an environment where there is shrubland (Appendix S2). 

Variable importance 

The analysis of the contribution of the different predictors to the MaxEnt model highlighted 

that temperature and rainfall were the main variables. Temperature contributed to more than 

39% and rainfall contributed more than 19% of the model accuracy. Shrubland (1.8%) and 

grassland (1.8%) contributed less to the model predictions (Appendix S3A). The relative 

variable importance based on the Pearson correlation metric in the ensemble model revealed 

that NDVI played an important role in the model. This variable was the most important in the 

five models that make up our ensemble model set. NDVI was the most important predictor in 

the ensemble model and the cropland and shrubland were the less important ones (Appendix 

S3B). In the GLM model, NDVI (88%) was the most important predictor while cattle density 

contributed the least to the model with 0.1% (Appendix S3C). In the GAM model, it was the 

rainfall that contributed the most with 39.3% and the cropland contribute the least with 2.4% 

(Appendix S3D). In the RF model, NDVI was the most important contributor among the 

predictors (20.3%) and grassland has the lowest contribution (0.4%) (Appendix S3E). The 

NDVI also was the largest contributor to the BRT model (62.6%) and grassland did not 

contributed (0%) to the model (Appendix S3F). In the fifth model (SVM), the most 

important predictor was NDVI (18.5%) and the least important was Grassland (1.9%) 

(Appendix S3G). 

Habitat suitability for Rhipicephalus microplus in West Africa 

The maps revealed high suitability of the coastal areas of West Africa. On the other hand, the 

tick R. microplus seems very poorly adapted to the environment of the Sahelian region, a 

desert area (Fig. 2). However, the southern regions of some Sahelian countries, contiguous to 

the coastal areas, are also suitable for R. microplus. Some differences can be noted in these 

outputs according to the type of model implemented. The MaxEnt model predicts differently 

the presence of the tick in the Sahelian region where it is not expected at all or the probability 
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is very low to find it (Fig. 2A). On the opposite side, the other five models grouped in the 

ensemble model predict a significant presence of the tick in the Sahelian region (Fig. 2B). 

Furthermore, the suitability level of the coastal areas predicted by the MaxEnt model is lower 

than the four other models grouped in the ensemble model.  

Model evaluation 

The Random forest model and the BRT model had the highest AUC (0.95) and the GLM had 

the lowest AUC (0.93) (Table 3). The GAM and the SVM models had the same AUC (0.94). 

The Random forest model had the highest TSS (0.80) and other models had the same TSS 

(0.79) (Table 3). 

The boxplot graphics in Appendix S4A highlighted the variability in the AUC among the 

bootstrap and cross-validation runs for each model. This figure revealed that the RF and BRT 

models AUC medians were above the other models ones for both bootstrap and cross-

validation runs.  

The boxplot graphics in Appendix S4B highlighted the variability in the TSS among the 

bootstrap and cross-validation runs for each model. Appendix S4B revealed that for the 

RF and GLM models, TSS medians were above the other models ones respectively for 

bootstrap and cross-validation runs.  

 

Table 3: Evaluation parameters of the various models 

Models Average AUC Average TSS Average Boyce index 

GLM 0.93 0.79 NA 

GAM 0.94 0.79 NA 

RF 0.95 0.80 NA 

BRT 0.95 0.79 NA 

SVM 0.94 0.79 NA 

MaxEnt 0.87 NA 0.87 

Legend: NA: Not available; AUC: Area Under the Curve; TSS: True skill statistic. 
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DISCUSSION 

 

This study aimed to characterise the habitat suitability of the invasive tick R. microplus in 

West Africa. Results of the habitat suitability modelling exercise showed that the coastal 

areas host more suitable areas for the tick than the Sahelian zone located in the north. The 

coastal zone, which receives more rainfall and is cooler than the Sahel has also a higher 

vegetation index. Moreover, the host (cattle) density is higher in the Sahel than in the coastal 

zone. 

Model evaluation 

According to the classification of Swets (1988), the MaxEnt model is ―Useful‖ and all the 

ensemble models are ―Highly accurate‖.  

For the ensemble models, TSS values indicate that the selected models were accurate.  

The MaxEnt model was built with presence data only. These two accuracy parameters (AUC 

and TSS) are known to use sensitivity and specificity in their computation (Shabani et al., 

2018).  

The MaxEnt model has a lower AUC value than other models built with presence and 

absence data, so it was less accurate than these models according to this parameter. However, 

on the other hand, the MaxEnt model had a high Boyce index that is an adapted parameter for 

presence-only models evaluation. The Boyce index is used to measure how well a model can 

predict the presence of species. The MaxEnt model was confirmed by its Boyce index value 

to be a model that does not require absence data to model species distribution.  

The RF was the most accurate model among the ensemble models regarding its AUC and 

TSS means level and variance between both cross-validation and bootstrap runs. Cross-

validation tends to be less biased but has a relatively large variance. On the other side, 

bootstrapping tends to reduce the variance considerably but gives more biased results. 

Combining the two methods, as is the case here in a model set, could lead to fairly accurate 

prediction results without too much bias and very little variance. 

Characterization of predictors and their importance in the models 
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The process of selecting variables for the construction of the models allowed the selection of 

seven variables including the annual average rainfall, the annual average temperature, the 

annual average vegetation index and the density of the host (cattle) and three land cover 

variables (cropland, grassland and shrubland).  

Ticks are found in areas with significantly higher rainfall and moderate temperature. Water 

and temperature are important factors in tick biology, especially in one-host ticks since the 

non-parasitic (and therefore environment-dependent) stage is the egg and larva stage. Ticks 

are very sensitive to desiccation while searching for a host, as they constantly lose water 

through the integument of their body surface in dry conditions through transpiration. They 

also lose water through their spiracles in connection with respiration during locomotor 

activity (Randolph and Storey, 1999; Herrmann and Gern, 2015). The development and 

mortality of ticks are strongly influenced by these two factors (Estrada-Peña et al., 2015). Our 

models show quite clearly that areas that are wetter and cooler are more suitable for R. 

microplus. Previous studies have shown in Benin and Eastern Burkina Faso that the R. 

microplus tick prefers areas of moderate temperature and high rainfall (De Clercq et al., 

2015; Zannou et al., 2021). The results seem to show that high temperatures are a limiting 

factor for the presence of the tick in an environment of West Africa. However, it is important 

to note that other factors such as humidity (represented here by rainfall and the vegetation 

index) also contribute to the presence of the tick. So in an environment with good rainfall and 

adequate vegetation, the temperature could not be the only limiting parameter. It is not 

uncommon to find in areas where the tick is present temperatures exceeding 28°C at certain 

times of the year. But generally, in West Africa the regions that often experience high 

temperatures are the countries of the Sahel which are generally very dry (low rainfall) and 

therefore unsuitable for the tick. 

The NDVI of areas where the tick was found was higher than where it was not. The 

vegetation index, itself dependent on temperature and humidity (F. Hao et al., 2012), is an 

important variable in that it provides information on the presence, vitality and photosynthesis 

activity of vegetation. Engorged R. microplus female after dropping off the host need shelter 

under vegetation with convenient temperature and humidity to lay eggs (Latif and Walker, 

2004). Eggs are sensitive to heat and risk desiccation when exposed to high temperatures and 

dry areas. Incubation and hatching of eggs are only possible under some particular climatic 

conditions (Pfäffle et al., 2013). Our results indicate that this variable is positively correlated 
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with the presence of the tick and the models developed show that it took a large part in 

predicting the presence of the tick. De Clercq et al., (2015) in Benin and Zannou et al., (2020) 

in Benin and Burkina Faso have also evidenced the importance of the NDVI on a smaller 

scale. 

Host (cattle) density was higher in areas where the tick is absent than in areas where it was 

present. In West Africa, the cattle population is more concentrated in the Sahelian countries, 

which are less watered and warmer. As the tick is more inclined to areas with more water and 

less heat, a negative correlation between these two variables appears. Nevertheless, the 

frequent and periodic movements of herds between these two ecosystems enabled by 

transhumance should be considered. Indeed, in dry season herds in search of pasture and 

water are forced to reach areas that are still wet at that time and therefore heavily infested by 

ticks (Zannou et al., 2021). These regular movements and stays expose the animals to R. 

microplus and the main pathogen it transmits: i.e Babesia bovis and Babesia bigemina. These 

pathogens are responsible of extensive production losses (Waldron and Jorgensen, 1999; 

Jonsson, 2006). 

Croplands were significantly higher in areas where R. microplus was absent than in areas it 

was present. Cropland is known to be the site of much human activity. Before the crops are 

planted, the land is well ploughed to help destroy ticks nests. During the vegetative cycle of 

the different crops, farmers carry out several weeding operations or use herbicides. Pesticides 

are also regularly used to protect these plants and guarantee a good harvest at the end of the 

season. All these anthropic actions do not allow the establishment of the non-host phase of 

the ticks in such environments. It must also be said that R. microplus is a specific tick and 

should be found in the areas most frequented by its bovine host. Cattle are kept away from 

the farmlands to avoid the destruction of crops by them. They are only tolerated in cropping 

areas in the dry season to take advantage of crop residues and fertilise the fields. 

Rainfall was by far the most important predictor in the MaxEnt model followed respectively 

by NDVI, cropland, temperature, cattle density and shrub. The grassland did not play a role 

in the MaxEnt model prediction. The ensemble model revealed that NDVI was by far the 

most important predictor followed respectively by rainfall, temperature, cattle density, 

cropland, shrubland and grassland.  
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While most existing studies (De Clercq et al., 2015; Sungirai et al., 2018) on the projection of 

the tick distribution only take into account climatic variables, our results showed the 

importance of other predictors such as cropland, host density in the modelling. The type of 

vegetation does not seem to be very important in predicting the presence of R. microplus. 

However, it should be noted that shrub vegetation seems to have a better predictive value 

than grassland. Shrubland provides a better canopy for the ticks and protects them from 

desiccation during the off-host phase. Grass is only really useful during the quest phase of the 

host. However, it is important to put the importance of these two variables into perspective 

because the collections were made on the animals and not on the ground by flagging. Similar 

results on vegetation preference were observed in the study of Omodior et al., (2021) in the 

United States of America.  

Habitat suitability for R. microplus in West Africa 

This work qualitatively provides a broader view compared to the previous study by De Clercq 

et al (2015) and according to the model outputs the coastal areas seem globally more adapted 

to the tick. This previous R. microplus distribution modelling used occurrences data from 

2011. Recent work (Ouedraogo et al., 2021) had revealed the presence of the tick in areas 

where it was previously absent (2015). Therefore, the present work has taken into account 

presence data from several countries, compared to the work from De Clercq et al., (2015), 

which only sampled and modelled data from Benin. When looking at habitat suitability maps 

generated in the current study in Benin in comparison to the study of De Clercq et al., (2015), 

it can be noticed that our models predicted suitable habitats for the species also in the 

northern part of Benin, while De Clercq et al., (2015) predictions emphasise mostly the 

southern one. This may be due to the larger dataset of observations used, as well as different 

predictors and the tuning of the MaxEnt model. The MaxEnt model as well as the ensemble 

model predicts a higher risk of tick presence in northern Benin than De Clercq et al., (2015) 

study. This work provides a larger view of the situation of R. microplus in West Africa. It 

also uses different methods, the ensemble models which are based on the consensus of 

several models to predict the habitat suitability for R. microplus. The interest of the ensemble 

modelling is that it relies on the principle of the "wisdom of the crowd" to make a better 

prediction than those models used individually (T. Hao et al., 2019). 

The ensemble model seems to predict a stronger fit of the Sahelian zone to the tick than the 

MaxEnt model. When we consider the contribution of the variables to the prediction of the 
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models we notice that the pattern is not the same. For the MaxEnt model it is the temperature 

variable that holds the greatest importance while for the ensemble model it is the NDVI. This 

may have contributed to this difference in prediction, since the Sahel countries are 

significantly warmer than the coastal countries, but there is still vegetation in some parts of 

the Sahel around the oases. It should also be underlined that the ensemble model is a 

consensus model among several models, so its predictions must be given special attention. 

Precautions must be taken in some Sahelian countries that are at risk due to the extensive 

livestock farming methods used. These farming methods could favour the importation of the 

tick, which could adapt and continue its invasion.  

According to the updated Koppen-Geiger climatic map provided by Beck et al. (2018), the 

coastal areas of West Africa show climatic similarities with southern Asia and South America 

respectively native area and previously invaded area of the tick R. microplus. These climatic 

similarities could be part of the factors that enabled the rapid adaptation and spread of the tick 

in the environment of some West African countries. 

All six models clearly show that countries in the southern part of West Africa (coastal 

countries) are more suitable for R. microplus than those in the Sahel. As expected, 

temperature, humidity and vegetation influenced most the biology of the tick. Indeed the 

Sahelian countries are drier and hotter than the coastal countries. Moreover, the vegetation is 

less developed there. In spite of the higher density of cattle in the Sahel, the off-host life will 

be difficult for R. microplus larvae because of the unfavourable climatic conditions. 

However, as the habitat suitability maps show, the risk of having the tick in some parts of the 

Sahel is not null. In some Sahelian countries there are areas such as permanent water points 

that could provide conditions for the tick to establish itself, especially when the species is 

known to be highly invasive and adaptive. Recent unpublished work has revealed its 

establishment in the central plateau of Burkina Faso, a fairly hot area compared to the usual 

places where it is found (Abel Biguezoton, personal communication). In recent years, 

Burkina Faso has developed water reservoirs, which have the dual function of being used for 

the cultivation of vegetables and for watering cattle herds. These environments can present 

risks of the introduction and dissemination of ticks from herds returning from transhumance 

in coastal countries. The valleys of perennial rivers also represent biotopes that can favour the 

establishment of the invasive tick as they are very frequented during the dry season by herds 

in search of water and pasture. 
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Although native to Asia, R. microplus has invaded Sub-Saharan Africa and is probably 

replacing progressively the indigenous R. decoloratus and R. annulatus (M. Madder et al., 

2011; Adakal et al., 2013; Gomes and Neves, 2018). This rapid expansion was also favoured 

by the extensive livestock farming practised by more than 70% of cattle farmers in sub-

Saharan Africa (Boka et al., 2017). 

Management options faced to R. microplus in West Africa 

This study provides a broader view of habitat suitability for R. microplus. It allows decision-

makers in West African countries to have a better idea of the level of suitability of their area 

for the invasive tick. It is therefore a tool to identify areas where the emphasis should be 

placed on raising awareness among livestock stakeholders.  

In areas favourable to the tick and not yet infested, measures must be taken to prevent or 

detect quickly its introduction. For instance, management options should be awareness 

campaign, avoiding the purchase of cattle originating from infested areas, avoiding herd 

movement to already infested areas, and capacity building for detection of R. microplus. This 

capacity building should concern farmers, para-veterinarians, private veterinarians and 

veterinary officers. Other actions could consist to strengthen surveillance of the veterinary 

acaricides drug market.  

Furthermore, in areas where the tick is already established, it will be necessary to raise 

awareness of the measures to be implemented to limit its spread and, ultimately, its control 

(e.g. campaign of information, adequate protocol of acaricide treatment, follow up of 

acaricide resistance, training veterinary agents in tick identification, strengthen the 

surveillance of the veterinary drug market).  

In areas identified here as not favourable to the tick, veterinary services should put in place 

measures to avoid the introduction and the establishment of the invasive tick (e.g. avoid the 

introduction of animals from infested areas without appropriate measures, control the 

movement of animals from infested areas and strengthen the capacity of veterinary services 

agents in tick detection).  

This study is a tool to help in the development of sub-regional and local control plans for R. 

microplus tick and consequently the pathogens it transmits. The direct consequence is the 

improvement of cattle production and productivity and in turn food security. Good 
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knowledge of the risk for ticks with veterinary and/or medical importance establishment in an 

area allows for careful management of financial resources dedicated to their control. 

 

CONCLUSION  

All the coastal countries of West Africa are suitable areas for R. microplus. The southern 

region of some Sahelian countries (Mali and Burkina Faso) also seems favourable but to a 

lesser extent. This new study revealed that the risk of R. microplus establishment is higher in 

some areas than previously predicted (case of Benin). It also gave a broader view of the risk 

over the whole West African sub-region compared to previous studies. It would be advisable 

for the veterinary authorities of countries that have not yet detected the tick but are in the risk 

area to take mitigation measures to prevent its introduction. Surveys should be carried out in 

all countries at risk to determine their status with respect to the tick in order to take 

appropriate measures. Countries where the tick is already present should raise awareness of 

the responsible use of acaricides because of the resistant nature of this tick. Countries not yet 

infested with R. microplus should strengthen measures to protect their livestock. This will 

require better control of animal movements in an extensive livestock context. The modelling 

the distribution of the invasive tick with several methods (single models and ensemble 

models) also allowed us to assess their behaviour and performance with the available data.  
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Fig. 1: Study area with different occurrences of R. microplus 

Legend: Red dot, presence of R. microplus; Green dot, absence of R. microplus. 
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Fig. 2. Habitat suitability maps of R. microplus in West Africa with seven predictors 

(rainfall, temperature, cattle density, normalized difference vegetation index, cropland, 

grassland and shrubland). [A] MaxEnt model with only presence data; [B] Ensemble 

modelling suitability map with presence and absence data  


