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UNISOLVENT AND MINIMAL PHYSICAL DEGREES OF FREEDOM FOR THE
SECOND FAMILY OF POLYNOMIAL DIFFERENTIAL FORMS

Ludovico Bruni Bruno* and Enrico Zampa

Abstract. The principal aim of this work is to provide a family of unisolvent and minimal physical
degrees of freedom, called weights, for Nédélec second family of finite elements. Such elements are
thought of as differential forms 𝒫𝑟Λ

𝑘(𝑇 ) whose coefficients are polynomials of degree 𝑟. In this paper
we confine ourselves in the two dimensional case R2, as in this framework the Five Lemma offers a
neat and elegant treatment avoiding computations on the middle space. The majority of definitions
and constructions are meaningful for 𝑛 > 2 as well and, when possible, they are thus given in such a
generality, although more complicated techniques shall be invoked to replace the graceful role of the
Five Lemma. In particular, we use techniques of homological algebra to obtain degrees of freedom for
the whole diagram

𝒫𝑟Λ
0(𝑇 ) → 𝒫𝑟−1Λ

1(𝑇 ) → 𝒫𝑟−2Λ
2(𝑇 ),

being 𝑇 a 2-simplex of R2. This work pairs its companions recently appeared for Nédélec first family
of finite elements.
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1. Introduction

Degrees of freedom are one of the main ingredients of a finite element triple as defined by Ciarlet [20]. For
standard polynomial Lagrange elements over simplices, the classical degrees of freedom are evaluations on the
principal lattice 𝐿𝑟(𝑇 ) of top dimensional simplices 𝑇 of the triangulation. These degrees of freedom have a
clear physical meaning: if 𝑢ℎ is the numerical solution, then degrees of freedom are just the values of the exact
solution at some points of the mesh. On the other side, for the polynomial differential forms families 𝒫−𝑟 Λ𝑘

and 𝒫𝑟Λ𝑘 described in [7], the standard degrees of freedom are the so called moments, that is, integrals against
(𝑑 − 𝑘)-forms on 𝑑-subsimplices, for 𝑑 = 𝑘, . . . , 𝑛, where 𝑛 = dim𝑇 is the dimension of the domain of the
problem. These “test forms” are polynomial forms as well, and as a consequence of this, moments for the space
𝒫𝑟Λ𝑘 involve evaluations or integrals of polynomials of degree up to 2𝑟 approximately. Thus these degrees of
freedom have some disadvantages, which we aim here to improve:

(1) they lack an immediate physical interpretation;
(2) the associated Vandermonde matrix is not well conditioned;

Keywords and phrases. High order elements, Whitney forms, Nédélec second family, weights, physical degrees of freedom.
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(3) they are difficult to implement; in fact, some FEM libraries (e.g. MFEM [5]) use nodal degrees of freedom
also for vector valued elements.

To overcome these issues, another choice of degrees of freedom has been proposed in [10]. It consists in
considering integrals over 𝑘-cells topologically contained in the top dimensional simplices. These degrees of
freedom are called weights or physical, since they have a clear physical interpretation: circulations or fluxes for
vector fields (1- and 𝑛− 1-forms) and averages for densities (𝑛-forms). Moreover, weights are a straightforward
generalization of the evaluation-type degrees of freedom for scalar functions (for 𝑘 = 0, a 𝑘-cell is just a point
and the integral is just the evaluation).

A charming theoretical aspect of weights is the following. Physical degrees of freedom show that general finite
element systems enjoy the same properties of Whitney forms [36]. In particular, discrete differential forms are
cochains of an appropriate finer complex and the discrete exterior derivative is the coboundary operator. As
a practical consequence, finite element systems can be used to construct high order Yee-like schemes in the
fashion of [28]. We elaborate more on this point in Section 2.3.

Physical degrees of freedom for the first (or trimmed) family 𝒫−𝑟 Λ𝑘, whose features in the framework that
we adopt here have been pointed out in several works, such as [7,23,27], were studied extensively in [17,34] and
more recently in [2,4,13]. On the other side, for the second (or complete) family 𝒫𝑟Λ𝑘 the first physical degrees
of freedom for the two dimensional case were proposed in [37] only recently, where however unisolvence was not
proved, but only checked numerically. In this work, we stick to the two dimensional case and we provide different
physical degrees of freedom for the second family and we rigorously prove the unisolvence using cohomological
tools. Moreover, we provide numerical evidence of improvements towards the well-conditioning of the associated
Vandermonde matrix and we perform some interpolation tests.

We assume that the reader is familiar with standard notions in differential geometry and algebraic topology
that are now common in most works on Finite Element Exterior Calculus (FEEC) and Finite Element Systems
(FES), such as differential forms, differential complexes, cellular complexes, chains, cochains, cohomology, de
Rham maps, and so on. We address to Section 2 of [16] for a concise introduction on these topics. We however
recall known and useful facts when setting the notation.

The outline of this work is as follows. In Section 2 we introduce basic definitions and tools. We recall known
results and state lemmas that we will use in the subsequent. In Section 3 we state the main results concerning
the construction of unisolvent and minimal sets. In particular, confining ourselves in the case of R2, we identify
a unisolvent and minimal sequence for Nédélec second family. We close this section giving an explicit translation
of these results to the more classical language of vector calculus. In Section 4 we present some numerical results
concerning the generalised Vandermonde matrices associated with the introduced families and the associated
interpolators, comparing an example of convergence of a smooth, oscillating form with that of its differential.
We summarise conclusions and propose future developments in Section 5.

2. Physical systems of degrees of freedom

In this section we recall the definition of a physical system of degrees of freedom and some results from [37]
and show some properties of the associated bases.

Let 𝑋 be a compatible finite element system in the sense of Christiansen [15,17,18] over the cellular complex
𝒯 . In particular, for each 𝑇 in 𝒯 (of any dimension1), for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 , the following sequence is
exact:

0 → R →˓ 𝑋0(𝑇 ) d→ 𝑋1(𝑇 ) d→ . . .
𝑑→ 𝑋dim𝑇 (𝑇 ) → 0.

Here the first arrow is the inclusion and d denotes the exterior derivative. Moreover, for 𝑇 in 𝒯 we denote
with 𝑋𝑘(𝑇 ) the subspace of 𝑋𝑘(𝑇 ) made of all forms with zero trace on the boundary. Finally, let 𝑋𝑘(𝒯 ) be

1In the finite element systems framework, one considers spaces of differential forms and degrees of freedom on cells of each
dimensions, not only on top dimensional ones.
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the global finite element space constructed by “gluing” the local spaces 𝑋𝑘(𝑇 ), that is, the restriction 𝜔𝑇 of
𝜔 ∈ 𝑋𝑘(𝒯 ) to any cell 𝑇 belongs to 𝑋𝑘(𝑇 ) and, if 𝑆 is a subcell of 𝑇 , the trace of 𝜔𝑇 on 𝑆 coincides with 𝜔𝑆 .

Definition 2.1. A system of physical degrees of freedom (physical sysdofs) ℱ over 𝑋 is a choice, for each cell
𝑇 in 𝒯 , for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 , of a finite set ℱ̊𝑘(𝑇 ) .= {𝑠1, . . . , 𝑠𝑁𝑘(𝑇 )} of non-overlapping 𝑘-cells. These
cells induce functionals

𝜔 ↦→ 𝑤(𝜔, 𝑠𝑖)
.=

∫︁
𝑠𝑖

𝜔. (2.1)

We call 𝑤(𝜔, 𝑠𝑖) the weight of 𝜔 on 𝑠𝑖.

The unisolvence of a physical system of degrees of freedom is defined in the obvious way.

Definition 2.2. A physical sysdofs is said to be unisolvent if, for each 𝑇 in 𝒯 , for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 ,
the only form 𝜔 in 𝑋𝑘(𝑇 ) which satisfies

𝑤(𝜔, 𝑠) = 0, ∀𝑠 ∈ ℱ̊𝑘(𝑇 )

is the zero form.

Clearly, a unisolvent physical sysdofs must satisfy the trivial necessary condition: for each 𝑇 in 𝒯 , for each
𝑘 = 0, 1, 2, . . ., 𝑁𝑘(𝑇 ) ≥ dim𝑋𝑘(𝑇 ) where 𝑁𝑘(𝑇 ) denotes the cardinality of the set ℱ̊𝑘(𝑇 ). This motivates the
following definition.

Definition 2.3. A physical sysdofs is minimal if, for each 𝑇 in 𝒯 , for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 , the following
equality holds:

𝑁𝑘(𝑇 ) = dim𝑋𝑘(𝑇 ).

From the properties of compatible finite element system we obtain the following equivalent definition of
unisolvence and minimality, which is closer to classical one found in standard books on finite elements [20]. For
each 𝑆, 𝑇 in 𝒯 we write 𝑆 ≤ 𝑇 is 𝑆 is a subcell of 𝑇 . Moreover, for 𝑇 in 𝒯 and 𝑘 = 0, 1, 2, . . . ,dim𝑇 , write

ℱ𝑘(𝑇 ) .=
⋃︁
𝑆≤𝑇

ℱ̊𝑘(𝑆). (2.2)

Lemma 2.4. If a physical system of degrees of freedom ℱ is unisolvent, then, for each top dimensional cell 𝑇
in 𝒯 , for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 , the only form 𝜔 in 𝑋𝑘(𝑇 ) satisfying

𝑤(𝜔, 𝑠) = 0, ∀𝑠 ∈ ℱ𝑘(𝑇 ) (2.3)

is the zero form. Moreover ℱ is minimal and unisolvent if and only if the above condition holds and 𝑁𝑘(𝑇 ) =
dim𝑋𝑘(𝑇 ), where 𝑁𝑘(𝑇 ) denotes the cardinality of ℱ𝑘(𝑇 ).

Proof. Assume that ℱ is unisolvent. Let 𝜔 ∈ 𝑋𝑘(𝑇 ) satisfying condition (2.3). Then let 𝑆 any 𝑘-subcell of 𝑇 and
let 𝜄𝑆,𝑇 : 𝑆 → 𝑇 . Clearly 𝜄*𝑆,𝑇𝜔 belongs to 𝑋𝑘(𝑆), but since it is a 𝑘-form on a 𝑘-cell, its traces on the boundary
of 𝑆 vanish by definition, therefore 𝜄*𝑆,𝑇𝜔 actually belongs to 𝑋𝑘(𝑆). Then, by unisolvence, 𝜄*𝑆,𝑇𝜔 = 0. Let now
𝑆 be a (𝑘+ 1)-subcell of 𝑇 and 𝑆′ be a 𝑘-cell belonging to the boundary of 𝑆. Then 𝜄*𝑆′,𝑆𝜄

*
𝑆,𝑇𝜔 = 𝜄*𝑆′,𝑇𝜔 = 0 by

the previous argument. Therefore 𝜄*𝑆,𝑇𝜔 belongs to 𝑋𝑘(𝑆). Again, by unisolvence, 𝜄*𝑆,𝑇𝜔 = 0. Proceeding in this
way, we obtain that 𝜔 ∈ 𝑋𝑘(𝑇 ). Finally, unisolvence gives 𝜔 = 0. For the stronger statement, see Proposition 2.5
in [17]. �
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From the computational point of view, one may check an equivalent condition for any given top dimensional
cell 𝑇 and any 𝑘 = 0, 1, 2, . . . ,dim𝑇 . We thus define the generalised Vandermonde matrix as the matrix 𝑉
whose (𝑖, 𝑗)-th element is

𝑉𝑖,𝑗
.=

∫︁
𝑠𝑖

𝜔𝑗 ,

being 𝜔1, . . . , 𝜔𝑁𝑘(𝑇 ) some basis for 𝑋𝑘(𝑇 ). We thus have the following.

Lemma 2.5. A collection of 𝑘-cells {𝑠1, . . . , 𝑠𝑁𝑘(𝑇 )} is unisolvent and minimal if and only if 𝑉 is a square full
rank matrix. Such a rank does not depend on the basis {𝜔1, . . . , 𝜔𝑁𝑘(𝑇 )} chosen for 𝑋𝑘(𝑇 ).

2.1. A motivation: the scalar case

To fix ideas, let 𝑇 be a 2-simplex, i.e. a non degenerate triangle. Notice that, for 𝑘 = 0 and 𝑋0(𝑇 ) = P𝑟(𝑇 ),
the problem of deducing unisolvence and minimality is linked to the problem of deducing if a collection of nodes
𝒩 in R2 is poised, which means that the only polynomial vanishing on 𝒩 is the zero polynomial. Explicitly, for
a polynomial 𝜙 ∈ P𝑟(R2) this reads as

𝜙(𝑥𝑥𝑥) = 0 ∀𝑥𝑥𝑥 ∈ 𝒩 =⇒ 𝜙(𝑥𝑥𝑥) = 0 ∀𝑥𝑥𝑥 ∈ R2.

This problem is still unsolved in its greatest generality, however several partial results and conjectures have been
offered. A possible approach to a complete understanding of the placement of points in R2 consists in studying
the number of lines that pass through a fixed number of points of 𝒩 . This does not give all possible unisolvent
sets, but the conjectural result claims these collections are all unisolvent, see [22]. This approach is convenient
in this framework, since when considering particular collection of points, such as principal lattices or regular
lattices [19] and some of their subsets, one may reduce the problem.

These considerations clearly also extend to greater 𝑘, in this context to 𝑘 = 1 (that is, to edges) and 𝑘 = 2
(that is, to faces). Some numerical results relate these two problems. In particular, for 𝑘 = 1 we address the
reader to [4] and for 𝑘 = 2 to [3].

2.2. Interpolators and (co)-homological tools

For each 𝑇 in 𝒯 , for each 𝑘 = 0, 1, 2, . . . ,dim𝑇 , a physical sysdofs induces an interpolator Π𝑘(𝑇 ) : Λ𝑘(𝑇 ) →
𝑋𝑘(𝑇 ) by the equations:

𝑤(𝜔, 𝑠) = 𝑤
(︀
Π𝑘(𝑇 )𝜔, 𝑠

)︀
, ∀𝑠 ∈ ℱ𝑘(𝑇 ). (2.4)

The interpolator is well defined if the physical sysdofs is unisolvent. In fact, assume that Π𝑘𝜔 and Π̃𝑘𝜔 are two
interpolators which satisfy (2.4). Then

𝑤
(︁

Π𝑘𝜔 − Π̃𝑘𝜔
)︁

= 0,

and unisolvence gives 𝜔 = 0.
We are interested in interpolators that commute with the exterior derivative, that is, such that the following

diagram is commutative
Λ𝑘(𝑇 ) d−−−→ Λ𝑘+1(𝑇 )⎮⎮⌄Π𝑘(𝑇 )

⎮⎮⌄Π𝑘+1(𝑇 )

𝑋𝑘(𝑇 ) d−−−→ 𝑋𝑘+1(𝑇 )

.

In [37], Zampa et al. showed that an interpolator induced by a physical sysdofs commutes with the exterior
derivative if and only if the union

ℱ∙(𝑇 ) .=
dim𝑇⋃︁
𝑘=0

ℱ𝑘(𝑇 ) =
dim𝑇⋃︁
𝑘=0

⋃︁
𝑆≤𝑇

ℱ̊𝑘(𝑆) (2.5)
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is a cellular complex, that is, if and only if the boundary of a cell in ℱ𝑘+1(𝑇 ) is a union of cells in ℱ𝑘(𝑇 ).
If this is the case, we can consider 𝑘-chains 𝐶𝑘(ℱ∙(𝑇 )) and 𝑘-cochains 𝐶𝑘(ℱ∙(𝑇 )) over R. Denote with 𝛿 the

coboundary operator mapping 𝑘-cochains to (𝑘 + 1)-cochains [26]. It is natural then to consider the de Rham
map [36]

R𝑘 : 𝑋𝑘(𝑇 ) → 𝐶𝑘(ℱ∙(𝑇 ))

𝜔 ↦→
(︂
𝑐 ↦→

∫︁
𝑐

𝜔

)︂
.

(2.6)

Stokes theorem [29] implies that the de Rham map commutes with the exterior derivative, that is, it is a chain
map. We can then arrange everything in a commutative diagram

0 −−−→ R −˓−−→ 𝑋0(𝑇 ) d−−−−−→ 𝑋1(𝑇 ) d−−−−−→ . . .
d−−−−−→ 𝑋dim𝑇 (𝑇 ) −−−−−→ 0⎮⎮⌄Id

⎮⎮⌄R0

⎮⎮⌄R1

⎮⎮⌄Rdim 𝑇 (2.7)

0 −−−→ R 𝜓−−→ 𝐶0(ℱ∙(𝑇 )) 𝛿−−−→ 𝐶1(ℱ∙(𝑇 )) 𝛿−−−→ . . .
𝛿−−−→ 𝐶dim𝑇 (ℱ∙(𝑇 )) −−−→ 0

where 𝜓 is the unique map that makes it commutative, sending 1 to the 0-cochain 𝑐 ↦→ 1. Notice that the top
sequence is exact since 𝑋 is a compatible finite element system. We can thus give an equivalent characterization
of unisolvence and minimality in terms of the de Rham map.

Lemma 2.6. A physical sysdofs ℱ is unisolvent (unisolvent and minimal) if and only if, for each 𝑇 in 𝒯 and
for each 𝑘 the de Rham map (2.6) is injective (an isomorphism of vector spaces).

In [37], the authors showed that a unisolvent and minimal physical system of degrees of freedom that induces
commuting interpolators must satisfy the following condition: the union of all cells in ℱ∙(𝑇 ) “paves” (i.e. covers
with disjoint interiors) 𝑇 . If this is the case, the bottom sequence in (2.7) is exact. Moreover, the union of all
small cells

ℱ∙(𝒯 ) .=
dim 𝒯⋃︁
𝑘=0

ℱ𝑘(𝒯 ) .=
dim 𝒯⋃︁
𝑘=0

⋃︁
𝑇∈𝒯

ℱ𝑘(𝑇 ) (2.8)

is a cellular complex and, in particular, is a refinement of 𝒯 . We can then consider global cochains 𝐶𝑘(ℱ∙(𝒯 ))
over this cellular complex.

2.3. Generalised high order Whitney forms

It is well known that, if 𝒯 is a simplicial complex, the complex of Whitney forms 𝒫−1 Λ∙(𝒯 ) is isomorphic to
the cochain complex 𝐶∙(𝒯 ); see, for instance, [7]. In particular, Whitney forms satisfy the following properties:

(1) For each 𝑘-simplex 𝑇 in 𝒯 , let 𝜔𝑇 be the associated Whitney form, then, for each 𝑘-simplex 𝑆 in 𝒯 it holds∫︁
𝑆

𝜔𝑇 =

{︃
1 if 𝑆 = 𝑇 ,

0 otherwise.

(2) For each 𝑘-simplex 𝑇 and each (𝑘 + 1)-simplex 𝑆, it holds

∫︁
𝑆

d𝜔𝑇 =

⎧⎪⎨⎪⎩
1 if 𝑇 is a subsimplex of 𝑆 and is outward oriented with respect to 𝑆,
−1 if 𝑇 is a subsimplex of 𝑆 and is inward oriented with respect to 𝑇 ,
0 if 𝑇 is not a subsimplex of 𝑆.

In other words, the exterior derivative coincides with the coboundary operator 𝛿 : 𝐶𝑘(𝒯 ) → 𝐶𝑘+1(𝒯 ).
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This properties can be used to construct Yee-like schemes on simplicial meshes [11]. The following result
generalizes such properties to an arbitrary finite element system equipped with an unisolvent and minimal
physical system of degrees of freedom.

Lemma 2.7. Let 𝑋 be a finite element system and let ℱ be an unisolvent and minimal physical system of
degrees of freedom. Let 𝑘 = 0, 1 . . . ,dim𝑇 and let 𝑋𝑘(𝒯 ) be the global discrete space. We denote with ℬ𝑋𝑘(𝒯 ) =
{𝜔1, 𝜔2, . . . , 𝜔dim𝑋𝑘(𝒯 )} the generalised Lagrange basis of 𝑋𝑘(𝒯 ) defined by∫︁

𝑠𝑖

𝜔𝑗 = 𝛿𝑖𝑗 . (2.9)

Then the following statements hold:

(1) The de Rham map is a bijection between ℬ𝑋𝑘(𝒯 ) and the canonical basis of 𝒞𝑘(ℱ∙(𝒯 )).
(2) The matrix D of the exterior derivative 𝑑 in the bases ℬ𝑋𝑘(𝒯 ) and ℬ𝑋𝑘+1(𝒯 ) is given by

D𝑖𝑗 =

⎧⎪⎨⎪⎩
1 if 𝑠𝑗 is a subcell of 𝑠𝑖 and is outward oriented with respect to 𝑠𝑖,
−1 if 𝑠𝑗 is a subcell of 𝑠𝑖 and is inward oriented with respect to 𝑠𝑖,
0 if 𝑠𝑗 is not a subcell of 𝑠𝑖.

(2.10)

Proof. The first claim is a simple consequence of the definition of the de Rham map:

[ℛ𝜔𝑗 ](𝑠𝑖) =
∫︁
𝑠𝑖

𝜔𝑗 = 𝛿𝑖𝑗 .

The second claim follows from (2.9) and Stokes Theorem:

D𝑖𝑗 =
∫︁
𝑠𝑖

d𝜔𝑗 =
∫︁
𝜕𝑠𝑖

𝜔𝑗 =
∑︁

𝑠𝑘∈𝜕𝑠𝑖

𝑜(𝑠𝑖, 𝑠𝑘)
∫︁
𝑠𝑘

𝜔𝑗 =
∑︁

𝑠𝑘∈𝜕𝑠𝑖

𝑜(𝑠𝑖, 𝑠𝑘)𝛿𝑘𝑗 .

Here 𝑜(𝑠𝑖, 𝑠𝑘) is the relative orientation of 𝑠𝑖 and 𝑠𝑘. �

The first practical consequence of the above lemma is that the exterior derivative of a discrete 𝑘-form 𝜔 in
the generalised Lagrange basis can be computed explicitly in a purely combinatorial way, while for a general
basis one must solve the variational problem: Find 𝜎 ∈ 𝑋𝑘+1(𝒯 ) such that

(𝜎, 𝜏)𝐿2Λ𝑘+1(Ω) = (𝑑𝜔, 𝜏)𝐿2Λ𝑘+1(Ω) for each 𝜏 ∈ 𝑋𝑘+1(𝒯 ).

Here Ω is the domain discretised by 𝒯 and 𝐿2Λ𝑘(Ω) is the 𝐿2 product between differential 𝑘-forms. In other
words, our approach avoids the inversion of the mass matrix. Similarly, the “generalised stiffness” matrix S

with entries S𝑖𝑗 = (𝑑𝜔𝑖, 𝑑𝜔𝑗)𝐿2Λ𝑘+1(Ω) can be directly computed as S = D𝑇MD, where M is the mass matrix
for (𝑘 + 1) forms.

Remark 2.8. We remark that these considerations remain true even with a different basis (for instance, the
Bernstein one), as one can always change basis to the generalised Lagrange basis, compute the exterior derivative
and then go back to the desired basis. The first step requires the inversion of the global generalised Vandermonde
matrix, which is much cheaper than the inversion of the mass matrix since it can be computed efficiently with
a local elimination procedure as explained in [9, 30].

Remark 2.9. To complete the analogy with Yee-like schemes we need a discrete Hodge star operator. It is well
known that the mass matrix M can play this role [35], but, in order to maintain the explicit character of the
method, we would prefer a diagonal operator or, at least, an operator with sparse inverse and, clearly, such that
the accuracy of the method is not degraded. This will be the object of future research.
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3. Physical degrees of freedom for the second family

In this section we will construct a physical sysdofs for the finite element system 𝑋𝑘(𝑇 ) = 𝒫𝑟−𝑘Λ𝑘(𝑇 ) with
𝑟 ≥ 2 in the two-dimensional case. Since the majority of the following results are general, we claim and prove
them in the case of an 𝑛-simplex 𝑇 ; the specific case of interest here is immediately obtained for 𝑛 = 2. We
will exploit features of R2 only for the definition of ℱ and hence in Theorem 3.5. We invite the reader to match
the following construction with that for Nédélec first family [31] given in [2, 13]. Recall that spaces 𝒫𝑟−𝑘Λ𝑘(𝑇 )
are defined as subspaces of differential 𝑘-forms Λ𝑘(𝑇 ) whose coefficient are polynomials of degree ≤ 𝑟 − 𝑘.
These spaces are sometimes called complete, since they are precisely tensor products P𝑟−𝑘(𝑇 )⊗Alt𝑘(𝑇 ), being
P𝑟−𝑘(𝑇 ) the space of polynomials of degree at most 𝑟− 𝑘 in 𝑛 variables defined on 𝑇 and Alt𝑘(𝑇 ) that of linear
alternating 𝑘-forms on (the tangent bundle of) 𝑇 . When 𝑘 = 0, 𝒫𝑟Λ0(𝑇 ) thus coincides with P𝑟(𝑇 ). This makes
easy the computation of

dim𝒫𝑟Λ𝑘(𝑇 ) = dim P𝑟(𝑇 ) · dim Alt𝑘(𝑇 ) =
(︂
𝑟 + dim𝑇

dim𝑇

)︂(︂
dim𝑇

𝑘

)︂
.

When 𝑛 = 2, proxies of this sequence are known as Nédélec second family [32] and the central space is that of
[12]. Note that we use the subscript 𝑟 − 𝑘 instead of the classical 𝑟 found in the literature, since the exterior
derivative lowers the polynomial degree at each stage of the complex

𝒫𝑟Λ0(𝑇 ) d→ 𝒫𝑟−1Λ1(𝑇 ) d→ . . .
d→ 𝒫𝑟−dim𝑇Λdim𝑇 (𝑇 ).

We recall now the definition of small simplex from [17]. For 𝑛 = dim𝑇 and 𝑟 ≥ 0 let ℐ(𝑛 + 1, 𝑟) be the set of
multi-indices 𝛼𝛼𝛼 = (𝛼0, . . . , 𝛼𝑛) with nonnegative components and such that |𝛼| .= 𝛼0 + . . . + 𝛼𝑛 = 𝑟. If 𝑇 is
a simplex of dimension 𝑛 and vertices {𝑥𝑥𝑥0, . . . ,𝑥𝑥𝑥𝑛}, we equip it with barycentric coordinates {𝜆0, . . . , 𝜆𝑛}, i.e.
the only (up to permutations) non negative degree 1 polynomials defined on 𝑇 such that

𝑥 =
𝑛∑︁
𝑖=0

𝜆𝑖𝑥𝑖,

𝑛∑︁
𝑖=0

𝜆𝑖 = 1, ∀𝑥 ∈ 𝑇.

For each 𝛼𝛼𝛼 ∈ ℐ(𝑛+ 1, 𝑟 − 1) we define the small 𝑛-simplex 𝑠𝛼𝛼𝛼 as the image of 𝑇 under the homothety

𝑧𝛼𝛼𝛼 : 𝑥𝑥𝑥 ↦→ 𝑧𝛼𝛼𝛼(𝑥𝑥𝑥) =
1
𝑟

𝑛∑︁
𝑖=0

[𝜆𝑖(𝑥𝑥𝑥) + 𝛼𝑖]𝑥𝑥𝑥𝑖 . (3.1)

Note that (3.1) is just the identity for 𝑟 = 1. Small 𝑘-simplices are just 𝑘-subsimplices of small 𝑛-simplices and
we denote them with Σ𝑘𝑟 (𝑇 ). In particular Σ0

𝑟(𝑇 ) is the principal lattice 𝐿𝑟(𝑇 ), that is, the set of points with
barycentric coordinates

Σ0
𝑟(𝑇 ) .=

1
𝑟

(𝛼0, . . . , 𝛼𝑛), 𝛼𝛼𝛼 ∈ ℐ(𝑛+ 1, 𝑟).

If the reader is familiar with weights for Nédélec first family they might have noted that a slightly different
definition of small simplices is usually provided. In particular, the term 𝜆𝑖(𝑥) in (3.1) is usually omitted [17],
so that overlappings are avoided. We shall see the reason of such a different choice in the subsequent of this
section.

For 𝜉𝜉𝜉 ∈ 𝑇 , define the affine tranformation

𝜏𝜉𝜉𝜉 : 𝑥𝑥𝑥 ↦→ 𝜆0(𝜉𝜉𝜉)𝑥𝑥𝑥+
𝑛∑︁
𝑖=1

𝜆𝑖(𝜉𝜉𝜉)𝑥𝑥𝑥𝑖. (3.2)

Note that the map (3.2) is invertible if and only if 𝜆0(𝜉𝜉𝜉) ̸= 0. We let 𝜏*𝜉 denote the pullback with respect to 𝜏𝜉.
We have the following.



2246 L. BRUNI BRUNO AND E. ZAMPA

Lemma 3.1. Let 𝜔 ∈ 𝒫𝑟−dim𝑇Λdim𝑇 (𝑇 ) be such that∫︁
𝑇

𝜏𝜉*𝜔 = 0, ∀𝜉 ∈ Rdim𝑇 .

Then 𝜔 = 0.

Proof. This is a direct consequence of Lemma 3.12 from [17]. �

It is well known that, when 𝑇 is a non degenerate simplex in Rdim𝑇 , the principal lattice 𝐿𝑟(𝑇 ) is a poised set
for P𝑟(Rdim𝑇 ); see [19,33]. Since dim P𝑟(Rdim𝑇 ) = dim𝒫𝑟Λdim𝑇 (𝑇 ), one has |𝐿𝑟(𝑇 )| > dim𝒫𝑟−dim𝑇Λdim𝑇 (𝑇 ).
Thus, there exist subsets of 𝐿𝑟(𝑇 ) that are poised for P𝑟−dim𝑇 (Rdim𝑇 ). With a slight abuse of notation, if Γ is
a subset of 𝐿𝑟(𝑇 ) which is poised for P𝑟−dim𝑇 (Rdim𝑇 ), we call such a set a poised subset of 𝐿𝑟(𝑇 ).

Theorem 3.2. Let Γ = {𝜉𝜉𝜉1, . . . , 𝜉𝜉𝜉𝑁dim 𝑇 (𝑇 )} be a poised subset of 𝐿𝑟(𝑇 ) with 𝑁dim𝑇 (𝑇 ) = dim P𝑟−dim𝑇 (Rdim𝑇 )
such that 𝜆0(𝜉𝜉𝜉𝑖) > 0 for 𝑖 = 1, . . . , 𝑁dim𝑇 (𝑇 ). Let 𝜔 ∈ 𝒫𝑟−dim𝑇Λdim𝑇 (𝑇 ) be such that∫︁

𝜏𝜉𝜉𝜉(𝑇 )

𝜔 = 0, ∀𝜉𝜉𝜉 ∈ Γ.

Then 𝜔 = 0.

Proof. The map

𝜉𝜉𝜉 ↦→
∫︁
𝜏𝜉𝜉𝜉(𝑇 )

𝜔

is a polynomial of degree 𝑟 − dim𝑇 in dim𝑇 variables which belongs to P𝑟−dim𝑇 (Rdim𝑇 ). Such a polynomial
vanishes by hypothesis on |Γ| = dim P𝑟−dim𝑇 (𝑇 ) points of a poised set for P𝑟−dim𝑇 (Rdim𝑇 ), therefore it is zero
for each 𝜉 ∈ Rdim𝑇 . It follows that ∫︁

𝜏𝜉𝜉𝜉(𝑇 )

𝜔 =
∫︁
𝑇

𝜏*𝜉𝜉𝜉 𝜔 = 0, ∀𝜉𝜉𝜉 ∈ Rdim𝑇

and hence Lemma 3.1 implies that 𝜔 = 0. �

As an example of set Γ, we may pick any set satisfying the GC condition [14] (see also [6, 21] for higher
dimensional counterparts). Some explicit examples can be found in [8, 24] and we offer more in a recursive
fashion in the following.

We define ℱ as follows. Let 𝑇 be a 2-simplex. For 𝑘 = 0, ℱ0(𝑇 ) is just the principal lattice 𝐿𝑟(𝑇 ). For 𝑘 = 2 we
consider the GC set Γ𝑟 = {𝜉𝜉𝜉1, . . . , 𝜉𝜉𝜉𝑁2(𝑇 )}, which is a subset of 𝐿𝑟(𝑇 ) of cardinality 𝑁2(𝑇 ) = dim𝒫𝑟−2Λ2(𝑇 ) =
𝑟(𝑟−1)

2 . For 𝑖 = 1, . . . , 𝑁2(𝑇 ), define the subset

Γ𝑟(𝑖)
.= {𝜉𝜉𝜉 ∈ Γ | 𝜆0(𝜉𝜉𝜉) < 𝜆0(𝜉𝜉𝜉𝑖)}

We define ℱ2(𝑇 ) as the set {𝑠1, . . . , 𝑠𝑁2(𝑇 )} where

𝑠𝑖 = 𝜏𝜉𝜉𝜉𝑖
(𝑇 ) ∖

⎛⎝ ⋃︁
𝜉𝜉𝜉∈Γ𝑟(𝑖)

𝜏𝜉𝜉𝜉(𝑇 )

⎞⎠. (3.3)

The closure is needed to preserve the structure of cell. Finally, we define ℱ1(𝑇 ) as the subset of Σ1
𝑟(𝑇 ) made of

those small 1-simplices that are on the boundary of cells in ℱ2(𝑇 ). Note that this choice ensures that ℱ∙(𝑇 ) is
a cellular complex.
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Figure 1. Cells of ℱ for 𝑟 = 2, 𝑟 = 3 and 𝑟 = 4, left to right. Gray dots represent the set Γ𝑟,
that is, vertices of the triangles considered as (small) 2-simplices.

We now propose a possible choice of Γ𝑟 for each polynomial degree 𝑟. We identify each point 𝑥 of 𝑇 with the
triple (𝜆0(𝑥), 𝜆1(𝑥), 𝜆2(𝑥)) (e.g. the barycenter is (1/3, 1/3, 1/3)). Let

Γ𝑟 =

{︃
{(1, 0, 0)} if 𝑟 = 2,
𝜏𝜁𝑟

(Γ𝑟−1) ∪∆𝑟 if 𝑟 > 2,
(3.4)

where

𝜁𝑟 =

{︃(︀
𝑟−1
𝑟 , 0, 1

𝑟

)︀
if 𝑟 is odd,(︀

𝑟−1
𝑟 , 1

𝑟 , 0
)︀

if 𝑟 is even,

∆𝑟 =

{︃{︀
1
𝑟 (𝑖, 1− 𝑖, 0) for 𝑖 = 1, . . . , 𝑟, 𝑖 ̸= 𝑟+1

2

}︀
, if 𝑟 is odd,{︀

1
𝑟 (𝑖, 0, 1− 𝑖) for 𝑖 = 1, . . . , 𝑟, 𝑖 ̸= 𝑟

2

}︀
, if 𝑟 is even.

For example Γ3 is

Γ3 =
{︂(︂

2
3
, 0,

1
3

)︂
,

(︂
1
3
,

2
3
, 0

)︂
, (1, 0, 0)

}︂
,

since 𝜏(2/3,0,1/3) maps (1, 0, 0) to (2/3, 0, 1/3) and ∆3 = {(1/3, 2/3, 0), (1, 0, 0)}. Similarly, Γ4 is given by

Γ4 =
{︂(︂

1
2
,

1
4
,

1
4

)︂
,

(︂
1
4
,

3
4
, 0

)︂
,

(︂
3
4
,

1
4
, 0

)︂
,

(︂
1
4
, 0,

3
4

)︂
,

(︂
3
4
, 0,

1
4

)︂
, (1, 0, 0)

}︂
.

See Figure 1 for a depiction of the set Γ𝑟 and the resulting cells ℱ for 𝑟 = 2, 3 and 4.

Remark 3.3. The recursiveness in the definition of Γ𝑟 gives a hierarchy on the weights associated with these
cells. In fact, as degree 𝑟 is increased by one, the associated family ℱ is obtained by adding a stripe on one side
of the triangle, as shown in Figure 2.

Before proving unisolvence, we check that Γ𝑟 has the right cardinality. This is immediate from Remark 3.3.

Lemma 3.4. The set Γ𝑟 has cardinality |Γ𝑟| equal to the dimension of 𝒫𝑟−2Λ2(𝑇 ), that is

|Γ𝑟| =
𝑟(𝑟 − 1)

2
·

Proof. We use induction on 𝑟. The result clearly holds for 𝑟 = 2, see Figure 1. For 𝑟 > 2 the sets 𝜏𝜁𝑟
(Γ𝑟−1) and

∆𝑟 are disjoint, therefore the cardinality of Γ𝑟 is given by

|𝛤𝑟| = |𝛤𝑟−1|+ |𝛥𝑟| =
(𝑟 − 1)(𝑟 − 2)

2
+ 𝑟 − 1 =

𝑟(𝑟 − 1)
2

.

This concludes the proof. �
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Figure 2. Cells of ℱ for 𝑟 = 5. Step from 𝑟 = 3 to 𝑟 = 4 are obtained by adding the dotted
part, step from 𝑟 = 4 to 𝑟 = 5 is obtained by adding the dashed part.

To prove unisolvence of weights here defined we shall work as follows. Consider the sequence

𝒫𝑟Λ0(𝑇 ) d−→ 𝒫𝑟−1Λ1(𝑇 ) d−→ 𝒫𝑟−2Λ2(𝑇 ). (3.5)

The first and the last space are isomorphic under the action of the (smooth) Hodge star operator ⋆ [1]. This
rather easy fact induces an interesting consequence, which consists in the fact that techniques adopted to prove
unisolvence of the spaces at the extremity of (3.5) are very close. On the contrary, unisolvence for the central
space is obtained without direct computations but just relying on the structure of the sequence (3.5) itself.

We are ready to prove the unisolvence of ℱ .

Theorem 3.5. Let ℱ be the physical system of degrees of freedom defined above, that is, ℱ0(𝑇 ) = 𝐿𝑟(𝑇 ), ℱ2(𝑇 )
is defined by formula (3.3) where Γ𝑟 is given by (3.4) and ℱ1(𝑇 ) is uniquely determined by the requirement
that ℱ∙(𝑇 ) is a cellular complex. If the assumptions of Theorem 3.2 hold, then ℱ is a unisolvent and minimal
physical sysdofs.

Proof. The minimality holds by construction for 𝑘 = 0 and 𝑘 = 2. For 𝑘 = 0, unisolvence is just the standard
Lagrange unisolvence on poised sets. For 𝑘 = 2, let 𝜔 ∈ 𝒫𝑟−2Λ2(𝑇 ) and assume that 𝑤(𝜔, 𝑠) = 0 for each
𝑠 ∈ ℱ2(𝑇 ). Then, by linearity of the integral, it follows that∫︁

𝜏𝜉𝜉𝜉(𝑇 )

𝜔 =
∫︁
𝑇

𝜏*𝜉𝜉𝜉 𝜔 = 0, ∀𝜉𝜉𝜉 ∈ Γ.

Then Theorem 3.2 implies 𝜔 = 0. Finally, for 𝑘 = 1, consider the following diagram:

0 −−−→ R 𝜄−˓−−→ 𝒫𝑟Λ0(𝑇 ) d−−−−−→ 𝒫𝑟−1Λ1(𝑇 ) d−−−→ 𝒫𝑟−2Λ2(𝑇 ) −−−→ 0⎮⎮⌄Id

⎮⎮⌄R0

⎮⎮⌄R1

⎮⎮⌄R2

0 −−−→ R 𝜓−−→ 𝐶0(ℱ∙(𝑇 )) 𝛿−−−→ 𝐶1(ℱ∙(𝑇 )) 𝛿−−−−→ 𝐶2(ℱ∙(𝑇 )) −−−−→ 0.

We already know that the rows are exact and we have just showed that the maps R0 and R2 are isomorphisms.
Then, by the Five Lemma (see [26], Section 2.1) it follows that also R1 is an isomorphism. In particular
minimality holds also for 𝑘 = 1. �

The idea of proving the unisolvence of the intermediate space 𝑘 = 1 using the Five Lemma appeared for the
first time in [37], but it was not exploited since a proof of the unisolvence for the case 𝑘 = 2 was lacking. The
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problem with the physical sysdofs defined in [37] is that the 2-cells cannot be written as differences of small
2-simplices as in (3.3) and therefore Theorem 3.2 does not apply.

We remark an interesting aspect. For 𝑘 = 1, the set involved is the set of small simplices defined in [4],
which is a subset of that of small simplices introduced by Bossavit in [34]. Interestingly, for 𝑘 = 2 one does not
find its 2-dimensional counterpart, but the set Σ2

𝑟(𝑇 ) defined in [2]. To the authors’ knowledge, this is the first
construction in which those sets appears paired in such a natural fashion.

3.1. Translation to the language of vector calculus

In order to translate this this work to the classical language of vector calculus, we shall express the sequence

𝒫𝑟Λ0(𝑇 ) d−→ 𝒫𝑟−1Λ1(𝑇 ) d−→ 𝒫𝑟−2Λ2(𝑇 )

in terms of the corresponding proxy fields and the associated differential operators. This yields two [7] sequences,

P𝑟(𝑇 ) ∇−→ [P𝑟−1(𝑇 )]2 rot−−→ P𝑟−2(𝑇 ) (3.6)

and
P𝑟(𝑇 ) rot−−→ [P𝑟−1(𝑇 )]2 div−−→ P𝑟−2(𝑇 ), (3.7)

with ∇ =
(︁
𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦

)︁
, rot = 𝜕

𝜕𝑦 −
𝜕
𝜕𝑥 , rot =

(︁
𝜕
𝜕𝑦 ,−

𝜕
𝜕𝑥

)︁
and div = 𝜕

𝜕𝑥 + 𝜕
𝜕𝑦 . These two sequences are related

by the Hodge star operator, the duality ⋆ : Λ1(𝑇 ) → Λ𝑛−1(𝑇 ), which in two dimensions is represented by the
rotation matrix

⋆ =
(︂

0 1
−1 0

)︂
.

Note, in particular, that rot = ⋆ ∘ ∇ and rot = div ∘ ⋆. This also gives the correspondence, in the context of
𝑛− 1 = 1 and 𝑘 = 1, between Nédélec elements of second kind for 𝐻(rot) and Brezzi-Douglas-Marini elements
for 𝐻(div). It is well known that degrees of freedom for the former family involve line integrals of tangential
components, whereas the latter line integrals of normal components. As a consequence, if we identify the 1-form
𝜔 = 𝑝(𝑥, 𝑦)d𝑥+ 𝑞(𝑥, 𝑦)d𝑦 with the vector field w = (𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦)), weights for the central space of (3.6) read
as ∫︁

𝑒

w · 𝑡𝑒, 𝑒 ∈ ℱ1(𝑇 ),

whereas if we identify 𝜔 with w = (𝑞(𝑥, 𝑦),−𝑝(𝑥, 𝑦)), weights for the central space of (3.7) read as∫︁
𝑒

w · 𝑛𝑒, 𝑒 ∈ ℱ1(𝑇 ).

Here 𝑡𝑒 and 𝑛𝑒 denote the tangent and the normal vector to the small edge 𝑒 respectively. In both cases
unisolvence is provided by Theorem 3.5 and we may read the above definitions simply as different realisations
of the same differential complex. This is peculiar to the case 𝑛− 1 = 1.

4. Numerical tests

We offer a computational proof of unisolvence exploiting Lemma 2.3. We compute the conditioning number
of the Vandermonde matrices of the sequence

𝒫𝑟Λ0(𝑇 ) → 𝒫𝑟−1Λ1(𝑇 ) → 𝒫𝑟−2Λ2(𝑇 ),

for 𝑟 − 2 = 1, . . . , 4. These quantities are reported in Table 1 and confirm, up to the considered degree, the
theoretical statement proved in Theorem 3.5. The basis chosen for such computations is the monomial one,
and barycentric coordinates offer a compact way to visualise it. In particular, when 𝑘 = 0, it is defined as 𝜆𝛼
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Table 1. Conditioning number of the Vandermonde matrix for 𝑘 = 0, 1, 2 computed with
respect to the monomial basis.

𝑟 𝑘 = 0 𝑘 = 1 𝑘 = 2

1 3.7320× 100 4.4985× 100 3.1682× 101

2 3.0969× 101 2.3281× 101 5.2130× 102

3 3.1245× 102 8.6268× 101 9.3809× 103

4 3.4290× 103 5.6267× 102 1.3525× 106

5 3.9513× 104 2.9791× 103 –
6 4.7004× 105 – –

Table 2. Conditioning number of the Vandermonde matrix for 𝑘 = 0, 1, 2 computed with
respect to the Bernstein basis.

𝑟 𝑘 = 0 𝑘 = 1 𝑘 = 2

1 1.0000× 100 4.4985× 100 9.2035× 100

2 3.3319× 100 1.3274× 101 8.0907× 101

3 8.1677× 100 2.6596× 101 8.4783× 102

4 2.5917× 101 6.9064× 101 1.0571× 105

5 6.6004× 101 1.8071× 102 –
6 1.8279× 102 – –

with |𝛼| = 𝑟. When 𝑘 = 1 it is defined as {𝜆𝛼d𝜆1,𝜆
𝛼d𝜆2} with |𝛼| = 𝑟. Finally, for 𝑘 = 2, such a basis

is 𝜆𝛼d𝜆1 ∧ d𝜆2, again with |𝛼| = 𝑟. Results for 𝑟 = 1, . . . , 6 are reported in Table 1. To improve condition
numbers Bernstein bases or orthogonal polynomials shall be taken into account. In fact, we report in Table 2
the same computations of Table 1 performed with respect to the Bernstein basis. These results show a significant
improvement of the conditioning of the generalised Vandermonde matrix. This is in accordance with what has
been already observed for Nédélec first family 𝒫−𝑟 Λ𝑘(𝑇 ), see [13]. However, as stated in Lemma 2.5, unisolvence
is independent from the choice of the basis for 𝒫𝑟Λ𝑘(𝑇 ), and thus even more convenient basis may be found.
We leave the problem of further optimising such a quantity to future investigations.

Remark 4.1. We stress that Tables 1 and 2 shall be read diagonally. In particular, when the degree for 𝑘 = 0
is 𝑟, the corresponding data for 𝑘 = 1 and 𝑘 = 2 are, respectively, those associated with 𝑟 − 1 and 𝑟 − 2.

4.1. Some interpolation tests

In Section 2.2 we have defined how an interpolator can be constructed using weights and we have briefly
discussed its features. In particular, we showed that under the hypothesis of Theorem 3.5 such an operator is
well defined and commutes with the exterior derivative. We now give an explicit meaning of this fact, using
weights to interpolate a 0-form 𝜔 and its differential d𝜔 ∈ Λ1(𝑇 ). For ease of the reader we deal with the
standard 2-simplex. This is not restrictive, since one may always reduce to this case by passing to barycentric
coordinates. We thus consider a 0-form

𝜔 = 𝑒𝑥 sin(𝜋𝑦),

whence

d𝜔 = 𝑒𝑥 sin(𝜋𝑦)d𝑥+ 𝜋𝑒𝑥 cos(𝜋𝑦)d𝑦.
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Table 3. Trend of 𝜔 − Π𝜔 with respect to the 0-norm for the 1-form 𝜔 above defined and its
potential. The 0-norm for of the function 𝑘 = 0 is approximately 1.7319 whereas ‖𝜔‖0 ∼ 2.5334
for the case 𝑘 = 1.

𝑘 = 0 𝑘 = 1
𝑟 ‖𝜔 −Π𝜔‖0 ‖𝜔 −Π𝜔‖0
1 – 2.5334
2 0.3377× 100 1.1224
3 0.6967× 10−1 0.4292
4 0.1792× 10−1 0.0782
5 0.1600× 10−2 0.0171
6 0.4314× 10−3 –

Figure 3. Plot of the convergence, a comparison for the nodal case 𝑘 = 0 and the simplicial
case 𝑘 = 1 in semi-logarithmic scale. Left, the case for 𝑘 = 0 and right, that for 𝑘 = 1. Notice
the degree shift, explained by the sequence.

We interpolate by means of the interpolator (2.4) and study the convergence as 𝑟 increases. The most informative
norm for such a situation is the 0-norm [25], which is defined as

‖𝜔‖0
.= sup
𝑐∈𝒞𝑘(𝑇 )

1
|𝑐|0

⃒⃒⃒⃒∫︁
𝑐

𝜔

⃒⃒⃒⃒
, (4.1)

being |𝑐|0 the 𝑘-th volume of the 𝑘-simplex 𝑇 and 𝒞𝑘(𝑇 ) .= 𝒞𝑘(ℱ∙(𝑇 )) the set of all possible 𝑘-chains supported
in 𝑇 . Results are reported in Table 3, where a comparison with the corresponding points for 𝑘 = 0 is included,
and shown in Figure 3.

5. Conclusions and future directions

In this work we have proposed new physical degrees of freedom for the second family 𝒫𝑟−𝑘Λ𝑘 in the two
dimensional case. We have proved rigorously their unisolvence and we have showed their effectiveness with an
interpolation test.

The three dimensional case is trickier. In principle one could use the same technique to construct unisolvent
and minimal physical degrees of freedom for the case 𝑘 = 3, but unisolvence and minimality of the intermediate
spaces in the sequence, that is 𝑘 = 1 and 𝑘 = 2, will not follow trivially since the Five Lemma cannot be applied
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in this situation. Note that, sacrificing the request of minimality, one may exploit inclusions 𝒫𝑟−𝑘Λ𝑘(𝑇 ) ⊆
𝒫−𝑟+1Λ𝑘(𝑇 ) and consider, for each 𝑘 and 𝑛, the family of simplices Σ𝑘𝑟 (𝑇 ) defined in Section 2.4 of [13] and the
corresponding cells studied in Section 4.2.2 of [13]. In such a framework, unisolvence can be proved without
using the Five Lemma. However, this choice would be far from being optimal, since the number of redundant
𝑘-simplices increases with 𝑛− 𝑘. This will be the object of future research.
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