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Abstract—Multisensor data analysis allows exploiting hetero-
geneous data regularly acquired by the many available remote
sensing (RS) systems. Machine- and deep-learning methods use
the information of heterogeneous sources to improve the results
obtained by using single-source data. However, the state-of-the-art
methods analyze either the multiscale information of multisensor
multiresolution images or the time component of image time series.
We propose a supervised deep-learning classification method that
jointly performs a multiscale and multitemporal analysis of RS
multitemporal images acquired by different sensors. The proposed
method processes very-high-resolution (VHR) images using a resid-
ual network with a wide receptive field that handles geometrical
details and multitemporal high-resolution (HR) image using a 3-D
convolutional neural network that analyzes both the spatial and
temporal information. The multiscale and multitemporal features
are processed together in a decoder to retrieve a land-cover map.
We tested the proposed method on two multisensor and multitem-
poral datasets. One is composed of VHR orthophotos and Sentinel-
2 multitemporal images for pasture classification, and another is
composed of VHR orthophotos and Sentinel-1 multitemporal im-
ages. Results proved the effectiveness of the proposed classification
method.

Index Terms—Deep learning (DL) classification, multiresolution,
multisensor data, multitemporal images, remote sensing (RS), very-
high-resolution (VHR) images.

I. INTRODUCTION

THE analysis of remote sensing (RS) images with very high
spatial resolution (VHR) allows improving the land-use

classification [1] and urban monitoring [2], [3], [4] performance.
However, VHR images provide many geometrical details that are
often poorly handled by standard RS methods. Many method-
ologies model the high spatial resolution by using parcel-based
strategies that analyze portions of VHR images and apply an
object-based classification [5], [6]. These methods extract re-
gions from the images using segmentation techniques, but they
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may penalize the classification performance due to segmentation
errors.

The exploitation of deep learning (DL) methods allows
accurate classification of VHR RS images. DL models, such
as convolutional neural networks (CNNs), automatically learn
features during the training phase that analyze the spatial
information of the input data. The hierarchical structure of these
models allows analyzing the input image in a multiresolution
way and increases the receptive field of the model. The receptive
field determines the DL model analysis area [7], [8]. The larger
it is, the larger the area of the image that the model analyzes.
The increase of the receptive fields and the automatic learning
of spatial features allow more effective extraction of the
geometrical information in VHR images than other non-DL
methods. Thus, the use of DL-based methods leads to an increase
in classification and land-cover mapping performance [9], [10].

Sensors providing VHR images usually acquire a limited
number of spectral bands and have a low acquisition fre-
quency due to the relatively small ground-projected field of
view (GFOV). Recent VHR sensors reduce the revisit time by
acquiring images with multiple acquisition angles. However,
when tasks have to deal with image time series analysis, small
variability of the image viewing angle within the time series is
usually required to limit undesired radiometric differences that
do not correspond to changes on the ground [11]. On the contrary,
sensors with a lower spatial resolution acquire more spectral
bands by keeping similar viewing angles throughout time, have
a higher acquisition frequency, and are more easily accessible
than VHR images. The latter aspect depends on data-providing
policies and not technical reasons. Hence, it is easier to obtain
long image time series acquired by sensors with either medium
or high spatial resolution rather than VHR images.

Multiresolution DL models process input images with dif-
ferent spatial and spectral resolutions to improve the scene
analysis. These methods merge the high spatial resolution of
VHR images with the rich spectral information of images
with relatively high spectral resolution [12] to increase the
classification accuracy. Other approaches extract and analyze
multiscale features through the use of pretrained CNN [6], or
atrous convolutional layers with various dilation rates [13]. The
latter exploits a strategy similar to [14] to extract multiscale
features using atrous convolutional layers with heterogeneous
receptive fields that are concatenated to perform a multiscale
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analysis. However, the use of single-date RS images does not
provide temporal information that helps the discrimination of
time-dependent classes. Thus, processing of the RS image time
series is required to account for the time component. Many
methods exploit random forest (RF) [15], [16] or support vector
machine (SVM) [17] to model the temporal information through
an image time series. In [18], the authors exploit a time-weighted
dynamic time warping (DTW) to select the images within
two image time series that better characterize specific classes,
and therefore, perform a land-cover and land-use classification.
However, these methods are pixel-based and do not consider spa-
tial information. Hence, their performance drops when classes
show strong spatial-context correlations, such as in urban ar-
eas. These methods exploit handcrafted features to analyze the
time component of an image time series. This can lead to an
information loss in the time domain. In the last years, recurrent
neural networks (RNNs) and long short-term memory (LSTM)
architectures were used to model the time information of image
time series [19], [20], [21], and learn automatic temporal features
during the training. In [22], the authors exploit a deep RNN
to process and extract features from an image time series that
are used to retrieve land-cover maps. An alternative way to
process the temporal information consists in applying CNNs to
the temporal domain [23], [24]. 1-D-CNNs can be also used to
analyze temporal profiles extracted for each pixel [24]. However,
these methods learn and extract temporal features but analyze
the spatial information using only handcrafted spatial features.

Classification methods usually process data acquired by a
single sensor. However, some applications require information
acquired by multiple sensors with heterogeneous characteristics.
Thus, methodologies for analyzing multisensor images with dif-
ferent spatial, spectral, and temporal resolutions should be con-
sidered. Some methods merge the temporal information of image
time series acquired by heterogeneous sensors by extracting tem-
poral features using RNN-based models and selecting the most
informative ones through an attention mechanism [25], [26].
Spatiotemporal features are extracted and combined to segment
image time series with homogeneous spatial resolutions using
an attention mechanism to learn the most informative features
to discriminate the time-based classes [27]. These methods do
not properly model the spatial information of the images so they
achieve suboptimal results. Some methods combine the spatial
context features extracted from CNNs analyzing high-resolution
(HR) images with the temporal one processing image time series
with RNNs [28] or separately process the temporal and spatial
information using 3-D-CNNs and 2-D-CNNs, respectively [29].
In [30], the authors process the spatial information with the
temporal one through the use of CNNs to extract spatial features
from multisensor data and convolutional RNN (ConvRNN) to
process both spatial and temporal information. These methods
achieve good results but handle homogeneous spatial resolution
only. However, the discrimination of some classes requires a
multiresolution analysis of heterogeneous sensors to general-
ize and improve the classification and perform a multiscale
analysis [31]. To this purpose, some methods exploit a deep
neural network with two branches [32], [33]: one analyzes the
spatial information of VHR images, while the other the spectral

information of multispectral data. However, these methods do
not consider temporal information. In [34], the authors perform
segmentation of multisensor image time series representing crop
fields using models based on U-Net [35] exploiting a convolu-
tional LSTM (ConvLSTM) or a 3-D-CNN to jointly analyze the
spatial and temporal information. The authors in [36] extend
the latter by exploiting bidirectional ConvLSTM to analyze the
temporal information in both directions.

Summarizing state-of-the-art (SoA) methods analyze multi-
sensor data single-date multiresolution RS image or multitempo-
ral data with similar spatial resolution. Therefore, in this article,
we propose a DL method for supervised classification that ana-
lyzes multisensor data with heterogeneous properties in spatial,
spectral, and temporal resolutions. The proposed method allows
analyzing single-date and multitemporal images acquired by dif-
ferent sensors with heterogeneous spatial, spectral, and temporal
resolutions using a DL model having two input branches. The
first one is a deep residual network (ResNet) [37] having a wide
receptive field that properly models VHR geometrical details,
while the other processes the spatial and temporal information of
multitemporal images acquired by a sensor with a lower spatial
resolution than the previous input data using a 3-D-CNN. The
spatial and temporal output features of the two branches are
merged and processed by a ResNet-based decoder to obtain the
land-cover map. In this way, the classification considers both
the multiresolution and multitemporal information and retrieves
accurate results.

This article has the following outline. Section II describes the
methodology. Section III presents the experimental settings and
the results. Finally, Section IV concludes this article.

II. MULTIRESOLUTION AND MULTITEMPORAL CLASSIFICATION

The proposed method aims to obtain a classification map
Y by analyzing a VHR image XVHR ∈ RwVHR×hVHR×bVHR

acquired at time tVHR and an image time series
XTS = {X1, . . ., Xi, . . ., XI} composed by I images
Xi ∈ RwTS×hTS×bTS (i = 1, . . ., I) acquired between t1 and
tI by a sensor with different spatial, spectral, and temporal
resolutions with respect to XVHR. XVHR and XTS represent the
same geographical area. Assuming that no semantic changes
occurs in the analyzed scene (e.g., new buildings and missing
objects), XVHR can be acquired at any time with respect to the
interval [t1, tI ]. We assume the availability of labeled training
samplesY that provide class information about the geographical
area represented in XVHR and XTS. A labeled training dataset
X is retrieved by sampling N patches corresponding of XVHR

and XTS according to Y .
VHR images provide many geometrical details but limited

spectral and temporal information. Thus, the modeling of time-
dependant classes is challenging. On the contrary, HR image
time series have a better tradeoff in terms of spectral and tempo-
ral resolutions allowing the modeling of time-dependant classes,
but lower spatial resolution than VHR images. Hence, they have
fewer geometrical details, and the modeling of classes charac-
terized by small-size elements is less accurate. The proposed
architecture combines the spatial context information of VHR
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Fig. 1. Block scheme of the proposed DL model using 3-D convolutional layers.

images with the spectral and temporal information provided by
the HR image time series to accurately model classes varying
over time and characterized by small-size elements. It relies
on a deep-learning (DL) model based on ResNet [37] that
allows dealing with inputs having different spatial resolutions
and different characteristics due to the heterogeneous acquisition
sensors. The DL model analyzes them in two branches (see
Fig. 1). We define the two branches to obtain the same number
of feature maps with the same spatial size. Thus, the output
features of the two branches can be easily concatenated and have
a balanced contribution to the final classification. The decoder
processes the concatenated features to obtain the classification
map.

A. VHR Image Analysis With a the Residual Neural Network

The first branch analyzes XVHR, which has the highest spa-
tial resolution and many geometrical details to be processed.
We analyze the spatial information of XVHR using an encoder
f(XVHR) composed of multiple residual blocks. As in [37],
each residual block exploits the bottleneck design to reduce the
training time and increase the depth of the model by controlling
the number of model parameters. Each block is composed of
three 2-D convolutional layers with a kernel size of 1× 1,
k × k, and 1× 1, where k is the kernel size of the middle
convolutional layer in the residual block (see Fig. 2). The first
and third layers reduce and increase the dimensions, whereas the
second one analyzes the spatial information. The depth of the
encoder depends on the spatial resolution of XVHR. The higher
the XVHR spatial resolution, the deeper the encoder. When the
spatial resolution of the input image is very high, the sensor
captures many geometrical details, and neighboring pixels show
a strong spatial correlation [38], [39]. To effectively process the

Fig. 2. Block scheme of the residual block.

spatial context information of the image and produce informative
feature maps, the model requires a large receptive field. Thus, we
use multiple stride convolutional layers to compress the spatial
information of XVHR. The output of the encoder is defined by

ZVHR = f(XVHR) (1)

where ZVHR ∈ RwLS×hLS×F provides F -dimensional latent
space (LS) feature maps with a dimension of wLS × hLS.

B. Image Time-Series Analysis With 3-D Convolutional Layers

The processing of XTS with sizewTS × hTS × I × bTS, where
I is the number of images in the time series and bTS is the
spectral band number, is challenging since it provides both
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Fig. 3. Block scheme of the 3-D-CNN.

spatial and temporal information. 2-D convolutional layers ef-
fectively analyze the spatial information of each image in the
time series but do not model the temporal relationship between
them. 2-D convolutional layers sum the contribution of each
image in the time series, losing the temporal information. To
process both the spatial and temporal information of XTS, we
use 3-D convolutional layers [40] with 3-D kernels. Thus, we
process XTS with a 3-D-CNN) with L layers (see Fig. 3). Each
3-D convolutional layer compresses the spatial and temporal
information to increase the receptive field of the model in both
the dimensions and obtain informative features. Since the spatial
resolution of XTS is lower than the XVHR one, we need a smaller
receptive field in the spatial dimensions. On the other side, the
more images are in the time series, more layers are needed to
model the temporal relationship. Therefore, the number of 3-D
convolutional layers is a tradeoff that depends on the spatial
resolution and the number of images in the time series. We
use stride 3-D convolutional layers that compress the spatial
and temporal information and enlarge the receptive field in all
dimensions. Let us assume, for simplicity, that the spatial size
of the image time series is wTS = hTS, the LS feature map
size is wLS = hLS, the padding operation is applied to avoid
dimension reduction due to the convolution operation, and all
the division terms of the following equations are divisible. The
spatial dimension of the 3-D-CNN output (i.e.,wLS) is defined as
a function of the relationship between the spatial size of the input
image time series and the spatial stride of the 3-D convolutional
layers

wLS =
wTS

(sw)L
(2)

where sw is the stride value of the spatial dimensions in the
3-D convolutional layer. We can retrieve the number of layers
L that are needed to achieve the spatial dimension wLS by
exploiting (2).

(sw)
L =

wTS

wLS

L = logsw

(
wTS

wLS

)
. (3)

Since in the proposed method the data time dimension is reduced
to 1 to obtain feature maps providing both spatial and temporal
information, we can use an equation similar to (2) to retrieve the
number of layers L that are needed to fully process the temporal
information

I

(st)L
= 1

L = logst(I) (4)

where st is the stride value of the temporal dimension in the
3-D-convolutional layers. Thus, the total number of 3-D con-
volutional layers for the joint analysis of spatial and temporal
information is given by

L = max

(
logsw

(
wTS

wLS

)
, logst(I)

)
. (5)

The output of the encoder is defined by

ZTS = g(XTS) (6)

where g(.) is the function of the 3-D-CNN that provides F
feature maps of size wLS × hLS. The spatial resolution of ZTS ∈
RwLS×hLS×F has to be harmonized with the one ofZVHR to merge
the processed data of the two sensors.

C. Merge of the Data in the Two Branches and Classification

We design the two branches of the DL model to obtain
from each of them F -dimensional LS feature maps (i.e., ZVHR

and ZTS) with the same spatial dimensions wLS × hLS that
are merged to process the information derived from the two
sensors together. In this way, the output of the two branches
provides a balanced contribution to the final classification, and
the information of one sensor does not dominate the other. We
concatenate ZVHR and ZTS to process them through a decoder
and obtain the land-cover map. After the concatenation, we ob-
tain LS feature mapsZ = concat([ZVHR, ZTS])with dimensions
wLS × wLS × 2F .

We process Z ∈ RwLS×wLS×2F using residual blocks com-
posed of atrous convolutional layers to further enlarge the
receptive field of the model without compressing the spatial
information of Z [41]. We then process Z through a decoder
composed of residual blocks using deconvolutional layers to
decompress the spatial information of the features and increase
their spatial dimensions to achieve wVHR × hVHR. A 2-D convo-
lutional layer with C kernels, where C is equal to the number of
classes, of 1× 1 ends the decoder and retrieves the land-cover
map Y ∈ RwVHR×hVHR×C using a softmax activation function.
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Fig. 4. Study areas (in red) of the two datasets in the Trentino region, Italy.

The output of the DL model is defined by

Y = d(Z) = d(concat([ZVHR, ZTS]))

= d(concat([f(XVHR), g(XTS]))) (7)

where d(.) defines the decoder function.
We use a cross-entropy loss function to train the whole DL

model as it proved its effectiveness in many SoA classification
methods [42], [43], [44], [45]. We add to the loss function a
weight contribution to regularize the model weights during the
training and improve the classification performance. The final
loss function is given by

CE = − 1

N

N∑
n

Yn log(Yn) + λ‖W‖22 (8)

where λ is a constant that controls the weight regularization and
‖W‖22 represents the L2 normalization of the model weights W .

III. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we introduce the datasets used to test the
proposed method, present the experimental setup, and discuss
the results.

A. Description of Dataset

To test the proposed method, we used two datasets com-
posed of images acquired over the Trentino region in Italy.
Both datasets exploit a VHR orthophoto acquired by aircraft.
The first dataset combined the orthophoto with an image time
series acquired by Sentinel-1, whereas the second dataset uses
multitemporal Sentinel-2 images together with the orthophoto.

1) Dataset Combining VHR Orthophotos and Sentinel-1 Im-
age Time Series: We tested the proposed method by analyzing
the temporal information using a synthetic-aperture-radar image
time series. For this dataset, we combined one VHR orthophoto
with an image time series acquired by Sentinel-1 [see Fig. 5(c)].
The airborne orthophoto was acquired in September 2017 and
was organized in 470 tiles. They have a spatial resolution
of 20 cm/pixel that was down-scaled to 1m/pixel to make
the computation lighter. These tiles were acquired in the red,
green, blue, and near-infrared spectral bands [see Fig. 5(a)].
We exploited a DTM to infer the slope degrees using [46].
The Sentinel-1 image time series is VV polarized and has a
spatial resolution of 10m/pixel. It was acquired from January

TABLE I
PROPORTION BETWEEN THE CLASSES OF THE DATASET USING

SENTINEL-1 IMAGES

to December 2017 over the Trentino region in Italy. We aimed
to discriminate the following six classes.

1) Fruit trees: Areas with various fruit trees types (e.g., apple
trees, vineyards, etc.).

2) Artificial areas: Areas with artificial objects, such as
houses and farmhouses.

3) Pastures.
4) Forest.
5) Water bodies.
6) Impervious areas: Either rocky or steep areas.
The class distribution is unbalanced (see Table I), which may

lead to some classification errors due to the training bias. We
sampled the tiles and the image time series according to the
reference map and obtained a dataset composed of 271 155
patches with a spatial size of 120× 120 for the VHR orthophoto
and 12× 12 for the image time series. The dataset was split into
a training set with 219 791 patches, a validation set with 24 352
patches, and a test set with 27 012 patches.

2) Dataset Combining VHR Orthophotos and Multitemporal
Sentinel-2 Images: This dataset was created for a project aiming
to classify the quality of Trentino pasture areas (see Fig. 4).
It included five classes: three classes are about the quality of
the pasture, and two are about the presence of other kinds of
vegetation. The five classes can be divided into the pasture
ones and no pasture ones. The pasture ones composed by the
following .

1) Level 0: 100% of grass.
2) Level 20: 80% of grass; shrub and rock presence until the

20%.
3) Level 50: 50% of grass; shrub and rock presence until the

50%.
And the no pasture ones include the following.
1) Forest.
2) Impervious areas: Lands that cannot be used for pasture

because of the steep slope or the strong shrub and rock
presence.

Note that the five classes are similar and all related to the
grass or the presence of vegetation, so their discrimination is
challenging both in the spectral and temporal domains. As we
can observe in Table II, the proportion between the five classes
is slightly unbalanced. This can lead to a bias training that may
cause classification errors.

The dataset was composed of a VHR airborne orthophoto
with the same spectral bands and acquisition characteristics
of the previous dataset and multitemporal HR satellite images
acquired by Sentinel-2. The VHR orthophoto provides the
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Fig. 5. Three example areas of the test dataset showing (a) RGB airborne images, (b) NDVI obtained by the one of the Sentinel-2 image in the time series, (c)
one of the Sentinel-1 image of the time series.

TABLE II
PROPORTION BETWEEN THE CLASSES OF THE DATASET USING

SENTINEL-2 IMAGES

spatial context information but not the spectral and temporal
one to model the pasture phenological behavior over time. On
the contrary, Sentinel-2 images provide lower spatial context
information (they have a spatial resolution of 10m/pixel) to
discriminate the mentioned classes accurately since they are
highly fragmented. Instead, they bring the temporal information
since the time series includes images acquired from June 2018
to September 2018, which is the most significant period for the
phenological characterization of alpine pastures. We exploit ten
spectral bands of the Sentinel-2 images by excluding the one
at 60m/pixel that provide atmospheric information only. For
each acquisition month, we chose the atmospherically corrected
Sentinel-2 images with the least cloud-cover percentage. It is
worth noting that even if the airborne data and the multitemporal
images were acquired almost one year apart, this was not a
problem from the application point of view since no relevant
changes were expected in pastures during this timeframe. We
randomly sampled only the areas where the classes had no cloud
coverage on any of the four dates of the Sentinel-2 images. We
sampled patches with spatial dimensions of 120× 120 for the
VHR orthophotos and 12× 12 for the Sentinel-2 multitemporal
images. These patch sizes guaranteed that, in each sample,
both kinds of data represented the same geographical area. We
obtained a dataset composed of 94 048 patches split into training
with 76 245 patches, validation with 8 403 patches, and test with
9 400 patches.

B. Design of Experiments

We set up the first branch f(XVHR) of the deep learning
(DL) model a ResNet [37] with ten residual blocks having a

central convolutional layer with k = 3 and as last layer a 2-D
convolutional layer with a kernel size of 3× 3. To have the same
number of feature maps of f(XVHR), g(XTS) was composed by
two 3-D convolutional layers with kernel sizes 3× 3× 3 and
3× 3× 2 and strides 1× 1× 2 and 2× 2× 2. The decoder
was composed of seven residual blocks with k = 3 preceded by
an upsampling layer that decompresses the spatial information.
The last 2-D convolutional layer had a 1× 1 kernel size and a
filter number equal to the number of classes (see Table III). It
exploited a softmax activation function to retrieve the land-cover
map. Every convolutional layer (2-D and 3-D) was followed by a
rectified linear unit activation function and batch normalization.

We trained the proposed DL model in a supervised way for
E = 300 using the Adam optimizer [47] with a learning rate
equal to 10−4. Due to hardware constraints, we used a batch
size equal to 80. We set the weight decay λ = 5 · 10−5, which is
a value used in the SoA to improve the generalization capability
of the model [48]. We tested the effectiveness of the proposed
method using the two datasets in three experiments.

1) Experiment 1—We compared the proposed method with
SoA methods. Both the SoA and proposed method were
trained using the hyperparameters mentioned previously.

2) Experiment 2—We observed the contribution provided
by the temporal information for land-cover mapping by
comparing the results of the proposed DL model with the
ones of a model analyzing only a VHR image. This model
was composed of the same layers of f(.) andd(.), but it did
not include g(.) to process the temporal information and
the concatenation step. Thus, we compared the outcome
of the ResNet processing only the VHR images with
the proposed method processing both VHR images and
multitemporal data.

3) Experiment 3—We observed the contribution of the spatial
information provided by the VHR orthophotos by compar-
ing the proposed-method results with the outcomes of a
model composed only of g(.) and d(.). Hence, this model
processed only the temporal information of multitemporal
images.

For Experiments 2 and 3, we used the same hyperparameters
of Experiment 1.
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TABLE III
PROPOSED DL MODEL STRUCTURE

We evaluated the performance of the land-cover mapping
methods by considering the average overall accuracy (OA) [(true
positives+true negatives)/number of labeled pixels], F1-score,
and kappa coefficient (κ). In Experiments 2 and 3, we provided
the confusion matrix and the F1 score per class.

C. Experiment 1: SoA Comparison

We compared the proposed method results with the SoA using
the datasets defined in Section III-A. The comparison with SoA
techniques was performed against the following:

1) a DL model analyzing both spatial and temporal
information using convolutional and recurrent layers
(TWINNS) [30], and two models analyzing multiresolu-
tion RS images;

2) one using a CNN and stacked autoencoder (DMIL) [32];
3) the other one using two 2-D-CNNs (MrFusion) [33].
Since 2) analyzes only images with a homogeneous spatial

resolution, we upsampled the Sentinel-2 images to have the
spatial dimensions equal to the orthophotos.

1) SoA Comparison Using the Dataset VHR Orthophotos
and Sentinel-1 Image Time Series: Using the dataset composed
of VHR orthophotos and Sentinel-1 image time series, the

TABLE IV
OAS, F1-SCORE, κ COEFFICIENT, AND NUMBER OF PARAMETERS OF THE

PROPOSED METHOD AND SOA METHODS USING A DATASET COMPOSED OF

VHR ORTHOPHOTOS AND SENTINEL-1 IMAGE TIME SERIES

TABLE V
OAS, F1-SCORE, κ COEFFICIENT, AND NUMBER OF PARAMETERS OF THE

PROPOSED METHOD AND SOA METHODS USING A DATASET COMPOSED OF

VHR ORTHOPHOTOS AND MULTITEMPORAL NDVI

proposed method achieved comparable results with the Mr-
Fusion approach and improved the classification performance
with respect to the other SoA methods (see Table IV) (e.g., im-
provement of 5.77% with respect to TWINNS). The quantitative
results proved that the joint analysis of the spatial context and
temporal information performed by 3-D convolutional layers is
more efficient in modeling the information provided by image
time series and improved the classification performance with
respect to SoA methods splitting the spatial context and temporal
information analysis, such as DMIL (i.e., improvement of 2.7%
with 10.7 M of parameters less). Although MrFusion obtained
comparable results with respect to the proposed method, it was
more computationally demanding since it required almost six
times more training parameters (i.e., 18.4 M instead of 3.2 M). In
most cases, the proposed method obtained better classification
results than the SoA methods with fewer training parameters
(e.g., 3.2 M). Thus, it was more effective than the SoA methods
in the analysis of multimodal multiresolution image time series.

The qualitative results confirmed the quantitative ones. The
discrimination between the pasture and forest areas was the most
common classification error [e.g., Fig. 6(b), the bottom part of
Fig. 7(d), the center of Fig. 8(b)]. However, the proposed method
alleviated this problem by jointly analyzing the spatial context
and temporal information [e.g., Fig. 6(e), the bottom part of
Fig. 7(e), the center of Fig. 8(e)], although it overestimated water
bodies.

2) SoA Comparison Using the Dataset VHR Orthophotos and
Multitemporal Sentinel-2 Images: Using the dataset composed
of VHR orthophotos and Sentinel-2 image time series, the pro-
posed method achieved better classification performance than
the SoA ones (see Table V). MrFusion [33] and TWINNS [30]
were the SoA methods with the best F1 score (i.e., 80.92% and
80.69%, respectively). TWINNS analyzed the spatial and tem-
poral information using a convolutional RNN with an attention
mechanism, whereas MrFusion used a 2-D-CNN. The proposed
method slightly improved the F1 score with respect to TWINNS
and MrFusion. This proved how the joint analysis of spatial and
temporal information of 3-D convolutional layers used in the
proposed method improved the classification performance with
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Fig. 6. Comparison between (a) reference maps of the first Sentinel-1 dataset area and the classification maps retrieved using (b) TWINNS model [30], (c) DMIL
model [32], (d) MrFusion model [33], and (e) proposed method using Sentinel-1 image time series (yellow is Fruit trees, red is Artificial areas, green is Pastures,
dark green is Forest, blue is Water bodies, gray is Impervious areas, and white is masked pixels).

respect to 2-D-CNN used in MrFusion, which processed only
the spatial information. The joint analysis of the spatial and
temporal resolution performed by the proposed method using
the 3-D-CNN improved the F1-score of 3.82% with respect to
DMIL [32] that processed only the temporal information using
an SAE. The proposed method was less computationally de-
manding (i.e., 3.0 M parameters) than the SoA ones (i.e., 17.9 M
for DMIL, 18.4 M for MrFusion, and 13.2 M for TWINNS) and
it achieved the best classification performance with the lowest
number of parameters (see Table V).

The qualitative results confirmed the quantitative ones. The
proposed method better discriminated the difference between
pasture and nonpasture classes than the SoA ones (e.g., the
right side of the classification maps in Fig. 9). The inaccurate
classification between Level 50, Forest, and Impervious areas
was the most common error [e.g., right part of Fig. 9(c) and
(d)] that was alleviated by the proposed method [see Fig. 9(e)].
We can observe how the analysis of both spatial and temporal
information performed by 3-D convolutional layers performed
by the proposed method achieved better results [e.g., the upper
part of Fig. 10(e) and the bottom left part of Fig. 11(e)] in the
three pasture classes discrimination than the 2-D convolutional
layers that learned only spatial features and not temporal ones
[see Figs. 10(d) and 11(d)].

D. Experiment 2: Effectiveness of the Temporal Information

We compared the results obtained by processing a single-date
VHR image and using the proposed method to jointly process a

TABLE VI
OAS, F1-SCORE, AND κ OF A DL MODEL ANALYZING ONLY SINGLE-DATE

IMAGES AND THE PROPOSED METHOD WITH THE TWO DATASETS

VHR orthophoto and multitemporal data (i.e., Sentinel-1 image
time series or multitemporal Sentinel-2 image) from the two
datasets to observe if the inclusion of the temporal component
in the spatial analysis improves the classification accuracy with
respect to the use of single-date VHR image. We proved that
the temporal information analysis performed by the proposed
method improved the model classification performance with
respect to the method processing only single-date VHR im-
ages in both datasets (see Table VI). The Sentinel-1 temporal
information increased the OA of 4.86%, whereas the addition
of multitemporal Sentinel-2 images improved the pasture clas-
sification OA of 1.81%. The temporal information analysis of
the Sentinel-2 images allowed to better model the phenological
behavior of the classes over time. The inclusion of the Sentinel-1
temporal information in the classification analysis improved the
method capability in the minority class discrimination, such as
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Fig. 7. Comparison between (a) reference maps of the second Sentinel-1 dataset area and the classification maps retrieved using (b) the TWINNS model [30],
(c) DMIL model [32], (d) MrFusion model [33], and (e) proposed method using Sentinel-1 image time series (Yellow is Fruit trees, red is Artificial areas, green is
Pastures, dark green is Forest, blue is Water bodies, gray is Impervious areas, and white is masked pixels).

fruit trees, and further increased the classification performance
with the majority classes [see Fig. 12(a) and (c)]. The proposed
method tended to misclassify minority classes (i.e., artificial ar-
eas and water bodies) [see Fig. 12(c)] since few labeled samples
belonging to these classes were in the training set leading to
overfitting them. The F1 score of each class increased by adding
the Sentinel-2 temporal information. We can observe that the
proposed method classified better pasture and no pasture class
than the one using only single-date VHR images [see Fig. 13(a)].
However, the proposed method underestimated the class Level
20 and overestimated Levels 0 and 50 [see Fig. 13(c)] due to
their similarity.

The qualitative results (see Figs. 14 and 15) confirmed the
quantitative ones and showed the classification performance
improvement by adding temporal to the spatial context analysis.
In the first dataset, the Sentinel-1 temporal information analysis
allowed us to characterize better the impervious areas and water
bodies [e.g., left side of Fig. 15(b) and (c)]. In the second
dataset, we can observe that the Sentinel-2 temporal informa-
tion allowed us to discriminate better similar classes, such as
Pasture Level 50 and Forest [e.g., the right side of Fig. 15(b)
and (c)]. It also improved the classification of similar classes,
such as Level 0, 20, and 50 [e.g., the bottom side of Fig. 15(b)
and (c)].

TABLE VII
OAS, F1-SCORE, AND κ OF A DL MODEL ANALYZING SENTINEL-1 IMAGE

TIME SERIES, AND THE PROPOSED METHOD USING THE TWO DATASETS

E. Experiment 3: Effectiveness of Multiscale Information

We compared the results obtained by analyzing only Sentinel-
1 image time series or multitemporal Sentinel-2 images with the
proposed method ones using the datasets defined in Section III-A
to prove the improvement obtained by processing multiresolu-
tion images. The use of multiresolution images sharply improved
the classification performance with respect to multitemporal
data analysis in both datasets (see Table VII). Sentinel-1 image
time series and multitemporal Sentinel-2 images did not provide
many geometrical details due to their spatial resolution. Thus, the
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Fig. 8. Comparison between (a) reference maps of the third Sentinel-1 dataset area and the classification maps retrieved using (b) TWINNS model [30],
(c) DMIL model [32], (d) MrFusion model [33], and (e) proposed method using Sentinel-1 image time series (yellow is Fruit trees, red is Artificial areas, green is
Pastures, dark green is Forest, blue is Water bodies, gray is Impervious areas, and white is masked pixels).

Fig. 9. Comparison between (a) reference maps of the first Sentinel-2 dataset area, and the classification maps retrieved using (b) TWINNS model [30], (c) DMIL
model [32], (d) MrFusion model [33], and (e) proposed method (yellow is Level 0, red is Level 20, blue is Level 50, dark green is Forest, gray is Impervious areas,
and white is masked pixels).
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Fig. 10. Comparison between (a) reference maps of the second NDVI dataset area, and the classification maps retrieved using (b) TWINNS model [30],
(c) DMIL model [32], (d) MrFusion model [33], and (e) proposed method (yellow is Level 0, red is Level 20, blue is Level 50, dark green is Forest, gray is
Impervious areas, and white is masked pixels).

Fig. 11. Comparison between (a) reference maps of the third NDVI dataset area, and the classification maps retrieved using (b) TWINNS model [30], (c) DMIL
model [32], (d) MrFusion model [33], and (e) proposed method (yellow is Level 0, red is Level 20, blue is Level 50, dark green is Forest, gray is Impervious areas,
and white is masked pixels).
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Fig. 12. Confusion matrices and F1 score of the various classes (a) processing only VHR single-date orthophotos, (b) processing only multitemporal Sentinel-1
images, and (c) proposed method processing VHR orthophotos and Sentinel-1 image time series.

Fig. 13. Confusion matrices and F1 score of the various classes (a) processing only VHR single-date orthophotos, (b) processing only multitemporal Sentinel-2
images, and (c) proposed method processing VHR orthophotos and multitemporal Sentinel-2 images.

Fig. 14. Comparison between (a) reference maps of the first dataset, and the classification maps retrieved by (b) processing only VHR single-date orthophotos,
and the proposed method processing VHR orthophotos and (c) Sentinel-1 image time series (yellow is Fruit trees, red is Artificial areas, green is Pastures, dark
green is Forest, blue is Water bodies, gray is Impervious areas, and white is masked pixels).
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Fig. 15. Comparison between (a) reference maps of the second dataset, and the classification maps retrieved by (b) processing only VHR single-date orthophotos,
and (c) proposed method processing VHR orthophotos and multitemporal Sentinel-2 images (yellow is Level 0, red is Level 20, blue is Level 50, dark green is
Forest, gray is Impervious areas, and white is masked pixels).

Fig. 16. Comparison between (a) reference maps of the first dataset, and the classification maps retrieved by (b) processing only Sentinel-1 image time series,
and (c) proposed method processing VHR orthophotos and Sentinel-1 image time series (yellow is Fruit trees, red is Artificial areas, green is Pastures, dark green
is Forest, blue is Water bodies, gray is Impervious areas, and white is masked pixels).

Fig. 17. Comparison between (a) reference maps of the second dataset, and the classification maps retrieved by (b) processing only multi-temporal Sentinel-2
images, and (c) proposed method processing VHR orthophotos and multitemporal Sentinel-2 images (yellow is Level 0, red is Level 20, blue is Level 50, dark
green is Forest, gray is Impervious areas, and white is masked pixels).
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classification accuracy decreased (i.e., the OA of the first dataset
is 73.79%, while the OA of the second one is 72.98%). The
introduction of VHR images in the classification analysis added
the spatial information unavailable in the multitemporal data
and improved the discrimination capability of the classification
method of 16.65% and 8.27% for the first and second datasets,
respectively. It is possible to observe that F1 score of each class
in both datasets improved with the VHR orthophoto inclusion in
the classification process (see Figs. 12 and 13). The first dataset
classes with fewer training samples and requiring high spatial
resolution for the modeling were misclassified [see Fig. 12(b)].
The use of VHR images improved the discrimination of these
classes using the same number of training samples. This proved
the relevance of the multiresolution analysis.

As we can observe in the qualitative results, the multiscale
classification analysis better improved the discrimination be-
tween Pastures, Forests, Water Bodies, and Impervious areas,
in the first dataset [e.g., Fig. 16(b) and (c)]. These classes are
the most fragmented ones and are challenging to discriminate
accurately due to the spatial resolution of Sentinel-1 images. In
the second dataset, the confusion between Forest and Level 50
was one of the most common classification errors [e.g., the right
side of Fig. 17(b)]. This was due to the slight difference in the
tree density between Level 50 and Forest, which is difficult to
observe in Sentinel-2 images. Class Level 50 presented many
trees in some areas and can be easily confused with the Forest
class. The poor spatial resolution also caused problems in the
discrimination of similar pasture classes (i.e., Level 0, Level 20,
and Level 50) given their similarity [e.g., the middle-left part of
Fig. 17(b)]. The multiscale analysis performed by the proposed
method alleviated these problems [e.g., the middle-left part of
Fig. 17(c)].

IV. CONCLUSION

In this article, we proposed a supervised DL classification
method that processes multisensor and multiresolution RS im-
age time series to combine the spatial context information de-
rived by VHR images and the temporal information obtained
from the HR image time series and retrieve a land-cover map.
We tested our method using two datasets composed of one
VHR orthophoto, Sentinel-2, or Sentinel-1 image time series
acquired over the Trentino region in Italy. In the tests, we
observed the improvement provided by the multiscale analysis
in the correct discrimination of complex classes characterized by
small objects. We proved that the temporal information analysis
improved the modeling of classes with behavior varying over
the year that cannot be represented by a single-date image.
The proposed method improved the modeling of the temporal
information with respect to the SoA ones and achieved more
accurate classification performance using a less computation-
ally demanding model. This improvement is due to the fusion
of multiscale features extracted by multisensor multiresolution
images and temporal features retrieved by analyzing the image
time series with 3-D convolutional layers. These layers proved
to better model spatial and temporal information than 2-D

convolutional and SAE layers exploited in SoA classification
methods.

In future activities, we plan to test the proposed method
on other kinds of classes using images acquired by dif-
ferent sensors. Moreover, we want to exploit convolutional
LSTM layers instead of 3-D convolutional ones to ob-
serve if they optimize the modeling of spatial and temporal
information.
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