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Abstract

The fifth-generation (5G) of mobile communication networks are expected
to support a large number of vertical industries requiring services with
diverging requirements. To accommodate this, mobile networks are under-
going a significant transformation to enable a variety of services to coexist
on the same infrastructure through network slicing. Additionally, the intro-
duction of distributed user-plane and multi-access edge computing (MEC)
technology allows the deployment of virtualised applications close to the
network edge.

The first part of this dissertation focuses on end-to-end network slice
provisioning for various vertical industries with different service require-
ments. Two slice provisioning strategies are explored, by formulating a
mixed integer linear programming (MILP) problem. Further, a genetic al-
gorithm (GA)-based approach is proposed with the aim to improve search-
space exploration. Simulation results show that the proposed approach
is effective in providing near-optimal solutions while drastically reducing
computational complexity.

In a later stage, the study focuses on building a measurement-based
digital twin (DT) for the highly heterogeneous MEC ecosystem. The DT
operates as an intermediate and collaborative layer, enabling the orches-
tration layer to better understand network behavior before making changes
to the physical network. Assisted by proper AI/ML solutions, the DT is
envisioned to play a crucial role in automated network management. The
study utilizes an emulated and physical test-bed to gather network key
performance indicators (KPIs) and demonstrates the potential of graph
neural network (GNN) in enabling closed loop automation with the help
of DT. These findings offer a foundation for future research in the area of
DT models and carbon footprint-aware orchestration.
Keywords
5G, MEC, Network Slicing, VNE, Resource Allocation, Optimization, Ma-
chine Learning, Network Emulation
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Chapter 1

Introduction

The ever-evolving telecommunication technologies are fueling the growth
of service coverage and capacity, leading to the identification of new use
cases and applications. However, many of these applications, including vir-
tual reality, augmented reality, autonomous driving, and internet of things,
come with stringent network requirements, which increases the complexity
of network management and pushes the limits of available technologies. As
a result, the telecommunication industry is constantly challenged to keep
up with the demands of these new applications while ensuring efficient and
reliable network performance.

In this context, this introduction chapter serves to contextualize the
motivations and objectives of this study, and to outline the methodology
that was followed to achieve those objectives. Additionally, the chapter
highlights the contributions that the study makes to the field and provides
an overview of the thesis structure.

1.1 Motivations and objectives

Mobile communication systems have lately witnessed an increasing demand
in supporting a highly diverse range of service types. The necessity to
support such a broad range of services calls a paradigm shift in mobile
network design, moving from a pure connectivity provisioning approach to
a service-oriented one.

The International Telecommunication Union - Radiocommunication Sec-
tor (ITU-R) is a specialized agency that allocates global radio spectrum and
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CHAPTER 1. INTRODUCTION

develops technical standards to ensure seamless connectivity in telecom-
munication networks. With the aim of targeting the new generation of
International Mobile Telecommunications (IMT), the ITU-R has defined
high-level specifications [1]. As shown in Figure 1.1, the demands of IMT-
2020 have been classified by the ITU-R into three broad categories: en-
hanced mobile broadband (eMBB), massive machine-type communication
(mMTC) and ultra-reliable low-latency communication (URLLC). These
categories have different requirements. The automotive industry is an ex-
ample of the diverging requirements that are expected to be addressed by
5G and beyond mobile networks. For instance, while automated driving
assistance requires low user-plane latency (between 1 − 10 ms) and ex-
tremely high reliability, in-car infotainment and remote diagnostics have
high data rate requirements (up to 100 MB/s) and massive connectivity
provisioning, respectively [2].

0
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4
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8

10
Data-rate

Latency

Resiliency

Coverage

Cost

Energy

URLLC

eMBB

mMTC

Figure 1.1: Service categories identified in the ITU vision (left), and exemplification
of diverging service requirements for the three categories (right). [Source for figure on
the left: ITU-R M.2083-0: IMT Vision—Framework and overall objectives of the future
deployment of IMT for 2020 and beyond ]

In order to embrace the ITU-R vision and to support an increasing
demand of a wide range of heterogeneous services, 5G systems are
reliant on multiple enabling technologies such as multi-access edge com-
puting (MEC) [3], network function virtualization (NFV), and software
defined network (SDN) among the others.

While NFV provides the ability to create dedicated logical functions and
deploy them as virtualised network functions (VNFs) that can be chained

2



1.1. MOTIVATIONS AND OBJECTIVES

to form a service function chain (SFC), SDN enables centralized control and
management of the networking and communication between these VNFs.
Conversely, MEC is an enabling technology that provides computing, net-
working, and virtualization resources close to the end-users. Using MEC
technology, services can be provisioned in a considerably shorter time scale
compared to the legacy computing paradigms such as cloud computing,
where all the data should be transferred from the user to the cloud for
processing. Moreover, the MEC technology mitigates the backhaul (BH)
link utilization to a large extent through bypassing data transfer over the
BH and serving the users locally by the MEC hosts nearby [4].

The emergence of the network slicing paradigm has been a game-changer
for the evolution of mobile networks, particularly with the advent of 5G and
beyond networks. This technology utilizes advanced network softwariza-
tion techniques, such as NFV and SDN, to divide the mobile network into
logically separated networks. Each slice is designed to serve a particu-
lar type of service, enabling operators to offer customized and optimized
solutions to customers with diverse requirements. The distributed user-
plane deployment introduced in fifth-generation (5G) allows the slices to
leverage edge computing, which enables the deployment of delay-sensitive
applications closer to the network edge. By using MEC technology, appli-
cations can be processed with low latency, reducing network congestion,
and improving overall network performance.

This technology offers a significant advantage by enabling mobile vir-
tual network operator (MVNO) to tailor their network offerings to meet
the specific requirements of different service types, such as low latency, high
bandwidth, and reliability. By doing this, network slicing can tackle ser-
vices with diverse requirements, alleviating the issue of supporting services
with diverging requirements. This can ultimately lead to more efficient
resource utilization, improved network performance, and enhanced user
experience. However, while network slicing is a critical technology for the
success of future mobile networks, it also poses additional challenges. An
end-to-end (E2E) slice model spans different technological domains of the
network such as radio access network (RAN), transport network, and 5G
core (5GC) network functions. Upon receiving a slice request from a ver-
tical, resources from different domains of the network shall be allocated to

3



CHAPTER 1. INTRODUCTION

the slice to finally embed the service(s) onto the substrate network.

The softwarized network approach described above has the potential
to reduce capital expenditure and operating expenses by enabling a high
level of network programmability and flexibility to meet the heterogeneous
service demand. However, it also presents some open challenges, including
complex configuration, control, and management of such networks. One
of the research challenges considered in this dissertation is to develop
optimization-based techniques to investigate efficient strategies
for optimal slice provisioning while deploying a diverse set of
service types.

Over the past few years, there have been numerous initiatives and
projects that have focused on developing proof-of-concept solutions for
MEC, in line with ETSI standards1. Deploying MEC requires virtualiza-
tion, and it can be implemented using various hardware platforms, includ-
ing commercial off-the-shelf (COTS) devices [5]. MEC deployment archi-
tectures may include networks in different data centre locations, as well as
smaller and more pervasive nodes that may have constraints in terms of
costs and computational capability. Additionally, the MEC ecosystem is
expected to be highly heterogeneous, with varying performance from device
to device due to factors such as hardware, software, virtualization technol-
ogy. As a result, service providers may face a heterogeneous MEC
landscape in the future, depending on the depth and density of the edge.

The field of service orchestration has seen a surge in interest over the
past few years, leading to a plethora of research papers and literature
proposing various solutions [6, 7, 8]. While the abundance of literature is
encouraging, many of these proposals rely heavily on mathematical mod-
els and assumptions derived from network theory to develop optimization
techniques. Unfortunately, this approach is often necessitated by the lack
of comprehensive databases containing the necessary measurements needed
to build a realistic model of the network components. However, optimiza-
tion models developed using techniques such as mixed integer linear pro-
gramming (MILP) often require significant assumptions that limit their
effectiveness in modeling complex and heterogeneous environments accu-

11https://mecwiki.etsi.org/index.php?title=MECEcosystem
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1.2. METHODOLOGY

rately. This limitation poses a significant challenge for researchers and
practitioners looking to optimize service orchestration solutions, especially
in dynamic and ever-changing environments. Consequently, there is a need
for alternative approaches that can integrate real-world measurements into
optimization models and better reflect the complexities of service orches-
tration systems.

For MEC systems to be sustainable and manageable, service providers
need to adopt suitable models that allow them to dimension and provi-
sion their MEC nodes on the network fabric. Additionally, providers must
understand how to enable MEC nodes to support applications and their
key performance indicators (KPIs). Another critical factor to consider in
distributed systems, particularly MEC, is power consumption [9]. Energy
efficiency in MEC depends on multiple factors such as hardware, virtu-
alization technology, and software used for deployment. In light of these
concerns, this dissertation endeavors to address another research challenge,
namely, investigating measurement-based approaches to create a
digital representation of the network.

In a highly heterogeneous scenario, the digital twin (DT) with proper
AI/ML solutions can play a crucial role in automated network man-
agement. It operates as an intermediate and collaborative layer, enabling
the orchestration layer to better understand network behavior before mak-
ing changes to the physical network. Consequently, investigating how to
leverage a DT to realize closed-loop automation is another critical
challenge addressed in this dissertation. Overall, these efforts aim to en-
hance MEC’s performance, sustainability, and manageability, making it a
valuable solution for mobile network operators.

1.2 Methodology

The first objective addressed in this thesis was to study the challenge
of coordinating the functions of MVNOs with the applications
deployed in network slices. This problem can be framed as a virtual
network embedding (VNE) problem, where each virtual network corre-
sponds to a logically separated network slice spanning various technological
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domains, such as RAN, transport, core, and services. To address this chal-
lenge, several existing works on VNE problems in literature were studied
to identify gaps and weaknesses. Based on the state-of-the-art and best
practices in the field, an optimization problem was formulated as
a MILP problem and solved using a mathematical optimization solver
called Cplex [10].

While optimization solvers such as Cplex are guaranteed to efficiently
find the optimal solution to a problem, subject to constraints, they are
computationally intensive and can bring scalability issues. Furthermore,
handling non-linearities, which is often necessary in network optimization
problems, increases complexity and sensitivity to parameters. This is be-
cause the VNE problem is known to be NP-hard and is often investigated
using optimization techniques and heuristics.

As done in prior research not part of this thesis [11], heuristics are fre-
quently considered in the literature as a viable alternative approach for re-
solving scalability issues in optimization problems. Heuristics offer a rapid
and efficient solution to the problem at hand, and can be implemented as
an alternative to more computationally intensive optimization techniques.
However, they often lack in optimality and theoretical foundation. Instead
of pursuing an optimization goal, they are based on assumptions that are
done through logical reasoning, which could lead to a good solution. As a
consequence, heuristics are often tailored for a specific problem and might
work in specific scenarios and not in others.

Based on these considerations, an investigation was carried out into
the practical feasibility of optimization techniques that rely on
genetic algorithm (GA) for resolving the previously formulated
optimization problem. The goal was to evaluate the effectiveness and
efficiency of GA-based techniques in producing satisfactory solutions to the
problem, with results compared against the optimal solution generated by
the MILP model as the benchmark.

The choice of using GA to solve optimization problems is based on sev-
eral factors. While GA does not guarantee to reach the global optima,
its efficiency in exploring a large search space often leads to near-optimal
solutions. Additionally, GA has shown higher flexibility than MILP tech-
niques in handling non-linearities of the model, which is often a necessity in
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network optimization problems. Regarding the computational complexity,
it is crucial to carefully evaluate the performance of both GA and MILP
on a case-by-case basis to determine which approach is most appropriate
for a specific problem instance. However, in general GAs are often faster
than MILP for solving NP-hard problems, particularly for large problem
instances or when the problem is complex and difficult to model as an
MILP problem. Thus, the performance of GA in solving the optimization
problem has been extensively studied through synthetic simulations to in-
vestigate its optimality, convergence time, and sensitivity to parameters.

As explained in the previous section, measurement-based approaches
play a crucial role in investigating network management issues since they
provide insights into the behavior and performance of various network com-
ponents, including traffic and applications, in diverse and complex environ-
ments. In line with this, two test-beds were developed and are presented
in this dissertation to support the research work. The first one is an emu-
lation testbed that emulates a heterogeneous MEC-enabled 5G network.
This test-bed enables the evaluation of MEC applications under realis-
tic network conditions and allows for the collection of various performance
metrics related to traffic flows, and the utilization of virtual resources. The
second testbed is a physical one that focuses on power consumption
measurement while also varying the virtualization technology used. By
using this testbed, it is possible to evaluate the energy efficiency of MEC
deployments under different conditions and gain insights into the most ap-
propriate virtualization technology to use in specific scenarios. The two
testbeds have been used to create a measurement dataset and investigate
the performance of MECs based on different KPIs, such as CPU consump-
tion, achieved data-rate, and power consumption.

In the initial stage of this investigation, various regression mech-
anisms, such as k-nearest neighbors (KNN), support vector regression
(SVR), and polynomial fitting (PF), were employed on the physical test-
bed measurements to analyze and study the characterization of MEC KPIs.
These techniques were utilized to explore the variations in KPIs with re-
spect to different virtualization technologies. The objective of this analysis
was to assess the feasibility of building a digital representation of
a MEC node, known as a DT. The DT would replicate the behavior
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of the actual MEC node subject to a certain amount of networking and
computation demand. To validate the approach, the predicted KPIs were
compared with real measurements which were held out as a test set. By
doing so, the feasibility of building an accurate digital representation of
a MEC node, in the form of a DT, were assessed in various conditions
emulating scenarios with partial information available.

Through our observations, it was found that regression mechanisms are
efficient in predicting the behavior of a MEC node when considering ag-
gregated demands. However, when faced with multiple demands that may
have a different impact on the MEC behavior compared to a few demands
generating the same amount of aggregated requests, it is unclear how to
efficiently leverage these mechanisms. In order to address this issue, graph
neural networks (GNNs) have been explored as a viable solution.
GNNs provide a powerful tool to handle a varying number of requests ar-
riving at the same MEC by representing them as a graph. By leveraging
the graph structure and the relationships between the nodes, GNNs can
capture the varying impact of each individual demand on the overall MEC
behavior, enabling accurate predictions even in the case of varying demand
profiles.

GNN are particularly well-suited for modeling and analyzing the com-
plex and interdependent relationships within communication networks, as
they are able to naturally incorporate and process the graphical structure
of such networks. By capturing the underlying network behavior, GNN
can provide a more comprehensive and scalable representation of the net-
work, which can be used to study networks of varying sizes and topologies.
Through a comparison of predicted and actual KPIs, valuable insights were
obtained into the reliability and accuracy of the DT, which has the poten-
tial to inform decision-making for a range of network management tasks.
The findings also highlighted the potential of GNN-based DT in facilitat-
ing closed loop automation, where network management processes are au-
tomated and continuously refined based on real-time network performance
data.
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1.3 Contribution and Structure of the Thesis

With reference to the challenges and objectives motivated in Section 1.1, at
a high level, the contributions of this thesis can be divided in three parts.

1. Investigate efficient strategies for optimal slice provisioning while de-
ploying a diverse set of service types.

2. Develop relevant environments in order to experiment on measurement-
based approaches to create a digital representation of the network.

3. Study the DT as a crucial component in automated network manage-
ment systems.

With reference to the first challenge, the main contributions in this
thesis are summarised as follows:

• Leverage GA optimization by intelligently acting on the strategies to
generate new solutions and the cross-over and mutation operator, in
order to guarantee the algorithm convergence, which otherwise is not
achieved due to the high complexity of the problem. The Adaptive
GA (AGA) approach is proposed to learn a better generation of new
solutions with the aim to improve optimality and convergence time.

• The E2E delay is modeled considering the transport, propagation,
and processing delays while ensuring the network resources are not
over-provisioned and the E2E service requirements are met for all
the services of the verticals. In particular, the processing delay of
each VNF implementing the service and control plane (CP)/user plane
(UP) functions, is modeled assuming a container-based deployment,
where fractions of CPU can be reserved, and including a parameter
accounting for the virtualization overhead.

• Piece-wise linearization is used to model the processing and transport
delays. While this keeps the problem linear, it also allows to generalize
the system to any other non-linear delay model.
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• We introduce and study Dedicated and Shared user plane function
(UPF) as two slice provisioning approaches to satisfy the services re-
quested by the verticals.

With reference to the second challenge, the main contributions in this
thesis are summarised as follows:

• A test-bed for emulation has been created to evaluate heterogeneous
MEC systems. The emulation test-bed collects a range of performance
metrics related to traffic flows and the utilization of virtual resources.

• With the testbed, MEC applications can be effectively tested under
realistic network conditions, emulating an end-to-end 5G network.

• A physical test-bed was created with a focus on measuring power con-
sumption while varying the virtualization technology. This allows to
evaluate the energy efficiency of MEC deployments under different
conditions, and provides insights into the most appropriate virtual-
ization technology to use in specific scenarios.

With reference to the third challenge, the main contributions in this
thesis are summarised as follows:

• The data-driven DT representation of the performance of MEC nodes
is a virtual model that mirrors the behavior of a physical MEC node,
based on data collected from the test-bed.

• Machine learning (ML) techniques have been applied to improve the
accuracy of the digital twin representation for different populations of
training sets, enabling more accurate predictions of the performance
of MEC nodes.

• The use of GNNs has been investigated as a potential solution for
improving the DT representation, taking into account impairments
due to the underlying network and variations in the number of service
requests.
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• The potential of GNN-based DTs has also been studied in the context
of closed-loop automation, where network management processes can
continuously adapt and optimize based on real-time network perfor-
mance data, improving overall system efficiency and reliability.

The three challenges described earlier are addressed in Chapters 2, 3,
and 4 of this thesis. Finally, Chapter 5 summarizes the key findings of the
work and provides concluding remarks.

11



CHAPTER 1. INTRODUCTION

12



Chapter 2

Mathematical models for Slice
Provisioning in 5G and Beyond
Networks

2.1 Motivations

Section 1.1 introduces network slicing, which plays a crucial role in en-
abling 5G and beyond 5G networks. This technology leverages virtual-
ization technologies like NFV and SDN to divide the mobile network into
multiple logical networks, each designed to cater to a specific service type.
By utilizing NFV, it becomes feasible to deploy logical functions as ded-
icated VNFs. Conversely, SDN facilitates centralized control and man-
agement of networking and communication between these VNFs, enabling
them to be chained together to form a SFC. Figure 2.1 illustrates the con-
cept of end-to-end service provisioning. We remark that the provisioning
of connectivity is usually the job of network operators providing the end-
to-end UP and CP functions to the end-users. In this context, suitable
mechanisms should be in place to ensure effective end-to-end service pro-
visioning. Considering a neutral host model, the job of an infrustructure
provider (InP) is to embed and maintain service requests satisfying the
application requirements.

5G undertakes an end-to-end transformation spanning different domains
of the network, including the RAN, the transport, and the core network.
While in the RAN domain different technological enablers have been in-
troduced with 5G new radio (NR) such as flexible numerology [12] and
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Figure 2.1: End-to-end slice provisioning to verticals, spanning different technological
domains of the network.

multi-connectivity (MC)[13, 14], to name a few, the Core domain under-
takes a radical transformation by introducing control plane and user plane
separation (CUPS). Thus, the CP, whose main components are the ac-
cess & mobility management function (AMF) and the session management
function (SMF), is detached from the UP allowing a distributed
acupf deployment close to the users and contributing to latency reduc-
tion. As a rule of thumb, considering an E2E delay requirement of 10ms,
the speed of light in optical fiber, and 9.5ms as the E2E delay budget
including transmission, channel access, queuing and processing, the dis-
tance between the application and the gNodeB (gNB) - base station in 5G
- cannot be more than 50km. Thus, a flexible deployment is essential to
deploy low latency applications close to the end-user, while delay-tolerant
applications can be kept in the cloud.

However, the E2E embedding of network slices onto the substrate net-
work is a nontrivial task that needs to carefully account for several factors
such as satisfaction of service requirements, providing slice isolation, and
guaranteeing efficient use of the non-uniform network resources. Embed-
ding network slices onto the substrate network becomes more challenging,
especially when it comes to the network edge, where the computing and
network resources are considerably scarce and costly, and the orchestration
should be performed in a way that requirements of the slice consumers are
met and at the same time resources are used in the most efficient manner.
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In this work, the network slice embedding problem is formulated as a
multi-objective optimization problem. By acting on weighting parameters,
the network operator is allowed to select the desired trade-off between
computing, bandwidth, and VNF migrations costs while always satisfying
the service QoS requirements in terms of delay and throughput. Then we
explore the applicability of GA-based techniques as a practically viable
solution and using an optimal MILP model as the benchmark.

2.2 Related Work

Network slicing has been considered a key enabler for 5G and beyond 5G
networks to meet distinctive QoS requirements of different applications.
In this regard, a considerable body of research has studied this problem
focusing on different technological domains of the network. In [15, 16, 17]
has studied the problem of network slicing in the RAN domain. In this
context, an emerging trend is to split the responsibility of SFC orchestra-
tion and radio access control, as demonstrated by the open RAN (O-RAN)
initiative [18]. While some works consider both SFC placement and radio
access aspects like user association [19, 20], in this chapter, we mainly focus
on workload placement and resource allocation problems.

Different from the above-mentioned studies, the works in [21, 22, 23,
24, 25] study the problem of network slicing in the core aiming at deploy-
ing virtualised evolved packet core (vEPC) functionalities. The concept of
a flexible fourth-generation (4G)/long-term evolution (LTE) network de-
ployment was later included in the design of the 5G system architecture.
In [21], the vEPC concept is investigated, proposing SoftEPC for an on-
demand placement of frequently used functions close to the users, while
in [22] KLEIN is proposed to distribute vEPC load across different data
centers. Further, architectural aspects of managing the mobile packet core
in the SDN/NFV context have been investigated in [23]. In [26] and [27],
a decoupling of CP and UP functions of the vEPC is proposed in order
to improve the scalability. This concept has been included in the stan-
dardised service-based 5G mobile core network [28]. Service-aware packet
gateway (PGW) placement is studied in [24] to minimise the operators’
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cost, while multi-domain aspects have been investigated in [29, 30] using
coalition formation game to deploy vEPC components in federated clouds.
In [25], the authors study the embedding of vEPC functions by means of a
MILP formulation to minimise the cost of nodes and link usage while sat-
isfying the latency constraints. A similar problem definition can be found
in [31], but in addition, the authors leverage empirical data to introduce a
virtualisation overhead as a source of additional delay. However, in both
works, the processing delay does not consider the resources allocated to the
VNFs, and service provisioning in isolated slices is not taken into account.

Regarding 5G networks, a number of studies demonstrated network slic-
ing developing prototypes [32, 33, 34], and in [35] a proof-of-concept is
introduced to perform live migration and scaling experiments. In terms of
research studies, a workload placement problem for 5G state management
functions is provided in [36] and [37] where authors focus on the trade-off
between minimisation of the aggregated VNFs traffic and minimisation of
the state transfer between state management functions. The Pareto op-
timal solution has been investigated based on the adaptive weighted sum
approach [38]. Based on complex network theory, in [39], authors study the
E2E slice embedding problem optimising the KPIs of different services. In
contrast, a cross-domain scenario is considered in [40] to address the cost-
optimal deployment and abstracting the 5G core slice as a set of SFCs.
An E2E slice resource allocation scheme based on auction theory, is in-
vestigated in [41] and considering a pre-determined VNF placement across
a 3-tier data centre network. A joint problem for edge node placement
(i.e., network planning) and UPFs deployment have been proposed in [42],
where an ILP framework and heuristics are proposed in order to minimise
the VNFs deployment cost and UPFs relocations. However, the paper does
not consider control plane functionalities, and only the propagation delay
is accounted for service latency. In contrast, [11] considers an E2E 5G slice
orchestration considering CP and UP functions placement and considering
transport and processing delays based on links and VNFs load.

Optimal solvers are computationally expensive. For this reason, several
works leverage MILP techniques and propose heuristics associated with it.
However, while heuristics bring advantages in terms of execution time, they
are usually tailored to a specific objective and have poorer performances
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in service rejections. Several meta-heuristics techniques have been pro-
posed to address this issue, which allows pursuing the same goal of MILP
formulations while reducing the computational complexity [43].

As recognised in [44], meta-heuristics algorithms other than GAs are
either more prone to fall into local minima, leading to an excessive memory
requirement, or more indicated for continuous optimisation problems. For
this reason, in this work, we focus on GA-based approaches.

In [44], authors modify the GA algorithm process by performing mu-
tations only if crossover does not return better results and adding a new
solution only if a better one is found. The drawback of this approach is
that new solutions, even if worst that the best one contained in the cur-
rent population, can statistically lead to better individuals when applying
crossover operator. An evolutive GA is proposed in [45] where the pop-
ulation is initialised leveraging the output of the previous time interval.
However, this could lead to a lower population diversity making the algo-
rithm more difficult to converge. In [46] a strategy for an on-the-fly correc-
tion of unfeasible solutions is proposed. However, correcting a solution to
meet one constraint (e.g., CPU node capacity) could lead to unpredictable
behaviours and the violation of another one (e.g., E2E latency). In [47],
authors leverage Deep Learning techniques to predict vehicle mobility to
apply a GA-based service orchestration then. However, the authors do
not consider slicing and a full end-to-end service function chain in terms
of network orchestration. In [48] authors propose two GA techniques to
minimise the deployment cost and the number of migrations in two sepa-
rate formulations. In contrast, our aim is to consider both aspects in one
single formulation providing the user with the capability to decide on the
placement behaviour by acting on cost parameters. Moreover, the previous
approaches do not take into account the E2E delay service requirement.

Recently, several works applied reinforcement learning (RL) techniques
in network orchestration problems [49, 50]. However, motivated by the
results in [51] where GA techniques show a higher convergence speed with
respect to RL, in this work, we focus on investigating the applicability of
the former type of technique. While applying a GA approach similar to
the one presented in [48], several convergence issues have been observed
due to the high complexity of the problem. For this reason, we adopted
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a standard GA procedure as explained in section 2.4 in order to achieve
algorithm convergence. Since the generation of a good solution is much
dependent on the scenario, we also proposed an adaptive version in order
to learn the best way to create new solutions, thus improving the algorithm
optimality and reducing its convergence time.

Compared to the other works highlighted before, our problem formula-
tion takes into account two slice provisioning approaches and namely Ded-
icated and Shared UPF, as explained in Sec. 2.3.1. The full E2E service
chain, spanning from the RAN to the application and passing through the
UP and CP functions, are modelled assuming a container-based technology
and using a continuous, rather than discrete, CPU reservation mechanism.
The network resources are reserved in order to meet the E2E delay re-
quirements while jointly considering transport, propagation, and process-
ing delay. In particular, for the transport and processing delay, we use the
M/M/1 queuing model. While for the transport links, the delay is propor-
tional to the aggregated traffic and the serving capacity (e.g., the achievable
network interface throughput), the processing delay accounts for the VNF
aggregated traffic, the reserved CPU and a virtualisation overhead. It is
worth noticing that the method used to linearise the formulation allows the
generalisation to any non-linear model relating the VNF processing delay
with the CPU reserved to it, and the aggregated traffic handled. Similarly,
the transport delay over a link can be generalised to any non-linear model
relating the packet processing delay with the aggregated traffic.

2.3 Network Model

2.3.1 Scenario Description and Problem Statement

Network Slicing is natively supported by the 5G service-based architec-
ture (SBA). It allows provisioning different logical and isolated networks
for the deployment of services belonging to vertical customers. In a real-
world 5G scenario, each vertical can request slices of different types (i.e.,
URLLC, eMBB and mMTC) with different quality of service (QoS) require-
ments (i.e., throughput and E2E latency). Network Slices are usually pro-
visioned by the mobile network operators (MNOs) who deploy/instantiate
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the UP/CP functionalities on their network, allowing vertical users to con-
nect to the network and access the services in cloud data centers (DCs).
However, such a communication and computing paradigm is not sufficient
by itself to respond to the stringent and diverging E2E requirements of
the applications envisioned by the most demanding 5G use cases. In this
work, we refer to a generic scenario where a network slice is dedicated to
a vertical and UP, and CP functions are orchestrated together with the
applications (APPs) deployed as VNFs.

In essence, each individual end-to-end network slice deploys the func-
tionalities of a complete network, including specific network layer capabil-
ities, operational parameters, and network characteristics. When a slice is
deployed, it is referred to as network slice instance (NSI). Conventionally,
one NSI is dedicated to a vertical, however the presence of services with di-
verging requirements, suggests dedicated resources be provisioned for each
specific service type of a vertical [2] (e.g., an automotive vertical requesting
services for automated driving, in-car infotainment, and remote diagnos-
tic). In this work, we consider two slice provisioning approaches as depicted
in Figure 2.2. The first approach is represented in green and called Shared
UPF, while the second approach is shown in orange and called Dedicated
UPF. In both cases, a network slice is dedicated to a vertical. However,
in the Shared UPF approach, the same UP is used by all the application
types, while in the Dedicated UPF approach, the UP is dedicated to a spe-
cific application type and deployed within specific SFCs, where each SFC
has dedicated resources allocated and forms part of the end-to-end slice.

In our scenario, we deploy the CP functions in the network, considering
them to be dedicated to a particular vertical. The rationale behind this ap-
proach is that each vertical might have the need for dedicated CP function-
alities which are not usually provided to normal customers. For example,
in the automotive vertical fast network re-selection solutions are needed
to support a seamless transition of the users between networks of different
operators [52]. Thus, in this work we consider virtualised CP functions to
be included in the verticals’s slice as this would ease the configuration and
provisioning of interfaces that are tailored to a specific vertical and not
supported in current networks due to technical, legal, and administrative
challenges [53].
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Figure 2.2: Sample of mobile network and the slice provisioning approaches. Green and
orange represent the Shared and Dedicated UPF approaches, respectively. In both cases
one network slice is provided to a vertical. Solid and dotted lines represent the UP and
CP traffic flows.

After collecting all the requests from the verticals, the problem is to
embed the SFCs and allocate the necessary link and node resources to
satisfy the service requirements. The workload placement is performed
pursuing different business logics, which is possible by minimizing a cost
function given by the CPU and bandwidth usage. However, upon a change
in the requests, already placed VNFs could be migrated while pursuing
a specific cost minimization strategy. Since VNF migration is a costly
and time-consuming operation, a VNF migration cost is also taken into
account. The E2E service placement is formally stated as follows.

Given a substrate network modeled as described in Section 2.3.2, and
a set of verticals requesting different services inside a network slice as de-
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scribed in Sec. 2.3.3.
Find a suitable placement of all the SFC requests assigning the neces-

sary resources such that (i) the QoS requirements of each service is satis-
fied, and (ii) the network resources are used in the most efficient manner.

Objective: pursue a specific business logic defined as either (i) the
minimization of the provisioning costs (i.e., CPU usage), (ii) minimization
of the links bandwidth usage, or (iii) minimization of the VNFs migrations
while changing the service requests.

Table 2.1: Substrate network parameters

Parameter Description

G(N,E) Mobile network graph.
N All nodes/DCs in G.
Ng Set of gNBs in G (Ng ⊂ N).
E Set of substrate links in G.
Cethr Capacity of the link e ∈ E.
Cdcpu CPU resources available at the DC d ∈ N .

Cgthr Maximum throughput supported by the gNB g ∈ Ng.
τg, τe Transmission time over the air interface for gNB g and transmission

time over transport link e.

2.3.2 Substrate Network Model

We assume a three-tier substrate network, composed of edge-DC, regional-
DC, and cloud-DC, as illustrated in Figure 2.2. The substrate network
model parameters are reported in Table 2.1 and explained below.

Let G(N,E) be an undirected graph representing the substrate network,
where N is the set of all nodes and includes both computing nodes (DCs)
and 5G base stations (gNBs). It is assumed that each gNB g ∈ Ng (being
Ng ⊂ N) is co-located with one edge-DC. Each DC is equipped with a
certain set of CPU resources Cdcpu and a cost Λd associated with each CPU
core. The closer the DC is to the edge, the lesser are resources and more
costly to provide. As we go from the edge towards the cloud, resources
become more abundant and cheaper to provide. We define E as the set
of fronthaul (FH) and BH links interconnecting edge-DC to regional-DC
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and regional-DC to cloud-DC, respectively. A link em,n between two DCs
m,n ∈ N is defined if they are directly connected. Each physical link has
a certain capacity in terms of throughput Cethr and a cost Λe associated to
the utilization of each Mbps of the link.

2.3.3 Slice and Service Request Model

This section presents the details of the slice and service request model
employed in our work. The notations used in the model are reported in
Table 2.2.

We consider an E2E slice model in which a slice spans different tech-
nological domains of the network (i.e. RAN, transport, and core). Upon
receiving a slice request from a vertical, our model has to allocate resources
from different domains of the network to the slice and then embed the ser-
vice(s) onto the network. Each service is composed of two SFCs that are
modeled as directed graphs. The first SFC defines the CP functions and
the communication links between them that should be embedded onto the
network. The CP functions provide controlling and management function-
alities to other functions in the core. The second SFC to be mapped to the
network includes the UP functions, which are responsible for processing
the actual user traffic. In our model, the applications requested by the
vertical are also part of the UP service chain as it is shown in Figure 2.2.

Let Nslc be the set of all slices requested by the verticals to be deployed
in the network. For each r ∈ Nslc, let N

r
ser be the set of services requested

inside that specific slice. Each requested service s ∈ N r
ser is defined by a

service type, QoS requirements, including the maximum E2E latency (∆r,s
up

for UP and ∆r,s
cp for CP), the data traffic demand (ωr

s), and a targeted
geographical area included in the slice request. We define two sets of
VNFs: the set N r,s

vnf , defining the set of VNF types that are employed
for the creation of the UP and CP SFCs of a specific service s; and the
set N r

vnf , which includes all the VNF types that are used within a slice
containing the services requested by a vertical. Let’s consider two services
s1 and s2 belonging to the slice r ∈ Nslc. If the sets N

r,s1
vnf and N r,s2

vnf contain
the same identifier for a VNF type, the formulation accounts that those
two services can share this VNF once instantiated. Assume both s1 and s2
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Table 2.2: Mobile network slice request parameters

Parameter Description

Nslc Set of slices requested by the verticals, where each slice contains at
least one service.

N r
ser Set of services requested inside the slices r ∈ Nslc.

N r
vnf Set of VNF types that are employed for the creation of services

requested inside the slice r ∈ Nslc.
N r,s

vnf Set of VNF types that are employed for the creation of the service
s ∈ N r

ser requested inside slice r ∈ Nslc.
N r,s

l Set of virtual links that define connection between VNFs in N r,s
vnf

to realize the service s ∈ N r
ser requested inside slice r ∈ Nslc.

ωr
s Data rate demand of service s ∈ N r

ser requested inside slice r ∈ Nslc

∆r,s
up ,∆

r,s
cp UP and CP E2E delay requirement for service s ∈ N r

ser requested
inside slice r ∈ Nslc.

are services of type URLLC. Then, both sets N r,s1
vnf and N r,s2

vnf will include
APPURLLC as an identifier for the application VNF. Once instantiated on
a DC, this VNF can be leveraged by both s1 and s2 provided that their
requirements are satisfied.

When we consider the Shared UPF approach the sets N r,s1
vnf and N r,s2

vnf

will contain the same identifier for the UPF regardless of the service type.
This means that the same deployed UPF can be used to implement the
SFC of different services, even of a different type. Conversely, in the Dedi-
cated UPF approach the sets N r,s1

vnf and N r,s2
vnf will contain a service-specific

identifier for the UPF, such as UPFURLLC, as shown in Figure 2.2. This
means that a deployed UPF can be used to implement only the SFC of
services belonging to the same category. Similarly, for the CP all the sets
of VNF types N r,s

vnf belonging to the services in N r
ser will include an unique

AMF and SMF identifier indicating that the same VNFs implementing
the SFC for the CP can be used by all the services of a vertical. The
approach described above is exemplified in Figure 2.2. Finally, N r,s

l de-
notes the set of virtual links that are interconnecting the VNFs of the
service s and realizing the UP chain (gNB− UPF− APP) and the CP
chain (gNB− AMF− SMF− UPF). For each service s, the set N r,s

l refers
to the same VNF identifiers used in N r,s

vnf .
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2.4 MILP Problem Formulation

We model the problem of SFC placement and resource allocation as an
VNE problem, which is a well-known NP-hard problem and has been ex-
tensively studied by the literature [54, 55, 56]. The embedding process
consists of two phases: node embedding and link embedding. While in the
first phase we map the VNFs on the substrate network, in the latter, we
construct the communication links between these embedded VNFs. Our
proposed model enforces that for each of the considered types of resource
(nodes and links) all the capacity constraints are respected for the model
to be valid. We provide the details of the proposed MILP model followed
by a GA-based algorithm.

2.4.1 MILP Objective Function

The defined VNE problem has been formulated using MILP techniques.
In our model, we propose an objective function (2.1) with the goal of
minimizing service provisioning cost, including the cost of CPU on the
computing nodes, the cost of communication links, and the VNF migration
cost.

min
∑
d∈N

∑
r∈Nslc

∑
v∈Nr

vnf

Λdζ
r,v
d +

+
∑
r∈Nslc

∑
s∈Nr

ser

∑
l∈Nr,s

l

∑
e∈E

Λeωe′Φ
l
e+

+
∑
d∈N

∑
r∈Nslc

∑
v∈Nr

vnf

ΛmM
r,v
d (2.1)

As given in the objective function above, Λd, Λe and Λm are the resource
usage costs on the DC d ∈ N , the costs per Mbps over the link e ∈ E, and
the cost to migrate an already placed VNF, respectively.
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Table 2.3: Binary and continuous decision variables.

Variable Description
Φr,s

g Binary variable indicating if a service s ∈ N r
ser belonging to a ver-

tical r ∈ Nslc is mapped to the substrate gNB g ∈ Ng

Φr,s
v,d Binary variable indicating if a service s ∈ N r

ser belonging to a ver-
tical r ∈ Nslc uses a VNF of type v ∈ N r,s

vnf deployed on the DC

d ∈ N to realise its SFC.
Φl

e Binary variable indicating if the virtual link l ∈ N r,s
l , composing

the SFC of the service s ∈ N r
ser belonging to a vertical r ∈ Nslc,

has been mapped to the substrate link e ∈ E.
ζr,vd Continuous variable capturing, for each vertical r ∈ Nslc, the

amount of reserved CPU for a VNF of type v ∈ N r
vnf deployed

on the DC d.
δr,vd Continuous variable capturing, for each vertical r ∈ Nslc, the com-

puting delay of a VNF of type v ∈ N r
vnf which is deployed on the

DC d.
δe Continuous variable capturing, the delay incurred in transmitting

over the network link e ∈ E.
M r,v

d Binary decision variable capturing if a VNF v ∈ N r
vnf , belonging to

the vertical r ∈ Nslc and currently deployed on DC d ∈ N , it was
previously deployed on another DC and thus have been migrated.

2.4.2 MILP Constraints

We consider three different business logic in this chapter. These can be
obtained by modifying the objective function costs. The first one, dubbed
Obj-Cost, tries to minimize the CPU usage cost: the closer the DC is to the
gNB, the higher is the cost. The second objective, dubbed Obj-Bwt, tries
to minimize the bandwidth consumption on the links. Finally, the third
one, Obj-Mig, minimizes the VNF migrations while the scenario is changing
with new incoming service requests. Regardless of the objective function,
for a solution to be valid, our proposed MILP model needs to satisfy all
the given constraints to ensure that (i) the correct services composition
and allocation onto the substrate network are assured (ii) the network
has enough resources to deploy the services, and (iii) the service QoS
requirements are all met.

As mentioned earlier, our proposed method considers slice deployment
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in an E2E manner. Therefore, upon receiving a slice request by a verti-
cal, for each service included in the request, our proposed model has to
establish an SFC from a gNB in the region where the vertical defines as
the origin point for the service to start. In this vein, let Ωs be the set
of candidate gNBs that can be selected to establish the RAN domain of
the service. The set of candidate gNBs is built considering the euclidean
distance between the gNB position g⃗ and the service request location r⃗,
and the coverage radius of the gNB dg.

Ωs =
{
g ∈ Ng : |⃗g − r⃗| ≤ dg

}
(2.2)

Notice this assumption is made for the sake of simplicity; however, it
does not affect the validity of the approach. Indeed, the retrieval of the
set Ωs at the orchestrator can be a task performed by a RAN controller.
Constraints (2.3) and (2.4) ensures that only one gNB g ∈ Ng is utilized
for each of the services s ∈ N r

ser inside the slice r ∈ Nslc, where that gNB
should be a candidate gNB.∑

g∈Ng

Φr,s
g = 1 ∀r ∈ Nslc, ∀s ∈ N r

ser (2.3)

∑
g∈Ng\Ωs

Φr,s
g = 0 ∀r ∈ Nslc, ∀s ∈ N r

ser (2.4)

Constraint (2.5) ensures that each VNF v ∈ N r,s
vnf implementing the SFC

of service s ∈ N r
ser should be deployed only once in a specific DC d ∈ N .∑

d∈N

Φr,s
v,d = 1 ∀r ∈ Nslc, ∀s ∈ N r

ser, ∀v ∈ N r,s
vnf (2.5)

To ensure the correct allocation of CPU captured by the variable ζr,vd

while keeping the problem linear, we need to introduce another decision
variable Φr,v

d . The variable Φr,v
d is equal to 1 if and only if there is at least

one service using that VNF on that node. To do so we leverage the so-
called big-M constraint as shown in constraint (2.6), where Mb is a big
positive number.
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{∑
s∈Nr

ser
Φr,s

v,d −MbΦ
r,v
d ≤ 0

Φr,v
d −Mb

∑
s∈Nr

ser
Φr,s

v,d ≤ 0
(2.6)

∀r ∈ Nslc,∀v ∈ N r
vnf ,∀d ∈ N

The decision variable Φr,v
d is then used in order to ensure that CPU

resources are reserved on a node only if a VNF is actually instantiated.
This is done by constraint (2.7) leveraging again the big-M constraint and
ensuring a virtualization overhead σv representing the minimum amount
of resources used by the VNF when instantiated.

{
−MbΦ

r,v
d + ζr,vd ≤ 0

MbΦ
r,v
d − ζr,vd + σv ≤Mb

∀r ∈ Nslc,∀v ∈ N r
vnf ,∀d ∈ N (2.7)

Let E⋆d be the set of links ending at node d ∈ N . Conversely, let Ed⋆

be the set of links originating from the node d and arriving at any node
directly connected to d. To enforce each virtual link to be mapped on a
continuous path in the substrate network we use constraint (2.8) where
N

r,s
l and N r,s

l are the set of virtual links connecting a gNB and a VNF v,
and two VNFs v1 and v2, respectively.∑

e∈E⋆d

Φl
e −

∑
e∈Ed⋆

Φl
e =

{
Φr,s

d,v − Φr,s
g if l ∈ N

r,s
l

Φr,s
d,v2
− Φr,s

d,v1
if l ∈ N r,s

l

(2.8)

∀r ∈ Nslc, ∀s ∈ N r
ser, ∀d ∈ N, ∀l ∈ N r,s

l

To account for the VNF migrations, the correct computation of the
decision variable M r,v

d needs to be ensured. This is done by matching the
current and previous embedding.

P r,v
d − Φr,v

d −M r,v
d ≤ 0

P r,v
d + Φr,v

d +M r,v
d ≤ 0

−P r,v
d +M r,v

d ≤ 0

(2.9)

∀r ∈ Nslc, ∀v ∈ N r
vnf , ∀d ∈ N

where P r,v
d represents the previously placed VNFs, and is an input to

the problem formulation.

27



CHAPTER 2. MATHEMATICAL MODELS FOR SLICE PROVISIONING IN 5G
AND BEYOND NETWORKS

To ensure that the service request mapping is done not exceeding the
network resources, we define constraints (2.10), (2.11) and (2.12) account-
ing for the gNB capacity, DC CPU capacity, and network links bandwidth,
respectively. ∑

r∈Nslc

∑
s∈Nr

ser

ωr
sΦ

r,s
g ≤ C

g
thr, ∀g ∈ Ng (2.10)

∑
r∈Nslc

∑
v∈Nr

vnf

ζr,vd ≤ C
d
cpu, ∀d ∈ N (2.11)

∑
r∈Nslc

∑
s∈Nr

ser

∑
l∈Nr,s

l

ωr
sΦ

l
e ≤ Cethr ∀e ∈ E (2.12)

The latency of the service requests is modeled in an E2E manner, con-
sidering communication and computing latency in the chain.

τ r,sproc + τ r,stransp + τ r,sprop + τg ≤ ∆r,s
up , (2.13)

where τ r,sproc is the VNF processing delay, τ r,stransp is the transport delay,
τ r,sprop is the propagation delay and τg is the RAN delay. The aggregated
traffic handled by a VNF (T r,v

d ), and over a link (Te) can be computed as
follows.

T r,v
d =

∑
s∈Nr

ser

ωr
sΦ

r,s
v,d, ∀r ∈ Nslc, ∀v ∈ N r

vnf , ∀d ∈ N (2.14)

Te =
∑
r∈Nslc

∑
s∈Nr

ser

∑
l∈Nr,s

l

ωr
sΦ

l
e ∀e ∈ E (2.15)

Similar to the research study in [11], we consider a fixed delay for the
RAN and the signal propagation over the air interface. Instead, we adopt
the M/M/1 queue model for the VNF processing and transport delay over a
link. Consequently, the processing delay of a VNF is computed as following.

δr,vd =
1

ρv(ζ
r,v
d − σv)− T r,v

d

∀r ∈ Nslc, v ∈ N r
vnf , d ∈ N (2.16)
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where, for a VNF v, we consider ρv as the processing capacity per vCPU
unit (i.e., Gbps/vCPU), and σv as the virtualization overhead (in vCPUs).
Similarly, the transport delay on the network link e is computed as

δe =
1

Cethr − Te
∀e ∈ E. (2.17)

Notice that the introduction of this delay model introduces non-linearity
in the model. To cope with this, we rely on piece-wise linearisation whose
details are given in Appendix (2.4.3). It is worth noticing that while this
method introduces some approximation by describing a non-linear function
by means of sampling points xi and yi, it allows to implement any kind of
delay model or even adopt machine learning techniques to learn the delay
from the experience.

Let N
r,s
vnf and N r,s

vnf be the subsets of N r,s
vnf including UP and CP VNFs,

respectively. Similarly, let N
r,s
l and N r,s

l be the subsets of N r,s
l including

UP and CP virtual links, respectively. By rewriting Eq. (2.13), we can
write Constraint (2.18) ensuring that the UP latency experienced by each
service s ∈ N r

ser does not exceed the maximum latency ∆r,s
up :∑

v∈Nr,s

vnf

∑
d∈N

δr,vd Φr,s
v,d +

∑
l∈Nr,s

l

∑
e∈E

δeΦ
l
e +

∑
l∈Nr,s

l

∑
e∈E

τeΦ
l
e + τg ≤ ∆r,s

up

(2.18)

∀r ∈ Nslc, ∀s ∈ N r
ser

Similarly, Constraint (2.18) ensure that the CP latency does not exceed
the maximum acceptable latency ∆r,s

cp . In this case, we assume CP latency
to have a negligible transport delay.

∑
d∈N

∑
v∈Nr,s

vnf

δr,vd Φr,s
v,d +

∑
e∈E

∑
l∈Nr,s

l

τeΦ
l
e + τg ≤ ∆r,s

cp

(2.19)

∀r ∈ Nslc, ∀s ∈ N r
ser
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Clearly, constraints (2.18) and (2.19) are not linear as they contain mul-
tiplications between variables. In this regard we take the same linerazation
process and linearize the equation, which is given in Appendix 2.4.3.

Nonlinear problems are not easy to control and are difficult and costly
to solve. Their complexity lies in the high dependency between the system
variables that make small variations in the initial data to produce great
differences in the solution. For these reasons, we adopted several strate-
gies in our approach to keep the problem formulation linear. However,
this required the introduction of additional variables that exacerbated the
search-space complexity, increasing the computational complexity.

As an alternative to combinatorial optimization techniques such as MILP,
meta-heuristics techniques can be used. Being a trade-off between random-
ization and local search, they allow obtaining quality results in a reason-
able time, even if reaching the optimal solution is not guaranteed. Several
meta-heuristics can be considered to solve the VNE problem. However, as
pointed out in [44], also they have their own drawbacks. Simulated an-
nealing techniques are prone to fall in local minima; tabu search, even if
superior in terms of global exploration, may lead to excessive memory re-
quirements; swarm intelligence techniques like particle swarm optimization
are more suitable for continuous optimization problems; and ant colony op-
timization is not suitable to predict the resources utilized in the network.
In our work, we preferred to adopt evolutionary techniques for reaching
near-optimal solutions: they allow handling non-linearities easily without
any additional variables, thus allowing us to solve the exact same problem
formulated in this section but with the expectation to drastically reduce
the computational complexity.

2.4.3 MILP Constraints linearisation

The E2E latency is modeled as explained in section 2.4.1 which, however,
is non linear and not directly applicable in solver for MILP formulations.
To solve this issue, we use the piece-wise linearisation method as shown by
constraints (2.20) and (2.21), where xi and yi define the sampling points
approximating the function y = 1/x. Further, wi is a continuous variable
in the interval [0, 1] over which the SOS type 2 constraint is imposed. This
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type of constraint, available in most of the MILP solvers like Gurobi [57]
and Cplex [10], imposes that at most two consecutive values of wi can be
non-zero. As a consequence, constraints (2.20) and (2.21) are approximat-
ing the delay functions in constraints (2.16) and (2.17), respectively, while
maintaining the problem linear.

∀i, wi ∈ SOS2∑n
i=1wi = 1∑n
i=1wixi = ρv(ζ

r,v
d − σv)− T r,v

d∑n
i=1wiyi = δr,vd

(2.20)

∀r ∈ Nslc, ∀d ∈ N, v ∈ N r
vnf

∀i, wi ∈ SOS2∑n
i=1wi = 1∑n
i=1wixi = ωe − Te∑n
i=1wiyi = δe

∀e ∈ E (2.21)

Constraints (2.18) and (2.19) are another source of non-linearity since
they contain the variable multiplication δr,vd Φr,s

v,d and δeΦ
l
e. To cope with

this issue, we introduce two variable δr,sv,d and δle. The former accounts for
the processing delay incurred by service s ∈ N r

ser on a VNF v ∈ N r,s
vnf that

is on its SFC, while the latter accounts for the transmission delay incurred
by the virtual link l ∈ N r,s

l of the service s ∈ N r
ser on a link e that is

traversed by the SFC of service s.
δr,sv,d ≤ Φr,s

v,d

δr,sv,d ≤ δr,vd

δr,sv,d ≥ δr,vd − 1 + Φr,s
v,d

(2.22)

∀r ∈ Nslc, ∀s ∈ N r
ser, v ∈ N r,s

vnf , d ∈ N
δle ≤ Φl

e

δle ≤ δe

δle ≥ δe − 1 + Φl
e

(2.23)
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∀r ∈ Nslc, ∀s ∈ N r
ser, e ∈ E, l ∈ N r,s

l

The variables δr,sv,d and δle are computed by constraints (2.22) and (2.23),
and can be directly used to solve the non-linearity of constraints (2.18) and
(2.19) by substituting δr,vd Φr,s

v,d with δr,sv,d, and δeΦ
l
e with δle.

2.5 GA-based SFC Placement

The main idea behind applying GA-based algorithms to the VNE problem
is to drastically reduce the very high computational complexity required for
the MILP model while pursuing the same objective function. This type of
evolutionary algorithm is based on a population of individuals, usually ini-
tialized randomly when starting the algorithm. Each individual represents
a solution to the problem, which is referred to as a chromosome.1 The
population evolves generation by generation through applying crossover
and mutation operators while pursuing minimization of an objective func-
tion, also dubbed fitness function2. The definition of the solution and its
length, the configuration of the algorithm parameters, and the definition of
the crossover and mutation operators need to be carefully designed in or-
der to guarantee the convergence of the algorithm to reach a near-optimal
solution.

In this section we propose two meta-heuristic algorithms based on the
genetic algorithm approach: the Dubbed GA (DGA) and a more sophisti-
cated version, the AGA, that adapts its behaviour with the variability of
traffic demand. We also chose to treat the Dedicated UPF scenario only,
since, as it will be discussed in section 2.6, optimal solutions obtained with
MILP show that the Shared UPF approach requires higher computational
complexity while not bringing benefits in terms of network resource usage.
The Dedicated UPF scenario also has the advantage of allowing a simpler
definition of chromosome. Moreover, in a realistic scenario, the Dedicated
UPF approach allows a more flexible configuration of the SFCs tailored to
service-specific KPIs. In the formulation of the problem, we assume that
when an application is deployed on a node, an UPF is placed as well to

1We equally refer to chromosome, solution, and individual.
2We equally refer to fitness and objective function in the chapter.
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Figure 2.3: Representation of a chromosome (a) and exemplification of crossover (b) and
mutation (c) operators.

present the data packets to the application. While UP functions should be
distributed to ensure the service KPIs, we assume CP functionalities are
always placed in the cloud-DC. This assumption is justified by the results
obtained from the MILP, always placing CP VNFs in the cloud-DC.

The GA procedure is presented in Algorithm 1 describing the iterative
approach to evolve the population. In the rest of this section, we first de-
scribe our approach towards defining the service placement problem and
the generation of new solutions. Secondly, we explain how the fitness func-
tion is calculated starting from a solution. Finally, we detail the procedure
implemented for the GA procedure followed by the description of the AGA
approach.

2.5.1 Service Placement

The chromosome is composed by an array of integer values describing the
SFC placement for each service. As illustrated in Figure 2.3(a), the pair
[Φr,s

g , Φr,s
d ] indicates that a service request s belonging to slice request r

is associated to the gNB g and the DC d, respectively. To generate this
associations we rely on the probability to select a gNB g and a DC d
computed by rescaling Eq. (2.24) between 0 and 1,
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Pr,s
g,d =

1

log(Λd)
· 1

1 + dg−d
, (2.24)

where Λd is the node cost as for the MILP, and dg−d is the number of
hops for the shortest path between gNB g and a DC d. The aim of this
strategy is to (i) give priority to nodes with lower cost, and (ii) avoid se-
lecting associations resulting in longer paths with higher chances to violate
constraints.

2.5.2 Fitness Calculation

The calculation of the fitness function is exemplified in steps 13-18 of Al-
gorithm 1 where we have an individual as input to the function. Firstly,
Φl

e is computed using the shortest path between the gNB and DC selected
for each service. Consequently, δe can be computed as in (2.17). Recalling
Eq. (2.13) and (2.18), the only unknown source of UP delay is the VNF
processing time, which allows us to write

τ r,sproc ≥
∑

v∈Nr,s
vnf

∑
d∈N

δr,vd Φr,s
d ∀r ∈ Nslc, ∀s ∈ N r

ser, (2.25)

where τ r,sproc is computed, for each service s ∈ N r
ser, as the remaining latency

budget given by ∆r,s
up and subtracting the other known source of delay.

Considering equations (2.16) and (2.25), the number of CPUs to allocate
to each VNF in order to ensure the E2E latency can be computed as follows:

ζr,vd =
1

ρv
[2∆r,v

d + T r,v
d ] + σv (2.26)

where ∆r,v
d = max

r,s
{Φr,s

d /τ r,sproc}.
Similarly, we compute the CPU allocation for the CP VNFs. However,

in this case τ r,sproc is derived from Eq. (2.13) as the remaining delay budget
neglecting τ r,stransp in compliance with the MILP formulation.

It is worth mentioning that while inverting Eq. (2.25), we use the same
piecewise linearisation reported in Appendix 2.4.3 to directly compare the
GA and MILP approaches. Notice how we again rely on the same M/M/1
queue model used in the MILP case. However, also in this case the model
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Algorithm 1 Genetic Algorithm

Input: (G,Nslc, N
r
ser, N

r,s
vnf , N

r,s
l )

Output: SFC placement and resource allocation

1: Pop← generate initial population according to Pr,s
g,d as in Eq. (2.24)

2: ∀I ∈ Pop call fitness(I)
3: while ∄ feasible solution & Nss gen < 10 do
4: Select 2 · |Nxov|+ |Nmut| individuals
5: Nxov ← Run crossover operator over the first 2 · |Nxov| individuals
6: Nmut ← Run mutation operator over the latter |Nmut| individuals
7: Pop← Nelite ∪Nxov ∪Nmut

8: for I ∈ Nxov ∪Nmut do
9: I ← fitness(I)
10: end for
11: end while
12: Return: I with minimum fitness

Function fitness(I)
13: compute Φl

e, ζ
r,v
d , M r,v

d

14: compute CI and Cr,s

15: if AGA is being executed then
16: update Pr,s

g,d according to Eq. (2.27)
17: end if
18: Return: I ← I ∪ [Cr,s, CI ]

can be generalised for using any technique returning the CPU allocation for
VNF given a maximum allowed processing delay and a certain aggregated
traffic. Finally, Mk,v

d is computed following the same criteria used by the
MILP in Eq. (2.9).

In step 14 of Algorithm 1, the fitness function computes CI and Cr,s.
CI is the overall solution cost computed using Eq. (2.1), plus a penalty
factor calculated using max{Λd,Λe} multiplied by the amount of resources
allocated on nodes and links that exceed their capacity. Similarly, Cr,s

accounts for the same costs and penalty but only considering the resources
related to the service s. The main difference between DGA and AGA is
captured in steps 15-17 where the probability Pr,s

g,d is updated as described

at the end of this section. Finally, step 18 appends CI and Cr,s to the
individual and returns it.
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2.5.3 GA Procedure

The GA procedure is exemplified in Algorithm 1. In steps 1 and 2, the
initial population is generated and the fitness function is evaluated over
the individuals. Steps 3-12 represent the main evolutionary loop which
is terminated when at least one feasible solution exists (i.e. the penalty
calculating CI is zero) and the algorithm is in a steady state (i.e., no new
better solutions for at least 10 generations).

In Step 4, the individuals are selected from the population to perform
the crossover and mutation operator. This selection uses the well-known
tournament selection where an individual is selected by randomly picking
two individuals in the population and selecting the best one with minimum
CI .

In Step 5, the set Nxov is filled with new individuals using the crossover
operator. For every pair of input solutions the crossover operator merges
them selecting, for each service, the placement association [Φr,s

g , Φr,s
d ] con-

tained in one of the input solutions according to the probability P r,s. This
probability, is computed by rescaling CI and Cr,s in the interval [0, 1] and
multiplying them. The rationale behind, is to combine the two input so-
lutions by selecting the placement associations balancing the cost to place
a service with the overall solution cost. This operator is exemplified in
Figure 2.3(b), where the selected placement associations contained the two
individuals are highlighted in grey.

In Step 6, the set Nmut is filled with new individuals using the mutation
operator. For each selected individual, the mutation operator randomly
selects Nm pairs [Φr,s

g , Φr,s
d ] and finds a new placement association accord-

ingly to Pr,s
g,d. Where Nm is an input to the problem and is expressed as a

percentage over the genome length. This operator is exemplified in Figure
2.3(c), where the placement associations highlighted in grey are the ones
selected for mutation.

In Step 7, the new population is generated considering a set of elite
individuals Nelite and the new generated individuals in Nxov and Nmut.
The set Nelite is composed by the 5% of the best individuals in the previous
generation.

Finally, the creation of one generation is terminated by calling the fitness
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function over the new individuals in Step 9.

2.5.4 Adaptive GA (AGA)

The drawback of selecting placement associations following the strategy
described in Eq. (2.24), is that the algorithm’s performance may vary de-
pending on the traffic demand. We propose a modified version DGA aiming
at solving the issue by learning the probability Pr,s

g,d while the population
is evolving. To learn this probability we use the iterative approach shown
in Eq. (2.27).

Pr,s
g,d(t+ 1) = Pr,s

g,d(t) + α(R + γ ·max{Pr,s
g,d(t)} − Pr,s

g,d(t)), (2.27)

where α is the a learning rate, γ is a forgetting factor, and R is a reward
function. In step 16, every time a new solution is produced by either the
crossover or mutation operators, Eq. (2.27) is evaluated by computing the
reward R as (CI

prev−CI)/CI
prev, where C

I
prev and CI are the fitness value of

the previous and current solution respectively. For the crossover operator,
CI

prev is the fitness value of the best solution in input.

2.6 Performance Evaluation

Table 2.4: Parameters of the E2E services in each slice of a vertical.
Request type UP/CP lat. CP events Data rate # of req.

URLLC 10/10 ms 700− 900 [ev/h] 10− 50 Mbps 1− 3
eMBB 20/100 ms 400− 600 [ev/h] 100− 200 Mbps 1− 2
mMTC 100/500 ms 80− 120 [ev/h] 1− 2 Mbps 5− 10

Table 2.5: Cost parameters for the objective function.
Objective type edge-DC regional-DC cloud-DC FH BH Mig

Obj-Cost 1e6 1e3 1 1 1 1
Obj-Bwt 1 1 1 1e3 1e6 1
Obj-Mig 1e3 100 1 1 1 1e6
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This section provides the simulation environment details and compares
the proposed MILP methods for the Shared, and Dedicated UPF ap-
proaches. After that, we compare the proposed GA methods with the
optimal solution obtained from the MILP formulation.

2.6.1 Simulation Environment

Our considered mobile network is composed of 7 nodes, out of which one
is a cloud-DC, two are regional-DCs, and four are edge-DCs. Four gNBs
are assumed to be co-located with the edge-DCs, and there is one gNB
co-located per edge-DC. The CPUs available at the nodes are 64, 24, and
4 for cloud-DC, regional-DC, and edge-DC, respectively. Each regional-
DC is connected to the cloud-DC via a BH link with 2 Gbps of capacity.
Conversely, each edge-DC is connected to a regional-DC with a FH link of 1
Gbps of capacity. Each gNB is assumed to support a maximum throughput
of 1 Gbps. Further, we introduce a propagation delay of 0.2ms for FH
and 1.5ms for BH links, which respectively corresponds to a distance of
about 40km and 300km considering the signal propagation in optical fibers.
Finally, for sake of simplicity we consider a RAN delay (τg) equal to a fixed
transmission time interval (TTI) of 1ms. The representation of the network
graph is reported at the bottom of Figure 2.2.

The costs defined for the three objective functions are reported in Table
2.5. We consider a fixed VNF migration cost for the sake of simplicity.
However, it is possible to consider specific migration costs for one VNF
type, as well as specific costs to migrate a VNF from one specific node to
another. This would allow, for example, to consider higher VNF migra-
tion costs between edge-DCs, where migrations are expected to be more
problematic in terms of processing and time. For the CP functions, we con-
sider a CPU cost of 1e4, 100, and 1 to place them at edge-DC, regional-DC,
and cloud-DC, respectively, while disregarding the cost for bandwidth con-
sumption. This is justified since the traffic generated by the CP is negligible
compared to the traffic generated by UP.

In the simulations, each vertical is requesting a set of services accord-
ingly to the parameters reported in Table 2.4. We assume 10 simulation
intervals, and in each interval, a new vertical joins the scenario making new
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service requests to be deployed. For each service type, a vertical requests
a random number of services (i.e., service coverage) within the intervals
specified in the last column of Table 2.4. Overall, at iteration 10 there are
120 service requests to be deployed. The E2E service latency and through-
put requirements are taken from [2] and compliant with 3GPP Releases
14-16. The serving capacity of an UPF and an APP is assumed to be
1Gbps for each allocated CPU. Conversely, for the CP VNFs we assume
that each service is generating a number of CP events as reported in Ta-
ble 2.4, while an AMF and an SMF can respectively serve 125000 and
250000[ev/h] [58]. The traffic generated by the CP is calculated assuming
that for each CP event 6 packets are transmitted in average with a packet
length of 192 Bytes.

The simulation experiments are performed in Matlab and Cplex [10]
as the back-end MILP solver. The reported results are taken from the
simulations conducted on a standard laptop with Intel Core i7-8665U CPU
@ 1.90GHz × 8 with 16 GB RAM.

2.6.2 MILP Results

This section presents the results acquired from the proposed MILP and GA-
based methods. First, we discuss the MILP results in terms of network load
and VNF migrations for both the Shared and Dedicated UPF approaches
(Figure 2.4, 2.5, and 2.6). Next, we provide more detailed information
about the VNF placement and resource allocation pattern achieved by the
proposed MILP in comparison with the proposed GA-based approaches
(Figure 2.7). Specifically, we compare the optimal solution obtained from
the Dedicated UPF approach with the DGA and AGA by looking at the
overall CPU utilization for the three service types in the different comput-
ing nodes, namely the edge, the regional, and the cloud DCs. Since the aim
of Figures 2.4, 2.5, 2.6, and 2.7 is to observe the placement and network
load behaviour while increasing the number of verticals in the scenario, the
results are referred to one representative scenario. On the contrary, the re-
sults presented in the other figures are averaged over 20 simulation runs
using the parameters reported in Table 2.2 to generate the traffic demand
in the scenario. It is worth to mention that in Figure 2.7 we report the
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CPU utilization for each service type taking into account both UPF and
application VNFs. This is done for a better comparison of the placement
behavior for different service types since we focus on the Dedicated UPF
approach where the UP is dedicated to each service type. Furthermore, we
also report the overall CPU utilization induced by the CP function.
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Figure 2.4: CPU utilization for the MILP Shared and Dedicated UPF.

CPU Utilization

Figure 2.4 depicts the evaluation results derived from the proposed MILP
objectives in terms of overall CPU utilization in the network. The overall
CPU utilization is computed as the number of CPU cores allocated to the
VNFs divided by the total available CPUs in the network.

As illustrated in Figure 2.4 the Shared and Dedicated UPF approaches
behave similarly in terms of CPU utilization for all the objective func-
tions. Although the cost minimization objective (Obj-Cost) demonstrates
the highest CPU utilization in percentage, the allocated resources are the
cheapest resources available, which is shown in Figure 2.7(a). The main
reason behind utilizing more resources by the Obj-Cost objective is that
this objective function always prefers to utilize the cheapest resource avail-
able, which in our case can be found in the core. Figure 2.7(a), presents
that regardless of the service type and as long as the latency requirements
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Figure 2.5: Link utilization for the MILP Shared and Dedicated UPF.

of the services are respected, all the services are hosted in the core DCs.
However, gradually, with the increase in the number of services hosted in
the cloud-DC, the transport delay for the services increased. By reaching
around eight verticals making slice/service requests, the Obj-Cost objective
cannot place all the services at the core. Therefore, in order not to vio-
late the delay constraint, URLLC services are placed in the regional-DC,
after iteration 8, and in the edge-DC, after iteration 9, which is when the
cloud-DC resources are not sufficient to host all the services which would
have minimised the overall objective cost.

Opposing to the Obj-Cost objective, the bandwidth minimization objec-
tive (Obj-Bwt) utilizes a smaller number of CPUs. This objective function
does not account for the cost of CPU resources and only cares about the
amount of link usage. Therefore, it tries to place all the VNFs at the net-
work edge as long as there is enough resource available in order to avoid
link utilization. The consequence of keeping the VNFs close to the net-
work edge is less usage of the transport network and, simultaneously, a less
required CPU allocation to meet the services’ E2E delay requirement. As
can be observed in Figure 2.7(b) all the services types are initially placed
at the edge. Starting from iteration 5, when the resources at the edge-DCs

41



CHAPTER 2. MATHEMATICAL MODELS FOR SLICE PROVISIONING IN 5G
AND BEYOND NETWORKS

0 2 4 6 8 10
# verticals in the scenario

0

50

100

150

# 
M

ig
ra

tio
ns

Shared UPF | Obj-Cost
Shared UPF | Obj-Bwt
Shared UPF | Obj-Mig
Dedicated UPF | Obj-Cost
Dedicated UPF | Obj-Bwt
Dedicated UPF | Obj-Mig

Figure 2.6: VNF migrations for the MILP Shared and Dedicated UPF.

are exhausted, the mMTC and URLLC services that can tolerate the la-
tency requirements and have lower bandwidth requirements are placed at
the regional-DCs. It is worth noticing that the VNFs for the CP are always
placed in the cloud-DC because of their negligible bandwidth utilization.

As mentioned earlier, the Obj-Mig objective function aims to minimize
the number of VNF migrations that happen in the network. In this re-
gard, we define a VNF migration cost in the objective function in order to
avoid excessive and unnecessary migrations. We also define a small cost
for resource usage in order to avoid random behavior of the placement. On
the one hand, the objective tries to balance the CPU cost (e.g., placement
toward the cloud) with the link cost (e.g., placement toward the edge).
On the other hand, the high VNF migration cost minimizes the number of
VNF migrations that could happen while adding new services. Looking at
Figure 2.7(c), initially both eMBB and URLLC services types are placed
in regional-DCs, while mMTC is placed at the cloud-DC because the CPU
cost has more influence than the cost for link utilization. While increasing
the number of overall slice/service requests in the network, the new URLLC
services are placed at the edge-DC in order to fulfill the E2E requirement
while not migrating the already placed VNFs in the regional-DC. We can
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observe from Figure 2.4 that also with this objective, the Shared and Ded-
icated UPF approaches show similar behavior. Moreover, results show a
less overall CPU utilization in the network compared to the Obj-Cost case -
notice how URLLC is the highest source of CPU consumption when placed
at the cloud-DC as shown in Figure 2.7(a).

Link Utilization

In Figure 2.5 we report the average link utilization in the network ob-
tained from the MILP formulation using the Shared and Dedicated UPF
approaches for all the objective functions. We can observe that both the
approaches have very similar behavior in terms of link utilization, which
is the consequence of a similar VNF placement and thus aggregated traffic
on the transport links.

As expected, the Obj-Cost objective has the highest resource utilization
both in terms of CPU usage, as mentioned earlier, and bandwidth usage
since all the VNFs are preferably placed at the cloud-DC. Conversely, the
Obj-Bwt objective shows the minimum link usage since the VNFs, and
especially the ones to realize the SFCs of services with higher data-rate,
are preferably placed at the edge-DCs without using the transport network.
Indeed, for this objective the link utilization is visible after iteration 5
when, as it is obvious from Figure 2.7(b), the URLLC service is placed at
the regional-DCs. This is feasible since the eMBB is placed at the edge-
DCs to minimise the transport delay and the low transport network delay
allows not to violate the stringent E2E latency requirement for URLLC.
The Obj-Mig remains between the Obj-Cost and Obj-Bwt objectives, since
it looks for a trade-off between CPU and bandwidth usage. Indeed, we
can observe from Figure 2.7(c), that eMBB service types are placed at
the regional-DCs and thus exploiting the FH resources. Conversely, eMBB
service types are always placed in the cloud-DC and edge-DC in the Obj-
Cost and Obj-Bwt objectives, respectively.

VNF Migration

A VNF is migrated when it moves from one hosting DC to another DC
compared to the previous allocation. An excessive VNF migration leads
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to QoS degradation for the users in the network. When a VNF migrates
from one DC to another, it requires a considerable time to be instantiated
on the new host and can lead to unsatisfactory results. In this regard, we
proposed an objective function that avoids excessive migration of VNFs
in order not to violate QoS requirements of the end-users. As shown in
Figure 2.6, the Obj-Bwt objective shows the worst performance since sev-
eral VNFs needs to be migrated when the CPU capacity of edge-DCs is
exhausted. Comparing shared/dedicated UPF approaches, notice how the
latter initially shows higher migrations since, being the UP dedicated to
each service, the number of deployed VNFs migrated is higher (embeddings
5-7). However, the number of migrations becomes lower in embeddings 8-
10 since, with equal bandwidth utilization, and having independent SFCs
for each service UP, results in more flexible deployment of the new re-
quired VNFs. In the Obj-Cost objective, the number of migrations rapidly
increases in iterations 9 and 10, when URLLC services need to be placed
toward the gNB to meet the E2E latency requirements. While pursuing
the minimal cost for CPU usage, new arriving services demanding a high
amount of CPU are preferably placed far from the edge. However, this
could happen at the cost of migrating already deployed services toward
the edge. Finally, the Obj-Mig objective has the minimum number of VNF
migrations that happened in the network, effectively demonstrating the
purpose of this business logic.

2.6.3 DGA and AGA Performance

To evaluate the convergence and the performance of the DGA and the AGA
we compare their best solution against the optimal counterpart obtained
by running the MILP formulation for the Dedicated UPF approach. We
run the DGA and AGA using the same scenario as the MILP in terms
of network, request parameters and objective function, and repeating the
simulations 20 times using different random seeds.

As shown in Figure 2.7(a), for the Obj-Cost the DGA and AGA follow
the MILP behavior by first placing all the services at the core and then
utilizing regional and edge DCs as the number of requests increases. It is
worth noticing that in the AGA achieves a better placement compared to
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Figure 2.7: CPU allocated to the UP (i.e., UPFs and APPs) for each service type in each
network layer using MILP (Dedicated UPF approach), DGA and AGA.

the DGA, which is closer to the optimal especially looking at the CPUs
allocated in the edge-DCs and regional-DCs - the most costly ones. Results
for DGA and the AGA are even more promising in case of Obj-Bwt and
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Figure 2.8: DGA and AGA objective relative error with respect to the MILP Dedicated
UPF approach.

Obj-Mig. Indeed, looking at Figure 2.7(b) and 2.7(c) both the algorithms
are very close to the optimal CPU allocation acquired by the MILP coun-
terpart. Therefore, the results acquired from the evaluations demonstrate
that DGA and especially our proposed AGA algorithm, follow very closely
the optimal behavior.

In Figure 2.8 we show the DGA and AGA deviation from the MILP
optimal solution by plotting the relative error in percentage of objective
function (2.1). The 95% confidence interval is also included. Notice how,
before vertical #5 is added in the scenario, the GA approaches shows a
negligible deviation from the optimal solution. Also, it is worth highlight-
ing that in all the cases, both the GA approaches converged to a feasible
solution, which means there is no service rejection.

As shown in Figure 2.8, the Obj-Cost has the highest deviation com-
pared to the other two objective functions. This is because several place-
ment combinations need to be evaluated to keep the VNFs toward the
cloud while increasing the number of services and consequently evaluating
the transport delay. However, both DGA and AGA follow the behaviour
obtained by the optimal placement as shown in 2.7(a). Moreover, the AGA
approach demonstrates 5% improvement compared to the DGA thanks to
its ability to adapt to the scenario by improving the way the new solutions
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are generated.
In the Obj-Bwt objective, the GA-based approaches always show a rela-

tive objective error below 10%. Again, the AGA exhibits a behavior closer
to the optimal, improving the DGA solution by a 2.5%. Notice how, the
relative objective error increases for iterations 6, 7, and 8 and then de-
creases for iterations 9 and 10. This is because initially, for the GAs it is
more difficult to find the optimal placement combination to accommodate
the highest number of services at the edge-DC. Later, when the number of
services increases and eMBB almost occupy edge-DC resources, it is easier
for the crossover and mutation operators to converge close to the optimal
solution by either discarding unfeasible solutions from the population or
finding a good combination of services that can stay at edge-DC without
exceeding the available CPU.

In the Obj-Mig objective, both DGA and AGA show very low objective
relative errors and this result is supported by the very similar results in
terms of CPU load as shown in Figure 2.7(c). However, looking at Figure
2.8 also in this case, the AGA is closer to the optimal value. Finally, even
if not shown due to the lack of space, it is worth mentioning that both the
DGA and AGA approaches achieve zero migrations similar to the MILP
case. This is demonstrated by the low objective relative error obtained in
Figure 2.8.
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Figure 2.9: Algorithms execution time to embed 10 verticals.
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Execution Time

As mentioned earlier, the main reason behind proposing the GA-based
approaches is to reach solutions close to the MILP counterpart and at the
same time mitigate the execution time to a great extent. In this regard, in
this section, we present the results acquired from running the experiments
and make a comparison between the GA-based approaches with the MILP
solutions. Results in terms of execution time to embed 10 verticals in the
network (i.e., when the search space is the widest considered in this study)
are collected in Figure 2.9 where we compare the MILP formulation for
both Shared and Dedicated UPF approaches, the DGA and the AGA. It
is worth highlighting that the Shared UPF approach results in being more
time-consuming than in the Dedicated UPF case. The reason is that by
considering the branch-and-bound procedure of the MILP solver, it gets
more complicated when different services having different KPIs are mapped
on the same UP. As expected, both DGA and AGA outperform the MILP
formulation reducing the execution time by 1 to 2 order of magnitude.

Interestingly, there is a low price to pay for this time reduction as demon-
strated by the low deviation from the optimal solution (Figure 2.8) and the
small difference in the CPU allocation (Figure 2.7). Further, the AGA ap-
proach behaves better than the DGA achieving better convergence in a
much shorter time scale. Indeed, the ability of the AGA to adapt the way
in which new individuals are mutated allows finding better solutions while
spending less time in evolving the population generation by generation.
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Figure 2.10: Objective function relative error for DGA and AGA varying the algorithm
parameters.
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DGA and AGA Sensitivity to Parameters

In order to investigate the performance of the DGA and AGA in terms of
convergence, it is important to study their behavior varying the algorithm
parameters. This is captured in Figure 2.10 which reports the deviation in
percentage to the optimal solution and the bars represent the 95% confi-
dence interval obtained by running the experiments 20 times. The results
are related to the Obj-Cost objective, which has been shown to be the most
difficult to solve.

In Figure 2.10(a) the objective relative error is shown by varying the
number of solutions in the population. As it is expected, by increasing the
population size, it is easier for both the GA approaches to find a good solu-
tion since there are more chances for the crossover and mutation operators
to generate better solutions. However, in all the cases, the AGA is closer
to the optimal by halving the objective error obtained by the DGA thanks
to its capability to adapt the mechanism to generate new solutions.

The crossover fraction is usually a sensitive parameter for the GA since
a lower value means a higher number of mutated individuals created at
every generation. The behaviour varying this parameter is shown in Fig-
ure 2.10(b). In the DGA case, we increase the randomness in generating
new solutions by lowering this value. In this case, the DGA performances
are almost constant since the high crossover fraction allows the crossover
operator to properly merge the individuals in the population and generate
good solutions. However, we can see that the AGA outperforms the DGA
thanks to its ability to learn how to generate new solutions.

In the mutation operator, Nm defines the number of mutated request
associations when generating a new individual. In Figure 2.10(c) we show
how the two GA approaches behave by varying Nm from 5 to 20% of the
overall number of service requests in the scenario. It can be observed
that, in general, a high value of Nm brings to worst performances since too
much randomness is added in generating new solutions. However, also, in
this case, the AGA outperforms the DGA, and it is more resilient to the
variation of this parameter.
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Chapter 3

Measurement-Based Model of MEC
Nodes in the 5G System

3.1 Motivations

In the literature, several works can be found that propose orchestration
techniques based on theoretical models for Edge Nodes’ behaviour. Some
provide promising preliminary approaches to compare different orchestra-
tion techniques in constrained cloud-edge scenarios. In [11] authors lever-
age simple delay models to characterise the VNF processing delay, which
is then used to allocate CPU resources by imposing E2E service QoS con-
straints. More complex models are considered for the same objective in [59]
and [6] using M/M/1 and M/D/1 queuing models, respectively. However,
while enabling interesting preliminary evaluations, these models are not
precise enough for modelling the behaviour of real edge nodes running ac-
tual services. To fill this gap, some authors started considering introducing
experimental measurements in their models. A good example can be found
in [31], where authors conducted experiments in a real setup and collected
data useful to derive a model of the virtualisation overhead. This model
was then adopted for defining a VNF placement algorithm. However, the
drawback of this approach lies in its high dependency on the virtualisation
technology used during experimentation. Focusing on a face recognition
scenario, in [60], authors leverage experimental results to derive a theoret-
ical model relating the CPU usage, network load and packet delay with
the Edge node performance. The coexistence and parallel execution of
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the face recognition application in conjunction with other heterogeneous
services were not considered, as well as the impact of UPF behaviours.
Both these works give an idea of the behaviour of an application in a con-
strained scenario, but the findings are context-specific and cannot be easily
generalised. In [61], the authors introduce Simu5G, a simulator of the 5G
Core combined with physical edge hosts to evaluate and experiment MEC
technologies. In this approach, the E2E 5G network is simulated by de-
sign and does not allow to emulate a MEC, which includes the virtualised
UPF. OpenLEON is proposed in [62] as an E2E emulator spanning from
mobile users to the edge data centre. To the best of our knowledge, this
approach is one of the works closest to the one presented in this chapter.
The authors leverage srsLTE and Containernet to design a realistic radio
access implementation with a virtualised environment emulating a 3-tier
edge data centre hosting the core network and services. Various applica-
tions are tested, focusing on analysing network performance in different
LTE channel configurations.

The goal of this work is to enable the definition of a measurement-
based model for studying MEC nodes and MEC-supported application
performance and existing performance trade-offs without requiring de-
tailed knowledge about the corresponding MEC node setup and hard-
ware/software configuration. To this aim, in this section we propose two
testbeds. One is emulated and enables the evaluation of MEC applica-
tions under realistic network conditions also emulating MEC nodes with
different cumputing resources. The second test-bed is a physical one that
focuses on power consumption measurement under different virtualization
technologies.

3.2 Emulated Test-bed: Proposed Methodology

To study the performance of the applications deployed at the Edge and en-
abled by the MEC system, we designed a 5G-enabled resource-constrained
MEC deployment on an emulation environment based on Open Source
platforms. Comnetsemu is selected as the simulation platform, being ca-
pable of extending Mininet and Containernet with a nested virtualization
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approach based on DockerHosts. On top of the Comnetsemu network
emulator UERANSIM and Open5GS are deployed to implement the 5G
System, plus some software utilities to collect data and generate variable
traffic and CPU load. The resulting architecture of the emulator environ-
ment is represented in Figure 3.2. ComNetsEmu enables the deployment
of an SDN-enabled transport network connecting various hosts emulating
the main components of the 5G network: the radio access network, the 5G
CP, and the MECs. The scenario deployed for the performance evaluation
is explained in this section and detailed in Figure 3.2.1.

Proper tools have been implemented to control the scenario, and to
easily deploy the network, configure the RAN and the 5GC, and apply
the desired APPs behaviours. Those tools implement functions to collect
the status of the various network components (e.g., container CPU status
through the Docker stats exposed through the Docker Client APIs). In par-
allel to that, APP tools have been implemented to emulate services running
on the MECs and consumed by APP clients of the user equipments (UEs).
Collection of the measurements is performed using the Publish/Subscribe
infrastructure provided by Redis1. The code developed to deploy the emu-
lation environment and to study MEC performance described in this chap-
ter is freely available online 2 to facilitate the reproduction of the achieved
results and to support further research activities on this subject.

In the remainder of this section, the system’s building blocks and func-
tionalities are described in more detail.

3.2.1 Emulated network deployment

Proper deployment of the 5G System should be supported by a sound en-
vironment integrating both SDN and NFV. Indeed, the Comnetsemu envi-
ronment natively supports both SDN and NFV through a docker− in− docker
framework. All the network functions and applications are deployed within
DockerHosts as resource-isolated hosts. Within a DockerHost, APPs and
network functions can be emulated by either running processes directly or
by deploying APPContainers exploiting the docker− in− docker concept -

1https://hub.docker.com/r/redislabs/redistimeseries
2https://github.com/RiccardoFedrizzi/networking_letter
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Figure 3.1: High-level architecture of the emulation environment.

see solid and dashed-line boxes in Figure 3.2, respectively. APPContainers
add a second level of virtualisation to emulate containerised applications
and network functions running on a resource-limited host.

Since by default Docker does not apply CPU limitations, we used Docker
built-in functions to limit CPU utilisation for specific MEC Docker con-
tainers. We set two parameters to control the CPU allocation: the CPU
period, CPUperiod, and the CPU quota, CPUquota. CPU quota specifies
how much CPU time (in microseconds) the container can use per CPU
period. After a container consumes all its CPU quota, it is throttled for
the remainder of the CPU period.

To ease this process, we implemented a utility function whereby the
CPU constraints of MEC can be set by specifying the maximum percentage
of the overall system CPU that can be used by all the VNFs deployed in
the specified MEC.

3.2.2 5G Core Network

In this study, an Open Source implementation of the 5GC3 is used to
deploy CP and the UP functions separately, and to create different Data
Networks in each MEC to reach the APPs. To the best of knowledge of

3https://open5gs.org
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Figure 3.2: Emulation components and their integration.

the authors, such implementation of the 5GC allows emulating a realistic
MEC environment, while avoiding monolithic 5GC deployment as in [62].

All the CP functions are started as processes inside a dedicated DockerHost
for the sake of simplicity. Their configuration is done through YAML files
which are updated on the fly based on the desired scenario. In particu-
lar, the SMF configuration specifies where to reach the UPFs, their Data
Network Name (DNN) and the associated sub-network. Afterwards, an
APPContainer running the UPF is deployed in each MEC node and con-
figured to associate a new TUN interface, created on the fly and usually
called ogstun, with a DNN and its sub-network.

Two different logical networks are created to allow reaching the APPs,
depending on whether the service is provided through the MEC platform
(MEC in Figure 3.2.1) or the cloud (CLD in Figure 3.2.1). The corre-
sponding two networks are displayed in green and orange, respectively, in
Figure 3.2.1. Then, the CP needs to be configured with the subscribers’
information (International Mobile Subscriber Identity - IMSI, subscribed
services, etc.) to allow a new UEs to connect.

3.2.3 5G Radio Access

UERANSIM4, an open-source software simulator for the 5G UE and RAN
(gNB), is used to simulate the radio access section of the 5G System. UER-
ANSIM implements the main Radio Resource Control (RRC) procedures

4https://github.com/aligungr/UERANSIM
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and the GTP protocol for the UP. It allows easing the deployment of an
E2E 5G network in a self-contained emulation environment.

Being a simulator, UERANSIM does not implement the protocol stack
below the RRC, preventing the emulation of scenarios in which lower lay-
ers are needed - however, this aspect is beyond the scope of this work. To
avoid such limitation, it would be necessary either to use a physical RAN
implementation (e.g., srsRAN), which requires rather costly external hard-
ware and complicates the scenario definition, or more advanced network
simulators (e.g., NS3), which typically do not support the required accu-
racy that an emulation environment might provide in terms of a realistic
implementation of the UPF in the MEC and the corresponding workload.
Both options are possible in the Comnetsemu environment, but the au-
thors prefer to focus on a fully integrated and consistent scenario capable
of running on a single common PC platform.

During the deployment phase, the gNB is deployed as a process in the
RAN DockerHost. Once the gNB process is started, it establishes an NG
Application Protocol (NGAP) connection with the AMF network function
in the 5GC. The addition of a new UEs in the scenario can be easily
automated thanks to dedicated control tools that have been implemented
by the authors, which starts an UE and connects it by specifying a DNN.
The DNN allows to discriminate between MECs or cloud connectivity, slice
type, and the corresponding QoS parameters. Every time a UE connection
is started, a new TUN interface is created, which allows using the 5G
connection and reach the MEC APPs as shown in Figure 3.2.1. The SMF
selects the IP address of the TUN interface within the DNN sub-network
range. Each UE can have several active connections with different DNN
and slice types. The IP addresses of an UE can be retrieved based on the
triplet [ID,DNN, SST].

3.2.4 Emulated applications

To maintain generality while enabling a proper analysis of the MEC per-
formance, we decided to classify applications into three categories: com-
munication intensive applications, computation intensive applications and
mixed applications.
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Indeed, most MEC applications expected to fall either in the communi-
cation intensive category (i.e., requiring mainly a given throughput level,
or offering a quality of service directly related to the achievable through-
put level), computation intensive (i.e., requiring mainly CPU resources and
performing mostly computation), or something in the middle (i.e., having
multiple mixed KPIs). Indeed, the UPF used to steer the traffic to the
MEC platform can be hosted and use resources from the platform itself,
thus representing a clear example of a communication intensive service.
To emulate the above application profiles, control utility functions have
been implemented in the emulator in order to (i) control the data traffic
between an UE and an APP, and (ii) emulate the APP computation by
generating CPU load in its APPContainer.

In the next sections and overall in this chapter, we will assume that
each MEC node resources should be shared among all the applications and
functionalities running in such node (i.e., including the UPF and other
”core” functionalities). The authors believe that this represents a more
realistic situation of MEC deployment. However, the designed emulator is
capable of supporting also other scenarios and enable different isolation of
CPU or network resources.

Data traffic generation

Traffic generation is performed by using the Iperf network testing tool.
Tests were performed by establishing a connection between an Iperf server
instance running on each APP and listening on the ogstun TUN interface
of the MEC, and the Iperf client on the UE side, which generates traffic
towards the APP. A helper class has been defined to ease the traffic gen-
eration, which allows to select a specific slice, the protocol to use (TCP or
UDP), the port, uplink/downlink traffic generation, the bit-rate to gener-
ate (in Mbps) and its duration.

CPU load generation

To generate the CPU load of an APP, we leverage the multiprocessing
package to generate artificial CPU load by running one process for each
online CPU core of the DockerHost hosting the APP. The amount of gen-
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erated load is controlled by monitoring the container’s CPU usage (using
the psutil package) and regulating the rate of the artificial calculations to
meet the CPU load requested. Since the psutil package returns the CPU
load of the system, a re-scaling considering the resources allocated to the
DockerHost is performed. By varying the CPU load requested over time,
it possible to define APPs with dynamic CPU load.

3.2.5 Monitoring

To monitor the scenario and collect results we implemented control utilities
to oversee the data-rate and CPU load monitoring of the desired hosts and
applications. In the following, we explain more in detail how those monitors
are implemented.

Data traffic monitoring

Throughput measures are collected for the overall traffic handled by a
MEC as well as for each established Iperf session of the APPs. A process
is deployed in each MEC node’s container and listens on a dedicated Redis
channel. After receiving the activation message, the process sends the
throughput measures to the Redis database.

CPU Monitoring

Several tools are available for CPU monitoring (e.g., Glances5). However,
since most of them leverage psutil, they incur the issue to disregard the
containers’ CPU constraints that are emulated (as previously explained).
For this reason, we preferred to follow a lower level approach and leverage
the Docker Client APIs to retrieve the container CPU load through the
Docker stats. To realise this, we implement a utility function starting the
CPU monitor for each container. Every time this function is invoked, a
separate thread is started, which collects and tracks the container CPU
status.

It is worth noticing that while measuring a MEC node we want to obtain
its overall CPU usage. Conversely, measuring an APP CPU usage, the aim

5https://nicolargo.github.io/glances/
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is to obtain its CPU usage over its hosting MEC node. For this reason,
the measured CPU load of an APP is re-scaled with respect to the CPU
resources allocated to its parent container.

3.2.6 Experimental Results

The environment used for the emulation consists of a VM with 2 CPU allo-
cated on a standard laptop with 8 x Intel Core i7-8665U CPU @ 1.90GHz
with 16 GB RAM. To calibrate our emulated environment with real hard-
ware we use the Passmark6 tool providing the CPU mark, a CPU per-
formance measure. Figure 3.3(b) illustrates how to tune the MEC node
resources to the desired value. For example, to tune MEC performance
comparable to a RaspPi Model 3, allocate 37% of one CPU; for perfor-
mance equivalent to three RasPis, allocate 90% of one CPU.

Scenario 1

To test whether the system is working as expected and to understand the
system’s limitations, in this scenario, one UPF and one APP are deployed
in MEC to emulate CPU load. Both applications exchange data traffic
with one UE. Results are provided in Figure 3.3(a) where six zones are
highlighted, corresponding to different operational setups of the system:
(1) CP configuration, (2) UE deployment, (3) the APP is instructed to
use 80% of the MEC CPU resources, (4) MEC container is forced to use
a maximum of 37.5% of its allocated resources, (5) the UE generates from
40 to 70 Mbps of data traffic, with 1 full CPU allocated to the MEC node,
(6) same as (5) but MEC resources are set to 37.5%. The corresponding
throughput degradation starting from 50 Mbps of offered traffic clearly
outlines the effect of the resources limitation.

A more comprehensive performance evaluation under communication
intensive APPs is shown in Figure 3.3(c) where we compare the throughput
handled by the MEC with its CPU usage under different MEC resource
constraints. As shown before, we can observe that when the MEC CPU
resources are bounded to 100 and 70%, we reach the system limit as the

6https://www.passmark.com/
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(a)

(b) (c)

Figure 3.3: Performance evaluation of the emulated environment: (a) dynamic operat-
ing scenario;(b) performance comparison between DockerHost and RasPi Model 3; (c)
throughput vs CPU load for variable resource availability (dots represent the measures,
dashed lines represent the quadratic polynomial fitting).

throughput falls between 70 and 80 Mbps (the maximum level supported by
the emulator deployed in a VM with 2 CPUs). Conversely, when the MEC
CPU resources are bounded to 37.5 and 20% the throughput is limited by
the scarcity of available MEC resources. For each MEC resource allocation,
the relation between the achieved throughput and the CPU usage can be
modeled with a quadratic polynomial (dashed curves in Figure 3.3(a)).
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Scenario 2

To study the tradeoff between communication and computational intensive
APPs, we deploy in MEC the UPF, an APP1 handling 40 Mbps of data
traffic generated by one UE, and APP2 using from 0 to 90% of the MEC
computing resources. We can observe from Fig 3.4(a) that, when 100% of
the CPU is allocated to the MEC, the level of CPU usage of APP2 does not
have impact on the achieved throughput. Conversely, with 20% of available
CPU resources, we observe a relevant throughput decrease in APP1 as soon
as APP2 starts computing tasks. This trade-off between CPU and data
rate defines different areas of the resulting diagrams (Figure 3.4(a)): the
shaded area under the curve related to a specific scenario (and correspond-
ing resource limitations) represents the possible operating points achievable
by the emulated MEC. Figure 3.4(b) effectively illustrates this treadeoff
between CPU and data rate comparing the CPU usage of communication-
intensive and computation-intensive VNFs. Specifically, the CPU usage of
UPF and APP1 remains constant, as long as the requested CPU load from
APP2 is low enough to avoid depleting MEC resources.

(a) (b)

Figure 3.4: Performance evaluation of a MEC hosting one throughput-intensive APP
coexisting with a CPU-intensive APP.
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Figure 3.5: Testbed set-up for the proposed investigation.

3.3 Physical Test-bed: Proposed Methodology

For our experimentation we built a test-bed composed by 5 Intel Next Unit
of Computing (NUC) connected via a fast switch, as shown in Figure 3.5.
The rationale behind the setup is to demonstrate 5G-enabled MECs with
different types of virtualization technologies. In each MEC we leverage
the Open5GS7 software to realise the 5G Core Network, which has been
deployed with three configurations: BM, VM and CT. The three types of
MECs, are realised with the same type of NUC which is equipped with a
i5− 7260U CPU @2.20GHz. This is essential in order to have comparable
results between the three types of MEC deployments. Conversely, the
nodes to emulate the RAN and the controller are realised with two NUCs
equipped with a i5− 1145G7 CPU @2.60GHz. All the NUCs are connected
toghether via a TL-SG105E five-ports Gigabit switch.

In the VM case, we utilize the QEMU hypervisor with KVM acceleration
as it is widely accepted for its cost-effectiveness and high performance.
On the other hand, for the CT deployment, we opt for Docker to create
container hosting the 5GC functions. This decision was made to simplify
the process and avoid unnecessary overhead that comes with other solutions
like Kubernetes, since we only target a single MEC.

7https://open5gs.org
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The RAN is established with the use of UERANSIM8 which is an em-
ulator designed to simplify the deployment of an E2E 5G network. Upon
initiation, the UE process effectively establishes a data-plane connection
between the UE and the selected Open5GS deployment. Although UER-
ANSIM does not include the protocol stack below the radio resource control
(RRC), making it unsuitable for scenarios where lower layers are needed,
this limitation is deemed beyond the scope of this work. We thus resort to
this solution for its simplicity.

In our experiments, the MEC nodes were subjected to various com-
binations of CPU and data-rate loads. The CPU load is generated using
stress-ng allowing to set an overall CPU load, in percentage, within a NUC.
Conversely, the data-rate is generated by deploying an Iperf client at the
UE side and connecting it to the server in the controller node. Experi-
ments are conducted by changing the CPU load from 0% to 90% and the
data-rate from 100 to 700Mbps, with various experiments being performed
to evaluate the performance of the system under different WPs.

The Controller node oversees the generation of experiments and the
collection of measurements. It hosts an Iperf server for terminating the
data traffic generated by an UE and flowing through the desired MEC. In
each experiment we gather the relevant KPIs related to a MEC such as
power consumption, overall data-rate, and the CPU usage. To measure
the CPU usage and data-rate KPIs in the MEC nodes, we utilize the psutil
Python package. After proper instruction from the controller, the MEC
nodes report the collected measurement to the Redis9 database hosted in
the Controller. On the other hands, to measure the power consumption
KPI each NUC hosting a MEC node is connected to a Meross MSS310
smart plug that monitors its power consumption. To gather those values,
the Controller nodes queries the smart plugs via a WiFi connection and
send them to Redis. All the measures are collected every second and stored
in the Redis database, allowing us to have a centralized repository of all
the gathered data. This makes it easier to analyze and interpret the results
of the experiments.

8https://github.com/aligungr/UERANSIM
9https://hub.docker.com/r/redislabs/redistimeseries
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Figure 3.6: Relations between the measured KPIs for each type of MEC.

3.3.1 MEC performance and measured KPIs

We first analyze the power consumption and performance trade-offs in the
evaluated MEC deployments, namely BM, VM, and CT. Each MEC was
tested by setting WPs with CPU loads ranging from 0% to 90% and data-
rates between 100 and 700 Mbps. For each WP, we gathered measurements
every second within a 30-second time frame. The experiments are depicted
in Figure 3.6, where each plot displays the relationship between the mea-
sured KPIs (power consumption, CPU load, and data-rate) for each type
of MEC. The aim of this measurement campaign extends beyond inves-
tigating the impact of virtualization on MEC performance; it also aims
to create a data-set to study the prediction performance of the MEC DT
which is detailed in the next sections.

By examining the results under high data-rate and low CPU usage, we
observe that the VM is the one consuming the highest amount of power,
while the BM is the most efficient, as expected. The CT falls in between
the two, with results that are close to those of the BM. Although it may
not be clearly visible from the figure, it is worth mentioning that the higher
power consumption in the VM can be attributed to its greater CPU usage
in handling high data-rates. On the other hand, the BM MEC is the most
efficient in traffic management, and the CT case represents a compromise
between the two.

When the set WP demands higher CPU loads and high traffic, we see
that the CT’s power consumption is always greater than the BM. When
the imposed demand is the highest which corresponds to 90% of CPU load
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and 700Mbps of traffic, the CT consumes about 5W more than the BM.
However, it is still able to achieve the same BM data-rate without impair-
ments. On the other hand, the power consumption for the VM appears
to decrease significantly under high data-rate demand. This decrease is
actually the result of impairments in the data-rate, which drops from the
requested 700Mbps to an actual 250Mbps when the CPU and data-rate
demand is the highest.

The lower data-rate achieved with the VM can be attributed to several
factors. It is worth mentioning that the 5GC virtual machine is run using
QEMU, a type-2 hypervisor, with KVM acceleration for improved perfor-
mance. Despite the KVM acceleration, the QEMU VM adds an extra layer
of virtualization, which can result in overhead and reduced performance.
Furthermore, Docker utilizes a different networking approach compared to
virtual machines, which can provide better speed and reduced latency due
to leveraging the host’s network stack, unlike virtual machines that use
virtual network interface cards and incur additional overhead.
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Chapter 4

Digital Twin for Network
Orchestration

4.1 Motivations

The concept of a DT, which involves creating a virtual representation of
a physical system, is gaining traction as a promising solution to address
orchestration and power consumption issues in the MEC ecosystem. By
developing a DT of an MEC node, it becomes possible to simulate its be-
havior, analyze its performance, and optimize its operations in a virtual
environment before implementing changes in the physical system. Exist-
ing works on DTs primarily focus on analytically deriving the MEC DT
model, which involves using mathematical reasoning and assumptions to
model edge nodes’ behavior in terms of KPIs while designing optimization
algorithms. However, due to the high heterogeneity of the edge ecosystem,
this approach may not be sufficient to address the orchestration challenges
effectively. In this study, we propose a data-driven approach to gain in-
sights into the behavior of MEC nodes and accurately predict their perfor-
mance under varying workload demands. To the best of our knowledge, a
data-driven approach that achieves an online and self-learning DT model
is essential to cope with the MEC ecosystem’s heterogeneity, including
potential MEC reconfiguration.

In this work we envision a DT-enabled orchestration architecture as
highlighted in Figure 4.1. Indeed, the DT plays a crucial role in managing
the network if used for simulating possible what-if scenarios or analyzing
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Figure 4.1: Conceptual architecture of the MEC Digital Twin -enabled orchestration
envisioned in this work.

the potential impact of different strategies. Indeed, it allows the orchestra-
tion layer to take charge of network intents, i.e., services to be deployed,
and to exploit the DT models to understand the network behavior before
actually applying changes to the physical network. By introducing the DT
in the learning loop of the orchestration, the orchestration layer receives
predicted KPIs to evaluate the expected network behavior. After taking
actions on the physical network, the orchestration layer informs the MEC
DT and forwards relevant metrics to the twin, allowing it to learn a dig-
ital representation of the physical MEC performance and predict future
requests.

4.2 Related works

Digital Twin and MEC

DT has gained a lot of attention recently as an effective tool for modelling
simple as well as complex systems. The combination of MEC and DT can
be leveraged to improve the network performance by optimizing the task
offloading and resource allocation. Authors [63] define the digital twin edge
network (DITEN) paradigm and show how it can be used to bridge the
physical edge system and the digital space. In their work, they also provide
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a comprehensive survey.

In [64] a task offloading latency minimization problem while optimizing
the transmit power of UEs is proposed. The DT model is derived ana-
lytically using mathematical reasoning and assumptions for modelling the
processing capacity, latency and energy consumption. In [65], DT-assisted
task offloading is modelled as a Markov decision problem. A mathematical
optimization model is used to reduce the system delay and power consump-
tion. In [66] a DT architecture to improve task offloading and task caching
techniques is proposed. The aim is to minimise the E2E task offloading
delay while bounding the energy consumption to a maximum value. Also
in this work, the DT model is derived analytically using mathematical
reasoning and assumptions to derive the DT predictions.

Power consumption measurements and modelling

In [9] an overview is presented summarizing the challenges, approaches and
results of the state-of-the art research concerning the empirical measure-
ments and analytical modelling of virtual entities power consumption in
the telco cloud.

The performance of different virtualization technologies under multiple
workloads have been analyzed by several studies, showing how each virtu-
alization technology has it own specific advantages as well as a different
impact on using of hardware resources. Containers have been proved to
be more CPU and memory efficient compared to unikernels and virtual
machines (although the lack of isolation might be a concern in specific
use-cases)[67]. Container virtualization also registered a lower power con-
sumption especially during the networking workloads [68]. A more exten-
sive comparison can be found in [69], which analyses the power and energy
consumption of four of the most adopted hypervisors and container engines
across six hardware platforms and multiple workloads.

Other efforts focus on the design of models for the estimation of power
consumption without relying on direct measurements. The survey in [70]
benchmarks and evaluates the performance of 24 state-of-the-art power
consumption models on different server architectures. The results highlight
how interpolation and Support Vector Machine (SVM) have the lowest
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error for single and multi variable models respectively.

4.3 Regression Mechanisms for Digital Twin mod-

elling

In this work, our focus is on developing a DT model of a MEC system
following a measurement based approach.

We consider the aggregated data-rate and CPU demand as the input
requests. Conversely, the performance KPIs of interest are the achieved
data-rate, the CPU load, and the MEC power consumption.

In the first stage of our study, we conducted a measurement campaign
on MECs with various virtualization technologies under different loads.
To assess the MEC performance, we considered different workload pro-
files (WPs) by generating data traffic with varying CPU loads that mimic
the computational demands of applications running on the MEC. Each
combination of data-rate and CPU demand will be denoted as a WP. We
simultaneously collected the relevant KPIs such as data-rate, CPU-load,
and power consumption of the MEC. It’s important to note that, in addi-
tion to network KPIs which play a crucial role in providing the required
service QoS, the power consumption is also an important KPI to model in
order to enable a carbon footprint aware orchestration.

In our measurement campaign we considered three type of MEC deploy-
ments where the 5G core network is either directly installed in the bare
metal (BM), deployed within a virtual machine (VM), or deployed in a
containerized environment (CT). As mentioned already, previous works al-
ready investigated the performance of different virtualization technologies
in running specific applications. However, in this work the aim is to evalu-
ate the power consumption in each scenarios as well in order to understand
and model the trade-off between network KPI and power consumption.

In a next stage of our research, we focused on using ML to model the
MEC DT. The goal is to compare the results of the learned model to the
real measurements obtained in the measurement campaign, and evaluate
its accuracy. To do this, we adopted three different ML algorithms, namely
k-nearest neighbors (KNN), Support Vector Regression (SVR), and Poly-
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nomial Fitting (PF).

Regarding the KNN, the parameter specifying the number of neighbors
has been set to k = 5. This value has been selected since appeared to be
a sensible trade-off to prevent high bias and high complexity, happening
with high k, and sensitivity to noise, happening with a low value of k.

For the SVR, we used Radial Basis Function (RBF) kernel which is com-
monly recognised as one of the most well-performing kernels in many cases.
Moreover, we set the regularization parameter C = 100 since performing
cross-validation it appears to be the best compromise to avoid under-fitting
(low C) and over-fitting (high C).

The polynomial fitting method is proposed as an analytical model of
the different MEC deployments. With the aim to provide a basis for fur-
ther research, the collected data-set and the methodology and parameters
of the polynomial fitting are provided in the Appendix 4.3 and available
online. The goal is to encourage the replication of our results and facilitate
the advancement of related research, leveraging the findings and insights
obtained in this work.

These models are trained with the collected measurements to under-
stand how they perform, and to determine which algorithm provides the
best results.

Polynomial fitting

The process for developing the MEC analytical model using polynomial
fitting is as follows. Let c and t be the requested WP for the MEC ex-
pressing the CPU and throughput demand, respectively. Let {ĉ, t̂, p̂} be the
predicted KPIs for the overall CPU load, throughput, and power consump-
tion. To model the MEC behaviour with respect to each KPI, we define
the polynomial equation in (4.1), where pi,kkpi are the polynomial parameters
as shown in Table 4.1.

Fkpi(c, t) =
∑
i

∑
k

pi,kkpic
iti, ∀KPI ∈ {ĉ, t̂, p̂} (4.1)

For each KPI, we use the non-linear least squares method to fit the set
of observations with the non-linear equation (4.1). The derived analytical
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Table 4.1: Polynomial fittings.
k=0 k=1 k=2 k=3

i=0 p0,0kpi p0,1kpi p0,2kpi p0,3kpi

i=1 p1,0kpi p1,1kpi p1,2kpi 0

i=2 p2,0kpi p2,1kpi 0 0

i=3 p3,0kpi 0 0 0

models based and the measurement are available online1. It is worth to
highlight that this model is valid within the considered range of WPs.

4.3.1 Experimental Results

This section provides the details about the experimentation proposed study.
We first provide the details on the environment used for the performance
evaluation, followed by a description on the experiments. Later, we provide
details on the measured KPIs and the MEC performaces under different
virtualization technology. Finally, we provide the details on the prediction
performance of the MEC behaviour using the three types of ML algorithm
to model the MEC system.

Digital Twin prediction under complete training data-set

Power CPU Data-Rate
0.00

0.02

0.04

0.06

0.08

0.10

0.12

NR
M

SE

Bare-metal (BM)
KNN
Poly-3d
SVR

Power CPU Data-Rate
0.00

0.02

0.04

0.06

0.08

0.10

0.12

NR
M

SE

Virtual Machine (VM)
KNN
Poly-3d
SVR

Power CPU Data-Rate
0.00

0.02

0.04

0.06

0.08

0.10

0.12

NR
M

SE

Container (CT)
KNN
Poly-3d
SVR

Figure 4.2: DT KPI prediction error in the different MEC deployments. The error bars
represent the NRMSE standard deviation across the different WPs.

The aim of this analysis is to determine the accuracy of the DT in pre-
dicting the KPIs of the MEC deployments under different WPs. Building

1https://github.com/RiccardoFedrizzi/MEC_DT_model
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upon the findings discussed in the prior section, we delve deeper to eval-
uate the forecasting accuracy of a DT using the data-set obtained from
aforementioned measurement campaign. We evaluate three type of ML
algorithms, namely KNN, RBF and PF. To do so, we use a subset of the
collected data to train the DT by considering all the WPs but using 2/3
of the samples. To determine the effectiveness of the DT in accurately
predicting the behavior of the MEC deployments, we use the remaining
samples as a validation set.

The results of the DT prediction performance are depicted in Figure 4.2.
The figure displays the Normalized Root Mean Square Error (NRMSE) for
each predicted KPI for each MEC deployment. The NRMSE metric was
chosen as it provides a percentage representation of the error relative to
the absolute value of each KPI.

The low prediction error observed in all the cases highlights a good ac-
curacy of all the three methods employed demonstrating their applicability
to realise the DT prediction. However, our findings indicate that the SVR
model performs better than KNN and PF models in the majority of cases.
Nevertheless, the PF still displayed noteworthy performance, proving the
viability of utilizing analytical models for further research in this area.
Interestingly, compared to the other deployment scenarios, the prediction
error for the data-rate in the VM scenario is higher. This is because of
the data-rate degradation explained in the previous section and shown in
Figure 3.6 which makes more challenging in the VM case to forecast the
data-rate accurately.

Model prediction under incomplete data-set

In this section, we examine the accuracy of the DT forecast when the
data-set is sparse, as opposed to having a complete set of WPs available
for training as was analyzed in the previous section. Training is conducted
in several episodes, with measurements for a randomly selected WP being
added for each episode, representing the variable measurements that might
be acquired by the networking infrastructure. To evaluate the performance
of the different ML algorithms, the results in terms of NRMSE were av-
eraged over 20 trials, where in each trial a different WP was randomly
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selected as the test set, while the remaining WP were used for training.
The goal of this approach is to understand the extent to which the dif-
ferent ML approaches are able to generalize the prediction when working
with incomplete data, and to provide insight on how much the WP domain
shall be explored before to achieve an acceptable prediction error.

In Figure 4.3(a), we report the results showing the NRMSE against the
number of episodes. These results pertain to the experiments carried out
on VM MEC. As expected, the error in prediction decreases as the number
of episodes increases. Interestingly, while the SVR method outperformed
the others techniques under complete training sets, the KNN algorithm
achieved a better prediction accuracy when the training data is incomplete.
This is because of KNN only relies on the proximity of the data points in
the feature space, conversely the SVR is a model-based algorithm which
potentially leads to biased or incorrect model fit under missing data.

The evaluation of the PF method reveals a substantial prediction er-
ror until episode 40. This can be attributed to the polynomial fitting’s
tendency to produce extreme spikes when evaluating it outside the range
covered by the training set. This is demonstrated in the plot of predicted
power consumption for different episodes in Figure 4.3(b). If the training
set is sparse, the polynomial fitting may be quite ineffective, as highlighted
in episode 20. However, the prediction is significantly better as in episode
40 and eventually stabilizes later on. This underlines that the polynomial
fitting method can be used to improve the accuracy of the DT representa-
tion, even if it requires a suitable number of samples to properly capture
the characteristics of the Physical Twin. To encourage the usage of this
concept to model networks and MEC in particular, the polynomial fitting
model is shared online in the Appendix 4.3.

4.4 GNN-Based Digital Twin for orchestration

This section focuses on the application of graph neural network (GNN) for
developing a DT and for assisting in orchestration tasks. We start by dis-
cussing the motivations and the problem statement behind this research.
We then present a GNN-based model for realizing a DT, which leverages
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Figure 4.3: Prediction error with incomplete training-set for the VM MEC. In (a) we
show the NRMSE vs. the number of episodes, in each episode a new randomly picked
WP is added to the training set. Considering one single run, in (b) we plot the predicted
power consumption for three episodes.

the power of GNNs to capture the complex relationships and dependen-
cies between the components of the edge network system. Finally, we
present preliminary results on using the digital twin to orchestrate service
allocations, which demonstrate the potential of GNN-based digital twins
for optimizing system performance and reducing operational costs while
maintaining the service KPIs.

Overall, this section highlights the potential of GNNs for developing DTs
and for aiding orchestration tasks, and we propose several future research
directions for further advancing this area.
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4.4.1 Motivations and proposed methodology

In the previous section, we explored the use of regression mechanisms for
building a digital twin of a MEC node. While this approach showed promis-
ing results in capturing the behavior of the MEC node, it did not fully
capture the complex interactions between different components in a larger
edge network ecosystem. This limitation underscores the requirement for
a more advanced modeling approach that can effectively capture the intri-
cate dependencies and interactions among various components in an edge
network, while also accounting for any possible impairments that may arise
due to the underlying network.

With the aim of addressing these issues, in this section, we propose the
use of GNNs for building a DT of edge networks. GNNs are a powerful class
of neural networks that can learn from graph-structured data and capture
the complex relationships between different components in a system [71].
By modeling the edge network as a graph, we can use GNNs to learn a
digital representation of the entire edge network ecosystem. This represen-
tation can capture the interactions between different components, as well
as the possible impairments due to the underlying network, and enable us
to predict the performance of the edge network in real-time. Optimization
tasks reducing operational costs while maintaining the requests QoS can be
then performed in the digital domain before to act on the physical network.
In particular, in this work we focus on service allocation decisions to min-
imize operational costs without compromising the requested service-level
KPIs.

In this section, we consider a scenario in which an edge network com-
prises a number of heterogeneous MEC nodes that are requested to sup-
port service requests. Each service request in this network is responsible
for handling requests coming from UEs. We assume that each UE request
is processed by a micro-service that is spawned in one of the MEC within
the network. The amount of computational and communication load that
a micro-service places on a MEC can vary significantly, depending on the
QoS requirements of the initiated the service request. We assume each
service request is composed of both data traffic and a certain number of
operations per second, which need to be processed by the MEC.
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The allocation of services to specific MECs, based on their capabilities
and the QoS requirements of the services, can have a significant impact
on overall operational expenditures (OPEX) and the potential for service
quality violations. In this work, we propose the use of power consumption
as the primary metric for OPEX. This is justified considering that energy
consumption is one of the largest operational expenses in MEC ecosystems
[72] [73].

The problem finding the optimal service allocation is defined as follows:

Given: the dynamic nature of the edge network scenario described
above, with the number of requests varying over time and MEC servers
with different performances and power consumption efficiency.

Find: a digital representation of the edge ecosystem (DT) which allows
for the prediction of network behavior based on service placement decisions.
Based on the DT predictions find the optimal service allocations in the
digital domain, before to apply changes to the physical network.

Objective: maintain the requested QoS while minimizing the opera-
tional expenses of the MEC ecosystem.

4.4.2 Edge network scenario

In our study, we utilize the emulation test-bed, which is described in Sec-
tion 3.2, to simulate a scenario with two MECs having different capabilities.
Figure 4.4 illustrates the network architecture, where the two MECs host
micro-services that support user requests. To emulate service requests,
emulated UEs are used to generate data-traffic and request computation
tasks to their associated micro-service. These micro-services are deployed
as containers on the fly on a specific MEC. This approach allows us to
build a data-set containing performance KPIs based on different possible
combination of requests and service allocations.

In our experiments, we aim to improve the stability of the generated
data-set by assigning a dedicated CPU to each MEC. However, MEC 1
has only half of a CPU dedicated, while MEC 2 has a full CPU dedicated
to it. This configuration allows us to evaluate service allocation strategies
within an heterogeneous MEC environment. Table 4.2 shows the request
parameters for each service, which represent the generated demand that
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Figure 4.4: Representation of the edge network scenarioi implemented leveraging the
emulation test-bed of Section 3.2.

needs to be maintained.

It is important to note that measuring the power consumption of each
MEC it is not possible in an emulation environment, but this information
is crucial for our research objectives. To address this challenge, we utilized
the results from our physical test-bed experiments, which are detailed in
Section 4.3. Specifically, we used the SVR model to estimate the power
consumption of the emulated MECs while re-scaling the data-rates in order
to meet the physical test-bed workload. To account for differences between
MEC 1 and MEC 2, we assumed that MEC 1 consumes half the power of
MEC 2 in the same operational conditions. This assumption is justified by
the fact that MEC 1 has half of the computing capabilities of MEC2.

To collect the dataset, we follow a specific procedure. For each emulation
interval, we (i) randomly decide whether to add or remove a service while
maintaining their overall number within the interval specified in Table 4.2.
Then, (ii) we randomly assign a service request and choose a MEC to
allocate the service. Next, (iii) we run the emulation for 20 seconds and
collect the measured KPIs. Finally, (iv) we compute the MECs power
consumption KPI based on the SVR model as previously mentioned, and
store the results of the iteration in the data-set.

The range of service request parameters was defined based on prelimi-
nary tests that demonstrated MEC 1 can achieve a maximum throughput
of 30 Mbps, while MEC 2 can handle up to 60 Mbps. However, we observed
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Table 4.2: Parameters for the emulated scenario.

Parameter Description

Number of emulation intervals 1000
Emulation time for each interval 20 sec
Collected KPIs MEC CPU load / Overall MEC data-

rate / UE achieved data-rate
Measurement time interval 1 sec
Number of requests 2-5
Service demand: data-rate 2-10 [Mbps] (TCP)
Service demand: computing 0-300 [kOps]

impairments in one MEC when we increased the throughput handled by
the other MEC due to congestion. We also observed issues with increasing
the computing demand in the same MEC, which led to CPU overhead.
These findings have been taken into account in order to derive the service
demand range explained in Table 4.2

4.4.3 GNN-based Digital Twin

The GNN architecture used to build the DT is shown in Figure 4.5. This
architecture takes an input graph composed of service requests and their
connections. For each node representing a service request, the features are
composed of the computing and communication requirements, represented
by Rs = [Rcpu

s , Rdr
s ]. In addition, the MEC nodes in the graph are rep-

resented by the aggregated requests for each MEC, where M is the set
of MECs in the scenario and Sm is the set of services allocated on MEC
m. The MEC node features are calculated as in the equation below by
aggregating the requests for each MEC.

Rm =

[ ∑
s∈Sm

Rcpu
s ,

∑
s∈Sm

Rdr
s

]
∀m ∈M (4.2)

Moreover, the edges of the graph are considered to be the combination of
the edges representing the underlying network and the edges associating
each service with a MEC.
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Figure 4.5: Representation of the GNN architecture used to build the DT.

The GNN architecture is composed of an initial layer, two graph convo-
lutional network (GCN) layers with 50 hidden channels, and a final mul-
tilayer perceptron (MLP) layer used for the graph prediction tasks. The
initial layer takes the input graph as explained above. Then, the GCN
layers perform convolution operations on the graph to extract relevant fea-
tures. Both the GCN layer produces 50 hidden channel outputs as output,
which are then passed through a non-linear activation function to produce
a new set of hidden features. Finally, the MLP layer takes the hidden fea-
tures as input and produce the final graph prediction output. The output
is a vector of two elements, [Ov, Opwr] containing (i) whether there is a
service violation, and (ii) the overall power consumption of the system.

As discussed in Section 4.4.2, we gather Ocpu
m , Odr

m , and Opwr
m for each

MEC, representing the CPU load, achieved data-rate, and power consump-
tion, respectively, for each sample in the dataset. To compute the GNN
expected output and allow its training, for each entry in the data-set the
GNN expected output is computed as follows.

A violation (Ov = 1) occurs if either the CPU load of a MEC exceeds
90%, or the requested MEC data rate exceeds the observed value by a
confidence interval of 2 Mbps.

Ov = 0 if

{
Odr

m > Rdr
m − 2Mbps ∀m ∈M

Ocpu
m < 90% ∀m ∈M

Ov = 1 otherwise

(4.3)

Conversely, the overall power consumption of the system is computed
as the sum of the observed power consumption of each MEC unit, denoted
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Figure 4.6: Evolution of training and test MSE loss over 1000 iterations. The loss over
test set has been computed every 50 episodes.

by Ocpu
m .

Opwr =
∑
m∈M

Ocpu
m (4.4)

We randomly select 700 samples from the overall dataset of collected
measurements, and allocate 80% of them for training and the remaining
20% for validation. During the selection process, we ensure that a sufficient
number of violations are included in the training set to enable the GNN to
learn to recognize service violations effectively.

Figure 4.6 illustrates the changes in training loss over 1000 iterations,
calculated as the mean squared error (mean squared error (MSE)) between
the GNN output [Õv, Õpwr] and the corresponding true values [Ov, Opwr] in
the dataset. The results show that the final MSE for the train set is
approximately 0.68, while for the test set it is 2.9. Notably, the test set
loss demonstrates a consistent and flat behavior, which indicates robustness
against over-fitting.

Figure 4.7(a) shows the normalised root mean squared error (NRMSE)
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Figure 4.7: The Accuracy of the GNN DT prediction evaluated as: (a) NRMSE of the
predicted power consumption, (b) true vs. predicted power consumption, and (c) accuracy
of predicting QoS violations.

specifically for power consumption prediction on both the train and test
sets. This metric is useful as it allows for a direct comparison with the
amplitude of the power measures. The results indicate that the average
prediction error for power consumption is around 1.5%, demonstrating the
effectiveness of the model in accurately predicting power consumption.
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This is further illustrated by Figure 4.7(b), which displays a scatterplot
comparing the predicted values of power consumption to their correspond-
ing true values. The graph indicates a strong linear correlation between
the predicted and true values, confirming the effectiveness of the model’s
power consumption predictions.

Figure 4.7(c) presents the prediction accuracy for QoS violations, as
computed by Equation (4.3). The model correctly recognizes QoS viola-
tions approximately 93% of the time in the train set, but this accuracy
drops to below 80% in the test set. We also observe that the accuracy for
false negatives is lower than that for false positives, which could lead to is-
sues in correctly identifying QoS service violations. However, we argue that
achieving an 80% accuracy on the test set is a significant accomplishment.

Finally, in Figure 4.7(c) we show the prediction accuracy over the QoS
violations computed as in Equation (4.3). We can observe that while the
QoS violation is correctly recognised the 93% of times over train set, this
is not true for the test set, where the probability decreases below 80%. We
also observe that the accuracy over the false negative is lower that the false
positive, which might cause issues for not correctly recognising a QoS ser-
vice violation. However, achieving 80% of accuracy in the QoS violations
prediction over the test set is a good achievement that demonstrate the
viability of this GNN-based approach.

4.4.4 Service allocation based on Digital Twin predictions

After the DT is trained using the measures from the physical twin (PT),
it can be used to forecast a service placement layer that enables the im-
plementation of various policies. These policies can be evaluated before
applying them in the physical domain. The service placement decision
loop shown in Figure 4.8 starts with the service placement policy layer
receiving service requests. The policy can then query the DT to obtain
predictions on the network behavior, as discussed in the previous section.
Based on this information, the policy can decide to apply an action on the
PT or explore other options.

In this section, we propose three heuristics for service allocation deci-
sions:
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Figure 4.8: Envisioned service placement strategy leveraging the GNN DT.

• The first one, dubbed OA, is an Optimal Allocation policy that eval-
uates all possible service allocations by querying the DT and returns
the best one. Where the best one is the service allocation minimising
the predicted power consumption, while avoiding service violations.

• The second one, dubbed RAC, is a Random Allocation policy with
multiple Checks that first performs a random allocation and then
checks the DT for possible service violations. If any violations are
predicted, the policy performs up to Nrac retries to find a different
valid service allocation.

• The third one, dubbed RA is a pure Random Allocation approach,
which is considered for worst-case comparison purposes.

DT prediction evaluations

To evaluate the effectiveness of the three policies, we simulate a series of
episodes. Each episode consists of 50 time intervals, during which the ser-
vice requests are adjusted based on the procedure outlined in Section 4.4.2
for constructing the data set. We repeat the experiment 100 times and
gather the predicted network KPIs results from the decision tree model.
Figure 4.9(a) displays a comparison of overall power consumption during

84



4.4. GNN-BASED DIGITAL TWIN FOR ORCHESTRATION

0 10 20 30 40
Time interval

15

20

25

30

35

Ov
er

al
l P

ow
er

 [W
]

OA
RA
RAC
RA  QoS Violation
RAC QoS Violation

(a)

RAC RA
0.0

0.5

1.0

1.5

Po
we

r [
W

]

(b)

OA RAC RA
0

20

40

60

80

100
Qo

S 
Co

m
pl

ia
nc

e 
Ra

te
 %

(c)

Figure 4.9: Comparison between OA, RAC, and RA over 100 experiments. In (a) we
show a comparison of OA, RAC, and RA in terms of power consumption optimization
over one episode with 50 different service requests. In (b) we show the power consumption
overshoot of RAC and RA vs. OA on average over all the experiments. In (c) we compare
the service QoS compliance in the case of the three policies.

one of the simulated episodes for the OA, RAC, and RA policies. Addition-
ally, service violations are indicated with stars in the figure. As expected,
the RA policy performs the worst as it randomly selects the initial service
allocation. However, with only three retries, the RAC policy approaches
optimality and exhibits minimal service violations. It is worth noting that
the RA policy frequently produces solutions with lower power consump-
tion than the OA policy. However, this comes at the expense of service
violations, which are considered as service rejections.

Figure 4.9(b) presents a comparison of power consumption between the
RAC, RA policies against the OA. The results from 100 experiments are
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averaged and analyzed. On average, the RAC policy results in a power
consumption overshoot of approximately 0.75W higher than the optimal.
Conversely, the RA policy exhibits almost double the overshoot, with ap-
proximately 1.3W of overshoot. Figure 4.9(c) illustrates a comparison of
QoS compliance rates among the OA, RAC, and RA policies. As antici-
pated, the RA policy displays the lowest QoS compliance rate of approxi-
mately 80%. Conversely, it is noteworthy that the RAC policy achieves a
QoS compliance rate of nearly 100% with just three retries.

Performances of DT-based allocations on the PT

This paragraph provides a discussion on the comprehensive approach illus-
trated in Figure 4.8. To assess the effectiveness of the service allocations
based on Decision Trees (DT), we conducted a series of 10 episodes, each
consisting of 50 time intervals. During each time interval, multiple service
requests (ranging from 3 to 5) were generated. Each service request com-
prised a data-rate between 0 and 6 Mbps and a computing request between
0 and 300 kOps. For for each time interval, we executed three service allo-
cation policies, namely OA, RAC, and RA, to obtain the respective service
allocations. Subsequently, the obtained service allocations were emulated
to evaluate the performance of the DT-based service allocation against the
PT.

Figure 4.10(a) illustrates the energy gain of OA and RA in comparison
to the benchmark RA. OA demonstrates an energy consumption reduc-
tion of approximately 3.3W/h, whereas RAC shows a reduction of around
1.4W/h. Although these gains may not appear substantial, it is important
to note that they were achieved within a limited scenario involving only
two MECs. Furthermore, these reductions amount to approximately 10%
of the maximum energy consumption of MEC 2.

Referring to Figure 4.9(c), it can be observed that the decision output of
the DT-based service allocation resulted in zero QoS violations for OA and
demonstrated a high level of accuracy for RAC. However, when applied on
the PT, as indicated in Figure 4.10(b), the actual service allocation deci-
sions resulted in a similar rate of QoS compliance across all three policies.
This can be attributed to the fact that, as depicted in Figure 4.7(c), the
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Figure 4.10: Performance OA, RAC, and RA decisions applied on the PT and averaged
over the emulated episodes. In (a) we show the energy gain achieved by OA and RAC
over the RA. In (b) we show the service acceptance in the case of the three policies. In
(c) we show for each policy how the overall requested demand is balanced between the
two MECs of Figure 4.4.

DT has a higher tendency to generate errors in recognizing QoS violations,
particularly by producing false negatives.

Figure 4.10(c) presents the load balancing among the MECs in the given
scenario. OA prominently favors MEC 1 to achieve optimal energy effi-
ciency, while RAC exhibits a slight preference for MEC 1 by making ad-
ditional service allocation decisions only after a QoS violation is identified
with the assistance of the DT. On the other hand, RA demonstrates its
characteristic random behavior in load distribution.

It is important to note that the primary reason behind the higher energy
efficiency observed in the OA case is the inclination to allocate services to
MEC 1, which consumes less power compared to MEC 2. However, it
should also be acknowledged that the preference of OA towards MEC 1
brings it closer to the boundaries of QoS violations. This is because MEC
1 is more constrained in terms of CPU resources compared to MEC 2.
This behavior, combined with the imperfect prediction of QoS violations
by the DT, explains why the OA decisions, when applied to the PT, do
not achieve a perfect QoS compliance rate as we could expect by looking
at the DT outcomes. Nevertheless, it is worth mentioning that all three
policies exhibit a significantly high QoS compliance rate of around 95%.

87



CHAPTER 4. DIGITAL TWIN FOR NETWORK ORCHESTRATION

88



Chapter 5

Conclusions

This thesis explores various aspects of the significant transformation that
5G mobile communication networks are undergoing. The purpose of this
change is to facilitate the emergence of novel services like virtual and aug-
mented reality, internet of things, and self-driving vehicles that are being
demanded by emerging vertical industries. All these services need to co-
exist on the same network infrastructure, and this transformation aims to
make that possible. In particular, the thesis focused on the emerging net-
work softwarization techniques, which provide technical enablers such as
network slicing and distributed user-plane. These techniques, along with
MEC, are expected to play a crucial role in network automation of future
networks and support multiple services with diverging requirements.

In Chapter 2 we investigated the problem to deploy different services
requested by various verticals in 5G networks. To embed service applica-
tions, along with the UP and CP functions, within slices provided to each
vertical industry while optimally allocating network resources, we formu-
lated and solved a SFC placement problem. Two different approaches,
namely Shared and Dedicated UPF strategies, were proposed to provision
the UP functions to services of different types. Based on the MILP formu-
lation results, both approaches provided similar network utilization perfor-
mances, but the Dedicated UPF approach resulted in significantly lower
execution times (between 1 and 5 hours). It was concluded that a network
slice provisioning tailored to each service type, as advocated in literature,
is a viable option. Additionally, three objective functions, namely Obj-
Cost, Obj-Bwt, and Obj-Mig, were proposed for efficient service placement
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while pursuing different business logics. The Obj-Cost objective function
resulted in high overall network utilization, whereas Obj-Bwt showed the
lowest network utilization but exhausting edge-DC resources quickly. The
Obj-Mig objective function is more suitable for achieving a compromise
of network utilization, a balanced load across edge-DC, regional-DC, and
cloud-DC, and minimization of VNF migrations. Alternative GA-based
approaches were proposed to reduce the high computational cost of the
optimization process and compared with the optimal solution provided by
the MILP formulation. Although these methods resulted in sub-optimal
solutions, simulations showed their effectiveness in achieving a good com-
promise between accuracy and computational effort. The proposed AGA
resulted in up to 10% improvement in solution accuracy compared to its
non-adaptive counterpart, while also exhibiting lower sensitivity to param-
eters and significantly reducing execution time.

The heterogeneity of the MEC ecosystem poses challenges in terms of
network orchestration and automation, which demand measurement-based
and model-free techniques. Motivated by this, two test-beds developed and
presented in Chapter 3 using well-known open source software to analyze
MEC performance in an end-to-end 5G system. The first test-bed is an
emulation test-bed that enables the evaluation of MEC applications un-
der realistic network conditions and the collection of various performance
metrics related to traffic flows and virtual resource utilization. The second
test-bed is a physical one that focuses on power consumption measurement
while varying the virtualization technology used. Using these test-bed, it
is possible to evaluate the energy efficiency of MEC deployments under
different conditions and gain insights into the most appropriate virtualiza-
tion technology to use in specific scenarios. The two test-beds have been
used to create a data-set of measurements to investigate the performance
of MECs based on different KPIs, such as CPU consumption, achieved
data-rate, and power consumption. Results demonstrate that the emulated
test-bed is effective in emulating heterogeneous MEC-enabled 5G networks
and characterizing MEC performance trade-offs, and for this reason, the
software has been made freely available online.

In Chapter 4, the two test-beds presented in the previous chapter were
utilized to propose data-driven approaches to realize a MEC digital twin
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(DT). Different regression mechanisms were employed to evaluate the fea-
sibility of building a digital representation of a MEC node. The results
showed that regression mechanisms are efficient in predicting MEC be-
havior, with an prediction error often below 5%. However, when multiple
requests are made, it is unclear how to effectively use these mechanisms
as some requests may impact MEC behavior differently than others. To
address this issue, GNNs have been explored as a scalable solution also
for capturing the underlying network behavior and providing a compre-
hensive representation of the network edge as a whole. A comparison of
predicted and actual KPIs yielded valuable insights into the accuracy and
reliability of the DT, which has the potential to inform decision-making
for a range of network management tasks. The results also highlighted the
potential of GNNs-based DTs in enabling closed-loop automation, where
network management processes are continuously refined based on real-time
network performance data. In particular, the GNN-based digital twin
demonstrated high accuracy, achieving approximately 1.5% in predicting
the overall power consumption of the edge ecosystem, and exhibiting good
performance with an accuracy rate of around 80% in predicting QoS service
violations. Furthermore, preliminary results indicate that the GNN-based
digital twin is a viable tool for supporting service allocation tasks.

As a future endeavor, we aim to explore the feasibility of utilizing the
GNN-based digital twin in realizing service allocation policies based on RL
techniques. The digital twin’s ability to accurately predict pertinent net-
work KPIs can be leveraged to train offline a RL-based service allocation
without to execute actions on the physical network. Moreover, self-learning
loops can be envisioned in order to (i) automatically perform further train-
ing episodes for the DT based on the possibly observed deviations form the
PT, and (ii) autonomously adapt the policy for service allocation without
human intervention.
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