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Abstract

Analogue quantum simulators have proven to be an extremely versatile tool
for the study of strongly-correlated condensed matter systems both near and
far from equilibrium. An enticing prospect is the quantum simulation of non-
Fermi liquids which lack a quasiparticle description and feature prominently
in the study of strange metals, fast scrambling of quantum information, as
well as holographic quantum matter. Yet, large-scale laboratory realisations
of such systems remain outstanding. In this thesis, we present a proposal for
the analogue quantum simulation of one such system, the Sachdev–Ye–Kitaev
(SYK) model, using cavity quantum electrodynamics (cQED). We discuss
recent experimental advances in this pursuit, and perform analysis of this and
related models. Through a combination of analytic calculations and numeric
simulations, we show how driving a cloud of fermionic atoms trapped in a multi-
mode optical cavity, and subjecting it to a spatially disordered AC-Stark shift,
can realise an effective model which retrieves the physics of the SYK model, with
random all-to-all interactions and fast scrambling. Working towards the SYK
model, we present results from a recent proof-of-principle cQED experiment
which implemented the disordered light-shift technique to quantum simulate all-
to-all interacting spin models with quenched disorder. In this context, we show
analytically how disorder-driven localisation can be extracted from spectroscopic
probes employed in cQED experiments, despite their lack of spatially resolved
information. Further, we numerically investigate the post-quench dynamics
of the SYK model, finding a universal, super-exponential equilibration in
the disorder-averaged far-from-equilibrium dynamics. These are reproduced
analytically through an effective master equation. Our work demonstrates the
increasing capabilities of cQED quantum simulators, highlighting how these
may be used to study the fascinating physics of holographic quantum matter
and other disorder models in the lab.
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Sommario

I simulatori quantistici analogici hanno dimostrato di essere uno strumento
estremamente versatile per lo studio di sistemi di materia condensata forte-
mente correlati sia fuori che in equilibrio. Un’applicazione particolarmente
interessante è la simulazione quantistica dei liquidi non di Fermi, che mancano
di una descrizione quasi-particellare e hanno un posto di rilievo nello studio
sia dei metalli strani, che nel rimescolamento delle informazioni quantistiche,
cos̀ı come nella materia quantistica olografica. Tuttavia, le implementazioni
in laboratorio su larga scala di tali sistemi rimangono sporadiche. In questa
tesi, presentiamo una proposta analogica per la simulazione quantistica di
uno di questi sistemi, il modello di Sachdev–Ye–Kitaev (SYK), utilizzando
l’elettrodinamica quantistica in una cavità (cQED). Discuteremo i recenti
progressi sperimentali ed eseguiremo l’analisi di questo e dei modelli ad esso col-
legati. Attraverso una combinazione di calcoli analitici e simulazioni numeriche,
mostriamo come, controllando una nuvola di atomi fermionici intrappolati in
una cavità ottica multimodale e sottoponendola a uno spostamento AC-Stark
spazialmente disordinato, si possa realizzare un modello efficace che riproduce
la fisica di il modello SYK, interamente connesso con interazioni casuali e
rapida diffusione dell’informazione quantistica. Al fine di ottenere la fisica del
modello SYK, presentiamo i risultati di un recente esperimento di cQED, che
ha implementato la tecnica di spostamento disordinato della luce per simulare
quantisticamente modelli di spin interagenti con disordine indipendente dal
tempo. In questo contesto, mostriamo analiticamente come la localizzazione
generalizzata dal disordine può essere estratta dalle sonde spettroscopiche
impiegate negli esperimenti cQED, nonostante la loro mancanza di informa-
zioni risolte spazialmente. Inoltre, indaghiamo numericamente le dinamiche
post-quench del modello SYK, trovando un processo di riequilibrio universa-
le super-esponenziale nelle dinamiche fuori equilibrio mediate dal disordine.
Questi sono riprodotti analiticamente attraverso equazione maestra efficace. Il
nostro lavoro dimostra le crescenti capacità dei simulatori quantistici cQED,
evidenziando come questi possano essere utilizzati per studiare in laboratorio
l’affascinante fisica dei modelli disordinati e della materia quantistica olografica.
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1 Introduction

Understanding the equilibrium and dynamic behaviour of quantum many-body
systems is of fundamental interest to research in physics. It is a unifying
theme and underlies a broad spectrum of research directions. Examples include
the quantum chaotic physics of heavy nuclei [1], the description of material
properties under the helm of condensed matter physics [2], and the study of
intriguing quantum phases of matter such as supersolidity [3] and holographic
quantum matter [4]. Whilst the properties of weakly-interacting systems
are amenable to analytic calculations via quasiparticle descriptions [5], this
framework often fails to capture the properties of strongly-interacting quantum
many-body (QMB) systems [4, 6]. Exact numeric simulations are hampered by
the exponentially many complex numbers required to describe the wavefunction
of QMB systems [7], and approximate algorithms which successfully address this
challenge are not universally applicable, for instance due to the sign-problem
[8] or the varying entanglement content of QMB states [9, 10].
This has driven rapid advances in the creation and manipulation of synthetic

QMB systems engineered to mimic condensed matter physics. In this pursuit,
broadly termed “quantum simulation” [7], cold atoms and degenerate quantum
gases have taken a prominent role [7, 11, 12]. To quote Lewenstein et al. [13], the
creation of Bose–Einstein condensates in 1995 marked “the beginning of a new
era”, in which the manipulation of cold quantum gases offers “unprecedented
possibilities for the control of many-body systems”. Currently, physicists have
at their disposal a diverse range of table-top platforms—with complementary
strengths and weaknesses [7, 14]—in which the properties of synthetic quantum
systems can be probed in a highly controlled manner. These include ion traps
[15, 16], neutral atoms trapped in optical lattices [17, 18], optical tweezer arrays
of Rydberg atoms [19, 20], quantum gases trapped in optical resonators (cavity
quantum-electrodynamics, cQED) [21, 22], as well as superconducting devices
[23, 24].
A useful approach in the study of QMB systems is to construct a simplified

many-body Hamiltonian Ĥmb, which retains just enough complexity to be
able to capture the system properties under study, and to ignore interactions
with a possible environment. Such a construction allows one to obtain the
equilibrium, low-energy (zero temperature) physics of the isolated QMB system
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1 Introduction

in terms of its ground-state properties, as well as allowing one to study out-
of-equilibrium dynamics as generated by Ĥmb. Accordingly, research efforts in
experimental platforms for synthetic QMB systems have been geared towards
engineering effective interactions of the constituent particles so as to reproduce
those described by the simplified Ĥmb [7]. Taking, once more, the example
of quantum gases, the mastery of optical dipole potentials has allowed for
the synthesis of systems with reduced dimensionality, as well as with discrete
translational symmetries through confinement in optical lattices with variable
geometries. Controlling the strength of these optical potentials offers one route
to render the strength of inter-particle interactions, relative to their kinetic
energy, an experimentally tunable parameter. This allows for the preparation
of the different phases which a given Ĥmb might describe, such as superfluids or
Mott insulators [25], and to further tune into critical regimes where the quantum
fluctuations due to competing energy scales lead to equilibrium quantum phase
transitions [26].
Particularly exciting are the possibilities to monitor quantum many-body

dynamics far away from equilibrium in a controlled fashion. One of the
fundamental questions in this regard is whether, and if so how, an isolated QMB
system can thermalise. A fruitful Ansatz has been to study thermalisation on the
level of local observables within the framework of the eigenstate thermalisation
hypothesis (ETH) [27, 28], and its absence on the level of integrability and the
generalised Gibb’s ensemble (GGE) [27]. Until quite recently, however, one
might have argued that the question of thermalisation in isolated systems is of
little practical relevance, with the requisite isolation being absent in Nature
(unless one considers the Universe as a whole). Whilst the dynamics of open
quantum systems interacting with an environment are no less interesting [29,
30], not least due to their relevance for quantum technologies [31], remarkable
experiments probing integrability and the GGE [32, 33], as well as the ETH [34],
have demonstrated the ability to prepare QMB systems in far-from equilibrium
configurations in near-perfect isolation from their laboratory environments and
to study their subsequent closed-system, unitary dynamics.
The generally accepted mechanism underlying the ETH in chaotic QMB

systems is subsystem thermalisation [27, 28], the idea that small sub-regions
thermalise due to their interaction with the effective environment formed by the
remainder of the system. Closely related notions are the spreading (or delocalisa-
tion) of quantum information, and entanglement generation, as thermalisation
necessarily implies the transport of localised excitations, building-up correla-
tions across the system. Indeed, subsystem thermalisation implies maximisation
of the local von Neumann entropy—a measure of bipartite entanglement for
pure states [35]—proportional to the subsystem size, in analogy to the ther-
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modynamic entropy [27]. This volume law entanglement generation and its
ballistic spread in time was measured in the experiment of Ref. [34], which
employed an interference protocol that leveraged the single-site control and
measurement resolution offered by state-of-the-art quantum gas microscopes.
An alternative, random-measurement protocol, which does not require the
generation of identical copies of the system under study, was employed in
Ref. [36]. Particularly interesting in this context of thermalisation and entan-
glement generation, is the competition between quenched disorder (for instance
in the form of random potentials) which is known to suppress thermalisation
in non-interacting systems [37], and inter-particle interactions, which favour
the exchange, and thus delocalisation, of excitations. In QMB systems, these
competing phenomena can create many-body localised phases, characterised
by the retention of initial configurations and (in contrast to the volume-law
entanglement of ETH-obeying states) area-law entanglement which spreads
logarithmically with time [38], both of which were experimentally verified by
introducing quenched disorder into optical lattices [39–41].

The above mechanisms for delocalisation imply that correlations, encoded in
an initial configuration |Ψ⟩ of a QMB system, spread over the entire system
under the unitary dynamics generated by Ĥmb, and become irretrievable via
measurements of local observables. This “locking away” of quantum information
in many-body correlations is known as scrambling, and can be measured by
the decay of mutual information between initially entangled regions [42, 43].
The time at which this mutual information is approximately zero, is referred to
as the scrambling time t∗. From the viewpoint of quantum information, the
question of thermalisation is thus a question of how quickly Ĥmb can distribute
or scramble quantum information over its N degrees-of-freedom. Intuitively,
the connectivity (hyper)graph of Ĥmb and the presence of disorder should play
an important role in determining the size of t∗. Indeed, for local Hamiltonians
with short-range interactions t∗ ∼ N , whilst long-ranged interactions decaying
as a power-law r−α can lead to enhanced scrambling as α is decreased1 , with
an algebraically suppressed scrambling time t∗ ∼ N ζ (0 < ζ ≤ 1). In turn,
quenched disorder in local Hamiltonians has been found to suppress scrambling,
leading to diffusive behaviour [43].

It has been conjectured that the shortest possible scrambling time t∗, which
can be achieved in so-called “fast scrambling” QMB systems, is logarithmic
in the system size N [42, 47]. This is motivated by the study of quantum

1This is in line with Lieb–Robinson bounds which provide universal limits, depending only
on the dimensionality d and connectivity of Ĥmb, for the rate of information propagation
over a distance r in non-relativistic QMB systems [44–46].
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1 Introduction

information processing of black holes [48], where the exponential temporal
decay of out-of-time-order correlators (OTOCs) is typically used to diagnose
scrambling [49–51]. Similarly, it was conjectured in Ref. [51] that the OTOC
decay rate λL, the quantum generalisation of the Lyapunov exponent, is subject
to a universal bound λL ≤ 2π/β, which is saturated by such “fast scramblers”
(here β is the inverse temperature).

In recent years, there has been a flurry of research activity focussed on a
particular QMB system, the Sachdev–Ye–Kitaev (SYK) model [52, 53], which
dynamically manifests maximal scrambling of quantum information, saturating
the above bound for λL. The model describes N fermions with interactions that
are of infinite range, and independently sampled from a Gaussian distribution.
The model was originally introduced in the study of strange metals and non-
Fermi liquids [54], due to its lack of quasiparticle excitations resulting from
an exponentially dense low-energy spectrum. In addition to exhibiting such
strongly interacting many-body phenomena, the SYK system provides a toy
model for holography [55]: At large-N and strong coupling, the model exhibits a
set of properties [56–58] which it shares with two-dimensional Jackiw–Teitelboim
gravity [59, 60].
The diversity of intriguing properties, in particular the exciting perspective

of performing laboratory experiments on holographic systems, makes it highly
desirable to find an experimental realisation of the SYK model. In spite of its
connections with strange metals [54], however, no natural material is known
that can microscopically realise the particular SYK interaction. Research efforts
have thus focused on realising the SYK model in synthetic quantum systems.
To date, multiple proposals have been put forward, ranging from solid-state
mesoscopic systems [61–63], to cold atoms in optical lattices [64, 65], as well as
direct digital quantum simulation [66, 67]. Despite the impressive successes
in the synthesis and control of model Hamiltonians in QMB experiments,
as outlined above, a large-scale implementation of these proposals remains
outstanding. Small-scale, minimal versions of the digital approach have being
reported using nuclear magnetic resonance [68] and superconducting qubits [69].
However, the large number of independent couplings, scaling with system size N
as [N(N − 1)/2]2, as well as their infinite range, remains a formidable challenge
for bottom-up approaches. The implementation of Ref. [69] circumvented this
by using machine-learning techniques to identify reduced versions of the SYK
Hamiltonian which could replicate certain dynamical features. This approach
is, however, debated, as it appears to only partially retain the SYK physics [70,
71]. This highlights the need for a concept which is able to realise the dense
set of couplings prescribed by the original model, in an experimentally feasible
manner.

4



In this thesis, we address this challenge. We present a proposal for the
quantum simulation of the SYK model in the cQED platform, leveraging
recent advances such as the realisation of the strong-coupling regime for fermi-
onic quantum gases trapped in optical resonators [72, 73]. Cavity quantum-
electrodynamics combines the scalability of quantum gases to mesoscopic
and large system sizes N , with the native ability of cavity photons to mediate
infinite-range interactions. This makes cQED a promising platform for quantum
simulating the SYK model. Theoretical studies have shown that, in addition
to engineering random all-to-all interactions, quantum simulators of the SYK
model must mediate these interactions via multiple bosonic modes whose num-
ber scales at least linearly with N [74, 75]. This is a crucial ingredient for
synthesising the fast-scrambling dynamics of the SYK model.
In Chapter 3, we will show how advances in multi-mode cQED [76] could be

exploited in order to meet this requirement for mesoscopic system sizes, and how
spatially disordered AC-Stark shifts can be utilised to randomise the fermionic
interactions. Further, we will demonstrate how the number of cavity-modes
contributing to the effective interactions can be tuned, and motivate through
numeric simulations that the fast scrambling dynamics of the target SYK model
can be approached in this way.
In the above endeavour, the randomisation of cavity mediated interactions is

an important milestone. Chapter 4 presents results from a recent experimental
collaboration which has achieved this in cQED with (fermionic) 6Li atoms in
the single-mode regime [77]. By utilising the above idea of a spatially disordered
AC-Stark shift, this cQED experiment was able to engineer spin models with
quenched disorder. Specifically, the experiment tuned between disordered
versions of the Tavis–Cummings and Lipkin–Meshkov–Glick (LMG) models by
varying the atom–cavity detuning. We show how the latter model is generated
in the far-off-resonant case, yielding a description in terms of a collective
spin interaction. We further demonstrate that signatures of disorder-driven
localisation can be extracted from the system’s dynamic response, despite the
lack of spatially resolved measurement protocols. Specifically, we show that
the dynamic susceptibility of the simulated system allows one to bound the
participation ratio of specific excited states, and we find that our theoretical
predictions are in good agreement with the measured data.
In chapter 5, we present a theoretical study of the post-quench dynamics of

the SYK model, focussing on the dynamics of the quantum Fisher information
(QFI), a witness of multipartite entanglement [78, 79], and moments of local
observables. We present numeric evidence for a super-exponential, universal
equilibration—in the form of an independence of the dynamics on the initial,
pre-quench state—in the SYK model after disorder averaging. We capture
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1 Introduction

these features analytically for generic Hamiltonians by casting the disorder
averaged dynamics in the form of a master equation, and demonstrate that
in the case of the SYK model this reduces to a purely dissipative evolution,
reproducing the numeric findings.

In addition to the above chapters, this thesis is structured as follows:
Chapter 2 provides a theoretical background to the SYK model and to quantum
simulation with cavity-QED. The discussion there will focus on introducing
only the concepts and formalism which are utilised in the remainder of the
thesis, but provides references for further reading. Chapters 3–5 contain the
main results of this thesis, as outlined above, and are based on the following
manuscripts:

1. P. Uhrich, S. Bandyopadhyay, N. Sauerwein, J. Sonner, J.-P. Brantut
and P. Hauke, “A cavity quantum electrodynamics implementation of
the Sachdev–Ye–Kitaev model”, arXiv:2303.11343 [quant-ph] (2023) [80]

2. N. Sauerwein, F. Orsi, P. Uhrich, S. Bandyopadhyay, F. Mattiotti, T.
Cantat-Moltrecht, G. Pupillo, P. Hauke and J.-P. Brantut, “Engineering
random spin models with atoms in a high-finesse cavity”, Nat. Phys.
(2023) [77]

3. S. Bandyopadhyay, P. Uhrich, A. Paviglianiti and P. Hauke, “Universal
equilibration dynamics of the Sachdev-Ye-Kitaev model”, Quantum 7,
1022 (2023) [81]

4. A. Paviglianiti, S. Bandyopadhyay, P. Uhrich and P. Hauke, “Absence of
operator growth for average equal-time observables in charge-conserved
sectors of the Sachdev-Ye-Kitaev model”, J. High Energ. Phys. 2023,
126 (2023) [82]

The publication of point 4 is a follow-up work to that of point 3, and the
culmination of the Masters thesis of Alessio Paviglianiti [83], in which he
provided, amongst other results, an analytic understanding for some of the
features observed numerically in our Ref. [81]. This is briefly discussed in
Sec. 5.5.

During the course of my PhD, I was co-author of further publications, which
however do not form part of this thesis:

5. C. Dağ, Y. Wang, P. Uhrich, X. Na and J. Halimeh, “Critical slowing down
in sudden quench dynamics”, Phys. Rev. B 107, L121113 (2023) [84]

6

https://arxiv.org/abs/2303.11343
https://doi.org/10.1038/s41567-023-02033-3
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https://doi.org/10.22331/q-2023-05-24-1022
https://doi.org/10.22331/q-2023-05-24-1022
https://doi.org/10.1007/jhep03(2023)126
https://doi.org/10.1007/jhep03(2023)126
https://doi.org/10.1103/PhysRevB.107.L121113


6. C. Dağ, P. Uhrich, Y. Wang, I. McCulloch and J. Halimeh, “Detecting
quantum phase transitions in the quasistationary regime of Ising chains”,
Phys. Rev. B 107, 094432 (2023) [85]

7. Y. J. Joshi, N. Sauerwein, A. Youssefi, P. Uhrich and T. J. Kippenberg,
“Automated wide-ranged finely tunable microwave cavity for narrowband
phase noise filtering”, Rev. Sci. Instrum. 92, 034710 (2021) [86]

8. A. Youssefi, I. Shomroni, Y. J. Joshi, N. R. Bernier, A. Lukashchuk,
P. Uhrich, L. Qiu and T. J. Kippenberg, “A cryogenic electro-optic
interconnect for superconducting devices”, Nat. Electron. 4, 326–332
(2021) [87]

9. P. Uhrich, N. Defenu, R. Jafari and J. C. Halimeh, “Out-of-equilibrium
phase diagram of long-range superconductors”, Phys. Rev. B 101, 245148
(2020) [88]

Publications 5, 6 and 9 are concerned with dynamic quantum phase transitions,
the experimental investigation of which is hampered by the need to access
the full wavefunction in order to determine the return rate of the Lohschmidt
echo. The publication of point 9 explores the dynamic phase diagram of the
long-range Kitaev chain, establishing a connection between non-analyticities
of the return rate and zeros of the string order parameter, a quantity readily
accessible in quantum gas microscopes [89, 90]. The publications of points 5
and 6 investigate the use of single-site observables to detect dynamic quantum
phase transitions in integrable and non-integrable Ising chains.
Finally, during the time between my MSc and enrolment as a PhD candidate

in the 35th cycle of the Università degli studi di Trento, I had the good fortune
of completing a pre-doctoral internship in the Laboratory of Photonics and
Quantum Measurement of Prof. T. J. Kippenberg, during which time I was
involved in collaborations which lead to the publications of points 7 and 8.
The former documents the design and deployment of a microwave cavity used
to reduce room-temperature phase noise in control signals of superconducting
circuit experiments. The latter investigates the use of electro-optic phase mod-
ulators for the read-out of superconducting circuits at cryogenic temperatures,
in an effort to reduce the heat load transferred to the cryogenic environment,
as it allows for the replacement of co-axial cables with optical fibres, whose
thermal conductivity is two orders of magnitude lower.
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2 Theoretical background

In this chapter we provide further context for the Sachdev–Ye–Kitaev (SYK)
model (Sec. 2.1), and for quantum simulation with quantum gases trapped in
optical resonators (Sec. 2.2). Aside from providing some historic context, we
will focus on the formalism which will be utilised in the subsequent chapters.
Readers who wish to delve deeper into the material will be pointed to useful
references in the introductory part of either section. Note that here, and
throughout this thesis, we set ℏ = 1.

2.1 The SYK model, Chaos, and Scrambling

The original formulation of the SYK model as a zero dimensional system of
N ≫ 1 Majorana fermions, with random and all-to-all quartic interactions
of strength J , was introduced by A. Kitaev as “A simple model of quantum
holography” in a pair of talks given at the Kavli Institute for Theoretical
Physics in 2015 [53]. Aside from the holographic aspects motivated in his talks,
Kitaev noted the similarity, at late times and for strong coupling, between this
model and the Sachdev–Ye (SY) model, an SU(M) Heisenberg magnet with
random all-to-all interactions [52]. The model introduced by Kitaev has since
become known as the Sachdev–Ye–Kitaev (SYK) model, and in recent years its
large-N properties have placed it at the intersection of research in condensed
matter, quantum information, as well as quantum gravity [54, 91, 92].
The SY model was introduced by its namesakes in 1993 [52] to provide

a model which realised the “marginal Fermi-liquid” phase which had been
introduced in Ref. [93] on phenomenological grounds in an effort to reproduce
the “bad”- and “strange”-metal properties observed in the non-superconducting
phase of high-Tc cuprates. The transport properties of these unusual metallic
phases cannot be captured by the quasiparticle-based theory of Fermi-liquids.
Rather, their description requires an understanding of so-called “non-Fermi-
liquids” (nFL), which do not host quasiparticle excitations. Such nFLs typically
arise near quantum critical points, but may also appear as stable phases over
a range of temperatures for sufficiently strong interactions [54]. The SYK
model is an example of the latter, as its low-energy many-body spectrum is
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2 Theoretical background

exponentially dense in N in the large-N limit , thus precluding a quasiparticle
construction [54]. Furthermore, the model is solvable in the large-N limit. For
example, fermionic correlation (Green’s) functions can be computed analytically
in the long-time (infrared, IR) limit βt≫ 1, under the additional assumption
of strong coupling βJ ≫ 1, where β is the inverse temperature. Consequently,
the SYK model has taken an important place in the study of condensed matter
systems exhibiting nFL properties [54].

A further intriguing large-N property of the SYK model is that is an example
of a “fast scrambler”, redistributing localised excitations over the system’s
many-body degrees of freedom—a process closely linked to quantum chaos
and thermalisation [27, 28], and entanglement generation [42]—at the fastest
possible rate [42, 47]. A popular diagnostic of scrambling is the early-time
exponential decay of out-of-time-order correlators (OTOCs), governed by the
quantum Lyapunov exponent λL. At strong coupling βJ ≫ 1, the SYK model
saturates the universal bound λL ≤ 2π/β, conjectured by Maldacena et al. [51]
to be the fastest rate at which quantum information can be scrambled [57].

The SYK model shares this fast scrambling property with black holes, hinting
at a holographic interpretation of the model. This is substantiated by its
effective (disorder-averaged) action. In the IR limit, the effective action is
conformally invariant, and reproduces the large-N Schwinger–Dyson equations
which lead to the Green’s function solutions discussed above. Notably, the
explicit form of this Green’s function spontaneously breaks the conformal
symmetry down to SL(2,R), and the corrections to the IR effective action are
governed by the Schwarzian action [57, 58]. These properties are shared with
two-dimensional Jackiw–Teitelboim gravity [59, 60].

The remainder of this section is organised as follows. In Sec. 2.1.1, we present
the Hamiltonian of the (Dirac fermion) SYK model, discuss its main features,
and mention further variations of the model which appear in the literature.
Then, in Secs. 2.1.2 and 2.1.3, we elaborate on, respectively, dynamic manifest-
ations of many-body quantum chaos and scrambling of quantum information
in the SYK model.

For an exposition of the SYK model within the condensed matter context,
we refer the interested reader to the review of Chowdhury et al. [54]. For an
introduction to the gravitational viewpoint, we suggest the review of Trunin [92].
Finally, for an overview of the use of holography as a tool to study strongly-
correlated systems without quasiparticles, we suggest the book of Hartnoll
et al. [4], as well as the reviews of Liu and Sonner [94, 95].
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2.1 The SYK model, Chaos, and Scrambling

Figure 2.1: SYK model and spectrum. Representation of the SYK model ĤSYK

(left), defined in Eq. (2.1), as a directed hypergraph. Low-energy tail of the
many-body spectrum of a single realisation of ĤSYK (upper vertical lines), versus
that of a single realisation of the random hopping model of Eq. (2.5) for q = 2
(lower vertical lines), for N = 14 and Q = 1/2. Both spectra are shown in units
of J [see Eq. (2.2)], and have been shifted such that the ground state lies at zero
energy. The energy-axis has been truncated so as to show the lowest 25% of the
energy window covered by the spectrum of ĤSYK .

2.1.1 Model Hamiltonian

In this thesis we will work with a variation of the SYK model in which the N
Majorana fermions modes are replaced by spinless Dirac fermion modes. This
variant was introduced shortly after Kitaev’s talks by Sachdev in Ref. [55], and
its Hamiltonian is given by

ĤSYK =
1

(2N)3/2

N∑

i1,i2,j1,j2=1

Ji1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 . (2.1)

The fermionic operators ĉ†i , ĉi satisfy the canonical anticommutation relations,
and respectively denote the creation and annihilation operator for the ith
fermion mode. The Hamiltonian ĤSYK describes a system of strongly-correlated
fermions, with all-to-all two-body interactions as determined by the quartic
operators ĉ†i1 ĉ

†
i2
ĉj1 ĉj2 . The interaction amplitudes Ji1i2;j1j2 are complex random

variables, with real and imaginary parts sampled independently from Gaussian
distributions. Their statistics are thus fully determined by their variances,
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2 Theoretical background

which satisfy

var(Re [Ji1i2;j1j2 ]) =

{
J2, for i1 = j1, i2 = j2,

J2/2, otherwise,

var(Im [Ji1i2;j1j2 ]) =

{
0, for i1 = j1, i2 = j2,

J2/2, otherwise.
(2.2)

Consequently, the only energy scale governing the dynamics of ĤSYK is J > 0.
The interaction amplitudes further reflect the fermionic exchange statistics,
and hermiticity of ĤSYK,

Ji1i2;j1j2 = −Ji2i1;j1j2 = −Ji1i2;j2j1 = Ji2i1;j2j1 = J∗
j1j2;i1i2

. (2.3)

The prefactor in Eq. (2.1) ensures an extensive scaling of the spectral bandwidth.
Physically, the model is zero-dimensional due to its all-to-all connectivity. To

visualise the two-body processes described by ĤSYK, one may think of the system
as a directed hypergraph on N nodes with [N(N − 1)/2]2 hyperedges that have
complex weights in {Ji1i2;j1j2|i1 < i2, j1 < j2 and ik, jk = 1, . . . , N for k = 1, 2},
and are oriented from nodes j1, j2 to nodes i1, i2. This is sketched in Fig. 2.1
(left panel), where we depict representative hyperedges for the possible two-
body processes: Density-density interactions (i1 = j1, i2 = j2, i1 ̸= i2, dark
blue), density-assisted hopping (for instance i1 = j2, i1 ̸= i2 ̸= j1, sky blue), or
pairwise hopping (i1 ̸= i2 ̸= j1 ̸= j2, cyan).
The only symmetry of ĤSYK is the particle number1,

Q̂ =
1

N

N∑

i=1

ĉ†i ĉi, (2.4)

and the numeric studies presented in Chaps. 3 and 5 were all done at half-filling
Q ≡ ⟨Q̂⟩ = 1/2.
As mentioned in the introductory part of Sec. 2.1, the spectrum of ĤSYK

has been shown analytically in the large-N limit to be exponentially dense
in N throughout the entire spectrum, with its many-body density of states
scaling as exp(NS0) near the edges of the spectrum [54]. Despite our numeric
(exact diagonalisation) constraints to small system sizes, the dense low-energy
spectrum of ĤSYK can already be appreciated away from the large-N limit

1Note that ĤSYK as defined here is not particle-hole symmetric, but requires additional
correction terms to enforce this [96, 97]. In this thesis, we do not consider these correction
terms.
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2.1 The SYK model, Chaos, and Scrambling

(see also Fig. A.2 for a scaling analysis for N = 8, 10, 12, 14), for instance by
comparison to the spectrum of an (integrable) random-hopping Hamiltonian
[Eq. (2.5) for q = 2], for which the low energy many-body density of states is
much sparser (scaling as 1/N in the large-N limit [54]). As an example, and
to give an intuition for the larger density of the low-energy tail of ĤSYK, we
give such a comparison in Figure 2.1 which shows a realisation of the spectrum
of ĤSYK (upper vertical lines) and of the random-hopping Hamiltonian (lower
vertical lines). Both spectra are for N = 14 at half filling, and have been shifted
such that the ground-state lies at zero energy. The energies are shown in units
of J [the standard deviation of the Gaussian-distributed interaction amplitudes
of either Hamiltonian, see Eq. (2.2)], and the energy-axis has been truncated
so as to show the lowest 25% of the energy window covered by the ĤSYK

spectrum. The exponentially dense low-energy spectrum of ĤSYK at N ≫ 1
prohibits a quasiparticle description [54], and further yields a non-vanishing
zero-temperature entropy density S0 ≡ limT→0 S(T ) > 0 [55, 57, 98].
To end this sub-section, we note that the SYK model as defined by Eq. (2.1)

falls within a broader class of two-body random ensembles and embedded
Gaussian unitary matrices, which have long been studied in the context of many-
body quantum chaos and nuclear shell models [99]. Several variations of the SYK
model have been studied, with some examples being: Brownian SYK models,
with time-dependent random couplings Ji1i2;j1j2(t) [100]; Generalisations to
arbitrary q/2-body interactions [for integers q/2 ≥ 1, see also Eqs. (C.1)–(C.3)]
[57, 101], given by,

Ĥq =

√
[(q/2)!(q/2− 1)!]/N q−1

[(q/2)!]2

N∑

i1,...,iq/2=1
j1,...,jq/2=1

Ji1...iq/2;j1...jq/2 ĉ
†
i1
...ĉ†iq/2 ĉj1 ...ĉjq/2 ;

(2.5)
as well as combinations of various SYK-q Hamiltonians Ĥq [102]. Sparse
variants, in which the all-to-all connectivity is broken by randomly removing
interactions from ĤSYK, as well as variants with non-Gaussian disorder have
been found to retain the fast-scrambling dynamics [103–106]. Coupled SYK
models have been proposed in the context of heavy fermions [107], and as
holographic duals to wormholes [108, 109].

2.1.2 Spectral probes of quantum chaos

The SYK model, as defined in Eq. (2.1), is quantum chaotic in the sense
of the Bohigas–Giannoni–Schmit conjecture [110]. That is, given the energy
levels ϵn of ĤSYK (where n = 1, . . . , D, and D is the Hilbert space dimension),
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Figure 2.2: Examples of SFF and OTOC for ĤSYK. (a) Long- and short-range
spectral correlations of the SYK model (red curve) as probed, respectively, by
the SFF (main) and level-spacing distribution (grey histogram, inset). Curves
in the inset show the Wigner–Dyson distribution of Eq. (2.6) for β = 1 (blue),
β = 2 (red), and β = 4 (black), as well as the exponentially decaying distribution
typical of integrable systems (brown). A comparison to the SFF of the GUE
ensemble is given in the main panel by the gray curve. Vertical and horizontal
black-dotted lines in the main panel indicate, respectively, the RMT predictions for
the Heisenberg time 2D and the plateau value 1/D for β = 0. Green dashed, solid,
and dotted lines indicate power laws t−3, t−4.5, and t respectively (see main text
for details), and are included to guide the eye. (b) Scrambling in the SYK model,

as diagnosed by the OTOC Re[F (t)] of Eq. (2.13) for Ŵ = 2ĉ†i ĉi−1, V̂ = 2ĉ†j ĉj−1,
with indices i = 0 and j = 1, at β = 0. Both panels depict data averaged over
an ensemble of 1000 independent realisations of ĤSYK, with N = 14 and N = 10
for the SFF and OTOC, respectively (both at half-filling). For the GUE SFF
data, the matrix dimension was chosen to match the Hilbert space dimension of
ĤSYK for N = 14 at half filling, D = 3432. For p(s), spectral unfolding has been
performed for 1000 independent realisations of ĤSYK for N = 14.

their nearest-neighbour spacings sn = ϵn+1 − ϵn for n = 1, . . . , D − 1 follow
a probability distribution p(s) which agrees well with the Wigner-surmise
for random matrices. In particular, p(s) of ĤSYK displays level repulsion
p(s = 0) = 0 [see the inset of Fig. 2.2(a)], an accepted signature of quantum
chaotic systems [111].

The BGS conjecture proposes that the quantised form Ĥ of any classically
chaotic system exhibits short-range spectral correlations, captured by p(s),
which follow those of random matrix ensembles, consistent with its symmetries
[112]. Within this random matrix theory (RMT), p(s) is then given by the
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2.1 The SYK model, Chaos, and Scrambling

Wigner-surmise (or Wigner–Dyson distribution) [111]

p(s) = Aβs
βe−Bβs

2

(2.6)

where2 β ∈ {1, 2, 4} parameterises the symmetry of Ĥ, according to the three
Gaussian universality classes of RMT: The time-reversal symmetric Gaussian
Orthogonal Ensemble (β = 1, Aβ = π/2, Bβ = π/4), the Gaussian Unitary
Ensemble (β = 2, Aβ = 32/π2, Bβ = 4/π) which breaks time-reversal symmetry,
and the Gaussian Symplectic Ensemble [β = 4, Aβ = 218/(36π3), Bβ = 64/(9π)]
which additionally breaks a rotational symmetry. The complementary Berry–
Tabor conjecture [113] states that for integrable quantum systems, the energy
levels will be independent and thus follow a Poissonian distribution, yielding
an exponentially decaying level-spacing distribution p(s) = e−s/µ/µ (for mean
level-spacing µ). As such, p(s) distinguishes between integrable, versus chaotic
ETH obeying Hamiltonians. Unsurprisingly, the SYK Hamiltonian of Eq. (2.1)
satisfies the ETH [114].
Note that in analysing the chaotic properties of a Hamiltonian’s spectrum,

care must be taken to account for all symmetries of the system (see Ref. [111],
also for details on the necessary spectral unfolding). This is because energies
of different symmetry sectors are essentially independent, and so will cause a
spurious level attraction when mixed. For ĤSYK of Eq. (2.1), the only symmetry
is the particle number (or charge) defined in Eq. (2.4), and it is within a given
charge sector that ĤSYK agrees with the distribution of Eq. (2.6). Interestingly,
the exact symmetry class of ĤSYK, as determined by β, depends on the parity
of N(mod 4) [97].
Whilst short-range (nearest-neighbour) level repulsion in p(s) is a useful

diagnostic of quantum chaos, its dynamic manifestation is, by definition, limited
to fluctuations of observables at late-times on the order of 1/s. To diagnose
quantum chaos over a broader range of times, one should study correlations of a
Hamiltonian’s eigenenergies beyond nearest-neighbours. In particular, quantum
chaotic Hamiltonians exhibit spectral rigidity, which arises due to long-range
(with respect to the mean level-spacing) level-repulsion competing with the
finite spectral bandwidth. A useful tool for studying this spectral rigidity is
the spectral form-factor (SFF), where it manifests as an early-time dip-ramp
behaviour, the so-called correlation hole [98, 111, 115].
We will work with the following definition of the SFF,

S(β, t) =

∣∣∣∣
Z(β + it)

Z(β)

∣∣∣∣
2

, (2.7)

2We use a boldface β for the Wigner–Dyson index to distinguish it from the inverse
temperature β.
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where Z(β + it) = tr(exp(−(β + it)Ĥ)) is the analytically continued partition
function, and the denominator is included for normalisation at t = 0. To gain
an intuition on S(β, t), note that when averaged (E[. . .]) over an ensemble of
disorder realisations of Ĥ at β = 0, the numerator of Eq. (2.7) reduces (up to
some constants and prefactors) to the Fourier transform of the two-point spectral
correlator ρ(2)(ϵ1, ϵ2) as E

[
|Z(β + it)|2

]
∼
∫
dϵ1
∫
dϵ2ρ

(2)(ϵ1, ϵ2) exp(i(ϵ1 − ϵ2)t)
[98, 115]. The SFF is thus sensitive to pair-wise spectral correlations3 over the
entire spectral bandwidth.
The dynamics of the SYK model’s SFF has been found to agree well with the

predictions of RMT [98, 112, 114, 117–120], exhibiting three distinct features,
as shown in Fig. 2.2(a): For early times, E[S(β, t)] displays oscillations decaying
with a power-law envelope. The RMT prediction for the power-law envelope is
t−3, which has been shown analytically to be present also in the SFF of the
Majorana variant of the SYK model in the large-N limit [98]. In contrast,
for the Dirac variant studied in this thesis, numeric evidence—from exact
diagonalisation and thus limited to small system sizes—has been found for
a t−α decay with α ≈ 4.5 [114, 121]. This early-time decay is followed at
intermediate times t ∼ O(

√
D) by a linear in t ramp, which flattens out into

a plateau of height 1/D around the Heisenberg time4 2D, where D is the
Hilbert-space dimension. The early-time oscillations, most pronounced at
infinite temperature β = 0, are determined by the edges of the density of states
[115, 122], and contribute to the disconnected part of Eq. (2.7). The connected
part is given by the ramp and plateau, which are, respectively, the dynamic
manifestation of long-range and nearest-neighbour level repulsion.
In Chap. 3, we will study the spectral statistics of Ĥeff , realised in our

proposed cQED simulation of the SYK model. There we will see that the
sensitivity of the SFF to correlations throughout the entire many-body spectrum
is necessary in order to study how Ĥeff approximates ĤSYK as a function of
experimental control parameters.

2.1.3 Scrambling and OTOCs

Consider a QMB system S with a large number of degrees of freedom N ,
prepared in some initial state |Ψ⟩, and subjected at time t = 0 to a local5

3Ref. [116] showed that a “partial” SFF, constructed from partition functions of local
subregions of the system under study, is furthermore sensitive to eigenstate statistics,
and thus able to probe eigenstate thermalisation.

4The Heisenberg time is set by the mean level-spacing ∼ 1/D [98].
5Local in the sense of having a small support, supp(V ) ≪ N , or being a linear combination
of operators with small supports.

16
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perturbation represented by the operator V̂ . For a chaotic system with Hamilto-
nian Ĥ (and assuming [Ĥ, V̂ ] ̸= 0), the unitary evolution given by exp(−iĤt)
will spread this localised perturbation over O(N) degrees of freedom, such
that it becomes inaccessible to measurements of other local observables Ŵ at
later times t > 0. This delocalisation of quantum information over the entire
system is referred to as scrambling [123]. By definition, it is state-dependent,
and is closely tied to (sub-system) thermalisation and entanglement growth in
isolated quantum systems. Indeed, an accepted definition of a scrambled state
|Ψ⟩ is one in which the reduced state ρA of any subsystem A ⊂ S covering less
than half the system’s degrees of freedom is close to maximally mixed—and
thus also the entanglement entropy S(ρA) = −tr(ρA log(ρA)) is near-maximal
[47, 123]. As an example, a state |Ψ⟩ of an N qubit system, is scrambled if
S(ρA) ≲ nA for any subsystem A containing nA < N/2 qubits (here we have
used log2 in the entanglement entropy). This is known as Page scrambling [47,
123]. The stronger notion of Haar scrambling (which implies Page scrambling
[124]) defines a state |Φ⟩ to be scrambled if it has been randomised with respect
to the Haar measure, i.e., |Φ⟩ = U |Ψ⟩ where U is drawn from the unitary group
according to the Haar measure, and is thus typically highly non-local [47].
Within this quantum information theoretic picture, scrambling of initially

localised quantum information in the time-evolved state exp(−iĤt)|Ψ⟩ of a
system S is diagnosed by the decay of the mutual information I(A : B) =
S(ρA) + S(ρB) − S(ρAB) between disjoint local (in the sense that A and B
cover ≪ N degrees of freedom) subsystems A and B with S \ (A∪B) ≡ C ̸= ∅,
and local Hilbert space dimensions dA, respectively, dB: If subsystems A and
B are maximally entangled at t = 0, then I(A : B) = 2min(dA, dB). This
entanglement will propagate to the remainder of the system C under the action
of exp(−iĤt), causing a decay of I(A :B). The time t∗ at which I(A :B) ≈ 0 is
referred to as the scrambling time [43, 49, 92, 123]. Note the importance of the
adjective local : If either subsystem covers more than N/2 degrees of freedom,
I(A :B) will remain near its maximum value of 2min(dA, dB) [43].
In this thesis we will utilise a closely related, operational diagnostic of scram-

bling, the out-of-time-order correlators (OTOCs). For two initially commuting
operators V̂ and Ŵ , the OTOC is typically6 defined with respect to the thermal
ensemble ρ̂β = e−βĤ/tr(e−βĤ) as

F (t) = tr(ρ̂βŴ
†(t)V̂ †Ŵ (t)V̂ ), (2.8)

where Ŵ (t) = eiĤtŴ e−iĤt. Correlators of this form appear naturally in lower

6For a discussion of regularised versus non-regularised OTOCs see, for instance, Refs. [51,
92, 125, 126].
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bounds to I(A :B) [43], and so their decay can be taken as a diagnostic of
scrambling7.
Furthermore, OTOCs contribute to the dynamics of squared-commutators as

C(t) ≡tr(ρ̂β[Ŵ (t), V̂ ]†[Ŵ (t), V̂ ]) (2.9)

=tr(ρ̂βŴ
†(t)V̂ †V̂ Ŵ (t)) + tr(ρ̂βV̂

†Ŵ †(t)Ŵ (t)V̂ )

− 2Re[F (t)]. (2.10)

Under the correspondence principle, the commutators [Ŵ (t), V̂ ] are related
to Poisson brackets in the classical limit. The norm of the latter exhibits
an exponential temporal growth exp(λt) for classical chaotic systems, leading
to the classical definition of the Lyapunov exponent λ as quantifying the
exponential (phase-space) sensitivity of a chaotic system to perturbations [128].
An exponential growth period of C(t) thus lends itself to the definition of a
quantum Lyapunov exponent λL.
For initially commuting operators [Ŵ (0), V̂ ] = 0, C(0) = 0. The subsequent

dynamics of C(t) for t > 0 are governed by two timescales in chaotic systems
with a large number of local degrees-of-freedom strongly interacting via few-
body couplings (such as the SYK model) [51, 92, 127]: The first is the dissipation
time td ∼ β, over which thermal two-point correlators decay as exp(−t/td).
For t < td, all terms of C(t) factorise as tr(ρ̂βŴŴ †)tr(ρ̂βV̂ V̂

†)+O(e−t/td), and
thus cancel, such that C(t) remains small. Subsequently, for td < t < t∗, the
OTOC contribution decays exponentially8 as

F (t) ∼ tr(ρ̂βŴŴ †)tr(ρ̂βV̂ V̂
†)− c

N
eλL(t−t∗), (2.11)

saturating at the scrambling time t∗ (here c is some numerical prefactor), thus
causing an equivalent exponential growth and saturation of C(t). For so-called
“fast-scramblers”, t∗ is on the order of β log(N) [47, 92]. In fact, it was shown
in Ref. [51], that the rate λL of the exponential dynamics of F (t) is subject to

7Similarly, Ref. [127] identified OTOCs as probes of unitary k-designs (in the above case
for k = 2), and showed that their operator average is proportional to order k = 2 frame
potentials. The latter measures the Frobenius distance of a k = 2-fold unitary channel
from the Haar channel. The decay of OTOCs thus indicates that the dynamics of a given
system become indistinguishable from Haar random dynamics, i.e., it indicates Haar
scrambling.

8In systems with small local Hilbert spaces, such as qubit models, or where the local
degrees-of-freedom have an all-to-all (instead of few-body) coupling, the scrambling time
t∗ is O(1) in units of the system’s natural timescale, and it is no longer possible to identify
a well defined exponential decay of F (t) [95].
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2.2 Cold atoms & Cavity QED

a universal (independent of the choice of operators Ŵ and V̂ ) bound

λL ≤ 2π

β
. (2.12)

The SYK model is a fast scrambler, and further saturates this bound in the
strong coupling regime βJ ≫ 1 (see the review of Ref. [92], and references
therein). This fastest possible decay of OTOCs can thus be used to benchmark
proposed quantum simulations of the SYK model, and we will make use of this
property in Sec. 3.5.
For unitary operators ŴŴ † = 1, V̂ V̂ † = 1, the time-ordered contributions

of C(t) [first line of Eq. (2.10)] yield a t-independent contribution of 2, such
that Eq. (2.10) can be written as

Re[F (t)] = 1− C(t)

2
. (2.13)

We will make use of this relation in Sec. 3.5.1 to determine the OTOC from
C(t), as the latter is cheaper to calculate numerically, and thus allows one to
study larger system sizes. An example for ĤSYK is shown in Fig. 2.2(b).
Finally, we note the exponential decay of OTOCs should not be conflated

with quantum chaos in the sense of the BGS conjecture, since exponentially
decaying OTOCs have been found in integrable systems [129], as well non-
decaying OTOCs in quantised versions of classically chaotic systems [130] (see
also the discussion of Ref. [92]). Rather, the (early time) “scrambling chaos”
diagnosed by OTOCs is complementary to the (late time) “spectral chaos”
diagnosed by level-spacing distributions and spectral form factors [95].

2.2 Cold atoms & Cavity QED

In this section, we provide a brief account of the study of quantum gases
trapped within the mode-volume of an optical Fabry–Pérot resonator. This
platform, typically referred to as cavity-QED (cQED), has played host to many
exciting developments in the synthesis of bosonic, fermionic, and magnetic
QMB Hamiltonians with long-range interactions [22].
Quantum gases on their own, particularly when confined to optical lattices,

have become an established platform for the realisation of condensed mat-
ter models of strongly-correlated systems, largely due to their versatility in
tuning, for instance, dimensionality, geometry, and interaction strength [11,
13]. Integrating quantum gases into optical cavities—electromagnetic cavities
whose resonant modes lie in the optical frequency range—further augments
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physicist’s capabilities in the quantum simulation of condensed-matter models
with (ultra)cold atomic gases. This is due to the enhanced light–matter inter-
actions in high-quality optical cavities, allowing for the formation of hybridised
light–matter states, as well as due to the native ability of cavity photons to
mediate long-range interatomic interactions. A striking demonstration of the
application of cQED to the quantum simulation of QMB systems, was the
observation of superradiance, as predicted by the Dicke model [131], and the
concomitant self-organisation transition in a transversely driven Bose–Einstein
condensate (BEC), reported in Ref. [132]. As discussed by Mivehvar et al. [22],
it was soon realised that the associated ordered phase is a candidate for a
lattice supersolid, a phase predicted to exist for the long-range Bose–Hubbard
model, and for which subsequent cQED experiments provided further evidence
[133]. Extensions of this work to crossed cavities, demonstrated the capability
to realise also the supersolid phase with continuous translational symmetry
breaking in cQED [134].
Whilst these pioneering works with ultracold gases in optical cavities were

done with BECs (87Rb), very recently the realisation of the strong coupling
regime for Fermi gases in high-finesse optical cavities has been achieved using
6Li [72, 73]. These advances have opened the door to experimentally studying
the competition of short- and long-range interactions also in fermionic cQED
systems [22], which may, for instance, be utilised to experimentally probe the
numerically predicted MBL transition of the long-range Fermi–Hubbard model
[135], to realise proposals for quantum charge glasses [136], or, as we show in
Chap. 3, to realise the fast-scrambling dynamics of the SYK model. In general,
the expansion of experimental capabilities in simulating fermionic QMB systems
is crucial, as numerical studies of such systems are often hampered by the
sign-problem [8, 13].
The derivations presented below will focus on the single cavity-mode regime.

However, as we show in Chap. 3, to quantum simulate the SYK model using
cQED it is crucial to operate in the multi-mode regime, where the atoms couple
to multiple cavity-modes. This regime has been achieved, for example, with
BECs in confocal cavities (where transverse cavity-modes form degenerate
families according to the parity of the sum of their transverse mode indices)
[76], expanding the cQED toolkit to tunable-range interactions [137], compliant
optical lattices capable of simulating phonon modes [138], and models of
associative memory [139], to name a few. Multi-mode coupling for fermionic
quantum gases was achieved in the above work of Ref. [72]. The formal extension
of the following derivations to the multi-mode case require one to generalise to
a set {âm} of cavity-mode operators, where each mode is labelled by a unique
index m. As an example, the atom–cavity interactions presented in Eq. (2.14)
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2.2 Cold atoms & Cavity QED

must then be extended to a sum over all possible interactions of the atom
with the various cavity modes (

∑
m Ωmâmgm(r) +H.c.)(σ̂+ + σ̂−). This will be

treated further in Sec. 3.2.2.

We begin in Secs. 2.2.1 and 2.2.2 with a brief recapitulation of the canonical
scenario of a two-level atom interacting with a single quantised eigenmode
of an optical cavity. This serves to introduce the basic formalism, and to
discuss the approximations typically made in the treatment of cQED. Then,
in Sec. 2.2.3, we generalise to the many-body case of a quantum gas in an
optical cavity. We will show in Sec. 2.2.4 how a description in terms of a
spin-polarised gas can be achieved in the dispersive regime, and finally, in
Sec. 2.2.5, we will show how the virtual exchange of cavity photons between
atoms at arbitrary locations generates long-range atom–atom interactions. The
formalism of Secs. 2.2.3–2.2.5 will be utilised in Chaps. 3 and 4, and follows in
part that of the review by Mivehvar et al. [22], but with some modifications to
the notation in order to conform to that used in Chapter 3.

For detailed discussions on the history, capabilities and recent developments
in cQED with ultracold gases, we refer the interested reader to the reviews
by H. Ritsch, P. Domokos, F. Brennecke and T. Esslinger, “Cold atoms in
cavity-generated dynamical optical potentials”, Rev. Mod. Phys. 85, 553–601
(2013) [21], and F. Mivehvar, F. Piazza, T. Donner and H. Ritsch, “Cavity
QED with quantum gases: new paradigms in many-body physics”, Adv. Phys.
70, 1–153 (2021) [22]. Here, instead, we will focus on those details necessary for
the discussions and derivations of subsequent chapters. For an overview of the
related field of cavity quantum materials and micro-cavities, see for instance
the review of Schlawin et al. [140].

2.2.1 A single atom in an electromagnetic cavity—The
quantum Rabi model

In general, an electromagnetic cavity supports several quantised electromagnetic
modes, whose shape and frequency are determined by the boundary conditions
as set by the cavity [141]. Let us focus on a single such mode, and denote its
frequency and coordinate-space mode-volume, respectively, as ωc and Vc. Let
â† and â, respectively, denote the operators that create and annihilate a photon
in this cavity mode, so that its total energy is given by Ĥc = ωcâ

†â. We will
consider a linear optical cavity, as is assumed in Chapter 3, and was employed
for the experiment reported on in Chapter 4. For an overview of the different
types of optical cavities in use, we refer the reader to Sec. 2.8.1 of Mivehvar
et al. [22].

21

https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1080/00018732.2021.1969727


2 Theoretical background

Figure 2.3: Two-level atom in a cavity. Representation of a two-level atom (TLA),
composed of a ground |g⟩ and excited |e⟩ state, in a single mode â of an optical
cavity. Their respective resonance frequencies are ωa and ωc. Excitations are
exchanged coherently at a rate Ωc, and can be lost from the TLA via spontaneous
emission at a rate Γ, or from the cavity mode at a rate κ. The cavity-mode’s
profile gc(r) is depicted schematically in red.

Consider now an atom with a single valence electron—such as an alkali
atom—that can occupy two states which are separated in energy by an amount
ωa. It is common practice to refer to these states as the ground state |g⟩,
and the excited state |e⟩. Taking the ground state’s energy as our reference,
the energy of this two-level atom (TLA) is given by Ĥa = ωaσ̂

+σ̂−, where
σ̂+ = (σ̂−)† = |e⟩⟨g|. Suppose now that the TLA is placed at a fixed location r
within the mode-volume Vc, such that it can interact with the photons sustained
by the cavity mode. This scenario is described by the Hamiltonian

ĤR = Ĥc + Ĥa + Ĥac, where Ĥac = Ωc(âgc(r) + â†g∗c (r))(σ̂
+ + σ̂−), (2.14)

which is known as the quantum Rabi model [142].
The interaction term Ĥac describes the minimal-coupling atom–light inter-

action in the dipole-approximation (see, for instance, Secs. 5.1, 6.1–6.2 of the
book by Scully and Zubairy [141]). Within this approximation, the strength
of the atom–cavity interaction is given by the single-photon Rabi frequency
Ωc =

√
d2ωc/(2ϵ0Vc), where d is the atomic dipole moment, and ϵ0 the vacuum

permittivity constant. The dipole approximation is based on the assumption
that the variation of the electromagnetic mode over the spatial extent of the
TLA is negligible (long-wavelength approximation). This is certainly the case
for an atom in an optical cavity, since optical frequencies have wavelengths
of several hundred nm, whilst atomic radii, being on the order of the Bohr
radius, are on the order of ångström. The function gc(r) is the dimensionless
cavity-mode amplitude (profile), which satisfies

∫
drgc(r)g

∗
c (r) = Vc.

The above scenario is sketched in Fig. 2.3. There we also depict the possible
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2.2 Cold atoms & Cavity QED

loss processes, either from the atom via spontaneous emission at a rate Γ, or
from the cavity mode via leakage through the cavity mirror at a rate κ. The
rate of coherent atom–cavity interactions relative to these loss processes is
quantified by the “single-atom cooperativity” C = Ω2

c/(2κΓ). This parameter
allows one to delineate different physical regimes, depending on the properties
of the atomic species (via d and Γ), and of the cavity (via Vc and κ) [140,
143]: Weak coupling refers to the low-cooperativity regime C ≪ 1, where losses
dominate the dynamics Ωc ≪ κ,Γ. The strong coupling regime is achieved when
C ≳ 1. Here, the coherent coupling either becomes comparable to both loss
processes Ωc ≳ κ,Γ, or dominant over one of them (for instance Γ > Ωc ≫ κ as
in Chap. 4), allowing for the formation of hybridised light–matter states (cavity
polaritons). If Ωc ≲ ωc, one reaches the ultra-strong coupling regime, which is,
however, more applicable in the regime of micro-cavities whose mode volumes
are significantly smaller (larger Ωc), and in circuit-QED where resonances
are on the order of GHz (compared to hundreds of THz for optical cavities).
Cavity-QED experiments fundamentally realise driven–dissipative systems,
the dynamics of which can be captured in a master equation description, as
discussed, for instance, in Sec. II of Ref. [21]. We will continue to focus on the
unitary dynamics here, but will return to the role of loss processes in Sec. 4.2.3
and App. A.5.

2.2.2 Rotating-wave approximation—The Jaynes–Cummings
model

Within the weak- and strong-coupling regime, the Hamiltonian of Eq. (2.14)
can be simplified further by making the rotating-wave approximation (RWA)
[144], which entails dropping the operators â†σ̂+, âσ̂− and their Hermitian
conjugates: Within the interaction picture representation of Eq. (2.14)—where
Ĥ0 = Ĥc + Ĥa and V̂ = Ĥac—one has

V̂I(t) = Ωc

(
â†σ̂+eiω̄tg∗c (r) + â†σ̂−ei∆catg∗c (r) + H.c.

)
, (2.15)

where ω̄ ≡ ωc + ωa, ∆ca ≡ ωc − ωa, and H.c. denotes the Hermitian conjugate.
Assuming that ωc and ωa are of the same order such that ωc, ωa ≫ |∆ca| , |Ωc|,
the physical intuition is then that the rapidly oscillating terms e±iω̄t average
out over the dynamics of the remaining processes, which evolve on much slower
timescales given by 1/ |∆ca| and 1/ |Ωc|. More formally (see also Secs. 4.2–4.3 of
the book by Gerry and Knight [145]), the time-evolution operator generated in
the interaction picture by V̂I(t), permits a series expansion in Ωc/ωc,Ωc/ωa and
Ωc/∆da. Dropping all orders of Ωc/ωc,Ωc/ωa in line with the above hierarchy
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of energy-scales then yields a time-evolution operator generated by only the
slowly rotating terms Ωc

(
â†σ̂−ei∆catg∗c (r) + H.c.

)
. In the regime of ultra-strong

coupling Ωc ≲ ωc, this approximation is, by definition, not valid, and all terms
of Eq. (2.15) contribute to the dynamics.
Applying the RWA to Eq. (2.14), we obtain the Hamiltonian for what is

known as the Jaynes–Cummings model [146],

HJC = ωcâ
†â+ ωaσ̂

+σ̂− + Ωc(âσ̂
+gc(r) + H.c.). (2.16)

This Hamiltonian conserves the total number of excitations (in contrast to ĤR,
which conserves only the parity of excitations), and is exactly solvable [147].

The many-body extension of HJC, with N > 1 TLAs (or two-level emitters)
in a cavity, is known as the Tavis–Cummings (TC) model [148], which we
will encounter in Chapter 4. In the many-body case, the single-photon Rabi
frequency is enhanced as

√
N [21], which has allowed for quantum simulation of

the ultra-strong coupling regime in optical cavities: The collective enhancement,
as well as coupling to motional instead of electronic degrees of freedom, was
used in Ref. [132] to quantum simulate the superradiance phase transition of
the Dicke model [131], the many-body version of ĤR.

2.2.3 A quantum gas in an optical cavity

We now generalise the scenario of a single TLA in an optical cavity, as sketched
in Fig. 2.3, to the many-body case of an (ultra)cold gas of atoms trapped in an
optical cavity.
As before, the Hamiltonian for the QMB system will include the energy of

photons in the quantised cavity mode Ĥc, the internal electronic structure of
the atoms Ĥa, and the interaction of atoms with the quantised cavity field Ĥac.
In contrast to the treatment of Eqs. (2.14), (2.16), however, we do not assume
the atoms to be located at fixed positions in the cavity’s mode volume. Rather,
we consider the general situation in which the atoms are free to move within
the confines of an external trapping potential, and possess an amount of kinetic
energy in accordance with their temperature. We will denote this energy of
the atoms’ motional degrees of freedom by Ĥkt. Further, since the atoms are
mobile, they can scatter off of one-another, and we denote the interactions due
to this interatomic scattering as Ĥint. Finally, we will denote by Ĥd a coherent
drive field which may couple directly to the electronic levels of the atoms when
impinging onto the quantum gas transversely to the cavity axis, or may couple
to the cavity mode when the cavity is pumped on-axis. The total many-body
Hamiltonian is thus given by

Ĥmb = Ĥc + Ĥa + Ĥkt + Ĥint + Ĥac + Ĥd, (2.17)
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2.2 Cold atoms & Cavity QED

and the explicit expressions for each contribution are discussed further below.
Remaining in the TLA approximation, an atom at location r is represented in

second-quantised form by the field operators ψ̂s(r) and ψ̂
†
s (r), which respectively

annihilate and create an excitation in the atomic ground (s = g) or excited
state (s = e). For (fermionic)bosonic atoms, the field operators satisfy the
canonical (anti)commutation rules

[ψ̂s(r), ψ̂s(r
′)]± = [ψ̂g(r), ψ̂e(r

′)]± = [ψ̂g(r), ψ̂
†
e(r

′)]± = 0,

[ψ̂s(r), ψ̂
†
s(r

′)]± = δ(r − r′), (2.18)

where, for instance [ψ̂g(r), ψ̂
†
e(r

′)]± = ψ̂g(r)ψ̂
†
e(r

′) ± ψ̂†
e(r

′)ψ̂g(r), and the
(upper)lower sign is applied when dealing with (fermionic)bosonic field operators.
We will follow this convention throughout this thesis, unless stated otherwise.

Within the frame rotating at the drive frequency ωd, the various terms of
Ĥmb are given by

Ĥc =∆cdâ
†â, (2.19)

Ĥa =−
∫

dr∆daψ̂
†
e(r)ψ̂e(r), (2.20)

Ĥkt =
∑

s=e,g

∫
drψ̂†

s(r)

(−∇2

2mat

+ Vt(r)

)
ψ̂s(r), (2.21)

Ĥint =
∑

s=e,g

1∓ 1

4
gss

∫
drψ̂†

s(r)ψ̂
†
s(r)ψ̂s(r)ψ̂s(r) + geg

∫
drψ̂†

e(r)ψ̂
†
g(r)ψ̂g(r)ψ̂e(r),

(2.22)

Ĥac =
1

2

∫
dr
(
Ωcgc(r)âψ̂

†
e(r)ψ̂g(r) + H.c.

)
, (2.23)

Ĥd =ηâ† +

∫
drΩdgd(r)ψ̂

†
e(r)ψ̂g(r) + H.c., (2.24)

where the parameters and functions are, in order of appearance, the cavity–
drive detuning ∆cd ≡ ωc − ωd; the drive–atom detuning ∆da ≡ ωd − ωa; the
Laplace operator ∇2, the atomic mass mat, and the external trapping potential
Vt(r); the contact-interaction strengths ggg, gee and geg = gge; the atom–cavity
coupling strength (single-photon Rabi frequency, see Sec. 2.2.1) Ωc, and the
dimensionless cavity-mode profile gc(r). The last contribution Ĥd is written in
a general form to describe both an on-axis drive coupling to the cavity mode
with strength η, and a transverse drive which impinges directly on the atomic
cloud. In the latter case, the drive’s coupling to the internal states of an atom
at location r depends on the drive’s Rabi frequency Ωd = d

√
I (where I is the
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intensity of the drive field), as well as the local drive amplitude gd(r). For
the remainder of this Chapter, we will focus on the transverse scenario η = 0,
Ωd ≠ 0, but we will come back to the longitudinal configuration η ̸= 0, Ωd = 0
in Sec. 3.6.3 and in Chap. 4.

The term Ĥint describes mutual scattering of the atoms. In the ultracold
regime, their kinetic energy is so low that interatomic scattering occurs predom-
inantly between atoms occupying the lowest orbital angular momentum states
l = 0. This so called s-wave scattering is described by the contact-interaction
pseudo-potential of Ĥint. There, the ∓ term reflects the fact that the funda-
mental anti-symmetry of fermionic wavefunctions prevents s-wave scattering
between fermionic atoms occupying the same spin state. Hence, for fermions,
only the inter-species scattering geg contributes to Ĥint. For a detailed overview

of Ĥint, we refer the interested reader to the introductory section of the review
by Bloch et al. [11].

We note that, as in Sec. 2.2.1, the atom–light interactions of Ĥac and Ĥd

assume a two-level atom, as well as the validity of the dipole approximation
and the RWA.

2.2.4 Dispersive regime

The many-body Hamiltonian Ĥmb presented in the previous section describes a
gas of spin-full atoms. Here we will discuss a canonical situation, where the
quantum gas is driven in the dispersive regime, in which the effective many-body
dynamics can be projected onto the collective ground-state manifold of the
atoms. This will be an essential ingredient of our proposal in Chap. 3, which
requires effective dynamics of spinless fermions.

Within the Heisenberg picture, the cavity and field operators are dynamical
degrees of freedom â = â(t), ψ̂s(r) = ψ̂s(r, t), whose time-evolution is governed
by Ĥmb [Eqs. (2.17)–(2.24)] as well as loss processes. Following Ref. [22], we
focus here on the Hamiltonian evolution. Thus, the operators evolve according
to the Heisenberg equation of motion as follows9 (for notational convenience, we
will suppress the time-dependence of the cavity and field operators throughout

9For the derivation of the kinetic contribution, see App. A.4.
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this thesis),

dâ

dt
=− i∆cdâ− i

1

2

∫
dr(Ωcgc(r))

∗ψ̂†
g(r)ψ̂e(r), (2.25)

dψ̂g(r)

dt
=− i

(−∇2

2mat

+ Vt(r) +
1∓ 1

2
gggψ̂

†
g(r)ψ̂g(r) + gegψ̂

†
e(r)ψ̂e(r)

)
ψ̂g(r)

− iΦ̂†(r)ψ̂e(r), (2.26)

dψ̂e(r)

dt
=− i

(−∇2

2mat

+ Vt(r)−∆da +
1∓ 1

2
geeψ̂

†
e(r)ψ̂e(r) + gegψ̂

†
g(r)ψ̂g(r)

)

× ψ̂e(r)− iΦ̂(r)ψ̂g(r), (2.27)

where we have defined Φ̂(r) ≡ Ωcgc(r)â/2 + Ωdgd(r), similar to Ref. [149].
Consider now the scenario where the drive–atom detuning ∆da is the dominant

energy scale in Ĥmb. This is known as the dispersive regime, since the drive is
far off-resonant with the atomic transition. Consequently, the probability to
excite atoms is suppressed, and most atoms remain in their ground state—the
so-called low-saturation limit [150]. Then, the field operator for the excited
state can be “adiabatically eliminated”, the intuitive picture being that the
operators ψ̂e(r) evolve so rapidly that they adapt to the dynamics of the ground
state field operators ψ̂g(r) essentially instantaneously. More formally, taking
the Laplace transform—defined as L[f(t)] ≡

∫∞
0

dte−stf(t) for a function f(t)
of time t—of Eq. (2.27), expanding to zeroth order in s/∆da, and taking the
inverse Laplace transform, one obtains

ψ̂e(r) =
1

∆da

Φ̂(r)ψ̂g(r), (2.28)

which is valid for times t≫ |∆da|−1. Here we have assumed, following Refs. [22,
151], that |⟨Ĥkt⟩|, |gee| , |geg| ≪ |∆da|, such that the contributions from Ĥkt and

Ĥint can be dropped.
Inserting Eq. (2.28) into the remaining evolution Eqs. (2.25) and (2.26), one

obtains effective equations of motion for the time regime t ≫ |∆da|−1, from
which one can deduce the corresponding effective Hamiltonian to be

Ĥeff,∓ =Ĥc + Ĥkt +
1∓ 1

2
ggg

∫
drψ̂†

g(r)ψ̂
†
g(r)ψ̂g(r)ψ̂g(r)

+
1

∆da

∫
drΦ̂†(r)Φ̂(r)ψ̂†

g(r)ψ̂g(r) +O(∆−2
da ),

(2.29)

where now Ĥkt =
∫
drψ̂†

g(r)
(

−∇2

2mat
+ Vt(r)

)
ψ̂g(r).
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Expanding the product Φ̂†(r)Φ̂(r) in the last term of Eq. (2.29), one ob-
tains an atomic-density-dependent dispersive shift of the cavity resonance
â†â
∫
dr |Ωcgc(r)|2 ψ̂†

g(r)ψ̂g(r)/(4∆da), a dipole potential due to the drive∫
dr |Ωdgd(r)|2 ψ̂†

g(r)ψ̂g(r)/∆da, as well as an interference10 term between the

cavity and drive fields
∫
drΩdgd(r)(Ωcgc(r)â)

†ψ̂†
g(r)ψ̂g(r)/(2∆da) + H.c.. The

strength of this interference term is given by the two-photon Rabi frequency
η0 = |ΩdΩc/∆da|.
In this thesis, we will focus on cQED with fermionic atoms. Thus, from this

point onwards we will work with the effective Hamiltonian (up to and including
order 1/∆da)

Ĥeff,− = Ĥc + Ĥkt +
1

∆da

∫
drΦ̂†(r)Φ̂(r)ψ̂†(r)ψ̂(r), (2.30)

where, from now on, we will use ψ̂(r) ≡ ψ̂g(r).

2.2.5 Cavity-mediated long-range interactions

We have seen in Sec. 2.1 that the SYK Hamiltonian of Eq. (2.1) is characterised
by all-to-all two-body interactions, with random complex amplitudes, between
spinless fermions. In this section we will demonstrate the native ability of the
cQED platform to mediate such infinite-range interactions.
Our starting point is the fermionic many-body Hamiltonian Ĥeff,−, as given

by Eq. (2.30). Having adiabatically eliminated the excited state, the spin
degree-of-freedom is frozen out, such that the Hamiltonian describes a system
of spinless fermions. Long-range interactions between fermion pairs at arbitrary
locations r and r′, can then be engineered via the virtual exchange of cavity
photons. The intuitive picture is that, in the dispersive regime, a drive photon
is scattered into the cavity mode by an atom at location r. Assuming that
also the cavity–atom detuning ∆ca is large, this cavity photon subsequently
scatters from another atom at r′ without exciting it. In the strong coupling
regime, photons can be scattered repeatedly in this way, before being dissipated,
leading to an effective atom–atom interaction.
In the regime of large ∆ca, the cavity photons can be “integrated out”, and one

obtains effective interactions of the form
∫
dr
∫
dr′D(r, r′)ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′),

where D(r, r′) is a product of cavity and drive mode-functions. To show this

10In the case of a standing-wave transverse drive with gd(r) ∝ cos(kdx), it is this interference
term which, above a critical drive strength, dynamically forms a chequerboard lattice
allowing for the self-organisation transition, discussed in the introductory part of this
section, to occur.
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2.2 Cold atoms & Cavity QED

formally, one can take various approaches. The photon operators â can be
adiabatically eliminated on the level of the Heisenberg equations of motion (as
in Ref. [22]), similar to the procedure which we followed for ψ̂e(r) in Sec. 2.2.4.
As before, this procedure is motivated by a separation of timescales. For
∆ca = ∆da +∆cd comparable to ∆da, such that it is larger than the remaining
energy scales of Ĥeff,−, â evolves on timescales much shorter than the rest of
the system, so that its dynamics average out. This can be made explicit also on
the Hamiltonian level: Going into the rotating frame generated by ∆caâ

†â, the
photonic operators explicitly acquire rapidly oscillating phases exp(±i∆cat),
which can then be leveraged to perform an expansion in powers of 1/∆ca. This
high-frequency expansion is known as a Floquet–Magnus expansion [152, 153],
and is suitable for time-dependent periodic Hamiltonians.
In anticipation of Chap. 3, we will, instead, use an alternative technique

known as the Schrieffer–Wolff transformation (SWT) [154, 155]. The basic idea
is that for a Hamiltonian Ĥ = Ĥ0 + V̂—where (Ĥ0)V̂ is the (non)interacting
part—, one performs a unitary transformation

eŜĤe−Ŝ = Ĥ0 +
(
V̂ + [Ŝ, Ĥ0]

)
+ [Ŝ, V̂ ] +

1

2
[Ŝ, [Ŝ, Ĥ0 + V̂ ]] + . . . , (2.31)

generated by an ant-hermitian operator Ŝ which is chosen such that V̂ +
[Ŝ, Ĥ0] = 0. In this way, one rotates Ĥ into a frame where, to lowest order, the
interactions described by V̂ are removed.
For Ĥeff,− as in Eq. (2.30) we have

Ĥ0 =Ĥc + Ĥkt +

∫
dr

|Ωcgc(r)|2
4∆da

â†âψ̂†(r)ψ̂(r) +

∫
dr

|Ωdgd(r)|2
∆da

ψ̂†(r)ψ̂(r),

(2.32)

V̂ =
1

2∆da

∫
dr(Ωcgc(r))

∗Ωdgd(r)â
†ψ̂†(r)ψ̂(r) + H.c. . (2.33)

The condition V̂ + [Ŝ, Ĥ0] = 0 is then fulfilled11 by the generator

Ŝ =
1

2∆da∆cd

∫
dr
[
(Ωcgc(r))

∗Ωdgd(r)â
† − H.c.

]
ψ̂†(r)ψ̂(r). (2.34)

11In evaluating the commutator, we drop a term of relative order 1/(∆da∆cd), stemming
from the third term of Ĥ0. A similar approach is taken in Ref. [22] when performing the
adiabatic elimination on the level of the Heisenberg equations of motion. If Ωc ≪ Ωd,
one could also already neglect this term in Ĥ0. Alternatively, one can include the third
term of Ĥ0 in the coupling term V . This adds to Ĥeff terms which are linear in â and
thus vanish when projecting onto a subspace of constant photon number.
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2 Theoretical background

This yields a series expansion for eŜĤe−Ŝ in powers of |ΩcΩd/(∆da∆cd)|, which
yields, to linear order, the effective Hamiltonian

Ĥeff = Ĥ0 +

∫
dr

∫
dr′D(r, r′)ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′), (2.35)

where D(r, r′) = (Ωcgc(r))
∗Ωdgd(r)Ωcgc(r

′)(Ωdgd(r
′))∗/(4∆2

da∆cd) describes
the fermion–fermion interaction amplitude, with magnitude η20/4∆cd. Note
that the effective two-body interaction of the above equation is separable, in
the sense that it can be factorised into a product sgn(∆cd)Î Î

†, with

Î =

∫
dr

Ωdgd(r)(Ωcgc(r))
∗

2∆da

√
|∆cd|

ψ̂†(r)ψ̂(r). (2.36)

We will see in Sec. 3.3 that this separability is lifted by including multiple
cavity-modes in the calculation. Finally, note that the long-range interactions of
Eq. (2.35) need not be uniformly all-to-all: The interaction amplitude between
a pair of atoms at locations r and r′ depends on the overlap of their mode
function with that of the cavity mode, as is evident from Eqs. (2.35) and (2.36).
If an atom is localised at a node of gc(r), it will interact only negligibly, as
compared to atoms located at antinodes of gc(r). We will see in Chap. 4 how
position-independent (uniform) long-range interactions can be generated by
trapping atoms at positions commensurate with the antinodes (along the cavity
axis) of gc(r).
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3 A cavity quantum
electrodynamics implementation
of the Sachdev–Ye–Kitaev model

This chapter is based on the manuscript P. Uhrich, S. Bandyopadhyay, N.
Sauerwein, J. Sonner, J.-P. Brantut and P. Hauke, “A cavity quantum electro-
dynamics implementation of the Sachdev–Ye–Kitaev model”, arXiv:2303.11343
[quant-ph] (2023) [80]. As such, most of the derivations and discussion presen-
ted in this chapter are adapted from there, with some additional unpublished
results included. My main contributions to this work include the derivation of
the effective model Ĥeff , the numeric calculation of its interaction amplitudes
Ji1i2;j1j2 , and the analysis of the effective model’s dynamics as a function of the
control parameters δ̃ω and ζ. These are discussed in Secs. 3.2–3.5. I further
performed the supplementary calculations reported in App. A, as well as for
the alternative on-axis drive configuration discussed in the outlook Sec. 3.6.3.

In this chapter, we present the details of Ref. [80], in which we propose
an experimentally feasible quantum simulation of the Sachdev–Ye–Kitaev
(SYK) model, leveraging on recent advances in cavity quantum electrodynam-
ics (cQED) architectures. This platform natively realises long-range all-to-all
interactions, mediated by the virtual exchange of cavity photons [22] (see also
the derivations of the introductory Sec. 2.2.5). This capability has been used
in proposals for the study of, for instance, glassy physics [136, 156, 157]. More
recently, it has been used to implement hyperbolic interaction geometries, relev-
ant to the study of holographic quantum matter[158]. Furthermore, controlled
disorder in the light-matter coupling [77, 159] (as discussed further in Chap. 4),
as well as the strong-coupling regime for quantum degenerate Fermi gases [72,
73], are now available in the cQED framework.

Here we will see that this combination, together with the multimode nature of
optical cavities, allows for the realisation of the long-range, all-to-all and random
SYK interaction in existing state-of-the-art experimental systems with up to
hundreds of particles. Starting from a complete model of trapped Fermions
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

in a high-finesse cavity in Sec. 3.2, we identify in Sec. 3.3 two key physical
parameters allowing for the dynamics of the effective model to replicate that of
the SYK model:

(i) The effective number of modes participating in the light-matter interac-
tions, parameterised by δ̃ω ≡ δω/∆cd—the frequency spacing δω of the
cavity modes, relative to the drive–cavity detuning ∆cd—which can be
varied so as to tune the effective model into the chaotic regime [74, 75].

(ii) The transverse size ζ ≡ x0/(w0/
√
2) of the atomic cloud—given by the

harmonic length of the dipole trap x0, relative to the cavity mode waist w0—
controlling the mechanical coupling between atoms and cavity photons.

In Sec. 3.4, we numerically calculate the interaction amplitudes of the effective
model over a broad, experimentally available, range of these parameters. There,
we uncover a feature common to existing proposals [63, 65], which was, however,
not reported on; namely that the statistical distribution of the interaction
amplitudes is not Gaussian, but interpolates between a Gaussian and a Cauchy
distribution. Despite this deviation from the original SYK prescription, the
dynamics generated by these interaction show good agreement with those of the
ideal SYK model, as we demonstrate for the effective model in Sec. 3.5, and for
the variant of the ideal model with Cauchy-distributed interactions in App. A.6.
In particular, we numerically exactly simulate out-of-time-order correlators
and the spectral form factor of the effective model over a range of system
parameters, showing that both quantities approach their SYK counterparts as
the effective number of cavity modes is increased by varying δ̃ω.

3.1 Target model

Our target is the SYK model whose Hamiltonian ĤSYK was defined in the
introductory Sec. 2.1.1. For convenience, we briefly recapitulate its properties
here: The Hamiltonian,

ĤSYK =
1

(2N)3/2

N∑

i1,i2,j1,j2=1

Ji1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 , (3.1)

describes complex two-body interactions among N spinless Dirac fermions
[55]. The interaction amplitudes Ji1i2;j1j2 = J∗

j1j2;i1i2
are complex random

variables, with real and imaginary parts sampled independently and identically
from normal distributions with zero mean, and variances parameterised by
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3.1 Target model

the interaction strength J ≥ 0, as defined in Eq. (2.2). The interactions are
all-to-all, rendering the model fully connected and zero-dimensional, as shown
schematically in Fig. 2.1.
Realizing these all-to-all interactions in a random and uncorrelated way is

a formidable experimental challenge. In spite of its connections with strange
metals in condensed-matter physics [54], no natural material is known that can
microscopically realise the particular SYK interaction. The search has therefore
focused on artificial systems in solid-state mesoscopic systems [61–63, 160],
cold atoms in optical lattices [64, 65], or on direct digital quantum simulation
[66, 67]. The work of Ref. [63], for instance, suggests to make use of electronic
states in the lowest Landau level of graphene flakes, immersed in an external
magnetic field, whose irregular boundaries randomise the spatial profiles of
the fermionic modes. Together with the native Coulomb repulsion, this yields
long-range, random interactions, as required for the complex(Dirac) fermion
version of the SYK model. In Ref. [62], it is suggested that the Majorana
SYK model could be realised by coupling N superconducting wires hosting
Majorana zero-modes to a two-dimensional quantum dot. The idea is that
the Majorana edge-states delocalise over the quantum dot, whose intrinsic
disorder then randomises the all-to-all interactions resulting from the spatial
overlap of the Majorana modes within the dot. A disadvantage of such solid-
state schemes is that the disorder is intrinsic to the system, and can thus
not be tuned and is not reproducible between different set-ups. The optical-
lattice proposal of Ref. [65] addresses this issue, by suggesting to utilise spinless
itinerant fermions in an optical Kagome lattice to engineer all-to-all interactions
amongst momentum states forming a flat band. The disorder is introduced
via local impurity potentials, distributed randomly over the lattice sites and
with tunable strength. The proposal of Ref. [64] instead considers fermionic
atoms localised in deep optical lattices, where each potential well can host
N localised atomic states. The idea in this case is that these can interact
virtually via molecular states, through a photo-association process. A practical
limitation here is that simulating a system of N SYK modes would require
N(N − 1)/2 photo-association lasers. Small-scale, minimal versions of the
digital approach have been reported using nuclear magnetic resonance [68]
and superconducting qubits [69]. However, the [N(N − 1)/2]2 scaling of the
number of independent couplings and their infinite range nature represents a
formidable challenge for such bottom-up approaches. Sparse variants of the
SYK model, where the number of couplings is reduced, and the conditions
under which they retain the chaotic and holographic properties of the original
model have been studied theoretically in for instance Refs. [104–106, 161].
Within this context, the experiment of Ref. [69] above, performed a digital
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

Figure 3.1: Cavity-QED setup and atomic level structure. (a) A quasi-two-
dimensional cloud of fermionic atoms (black ellipse) is trapped at an antinode of a
longitudinal mode (red) of a multi-mode optical cavity. A random phase-mask
is imprinted on a light-shift beam (blue) which is focused into the atomic cloud
via a lens attached to the cavity mirror, and thus creates a disordered intensity
distribution (speckle, lower circle). (b) Cross section, transverse to cavity axis,
showing lowest cavity mode (red circle) with waist w0. Together with the zero-point
fluctuation x0 = 1/

√
matωt of the harmonic trapping potential Vt(r) = matω

2
t /r

2

(grey-dotted curve), this determines the relative transverse size ζ = x0/(w0/
√
2)

of the atomic cloud. (c) The required atomic level structure (left) consists of a
ground |g⟩, excited |e⟩, and auxiliary |a⟩ electronic state for an atom at position
x (horizontal black arrow). The drive beam (red arrow) is far red detuned by
|∆da| from the g–e transition at frequency ωa, allowing for adiabatic elimination of
state |e⟩. The light-shift beam (blue), with speckled intensity Ωb(x), off-resonantly
couples states |a⟩ and |e⟩, thereby inducing a position-dependent AC-Stark shift
of the excited state energy (right).

quantum simulation a highly sparsified Majorana SYK model, whose reduced
connectivity graph was identified by training a machine-learning algorithm to
reproduce the dynamics of selected correlators. Especially the gravitational
interpretations of this experiment are, however, vigorously debated as they
appear to only partially retain the SYK physics [70, 71]. The experimental
realisation of the SYK model, specifically in the large-N limit, thus remains an
exciting challenge.

3.2 Experimental approach for cQED

We describe the general approach in what follows, and defer specific experi-
mental numbers, in particular for the platform using 6Li atoms of Ref. [77],
upon which we report in Chap. 4, to the discussion of Sec. 3.6.1.
The envisaged cQED setup is sketched in Fig. 3.1(a). It consists of a Fermi

gas trapped in a two-dimensional (pancake) geometry at the antinode of a
longitudinal cavity mode, of a linear optical cavity. This can be achieved, for
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3.2 Experimental approach for cQED

instance, with an intra-cavity standing-wave optical dipole trap, such as that
used in Ref. [77]. We consider the trapping potential Vt(r) to be harmonic, as
sketched in Fig. 3.1(b), and use the motional eigenstates in the xy-plane to
represent the modes of ĤSYK. The mechanical coupling between an atom and
a cavity photon is parameterised by the ratio ζ ≡ x0/(w0/

√
2), where x0 is the

oscillator length associated to Vt(r), and w0 is the waist of the fundamental
cavity mode.

A pump laser, with Rabi(angular) frequency Ωd(ωd) drives a transition
between a ground, |g⟩, and excited, |e⟩, electronic level, see Fig. 3.1(c, left),
either from the side or along the cavity axis. We denote the associated transition
frequency as ωa, and the detuning of the drive therefrom as ∆da ≡ ωd − ωa.
For sufficiently large |∆da|, the excited state can be adiabatically eliminated,
such that the N atoms encode N complex, spinless fermions. The relevant
derivation will be presented in Sec. 3.3.2, which generalises the calculation
of the introductory Sec. 2.2.4 to the multi-mode scenario. We make a long-
wavelength approximation for the amplitude of the drive beam gd(r) = 1 over
the spatial extent of the atomic cloud, which supposes either on-axis pumping
or a very-low angle from the side (we will discuss these alternatives in the
outlook of Sec. 3.6.3). Simulations illustrating the qualitative differences for
drive amplitudes with non-uniform phases are reported in Fig. A.7.

3.2.1 Spatially disordered light shift

We have seen in Sec. 2.2.5 that the above cQED setup naturally mediates
long-ranged fermion–fermion interactions Ji1i2;j1j2 via the virtual exchange of
photons between atoms at arbitrary positions r within the pancake, yielding a
fully connected, zero dimensional geometry. Approaching the SYK model of
Eq. (3.1) requires to render these interactions random and independent between
different fermion mode four-tuples (i1, i2, j1, j2).

To randomise the two-body interaction amplitudes Ji1i2;j1j2 , we propose to
dress the excited state |e⟩ with light near-resonant with a transition to a higher
excited state, as sketched in the right half of Fig. 3.1(c). Using a random
intensity distribution such as a speckle pattern [lower circle of Fig. 3.1(a)] for
the dressing produces a random light shift, proportional to the local intensity:
Consider the scenario where a light-shifting beam with Rabi frequency Ωb(r)
is off-resonant with the e–a transition by an amount |∆b|. The excited-state is
then shifted in energy1 (AC-Stark shift) by an amount |Ωb(r)|2 /(4∆b), where

1An explicit calculation is given in App. A.1.
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∆b > 0 for blue detuning, and ∆b < 0 for red detuning,

∆da(r) ≡ωd − ωa(r)

=(ωd − ωa)−
|Ωb(r)|2
4∆b

=




−
(
|∆da|+ |Ωb(r)|2

4|∆b|

)
for ∆b > 0,

−
(
|∆da| − |Ωb(r)|2

4|∆b|

)
for ∆b < 0.

(3.2)

Here we have used that ∆da < 0, i.e. that the drive frequency ωd is red detuned
from the ground-to-excited state transition. We choose the light-shifting beam
to be blue detuned, such that the light shift increases the magnitude of ∆da(r).
The above shows that a spatial disorder of ∆da(r) can be engineered via a
spatial disorder of the light-shifting beam’s intensity Ib(r) ∝ |Ωb(r)|2. We will
see below that this translates into an effective model with random two-body
interactions Ji1i2;j1j2 by randomising the spatial integral of Eq. (3.24).
To produce such a random intensity distribution, we propose to utilise an

optical speckle (see for instance Ref. [162] or the thesis [163]). This can, for
instance, be achieved by letting the beam pass through a diffuser or, in a
more reproducible manner, by utilizing a spatial-light-modulator, and then
focusing the beam into the atomic cloud with a lens [77]. The speckle pattern is
characterised by grains of high intensity, randomly distributed in space, whose
correlation length across the lens’ focal plane is set by the wavelength of the
light-shift beam, and the numerical aperture of the lens (Rayleigh criterium).
The distribution of the light intensity I of the speckle pattern follows an
exponential probability distribution P (I) = exp(−I/⟨I⟩)/⟨I⟩ with ⟨I⟩ being
the mean intensity (proportional to that of the light-shift beam) and a measure
of the strength of the disorder. Tuning the laser’s intensity thus allows one to
tune between weak and strong disorder.

3.2.2 Multimode cQED and microscopic Hamiltonian

Within the single-mode regime of cQED, the above scheme only leads to a
separable (low-rank) SYK-type model, where the effective interactions Ji1i2;j1j2

factorise, as was discussed in the context of Eq. (2.36). Intuitively, this yields
a product of two correlated SYK-q = 2 Hamiltonians [see Eq. (2.5)]. It was
shown in Ref. [75] that coupling to a number of modes which is (super)extensive
in the system size N reduces these correlations and allows for the manifestation
of SYK physics, such as maximal scrambling. As we show in the next sections,
the multimode structure of optical Fabry–Pérot cavities can be exploited to
achieve this (examples of multimode cQED experiments were given in the
introductory part of Sec. 2.2), even in cases where the cavity modes are not
exactly degenerate [137].
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Figure 3.2: Frequency-space sketch of degenerate mode-families relative to
the atomic resonance. Location in frequency space (horizontal axis, not to scale)
of the atomic (ωa) and cavity resonance (ωc), with respective line-widths Γ and κ.
The multi-mode cavity has mode-families, labelled by mΣ, at intervals mΣδω above
the fundamental cavity resonance (ωc). The drive beam (red arrow) is red-detuned
by |∆cd| from the fundamental cavity mode, which is in turn red-detuned from the
atomic resonance by |∆ca|. The drive–atom detuning ∆da is thus of magnitude
|∆da| = |∆ca|+ |∆cd|.

Concretely, we will consider multiple transverse cavity modes (TCMs),
whose amplitudes gm(r) over the plane of the atomic cloud are given by
two-dimensional Hermite–Gauss modes [22]. These are labelled by integer
transverse-mode indices nx, ny ≥ 0, and have frequency ωc+(nx+ny)δω, where
ωc is the frequency of the lowest cavity mode, and δω is the transverse-mode
spacing2. We use Cantor’s pairing function3 to assign a unique integer label
m ≥ 0 to each TCM,

m = CP(nx, ny) ≡ (nx + ny)(nx + ny + 1)/2 + ny. (3.3)

Introducing the notation

mΣ ≡ nx + ny, (3.4)

we write the frequencies of the TCMs as

ωm = ωc +mΣδω. (3.5)

2Note that the exact frequency arrangement of the transverse modes depends on the
configuration of the linear cavity, for example whether it is a planar, confocal or concentric
cavity [22]. The above assumption, that modes appear in families defined by the sum of
their transverse mode indices, is taken for convenience, and the subsequent derivations
can be adapted for a given cavity by adapting the definition of index m to possibly include
the longitudinal mode-index, and adapting the expressions for the mode-frequencies and
mode-profiles accordingly.

3Note that Cantor’s pairing function is invertible [164]: Given an integer m ≥ 0, let
α = (−1 +

√
1 + 8m)/2. Then, the integers nx, ny ≥ 0 which satisfy m = CP(nx, ny) are

given by ny = m− ⌊α⌋(⌊α⌋+ 1)/2 and nx = ⌊α⌋ − ny, where ⌊α⌋ is the largest integer
smaller or equal to α, i.e., ⌊. . . ⌋ denotes the floor function.
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The TCMs are thus arranged in degenerate families, labelled asmΣ = 0, 1, 2, . . .,
situated at frequency ωc +mΣδω and of degeneracy mΣ + 1, see also Fig. 3.2.
Incorporating this multimode structure, the many-body Hamiltonian for the

setup described in the previous section, is given by,

Ĥmb(t) = Ĥc + Ĥa + Ĥkt + Ĥac + Ĥad(t) . (3.6)

As in Sec. 2.2.3, Ĥkt governs the dynamics of the atomic centre-of-mass (ex-
ternal) degrees of freedom, subject to the harmonic trapping potential Vt(r)
discussed above. In contrast to Eq. (2.17), in Eq. (3.6) we have already neg-
lected the contact interaction term Ĥint, since we will eliminate the excited state
in Sec. 3.3.2 below4. The remaining terms are similar to those of Eqs. (2.17)–
(2.24), but generalised to the multi-mode case, and with the spatial integrals∫
dr running over the plane of the atomic cloud,

Ĥc =
∑

m

ωmâ
†
mâm, (3.7)

Ĥa =

∫
drωa(r)ψ̂

†
e(r)ψ̂e(r), (3.8)

Ĥac =
1

2

∑

m

∫
dr
(
Ωmgm(r)âmψ̂

†
e(r)ψ̂g(r) + H.c.

)
, (3.9)

Ĥad(t) = Ωd

∫
dr
(
gd(r)e

−iωdtψ̂†
e(r)ψ̂g(r) + H.c.

)
. (3.10)

We have incorporated the random spatial modulation of the atomic resonance in
the second line. We will see in the subsequent sections that this spatial disorder
propagates into the two-body interactions of our effective model, thereby
randomizing them. The summations

∑
m run over the set of resonator modes of

the multi-mode cavity, at angular frequencies ωm as defined in Eq. (3.5). The
corresponding photonic creation and annihilation operators are, respectively,
â†m and âm. The dimensionless mode-profiles are denoted by gm(r), and the
coupling-rate of the atoms to the mth mode is given by the corresponding
single-photon Rabi frequency Ωm.
For the atom–drive interaction Ĥad(t) in Eq. (3.10), we have assumed that

the drive beam, of amplitude gd(r), propagates transverse to the cavity(z)-axis,
and directly interacts with the fermionic atoms [comparing to Eq. (2.24), η = 0
and Ωd ̸= 0]. The long wavelength approximation—utilised in the numeric

4The resulting Hamiltonian is similar to that of Eq. (2.29), where Pauli’s exclusion principle
prevents s-wave scattering between spin-polarised fermions. See also Ref. [165], for
instance.
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calculations presented below in Secs. 3.4–3.5—may thus not be valid, depending
on the transverse size ζ of the atomic cloud [see also the sketch of Fig. 3.1(b)]. In
such a case one may consider reducing the angle between the drive’s wave-vector
and the cavity axis, in order to increase the effective (projected) wavelength
over the cloud. This scenario is captured by the subsequent derivations, as it
simply amounts to modifying gd(r). However, this approach is limited by the
cavity geometry, which may prohibit a sufficient enhancement of the effective
wavelength. As an alternative, one may consider an on-axis drive [η ̸= 0,
Ωd = 0, in Eq. (2.24)], for which the derivation proceeds analogously to the
transverse case, and is summarised in the outlook Sec. 3.6.3 below.

With the above, we have all the ingredients necessary to derive an effective
Hamiltonian Ĥeff describing SYK-type physics, as we now show.

3.3 Derivation of the effective Hamiltonian

Here, we present the details for the derivation of the effective Hamiltonian
whose SYK physics we investigate numerically in Secs. 3.4–3.5.

Motivated by a discussion of the hierarchy of energy scales present in
Eq. (3.12) below, we will adiabatically eliminate the excited atomic state,
and subsequently perform a Schrieffer–Wolff transformation to arrive at Ĥeff in
Eqs. (3.21)–(3.23). For convenience, we will drop the contribution of the mo-
tional degrees-of-freedom Ĥkt, as they pass through the various transformations
unaffected, and can thus be re-introduced at the end of the derivation of Ĥeff .
The interested reader may refer to App. A.4, where this is shown explicitly.

We start by going into a frame rotating at the drive’s angular frequency ωd,
generated by

ĤRF = ωd

∫
drψ̂†

e(r)ψ̂e(r) + ωd

∑

m

â†mâm, (3.11)

so that the Hamiltonian of Eq. (3.6) becomes time-independent,

Ĥmb =
∑

m

∆mâ
†
mâm −

∫
dr∆da(r)ψ̂

†
e(r)ψ̂e(r)

+

∫
dr
(
Φ̂(r)ψ̂†

e(r)ψ̂g(r) + H.c.
)
.

(3.12)

where

Φ̂(r) = Ωdgd(r) +
1

2

∑

m

Ωmgm(r)âm. (3.13)
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Here, ∆da(r) ≡ ωd − ωa(r) denotes the drive’s detuning from the disordered
atomic resonance ωa(r), and the cavity-drive detunings are denoted as ∆m ≡
ωm − ωd.

3.3.1 Energy scales

We envision the scenario depicted in Fig. 3.2, where the drive beam is detuned
by an amount ∆cd ≡ ∆m=0 = ωc − ωd from the fundamental (TEM00) mode of
the cavity at frequency ωc ≡ ωm=0, which in turn is far detuned from the bare
atomic frequency ωa, by an amount ∆ca ≡ ωc−ωa. The drive–atom detuning is
thus ∆da = ∆ca −∆cd. We assume red detunings, i.e., that ωd < ωc < ωa, such
that |∆da| = |∆ca|+ |∆cd|. The cavity loss rate is parameterised by κ, and the
light–matter coupling of the mth cavity mode Ωm ∝

√
ωc + (nx + ny)δω can be

approximated as Ωm ≈ Ωm=0: Whilst δω/2π depends on the cavity’s deviation
from confocality [22], for optical cavities ωc/2π is on the order of hundreds of
THz, such that one can reasonably assume δω/ωc ≪ 1 [77, 137]: Considering,
for instance, the parameters of Ref. [77] (the experiment discussed in Chap. 4)
the corrections would be of order δω/ωc ∼ 10−6 since there, δω ∼ 100MHz
whilst ωc ∼ 100THz.

The frequency of the harmonic trap along the cavity axis is assumed to be
large enough to produce a quasi-two-dimensional fermionic cloud, extended
radially, i.e., transverse to the cavity axis. The relevant trapping frequency is
thus that along the radial direction, which we denote as ωt.
The loss rate due to spontaneous emission of the atoms is parameterised

by Γ. In the subsequent derivations, we will work in the dispersive regime
|Γ/∆da| ≪ 1, to allow for the adiabatic elimination of the excited internal
atomic state, similar to the single-mode derivation of Sec. 2.2.4. This is achieved
by far-detuning the cavity from the bare atomic transition such that ∆ca is
large, and consequently |∆da| > |∆ca| is the dominant energy scale in the
system. In so doing, care must be taken to account for the non-zero TMS,
which imposes a lower bound on ∆ca, depending on the number of TCMs
mediating the atom–atom interactions.
A reasonable hierarchy of the above parameters in cQED platforms [72, 73,

77, 137, 166] is given by

∆ca ≫ ∆cd, δω ≫ Γ > Ωm > κ≫ ωt, (3.14)

where the Rabi frequency of the drive Ωd can be tuned across this hierarchy,
with feasible strengths ranging from 0 to the order of several GHz.
We will neglect atomic and cavity losses throughout our derivation, as

they can be treated as subdominant in the dispersive regime: already for
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3.3 Derivation of the effective Hamiltonian

∆da/2π ∼ 1GHz, photonic and atomic losses such as those reported in [77]
occur at timescales suppressed by |κ/∆da| ∼ 10−4, |Γ/∆da| ∼ 10−3. Eventually,
like for all methods based on cavity QED, the finite cooperativity of the cavity
will limit the total duration available for the coherent evolution [21].

3.3.2 Adiabatic elimination of the excited electronic state

With |∆da(r)| being the dominant energy scale at all positions r, the system
is in the dispersive regime, and ψ̂e(r) adiabatically follows ψ̂g(r) according to
(see App. A.4.2),

ψ̂e(r) =
Φ̂(r)ψ̂g(r)

∆da(r)
. (3.15)

As in the single-mode case of Sec. 2.2.4, by inserting Eq. (3.15) into the
Heisenberg equations of motion [generated by Ĥmb of Eq. (3.12)] for âm and
ψ̂g(r), one can determine the corresponding Hamiltonian to be

Ĥ =
∑

m

∆mâ
†
mâm +

∫
dr

Φ̂†(r)Φ̂(r)ψ̂†
g(r)ψ̂g(r)

∆da(r)
. (3.16)

In what follows, we simplify our notation by denoting the remaining field
operator ψ̂g(r) as ψ̂(r).

3.3.3 Schrieffer–Wolff transformation

We now integrate out all of the cavity modes, generalising the Schrieffer–Wolff
transformation (SWT) introduced in Sec. 2.2.5 to the multi-mode case. This
will finally yield our desired effective Hamiltonian with all-to-all, random
interactions.
To begin, we group the Hamiltonian of Eq. (3.16) as Ĥ = Ĥ0 + V̂ , where

Ĥ0 =
∑

m

∆mâ
†
mâm +

∫
dr

|Ωdgd(r)|2
∆da(r)

ψ̂†(r)ψ̂(r), (3.17)

V̂ =

∫
dr

1

4∆da(r)

∑

m,n

(
Ω∗

mg
∗
m(r)Ωngn(r)â

†
man

)
ψ̂†(r)ψ̂(r)

+
∑

m

(âmΘ̂m +H.c.), with (3.18)

Θ̂m =
1

2

∫
dr

Ω∗
dg

∗
d(r)Ωmgm(r)

∆da(r)
ψ̂†(r)ψ̂(r). (3.19)
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

The effective two-body interactions of Eq. (3.32) below are obtained by decoup-
ling the atom–light interactions contained in V̂ . We do so through the SWT
Ĥeff = eŜĤe−Ŝ, as defined in Eq. (2.31).
The transformation is simplified by using that |Ωm| ≪ |Ωd| , ∀m (see Sec. 3.3.1

above). Within this hierarchy of scales, V̂ can be approximated as V̂ ≃∑
m(âmΘ̂m +H.c.) [we will return to this simplification below Eq. (3.21)]. The

decoupling is then achieved by choosing the generator

Ŝ = −
∑

m

(
1

∆m

âmΘ̂m − H.c.

)
, (3.20)

which is of order |ΩdΩm| / |∆da∆cd|. Truncating Ĥeff at O(S) (which requires
|ΩdΩm| / |∆da∆cd| ≪ 1), then yields

Ĥeff = Ĥ0 +
1

2
[Ŝ, V̂ ] = Ĥ0 −

∑

m

Θ̂†
mΘ̂m

∆m

. (3.21)

The last term is the effective two-body interaction, mediated by the exchange
of virtual photons between pairs of atoms located at arbitrary positions, see
Fig. 3.3. The remaining photonic contribution within Ĥ0 [see Eq. (3.17)] is
eliminated by projecting onto a subspace with a fixed number of cavity photons.
We briefly return to the first term of V̂ in Eq. (3.18), which we denote

as V̂ ′: If the assumption |Ωm| ≪ |Ωd| , ∀m is not met, then [using the same
generator Ŝ of Eq. (3.20), and again truncating at O(S)] one would obtain the
additional terms V̂ ′ + [Ŝ, V̂ ′] in Eq. (3.21). Projection onto a subspace of fixed
photon number would then remove the commutator (as it is linear in photonic
operators, [Ŝ, V̂ ′] ∝ [âk, â

†
mân] = δkmân), and the remaining term would simply

modify Ĥ0. In what follows, we thus continue to neglect V̂ ′.

3.3.4 Effective Hamiltonian and interactions

The above procedure, namely adiabatic elimination of ψ̂e(r) followed by the
SWT to integrate out the cavity photons âm, yields long-range all-to-all two-
body interactions via a fourth order process, as shown diagrammatically in
Fig. 3.3.
In more detail, the remaining one-body part of Ĥeff in Eq. (3.21) is given by

Ĥ0 = Ĥkt +

∫
dr

|Ωdgd(r)|2
∆da(r)

ψ̂†(r)ψ̂(r), (3.22)

where we have added the kinetic and external trap terms back in, which just pass
through the various transformations done from Eq. (3.12) up to this point (see
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3.3 Derivation of the effective Hamiltonian

Figure 3.3: Diagrammatic representation of the effective two-body interac-
tion. Feynman diagram for the fourth-order process (left diagram) which yields the
long-ranged all-to-all interactions Ji1i2;j1j2 ∼ O(|ΩdΩm|2 /∆2

da∆m) of the effective

model Ĥeff (right diagram, large greyish-red vertex) after adiabatic elimination
of the excited-state (blue dashed edges), and integrating-out the cavity modes
(red wavy edge). On the left, grey wavy edges ending in a cross represent the
classical drive field, and solid(empty) vertices indicate drive–atom(cavity–atom)
interactions.

App. A.4). This can be diagonalised, as it is a quadratic fermion Hamiltonian
[167]. Formally, we denote the corresponding eigenmodes as ϕi1(r), and use
these to expand the field operators in Eq. (3.21) as ψ̂(r) =

∑
i1
ϕi1(r)ĉi1 . In

this way, we formally obtain an effective Hamiltonian in terms of spinless,
complex fermions, as required by the target Hamiltonian ĤSYK in Eq. (3.1),

Ĥeff =
∑

i1

ϵi1 ĉ
†
i1
ĉi1 + E

∑

m

∆cd

∆m

(∑

i1,j1

Ii1j1,mĉ
†
i1
ĉj1

)(∑

i2,j2

Ij2i2,mĉ
†
j2
ĉi2

)†

. (3.23)

The two-body interactions are randomised via the spatially disordered drive–
atom detuning ∆da(r) appearing in the dimensionless interaction integrals

Ii1j1,m =
1

2

∫
dr
gd(r)gm(r)

∗ϕ∗
i1
(r)ϕj1(r)

∆da(r)/∆da

. (3.24)

In Eq. (3.23), we have extracted the two-body interactions’ energy scale

E =
η20
∆cd

, (3.25)

with η0 = |ΩdΩm=0/∆da| being the two-photon Rabi frequency [see also below
Eq. (2.29)], and ∆cd = ∆m=0 (as defined in Sec. 3.3.1 above). In defining E , we
have set Ωm = Ωm=0, since m-dependent corrections to Ωm are of order δω/ωc,
and can thus be assumed to be negligible (see the discussion of Sec. 3.3.1 for
an example).
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

For the two-body interactions of Ĥeff above to formally match those of the
target SYK Hamiltonian ĤSYK in Eq. (3.1), the second term of Eq. (3.23) needs
to be normal ordered. This yields additional one-body terms, also of order E ,
which are however suppressed as 1/N2 due to combinatorics. We thus neglect
these terms, such that Eq. (3.23) becomes

Ĥeff =
∑

i1

ϵi1 ĉ
†
i1
ĉi1 + Ĥ

(4)
eff (3.26)

with the two-body interactions given by the (quartic fermion operator) normal-
ordered term

Ĥ
(4)
eff =

∑

i1,i2,j1,j2

Ji1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 , (3.27)

where

Ji1i2;j1j2 = E
∑

m

Ii1j1,mI
∗
j2i2,m

1 +mΣ
δω
∆cd

= J ∗
j2j1;i2i1

, (3.28)

and the integers m and mΣ are, respectively, defined in Eqs. (3.3) and (3.4).
The remaining one-body part

∑
i1
ϵi1 ĉ

†
i1
ĉi1 of Ĥeff in Eq. (3.26) consists of Ĥkt,

and an effective dipole potential of order |Ω2
d/∆da|, as given in Eq. (3.22). SYK

models with one-body perturbations as in Ĥeff have been studied in, for instance,
Ref. [102, 168], which showed that the chaoticity of the model is maintained for
sufficiently weak one-body perturbations. In our case, the contribution from
the effective dipole potential can be compensated by introducing an additional
dipole potential of equal magnitude and opposite sign at all r (for an example
using an additional laser driving directly the |g⟩ to |a⟩ transition, see App. A.2).
Further, by increasing the drive power, E is enhanced as |Ωd|2, permitting one
to render Ĥkt sufficiently weak relative to Ji1i2;j1j2 . In what follows, we will

therefore compare only the two-body term Ĥ
(4)
eff to the full target Hamiltonian

ĤSYK.

3.3.5 Tuning the number of cavity modes mediating the
effective interactions

We will see in the comparison of Ĥ
(4)
eff and ĤSYK, presented in Sec. 3.5, that a

crucial feature of our proposal is the ability to tune the number of cavity modes
mediating the effective interactions Ji1i2;j1j2 . As the expression of Eq. (3.28)
shows, the contributions of the various cavity modes are suppressed with
increasing mode index m as

1

1 +mΣδ̃ω
, where δ̃ω ≡ δω/∆cd. (3.29)
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3.3 Derivation of the effective Hamiltonian

Figure 3.4: Tuning the number of cavity modes via δ̃ω. Plots of Eq. (3.29)
versus mΣ (top row) for δ̃ω ∼ 10 (left) and δ̃ω ∼ 0.1 (right). For a given cavity,
with mode-families mΣ ≥ 0 and mode-spacing δω, the value of δ̃ω can be varied
by detuning the drive (red arrow) relative to the lowest mode-family mΣ = 0. The
near- and far-detuned cases are sketched qualitatively in the lower-left, respectively,
lower-right. For small cavity–drive detuning ∆cd ≪ δω (left), mode-families with
mΣ > 0 contribute to Ji1i2;j1j2 with a negligibly small weight (grey circles). In
contrast, for ∆cd ≫ δω (right), many mode-families contribute significantly.

The weight of a given mode m can thus be controlled by tuning the ratio
δ̃ω = δω/∆cd of the transverse-mode spacing δω, to the cavity–drive detuning
∆cd. Two limiting cases are sketched in Fig. 3.4: In the limit of large ratio
δ̃ω = δω/∆cd (left), only the single mode m = 0 contributes significantly to
the dynamics, resulting in an approximate product form of the amplitudes
Ji1i2;j1j2 ≃ EIi1j1,m=0I

∗
j2i2,m=0. However, decreasing δ̃ω by increasing the cavity–

drive detuning (right), increases the effective number of cavity modes mediating
the two-body interactions, thus generating dynamics that approach those of
the SYK model, as we probe numerically in Sec. 3.5.
We note that this is in accordance with the study of Ref. [75]. There it

was found that low (matrix) rank variants of the SYK model can realise a
maximally scrambling model, nearly indistinguishable from the target SYK
model of Eq. (3.1), when their rank scales extensively with the number of
modes N . These low-rank variants are defined as a sum over products of
fermion bilinear operators, such that the desired rank-4 interaction tensor is
decomposed as a sum over products of rank-2 tensors. In our proposal, the
two-body part of Eq. (3.23) is of this low-rank form, with the rank-2 tensors
given by Ii1j1,m as defined in Eq. (3.24). Following Ref. [75], the matrix form
of the rank-4 interaction tensor is then

Mi1j1,j2i2 =
∑

m

1

1 +mΣδ̃ω
Ii1j1,mI

∗
j2i2,m

. (3.30)
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

Note that whilst the right-hand sides of Eqs. (3.28) and (3.30) differ only in
the factor E , the composite indices on the left-hand side of either equation
differ. Essentially, the two matrices are reshuffled (or reshaped, to use the
language of tensor networks) versions of one-another5. This new assignment
of matrix elements is done in order to match the definition of the “low-rank”
coupling-constant matrix of Ref. [75], in which the composite row index consists
of one “creation” index i1 and one “annihilation” index j1 (similarly for the
column index, with i2 and j2), in contrast to the usual definition of the SYK
interaction tensor Ji1i2;j1j2 , in which both creation indices form the composite
row index, and both annihilation indices form the composite column index.
Importantly, the rank ofM depends via

∑
m on the number of TCMs mediating

the interaction, which can be tuned via δ̃ω, as explained above.
In Fig. 3.5(a, b), we numerically investigate the dependence of r = rank(M)

as a function of δ̃ω, over a range of transverse sizes ζ of the atomic cloud. To
avoid complications with numeric determination of r, we utilise two alternative
measures of the matrix rank: The first is an entropic measure re, akin to a
participation ratio (see Sec. 4.3.1), defined in terms of the Shannon entropy
H(p) = −∑i pi log(pi), where the elements of the probability vector p are
given by pi = σi/

∑
i |σi| and σi are the singular values of M [169]. The second

is a lower bound rlb ≤ r for the rank r of square matrices M [170]. The two
measures are given by,

re = exp(H(p)), and rlb =
|tr(M)|2
tr(MM †)

. (3.31)

Note that also the effective rank satisfies re ≤ r [169]. Figure 3.5 shows
that either measure increases systematically as δ̃ω is reduced, in line with
the intuition garnered from the discussion related to the sketches of Fig. 3.4.
Interestingly, for a given value of δ̃ω, we find that reducing the transverse
size of the atomic cloud ζ (black to light grey markers) leads to a reduction
of both re and rlb. Whilst this is not definitive proof that the matrix rank r
also reduces, it is a first indication of the crucial role played by the size of the
atomic cloud when aiming to approximate SYK physics with multimode cQED,
in addition to δ̃ω.
5In more detail, for the matrix construction, a given pair of fermionic mode indices
k, l ∈ {0, . . . , N − 1}, is mapped to a “composite index” via the function f(k, l) = k+Nl.
Let the composite row and column indices of matrix M be denoted as rM and cM ,
respectively. Similarly for matrix J and rJ and cJ . Then, looking at the subscripts
of Mi1j1,j2i2 , we have rM = f(i1, j1) and cM = f(j2, i2), whilst for Ji1i2;j1j2 we have
rJ = f(i1, i2) and cJ = f(j1, j2). Clearly, (rM , cM ) ̸= (rJ , cJ ), and so the term
∑
m

Ii1j1,mI
∗
j2i2,m

1+mΣ
δω
∆cd

is assigned to different matrix elements of M and J .
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Figure 3.5: Qualitative dependence of interaction rank on δ̃ω and ζ. Effective
rank re (a), and rank lower bound rlb (b), versus δ̃ω, for the matrix M defined in

Eq. (3.30), constructed for Ĥ
(4)
eff with N = 14 at half filling. Shading, from black

to light-grey, indicates decreasing transverse size ζ = 1, 1/2, 1/4, 1/6, 1/8, 1/10 of
the atomic cloud. Markers indicate mean values, averaged over 100 independent
realisations of M (each generated by an independent realisation of ∆da(r)). Error
bars indicating the standard deviation are barely visible and lie within the markers.
Dotted lines included to guide the eye. (c) Cavity-mode profiles, as defined above
Eq. (A.13), for (mx,my) = (2, 0) (bright red) and (mx,my) = (10, 0) (dark red),
relative to the lowest harmonic oscillator fermion mode of a small (grey-solid,
ζ = 1/10), and large (black-dashed, ζ = 1) atomic cloud. Vertical grey-solid and
black-dashed lines indicate ±x0 = ζ(w0/

√
2) for ζ = 1/10 and ζ = 1, respectively.

That ζ should play an important role in our proposal, can be understood
intuitively at the hand of Fig. 3.5(c). There we show cross-sections of the
lowest (Gaussian) eigenmode of the one-body part of Ĥeff in Eq. (3.26) for
two different sizes ζ = 1 (black-dashed curve) and ζ = 1/10 (grey-solid curve),
relative to the profiles of two distinct cavity modes m ̸= m′. The characteristic
length scale ±x0 for either size are indicated by the vertical lines. It is clear
that for the smaller cloud, the two cavity modes look near-identical, leading to
an effective degeneracy of different cavity modes, despite their large separation
in frequency space. Only for sufficiently large ζ can the distinct profiles of the
different cavity-modes be resolved by the fermionic modes.
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

3.4 Distribution of random two-body interactions

We now investigate the distribution of the effective interaction amplitudes
Ji1i2;j1j2 of Ĥ

(4)
eff , defined in Eqs. (3.27) and (3.28). In the literature, it is often

assumed that for sufficiently many cavity modes the interaction amplitudes
Ji1i2;j1j2 will follow a Gaussian distribution, due to the central limit theorem
[64, 136, 157]. Here, instead, we numerically calculate the interactions Ji1i2;j1j2

from first principles.
To this end, we note that, as in the target model ĤSYK of Eq. (3.1), only the

antisymmetric part of Ji1i2;j1j2 contributes to Ĥ
(4)
eff . We thus redefine Ji1i2;j1j2

as the antisymmetric part of Eq. (3.28),

Ji1i2;j1j2 =
E
4

∑

m

Ii1j1,mI
∗
j2i2,m

− Ii2j1,mI
∗
j2i1,m

− Ii1j2,mI
∗
j1i2,m

+ Ii2j2,mI
∗
j1i1,m

1 +mΣδ̃ω

=
E
8

∑

m

1

1 +mΣδ̃ω

∫
dr

∫
dr′Re [gd(r)gm(r)

∗gd(r
′)∗gm(r

′)]

(∆da(r)/∆da)(∆da(r
′)/∆da)

× (ϕi1(r)ϕi2(r
′)− ϕi2(r)ϕi1(r

′))
∗
ϕj1(r)ϕj2(r

′) (3.32)

where the factor 1/4 in the first line stems from the antisymmetrisation of
Eq. (3.28).
The second line in Eq. (3.32) clarifies that Ji1i2;j1j2 ∈ R if ϕk(r) ∈ R for

k = i1, i2, j1, j2. This is indeed the case, since Ĥ0, which is formally diagonalised
by ψ̂(r) =

∑
i1
ϕi1(r)ĉi1 , is itself real [time-reversal symmetric, see Eq. (3.22)].

Whilst the target model ĤSYK has complex amplitudes Ji1i2;j1j2 ∈ C, variants
with Ji1i2;j1j2 ∈ R have been studied in the literature, and found to agree with
the complex version in the thermodynamic limit [64, 104]. In our numeric

comparison of the dynamics of Ĥ
(4)
eff and ĤSYK, we will thus focus on the target

model with Ji1i2;j1j2 ∈ R.
Given that Ĥ

(4)
eff and ĤSYK are disordered Hamiltonians, we average over

multiple disorder realisations of Ji1i2;j1j2 [i.e., over multiple realisations of
∆da(r)], respectively, of Ji1i2;j1j2 . With Ji1i2;j1j2 ∈ R, their ensemble variance is
given by J2 = E

[
J 2

i1i2;j1j2

]
− E [Ji1i2;j1j2 ]

2, where E [. . .] denotes averaging over
an ensemble of disorder realisations ∆da(r). For the numerics presented in this,
and the subsequent sections, we will normalise the interaction amplitudes of
either model such that their ensemble variance is J2 = 1.
Figure 3.6(a) shows the distribution for a single, representative, realisation of

Ĥ
(4)
eff /J (details on the numeric calculation of the speckle pattern and interaction

amplitudes are given in App. A.3). The distribution deviates from a Gaussian
probability density, and is better approximated by a Cauchy distribution: For
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Figure 3.6: Distribution of two-body interaction amplitudes. (a) Represent-
ative distribution of Ji1i2;j1j2 from numeric calculation of Eq. (3.32), for N = 14
fermionic modes, δ̃ω = 10−1, and ζ = 1. Fitting the distribution by a (pseudo)Voigt
profile [171] [blue dashed line, Eq. (3.33)], which interpolates with a parameter ρ
between a Gaussian (ρ = 0, red line) and a Cauchy (ρ = 1, yellow line) probability
density, quantifies the deviation from Gaussian statistics. The interactions are
more Cauchy than Gaussian for all δ̃ω considered, as indicated by the inset, which
shows the mean value (circles) and standard deviation (error-bars) of ρ over 100
independent disorder realisations. Numerical data of previous proposals shows
similar features: (b) Data provided by the authors of a graphene-based proposal
Ref. [63], is more Cauchy than Gaussian. (c), (d) Data provided by the authors
of Ref. [65], show that depending on the hopping phase ϕ of their optical lattice
proposal, the two-body interactions follow more closely a Cauchy [(c), ϕ = 0] or
Gaussian distribution [(d), ϕ = π]. All fitted curves represent the best least-squares
fit.
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a given realization of the set of [N(N − 1)/2]2 antisymmetrised interactions
{J̃i1i2;j1j2|i1 < i2, j1 < j2} of Ĥeff , we quantify the deviation from a Gaussian
probability distribution by fitting a (pseudo)Voigt profile [171] to the realised
distribution. The (pseudo)Voigt profile is given by a superposition of a Cauchy
and a Gaussian probability density, both centred at x̄ ∈ R, and sharing the
same full-width-at-half-max 2

√
2 ln(2)σ,

f(x) =ρ

[
2
√

2 ln(2)σ

2π

1

(x− x̄)2 + (2
√

2 ln(2)σ/2)2

]

+ (1− ρ)

[
1√
2πσ2

exp(−(x− x̄)2

2σ2
)

]
,

(3.33)

with σ ≥ 0. The interpolation parameter ρ ∈ [0, 1] can thus be used to
quantify the extent to which the set of two-body interaction amplitudes of a
given realisation of Ĥeff deviates from the targeted Gaussian (ρ = 0), towards a
Cauchy (ρ = 1) distribution. The inset of Fig. 3.6(a) shows that, in our effective
model, Ji1i2;j1j2 closely follows a Cauchy distribution for all considered values
of δ̃ω. Interestingly, this feature is not unique to the setup considered here:
Fig. 3.6(b–d) shows the distributions reported in the proposals of Refs. [63,
65], which also numerically calculated the effective interactions according to
the microscopic description of their respective proposals. Whilst these works
did not report the non-Gaussian character of their distributions, it is clearly
visible. A possible reason for the failure of the CLT may be the presence of
correlations within each realisation of Ĥ

(4)
eff , which could arise, for instance,

between distinct interaction amplitudes that have one or more fermion modes
in common and thus sample the spatial disorder in a similar way (see Fig. A.5
for a plot of the covariances within {Ji1i2;j1j2}). Similarly, and as noted in
Sec. 2.2.5, the magnitude of a given effective interaction Ji1i2;j1j2 will depend
on the precise manner in which the underlying fermionic modes ϕi(r) overlap
spatially with the cavity modes gm(r), as determined by the overlap integrals
of Eq. (3.24). This could also affect the distribution of interaction amplitudes,
with the magnitude of the interaction depending on the combination of modes
i1, i2, j1, j2. A possible approach to investigate such an effect in future works,
could be, for instance, to identify in our numerics whether a specific subset
of fermionic modes is systematically contributing to the tails of the observed
Cauchy distributions.
In light of the above, the important question then arises in how far the

deviating probability distribution modifies the physics of the SYK model. We
address this in the subsequent section, where we numerically compare the
dynamics of Ĥ

(4)
eff to those of the target Hamiltonian ĤSYK. Note also, that the
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dynamics of the target SYK model are currently actively researched also for
other probability distributions, including variations where the interactions are
randomly sampled from a set of discrete values, or randomly removed so as
to create sparse connectivity graphs [104–106, 172]. In App. A.6, we compare
the dynamics of ĤSYK with Cauchy distributed interactions to its Gaussian
counterpart, finding that they are qualitatively the same.

3.5 Comparison of effective and target model

In this section, we numerically probe the chaoticity of the dynamics gener-
ated by Ĥ

(4)
eff , and compare them to the dynamics of the target model ĤSYK

with Ji1i2;j1j2 ∈ R. To this end, we simulate out-of-time-order correlators
(OTOCs), and the spectral form factor (SFF) as probes of, respectively, early-
time scrambling and late-time chaos [51, 53, 98, 115, 173] (as introduced in
Secs. 2.1.2–2.1.3). We employ exact diagonalisation methods, limiting our
study to small system sizes N . Given that the maximal scrambling rate of the
SYK model is a large-N property, this approach prevents one from observing
the saturation of the bound on the quantum Lyapunov exponent [Eq. (2.12)]
in the decay of the OTOCs [96]. Thus, our goal is rather to use the dynamics
of ĤSYK for a given accessible N as a benchmark to which we can compare the
dynamics of Ĥ

(4)
eff , and to show how the parameters entering Ĥ

(4)
eff can be tuned

such that its dynamics approach those of ĤSYK.
Our simulations start by numerically calculating the interaction amplitudes

Ji1i2;j1j2 as defined by Eq. (3.32), with m = 0, 1, . . . ,M (all data shown here is
converged with respect to the cut-offM , see Fig. A.3), for multiple independent
disorder realisations. For a given realisation, we use the normalised amplitudes
Ji1i2;j1j2/J to construct Ĥ

(4)
eff /J , whose dynamics are then solved via exact

diagonalisation (see App. A.3 for an elaboration of the numerics). The simulated
time t is thus in units of J .

3.5.1 Out-of-time-order correlators

Figure 3.7(a) shows the real part of the OTOC F (t) = tr(ρ̂βŴ
†(t)V̂ †Ŵ (t)V̂ ),

calculated according to Eq. (2.13) with respect to the infinite temperature
state ρ̂β=0 = 1/D (1 is the identity operator, and D is the Hilbert-space
dimension of the half-filling sector, D = N !/[(N/2)!]2), for a large atomic cloud
ζ = 1, and unitary operators Ŵ = 2ĉ†i ĉi − 1, V̂ = 2ĉ†j ĉj − 1, with indices i = 0
and j = 1. The blue curves correspond to disorder averaged dynamics for
δ̃ω ∈ [0.1, 10]. As δ̃ω is decreased [effective number of involved cavity modes is
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Figure 3.7: OTOCs and SFF of effective and target model. Re(E[F (t)]) (a)

and E[S(β = 0, t)] (b) at β = 0, generated by Ĥ
(4)
eff with ζ = 1 (blue curves), and

ĤSYK with Ji1i2;j1j2 ∈ R (red curve). (a) Curves represent ensemble averages over

250(1000) disorder realisations of Ĥ
(4)
eff (ĤSYK) for N = 10 fermionic modes at half

filling. Shades of blue, from light to dark, correspond to δ̃ω = 10, 2, 1, 1/2, 1/10.
(inset) The inverse times 1/t∗, relative to that of the target model 1/t∗SYK, at
which Re(E[F (t∗)]) = 1/e, for each value of δ̃ω, as a function of the transverse
size ζ of the atomic cloud (dashed lines to guide the eye). With decreasing δ̃ω and
increasing ζ, the OTOCs approach the fast dynamics of the SYK model. (b) Curves

represent ensemble averages over 100(1000) disorder realisations of Ĥ
(4)
eff (ĤSYK)

for N = 14 fermionic modes at half filling. Vertical(Horizontal) black dotted
line indicate the Heisenberg time tH = 2D(plateau height 1/D), showing good
agreement with the SFF of ĤSYK. Shades of blue, from light to dark, correspond

to δ̃ω = 10, 2, 1, 1/2, 1/10, 1/100. The time axes for the SFFs of Ĥ
(4)
eff have been

rescaled in order to match the Heisenberg time of ĤSYK (see Methods, Sec. A.3).
(upper inset) The deviation ϵr (see text) of the ramp time tr decreases as a power

law δ̃ω
−α

with α = 0.58± 0.03, as extracted from a least-squares fit (black dashed
line).
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Figure 3.8: Level-spacing distribu-
tion. The unfolded level-spacing dis-

tribution p(s) of Ĥ
(4)
eff (blue histo-

grams) for the same disorder realisa-
tions of the SFF curves in Fig. 3.7(b),
compared to the GOE Wigner–Dyson
distribution (red) of Eq. (2.6) with
Wigner–Dyson index β = 1. There
is no qualitative change with varying
δ̃ω.

increased, as discussed previously in Sec. 3.3.5] the OTOCs decay faster, and
finally approach those of the SYK model (red curve). This speed-up is more
prominent for large transverse sizes ζ of the atomic cloud, as shown by the
inset. There, we use 1/t∗—defined via Re(E[F (t∗)]) = 1/e, with e being Euler’s
constant—as a proxy for the decay rate, and find the speed-up with decreasing
δ̃ω to be ζ dependent. This dependence is due to the shape of the cavity
mode functions, as discussed in Sec. 3.3.5 with reference to Fig. 3.5(c): Since
the cavity modes feature a length scale (the cavity waist w0), all interactions
mediated by different transverse cavity modes become linearly dependent for
small sizes, leading to a reduction of the effective number of modes mediating
interactions in Ĥ

(4)
eff . As a consequence, the convergence to the SYK model is

slower. This indicates that the effective model resembles the SYK model at a
length scale comparable to the cavity waist, ζ = 1.

3.5.2 Spectral form factor

As was discussed in Sec. 2.1.2, a typical diagnostic of quantum chaos is the
distribution p(s) of the spacings s of nearest-neighbour energy-levels, with
integrable models displaying Poisson statistics and chaotic models following the
Wigner surmise of Eq. (2.6) [99]. Indeed, the SYK model’s distribution p(s) is
known to follow the Wigner surmise [97] [see also the inset of Fig. 2.2(a)], and we

find that also for Ĥ
(4)
eff , p(s) matches the Wigner surmise well for all considered

values of δ̃ω, as shown in Fig. 3.8. The figure shows that, in contrast to the
OTOCs, we do not find a qualitative change of p(s) as a function of δ̃ω in our
numerics. However, since p(s) is a measure of short range (nearest-neighbour)
spectral correlations, it is only able to identify the presence of chaotic behaviour
at long timescales, on the order of 1/s.

To study the many-body chaotic properties of our effective model in more
detail, we thus turn to the SFF, which is sensitive also to long-range spectral
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

correlations, and thus able to diagnose chaotic behaviour already at short to
intermediate times. Fig. 3.7(b) shows the SFF [Eq. (2.7)] of Ĥ

(4)
eff for ζ = 1, as

compared to that of ĤSYK, at inverse temperature β = 0. The SFF of ĤSYK

(red curve) exhibits the characteristic random matrix theory (RMT) features
discussed in the introductory Sec. 2.1.2. For all values of δ̃ω considered, the
SFF of Ĥ

(4)
eff (blue curves) shows signatures of the dip and ramp and, similar to

the OTOCs, the depth of the dip and the temporal range of the ramp approach
that of the SYK model as δ̃ω is decreased (light to dark blue).
For a quantitative comparison of the effective and target model’s SFF, one

would ideally want to compare their Thouless time. This is the time at which
the connected part of the SFF starts to match the RMT predictions. This,
however, is generically masked by the early-time slope, which stems from the
disconnected part, making it very challenging to determine numerically even
for the target model [106, 115]. Instead, we focus on comparing the time tr at
which the ramp of the SFF starts. To extract this time, we follow the procedure
of Ref. [115] by defining tr as the earliest time at which the deviation of the
SFF from a linear fit to the ramp falls below a chosen threshold (see Fig. A.6
for an example of the fitting procedure). The upper inset to Fig. 3.7(b) shows

that the deviation ϵr =
∣∣∣tr(δ̃ω)− tr,SYK

∣∣∣ /tr,SYK scales as δ̃ω
−α

, with α ≈ 0.58.

In contrast to the nearest-neighbour level statistics p(s), the SFF reveals that
our effective model approaches the SYK model as δ̃ω is reduced and more
cavity-modes mediate the all-to-all interactions.

3.6 Discussion

The numeric results of the previous section highlight the key requirements for
Ĥeff to faithfully approximate the dynamics of ĤSYK. In particular, we have seen
the importance of the microscopic parameters δ̃ω and ζ: By controlling these
parameters, the interactions of Eq. (3.32) can be tuned into a regime (small
δ̃ω, large ζ) in which the early-time fast scrambling dynamics (OTOCs) and
long-range spectral correlations (SFF) of the SYK model are well approximated.

3.6.1 Experimental implementation

Here we motivate that the above requirements can be met using existing
experimental capabilities.
The need for a large ζ suggests the use of a light atomic species. 6Li is a

natural choice of Fermionic atom: considering a trap with transverse frequencies
of 25Hz, such as that produced by the magnetic field curvatures in Ref. [166],
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yields x0 = 5.8 µm. Quantum degenerate Fermi gases of 6Li are now routinely
produced in high finesse cavities [72, 73]. To produce mesoscopic samples of ten
to hundreds of atoms, the methods of Ref. [174] could be adapted to the context
of cavity QED. While the target model is amenable to direct numerical studies
for small N , and becomes analytically tractable when perturbing around the
N → ∞ limit, this mesoscopic regime remains inaccessible by these methods. At
the same time this regime harbours highly interesting quantum effects both from
the many-body and the holographic perspective, sensitive to non-perturbative
effects caused by the presence of a finite level spacing.
The lowest possible cavity waists, together with low mode spacing δω, are

achieved through the use of close-to-concentric cavities. For instance, Ref. [77]—
the basis of Chap. 4—operates with 6Li in a cavity with a waist of 13.2 µm, and
mode waists as low as 2.4 µm have been demonstrated close to the concentric
limit [175]. The coupling of atoms to a very large number of modes has been
achieved in confocal cavities [137]. In close-to-concentric cavities, transverse
modes are not degenerate even close to the stability limit, but as long as the
transverse mode spacing is much lower than the free-spectral range, it is possible
to emulate multimode driving using a comb of pump frequencies, each tuned
close to one transverse mode family [176]. While scaling-up the number of
cavity modes together with atom number is challenging in this context, the high
degeneracy of high-order cavity modes alleviates the experimental overheads,
so that reaching up to several hundreds of atoms seems realistic.
An intrinsic limitation of cavity-QED platforms is the occurrence of dissip-

ation channels in the form of spontaneous photon scattering by the atoms,
and photon leakage through the cavity mirrors. The corresponding irreversible
dynamics are described by jump operators in the Lindblad equation formula-
tion. These jump operators inherit the random structure of the light-matter
coupling, formally reproducing a dissipative SYK model similar to that studied
recently in Ref. [177] (see App. A.5). The finite cooperativity of the cavity
will yield a timescale below which the dynamics will be faithfully described by
the Hamiltonian of Eq. (3.26). Since the central feature of the SYK model is
the onset of chaos at logarithmically short time, we expect the study of this
process not to be strongly hindered by dissipative effects.

3.6.2 Summary

We have shown that state-of-the-art cQED experiments—with ultracold fer-
mionic atoms coupled to a multi-mode optical cavity, and subjected to a
spatially disordered AC-Stark shift—are able to realise an effective model Ĥeff

with dominant random all-to-all two-body interactions Ji1i2;j1j2 , as given by
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3 A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model

Eq. (3.32).
Numeric calculations from first principles reveal an underlying Cauchy distri-

bution, rather than the Gaussian distribution of the ideal target model ĤSYK

in Eq. (3.1), and we have shown this feature to be present also in previous
proposals based on solid-state and optical-lattice architectures. Nevertheless,
our exact simulations show good agreement between the considered OTOCs
and the SFF of the effective model and the target ĤSYK. We identify how one
can tune into the relevant parameter regime by tuning the transverse size ζ
of the atomic cloud, as well as increasing the number of cavity-modes mediat-
ing Ji1i2;j1j2 , by decreasing the ratio of the mode-spacing to the cavity–drive
detuning δ̃ω = δω/∆cd.
Our work shows that the SYK model is within the reach of cQED-based

experiments, and it sheds further light on the robustness of SYK physics against
experimentally motivated imperfections. Even more, it offers exciting prospects
for further exploration. An immediate extension is to vary the disordered light
shift in time, thereby generating random time-dependent interactions Ji1i2;j1j2(t)
as required for so-called Brownian SYK models [100]. The setup also permits
for controlled deformations of the model, opening a platform on which to test
the robustness of SYK-type physics, a question that is attracting increased
interest lately [102, 104–106, 172, 178]. An interesting direction for future
work is to investigate whether the real interaction amplitudes Ji1i2;j1j2 could
be made complex by breaking time-reversal symmetry through the synthesis of
an artificial magnetic field, for instance via spin–orbit coupling [179]. Finally,
whilst we have considered a single atomic cloud, multiple quasi-two-dimensional
clouds can be trapped within the same cavity, and could be subjected to
identical disorder using spatial light modulators. Such an extension of our
work may offer the exciting prospect of realizing coupled SYK systems such
as described by the Maldacena–Qi model [108], and studied in the context of
traversable wormholes [69, 70, 109].

3.6.3 Alternative approaches and outlook

Speckle correlation length. We have seen the importance of finite size effects,
as captured by ζ, in realising SYK physics. A further important length scale in
the above protocol is the correlation length ξ of the speckle pattern employed
to realise the disordered AC-Stark shift. In our numerics, we have considered
the ratio of speckle correlation length ξ to oscillator length x0 to be fixed (see
App. A.3 for details). Intuitively, however, there should also be an optimal value
for the relative size of the speckle grains ξ/x0: For ξ ≫ x0, the whole atomic
cloud is covered by a single speckle grain, and there is no disorder. For ξ ≪ x0,
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Figure 3.9: Drive beam at an angle.

To increase the drive’s wavelength λ
∥
d

over the two-dimensional atomic cloud
(black ellipse), one could let the drive
beam propagate at an angle θ relative
to the x-axis, instead of transversely
to the cavity(z)-axis. The enhance-
ment of the wavelength is then lim-
ited by the cavity geometry, as given
by the diameter d of the mirrors, and
their separation L.

in contrast, the disorder may be averaged out in the spatial integrals of Ji1i2;j1j2

[see, e.g., Eq. (3.32)]. Tuning also ξ/x0, for instance via the wavelength of the
light-shifting beam, or the numerical aperture of the focussing lens [162], may
offer the capability to further optimise the chaotic and scrambling properties
of Ĥeff .

Details of the cavity modes. For our derivations, we have taken a simplified
scenario, in which the transverse cavity modes appear in degenerate families at
frequencies ωc +mΣδω, where mΣ was the sum of the transverse mode indices.
The precise frequency arrangement, however, will depend on which type of
cavity is used, and the above general derivations may need to be adapted to a
given cQED setup accordingly. Similarly, we have neglected Gouy phase shifts
which depend on the longitudinal cavity coordinate z. For the scenario assumed
above, where a single quasi two-dimensional cloud is tightly confined along
the cavity(z)-axis and extends radially, the Gouy phase should be negligible
when trapping the cloud at z = 0. Especially for extensions to coupled SYK
models, possibly simulated by multiple quasi two-dimensional clouds trapped
along the cavity axis, this phase will need to be taken into account. The role of
an additional phase off-set, imposed by the boundary conditions of the cavity
mirrors and scaling as mΣ, provides a further avenue for future refinements
[22].

On-axis drive As motivated in Sec. 3.2, one could increase the wavelength of
the drive λd over the atomic cloud by letting it impinge at an angle, instead of
transverse to the cavity axis, as sketched in Fig. 3.9. This yields an effective
wavelength λ

∥
d over the atomic cloud (black ellipse), enhanced by a geometric

prefactor λ
∥
d = λd/ cos(θ). For simplicity, assume the mirrors to be identical and

suppose that their diameter d is equal to twice their radius of curvature R. For
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a planar cavity (L≫ R), one could achieve λ
∥
d ≫ λd. However, the diverging

mode-volume of the eigenmodes of planar cavities would lead to an undesirable
decrease in the light–matter coupling Ωm (single-photon Rabi frequency, see
Sec. 2.2.1). In contrast, for confocal (L = R) or concentric (L = 2R) cavities,

one could achieve only minor enhancements of λ
∥
d = (

√
5/2)λd, respectively,

λ
∥
d =

√
2λd.

As an alternative to this geometric enhancement, one may consider an on-axis
drive beam (θ = π/2), which couples to the cavity modes instead of the atoms,
in order to satisfy the long-wavelength approximation. Here, we show that this
approach formally yields the same effective model as in Sec. 3.3, only with gd(r)
replaced by a superposition of cavity modes, as will be defined in Eq. (3.43)
below.
Changing from a transverse to an on-axis drive, the many-body Hamiltonian

of Eq. (3.6) is modified accordingly as [see also Eq. (2.24)]

Ĥmb =
∑

m

∆mâ
†
mâm −

∫
dr∆da(r)ψ̂

†
e(r)ψ̂e(r)

+
1

2

∑

m

∫
dr
(
Ωmgm(r)âmψ̂

†
e(r)ψ̂g(r) + H.c.

)
+
∑

m

(Ω∗
dcmâm +H.c.),

(3.34)

where now the last term represents the coupling of the on-axis drive to the
transverse cavity modes, with coefficients cm quantifying the strength of this
coupling to the mth cavity mode. As for the case of transverse drive, we neglect
the kinetic and external trap terms Ĥkt here and in what follows. Note further
that we have already moved into the frame rotating at the drive frequency ωd.
Since the cavity modes are now driven, we decompose âm into a sum of

quantum fluctuations δâm around a classical contribution αm = tr(ρâm), âm =
αm+δâm, similar to Ref. [180]. The equation of motion for âm, including cavity
losses κ, is

i∂tâm = (∆m − iκ/2)âm + Ωdc
∗
m +

1

2

∫
dr (Ωmgm(r))

∗ ψ̂†
g(r)ψ̂e(r). (3.35)

Taking the trace and equating zero order terms we obtain,

i∂tαm = (∆m − iκ/2)αm + Ωdc
∗
m, (3.36)

which is solved by αm(t) = αm(0) exp(−(i∆m + κ/2)t) − Ωdc
∗
m/(∆m − iκ/2).

Assuming |∆m| ≫ κ, we find ⟨αm⟩T ≡ (1/T )
∫ T

0
dtαm(t) ≃ −Ωdc

∗
m/∆m, where

we have additionally assumed that the time interval satisfies T ≫ 2 |αm(0)/∆m|,
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which is valid for sufficiently large cavity–drive detuning ∆m. Substituting âm
by ⟨αm⟩T + âm in Eq. (3.34), we obtain

Ĥ =
∑

m

(
∆mâ

†
mâm − |Ωdcm|2

∆m

)
−
∫
dr∆da(r)ψ̂

†
e(r)ψ̂e(r)

+

∫
dr
(
ˆ̃Φ(r)ψ̂†

e(r)ψ̂g(r) + H.c.
)
,

(3.37)

where now ˆ̃Φ(r) = 1
2

∑
m

(
−Ωdc

∗
m

∆m
+ âm

)
Ωmgm(r). Comparing this with Φ̂(r)

of Eq. (3.13) already indicates how the transverse drive profile gd(r) of Sec. (3.3)
is replaced here by a superposition of the cavity mode profiles, governed by the
drive strength Ωd and the coupling coefficients cm. In what follows, we drop
the constant contained in the first term of Ĥ above.
Equation (3.37) is formally similar to Eq. (3.12), and thus adiabatic elimina-

tion of ψ̂e(r) and integration of the cavity photons âm via the SWT proceed
analogously to the derivation of Eq. (3.21). Formally, we obtain the same result,
only with modified terms,

Ĥ0 = Ĥkt +
∑

m

∆mâ
†
mâm (3.38)

+
|Ωd|2
4

∫
dr

1

∆da(r)

∑

m,n

(c∗mΩmgm(r))
∗c∗nΩngn(r)

∆m∆n

ψ̂†(r)ψ̂(r), (3.39)

Θ̂m = −1

4

∫
drΩ∗

dΩmgm(r)

(∑

n

c∗nΩngn(r)

∆n

)∗
ψ̂†(r)ψ̂(r)

∆da(r)
. (3.40)

The interactions

Ji1i2;j1j2 =
∑

m

Ii1j1,mI
∗
j2i2,m

∆m

= J ∗
j2j1;i2i1

, (3.41)

of the effective model with on-axis drive are thus formally equivalent to those of
Eq. (3.28) with transverse drive, but with the interaction integrals of Eq. (3.24)
modified to

Ii1j1,m =

∫
dr

Ωd (Ωmgm(r))
∗ µ(r)ϕ∗

i1
(r)ϕj1(r)

4∆da(r)
, (3.42)

where

µ(r) =
∑

n

c∗nΩngn(r)

∆n

, (3.43)
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Figure 3.10: OTOCs for effect-
ive model with on-axis drive.
Dynamics of Re(E[F (t)]) for
ζ = 1, similar to Fig. 3.7(a), but
for the on-axis drive configura-
tion coupling to only the lowest
cavity mode [cn=0 = 1, cn>0 = 0
in Eq. (3.43)]. Data are for N =
8 fermionic modes at half filling,
and represent ensemble averages
over 5000(2500) disorder realisa-

tions of Ĥ
(4)
eff (ĤSYK). Shades

of blue, and inset are as for
Fig. 3.7(a).

is a superposition of those cavity modes to which the on-axis drive has non-zero
coupling. The coupling coefficients may be varied so as to achieve a desired
profile µ(r). For instance, one may engineer the on-axis drive so as to couple
only to the lowest (Gaussian) cavity mode, cm = 0 for m > 0, such that the
drive profile gd(r) in Eq. (3.24) is replaced by the Gaussian cavity mode.
This scenario is investigated in Fig. 3.10, for the same OTOCs studied in

Fig. 3.7(a) for the transverse-drive configuration. This preliminary data shows
that the dependence of the OTOC decay on δ̃ω and ζ is qualitatively similar
to the behaviour observed for the transverse-drive configuration: For a given
ζ, decreasing δ̃ω yields an increased decay rate. In contrast to the data of
Fig. 3.7(a), here we do not see a monotonic increase of the decay rate when
varying ζ for a given δ̃ω, which is likely due to numerics finite-size effects of
the smaller system size (N = 8) studied here. The data however indicate that
also the on-axis configuration could be employed to approximate the SYK
dynamics, and merit further investigation for larger system sizes, or different
sets of couplings cn in Eq. (3.43).
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4 Engineering random spin models
with atoms in a high-finesse
cavity

This chapter is based on the publication N. Sauerwein, F. Orsi, P. Uhrich,
S. Bandyopadhyay, F. Mattiotti, T. Cantat-Moltrecht, G. Pupillo, P. Hauke
and J.-P. Brantut, “Engineering random spin models with atoms in a high-
finesse cavity”, Nat. Phys. (2023) [77]. As such, the derivations and discussion
presented in this chapter are adapted from there. The publication reports on
the realisation of spin models with quenched disorder realised in a single-mode
cQED experiment with 6Li atoms. My main contributions to this work are
the calculations, and analysis of experimental and numeric data, presented in
Secs. 4.2–4.3, related to the off-resonant regime of the experiment in which a
random Lipkin–Meshkov–Glick (LMG) is realised.

The unavoidable presence of impurities and inhomogeneities in most real-
world physical systems has given a strong motivation to the study of disordered
models. Several quantum simulation platforms, such as trapped ions [15],
ultracold atoms [18] and Rydberg atoms [181–183], have demonstrated the
capability to implement controlled disorder into otherwise clean many-body
systems. Those allowed for the investigation of non-equilibrium dynamics,
revealing some of the most intriguing phenomena of random systems, such as
Anderson [184–188] and many-body localisation [39, 41, 189].

As discussed in Sec. 2.2, cavity quantum electrodynamics (cQED) has emerged
as a new platform for quantum simulation in recent years. By harnessing
photons to tailor novel types of interactions beyond the native van der Waals
and dipolar interactions between atoms, cavity QED unites the scalability of
atom devices with tunable long-range interactions [22]. In Sec. 4.1, we discuss
the implementation of random spin models in a cQED platform, as reported
in Ref. [77], which studied their low-lying excitations. We show how the light
shift technique introduced in Sec. 3.2.1 was used to realise a quasi-random
longitudinal field with controlled strength, which competes with an all-to-all
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4 Engineering random spin models with atoms in a high-finesse cavity

flip-flop interaction mediated by the exchange of cavity photons.
By varying the detuning of the cavity from the clean atomic resonance, the

setup is able to realise a central-mode model (near-resonant regime) and a
Lipkin–Meshkov–Glick (LMG) model (far off-resonant regime) with an all-to-
all spin-exchange interaction. Tuning the disorder strength allowed for the
observation of disorder-driven crossovers in either regime, namely a disorder-
induced dressing of otherwise dark anti-symmetric states with cavity photons
in the central-mode model, and the breaking of ferromagnetic order in the
LMG model. We briefly review the experimental protocol—which utilised
the open nature of the cavity to observe the frequency-resolved response in
the cavity field and atomic polarisation channels—as well as results for the
near-resonant regime in Sec. 4.1, before turning to the analyses of the LMG
model in Sec. 4.2. We further show theoretically and experimentally in Sec. 4.3,
that the frequency-resolved susceptibilities measured in the experiment are
sensitive to the detailed structure of excitations, providing insights in particular
about their localisation properties.

4.1 Experimental details

Here, we cover the basic details of the employed cQED setup and the imple-
mentation of pseudo-random AC-Stark shifts which yields a disordered version
of the Tavis–Cummings (TC) model (the many-body generalisation of the
Jaynes–Cummings model introduced in Sec. 2.2.2) in the near-resonant regime.
We briefly review the general measurement protocol and its results for the TC
model, before moving on to the realisation of the LMG model in the off-resonant
regime in Sec. 4.2. For further details on the experimental apparatus, atoms
preparation, and interrogation, we refer the interested reader to the Methods
of Ref. [77].

4.1.1 Setup and Model

For the proposal of the previous chapter, the ensemble of cold atoms was
considered to be trapped in a single cloud at an antinode of the longitudinal
cavity mode. In this experiment, instead, the atoms are trapped across multiple
antinodes, forming a one-dimensional chain. This is achieved via a cavity
enhanced optical dipole trap, created by pumping the cavity on-axis with a
laser beam whose wavelength is 2λcavity. This choice of wavelength ensures that
the optical lattice’s potential minima are commensurate with the antinodes of
the longitudinal cavity mode, as sketched in the lower panel of Fig. 4.1(b). This
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4.1 Experimental details

Figure 4.1: Concept of the experiment. (a) Fragmentation of collective light–
matter eigenstates with increasing disorder. Top: Disorder-free system with all
spins (spheres) identically coupled to the central mode â provided by the cavity
field, forming a symmetric collective Dicke state. Bottom: With disorder, the
collective state fragments into few- or single-spin ensembles whose constituents
are located at arbitrarily large distances, exchanging excitations through the
cavity, sketched here for three excitation modes. (b) Experimental realisation:
Atoms are trapped in an optical resonator, forming an atom array commensurate
with the cavity mode, ensuring identical atom–light coupling. Two crossed light-
shifting beams (blue) illuminate the atoms with an incommensurate standing-wave
inference pattern, leading to a quasi-random intensity distribution ρa over the
atoms (right). The inset below illustrates the positions of the atoms (black bars)
with respect to the cavity field intensity (red wave), the optical dipole trapping
potential (grey wave) and the intensity of the light shifting lattice (blue wave). (c)
Simplified level-diagram of the 6Li atoms. The light-shifting laser (blue arrow)
off-resonantly couples the 2P3/2 manifold with the higher-lying 4D5/2 manifold,
yielding a dressed state |e⟩ (blue), with an energy shift proportional to the laser
intensity.

ensures a site-independent light–matter coupling g. Together with mapping
the internal atomic states to spin-1/2 degrees-of-freedom, this yields a model
of N Ising spins identically coupled to the central, bosonic photon mode of
the cavity. By formally exposing the ith spin to a random energy shift ϵi, the
model is described by the disordered Tavis–Cummings-type Hamiltonian

ĤTC = ∆caâ
†â+ g

√
N
(
Ŝ+â+ Ŝ−â†

)
+

N∑

i=1

ϵi
σ̂z
i

2
. (4.1)

Here, â† and â are the creation and annihilation operators of photons in the
cavity, σ̂r

i are the r-Pauli operators acting on the Ising (pseudo-)spin-1/2 of
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4 Engineering random spin models with atoms in a high-finesse cavity

Table 4.1: Parameters of cQED setup. Spontaneous emission rate Γ of the D2
line of 6Li, and measured values of the cavity loss rate κ and the single-photon
Rabi frequency g, yielding the single-atom, single-photon cooperativity η. The
thermal motion of the atoms, as set by the cloud’s temperature T , yields an
average atom–cavity coupling ḡ.

Γ/2π κ/2π g/2π η = (4g2)/(κΓ) T ḡ/2π
5.8MHz 0.45MHz 2.05MHz 6.4 200µK 1.23MHz

the ith atom, Ŝ+(−) =
∑N

i=1 σ̂
+(−)
i /

√
N are the collective spin-raising (lowering)

operators, and ∆ca is the detuning between the cavity and the bare atomic
resonance.

Experimentally, the Hamiltonian in Eq. 4.1 is realised by an array of N = 90
to 800 thermal 6Li atoms confined in about 160 trapping sites, positioned at the
anti-nodes of the resonant cavity field. The spins are encoded in the 2S

F=1/2
1/2

(|g⟩) and 2P3/2 (|e⟩) states of the 6Li atoms [Fig. 4.1(b,c)]. The cavity resonance
is tuned close to the 2S1/2–2P3/2 transition at 671 nm, with the detuning given
by ∆ca. The cavity is close to concentric, and the parameters relevant to the
analyses presented in this chapter are summarised in Table 4.1.

The Hamiltonian of Eq. (4.1) conserves the total excitation number ââ† +∑N
i=1 σ̂

+
i σ̂

−
i , and we will work in the single-excitation regime. This is motivated

by the fact that the experiment operates in the linear response regime, where
the probe beam, with Rabi frequency Ωp, is weak as compared to the rate of
spontaneous emission Γ of the atomic excited state, as well as compared to the
cavity loss rate κ, |Ωp| ≪ Γ, κ. In the disorder-free instance of ĤTC [Fig. 4.1(a),
top], the single-excitation manifold is composed of (i) two bright states (po-
laritons) (1/

√
2)(Ŝ+ ± â†)|G⟩|0⟩ at energies ∆ca/2± g

√
N , and described by a

single collective spin coupled to the cavity mode, and (ii) N − 1 degenerate
zero-energy dark states which are decoupled from the cavity field, and can be
written as (1/

√
j(j + 1))(

∑j
i=1 σ̂

+
i − jσ̂+

j+1)|G⟩|0⟩ for j = 1, . . . , N − 1 [190].

Here, |G⟩ ≡⊗N
i=1|g⟩i is the global atomic ground state, and |G⟩|0⟩ denotes the

product state with zero excitations in the joint atom–photon Hilbert space.

The collective spin description is broken by disorder, as illustrated in
Fig. 4.1(a), bottom. This leads to a fragmentation of the dark state manifold
into an ensemble of ‘grey eigenstates’ that are hybridisations of the delocalised
photon field and of a few localised spins with similar energies [191]. Because
the coupling to the cavity extends over the entire system, energy resonances
between spins can occur at arbitrarily large distances in the presence of disorder.
As a result, grey eigenstates have wave functions that are neither localised nor
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4.1 Experimental details

Figure 4.2: Example of spatially varying
light-shift. Spatially resolved absorption
spectroscopy of the D2 transition in the pres-
ence of a single light-shifting beam (Gaus-
sian, centred at x = 0mm with a waist of
120 µm), blue detuned from the 2P3/2–4D5/2

transition by 50MHz. The vertical axis indic-
ates the detuning of the probe light from the
bare atomic resonance. Both resonances of the
Autler–Townes doublet are visible, the strong
light-shifted single photon transition (top) and
the faint two-photon transition (bottom).

delocalised, but semi-localised over multiple, arbitrarily distant spins [192, 193].
It has been demonstrated theoretically that for any strength of light–matter
coupling this results in a multi-fractal structure of the eigenstates, similar to
that found at the critical points of localisation–delocalisation transitions [194].

4.1.2 Implementation of disorder

Disorder was implemented by means of a spatially-varying AC-Stark shift,
similar to the procedure proposed in Sec. 3.2.1.

Instead of a speckled light-shift beam, however, in this case the disorder is
created by two laser beams that intersect at the position of the atoms, with
frequency slightly detuned from the 2P3/2–4D5/2 transition at 460 nm. These
intersecting beams form a light-shifting lattice with a period of 1.04 µm that is
incommensurate1 with the trapping lattice, which has a period of 671 nm. This
produces a quasi-random pattern of strong light-shifts of the 2P3/2 state, with
negligible effect on atoms in the ground state, as illustrated in Fig. 4.1(b,c).
These light-shifts result in quasi-disordered energy shifts ϵi, that translate
into the spin language as random local longitudinal fields sampled from the
distribution

ρa(ϵ) =
1

π
√
ϵ(W − ϵ)

, (4.2)

where W is proportional to the intensity of the control laser (see App. B.1).
For a given disorder strength W , the mean atomic resonance frequency is thus
ωa +W/2, as depicted in Fig. 4.1(b).

1The period of the light-shifting lattice was chosen such that the ratio to the period of the
trapping lattice, 1.04 µm/671 nm ≃ 1.5499 . . . , was near the golden ratio.
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4 Engineering random spin models with atoms in a high-finesse cavity

Figure 4.3: Measurement scheme. When
probing the disordered system (I), photons
entering the cavity from the probe (red arrow)
have two decay channels: Either they leak
out of the cavity (red wiggled arrow) and are
detected by a single photon counter, or they
are lost by free-space spontaneous emission
of an atomic excitation (orange wiggled line).
The latter can depump the atom into the |a⟩
state, as the |g⟩ to |e⟩ transition is not closed.
(II) These depumped atoms can be detected
by measuring the cavity transmission: If the
cavity is on resonance with the |a⟩–|e⟩ trans-
ition and only a single atom is in state |a⟩, the
transmission is strongly suppressed.

A demonstration of the spatially-varying light shift is given in Fig. 4.2, which
shows an absorption image taken during the calibration of the excited-state’s
light shift, for a single Gaussian beam impinging on the atomic cloud.

4.1.3 Measurement protocol

By leveraging the open nature of the cavity, the cQED setup described above
allows for the frequency-resolved measurement of both the optical and atomic
response of the system. After preparing all atoms in the (ground, |g⟩) state
2S

F=1/2
1/2 , the system is interrogated by weakly driving the cavity on-axis with

a probe beam for a chosen interrogation time tmeas, as depicted in Fig. 4.3(I).
During this time, a single-photon counter is used to measure the cavity’s photon
transmission signal, proportional to ⟨â†â⟩.
To measure the atomic excitations, the experiment exploited the fact that

the transition between the 2S
F=1/2
1/2 (|g⟩) and 2P3/2 (|e⟩) states of 6Liis not

closed: A 6Li atom in the 2P3/2 state can spontaneously decay both back

into the 2S
F=1/2
1/2 state, or into the 2S

F=3/2
1/2 state, which we denote as the

auxiliary state |a⟩. The large hyperfine splitting of 228MHz between these two
2SF

1/2 states ensures that the auxiliary state |a⟩ is not coupled to the cavity

mode2. Consequently, measuring the total atomic population PA in |a⟩ after
the interrogation has ended, allows one to extract information on the atomic

2The detuning of the cavity from the average light-shifted 2S
F=3/2
1/2 –2P3/2 (a–e) transition

is ∆cā + 228MHz, so the a–e transition can become resonant only in the red-detuned
case ∆cā < 0. For the experiment in the near-resonant regime (Sec. 4.1.4), ∆cā was on
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excitations ⟨Ŝz⟩ = ⟨∑N
i=1 σ̂

z
i ⟩/(2N). In the experiment, PA(tmeas) was measured

subsequent to the above interrogation by shifting the cavity on-resonance with
the a–e transition, and then performing another transmission spectroscopy
measurement of the cavity, as depicted in Fig. 4.3(II). In this configuration,
the cavity transmission is suppressed by 1/(η + 1) [195] in the presence of a
single atom in the F = 3/2 state, yielding a single-atom level sensitivity for
the detection of the atomic response.

For a weak probe beam, the measurement scheme can be treated within linear
response, in which case the measured optical and atomic signals can be related
to the absorptive part of the system’s dynamic susceptibility [196]. This will
be elaborated upon in Secs. 4.2.2–4.2.3. Repeating the above procedure over
a range of probe frequencies thus provides the frequency-dependent photonic
and atomic (spin) susceptibilities, χp and χa. In what follows we will mainly
focus on the case where the cavity is far-detuned from the atomic resonance.
In this regime, the cavity mode can be integrated out, such that the atomic
susceptibility χa is the relevant observable.

4.1.4 Near-resonant regime and grey states

We briefly review the experimental results for the regime at small ∆cā where
the cavity resonance is close to the mean atomic resonances, ∆cā = ∆ca −W/2
[see Fig. 4.4(a)].

In this regime, the system’s dynamics are described by the TC Hamiltonian
of Eq. (4.1), and the data for χa in Fig. 4.4(b) shows the expected normal-mode
splitting of width 2g

√
N/2π = 22MHz at zero disorder, W = 0. As a result

of this splitting, a Rabi gap forms at ∆cā = 0, and direct atomic excitations
at the bare resonance frequency are suppressed [see centre of Fig. 4.4(b)].
Although there are N − 1 eigenstates of the Hamiltonian lying within the
gap, these are purely atomic, and the symmetry of the all-to-all atom–cavity
coupling prevents their excitation, rendering them completely dark. Upon
introducing disorder, we observe the onset of a non-zero response around zero
detuning, a manifestation of the increase of photon weight of the originally dark
purely atomic states. A representative spectrum of χa for W/(2π) = 26MHz is
presented in Fig. 4.4(c). We observe that the fading out of the Rabi splitting
occurs via a redistribution of the spectral weight from the polaritons to a wide
spectrum of mid-gap states.

To further understand the evolution of the spectrum with disorder strength,

the order of ±30MHz, for which the a–e transition remains far off-resonant. For the
experiment in the large-detuning regime (Sec. 4.2), ∆cā > 0, i.e., blue-detuned.
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4 Engineering random spin models with atoms in a high-finesse cavity

Figure 4.4: Response of the system in the central-mode regime. (a)
Frequency diagram illustrating the relative detunings between the atoms with
average frequency ωa in a rangeW , the cavity at frequency ωc, and the probe at ωp.
The light-blue dashed lines indicate the edges of the atomic frequency distribution.
In all other panels, the atomic states lie between the two light-blue lines. (b–e)
Measured (b, c) and simulated (d, e, see Methods of Ref. [77], with N = 100
atoms) atomic susceptibility maps as a function of atom–cavity and pump–cavity
detunings (x- and y-axis, respectively), for the clean system (b, d) and at maximal
disorderW/2π = 26MHz (c, e). (f–i) Measured (f, h) and simulated (g, i) photonic
susceptibility as a function of disorder strength W for different atom numbers;
N = 74 (f, g) and N = 145 (h, i).

we probe the photonic susceptibility χp at ∆cā = 0 as a function of disorder
strength W , and detuning ∆pc. The results are presented in Fig. 4.4(f,h) for
different mean atom numbers N . For weak disorder, the photonic susceptibility
χp confirms the presence of the two bright polaritons, and a manifold of
degenerate dark states at the centre of the Rabi gap. As the disorder becomes
comparable with the collective atom–cavity coupling, W ∼ g

√
N , we observe a

smooth increase of χp around ∆pc = 0, signalling the onset of a finite coupling of
a grey state manifold emerging from the originally dark states. Simultaneously,
the polaritons’ response weakens and fades away for the largest disorder, where
the spectrum consists of a resonance centred at ∆pc = 0 strongly broadened by
the disorder.

The evolution of the spectrum with disorder is driven by the fragmentation of
the eigenstates, from fully delocalised bright and dark states without disorder,
to randomly distributed, isolated resonances for the largest disorder. This
interpretation was confirmed by comparison of the data [Fig. 4.4(b,c,f,h)] with
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4.2 Large-detuning regime and Lipkin–Meshkov–Glick model

theoretical calculations [Fig. 4.4(d,e,g,i)] of the cavity transmission based on
Green function techniques (see the Methods of Ref. [77]).

4.2 Large-detuning regime and
Lipkin–Meshkov–Glick model

In the central mode model investigated so far, an essential role is played by
the finite admixture of the spin excitations to the delocalised photon field. For
large detuning ∆ca ≫ g

√
N , the cavity field is only virtually populated, giving

rise to an all-to-all interaction between the spins, thereby realising an effective
Lipkin–Meshkov–Glick (LMG) model [180, 197, 198], as we now show.

4.2.1 Derivation of the LMG model

Our starting point is the disordered Tavis–Cummings Hamiltonian ĤTC, which
is expressed in Eq. (4.1) relative to the rotating frame (RF) of the bare atomic
resonance frequency ωa. Within this RF, the probe beam is described by

V̂ (t) = Ωpe
−i(ωp−ωa)tâ† +H.c., (4.3)

with probe-laser and Rabi frequency ωp and Ωp, respectively.

The total Hamiltonian is thus ĤTC + V̂ (t). Modelling the cavity losses at
rate κ through a dissipator superoperator D• = κ(â • â† −

{
•, â†â

}
/2) in a

Lindblad master equation [199], the equation of motion for the (Heisenberg
picture) photonic operator â(t) is

∂tâ(t) = −i
[
â(t), ĤTC + V̂ (t)

]
− (κ/2)â(t). (4.4)

Using that cavity losses are sub-dominant, i.e., ∆ca ≫ κ (see Table 4.1), the
cavity mode adiabatically follows the evolution of the spin degrees of freedom
as

â(t) = −g
√
NŜ− + Ωpe

−i(ωp−ωa)t

∆ca

. (4.5)

Substituting this expression into ĤTC + V̂ (t) eliminates the cavity mode, and
one obtains (up to an irrelevant constant term − |Ωp|2 /∆ca) the effective spin
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Hamiltonian

Ĥ(t) =ĤLMG − V̂(t) , where (4.6)

ĤLMG =
N∑

i=1

ϵi
σ̂z
i

2
− JNŜ+Ŝ−, (4.7)

V̂(t) =g
√
N

∆ca

(
Ωpe

−i∆patŜ+ +H.c.
)
, (4.8)

with ∆pa ≡ ωp−(ωa+2g2/∆ca). We note that Eqs. (4.6)–(4.8) are obtained after
performing an additional RF transformation, which serves only to remove an
otherwise constant contribution (2g2N/∆ca)Ŝ

z—which is simply the dispersive
shift of the collective spin—to Eq. (4.7). This yields the contribution 2g2/∆ca

in ∆pa above.
Eliminating the cavity mode thus yields (all-to-all) spin-exchange interactions

of strength J = g2/∆ca, and the quenched disorder of Eq. (4.1) has propagated
into the diagonal part of Eq. (4.7) as a random longitudinal field. Similar to
ĤTC, ĤLMG conserves the total number of excitations

∑N
i=1 σ̂

+
i σ̂

−
i . The level

structure of ĤLMG thus consists of N + 1 manifolds, with the nth manifold
composed of

(
N
n

)
states containing n = 0, 1, . . . , N excitations. In what follows,

we will focus on the dynamics within the two lowest manifolds, n = 0, 1.
We note that Eq. (4.7) can be mapped to a pairing Hamiltonian [200, 201],

central to the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity
[202], and more generally is a particular case of the class of exactly solvable
Richardson–Gaudin models [203–205].

4.2.2 Dynamic susceptibility

Having obtained the effective long-range interacting model of Eqs. (4.6)–(4.8),
we now derive the form of the atomic susceptibility χa(∆pa) in the dispersive
regime. In particular, χa(∆pa) is obtained from the absorptive part χ′′(∆pa)

of the dynamic susceptibility of the effective model ĤLMG of Eq. (4.7), when
the latter is initialised in its ground state |G⟩ ≡⊗N

i=1|g⟩i, and subsequently

subjected to the probe via the interaction V̂(t) of Eq. (4.8).
Studying the dynamic susceptibility is motivated by the fact that the probe

beam is weak |Ωp| ≪ Γ, so that one may treat V̂(t) as a perturbation within the
regime of linear response [196]. That it is the absorptive part which is relevant
follows from the fact that the probe beam is driving, and thus depositing energy
into, the system for the duration of the interrogation phase [Fig. 4.3(I)]. In
particular, |Ωp| ≪ Γ implies that atomic excitations decay much faster than the
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4.2 Large-detuning regime and Lipkin–Meshkov–Glick model

rate at which they are introduced into the system, so that one may study the
limit in which there is at most a single excitation n = 0, 1 present in the system.
That is, one need only consider the eigenstates |G⟩ and {|m⟩}Nm=1, where the
latter set of states forms the single-excitation manifold (SEM) of ĤLMG. These
SEM states are superpositions of the single-excitation basis |i⟩ = σ̂+

i |G⟩,

|m⟩ =
N∑

i=1

cmiσ̂
+
i |G⟩, (4.9)

where the expansion coefficients cmi depend on the particular disorder realisation
for W > 0. We denote the ground and SEM eigenenergies as EG, Em, and the
spectral gaps as EmG ≡ Em − EG, for m = 1, . . . , N .
With respect to the set of states {|G⟩, {|m⟩}Nm=1}, we then have (see App. B.3

for the derivation)

χ′′(∆pa) = π
∑

m∈SEM

∣∣∣∣∣⟨m|g
√
NΩp

∆ca

Ŝ+|G⟩
∣∣∣∣∣

2

δ(∆pa − EmG). (4.10)

In what follows, we approximate the Dirac-delta functions in Eq. (4.10) as
Lorentzian responses

δγ(ω) ≡
γ/π

γ2 + ω2
, such that δ(ω) = lim

γ→0
δγ(ω). (4.11)

Here, γ is the line-width of the (normalised) resonance, which according to
the Wiener–Khintchine theorem [206, 207] corresponds to a finite experimental
measurement time 1/γ.
Inserting Eq. (4.11) into Eq. (4.10), and extracting the energy scales, we

define the dimensionless atomic susceptibility χa(∆pa), as

χa(∆pa) =γ

∣∣∣∣
∆ca

gΩp

∣∣∣∣
2

χ′′(∆pa)

=
∑

m∈SEM

N
∣∣∣⟨m|Ŝ+|G⟩

∣∣∣
2 γ2

γ2 + (∆pa − EmG)2

≡
∑

m∈SEM

χa,m(∆pa). (4.12)

At zero disorder, W = 0, the SEM basis can be determined analytically to
be

|m⟩ =
{
Ŝ+|G⟩, m = 1∑

j ̸=i∗ cmj(|i∗⟩ − |j⟩), m = 2, . . . , N,
(4.13)
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Figure 4.5: Saturation of depumping signal.
Data taken during the calibration of the depump-
ing scheme of Fig. 4.3(II). The mean number of
transmitted photons during the depumping detec-
tion is plotted against the power of the probe used
during the interrogation of the disordered system.
Error bars represent statistical fluctuations. The
exponential decay of the signal with probe power
is made evident by the orange line, which shows a
fit of PA(tmeas) as given by Eq. (4.19).

where the choice of i∗ ∈ {1, . . . , N} is arbitrary due to the translational
symmetry of ĤLMG at W = 0. The corresponding energies 3 are

Em =

{
−NJ, m = 1

0, m = 2, . . . , N,

EG =0. (4.14)

Inserting Eq. (4.13) into Eq. (4.12), one finds that for W = 0, only the
first excited state |m = 1⟩ contributes to χa(∆pa), such that on resonance
χa(∆pa = E1G) = χa,1(E1G) = N (see Fig. 4.7 and inset).

4.2.3 Modelling the measurement protocol via a Lindblad
master equation

We now show that the atomic susceptibility χa(∆pa) of Eq. (4.12) can be
extracted from measurements of the atomic population PA(t) of the auxiliary
state |a⟩ at a given point in time t.
Intuitively, it is plausible that χa(∆pa) and PA(t) should be connected: On

the one hand, χa(∆pa) is simply a rescaling of the absorptive part of the dynamic
susceptibility χ′′(∆pa) [see Eq. (4.10)–(4.12)] of the effective model described by
Eq. (4.6), and thus quantifies the time-averaged energy absorbed by this system
when subjected to a perturbation at frequency ∆pa. On the other hand, the
system can absorb energy from the probe beam only via coherent excitations of
the atomic population from state |g⟩ (2SF=1/2

1/2 ) to |e⟩ (2P3/2). The population

3The degeneracy of the global ground state |G⟩ with the N − 1 states |m > 1⟩ is a result
of the first term of Eq. (4.7) vanishing as W → 0. If instead, ϵi → h > 0 as W → 0,
then the energies would be shifted to EG = −Nh/2, Em=1 = −(N − 2)h/2 − NJ and
Em>1 = −(N − 2)h/2. Assuming h > NJ then explains the choice of nomenclature for
|G⟩ and |m = 1⟩ being the ground, respectively, first-excited state.
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4.2 Large-detuning regime and Lipkin–Meshkov–Glick model

of state |a⟩ (2SF=3/2
1/2 ) can then change only via spontaneous decay from state

|e⟩ at a rate Γa. Therefore, detecting PA(t) > 0 implies that the system has
absorbed energy via atomic excitations. Furthermore, the probability to excite
the system into a collective state containing an atomic excitation upon probing,
is maximised when the probe frequency ∆pa [see Eq. (4.8)] is resonant with
transitions from the system’s collective ground state |G⟩. It follows that the
total atomic population PA(tmeas) found in state |a⟩ after the interrogation time
is a measure of how susceptible the system was to excitations introduced by
the probe at frequency ∆pa.
We give the above intuition an analytic foundation by modelling the meas-

urement protocol of Sec. 4.1.3 via a Lindblad master equation. Detailed
calculations are given in App. B.2, and we discuss only the pertinent steps
here.
We work in a rotating frame generated by N∆paŜ

z, such that the Hamiltonian

of Eq. (4.6) is time-independent, i.e., V̂(t) → V̂ = V̂(0). The Lindblad equation
is then given by

∂tρ̂(t) = −i
[
ĤLMG −N∆paŜ

z + V̂ , ρ̂(t)
]
+
(
D[Γg; {σ̂−

i }]+D[Γa; {|a⟩⟨e|i}]
)
ρ̂(t),

(4.15)
where ρ̂(t) denotes the system’s density matrix, and the superoperators

D[γ′; {L̂i}]ρ̂(t) ≡ γ′
N∑

i=1

(
L̂iρ̂(t)L̂

†
i −
{
L̂†
i L̂i, ρ̂(t)

}
/2
)
, (4.16)

describe dissipation at a rate γ′, due to jump processes generated by {L̂i}.
Specifically, the superoperators with rates Γg and Γa describe spontaneous
decay of atoms from |e⟩ to |g⟩ and |a⟩, respectively. The decay rates Γg,Γa are
branching ratios of the natural linewidth Γ = 5.8× 2πMHz of the D2 line of
6Li, i.e., Γg + Γa = Γ. Spontaneous emission from |a⟩ to |g⟩ can be neglected
on the timescales of the experiment, as for 6Li it is forbidden by selection rules.
In the derivations of App. B.2, we make the simplifying assumption that

there is a single excitation in the system. This is motivated physically by the
fact that the probe beam’s amplitude Ωp is much weaker than the natural
linewidth Γ of 6Li. Consequently, atomic excitations decay at a rate much
faster than the rate at which they are introduced by the probe beam, |Ωp| ≪ Γ.
For long probing times, or strong probes, however, multiple excitations can, in
principle, accumulate in the auxiliary state manifold. However, the presence of
a single atom in state |a⟩ drastically suppresses the transmission signal, due to
the cavity’s high cooperativity [195]. To avoid saturation of the transmission
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4 Engineering random spin models with atoms in a high-finesse cavity

signal, the experiment was thus operated in a regime where at most one atom
was in state |a⟩. We therefore project the dynamics of Eq. (4.15) onto the
Hilbert subspace with at most one excitation and at most one atom in the
auxiliary state |a⟩.
We then utilise a separation of scales to derive the equation of motion for

PA(t) ≡ ∑N
i=1⟨ai|ρ̂(t)|ai⟩, where |ai⟩ ≡ |a⟩⟨g|i|G⟩ are single-excitation states

in the auxiliary-state manifold: Within the time domain t≫ (Γ/2)−1, all
coherences as well as the SEM populations can be adiabatically eliminated
from the rate equations of the remaining populations pG(t) and {⟨ai|ρ̂(t)|ai⟩}Ni=1.
Doing so, one finds that

∂tpG(t) = −∂tPA(t), (4.17)

and to lowest order in (Γ/2)−1,

∂tpG(t) = − Γa

∑

m∈SEM

|VmG|2
(Γ/2)2 + (EmG −∆pa)2

pG(t)

= − Γa

(Γ/2)2

∣∣∣∣
gΩp

∆ca

∣∣∣∣
2

χa(∆pa)pG(t).

(4.18)

In the last line, we have identified the Lorentzian response of Eq. (4.11), with
linewidth γ = Γ/2. Further, using that (within the rotating frame of N∆paŜ

z)

the matrix elements VmG follow from Eq. (4.8) as VmG = g
√
NΩp

∆ca
⟨m|Ŝ+|G⟩, we

have identified the relation to χa(∆pa), as defined by Eq. (4.12).
Integrating Eq. (4.18) over a measurement time tmeas, with initial conditions

pG(0) = 1, PA(0) = 0, and making use of the conservation of atomic population
as given by Eq. (4.17), we find

PA(tmeas) = 1− exp

(
− Γa

(Γ/2)2

∣∣∣∣
gΩp

∆ca

∣∣∣∣
2

χa(∆pa)tmeas

)
. (4.19)

This result confirms the monotonic relation between PA(t) and χa(∆pa). It is
obtained with respect to the experiment’s initial conditions pG(0) = 1, PA(0) =
0, and is valid for times t≫ (Γ/2)−1.
The saturation of PA(tmeas) as a function of the probe power |Ωp|2, as

illustrated by the data of Fig. 4.5, is captured by Eq. (4.19). Further, for a
given probe power, the saturation rate is maximal at those probe frequencies
∆pa at which χa(∆pa) is largest: Since population transfer from |G⟩ to a state
|m⟩ of the SEM is maximised when the probe frequency is resonant with the
transition frequency EmG [i.e., resonant with a frequency at which the system
is most susceptible to perturbations, as quantified by χa(∆pa)], the concomitant
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4.2 Large-detuning regime and Lipkin–Meshkov–Glick model

Figure 4.6: Response of the random LMG model. (a) Frequency diagram
depicting the detuning between the atomic disorder, the cavity and the weak
cavity probe. (b–e) Measured (b, c) and simulated (d, e) atomic susceptibility for
N = 303 (b, d), and N = 610 (c, e) atoms. (f) Cuts through b and d, illustrating
the quantitative agreement between experiment (markers) and theory (solid lines).
Cuts show data for different disorder strengths W/2π = 0.0, 5.2, 13.0, 20.8, 26.0
(MHz) (top to bottom), and are offset from one another according to (26 −
W/2π)/13. (g) Scaling of the collective ferromagnetic gap ∆FM = JN at zero
disorderW = 0 with mean atom number N . (h) Behaviour of ∆FM as a function of
disorder strength W for N = 303 (empty red circles) and N = 610 (blue triangles)
atoms. To illustrate the scale invariance of the system, the axes are rescaled by
the zero-disorder ferromagnetic gap size JN . Markers represent the experimental
data with statistical error bars, and the lines show the theoretical results obtained
by exact diagonalisation (see App. B.5).

accumulation of population in the auxiliary state is also maximised. Conversely,
for a fixed measurement time tmeas, saturation of the signal PA(tmeas) can be
suppressed by reducing the probe’s power. This is crucial for the precision of
the experimental data presented in Fig. 4.6, which consists of multiple datasets
taken for different probe powers in the (∆pa,W ) parameter space.

4.2.4 Comparison to experimental results

Similar to the central mode model, in the absence of disorder (W = 0), Eq. (4.7)
describes the dynamics of a collective spin within the Hilbert subspace of sym-
metric states. The non-linearity inherited from the spin–cavity coupling favours
a ferromagnetic ground state, protected by a finite gap of size ∆FM = JN [see
Eq. (4.14) and the related footnote]. A striking manifestation of ferromagnetism
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4 Engineering random spin models with atoms in a high-finesse cavity

is the strong suppression of the zero–frequency magnetic response.
To realise the model of Eq. (4.7), the cavity was blue-detuned from the atomic

transition by ∆ca/2π = 92MHz, and subsequently probed at a frequency ωp in
the vicinity of the bare atomic resonance ωa [see Fig. 4.6(a)]. In this regime, the
transmission of the cavity is negligible such that χp ∼ 0, and the atomic signal
χa(∆pa) of Eq. (4.12) directly measures the transverse spin susceptibility of the
system at frequency ∆pa = ωp − (ωa + 2g2/∆ca) [as defined below Eq. (4.8)].
As shown in Fig. 4.6(b,c), in the absence of disorder, the frequency dependence
of χa reveals the finite ferromagnetic gap, of magnitude ∆FM, as well as the
reduced zero–frequency susceptibility at ∆pa = 0. The signal is broadened by
the finite decay rate of the excited atomic states, which reduces to a convolution
of the response with the linewidth of the atomic transition, as shown in the
derivation of PA(tmeas) in Eqs. (4.18)–(4.19).
We now investigate this model in the presence of disorder. Similar to the

central mode model, this breaks the description in terms of a collective spin,
restoring the system’s ability to explore the full Hilbert space. For a given
disorder strength W , the susceptibility [see Fig. 4.6(f)] shows an asymmetric
peak, corresponding to a collectively enhanced response superimposed with a
weak and broad background whose width traces the disorder strength [dashed
blue line in Fig. 4.6(b–e)]. This is a manifestation of the gradual fragmentation
of the collective spin, as disorder renders the individual spins off-resonant
with each other. The peak is located at −∆FM, and we denote its amplitude
by χFM

a . Tracking the location of this peak provides a measurement of the
ferromagnetic gap as a function of W . Without disorder, this gap increases
linearly with atom number, as shown in Fig. 4.6(g). With increasing disorder,
it decreases smoothly towards zero, as shown in Fig. 4.6(h), where, for low
enough atom numbers, the gap is zero within the error bars. This demonstrates
the competition between the infinite-range cavity-mediated interaction J and
spectral disorder W for the dynamics of the effective model ĤLMG.
The experiment’s results are in very good agreement with numeric simulations

of the response χa of ĤLMG (detailed in App. B.5), over the entire parameter
regime [see Fig. 4.6(b–f)]: The simulated system sizes were set as the mean atom
numbers N realised across all experimental runs, and the effect of the atoms’
thermal motion on the atom–cavity coupling g, quoted in Table. 4.1, has been
taken into account. The decrease of the ferromagnetic gap [Fig. 4.6(h)] indicates
a drastic change of the system properties as disorder increases. However, in the
thermodynamic limit the system is always ferromagnetic and no paramagnetic
phase transition should occur. Indeed, intuitively for any fixed disorder strength,
increasing the number of atoms will always lead to an infinite number of close-
to-resonance spins, enforcing ferromagnetism in the thermodynamic limit for
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4.3 Localisation of excitations

an arbitrarily large disorder strength. However, for any finite number of atoms,
there exists a disorder strength large enough to bring the ferromagnetic gap
close to zero, by rendering each spin essentially spectrally isolated from all the
others, thus crossing the system over into a paramagnet.
More precisely, our simulations show that finite systems display a minimal

gap at a disorder strength W ⋆ suggestive of critical behaviour; however, the
value of W ⋆ diverges with increasing atom number (see App. B.6 and Fig. B.1).

4.3 Localisation of excitations

The existence and distribution of energy resonances in disordered systems
is the essence of Anderson localisation. In the cQED experiment described
above, excitations can hop at arbitrarily large distances provided the spins
are closely resonant. Disorder thus decimates the spins available for resonance
by offsetting most spins from each other, but does not prevent long-distance
propagation [192, 194]. In this way, increasing the disorder strength should
induce localisation, in the sense that collective spin excitations become localised
over fewer and fewer (albeit arbitrarily separated in space) sites.
A typical measure to probe localisation is the participation ratio, which

quantifies the extent to which a given state is (de)localised over a basis of
interest. In our context, we wish to study the (de)localisation of a SEM
eigenstate |m⟩ [as defined in Eq. (4.9)] of ĤLMG over the spins i of the system.
This is quantified by the participation ratio

PRm =

(
N∑

i=1

|cmi|4
)−1

∈ [1, N ], (4.20)

of which the limiting values 1 and N are respectively obtained at cmi = δi,i∗
(full localisation at some site i∗, achieved at W → ∞), and cmi = 1/

√
N, ∀ i

(full delocalisation over all N sites, achieved at W → 0).
The spectroscopic probe employed in the above experiment, however, does

not yield information which is spatially-resolved over the sites i. Nevertheless,
the frequency-resolved information contained in the measured atomic suscept-
ibility χa does carry relevant insights about the localisation of excitations. In
particular, the participation ratio PR1 of the first excited state obeys

χa,1 ≥ PR1, (4.21)

at any W ≥ 0, where χa,1 = χa,1(E1G) is the contribution of the first excited
state to the atomic susceptibility when the system is probed on resonance with
the transition to this state, from the global ground state.

77



4 Engineering random spin models with atoms in a high-finesse cavity

We now prove this relation, before discussing the experimental results.

4.3.1 Participation ratio and its relation to the susceptibility

Our proof of Inequality (4.21) relies on the identification of PR1 and χa,1(E1G)
[Eqs. (4.20) and (4.12)] as monotonic functions of different Rényi entropies,

Hα(p) =
1

1− α
log

(∑

i

pαi

)
, (4.22)

over a probability distribution p = (p1, p2, . . .), and then exploiting the hierarchy
[208],

Hα1(p) ≥ Hα2(p), for any real numbers α2 ≥ α1 ≥ 0. (4.23)

To this end we note that:

(i) On resonance ∆pa = EmG, the mth summand of the atomic susceptibility
defined in Eq. (4.12) reduces to

χa,m(EmG) =

∣∣∣∣∣
N∑

i=1

cmi

∣∣∣∣∣

2

∈ [1, N ], (4.24)

whose limiting values are obtained with the same distributions of cmi as
for PRm [see Eq. (4.20) and text thereafter].

(ii) Using Perron–Frobenius theory [209], one can show that for any disorder
strengthW ≥ 0, the lowest SEM eigenstate |m = 1⟩ of ĤLMG [as defined in
Eq. (4.7)] satisfies c1i ≥ 0,∀i = 1, . . . , N . Hence, one has that c1i = +

√
p1i,

where pmi ≡ |cmi|2 are the probabilities associated to the amplitudes cmi.
A proof is provided in App. B.4.

Now, for the identification with Rényi entropies, we expand both sides of
Inequality (4.21) and employ point (ii). This yields

χa,1(E1G) =

∣∣∣∣∣
N∑

i=1

c1i

∣∣∣∣∣

2

=

(∑

i

pα1
1i

) 1
1−α1

= exp(Hα1(p1)), (4.25)

PR1 =

(
N∑

i=1

|c1i|4
)−1

=

(∑

i

pα2
1i

) 1
1−α2

= exp(Hα2(p1)), (4.26)
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where α1 = 1/2, α2 = 2, and p1 ≡ (p11, p12, . . . , p1N). Since exp(x) is monotonic,
the hierarchy of Rényi entropies in Eq. (4.23) is preserved, and thus

exp(Hα1(p1)) ≥ exp(Hα2(p1)) for α1 = 1/2 and α2 = 2. (4.27)

This concludes the proof.4

We note that Inequality (4.21) [as well as its looser form in terms of the full
χa(E1G), see Inequality (4.28) below] becomes an equality in both limits of |m =
1⟩ being fully (de)localised. This too follows from the above expression in terms
of Rényi entropies: For any α ≥ 0, Hα(p) = log(N) if pi = 1/N, ∀i = 1, . . . , N
(maximal uncertainty), and Hα(p) = 0 if pi = δi,i∗ for some i∗ = 1, . . . , N
(maximal certainty).

4.3.2 Comparison to experimental results

We have seen above that a system’s magnetic response may be used to bound
the participation ratio of the excitations, i.e., the number of spins contributing
to the wave function.
However, the bound of the participation ratio, as defined by Inequality (4.21),

is not directly accessible from the measured data presented in Fig. 4.6: Due to
the finite atomic linewidth [see Eq. (4.19) and the derivation thereof], extracting
only the m = 1st summand of the atomic susceptibility is not feasible, as nearby

4The relation of Eq. (4.26) exemplifies that the participation ratio is an entropic measure,
quantifying the degree of (un)certainty [(de)localisation]—obtained from some state’s
expansion coefficients—as to its spread over a chosen set of degrees of freedom (basis).

In this context, the generalised inverse participation ratio IPRq(|ψ⟩) =
∑N
i=1|⟨i|ψ⟩|2q is

used to study the behaviour of all moments q ≥ 0 of a state’s probability distribution
p = (|⟨i = 1|ψ⟩|2 , . . . , |⟨i = N |ψ⟩|2), and thus study a state’s localisation properties in
more detail. In particular, states with a non-trivial, q-dependent, system-size scaling
IPRq(|ψ⟩) ∝ N−τq for all q ≥ 0 are termed to be “multifractal” [210]. In this context, it
is convenient to define the multifractal dimension Dq = d

τq
q−1 (d is the physical dimension

of the system), which is identically zero in insulating states, whilst metallic states exhibit
Dq = d for all q ≥ 0. At critical points, in contrast, Dq is a non-trivial function of q,
indicating multifractality. It was shown in Refs. [77, 194] that the semi-localised grey
eigenstates of the TC model studied in Sec. 4.1.4 are multifractal. As alluded to in [194],
IPRq(|ψ⟩) can be viewed as an analogue of the Rényi entropy, being most sensitive to the
tails(largest components) of the probability distribution p for small(large) q. Using our
derivations above, we can formalise this analogy as follows: Combining the expressions

for IPRq(|ψ⟩) and Dq, one has Dq =
d

1−q
log(IPRq(|ψ⟩))

log(N) , which can be expressed in terms

of Rényi entropies as Dq = d
Hα=q(p)
log(N) . This relation exemplifies the intimate link between

entropy and quantifiers of a state’s (de)localisation properties, and has as an immediate
consequence that Dq decays monotonically with q ≥ 0.
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4 Engineering random spin models with atoms in a high-finesse cavity

Figure 4.7: Participation ratio bound from atomic susceptibility. Normalised
atomic susceptibility χFM

a , an upper bound to the participation ratio PR1 of the
first excited state, for N = 303 (empty red circles) and N = 610 (blue triangles)
as a function of normalised disorder strength W/JN . The solid black line shows
the corresponding simulation results for χa,1 of Eq. (4.21). The black dotted line
is the directly simulated participation ratio of the first excited state, PR1. Inset:
Maximum value of the zero-disorder atomic susceptibility as a function of atom
number, showing linear scaling expected from the definition of χa in Eq. (4.12).

resonances add to the measured signal. What can be feasibly extracted is the
on-resonance amplitude χFM

a of the full susceptibility of Eq. (4.12), which
satisfies

χFM
a ≡ χa(E1G) ≥ χa,1(E1G), (4.28)

by definition.
The frequency resolved measurements of Sec. 4.2.4 thus allow one to verify

the fragmentation of the system’s collective excitations into ever-more local-
ised wave-functions, consistent with the expectations for eigenstates of the
central mode model of Sec. 4.1.4 [192, 194, 211]. The bounds of Inequalit-
ies (4.21) and (4.28) are saturated for W = 0, where PR1 = N corresponds
to a wavefunction uniformly distributed over all spins, as well as in the limit
W → ∞ in which the excitation becomes localised on a single spin (PR1 → 1).
Figure 4.7 shows the bound to the participation ratio extracted from the

measured data of Fig. 4.6(b,c) via Inequality (4.28). The data shows a decrease
by more than a factor of two as the disorder strength reaches the largest values.
Upon normalisation of PR1 by the mean atom number N , and of W by the
corresponding zero-disorder ferromagnetic gap JN , all the data collapse onto
each other and agree with simulations. The figure shows also the theoretically
predicted value of PR1 (simulated numerically as in App. B.5), which obeys
the bound given by the data. Similar to the ferromagnetic gap, suggestive as
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these findings are, they do not herald a transition from delocalised to localised.
For a fixed disorder strength, increasing the number of atoms leads to an
infinite number of close-to-resonance spins at arbitrary distances, preventing
full localisation but leading to a semi-localised regime similar to the critical
regime of the Anderson transition [192].

4.4 Discussion

The ability to introduce controlled disorder in cQED offers exciting prospects
for further investigations. For example, the relation of ĤLMG to the pairing
Hamiltonian of BCS theory offers the prospect of experimentally studying
the role of disorder in superconductivity, as proposed in Refs. [212, 213]. In
this case, the atomic susceptibility measurements, in particular of χa,1(∆pa =

E1G) =
∑N

i,j=1 c
∗
1ic1j , would directly map to the pairing gap, defined in Ref. [212]

as

√
⟨m = 1|Ŝ+Ŝ−|m = 1⟩ =∑N

i,j=1 c
∗
1ic1j/N . More broadly, Eq. (4.7) allows

the direct simulation of Richardson–Gaudin models that are relevant to a
variety of many-body systems, from superconductivity in ultrasmall grains
to quark physics and neutron stars [205]. The combination of disorder with
cavity-mediated interactions could further be used to study glassy phases of
matter [214].
Within the context of Chap. 3, the realisation of controlled disorder in a

fermionic cQED system, using a disordered light-shift as discussed in Secs. 3.2.1
and 4.1.2, marks the achievement of an important milestone on the path to
quantum simulating the Sachdev–Ye–Kitaev model in the cQED platform.
Whilst the light-shifting technique was employed in the above experiments
to generate pseudo-random disorder in the on-site energies of spin systems,
adding an off-resonant drive and eliminating the excited state will allow for
the generation of effective models of spinless fermions with random interaction
amplitudes as required for the Sachdev–Ye–Kitaev model.
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5 Universal equilibration dynamics
of the Sachdev–Ye–Kitaev model

This chapter is based on the publication S. Bandyopadhyay, P. Uhrich, A.
Paviglianiti and P. Hauke, “Universal equilibration dynamics of the Sachdev-
Ye-Kitaev model”, Quantum 7, 1022 (2023). As such, most of the derivations
and discussion presented in this chapter are adapted from there. My main
contributions are the development of the effective master equation framework
of Secs. 5.3–5.4, as well as to the interpretation of the numeric results of
Sec. 5.2. Corrections to the theory developed in Sec. 5.3 are discussed in
Sec. 5.5, which provides a brief summary of the follow-up work A. Paviglianiti,
S. Bandyopadhyay, P. Uhrich and P. Hauke, “Absence of operator growth for
average equal-time observables in charge-conserved sectors of the Sachdev-Ye-
Kitaev model”, J. High Energ. Phys. 2023, 126 (2023), which formed part of
the Masters thesis [83] of A. Paviglianiti.

Equilibrium quantum many-body systems in the vicinity of phase transitions
generically manifest universality [26]. In contrast, limited knowledge has been
gained on possible universal characteristics in the non-equilibrium evolution of
systems in quantum critical phases. In this chapter, we present such a universal
feature in the equilibration dynamics of the SYK Hamiltonian, which, as we
saw in Chap. 2, lends itself to a phenomenological description of quantum
critical regions due to its lack of quasiparticles.

Far-from equilibrium, universality is generically attributed to the insensitivity
of observables to the microscopic system parameters and initial conditions.
However, a main obstacle for arriving at a unified theoretical understanding of
out-of-equilibrium quantum dynamics is the absence of a universal principle
that would be as general as the minimisation of free energy for equilibrium
phase transitions [26, 215]. Nevertheless, powerful frameworks, as introduced
in Chap. 1 and 2, such as the ETH, quantum chaos, the concept of subsystem
thermalisation, as well as the spread and scrambling of quantum information,
have been developed to understand the thermalisation of isolated quantum
systems.
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

A central role in bridging the different paradigms of scrambling and chaotic
dynamics has been taken by the SYK model, as elaborated in Sec. 2.1. Despite
the recent progresses in understanding the dynamics of this intriguing model and
of quantum many-body systems in general, it remains an outstanding challenge
to extract universal quantum out-of-equilibrium behaviour [216–223]. For slow
near-adiabatic sweeps across a critical region, the Kibble-Zurek mechanism [224,
225] has provided deep insights, including universal scaling laws [225, 226].

Here, however, we are interested in violent quenches, as will be introduced in
Sec. 5.1, where a significant amount of energy is instantaneously injected into the
system. Excepting few situations, such as non-thermal fixed points [227–233],
much less is known about universality in such far-from-equilibrium situations.

In Sec. 5.2, we identify a universal equilibration in the quench dynamics
of the SYK model ĤSYK, as defined in Eq. (2.1), revealed through numerical
calculations for the exact dynamics: For a variety of few-body observables,
including multipartite entanglement as given by the quantum Fisher information
(QFI), the disorder-averaged evolution collapses onto a single curve after a
simple amplitude rescaling, independent of (generic) initial states. Over vast
stretches of the dynamical evolution, this universal curve is well approximated
by a Gaussian, with a fast decay on the order of the time-scales of leading-order
processes.

In Sec. 5.3, we substantiate our numerical findings by devising a Lindblad
master equation (ME), based on the Novikov–Furutsu theorem, that describes
the Hamiltonian disorder average as an effective non-unitary time evolution. In
this formalism, the unitary, isolated-system dynamics generated by a general
disordered Hamiltonian Ĥ(t), is mapped to the dynamics of a clean, but
dissipative system, governed by a Liouvillian superoperator L. Applied to the
SYK model, these effective dynamics reproduce the Gaussian equilibration curve.
In Sec. 5.4, we use a spectral decomposition of L to study the observed dynamical
universality on a formal level, showing that the initial-state independence is
due to the population of only specific, highly degenerate eigenspaces of L. This
is verified through numeric diagonalisation of the Liouvillian superoperator
describing the ensemble-averaged dynamics of ĤSYK. The degenerate eigenspace
structure was studied in detail in our follow-up work Ref. [82], which further
builds upon the master equation formalism presented here, by developing a
cumulant expansion for the Liouvillian evolution. We provide a brief summary
of this work in Sec. 5.5.
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5.1 Quench protocol

Figure 5.1: Illustration of the quench protocol. Initial states are chosen as
ground states of the Fermi–Hubbard Hamiltonian (left) for different values of U/J .
The black and grey circles respectively represent occupied and empty fermionic
modes. Dashed lines illustrate hopping of fermions between nearest-neighbour
sites. The system is evolved under the SYK Hamiltonian (right), where spinless
fermions (black circles) can hop to any empty fermionic mode (light grey circles).

5.1 Quench protocol

We are interested in the disorder-averaged out-of-equilibrium dynamics gen-
erated by ĤSYK, following the quench protocol sketched in Fig. 5.1. As in
previous chapters, we will denote the disorder average over multiple realisations
of ĤSYK by E[. . .].
For the initial states |ψ(0)⟩, prepared at time t < 0, we consider ground

states of the one-dimensional spinful Fermi–Hubbard (FH) model [234, 235]
given by the Hamiltonian

ĤFH = −J
N/2∑

ℓ=1

∑

σ=↑,↓

(
ĉ†ℓ,σ ĉℓ+1,σ +H.c.

)
+ U

N/2∑

ℓ=1

n̂ℓ,↑n̂ℓ,↓. (5.1)

In the FH model, physical modes are given by N/2 spatial lattice sites, ℓ =
1, . . . , N/2, and additional spin degrees of freedom σ =↑, ↓ which are not present
in the SYK model. Since the interactions of the latter are site-independent
(random amplitudes) and all-to-all, the mapping of FH modes to the SYK
modes is arbitrary. For our quench protocol, we choose {ℓ, ↑} ↔ i = 2ℓ and
{ℓ, ↓} ↔ i = 2ℓ − 1. The numeric simulations presented below focus on the
case of half-filling, Q = N/2, and zero magnetisation, where there are N/4
fermions in each spin sector. The above choice of the initial Hamiltonian is
only for convenience of preparing initial states that cover a range of parameters
in a strongly-correlated system.
Once the system is prepared in the initial state |ψ(0)⟩, we perform a global

quench at t = 0 to the SYK model and track the state’s subsequent unitary
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time evolution
|ψ(t)⟩ = e−iĤSYKt|ψ(0)⟩, (5.2)

which is simulated numerically using exact diagonalisation techniques, the
details of which are summarised in Ref. [81]. We average the time series over
multiple realisations of ĤSYK in order to filter out the salient, realisation-
independent features of the equilibration dynamics.

5.2 Universal super-exponential equilibration
dynamics

Here, we study the post-quench dynamics of the quantum Fisher information
(QFI) as well as moments of local operators.

We find that the disorder-averaged evolution of the considered few-body
observables shows universality under the rescaling

G (f(t)) ≡ f(t)− f(t)

f(0)− f(t)
, (5.3)

where f(t) represents the long-time average of a function f(t) computed over a
time window starting at t0 and with duration T ,

f(t) =
1

T

∫ t0+T

t0

dtf(t). (5.4)

For all the numeric simulations presented in what follows, we will use Jt0 = 50
and J(t0 + T ) = 100.
We have seen in Sec. 2.1.1, particularly in Eq. (2.2), that the SYK model is

only parameterised by the variance ∝ J2 of the random all-to-all interaction
strengths Ji1i2;j1j2 . Therefore, the universality in the evolution of observables
can be probed as the insensitivity to the initial conditions, which becomes
evident under the rescaling in Eq. (5.3), as is discussed throughout this chapter.

5.2.1 Dynamics of the quantum Fisher information

To illustrate the universal equilibration dynamics, we present here results for
the QFI evolved under ĤSYK. The QFI is an observable of central relevance in
quantum sensing [236–238], which can witness multipartite entanglement in
quantum many-body systems at zero and finite temperatures [78, 79, 239–241].
Interestingly, like the out-of-time-order correlators discussed in Sec. 2.1.3, this
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Figure 5.2: Universal super-exponential equilibration dynamics of the
QFI FQ, under ĤSYK. (a) QFI averaged over 400 disorder realisations, E [FQ],
computed with respect to the operator R̂ defined in Eq. (5.6). Initial states from
darker to lighter shade of blue are for U/J = 0, 2, 4, 6, 8, and 10. The system
rapidly equilibrates to the expectation value of the Gibbs infinite temperature
state (dotted black line). (b) Rescaling the dynamical curves according to Eq. (5.3)
reveals a universal (initial-state independent) equilibration, which further agrees
very well with a Gaussian fit, exp

[
−(Jt/τ)2

]
, with a fast decay constant of τ = 1.52

(dashed red curve). Data is for Q = 8 fermions occupying N = 16 fermionic modes.

quantum information theoretic measure can distinguish a pure eigenstate of an
ETH-obeying Hamiltonian from the corresponding Gibbs thermal state [242–
244].

In the present context of pure states, the QFI with respect to an observable
Ô is simply proportional to its variance

FQ[Ô](t) = 4
(
⟨ψ(t)|Ô2|ψ(t)⟩ − ⟨ψ(t)|Ô|ψ(t)⟩2

)
. (5.5)

In this chapter, we consider the staggered magnetisation, which in the FH
model is defined as ÔSM =

∑N/2
ℓ=1 (−1)ℓ(n̂ℓ↓ − n̂ℓ↑), and which in the SYK model

translates to [see below Eq. (5.1) for the mapping]

R̂ =

N/2∑

i=1

(−1)iκ̂i =

N/2∑

i=1

(−1)i(n̂2i−1 − n̂2i). (5.6)

The κ̂i denote 2-local operators which we use to construct the 4-local operators
discussed in App. C.3.4, where we also consider a non-diagonal generator for
the QFI.
The time evolution of the disorder-averaged QFI, E [FQ], computed with

respect to the operator R̂, is shown in Fig. 5.2(a). The considered initial states
are the symmetry unbroken ground states of the FH model for a non-interacting
initial system with U/J = 0, as well as strongly interacting systems at larger
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

values of U/J = 2, 4, 6, 8, 10. As a result, the initial states are characterised by
a varying amount of multipartite entanglement that is witnessed by the QFI.1

At short times, the system still retains memory of the initial state. However,
the completely disordered all-to-all interactions of the SYK model lead to a
quick loss of this memory, and already at a time of about Jt ≈ 4 the QFI
equilibrates to a steady state value that is independent of the initial state.
This rapid equilibration is reminiscent of the fast scrambling characteristic of
the model, discussed in Sec. 2.1.3, and also bears similarities to the relaxation
curves derived in Ref. [245] for the out-of-equilibrium dynamics of isolated
quantum many-body systems. There it is shown that rapid, non-exponential
equilibration is expected for, in a random matrix sense, typical Hamiltonians
and observables.
The attained steady state value matches with the one obtained from the

infinite temperature Gibbs state [horizontal dotted black line in Fig. 5.2(a)]

ρ̂∞ =
e−βĤ

Z

∣∣∣∣∣
β=0

=
1

D
, (5.7)

where 1 is the identity operator, Z is the partition function and D = N !/[(N −
Q)!Q!] is the Hilbert space dimension [Q is the filling fraction, see Eq. (2.4) and
below]. This finding suggests that the overlaps between a generic initial state
and the energy eigenstates of ĤSYK are uniformly distributed over the spectrum.
This can be substantiated by, for instance, computing the Kullback–Leibler
divergence DKL(P (E)∥Q(E)) between the uniform distribution Q(E) = 1/D,
and the initial states’ amplitude distribution P (E) = |⟨ψ(0)|E⟩|2 with respect
to the energy basis {|E⟩} (see Figs. C.1–C.2).2

Even though the steady state ρ̂∞ has vanishing QFI (see for instance
Ref. [236]), it is nevertheless an interesting question of how the system reaches
that point, starting from initial states with different amounts of quantum
correlations. Indeed, by applying the rescaling E [FQ] of Eq. (5.3), we find that
the equilibration dynamics are universal within numerical precision. As shown
in Fig. 5.2(b), all curves collapse throughout the dynamics, independent of the

1Note that the scaling of the QFI with system size N depends on the amount of multipartite
entanglement of the state [238]: For separable states states, FQ ≤ N , whilst for genuinely
N -partite entangled states FQ ≤ N2.

2For 4000, respectively, 2000 independent realisations of ĤSYK for system sizes N = 8 and
N = 12, we find E [DKL] = 0.0997 ± 0.0154 and 0.0627 ± 0.0028. This indicates that
the initial states are almost uniformly distributed, and the uniformity of P (E) improves
with increasing N . The quoted values are for the FH initial state U/J = 10, and are
representative of all considered initial states.
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initial state. In addition, the universal curve can be well approximated by a
Gaussian (red-dashed curve), with a fast decay constant of τ = 1.52. Thus,
under the Hamiltonian evolution of the SYK model, the disorder-averaged QFI
exhibits universal and super-exponential equilibration dynamics.

Note that a Gaussian temporal evolution is not unique to SYK dynamics.
In the context of random matrix theory it is well known that it can occur in
the survival probability, for instance during the quench dynamics generated
by Wigner random banded matrices and two-body random ensembles (see
for instance Refs. [246, 247]), where the latter is a specific case of embedded
random matrix ensembles [248]. The same behaviour has also been studied for
a generic disordered interacting spin model [249]. In these cases, the survival
probability initially decays as a Gaussian, followed by a regime in which it
shows oscillations with a power-law envelope [249].

5.2.2 Dynamics of operator moments

We now generalise the above study to the quench dynamics of the kth moment,

Mk(t) = ⟨ψ(t)|Ôk|ψ(t)⟩, (5.8)

of the operator Ô = R̂ defined in Eq. (5.6). This is motivated by the fact
that we consider initial pure states, for which the QFI is composed of operator
moments as given in Eq. (5.5). In Appendix C.3.4, we report analogous results
for 4-local operators and QFI computed with respect to a non-diagonal operator
T̂ , defined in Eqs. (C.17) and (C.18), respectively.

With respect to the symmetry unbroken FH ground states, the ensemble aver-
aged expectation values of all the odd moments of the staggered magnetisation
operator R̂ show negligibly small fluctuations around zero during their entire
time evolution under the SYK Hamiltonian.3 In contrast, the even moments
exhibit the same super-exponential universal equilibration behaviour as the
QFI. This is illustrated in Fig. 5.3 for k = 2, 4, 6 (similar results for k = 8, 10, 12
are presented in App. C.3.3, where we also study the survival probability as an

3For a formal proof that odd moments of R̂ vanish, see the thesis [83]. The main idea is as
follows: The considered initial states, having zero magnetisation, have spin-flip symmetry.
In contrast, the staggered magnetisation operator is odd under such a transformation.
Regarding the SYK Hamiltonian, spin-flip (i.e., 2i↔ 2i−1) turns one disorder realisation
into a different one with the same probability of occurring. As a consequence, given an
instance of the SYK Hamiltonian that produces a certain dynamics of R̂k, with k odd,
there will always exist another realisation that generates dynamics of equal amplitude,
but opposite sign, leading to a vanishing ensemble average.
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Figure 5.3: Equilibration dynamics of operator moments Mk, under ĤSYK.
(a–c) Disorder-averaged dynamics of moments M2, M4, and M6 of the operator
R̂, averaged over 400 disorder realisations, after normalisation to values ≤ O(1)

by an empirical factor Nk = N( 3k
4
− 1

2) for visualisation purposes. The moments
rapidly equilibrate to their expectation value with respect to the Gibbs infinite
temperature state (dotted black lines). (d–f) After rescaling by the function G
of Eq. (5.3), the dynamics collapse onto a universal curve, which agrees very well
with a Gaussian fit (dashed-red curves) exp

[
−(Jt/τ)2

]
, with τ = 1.52, 1.42, 1.35,

for k = 2, 4, 6, respectively. Data is for Q = 8 fermions occupying N = 16 modes.

example of a truly non-local observable). The super-exponential approach to
equilibrium is clearly visible in this data.

As is evident from Fig. 5.3(d–f), the rescaling defined in Eq. (5.3) collapses
the even moments evolved from different initial states onto a single curve.
During most of the evolution, this collapsed curve can be well approximated by
a Gaussian, similar to the QFI dynamics in Sec. 5.2. In the transient regime,
curves corresponding to different initial states for even k ≥ 4 do show small
deviations, an effect that becomes more prominent for larger N (see App. C.3.5
for a finite-size study). In other words, while the universality found for k = 2
is very robust, for larger k it becomes approximate in an intermediate time
window. This finding also suggests that universality is more precise for few-body
operators, as is further corroborated by comparison with the global many-body
observable of the survival probability, see Fig. C.4. However, we do not exclude
the possibility of a suitably constructed, highly non-local observable exhibiting
universality with respect to Eq. (5.3).

An interesting feature of the different moments is that their respective
curves shift towards earlier times with increasing order k. This is evident from
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Figure 5.4: Rescaled dynamics of the disorder-averaged moments. G (E [Mk]),

of operator R̂, averaged over 400 realisations of ĤSYK with N = 16 modes at
half-filling. For all curves the initial state is U/J = 10, and dark to light shading
corresponds to different moment orders k = 2, 4, 6, 8, 10 and 12, respectively. The
shift to earlier times with increasing k is highlighted by the two lower insets, which
also indicate a convergence with increasing k. This is quantified in the top inset
(see Sec. 5.4), which shows the ratio A3/A2 of the effective amplitudes of the kth
moments in accordance with Eq. (5.28). The monotonic increase, and indication
of saturation, with increasing k shows that the faster time-scale |λ3| is favoured
with increasing moment k.

Gaussian fits to the universal curves for k = 2, 4, 6 in Fig. 5.3, which yield the
decreasing decay times τ = 1.52, 1.42, 1.35, respectively. To illustrate this effect
further, we show the rescaled curves for k = 2, 4, ..., 12 in Fig. 5.4, where it
appears that the curves converge with sufficiently high order.

In the next section, we will develop an analytical framework which reproduces
the salient features observed in the above numerics by mapping the disorder
averaged, closed-system dynamics to an effective master equation describing
dissipation. Applied to the SYK model, this yields a Liouvillian superoperator,
whose dynamics reproduce the Gaussian decay, as well as the initial state
independence. Furthermore, a spectral analysis of this Liouvillian, presented
in Sec. 5.4, will shed light on the origin of the approximate universality for
moments Mk of order k > 2, their increasing decay rate, as well as the apparent
convergence thereof, with increasing k.
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

5.3 Dissipative ensemble dynamics

In this section, we develop an open-system formalism for general disordered
Hamiltonians, which we use to understand the main features observed in the
average dynamics of the unitary ensemble discussed in the previous section.

A detailed prescription for Hamiltonian disorder averaging, based on a matrix
formalism, has been introduced in Refs. [250–252]. Here, we present an alternat-
ive route to Gaussian disorder averaging based on the Novikov–Furutsu theorem.
In earlier works, this theorem has been applied in the context of averaging noise
with finite correlation times in, for instance, quantum walks subjected to pure
dephasing noise [253, 254], stochastic Schrödinger equations [255], or proposals
for simulating dissipation via noisy unitary dynamics [256–259]. We exploit
that framework by formally promoting the quenched disorder to noise with
infinite correlation time, permitting a fruitful application to a generic system
with Gaussian disorder, of the form given in Eq. (5.9) below. This approach has
the advantage of treating quenched disorder and temporally fluctuating noise
on equal footing, enabling an application to a large variety of settings. The
interested reader may find further details on the derivation, and the explicit
derivation for static processes in App. C.2.

5.3.1 Effective master equation for general disordered
Hamiltonians

Our aim is to directly study the dynamics of the ensemble’s density matrix
ρ̃(t) ≡ E [ρ̂(t)] via the ensemble averaged von Neumann equation, where the
time-evolution of each state ρ̂(t) is generated by a realisation of the general
closed system Hamiltonian

Ĥ(t) = Ĥ0(t) +
∑

α

Ĥα(t). (5.9)

Here, Ĥ0(t) is a disorder-free contribution, which in general can be time
dependent, whereas the terms

Ĥα(t) =
∑

lα

ξ
(α)
lα

(t)ĥ
(α)
lα
, (5.10)

capture the dynamics due to disorder or noise, encoded in the functions ξ
(α)
lα

(t).
The index α is used to distinguish different subsets of Hermitian operators
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ĥ
(α)
lα

, and the operators within a subset are labelled by the (multi-)index lα.
4

In particular, upon rewriting the SYK Hamiltonian in the generic form of
Eq. (5.10), we identify three operator subsets, as will be shown in the next
section below.
We assume the functions ξ

(α)
lα

(t) to describe a Gaussian process possessing—

without loss of generality—vanishing cross-correlations, E
[
ξ
(α)
lα

(t)ξ
(β)
lβ

(t′)
]
= 0

for α ̸= β, so that their correlation tensor is given by

F
(α)
lα,kα

(t, t′) ≡ E
[
ξ
(α)
lα

(t)ξ
(α)
kα

(t′)
]
. (5.11)

Formally, the SYK Hamiltonian defined in Eq. (2.1) corresponds to setting

Ĥ0(t) = 0 and taking all ξ
(α)
lα

(t) to be time independent, in which case F
(α)
lα,kα

(t, t′)
is constant with respect to time. To keep the formalism general, we will specialise
to this case only further below.
Consider now the ensemble averaged von Neumann equation generated by

averaging over multiple realisations of the Hamiltonian in Eq. (5.9),

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
− i
∑

α,lα

[
ĥ
(α)
lα
,E
[
ξ
(α)
lα

(t)ρ̂(t)
]]
. (5.12)

The correlations E
[
ξ
(α)
lα

(t)ρ̂(t)
]
are non-trivial since the density matrix is—

by virtue of the von Neumann equation—a functional ρ̂[ξ, t] of the Gaussian

processes ξ
(α)
lα

(t). Our framework rests upon the Novikov–Furutsu theorem
[260–263], which provides an exact expression of these correlations in terms of

F
(α)
lα,kα

(t, t′) as

E
[
ξ
(α)
lα

(t)ρ̂[ξ, t]
]
=
∑

kα

∫ ∞

0

dt′F
(α)
lα,kα

(t, t′)E

[
δρ̂[ξ, t]

δξ
(α)
kα

(t′)

]
, (5.13)

where the last term on the right-hand side contains the functional derivative of
ρ̂[ξ, t] with respect to ξ

(α)
kα

(t′). An explicit expression for this can be obtained
from the integrated von Neumann equation. Formally, this yields an infinite
series in which the nth term (n ≥ 1) contains n − 1 time integrals over n
nested commutators [see Eq. (C.6)]. The role of the higher order terms will

4Whilst the distinction via index α is not strictly necessary for our derivation, it does
facilitate translation of our general results to specific models in which such a distinction
may naturally arise. For example, in a system of spins arranged on a lattice, α = 1
could refer to a disordered external potential and α = 2 to a noisy drive. For either, the
operator label lα would refer to the site index of the spins.
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be discussed in Sec. 5.5, which summarises the study of our follow-up work
Ref. [82]. Here, we retain only the lowest order contribution (n = 1), which
reads

δρ̂[ξ, t]

δξ
(α)
kα

(t′)
≃ −i

[
ĥ
(α)
kα
, ρ̂[ξ, t′]

]
Θ(t− t′), (5.14)

where the step-function Θ arises from causality. Substituting Eqs. (5.13) and
(5.14) into Eq. (5.12), we obtain the evolution equation

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
−
∑

α,lα,kα

[
ĥ
(α)
lα
,

[
ĥ
(α)
kα
,

∫ t

0

dt′F
(α)
lα,kα

(t, t′)ρ̃(t′)

]]
. (5.15)

This evolution equation is not exact, due to our use of the approximate
functional derivative given by Eq. (5.14). Such a leading order truncation
amounts to the well-known decorrelation assumption typically made in the
analysis of stochastic evolution equations [264, 265] (see also App. C.2.1). The
remaining time integral in Eq. (5.15) is known as a Bourret integral [266, 267].
While the decorrelation assumption becomes exact in the limit of white noise,
for non-Markovian noise it corresponds to an expansion controlled by the noise
correlation time [268]. One may then wonder what justifies this approximation
for ĤSYK (see also Fig. 5.5), whose quenched disorder has an infinite correlation
time. The reason could be attributed to the chaoticity of the SYK model: Each
term of the Hamiltonian in Eq. (5.10) can be thought of as an independent
noise process governing the evolution of the density operator. Then, in the
presence of a large number of such processes, as in ĤSYK, one may expect
the correlations between the density operator and any individual process to
be strongly suppressed. Viewed differently, the decorrelation assumption can
be seen as a linear-response approximation [269, 270], i.e., the response of

the state ρ̂ at time t towards a perturbation with ξ
(α)
lα
ĥ
(α)
lα

at an earlier time
t1 is taken into account only to linear order. In the context of Kubo’s linear
response theory [271], it is well known that averaging effects due to chaos
lead to a superb success much beyond the regime of applicability predicted by
näıve estimates [269, 272–275]. In the present context, the success of the linear
approximation, observed in Sec. 5.3.3 below, can be seen as a manifestation of
the strong effects of quantum chaos in the SYK model.
The master equation as given by Eq. (5.15) is still rather unwieldy, since it

is not local in time. We thus perform a Markov approximation ρ̃(t′) ≈ ρ̃(t),
leading us to a Lindblad master equation in non-diagonal form [199] governed
by a time-dependent Liouvillian superoperator

L(t)ρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
+
∑

α

D(α)(t)ρ̃(t), (5.16)
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with Hermitian dissipator

D(α)(t)ρ̃(t) =
∑

lα,kα

2f
(α)
lα,kα

(t)

(
ĥ
(α)
lα
ρ̃(t)ĥ

(α)
kα

− 1

2

{
ĥ
(α)
kα
ĥ
(α)
lα
, ρ̃(t)

})
, (5.17)

in which we have defined

f
(α)
lα,kα

(t) =

∫ t

0

dt′F
(α)
lα,kα

(t, t′). (5.18)

Equations (5.16)–(5.18) form the final evolution equations of this section.
They are valid under a Bourret–Markov approximation for the generic Hamilto-
nians of Eq. (5.9) with disorder and/or noise contributions. The master equation
is a result of averaging over an ensemble of disorder realisations, yielding an
effective evolution equation which does not require the presence of noise (see
Sec. C.2.3). Whilst each individual disorder realisation evolves unitarily, the
ensemble evolves like an open system, with a dynamics that is approximately
generated by the Liouvillian L(t). The coherent and dissipative processes that
constitute L(t) can be read-off immediately from the system’s Hamiltonian.
The corresponding dissipation rates are entirely determined by the disorder
statistics F

(α)
lα,kα

(t, t′), defined in Eq. (5.11), via Eq. (5.18). Similarly, while
each realisation preserves the purity of the initial state, the Hermitian jump
operators of the master equation generate ensemble dynamics that are purity
decreasing [276, 277], and thus drive the ensemble from a pure to a mixed state.
In particular, for the SYK model with large enough N , the ensemble equilib-
rates to the infinite-temperature state ρ̂∞ given in Eq. (5.7) [277, 278]. Note,
however, that whilst the Hermitian jump operators of Eq. (5.16) and (5.17)
ensure that ρ̂∞ is a steady state of the Liouvillian dynamics, for an arbitrary
Hamiltonian as given by Eq. (5.9), the steady-state of L(t) need not be unique
in general [279, 280].

5.3.2 Application to the SYK Hamiltonian

To apply the formalism of Sec. 5.3.1 to the SYK model, one simply needs to
rewrite its Hamiltonian ĤSYK, as defined in Eq. (2.1), in the generic form of

Eq. (5.9), and then read off the jump operators ĥ
(α)
lα

and disorder functions ξ
(α)
lα

that govern the dissipation rates.
Since ĤSYK is a purely disordered Hamiltonian, we have Ĥ0 = 0, and so the

Liouvillian in Eq. (5.16) generates purely dissipative dynamics L(t) = D(t).
To rewrite ĤSYK in the form of the remaining term

∑
α Ĥα(t) of Eq. (5.9), we

partially order the indices in the summation of Eq. (2.1) as i1 > i2, j1 > j2,
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and use the anti-symmetry of the SYK interactions, as defined by Eq. (2.3).
Through this rewriting, one can identify three Hamiltonian terms Ĥα with
multi-indices

lα =

{
i1i2; i1i2, with i1 > i2, α = 1

i1i2; j1j2, with i1 > i2, j1 > j2 and (i1, i2) ̸= (j1, j2), α = 2, 3
(5.19)

and jump operators

ĥ
(α)
lα

=





ĉ†i1 ĉ
†
i2
ĉi1 ĉi2 , α = 1

ĉ†i1 ĉ
†
i2
ĉj1 ĉj2 +H.c., α = 2

iĉ†i1 ĉ
†
i2
ĉj1 ĉj2 +H.c., α = 3 .

(5.20)

The corresponding time-independent disorder coefficients are

ξ
(α)
lα

=





4Ji1i2;i1i2/(2N)3/2, α = 1

2ReJi1i2;j1j2/(2N)3/2, α = 2

2ImJi1i2;j1j2/(2N)3/2, α = 3

(5.21)

Using the above expressions, we can determine the dissipation rates of
Eqs. (5.17), (5.18) which correspond to the disorder averaged unitary evolution
of ĤSYK. The relevant time integral is trivial in this case, and the rates are
given by

2f
(α)
lα,kα

(t) = 2tE
[
ξ
(α)
lα
ξ
(α)
kα

]
=





2t
16J2

(2N)3
δlα,kα , α = 1

2t
4(J2/2)

(2N)3
(δlα,kα + δlα,kα), α = 2, 3

(5.22)

where kα = j1j2; i1i2 when if kα = i1i2; j1j2. These additional correlations exist
for lα = kα when α = 2, 3 because Re[Ji1i2;j1j2 ] = Re[Jj1j2;i1i2 ] and similarly
Im[Ji1i2;j1j2 ] = −Im[Jj1j2;i1i2 ], due to Eq. (2.3).

The main point is that the time-independent disorder correlations of ĤSYK

[or indeed any SYK-q model of Eq. (2.5)], given by Eq. (5.22), yield dissipation
rates in the Liouvillian superoperator that grow linearly in time. Consequently,
one can factor the Liouvillian as

L(t) = 2tD, (5.23)

which naturally yields the super-exponential time-evolution

ρ̃(t) = T e
∫ t
0 dt′2t′Dρ̂(0) = et

2Dρ̂(0), (5.24)
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5.3 Dissipative ensemble dynamics

where T denotes time-ordering.
We thus see that, in addition to clarifying the nature of the steady-state

(as was discussed at the end of Sec. 5.3.1), the Liouvillian dynamics formally
reproduce the Gaussian equilibration observed in Sec. 5.2 for the numerically
simulated quench dynamics of the SYK model.

5.3.3 Comparison to exact numerics

In general, the ME as developed above may not be used to study the ensemble
average of the QFI, due to the term ⟨ψ(t)|Ô|ψ(t)⟩2 in Eq. (5.5) that is non-
linear in the density matrix. However, for the initial zero magnetisation states
considered in Sec. 5.2, exact numerics show that the first moment fluctuates
around zero (see also the footnote of Sec. 5.2.2, for a summary of the formal
arguments given in the thesis [83]), such that in this case one may use the ME
to approximate the dynamics of the QFI.
Figure 5.5(a) shows simulations of the QFI evolution generated by the master

equation of Eq. (5.16) for ĤSYK, constructed from Eqs. (5.19)–(5.22). The
agreement with the ensemble averaged ED results is very good. The Liouvillian
dynamics also reproduce the universality of the QFI with respect to different
initial states, as shown in Fig. 5.5(b). A discrepancy at intermediate times can
be attributed to the decorrelation and Markov approximations of the master
equation. Improvements will be discussed in Sec. 5.5.
Figure 5.5(c,d) shows a comparison of ME and ED simulations for moment

M2 of the operator R̂ defined in Eq. (5.6). As for the QFI, the super-exponential
approach to equilibrium is captured, as well as the early and late time dynamics.
In line with the above discussion, we again observe a discrepancy between ED
and ME simulations at intermediate times. Recalling that hermitian jump
operators guarantee the infinite temperature ensemble to be a (not necessarily
unique) steady state of the general Liouvillian in Eq. (5.16), we determine
the infinite temperature steady-state value of M2 within the half-filling sector
N = 2Q to be

tr
(
R̂2(t)ρ̂∞

)
=

(
N

2
√
N − 1

)2

. (5.25)

As Fig. 5.5(c) shows, this value agrees well with the steady-state plateaus of
the exact unitary dynamics averaged over disorder realisations.
The fact that disorder induces dephasing between members of an ensemble—

and thus leads to effective open-system evolution equations even in the absence
of a heat bath—is long known; in particular for special single-body cases
such as classical disordered dipoles and harmonic oscillators [268], or single
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Figure 5.5: Comparison of ED and ME results. SYK dynamics of the QFI
(a–b) and M2 (c–d) of the staggered magnetisation R̂, for N = 8. ED curves
are averaged over 90 000 disorder realisations. For both ME (red, dashed) and
ED (green, solid) curves, dark to light shading corresponds to the different initial
states of Fig. 5.2. The black-dotted line (a,c) shows the analytically predicted
steady-state value of Eq. (5.25) for the half-filling sector. (a,c) For each initial
state, the ME simulation reproduces the dynamics of the exact numerics very
well. There is a discrepancy at intermediate times due to non-Markovian effects
and higher-order correlations, not captured by the approximate ME (inset). (b,d)
The ME reproduces the collapse to a universal curve under the rescaling defined
in Eq. (5.3). The slight spread in the rescaled ED curves is due to statistical
fluctuations, which are suppressed for larger system sizes, as can be seen from a
comparison with Figs. 5.2(b), 5.3(d–f).

atoms coupled to a photon field [281]. Here, our aim was the derivation of a
general framework for quantum many-body systems. Such a platform for the
evolution of disorder-averaged density operators has been developed previously
[252], based on a matrix formalism [250, 251]. Our derivation based on the
Novikov–Furutsu theorem provides an alternative, simpler, but nevertheless
general approach, as the assumptions we made are not fundamental, but rather
of practical nature: The Novikov–Furutsu formalism can be extended to non-
Gaussian stochastic processes [263, 282], the decorrelation assumption may
be lifted in favor of an infinite series of terms in Eq. (5.14) [268, 270], and
the Markov approximation is—at least on a formal level—not necessary in the
derivation of the evolution equations. The present framework has the additional
feature that disorder and noise processes can be treated on equal footing, within
the same master equation, without any further complications of the formalism.

To summarise, the Novikov–Furutsu theorem enables us to derive a master
equation, for the ensemble average, that provides a general framework for
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5.4 Analyses of universality in master equation formalism

disorder-averaged quantum many-body systems. For the case of the SYK
model, it yields analytic insights into the out-of-equilibrium dynamics, such
as the steady state reached at late times, and the approximately Gaussian
decay. Even more, the Liouvillian formalism allows us to study the origin
of the universal dynamics: In Sec. 5.4 below, we will analyse how different
states and observables decompose over the eigenspaces of L(t), showing how
these distributions conspire in the above dynamics to select a single time-scale,
universal across different initial states.

5.4 Analyses of universality in master equation
formalism

Having used the ME framework of Sec. 5.3.1 to formally demonstrate the
Gaussian decay via Eq. (5.24), and having seen in Fig. 5.5 that the ME
reproduces the universal (initial-state independent) decay of the QFI and
operator momentsM2 for observable R̂, we now study the origins of the observed
universality within this formalism. We do so by decomposing the evolution
equation (5.24) over the eigenspaces of L(t). As we will see, the population of
various initial states and observables in the corresponding eigenspaces conspires
to produce a universal curve under the rescaling G defined in Eq. (5.3).

5.4.1 Formal decomposition into Liouvillian eigenspaces

In general, a superoperator L is not normal, and thus has distinct left and right

eigenmodes [283, 284]. However, as a result of Ĥ0 = 0,
(
ĥ
(α)
lα

)†
= ĥ

(α)
lα

, and

F
(α)
lα,kα

= F
(α)
kα,lα

∈ R, the Liouvillian of the SYK model L(t) = 2tD is Hermitian
and thus normal This will be made explicit by the matrix representation given
in Eq. (5.30) below. Therefore, the left and right eigenmodes of D coincide, and
one can always form a Hermitian basis for each eigenspace. We use the index
i ≥ 0 to label these eigenspaces, which in general have a di-fold degeneracy. The
di Hermitian eigenmodes within the ith eigenspace are denoted as ρ̂i,αi

, where
αi = 1, . . . , di. The eigenmodes are orthogonal with respect to the Hilbert–
Schmidt norm tr(ρ̂†i,αi

ρ̂j,αj
) = δi,jδαi,αj

and thus form a basis of B(H), the
space of linear operators acting on H. For all (in our case typically degenerate)
eigenspaces i, the corresponding eigenvalue λi is real and negative. So, we order
the eigenspaces according to the magnitude of their respective eigenvalues as
|λ0| < |λ1| < . . . .
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

Now, we can decompose any initial state and observable in B(H), respectively,
as

ρ̂(0) =
∑

i≥0

di∑

αi=1

ci,αi
ρ̂i,αi

and Ô =
∑

i≥0

di∑

αi=1

oi,αi
ρ̂i,αi

, (5.26)

with real coefficients ci,αi
= tr(ρ̂(0)ρ̂i,αi

) and oi,αi
= tr(Ôρ̂i,αi

). It then follows
that any state, time-evolved under the SYK dissipator according to Eq. (5.23)–
(5.24), is given by

ρ̃(t) = et
2Dρ̂(0) =

∑

i≥0

e−t2|λi|
di∑

αi=1

ci,αi
ρ̂i,αi

. (5.27)

Since Liouvillian dynamics are trace preserving, we have λ0 = 0. Consequently,
limt→∞ ρ̃(t) is given in terms of the eigenmodes corresponding to λ0 [279]. The
Liouvillian spectrum {λi} sets the time-scales of the dynamics of any observable
quantity.

For sufficiently large Jt0 [see Eq. (5.4)], the long-time average in G is simply
the contribution due to the steady-state eigenmode ρ̂0. With the above eigen-
decompositions in hand, we can thus express any rescaled operator expectation
value as

G
(
tr
(
Ôρ̃(t)

))
=

∑
i≥1 e

−t2|λi|Ai∑
i≥1Ai

, (5.28)

where Ai =
∑di

αi=1 ci,αi
oi,αi

is the effective amplitude within the ith eigenspace.
Universality across different initial states can then occur if:

(i) The observable and initial state decompositions of Eq. (5.26) intersect in
only one and the same eigenspace i∗ > 0 for all initial states.

(ii) The decompositions intersect in multiple degenerate eigenspaces, but the
ci,αi

oi,αi
are distributed symmetrically about 0 in all but one eigenspace

i∗ > 0.

In both cases, there exists only one non-zero amplitude Ai∗ , and Ai = 0 ∀i ̸= i∗,
such that Eq. (5.28) reduces to the same Gaussian curve

G
(〈
Ô(t)

〉)
= e−t2|λi∗ |, (5.29)

for all initial states.
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5.4 Analyses of universality in master equation formalism

5.4.2 Numeric results

We now apply the above criteria to the SYK dynamics of the first four moments
Mk of the staggered magnetisation R̂ [Eq. (5.6)]. To this end, we numerically
obtain the spectrum {λi} and eigenmodes {ρ̂i,αi

} of the SYK Liouvillian su-

peroperator L via a matrix representation ¯̄L thereof. The latter acts on the
duplicated Hilbert space H ⊗ H (see, e.g., Refs. [279, 283, 284] for detailed
descriptions of such a procedure and for spectral properties of Liouvillian super-
operators), and the density matrices ρ̂ of Eq. (5.26) become vectors |ρ⃗⟩ ∈ H⊗H
obtained by stacking the columns of the matrix representation of ρ̂ (similarly
for the observables Ô). Left and right multiplication with operators transform
as Âρ̂B̂ → B̂⊺ ⊗ Â|ρ⃗⟩, where B̂⊺ denotes the transpose of B̂. For the general
Liouvillian of Eq. (5.16), we then have the matrix representation

¯̄L(t) =− i[1⊗ Ĥ0(t)− (Ĥ0(t))
⊺ ⊗ 1] + ¯̄D, with

¯̄D =
∑

α

∑

lα,kα

2f
(α)
lα,kα

(t)
[(
ĥ
(α)
kα

)⊺
⊗ ĥ

(α)
lα

− 1

2
1⊗ ĥ

(α)
kα
ĥ
(α)
lα

− 1

2

(
ĥ
(α)
kα
ĥ
(α)
lα

)⊺
⊗ 1

]
.

(5.30)

We obtain the matrix representation of the SYK Liouvillian ¯̄L(t) = 2t ¯̄D
[factoring out 2t as in Eq. (5.23)] by setting Ĥ0 = 0 and inserting Eqs. (5.20)–
(5.22) into Eq. (5.30).

Table 5.1 lists the spectrum of D, obtained by numerically diagonalising
the above matrix representation, for an SYK system of N = 8 modes at half
filling. We find that λ0 is non-degenerate, implying a unique steady-state in
the present case of study, in agreement with rather general conditions [285].
The numerically obtained distributions of ci,αi

oi,αi
and Ai for M2 are shown

in Fig. 5.6(a–d) for different initial FH ground states. For i > 0, ci,αi
oi,αi

̸= 0
only for i = 2, so that universality of type (i) for M2 follows immediately with
i∗ = 2. The reason why this occurs lies in the decomposition of the observable:
We observe oi,αi

= 0 for i > 0 and i ̸= 2. This demonstrates why the choice of
the initial state is irrelevant—regardless of the values of ci,αi

, there can be only
a single Ai ̸= 0 for i > 0.
In Fig. 5.6(e–h), we display the behaviour of moments M1,M2,M3,M4 for

the FH ground state at U/J = 10. For odd moments, we find Ai = 0 ∀i,
making them trivially universal: For M1, only c1,α1o1,α1 ̸= 0, whilst for M3

additionally c3,α3o3,α3 ̸= 0. In either case, these terms are distributed near
symmetrically about 0, such that the effective amplitudes vanish, reproducing
the observation from exact numerics that odd moments of R̂ average to zero
(see discussion and footnote of Sec. 5.2.2). In contrast, even moments have
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

Table 5.1: Spectrum of SYK Liouvillian. Obtained by exact diagonalisation of
the matrix representation given in Eq. (5.30), for N = 8 fermionic modes at half
filling.

Eigenspace index i Eigenvalue λi Degeneracy di
0 0.000000 1
1 -0.234375 63
2 -0.328125 720
3 -0.351562 4116
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Figure 5.6: Distribution of effective amplitudes over Liouvillian eigenspaces.
(a–d) Distributions of ci,αioi,αi (blue circles) and Ai (red squares) of Eq. (5.28)
for M2 of R̂, for different initial FH ground states with U/J = 0, 2, 4 and 8.
Horizontal axes indicate the eigenspace index of Table 5.1. For all initial states,
only one eigenspace i∗ = 2 has non-zero effective amplitude A2, yielding the
universal evolution G[M2(t)] = e−t2|λ2|. (e–h) Similar top top row, but for moments
M1,M2,M3,M4 of R̂, for the initial FH ground state at U/J = 10. For the highest
moment, occupation of two eigenspaces can be observed, indicating that universality
deteriorates in many-body operators. Note that panels e–g share the same vertical
axis, whilst that of panel h is distinct and shown on its right border.
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5.5 Cumulant expansion method for disorder averaged dynamics

non-zero effective amplitudes in at least one eigenspace besides that of the
steady state (the same holds for other initial states, such as the Néel state,
see Fig. C.7). Concretely, for k ≥ 4, we find the same two non-zero effective
amplitudes A2, A3, yielding an approximately universal super-exponential decay
G[Mk(t)] = (A2e

−t2|λ2|+A3e
−t2|λ3|)/(A2+A3) for even integers k ≥ 4. The ratio

A3/A2 is plotted in the upper-right inset of Fig. 5.4, from which a monotonic
increase, and a saturation with respect to k, is evident. Together with the fact
that |λ3| > |λ2| (see Table 5.1), this explains—in accordance with Eq. (5.28)—
the shift of the rescaled curve to earlier times, as well as its convergence, with
moment order k.

In summary, we find (i) odd moments vanish for all t, (ii) the second moment
exhibits truly universal super-exponential decay as is shown in Fig. 5.6(a–d),
and (iii) higher-order even moments display approximate universality. As this
analysis shows, the Bourret–Markov ME reproduces the universal features
observed in our exact numerics.

Note that the aim of the ME framework developed in the previous sections
is not to provide an efficient way of simulating the disorder-averaged dynamics.
Indeed, the enlarged Hilbert-space, inherent to the process of mapping D to the
matrix form of Eq. (5.30), reduces the size of numerically accessible systems.
Rather, the aim is to gain additional insights by establishing a theoretical
mapping to an open quantum system. For example, our present study reveals
a non-trivial highly-degenerate eigenspace structure of the effective Liouvillian
superoperator, through which we can explain the observed universality. The
origin of this eigenspace structure is studied in-depth in our follow-up work
Ref. [82], of which we provide a brief summary in the next section.

5.5 Cumulant expansion method for disorder
averaged dynamics

The comparison of Sec. 5.3.3 verified that the Gaussian form of the average SYK
dynamics, predicted by the master equation formalism in Eq. (5.24), agrees
well with the exact numeric results. However, it also highlighted discrepancies
at intermediate times (see Fig. 5.5) which, as discussed previously, are not
surprising, considering that we made Markov and decorrelation assumptions
during the derivation of the effective master equation given in Eq. (5.16).
In particular, the decorrelation assumption came about by truncating the
series expansion for the functional derivative arising from the Novikov–Furutsu
theorem to lowest order [compare Eqs. (5.13)–(5.14) and (C.6)].
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5 Universal equilibration dynamics of the Sachdev–Ye–Kitaev model

Figure 5.7: Disorder averaged dynamics via the cumulant expansion. Exact
dynamics (solid-blue curve) of the second moment of the staggered magnetisation R̂,
averaged over multiple realisations of the q = 4 SYK Hamiltonian ĤSYK, compared
to the cumulant expansion of Eq. (5.33) truncated at k = 1 (dashed-orange curve),
k = 2 (dashed-red curve), and k = 3 (dashed-purple curve). Panels (a–c) show the
dynamics at half-filling for increasing system sizes N = 8, 12 and 16, for which the
exact numerics were averaged over 100 000, 3000, and 500 independent realisations,
respectively. The initial state was taken as the Néel state for these simulations.
As the insets show, the inclusion of higher cumulants improves the approximation
of the exact dynamics over the simulated time-scales. Divergences at later times,
arising from truncation to only a few cumulants, are studied further in Ref. [82].

This suggests that corrections to the framework of Sec. 5.3 can be obtained
through the inclusion of higher order terms. A systematic approach was
developed in our follow-up work Ref. [82], where we express the disorder-
averaged time-evolution operator E

[
e−Lt]—where now L• ≡ −i[Ĥ, •] denotes

the Liouvillian superoperator for a given disordered Hamiltonian Ĥ such that
ρ̂(t) = e−Ltρ̂(0)—as an expansion over cumulant superoperators

E
[
e−Lt] = eC(t) = exp

(
∞∑

k=1

(Jt)k

k!
Ck
)
. (5.31)

We will refer to C(t) as the cumulant generating superoperator, and similarly
to the superoperators Ck as cumulants.
A convenient way to determine the cumulants is to expand both sides of

Eq. (5.31), and then match equal powers of t. In particular, for any SYK-q model
Ĥ = Ĥq, we immediately see that all superoperators Ck with odd k vanish, due
to the Gaussian statistics of the interaction amplitudes [see Eqs. (2.5), (C.1)].
For the remaining even cumulants, calculating a given Ck requires the previous
determination of all Cl with l < k, and thus the procedure is iterative. As
an example, let us consider the first two non-vanishing cumulants for Ĥq.

Introducing the notation ℓα• = −i[ĥα, •], where α = {i1, . . . , iq/2; j1, . . . , jq/2}
is a multi-index, and ĥα = ĉ†i1 . . . ĉ

†
iq/2
ĉj1 . . . ĉjq/2 are the q/2-body operators of
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Ĥq, we have

C2 = K2
q

∑

α

ℓ2α, (5.32a)

C4 = K4
q

∑

α,β

(
ℓαℓ

2
βℓα + ℓαℓβℓαℓβ − 2ℓ2αℓ

2
β

)
, (5.32b)

where the prefactors Kq are given by the numerator of the prefactor of Ĥq in
Eq. (2.5).

Leading order truncation of the cumulant expansion, and setting q = 4, thus
yields precisely the time-evolution of Eq. (5.24), whilst higher-order cumulants
provide corrections to the ensemble-average dynamics of Ĥq as

d

dt
E [ρ̂(t)] =

d

dt
eC(t)ρ̂0 =

(
J

∞∑

k=1

(Jt)2k−1

(2k − 1)!
C2k
)
E [ρ̂(t)] . (5.33)

For practical purposes, we can only evaluate this cumulant expansion up
to some given finite order, which is as expensive as computing a short-time
expansion up to that same order. Nevertheless, while the latter is limited to
early times, the former is potentially able to reasonably reproduce the evolution
at arbitrary times, due to the exponential form of the cumulant expansion:
Even when C(t) is truncated, Eq. (5.31) still involves an infinite series of powers
of t, and thus it can represent non-polynomial time-dependence. Further,
the form of Eq. (5.33) shows that higher-order cumulants are relevant only
on longer timescales, as they are suppressed by a factor (2k)!. For a system
that thermalises quickly then, such as ĤSYK, a finite number of cumulants is
sufficient to obtain a valid approximation of the exact dynamics. Figure 5.7
shows the numerically simulated SYK dynamics of the second moment of the
staggered magnetisation R̂ [Eq. (5.6)], generated according to the cumulant
expansion of Eq. (5.33) for up to 2k = 6. Especially in the intermediate time
domain, where the master equation of Sec. 5.3 showed deviations, the inclusion
of higher cumulants yields a better approximation of the exact dynamics.

Finally, we note that the above cumulant expansion also allows one to
analytically calculate the spectrum of the effective Liouvillian superoperator
studied in Sec. 5.4. The key idea is that the disorder averaged dynamics of
ĤSYK conserve operator-size, which allows one to define an operator bases with
respect to which the cumulants Ck can be decomposed. Further details can be
found in Ref. [82].
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5.6 Discussion

In summary, we have theoretically investigated the post quench equilibration
dynamics of the SYK model. By numerically studying the disorder-averaged
exact evolution of a set of local observables and their higher-order moments,
we find that the equilibration process is universal: The curves illustrating
the equilibration of different initial states overlap throughout the dynamics
under a straightforward rescaling, revealing the independence of the dynamics
on chosen initial states. The equilibrated steady state, which is the Gibbs
infinite temperature state in the present study, is reached in fast time-scales of
leading-order processes determined by the variance of the disordered interaction.
In addition, the universal equilibration curve can be well approximated by a
Gaussian, yielding fast super-exponential equilibration dynamics.

In order to achieve an analytical understanding of the numerical findings,
we have formulated a theoretical framework based on the Novikov–Furutsu
theorem. This framework describes how a disordered quantum many-body
system undergoes an effective dissipative dynamics due to phase mixing in the
ensemble averaged evolution rather than to interactions with a heat bath [252,
268]. Having formulated the derivation for general disordered Hamiltonians,
its scope for applications extends beyond the present investigation of the SYK
model. Employing Bourret and Markov approximations, we obtain a Lindblad
master equation that successfully describes the key features of the observed
super-exponential equilibration dynamics under the SYK model. Furthermore,
a spectral analysis of the corresponding Liouvillian superoperator illuminates
the exact universality of low-order moments, representing few-body observables,
as well as an approximate universality of higher-order moments representing
many-body observables.

The Novikov–Furutsu theorem has been used extensively in the literature
for the study of systems with noise of short correlation time [253–255], and
equations equivalent to those derived in Sec. 5.3 have been obtained to second
order in perturbative noise strength [256–258, 266, 267]. In the present scenario,
where noise correlation times are formally infinite and where the disordered
interactions provide the dominant (because only) energy scale, there is at first
sight no reason for such perturbative approaches to hold. Yet, the strong
chaoticity of the SYK model seems to yield a fast decorrelation, making the
Bourret–Markov approximation a good description of the exact dynamics.

The salient features of the universal curve occur on sizable absolute scales
and very fast time scales, on the order of the mean interaction strength J , and
they can be extracted from the observation of local observables following a
simple global quench. Thus, the discussed effects should be readily observable
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in laboratory implementations of the SYK model.
An interesting topic for future investigation is, for example, in how far the

universality survives in disordered models without all-to-all connectivity, and to
apply the effective master equation approach to these. Whilst time-independent
Gaussian disorder will always yield a Gaussian decay according to our formalism,
the universality (initial state independence) would depend on details of the
Hamiltonian. For example, in models with a clean contribution Ĥ0 ̸= 0 one
can expect a complex interplay between disorder and clean dynamics, such
as the many-body localisation transition [38, 286–288]. Various mathematical
extensions of the presented master equation framework are also possible, e.g., to
treat non-Gaussian disorder [263, 282]. Finally, as this framework can naturally
include dephasing noise with arbitrary correlation spectrum, another interesting
line of study would be to estimate the interplay between dissipation due to
an external environment and dephasing due to disorder averaging, which is
central, e.g., to environment-assisted quantum transport [188, 289–291].
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6 Conclusion

We have studied the dynamics and quantum simulation of strongly-correlated
systems with long-range interactions and quenched disorder, with a particu-
lar focus on the Sachdev–Ye–Kitaev (SYK) model and the cavity quantum
electrodynamics (cQED) platform. Starting from the microscopic many-body
Hamiltonian for a quasi two-dimensional fermionic quantum gas trapped in a
multi-mode cavity, we have shown analytically that when driven in the dispers-
ive regime and subjected to a spatially-disordered AC-Stark shift, the system is
able to synthesise an effective model Ĥeff with long-range, random interaction
amplitudes, as required by the target SYK model ĤSYK. Importantly, we
have identified two key physical parameters that allow for the dynamics of
Ĥeff to replicate those of ĤSYK, and which can be tuned experimentally: (i)
The effective number of modes participating in the light–matter interactions,
parameterised by δ̃ω, and (ii) the transverse size ζ of the atomic cloud, con-
trolling the mechanical coupling between atoms and cavity photons. Numeric
simulations of the dynamics generated by Ĥeff , over an experimentally feasible
range of δ̃ω and ζ, show that the quantum chaotic, fast-scrambling dynamics
of ĤSYK should be achievable in current state-of-the-art multimode cQED
experiments with fermionic atoms.
In particular the capability to introduce quenched disorder into the cQED

system in a controlled manner, as recently demonstrated by Ref. [77], marks
an important milestone in the above pursuit. This experiment demonstrated
the feasibility of the disordered light-shift technique, employing it to synthesise
random spin models in the single-mode regime with fermionic 6Li atoms. We
have shown analytically that in the far off-resonant regime, this generates a
disordered Lipkin–Meshkov–Glick (LMG) model. By modelling the preparation
and interrogation phases of the experiment through a Lindblad master equation,
we have shown that the frequency-resolved transmission spectroscopy meas-
urements of the atoms’ dark-state manifold allowed for the extraction of the
absorptive part of the dynamic susceptibility. This allowed us to analytically
describe saturation effects, depending on the probe power and frequency, of the
measured signal, and further guided our numeric simulations in reproducing
the measured data by providing the correct relation between the susceptibil-
ity’s linewidth and the atomic decay rate. An intriguing feature of the above
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6 Conclusion

experiment is that whilst disorder induces localisation of spin excitations over
fewer-and-fewer atoms, the cavity-mediated global interaction nevertheless
permits energetic resonances over arbitrary distances. We have demonstrated
that, despite the lack of spatially-resolved information, the spectroscopic signal
can nevertheless probe the localisation properties of the disorderd LMG sys-
tem. Specifically, we have shown that the dynamic susceptibility’s amplitude
bounds the participation ratio (evaluated with respect to the single-excitation
basis) of certain excited states, thereby allowing the experiment to observe the
fragmentation of the zero-disorder collective spin state into ever-more localised
spin excitations as a function of disorder strength.
Once synthesised, a typical protocol to probe the far-from-equilibrium dy-

namics of quantum many-body systems is a quench experiment. Focussing
on operator moments of local observables, we have identified, through exact
diagonalisation simulations, that after a global quench into the SYK model, the
disorder averaged dynamics exhibit a rapid, super-exponential equilibration.
For low operator moments, we further identified a dynamical universality in the
sense that the functional form of the average evolution curve is independent of
the initial state, as revealed by an appropriate rescaling. We have developed an
analytic framework, mapping the unitary dynamics generated by an ensemble
of disordered Hamiltonians to an effective dissipative evolution described by
a Lindblad master equation. Under a decorrelation and Markov assumption,
the clean and disordered parts of generic Hamiltonians map, respectively, to
the coherent and dissipative parts of the Liouvillian superoperator governing
the master equation, whose dissipation rates are controlled by the Hamilto-
nian disorder statistics. Applied to the SYK model, this framework yields a
purely dissipative evolution, with dissipation rates growing linearly in time,
thereby capturing the super-exponential equilibration, and providing further
understanding of the initial-state independence on a formal level, via a spectral
decomposition of the Liouvillian superoperator. Discrepancies with the exact
evolution at intermediate times are addressed through a cumulant expansion,
which formally allows one to go beyond the approximations made in deriving
the above master equation.
Future directions of our work—addressed in more detail in the concluding

remarks of the respective chapters—include the extension of the cQED proposal
to variations of the SYK model, such as with Brownian noise, or coupled SYK
systems; investigating the possibility to incorporate spin-orbit coupling or
twisted cavities [292] in order to break time-reversal symmetry; or adapting
the proposal to the formally similar platform of circuit-QED. The realisation
of the disordered LMG model offers the prospect of studying the effects of
disorder on superconductivity, due to its relation to the pairing Hamiltonian of
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BCS theory and more broadly to Richardson–Gaudin models. To study the
many-body physics of such systems it is necessary to go beyond the single-
excitation regime realised here. This could be achieved via atomic species
with long-lived excitations [180], or by encoding the spins in the ground state
manifold and coupling them via Raman transitions [293]. Interesting future
applications of the effective master equation framework could be to investigate
the presence of universal far-from-equilibrium dynamics in models without
all-to-all connectivity or with non-Gaussian disorder; as well as to study model
Hamiltonians with competing clean and disordered contributions which may
exhibit localisation transitions; or, in the case of disordered open quantum
systems, to study the interplay of intrinsic dissipation with the effective loss
processes arising from disorder averaging.
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Grier, J. Simon and V. Vuletić, “Interaction between Atomic Ensembles
and Optical Resonators”, in Advances in atomic, molecular, and optical
physics (Elsevier, 2011), pp. 201–237.

[196] J. Jensen and A. R. Mackintosch, Rare Earth Magnetism: Structures
and Excitations, The International Series of Monographs on Physics
(Clarendon Press Oxford, 1991).

[197] H. J. Lipkin, N. Meshkov and A. J. Glick, “Validity of Many-Body
Approximation Methods for a Solvable Model: (I). Exact Solutions and
Perturbation Theory”, Nucl. Phys. 62, 188–198 (1965).

[198] V. Makhalov, T. Satoor, A. Evrard, T. Chalopin, R. Lopes and S.
Nascimbene, “Probing Quantum Criticality and Symmetry Breaking at
the Microscopic Level”, Phys. Rev. Lett. 123, 120601 (2019).

[199] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, Great Clarendon Street, 2002).

[200] M. C. Cambiaggio, A. M. F. Rivas and M. Saraceno, “Integrability of
the pairing hamiltonian”, Nucl. Phys. A 624, 157–167 (1997).

[201] P. Kulish, A. Stolin and L. H. Johannesson, “Deformed Richardson-
Gaudin model”, Journal of Physics: Conference Series 532, 012012
(2014).

[202] J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Theory of Superconduct-
ivity”, Phys. Rev. 108, 1175–1204 (1957).

128

https://doi.org/10.1038/nmat4392
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1098/rspa.2020.0278
https://doi.org/10.1103/PhysRevA.105.023714
https://doi.org/10.1016/b978-0-12-385508-4.00004-8
https://doi.org/10.1016/b978-0-12-385508-4.00004-8
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1103/PhysRevLett.123.120601
https://doi.org/10.1016/s0375-9474(97)00418-1
https://doi.org/10.1088/1742-6596/532/1/012012
https://doi.org/10.1088/1742-6596/532/1/012012
https://doi.org/10.1103/PhysRev.108.1175


[203] R. W. Richardson, “A restricted class of exact eigenstates of the pairing-
force Hamiltonian”, Phys. Lett. 3, 277–279 (1963).

[204] M. Gaudin, “Diagonalisation d’une classe d’hamiltoniens de spin”,
Journal de Physique 37, 1087–1098 (1976).

[205] J. Dukelsky, S. Pittel and G. Sierra, “Colloquium: Exactly solvable
Richardson-Gaudin models for many-body quantum systems”, Rev. Mod.
Phys. 76, 643–662 (2004).

[206] N. Wiener, “Generalized harmonic analysis”, Acta Math. 55, 117–258
(1930).

[207] A. Khintchine, “Korrelationstheorie der stationären stochastischen
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[228] A. Piñeiro Orioli, K. Boguslavski and J. Berges, “Universal self-similar
dynamics of relativistic and nonrelativistic field theories near nonthermal
fixed points”, Phys. Rev. D 92, 025041 (2015).

[229] J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, “Univer-
sality Far from Equilibrium: From Superfluid Bose Gases to Heavy-Ion
Collisions”, Phys. Rev. Lett. 114, 061601 (2015).

130

https://doi.org/10.1088/1367-2630/17/7/072003
https://doi.org/10.1103/PhysRevB.97.174303
https://doi.org/10.1103/PhysRevB.97.174303
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1038/s41586-018-0667-0
https://doi.org/10.1103/PhysRevB.101.241107
https://doi.org/10.1103/PhysRevB.101.121108
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/317505a0
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1103/PhysRevLett.101.041603
https://doi.org/10.1103/PhysRevD.92.025041
https://doi.org/10.1103/PhysRevLett.114.061601


[230] M. Karl and T. Gasenzer, “Strongly anomalous non-thermal fixed point
in a quenched two-dimensional Bose gas”, New J. Phys. 19, 093014
(2017).
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Appendix A

Additional details for Chapter 3

In this appendix, we provide supplementary derivations and discussions for our
proposed cQED implementation of the SYK model of Chap. 3.

A.1 Disordered AC-Stark shift from microscopic
Hamiltonian

Consider the scenario where, in addition to the drive beam addressing the
ground-to-excited-state transition, a light-shifting beam of angular(Rabi) fre-
quency ωb(Ωb(r)) is detuned from the excited-to-auxiliary-state transition, as
sketched in Fig. 3.1(c). This adds the following terms to Ĥmb(t) in Eq. (3.6),

∫
drωauxψ̂

†
aux(r)ψ̂aux(r) +

∫
dr
(
Ωb(r)e

−iωbtψ̂†
aux(r)ψ̂e(r) + H.c.

)
, (A.1)

where ψ̂aux(r) are the field operators for the auxiliary electronic state |a⟩.
Here we have assumed that the light-shifting beam is far off-resonant from
the ground-to-auxiliary transition, and that the cavity is far off-resonant with
transitions to |a⟩, such that the above terms are the relevant processes.

Eliminating the time-dependence by going into a rotating frame generated
by

Ĥ ′
RF = ωd

(∫
drψ̂†

e(r)ψ̂e(r) +
∑

m

â†mâm

)
+ (ωd + ωb)

∫
drψ̂†

aux(r)ψ̂aux(r),

(A.2)
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we obtain

Ĥmb =
∑

m

∆mâ
†
mâm −

∫
dr
(
∆daψ̂

†
e(r)ψ̂e(r) + ∆bauxψ̂

†
aux(r)ψ̂aux(r)

)

+
1

2

∑

m

∫
dr
(
Ωmgm(r)âmψ̂

†
e(r)ψ̂g(r) + H.c.

)

+

∫
dr
(
Ωdgd(r)ψ̂

†
e(r)ψ̂g(r) + Ωb(r)ψ̂

†
aux(r)ψ̂e(r) + H.c.

)
,

(A.3)

where ∆baux ≡ ωd + ωb − ωaux.
Similar to the procedure of Sec. 3.3.2, by assuming the detuning |∆baux| to

be sufficiently large, the auxiliary state field operators ψ̂aux(r) adiabatically
follow those of the excited state,

ψ̂aux(r) =
Ωb(r)

∆baux

ψ̂e(r). (A.4)

Substituting this into the Heisenberg equations of motion for ψ̂e(r), we find

i∂tψ̂e(r) = −∆da(r)ψ̂e(r) + Φ̂(r)ψ̂g(r) (A.5)

where Φ̂(r) is as in Eq. (3.13), and now ∆̃da(r) is given by

∆da(r) = ∆da −
|Ωb(r)|2
∆baux

= ωd −
(
ωa +

|Ωb(r)|2
∆baux

)
. (A.6)

The term in parenthesis yields a spatially dependent atomic resonance ωa(r),
similar to that introduced in Sec. 3.2.1.

A.2 Compensating the disordered dipole potential

We have seen in the derivation of Ĥeff [Eq. (3.23)], that the one-body term
[Eq. (3.22)] contains an effective disordered dipole potential

∫
dr

|Ωdgd(r)|2
∆da(r)

ψ̂†(r)ψ̂(r), (A.7)

which appears after adiabatic elimination of the excited state [see Eqs. (3.15)–
(3.17)]. Here we briefly discuss how this term could be compensated by intro-
ducing an additional drive.

140



A.3 Numeric implementation

Figure A.1: Additional drive for compens-
ation of dipole potential. Level scheme of
Fig. 3.1(c), but with an an additional drive,
tailored so as to compensate the disordered
dipole potential of the original drive.

The light-shift technique described in Sec. 3.2.1 produces in the dressed-state
picture two energetically shifted states (Autler–Townes doublet [294]). The
energy shifts of these dressed states, relative to the bare states, are perfectly anti-
correlated. In the microscopic Hamiltonian of Eq. (3.6), it is the energetically
lower state of this doublet which is designated as the excited state, at frequency
ωa(r), and thus yields the spatially-dependent detuning ∆da(r) [see also the
level scheme of Fig. 3.1(c)]. Let the transition frequency from the ground
state to the higher lying dressed state be ωaux(r), and consider an additional
drive beam, at angular(Rabi) frequency ωd′(Ωd′), detuned by ∆d′aux from this
transition, as sketched in Fig. A.1. The microscopic model of Eqs. (3.6)–(3.10)
is then modified by the additional terms

∫
drωaux(r)ψ̂

†
aux(r)ψ̂aux(r) + Ωd′

∫
dr
(
gd′(r)e

−iωd′ tψ̂†
aux(r)ψ̂g(r) + H.c.

)
.

(A.8)

Going into the rotating frame generated by ĤRF = ωd

∫
drψ̂†

e(r)ψ̂e(r) +

ωd

∑
m â

†
mâm +ωd′

∫
drψ̂†

aux(r)ψ̂aux(r), and adiabatically eliminating ψ̂e(r) and

ψ̂aux(r) (following the procedure outlined in Sec. 2.2.4), then yields the expres-
sion of Eq. (3.17), but with an additional term

∫
dr

|Ωd′gd′(r)|2
∆d′aux(r)

ψ̂†(r)ψ̂(r), (A.9)

where we have let ψ̂g(r) = ψ̂(r), as in Eq. (3.17).

By tailoring the two drives such that they have matching intensity Ωd = Ωd′

and profiles gd(r) = gd′(r), the two dipole terms of Eqs. (A.7) and (A.9) can
be made to cancel by choosing their angular frequencies such that ∆da(r) =
−∆d′aux(r). This can be achieved by choosing the detunings from the bare
states to have equal magnitude, but opposite sign ∆da = −∆d′aux, since at any
given position r the dressed states’ energy shifts are perfectly anti-correlated.
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Figure A.2: Comparison of lowest energy gap of ĤSYK and Ĥq=2. Scaling of
mean lowest energy gap E [ϵ1 − ϵ0] (circles) with system sizes N = 8, 10, 12, 14 (at
half filling), for ĤSYK (left) and Ĥq=2 (right). For ĤSYK, the average is performed
over 104, 5 × 103, 103, 103 disorder realisations, for the respective system sizes
listed above. For Ĥq=2, the average is performed over 104, 104, 104, 103 disorder
realisations, respectively. The exponential scaling e−aN for ĤSYK is evident, in
contrast to the N−p scaling for Ĥq=2. Red lines represent the best (least-squares)
fit, from which we extract exponents a = 0.12±0.01 and p = 0.72±0.03. Deviations
from the expected large-N scalings p = 1 and a ≃ 0.232 (for the Majorana variant
of ĤSYK), are likely due to numeric limitation to small system sizes, as well as finite
sample sizes over which we average. Error bars indicate the standard deviation of
the mean value obtained for the above sample sizes, and would be reduced further
by increasing the number of disorder realisations over which one averages.

A.3 Numeric implementation

Here we provide details on the numeric simulation of Ĥeff , as implemented for
the data presented in Secs. 3.4 and 3.5. In short, for a given realization of the
speckle [see Fig. A.4], we solve for the eigenmodes ϕi(r) of Ĥ0, and use these
to approximate the interaction integrals Ii1j1,m of Eq. (3.24) via Riemann sums.
From these, we construct the antisymmetric interactions J̃i1i2;j1j2 = Ji1i2;j1j2/E
as given by Eq. (3.32), and finally diagonalise the normal-ordered two body

part of Ĥeff in Eqs. (3.26)–(3.28), Ĥ
(4)
eff /E =

∑
i1,i2,j1,j2

J̃i1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 . The

thus obtained spectrum is then used to simulate the dynamics of Ĥ
(4)
eff presented

in Sec. 3.5.

As motivated in App. A.2, we drop the dipole term of Ĥ0 in Eq. (3.22), such
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that

Ĥ0 = Ĥkt =

∫
drψ̂†(r)

(−∇2

2mat

+ Vt(r)

)
ψ̂(r), (A.10)

which is simply a quantum harmonic oscillator (QHO) Hamiltonian for the
harmonic trapping potential Vt(r) = (matω

2
t /2)r

2 (we assume the trap to be
isotropic in the plane transverse to the cavity axis). Introducing dimensionless
coordinates r′ ≡ r/x0, where x0 =

√
1/(matωt) is the zero-point fluctuation of

the ground state of Ĥkt, we obtain

Ĥ0 =
ωt

2

∫
dr′ψ̂†(r′)

(
−∇′2 + r′2) ψ̂(r′). (A.11)

The eigenmodes ϕi(r
′) of the above QHO Hamiltonian are products of Hermite–

Gauss modes ϕi(r
′) = ψ

n
(i)
x
(x′)ψ

n
(i)
y
(y′) [given by Eq. (A.13) with w0/

√
2 re-

placed by x0]. Nevertheless, we calculate the eigenmodes via exact diagonal-
isation, to maintain flexibility of our numeric calculations for possible future
extensions.

We construct the matrix representation of the Hamiltonian of Eq. (A.11)
in the position basis over a square grid of Nx ×Nx coordinates r′, centred at
r′ = (0, 0), and set ωt = 1. For the remainder of this section, we drop the prime
notation, and all length scales are to be understood as expressed in units of x0.

Using exact diagonalisation, we obtain the N energetically lowest eigenmodes
{ϕi(r)}N−1

i=0 , where N is the desired system size. To prevent distortions of
the eigenmodes, the grid diameter L must be chosen sufficiently large: The
spatial variance of a given mode ϕi(r) = ψ

n
(i)
x
(x)ψ

n
(i)
y
(y) is (in units of x0)

given by (n(i) + 1), where n(i) = max(n
(i)
x , n

(i)
y ). In the main text, we consider

systems of N ≤ 14, for which the largest variance is (4 + 1), and we thus set
L = 10 ≈ 5×

√
4 + 1. We set the number of grid-points as Nx = 200, for which

the relative error in the energy of the highest utilised mode is less than 0.1%.

Next, we use the set {ϕi(r)}N−1
i=0 to calculate the [N(N − 1)/2]2 antisymmet-

rised, two-body interaction amplitudes Ji1i2;j1j2/E as defined by Eq. (3.32), for
a given input value of δ̃ω = δω/∆cd. The spatial integrals are approximated as
Riemann sums over the above coordinate grid. As motivated in the main text,
we work in a long-wavelength approximation such that gd(r) = 1. Assuming
the pancake to be placed at the centre of the cavity-axis (z = 0), the cavity
modes gm(r) are Hermite–Gauss modes gm(r) = ψnx(x)ψny(y), where m is
obtained from integers nx, ny ≥ 0 via Cantor’s pairing function

m = CP(nx, ny) ≡ (nx + ny)(nx + ny + 1)/2 + ny, (A.12)
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Figure A.3: Convergence with respect to mode-cut-off. Comparison of data
for mode-cut-off M = 240 (blue) versus M = 500 (orange). (a) The interpolation
parameter ρ [see Eq. (3.33)], quantifying the shape of the probability distribution
of J̃i1i2;j1j2 for δ̃ω = 1/10, 1/2, 1, 2, 10. Each marker and its error-bars, respectively,
represent the mean and standard deviation of ρ for an ensemble of 100 disorder
realizations. (b OTOC (operator choice as in main text) and (c) SFF for N =
10(N = 14) fermionic modes at half-filling, with ζ = 1, and δ̃ω = 1/10(δ̃ω =
1/1000), averaged over 250(100) disorder realizations. (d) Convergence of p(s),

with respect to mode-cut-off M , of Ĥ
(4)
eff for N = 14 fermionic modes at half-filling,

ζ = 1, and δ̃ω = 1/1000.

and

ψnx(x) =

√ √
2/w0√
π2nxnx!

exp

( −x2
2(w0/

√
2)2

)
Hnx

(
x

w0/
√
2

)
. (A.13)

Note that since we consider a planar atomic cloud, here we have neglected the
longitudinal profile of the cavity modes, the frequency of which is governed by
the Guoy phase [22]. Depending on the type of cavity used, and the clouds
position along the cavity axis, this will have to be included in future works. The
parameter w0 is the cavity waist at centre, and ζ = x0/(w0/

√
2) (introduced in

Sec. 3.2) quantifies the spatial extent of the fermionic modes ϕi(r) relative to
this waist.
In Figs. 3.6–3.7, we present data for a range of sizes ζ ∈ [0.1, 1], which is

implemented in our numerics by keeping x0 = 1 fixed, and varying the cavity
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Figure A.4: Example of a speckle realisation. A
realization of the speckled intensity distribution
used to numerically define the disordered drive–
atom detuning ∆da(r).

waist as w0 =
√
2ζ. We set a mode-cut-off m = 0, 1, . . . ,M in Eq. (3.32) as

M = 240, and ensure that Nx is large enough such that the spatial frequencies
of all modes entering Eq. (3.32) are sampled above the Nyquist rate. For a test
of convergence with respect to M , see Fig. A.3.
Finally, to produce the disordered detuning ∆da(r) of Eq. (3.2), we numer-

ically generate speckle patterns according to the method of Ref. [295]. We
assume the blue-detuned scenario ∆b > 0 of Eq. (3.2), and set the spatial

average of |Ωb(r)|2/(4|∆b|)
|∆da|

to unity. The mean number of speckle grains per linear
dimension of the grid is a tunable parameter in the numerics. Physically, this
number is determined by the speckle correlation length ξ. As an example, the
light-shifting beam and numerical aperture of the setup of Chap. 4 (Ref. [77])
would yield (w0/

√
2)/ξ ≈ 17. We thus set the average number of speckle grains

per linear dimension of the pancake to 17. An example realisation is shown in
Fig. A.4.
Having obtained the set of amplitudes Ji1i2;j1j2/E , we use them to construct

the Fock-space representation of Ĥ
(4)
eff /E =

∑
i1,i2,j1,j2

(Ji1i2;j1j2/E)ĉ†i1 ĉ
†
i2
ĉj1 ĉj2

within the half-filling sector ⟨Q̂⟩ = 1/2. The dynamics are then solved, using
the exact diagonalisation code which was also utilised for the numerics of
Chap. 5.
The above procedure is repeated multiple times, with independent speckle

realizations, to obtain the ensemble-averaged data (E[. . . ]) presented in Chap. 3.
From this, we can also determine the covariance of a given amplitude Ji1i2;j1j2

for a given choice of indices, with all of the (N(N − 1)/2)2 amplitudes in the
set of antisymmetrised amplitudes {Ji1i2;j1j2}. An example is show in Fig. A.5
for an ensemble of 100 disorder realisations, which signifies the presence of
correlations within {Ji1i2;j1j2}.
From our simulations of the spectral form factor (SFF), we extract the

ramp, respectively, Heisenberg time via the procedure used in Ref. [115]. In
short, we fit a linear function to the ramp, respectively, plateau of a given
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Figure A.5: Covariance of effective

interaction amplitude. Example of
covariances of an effective interaction
amplitude Ji1i2;j1j2 , for an arbitrary
choice of indices, with all other amp-
litudes. Data points represent mean
values for 100 independent realisations

of Ĥ
(4)
eff with N = 14, ζ = 1 and

δ̃ω = 1/10, and have been a arranged
from largest to smallest value, for the
(N(N − 1)/2)2 = 8281 amplitudes.

ensemble-averaged SFF, and then determine the earliest time at which the
relative deviation of the SFF from this fit is below 1%. An example is shown
in Fig. A.6.

All numerics presented in Secs. 3.4–3.5, are done under the long-wavelength
approximation for the amplitude of the transverse drive beam gd(r) = 1 which is
motivated by the assumption of being within the Lamb–Dicke regime kdx0 ≪ 1,
where kd = 2π/λd, and λd is the wavelength of the transverse drive. The
case of an oscillating drive amplitude gd(r) = exp(ikdx), propagating along
the (transverse) x direction, is shown in Fig. A.7, which shows realizations of
out-of-time-order correlators (OTOCs) for the same operators considered in
Sec. 3.5, and the SFF, for small (ζ = 0.1) and large (ζ = 1.0) transverse sizes of
the atomic cloud and δ̃ω = 1/1000, 100, with the latter interpolating between
many and few modes contributing to Ji1i2;j1j2/E . We observe drastic deviations
from the desired SYK behaviour. The long-wavelength approximation is thus
an important ingredient, fulfilled either by a drive impinging on the atomic
cloud at an angle, or via an on-axis drive, as in Sec. 3.6.3.

For the rank data presented in Fig. 3.5, we use the interaction integrals Ii1j1,m
to construct the matrix M as defined in Eq. (3.30), whose matrix elements are
the unsymmetrised interaction amplitudes as given in the two body term of
Eq. (3.23). The row indices are assigned as i1j1 → Nj1 + i1, and similarly the
column indices as j2i2 → Ni2 + j2. Determining the matrix rank, defined as
the number of non-zero eigenvalues, typically requires one to define a cut-off
below which the numerically determined eigenvalues are treated as vanishing.
To avoid this, we use the two alternative measures of the matrix rank defined
in Eq. (3.31) of the main text.
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Figure A.6: Extraction of ramp and Heisenberg time. Examples of the relative
error technique of Ref. [115], used here to extract (a) the ramp time tr, and (b)
the Heisenberg time tH of the SFF (black curve) of Fig. 3.7(a,b) for δ̃ω = 1.0. A
linear fit (sky-blue line) to the ramp, respectively plateau, is used to determine the
earliest time at which the relative deviation ε ≡ |S(t)− f(t)| / |f(t)| of the SFF
S(t) from the linear fit f(t) falls below an error threshold. This time is designated
as the ramp, respectively, Heisenberg time. Here, and for the data of the main text,
we set the threshold to 0.01, and the red circle markers are centred on S(t = tr),
respectively, S(t = tH). For illustrative purposes, the linear fits have been plotted
beyond their domain of validity, which is chosen by inspection for each data set.

A.4 Role of Ĥkt in the derivation of Ĥeff

Here, we consider explicitly the role of the atoms’ motional (external) degrees
of freedom in the derivation of Ĥeff [Eqs. (3.11)–(3.23)], presented in Sec. 3.3.
Specifically, we will show that

Ĥkt =
∑

s=e,g

∫
drψ̂†

s(r)

(−∇2

2mat

+ Vt(r)

)
ψ̂s(r) (A.14)

passes through the various transformations of Sec. 3.3, starting with the many-
body Hamiltonian of Eqs. (3.6)–(3.10), so that it simply modifies the one-body
Hamiltonian of Eq. (3.22).

A.4.1 Rotating frame

Ĥkt is unaltered by the rotating frame transformation generated by ĤRF defined
in Eq. (3.11), since [Ĥkt, ĤRF] = 0, as we now show. We decompose the field
operators ψ̂g(r), ψ̂e(r), respectively, into an arbitrary basis of mode-functions

ψ̂s(r) =
∑

i

ϕsi(r)ĉsi. (A.15)
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Figure A.7: OTOC and SFF for drive amplitudes with non-uniform phases.

The OTOCs (a) and SFFs (b) are generated by Ĥ
(4)
eff with interactions J̃i1i2;j1j2

in which the amplitude of the transverse drive has an oscillating phase gd(r) =
exp(ikdx). OTOC(SFF) data are for a system of N = 10(N = 14) fermionic
modes at half-filling, averaged over 500(200) disorder realizations. Both panels
compare dynamics for different transverse atomic cloud sizes ζ = 1(ζ = 0.1),
indicated by solid(dashed) curves, and different δ̃ω = 100(δ̃ω = 1/1000) shown in
red(blue). Contrary to the case of homogeneous drive (main text), the dynamics
in the smaller cloud (ζ = 0.1) are faster than in the larger cloud (ζ = 1). However,
the data for different δ̃ω collapse on top of one-another, so that no speed up is
apparent as δ̃ω is tuned. This indicates that the homogeneous drive utilised in
the main text is an important ingredient for the proposal.

In terms of this decomposition, Ĥkt is given by

Ĥkt =
∑

s=e,g

∑

i,j

(∫
drϕ∗

si(r)

(−∇2

2mat

+ Vt(r)

)
ϕsj(r)

)
ĉ†siĉsj. (A.16)

This decomposition allows us to decouple the Laplacian ∇2 from the field
operators, which simplifies the calculation of commutators here and below. For
the present case, we find

[
Ĥkt, ĤRF

]
∝
[
ĉ†siĉsj,

∑

k

ĉ†ekĉek

]
, (A.17)

where we have used that the fermionic part of ĤRF is proportional to
∑

k ĉ
†
ekĉek.

The commutator on the right-hand-side vanishes since the operator on its
left conserves the total (excited-state) particle number symmetry encoded by
the operator on its right. So we see that Ĥkt propagates unaltered into the
rotating-frame Hamiltonian given by Eq. (3.12), i.e., Eq. (3.12) changes to
Ĥmb + Ĥkt.
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A.4.2 Adiabatic elimination of ψ̂e(r)

The inclusion of Ĥkt in Eq. (3.12) modifies the Heisenberg equation of motion
for ψ̂e(r) due to the additional commutator

[
ψ̂e(r), Ĥkt

]
=

(−∇2

2mat

+ Vt(r)

)
ψ̂e(r), (A.18)

which can be calculated using the decomposition of Eq. (A.16). The Heisenberg
equation of motion for ψ̂e(r) is thus,

i∂tψ̂e(r) = −∆da(r)ψ̂e(r) + Φ̂(r)ψ̂g(r) +

(−∇2

2mat

+ Vt(r)

)
ψ̂e(r). (A.19)

We drop the term in parenthesis, which is motivated by a separation of energy
scales [151] [see also the discussion following Eq. (2.28)]; Having already assumed
∆da(r) to be the dominant energy scale in the system at all r, the comparatively
slow dynamics of the atoms’ external degrees of freedom (typically on the order
of tens of kHz [166]) may be safely neglected. Formally setting the time-
derivative to zero, then yields the expression for the field operator of Eq. (3.15).
Inserting this into the Heisenberg equations of motion for ψ̂g(r) and âm,

and deducing the corresponding effective Hamiltonian, then yields the same
Hamiltonian as Eq. (3.16), with the additional ground-state contribution of the
kinetic energy.
So, taking Ĥkt into account during the adiabatic elimination of ψ̂e(r), simply

adds to Eq. (3.16) the dynamics of the external degrees of freedom of the
ground state species Ĥkt =

∫
drψ̂†(r)

(
−∇2/(2mat) + Vt(r)

)
ψ̂(r), where we

have denoted ψ̂g(r) as ψ̂(r) =
∑

i ϕi(r)ĉi and redefined Ĥkt accordingly as

Ĥkt =
∑

i,j

(∫
drϕ∗

i (r)

(−∇2

2mat

+ Vt(r)

)
ϕj(r)

)
ĉ†i ĉj. (A.20)

A.4.3 Schrieffer–Wolff transformation

The presence of Ĥkt, as given by Eq. (A.20) above, in the Hamiltonian obtained
after adiabatic elimination merely modifies Ĥ0 of Eq. (3.17) to Ĥ0 + Ĥkt, i.e.,
it does not couple photonic and atomic degrees of freedom. We may therefore
continue to use the generator Ŝ of Eq. (3.20) to eliminate the coupling term V̂
given by Eq. (3.18). All that remains to do, is to take into account the additional
contributions to the commutator [Ŝ, Ĥ0], which is modified to [Ŝ, Ĥ0] + [Ŝ, Ĥkt].
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We now show that this additional term vanishes, thereby proving that the
effective Hamiltonian of Eq. (3.21) only changes from Ĥeff to Ĥeff + Ĥkt.

To simplify the notation, we start by summarising the term in parenthesis of
Eq. (A.20) as K(i, j), i.e., Ĥkt =

∑
i,j K(i, j)ĉ†i ĉj . Similarly, we group all scalar

terms in Eq. (3.20) such that Ŝ =
∑

m

∑
k,l s(m, k, l)âmĉ

†
kĉl − H.c.. With this

in hand, we have

[Ŝ, Ĥkt] =
∑

m

âm
∑

j,k

[∑

i

(K(i, j)s(m, k, i)−K(i, k)∗s(m, i, j))

]
ĉ†kĉj +H.c. .

(A.21)
Now, since the various ϕi(r) form a basis [see Eq. (A.15)], the sum over i
is
∑

i ϕi(r)
∗ϕi(r

′) = δ(r − r′) Thus, the term in square-brackets above is
proportional to (expanding K(i, j) and s(m, k, i) back into their microscopic
expressions),

∫
dr
g∗d(r)gm(r)

∆da(r)

{
ϕ∗
k(r)

(−∇2

2mat

+ Vt(r)

)
ϕj(r)

−
[(−∇2

2mat

+ Vt(r)

)
ϕk(r)

]∗
ϕj(r)

}
.

(A.22)

Multiplying this by ĉ†kĉj and summing over k, j reduces the term in curly braces
above to

ψ̂†(r)

(−∇2

2mat

+ Vt(r)

)
ψ̂(r)− H.c. . (A.23)

This is zero, by hermiticity of Ĥkt, and so [Ŝ, Ĥkt] = 0. Therefore, the effective

Hamiltonian of Eq. (3.21) is simply modified to Ĥeff = Ĥ0 + Ĥkt −
∑

m
Θ̂†

mΘ̂m

∆m
.

In summary, we have shown that in the derivation of the effective model
given by Eq. (3.21), one may disregard Ĥkt when performing all necessary
transformations, and simply add it back into the final one-body contribution
in Eq. (3.22).

A.5 A note on dissipation

Here, we consider the role of losses in the effective model derived in Sec. 3.3.
They arise due to spontaneous emission, at rate Γ, of the atomic excited state,
and from out-coupling of the cavity modes, at rates κm. For this open quantum
system, we model the equation of motion of a given Heisenberg operator Ô(t) via
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the adjoint master equation, which (for time-independent Lindblad generators)
is [199],

∂tÔ(t) =i
[
Ĥmb, Ô(t)

]
+

∫
dr

(
L̂†(r)Ô(t)L̂(r)− 1

2

{
L̂†(r)L̂(r), Ô(t)

})

+
∑

m

(
L̂†
mÔ(t)L̂m − 1

2

{
L̂†
mL̂m, Ô(t)

})
,

(A.24)

where spontaneous emission of the atoms, and photon loss are, respectively,
described by the jump operators L̂(r) =

√
Γψ̂†

g(r)ψ̂e(r) and L̂m =
√
κmâm.

Here we have neglected the effect of atomic recoil due to spontaneous emission,
which is equivalent to working at zeroth order in the Lamb–Dicke parameter η
[296]. The first correction is of order η2, and describes diffusion of the atoms
due to spontaneous emission. Here, we focus on the dynamics of the atoms’
internal degrees-of-freedom.

The equation of motion for ψ̂†
g(r)ψ̂e(r) under the dynamics described by

Eq. (A.24), with Ĥmb and Φ̂(r) given by Eqs. (3.12), (3.13), is

∂t

(
ψ̂†
g(r)ψ̂e(r)

)
=i (∆da(r) + iΓ/2) ψ̂†

g(r)ψ̂e(r)

− iΦ̂(r)ψ̂†
g(r)ψ̂g(r)− iΦ̂(r)ψ̂†

e(r)ψ̂e(r).
(A.25)

Adiabatically eliminating ψ̂†
g(r)ψ̂e(r), we obtain, similar to Ref. [297],

ψ̂†
g(r)ψ̂e(r) =

Φ̂(r)ψ̂†
g(r)ψ̂g(r)

∆da(r) + iΓ/2
, (A.26)

where we have assumed the contribution from the ψ̂†
e(r)ψ̂e(r) term to be sub-

leading, since in the dispersive regime |Ωd/∆da| ≪ 1, the low-saturation limit
is satisfied [298].

Similarly, adiabatic elimination of the photonic operator âm yields

âm ≈ −ΩdΩ
∗
m

2(∆m − iκm/2)

∫
dr

gd(r)g
∗
m(r)

∆da(r) + iΓ/2
ψ̂†
g(r)ψ̂g(r), (A.27)

where we dropped terms of order Ωm/Ωd, motivated by the discussion of
Sec. 3.3.1.
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Inserting the operators of Eq. (A.26) and (A.27) into Eq. (A.24) then yields
an effective dissipator superoperator

Deff• =

∫
dr

(
L̂eff(r) • L̂†

eff(r)−
1

2

{
L̂†
eff(r)L̂eff(r), •

})

+
∑

m

(
L̂m,eff • L̂†

m,eff − 1

2

{
L̂†
m,effL̂m,eff , •

})
,

(A.28)

describing dephasing of the remaining internal atomic degree-of-freedom (up to
order 1/∆2

da included), via the effective jump operators

L̂eff(r) =

√
Γ

∆da(r) + iΓ/2
Ωdgd(r)ψ̂

†
g(r)ψ̂g(r), (A.29)

and

L̂m,eff =
√
κm

ΩdΩ
∗
m

2(∆m − iκm/2)

∫
dr

gd(r)g
∗
m(r)

∆da(r) + iΓ/2
ψ̂†
g(r)ψ̂g(r). (A.30)

The integral over the atomic cloud’s volume in L̂
(eff)
m reflects a “global dephasing”

arising from the fact that a photon emitted via the cavity mirrors leaves the
observer ignorant as to the position r at which the photon was scattered by an
atom.
The effective jump operators are randomised via the disordered detuning

∆da(r), thus yielding random, quadratic jump operators. This is similar to the
dissipative SYK model studied in Ref. [177].

A.6 SYK model with Cauchy distribution

Here, we numerically compare the spectral properties of a variation of the
SYK Hamiltonian, with the interaction amplitudes drawn from the Cauchy
distribution, and compare them to that of the target model ĤSYK in Eq. (3.1).
The normalised Cauchy distribution P (x), defined over the domain x ∈

(−∞,∞), and centred at x = 0 is given by

P (x) =
1

π

γ

γ2 + x2
, (A.31)

where γ is the half-width at half-maximum of the distribution. Since the
moments of this distribution are not defined, in our numerics we truncate the
domain to x ∈ [−a, a], for some real number a ≥ 0, which in turn results in a
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Figure A.8: SYK model with Cauchy-distributed interactions. Comparison
of OTOC (a) and SFF (b) dynamics, generated by the target Hamiltonian ĤSYK

with complex Gaussian(truncated Cauchy) distributed Ji1i2;j1j2 , as indicated by
the red-solid(black-dashed) curves. The OTOC(SFF) data are for a system of
N = 10(N = 14) fermionic modes at half-filling, and averaged over 1000 realizations.
For the OTOCs, the choice of operators is the same as for the OTOCs shown in
Fig. 3.7(a) of Chap. 3. The time axes of the SFF curves were rescaled so as to
match their respective Heisenberg times. Dotted black curves are as in Fig. 3.7(a).

domain-dependent variance of the distribution Pa(x). We choose the value of a
such that we cover a desired fraction f ≡

∫ a

−a
dxP (x) = 0.975 of the probability

mass of Eq. (A.31). With this rationale, one has the relation a = γ tan(fπ/2),
and the normalised truncated Cauchy distribution function is then given by

Pa(x) =
1

2 arctan(a/γ)

γ

γ2 + x2
, (A.32)

which can be tuned by changing the width γ for a fixed f .
We draw interaction amplitudes Ji1i2;j1j2 from the distribution Pa(x), and

construct the matrix representation of the SYK model in the same way as for
the usual Gaussian definition in Eq. (3.1). In Fig. A.8 we compare the OTOCs
and the SFF generated by the target SYK model of Eq. (3.1), with complex
Gaussian-distributed interactions (red curves), to the variation of the model
with Cauchy-distributed interactions drawn from Pa(x) for γ = 0.2 (black
curves), averaged over 1000 disorder realizations. The OTOCs of the variant
with Cauchy-distributed interactions decay slower than those of the model
with Gaussian-distributed interactions. For the SFF, the qualitative features
(early-time power-law decaying oscillations, followed by a linear-in-t ramp, and
a plateau) agree well. We note that in plotting the SFF, a slight difference in
the Heisenberg times has been corrected for by rescaling the time axes. Since
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the Heisenberg time is set by the mean level-spacing, this amounts to having
done a spectral unfolding—which normalises the mean level-spacing—for the
ensembles of either model.
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Additional details for Chapter 4

B.1 Distribution of energy shifts

The pseudo-random energy shifts described in Sec. 4.1.2 are implemented via
a light-shifting lattice, whose wavelength is incommensurate with that of the
atomic lattice. Let the intensity profile of the light-shifting lattice (with some
wave-number k) be

I(x) =
W

2
(1 + sin(kx)), (B.1)

such that for a given position x, we have the energy shift ϵ = I(x) ∈ (0,W ).

Unique values of ϵ are then obtained over an interval x ∈ [x0, x0 + π/k] for
an arbitrary x0 ∈ R. Let us assume that the position x is sampled uniformly
within this interval, such that the probability to sample I(x) at a given location
x ∈ [x0, x0 + π/k] is p(x) = k/π.

We now wish to determine the resultant distribution of energy shifts ρa(ϵ).
To this end note that the cumulative distribution functions of ϵ and x are
related as

∫ ϵ

a

dϵ′ρa(ϵ
′) =

∫ I−1(ϵ)

I−1(a)

dxp(x), (B.2)

where a is an arbitrary value in the range of I(x), and I−1(x) = arcsin(2ϵ/W −
1)/k is the inverse of Eq. (B.1).

By differentiating the above equation with respect to ϵ, it then follows that

ρa(ϵ) =
k

π

dI−1(ϵ)

dϵ
=

1

π
√
ϵ(W − ϵ)

, (B.3)

which is the distribution of energy shifts reported in Eq. (4.2).
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B.2 Modelling the measurement protocol through
a Lindblad master equation

Here, we provide further details for the derivation sketched in Sec. 4.2.3.

As motivated in Chap. 4, we work in the single excitation regime, valid
for a probe beam whose strength is weak compared to the decay rate of the
atomic excited state |e⟩, |Ωp| ≪ Γ. This excitation can exist either in the

single-excitation manifold (SEM) {|m⟩ ≡∑N
i=1 cmiσ̂

+
i |G⟩}Nm=1 of ĤLMG, after

coherent excitation from the ground state |G⟩ by the probe, or it can exist in the
manifold formed by the auxiliary states |ai⟩ ≡ |ai⟩⟨G||G⟩, after an incoherent
decay from the SEM. In analogy to the SEM, we denote a general basis for the
auxiliary-single-excitation manifold (AEM) as |α⟩ ≡∑N

i=1 cαi|ai⟩.
Including the energy ĤA =

∑N
i=1 ϵaux|ai⟩⟨ai| of the auxiliary states in the

Hamiltonian Ĥ(t) of Eq. (4.6), and going into the rotating frame generated by
N∆paŜ

z, the coherent evolution of our system is generated by

Ĥ = ĤLMG + ĤA −N∆paŜ
z + V̂ , (B.4)

where V̂ = V̂(t = 0).

An atom in the excited state |e⟩ can decay into the ground state |g⟩ at a
rate Γg, or into the auxiliary state |a⟩ at a rate Γa. The total decay rate Γ of
the excited state is thus Γ = Γa + Γg. For generality, we include also a decay
channel from |a⟩ to |g⟩, at a rate Γag (although for the experiment of Chap. 4
spontaneous emission from |a⟩ to |g⟩ is prohibited by selection rules). The
jump operators for these three processes are, respectively, σ̂−

i = |g⟩⟨e|i, |a⟩⟨e|i,
and |g⟩⟨a|i.
Our goal is to derive an equation for the total atomic population PA(t) ≡∑N
i=1⟨ai|ρ̂(t)|ai⟩ in the auxiliary state at a time t. We do so by modelling the

above scenario through a Lindblad master equation

∂tρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+
(
D[Γg; {σ̂−

i }]+D[Γa; {|a⟩⟨e|i}]++D[Γag; {|g⟩⟨a|i}]
)
ρ̂(t),

(B.5)
where the superoperators D[γ′; {L̂i}] are defined in Eq. (4.16).

Projecting Eq. (B.5) onto the state space spanned by {|G⟩, {|m⟩}, {|α⟩}}
(i.e. the state space containing at most one excitation), we obtain the following
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evolution equations

∂tρmn(t) =− i
[
(HmGρGn(t)− ρmG(t)HGn) + Emnρmn(t)

]
− (Γg + Γa)ρmn(t),

(B.6)

∂tρmG(t) =− i

[
E ′

mGρmG(t) +HmGpG(t)−
∑

n∈SEM

ρmn(t)HnG

]
− (Γg + Γa)

2
ρmG(t),

(B.7)

∂tpG(t) =
∑

m∈SEM

[−i (HGmρmG(t)− c.c.) + Γgρmm(t)] + Γag

∑

α∈AEM

ραα(t),

(B.8)

∂tραG(t) =− i

(
(Hαα −HGG)ραG(t)−

∑

m∈SEM

ραm(t)HmG

)
− Γag

2
ραG(t),

(B.9)

∂tραm(t) =− i

(
Hααραm(t)− ραG(t)HGm −

∑

n∈SEM

ραn(t)Hnm

)

− Γa + Γg + Γag

2
ραm(t), (B.10)

∂tραβ(t) =− i (Hαα −Hββ) ραβ(t)− Γagραβ(t)

+ Γa

N∑

i=1

c∗αicβi
∑

m,n∈SEM

c∗micniρmn(t), (B.11)

where Emn ≡ Em − En, E ′
mG ≡ Em − EG − ∆pa = −E ′

Gm, and ρmn(t) =
⟨m|ρ̂(t)|n⟩ denote coherences within the SEM. Similarly, ρmG(t) = ⟨m|ρ̂(t)|G⟩,
pG(t) = ⟨G|ρ̂(t)|G⟩, ραG(t) = ⟨α|ρ̂(t)|G⟩, ραm(t) = ⟨α|ρ̂(t)|m⟩, and ραβ(t) =
⟨α|ρ̂(t)|β⟩, where |m⟩, |n⟩ ∈ SEM and |α⟩, |β⟩ ∈ AEM. The matrix elements of
Ĥ [Eq. (B.4)] are defined similarly, e.g., HmG = ⟨m|Ĥ|G⟩.

The rate equation for our target population PA(t), can obtained from
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Eq. (B.11) since

PA(t) ≡
N∑

i=1

⟨ai|ρ̂(t)|ai⟩

=
N∑

i=1

∑

α,β∈AEM

⟨ai||α⟩⟨α|ρ̂(t)|β⟩⟨β||ai⟩

=
∑

α,β∈AEM

ραβ(t)
N∑

i=1

cαic
∗
βi

︸ ︷︷ ︸
δαβ

. (B.12)

We thus have

∂tPA(t) =
∑

α∈AEM

∂tραα(t) = −ΓagPA(t) + Γa

∑

m∈SEM

pm(t), (B.13)

where pm(t) ≡ ρmm(t).
Solving Eq. (B.13) is synonymous with solving the complete set of coupled

differential equations given by Eqs. (B.6)–(B.11). We will instead make use of
a separation of time-scales to obtain a solution valid for times t ≫ (Γ/2)−1.
To do so, we take the Laplace transform L of Eq. (B.13), defining functions
in the conjugate space as f(s) ≡ L[f(t)] =

∫∞
0

dt exp(−st)f(t). Using that
L[∂tf(t)] = sf(s)− f(t = 0), this yields

PA(s) =
PA(t = 0) + Γa

∑
m∈SEM pm(s)

s+ Γag

. (B.14)

Inspection of the dependencies in Eq. (B.6)–(B.11), (B.14), shows that to solve
the above equation we need to substitute expressions for pm(s), ρGm(s), ρnm(s),
and pG(s). These are given by

pm(s) =
pm(t = 0) + 2Im [HmGρGm(s)]

s+ Γa + Γg

, (B.15)

ρGm(s) =
ρGm(t = 0) + i

(
HGmpG(s)−

∑
n∈SEM ρnm(s)HGn

)

s+ (Γa + Γg)/2− iE ′
mG

, (B.16)

ρnm(s) =
ρnm(t = 0) + i (HGmρnG(s)− ρGm(s)HnG)

s+ Γa + Γg − iEmn

, (B.17)

pG(s) =
1

s

(
pG(t = 0) + ΓagPA(s) + Γg

∑

m∈SEM

pm(s) + 2
∑

m∈SEM

Im [HGmρmG(s)]

)
.

(B.18)
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For the initial conditions, we will impose

pG(t = 0) = 1, (B.19)

with all other initial populations and coherences vanishing. This is motivated
from the experimental protocol of Sec. 4.1.3, in which the atoms are initialised
in |g⟩.
We now impose that s ≪ (Γa + Γg)/2 = Γ/2, which is motivated by the

large spontaneous emission rate of 6Li (see Table 4.1). We use this to expand
Eqs. (B.15)–(B.17) to zeroth order in s/(Γa + Γg), so that, after taking the
inverse Laplace transform, we obtain

pm(t) =
2Im [HmGρGm(t)]

Γa + Γg

, (B.20)

ρGm(t) =
i
(
HGmpG(t)−

∑
n∈SEM ρnm(t)HGn

)

(Γa + Γg)/2− iE ′
mG

, (B.21)

ρnm(t) =
i (HGmρnG(t)− ρGm(t)HnG)

Γa + Γg − iEmn

. (B.22)

These expressions are valid for times t≫ (Γ/2)−1. Substituting Eqs. (B.20)–
(B.22) into ∂tpG(t) and ∂tPA(t) [as given by Eqs. (B.8) and (B.13)], and keeping
only terms up to linear order in Γ−1

a and Γ−1
g , then yields ∂tpG(t) = −∂tPA(t),

with

∂tpG(t) =ΓagPA(t)− Γa

∑

m∈SEM

|VmG|2
(Γ/2)2 + (EmG −∆pa)2

pG(t)

=ΓagPA(t)−
Γa

(Γ/2)2

∣∣∣∣
gΩp

∆ca

∣∣∣∣
2

χa(∆pa)pG(t),

(B.23)

where in the first line we have used E ′
mG = EmG −∆pa and HmG = VmG [see

Eq. (B.4)].
These two coupled differential equations are solved by (using the initial

conditions stated above, namely pG(t = 0) = 1 and PA(t = 0) = 0),

pG(t) =
Γag +

Γa

(Γ/2)2

∣∣∣gΩp

∆ca

∣∣∣
2

χa(∆pa) exp(−Γagt− Γa

(Γ/2)2

∣∣∣gΩp

∆ca

∣∣∣
2

χa(∆pa)t)

Γag +
Γa

(Γ/2)2

∣∣∣gΩp

∆ca

∣∣∣
2

χa(∆pa)
,

(B.24)

PA(t) =1− pG(t). (B.25)
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In the limit where the auxiliary state acts as a dark state, i.e., Γag → 0, the
above reduces to the expressions summarised in Eqs. (4.17)–(4.19) of the main
text.

B.3 Linear response derivation of dynamic
susceptibility

We are interested in the average amount of energy deposited by the probe beam
into the system, over a duration of time T ,

Ē ≡ 1

T

∫ T

0

dt
dE(t)
dt

, (B.26)

where E(t) ≡ tr(ρ̂(t)Ĥ(t)) denotes the energy expectation value of the system,
in state ρ̂(t), at a given time t ≥ 0. The Hamiltonian Ĥ(t) is given by Eq. (4.6),
which consists of the time-independent term ĤLMG, and the time-dependent
perturbation Ĥpert = −V(t).
Using the definition of E(t), as well as the von Neumann equation, it follows

that
dE(t)
dt

= tr

(
ρ̂(t)

dĤpert(t)

dt

)
. (B.27)

From the definition of V(t) in Eq. (4.8), we have

Ĥpert(t) = hei∆patÔ +H.c., (B.28)

where h = −g
√
NΩ∗

p/∆ca and Ô = Ŝ−. Then, we have that

dE(t)
dt

= ih∆pae
i∆pat⟨Ô⟩ρ(t) + c.c., (B.29)

where ⟨Ô⟩ρ(t) = tr(ρ̂(t)Ô).
Within linear-response [196, 299], this operator expectation value is given by

⟨Ô⟩ρ(t) = ⟨Ô⟩0 − i

∫ t

−∞
dt′
〈[
Ô(t), Ĥpert(t

′)
]〉

ρ(0)
. (B.30)

Inserting Eq. (B.28) into Eq. (B.30), we have

⟨Ô⟩ρ(t) =⟨Ô⟩0 +
∫ ∞

−∞
dt′
(
χÔÔ(t− t′)hei∆pat′ + χÔÔ†(t− t′)h∗e−i∆pat′

)
,

(B.31)
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where we have introduced χÂB̂(t − t′) ≡ −iΘ(t − t′)
〈[
Â(t), B̂(t′)

]〉
ρ(0)

, of

which we have used the Heaviside function Θ(t − t′) to extend the upper
integration bound. Identifying the resultant integrals as Fourier transforms
χÂB̂(ω) =

∫∞
−∞ dtχÂB̂(t)e

iωt, we obtain

dE(t)
dt

=ih∆pae
i∆pat

(
⟨Ô⟩ρ(0) + hχÔÔ(−∆pa)e

i∆pat + h∗χÔÔ†(∆pa)e
−i∆pat

)

−ih∗∆pae
−i∆pat

(
⟨Ô†⟩ρ(0) + hχÔ†Ô(−∆pa)e

i∆pat + h∗χÔ†Ô†(∆pa)e
−i∆pat

)
.

(B.32)

Inserting this into Eq. (B.26), and using
∫ T

0
dt exp(±i2∆pat) = 0 for T =

2π/∆pa (alternatively, let T → ∞), we obtain

Ē = i∆pahh
∗ (χÔÔ†(∆pa)− χÔ†Ô(−∆pa)) = −2∆pa |h|2 Im[χÔÔ†(∆pa)],

(B.33)
in which the last equality follows from χÔÔ†(∆pa)

∗ = χÔ†Ô(−∆pa), which
is easily verified from the definition. Equation (B.33) is a standard linear
response result, namely that the time-averaged energy transferred by the probe
to the systems is given by the imaginary part of the (frequency-space) dynamic
susceptibility. For this reason, the latter is referred to as the absorptive
part of the dynamic susceptibility, and typically denoted as χ′′

ÔÔ†(∆pa) =
Im[χÔÔ†(∆pa)] [196, 299].

For the present case, the derivation elucidates for which choice of operators
one should evaluate χ′′: Inserting the expressions for h = −g

√
NΩ∗

p/∆ca and

Ô = Ŝ−, it remains to determine the spectral representation for

Im[χŜ−Ŝ+(∆pa)] = Im

[∫ ∞

−∞
dt(−i)Θ(t)

〈[
Ŝ−(t), Ŝ+(0)

]〉
ei∆pat

]
. (B.34)

To do so, we recall that the dynamics of ĤLMG can safely be assumed to be
restricted to the set of states with at most one excitation S = {|G⟩, {|m⟩}Nm=1},
which is physically motivated by the fact that the system is initialised in the
zero-excitation (global ground) state |G⟩ and that the atomic dissipation rate
is dominant over the probe strength Γ ≫ |Ωp| such that excitations rapidly
decay. We write the corresponding initial state as ρ̂(0) =

∑
µ∈S pµ|µ⟩⟨µ| with

pµ = δµG, in order to facilitate our calculation of the spectral representation of
χ′′(∆pa). Inserting this, and the identity 1 =

∑
ν∈S |ν⟩⟨ν| between the operator
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products in Eq. (B.34), we find

Im[χŜ−Ŝ+(∆pa)] =Im

[∫ ∞

0

dt(−i)
∑

µ,ν∈S

(pµ − pν)e
i(Eµ−Eν)t⟨µ|Ŝ−|ν⟩⟨ν|Ŝ+|µ⟩ei∆pat

]

=Im

[
lim
δ→0+

∫ ∞

0

dt(−i)
∑

µ,ν∈S

(pµ − pν)e
i(Eµ−Eν)t

∣∣∣⟨ν|Ŝ+|µ⟩
∣∣∣
2

ei(∆pa+iδ)t

]

=Im

[
lim
δ→0+

∑

µ,ν∈S

∣∣∣⟨ν|Ŝ+|µ⟩
∣∣∣
2 (pµ − pν)

∆pa + Eµν + iδ

]
, (B.35)

where Eµν = Eµ−Eν . Using that limδ→0+
1

x+iδ
= P 1

x
− iπδ(x), where P denotes

the principle part and δ(x) is the Dirac delta function, we find

Im[χŜ−Ŝ+(∆pa)] = −π
∑

µ,ν∈S

∣∣∣⟨ν|Ŝ+|µ⟩
∣∣∣
2

(pµ − pν)δ(∆pa − Eνµ). (B.36)

Inserting the initial state distribution pµ = δµG then finally yields

Ē = 2π∆pa

∣∣∣∣∣
g
√
NΩp

∆ca

∣∣∣∣∣

2 ∑

m∈SEM

∣∣∣⟨m|Ŝ+|G⟩
∣∣∣
2

δ(∆pa − EmG) = 2∆paχ
′′(∆pa),

(B.37)
with χ′′(∆pa) defined in Eq. (4.10).

B.4 Proof that the lowest SEM eigenstate is
non-negative

Here we prove that, for any disorder strength W ≥ 0, the |m = 1⟩ =∑N
i=1 cmiσ̂i|G⟩ state of ĤLMG, as defined in Eqs. (4.9) and (4.7), respectively,

is real and non-negative, i.e., that cmi ≥ 0 for all i = 1, . . . , N and m = 1. The
W = 0 case was already treated in Eq. (4.13), so here we focus on non-zero
disorder W > 0.
Our strategy is to relate the matrix representation of ĤLMG within the

single-excitation manifold (SEM) to a real, non-negative, irreducible matrix
M , to which we can apply the Perron–Frobenius theorem [209]. To this end,
let us introduce the following notation: Let σ(M) represent the set of unique
eigenvalues λ of an arbitrary real matrix M , and let ρ(M) = maxλ∈σ(M) |λ|
denote the spectral radius of M . The Perron–Frobenius theorem then states
that if M is a non-negative, irreducible matrix, then:

162



B.4 Proof that the lowest SEM eigenstate is non-negative

(i) r ≡ ρ(M) ∈ σ(M) ,

(ii) r > 0,

(iii) r is non-degenerate,

(iv) there exists a unique positive eigenvector p such that Mp = rp and∑N
i=1 pi = 1 .

To start, recall that in ĤLMG the random energy shifts satisfy ϵi ∈ (0,W ), and
the spin-exchange interaction is given by J = g2/∆ca. Further, recall that J > 0,
since the cavity was blue detuned with respect to the clean atomic resonance.
Now, let M̂ ≡ −ĤLMG. Within the SEM, the matrix representation M of M̂ ,
when expressed with respect to the single-excitation basis {|i⟩ = σ̂i|G⟩}Ni=1, is
given by

Mij =

{
J − ϵi/2, i = j

J, i ̸= j
. (B.38)

It is clear that the minimum matrix element lies on the diagonal, and that this
may even be negative when W > J . So M is not necessarily non-negative. To
remedy this, let α ≡ minkMkk = J − maxk ϵk/2, where k = 1, . . . , N . Then
the matrix M ′ ≡ M − α1 (where 1 is the identity matrix) is non-negative.
To see that M ′ is also irreducible, we consider its graph G(M), composed of
vertices {vi|i = 1, . . . , N} and directed edges {eij|Mij ≠ 0} (i.e. vertices vi and
vj are joined by a directed edge eij if and only if Mij ̸= 0). A directed graph G
is said to be strongly connected if there is a directed path between any pair
of vertices (vi, vj). It is known that M ′ is irreducible if and only if G(M) is
strongly connected [209]. The latter property follows trivially in our case, since
all off-diagonal entries M ′

ij = maxk ϵk/2 are positive.

So, we can apply the Perron–Frobenius theorem to M ′, i.e., there exists a
unique positive eigenvector p satisfying M ′p = r′p, with r′ > 0 non-degenerate
and also the algebraically largest eigenvalue of M ′, since r′ = ρ(M ′). It then
follows that Mp = rp, with r = r′ + α > 0 being the algebraically largest
eigenvalue of M , by definition of r′. Finally then, the algebraically smallest
eigenvalue of ĤLMG = −M̂ within the SEM is Em=1 = −r and the corresponding
eigenstate is |m = 1⟩ =∑N

i=1

√
pi|i⟩.
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B.5 Numeric simulation of the large-detuning
regime

We numerically compute χa and the participation ratios by diagonalising the
random LMG Hamiltonian of Eq. (4.7) for system sizes N = 303 and 610. These
system sizes correspond to the mean atom numbers realised in the experiment,
which were determined from the dispersive shift JN = g2N/∆ca measured at
zero disorder (W = 0), for each iteration of the measurement sequence. The
effect of the atoms’ thermal motion on the value of g, quoted as ḡ in Table. 4.1,
was taken into account for the conversion of the dispersive shifts into atom
numbers, as well as for the matrix elements of the Hamiltonian. Taking the
mean atom number across all experimental runs, yields the system sizes quoted
above.

We choose the random energy shifts ϵi in two different ways: (i) By directly
simulating the incommensurate light shift potential of Sec. 4.1.2 by sampling

ϵi =
W

2
cos(2πQi) (B.39)

in an incommensurate way by setting Q = (
√
5 − 1)/2. This generates cor-

related quasi-random disorder. (ii) We sample ϵi independent and identically
distributed (i.i.d.) according to ρa(ϵ) of Eq. (4.2). For both cases, we find
quantitative agreement of χa, and similarly of the partition ratio (PR), within
numerical accuracy.

The Hamiltonian matrix is constructed with respect to the basis states
|i⟩ = σ̂+

i |G⟩ of the SEM, and diagonalised exactly. In the absence of disorder,
i.e., ϵi = 0∀i, the diagonalisation is analytically tractable, and the eigenstates
and eigenenergies are as given by Eqs. (4.13)–(4.14), from which follows the
zero-disorder ferromagnetic gap ∆FM ≡ Em>1 − Em=1 = JN , as mentioned
in Sec. 4.2.4. However, the presence of disorder mixes the Hamiltonian’s
zero-disorder eigenstates, necessitating the analysis through numerical diagon-
alisation. Using the numerically determined eigenenergies and eigenstates, we
compute the atomic susceptibility and PR from Eqs. (4.12) and (4.20), respect-
ively. We average these quantities with respect to 2000 disorder realisations of
the Hamiltonian, the results of which are illustrated in Figs. 4.6 and 4.7. The
corresponding variances are strongly suppressed, falling within the linewidths
of the simulated data.
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B.6 Finite-size scaling of the minimal
ferromagnetic gap in the large-detuning
regime

Here, we analyse the finite-size scaling of the minimal ferromagnetic gap ∆FM

of the disordered LMG model. For this, we first Kac normalise the all-to-
all spin-exchange interaction term in the Hamiltonian [Eq. (4.7)] by N−1,
which renders the model extensive. In contrast to the experimental scenario,
Kac normalisation is necessary to theoretically analyse any critical behaviour
stemming from the competition between different terms in the Hamiltonian.
Under this rescaling, the zero-disorder gap is ∆FM/J = 1, which decreases to a
minimal value ∆⋆

FM/J as the disorder strength W/J is increased. We denote
the disorder strength at which this minimum is realised as W ⋆/J . The minimal
gap is indicative of significant changes in the ground-state properties in a
finite-size system [26]. We perform a finite-size scaling of ∆⋆

FM/J and W ⋆/J for
the system with (i) quasi-random disorder sampled from the correlated energy
potential of Eq. (B.39), and compare it with (ii) uncorrelated disorder with
distribution ρa(ϵ) of Eq. (4.2), and (iii) uniform distributions, see Fig. B.1(b–d).

The dependence of ∆FM/J on W/J is shown in Fig. B.1(a) for the correlated
disorder, which (adapting for different scalings, see below) is representative
also of the two other studied cases. The minimal gap ∆⋆

FM/J , and its location
W ⋆/J , are determined by fitting a parabola to the minimum of the curves.
For all three disorder distributions, the gap ∆⋆

FM/J decreases as N−β [see
Fig. B.1(e)], indicating that the gap disappears in the thermodynamic limit.
The gap location W ⋆/J , however, scales linearly with system-size (∝ Nα with
α ≈ 1) for the uncorrelated and correlated ρa [see Fig. B.1(f)]. In contrast,
W ⋆/J ∝ logN for the uncorrelated uniform disorder [inset of Fig. B.1(f)],
which is consistent with the vanishing Richardson’s superconducting gap, which
was estimated for uniform disorder from the mean level spacing [300]. These
findings are in agreement with the generic behaviour of the critical disorder
strength Wc for the Anderson localisation transition in models with a high
connectivity, which increases with the number of connections [301–304]. For
example, in a d-dimensional hypercube with coordination number z ∼ 2d, one
finds Wc ∝ d log d [303]. By visualising the all-to-all connectivity realised
in the large-detuning regime as a hypercube with dimension d ∼ N , we can
expect Wc ∝ logN to leading order. This similarity indicates the significant
change in localisation properties that a finite system experiences around W ⋆/J ,
which is also supported by the decreasing trend in the PR (similar to Fig. 4.7).
Correlations in the disorder tend to delocalise the system more, consistent
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Figure B.1: Finite-size scaling of the minimal ferromagnetic gap of the
random LMG model. (a) Disorder averaged ferromagnetic gap ∆FM/J of the
Kac-normalised random LMG Hamiltonian, as a function of disorder strength
W/J . Only data for the quasi-disordered case is shown as a representative.
Lighter to darker shades of blue correspond to increasing N from 20 to 2000.
For each N , the minimal gap ∆⋆

FM/J and its location W ⋆/J are determined
from a parabolic fit to the corresponding curve. (b–d) Sketches of the considered
disorder distributions: quasi-random (b) and i.i.d. (c) ϵi from ρa, and i.i.d. ϵi
from uniform distribution (d). (e,f) log(∆⋆

FM/J) and log(W ⋆/J) versus log(N),
respectively, for the quasi-random ρa (blue circles), uncorrelated ρa (green
triangles), and uniform (red squares) disorder distributions. The errors in the
parabolic fits are smaller than the size of the markers. From linear fits to the
data points for the quasi-random (dashed) and the uncorrelated (dotted) ρa,
we find W ⋆/J ∝ Nα with α ≈ 0.98 and 0.99, respectively, indicating linear
dependence. For the uniform disorder distribution, we fit a logarithmic curve
(dot-dashed), which suggests that W ⋆/J ∝ log(N). This is verified by the linear
fit (dot-dashed) in the inset of (e), where the y-axis depicts W ⋆/J instead of
log(W ⋆/J). In contrast, the minimal ferromagnetic gap ∆⋆

FM/J scales as N−β

with β ≈ 1.00, 0.96, and 0.82 for the considered disorders, respectively.
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with our finding in Fig. B.1(f). In the thermodynamic limit, however, the
infinitely-connected system does not support a localisation transition.
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Appendix C

Additional details for Chapter 5

C.1 Details of SYK-q model

Here, we present further details for the SYK-q Hamiltonian Ĥq of Eq. (2.5), of
which Eq. (2.1) represents the q = 4 case.

The interaction amplitudes Ji1...iq/2;j1...jq/2 in Eq. (2.5) are complex Gaussian
random variables, whose real and imaginary parts are independently distributed,
with zero mean and variances parameterised by J ∈ R>0 as

E
[(

Re[Ji1...iq/2;j1...jq/2 ]
)2]

=

{
J2, if il = jl,∀ l = 1, . . . , q/2

J2/2, otherwise,

E
[(

Im[Ji1...iq/2;j1...jq/2 ]
)2]

=

{
0, if il = jl,∀ l = 1, . . . , q/2

J2/2, otherwise.
(C.1)

(C.2)

Furthermore, the amplitudes satisfy

Ji1...iq/2;j1...jq/2 = J∗
j1...jq/2;i1...iq/2

,

Ji1...iq/2;j1...jq/2 = sgn(P)sgn(P ′)JP{i1...iq/2};P ′{j1...jq/2},
(C.3)

where P and P ′ perform permutations of the indices, and sgn(P), sgn(P ′) = ±1
denote the sign of the permutations. The first equality ensures Hermiticity of
Ĥq, whereas the second is due to the fermionic anticommutation relations of
the creation and annihilation operators.

C.2 Details of master equation derivation

Here, we provide further details on the derivation of the Lindblad master
equation (ME) presented in Sec. 5.3.
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C.2.1 Functional derivative

The functional derivative presented in Eq. (5.14) is obtained from the integrated
von Neumann equation of a single Hamiltonian realization,

ρ̂(t) = ρ̂(0)− i

∫ t

0

dt1

[
Ĥ(t1), ρ̂(t1)

]
, (C.4)

as

δρ̂[ξ, t]

δξ
(α)
kα

(t′)
= −i

[
ĥ
(α)
kα
, ρ̂(t′)

]
Θ(t−t′)−i

∫ t

0

dt1

[
Ĥ(t1),

δρ̂[ξ, t1]

δξ
(α)
kα

(t′)

]
Θ(t−t′), (C.5)

in which the Heaviside step-function Θ arises from causality. This recursive
expression for the functional derivative yields a series of nested commutators,

δρ̂[ξ, t]

δξ
(α)
kα

(t′)
=

∞∑

n=1

(−i)n
n!

∫ t

0

dt1dt2 . . . dtn−1

× T
[
Ĥ(t1),

[
Ĥ(t2), . . .

[
Ĥ(tn−1),

[
ĥ
(α)
kα
, ρ̂(t′)

]]]]
Θ(tn−1 − t′) . . .Θ(t− t′),

(C.6)

where we have introduced the time-ordering operator T such that the integration
bounds decouple. Truncating Eq. (C.6) at n = 1 then yields the term quoted
in Eq. (5.14) of the main text.
As mentioned there, truncation to this lowest order is motivated by the

fact that the resulting evolution equation of Eq. (5.15) is formally equivalent
to that obtained when making the decorrelation assumption in the study of
stochastic evolution equations [264, 265]. This is readily seen in the inter-
action picture generated by Ĥ0 [for simplicity of the notation, we assume
below that the clean part of Ĥ(t) as given by Eq. (5.9) is time-independent)]:

Let ρ̂I(t) ≡ exp(iĤ0t)ρ̂(t) exp(−iĤ0t) and ĤI(t) =
∑

α,lα
ξ
(α)
lα

(t)ĥ
(α)
I,lα

(t), where

ĥ
(α)
I,lα

(t) ≡ exp(iĤ0t)ĥ
(α)
lα

exp(−iĤ0t). The dynamics of an individual Hamilto-
nian realization are then

∂tρ̂I(t) = −i
[
ĤI(t), ρ̂I(t)

]
= −i

∑

α,lα

[
ξ
(α)
lα

(t)ĥ
(α)
I,lα

(t), ρ̂I(t)
]
. (C.7)

Integrating this von Neumann equation, one obtains a self-consistent integral
equation for ρ̂I(t). Inserting this back into itself once, and taking the disorder
average, with ρ̃I(t) ≡ E [ρ̂I(t)], one obtains, after differentiating with respect to
time,

∂tρ̃I(t) = −
∑

α,β,lα,kβ

∫ t

0

dt′
[
ĥ
(β)
I,kβ

(t),
[
ĥ
(α)
I,lα

(t′),E
[
ξ
(β)
kβ

(t)ξ
(α)
lα

(t′)ρ̂I(t
′)
]]]

. (C.8)
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Here we have made use of E
[
ξ
(α)
lα

(t)
]
= 0 to eliminate terms which are linear

in the disorder. Performing the decorrelation approximation

E
[
ξ
(β)
kβ

(t)ξ
(α)
lα

(t′)ρ̂(t′)
]
≃ E

[
ξ
(β)
kβ

(t)ξ
(α)
lα

(t′)
]
ρ̃(t′), (C.9)

and assuming, as in the main text, independent processes for α ̸= β, one obtains

∂tρ̃I(t) = −
∑

α,lα,kα

∫ t

0

dt′F
(α)
kα,lα

(t, t′)
[
ĥ
(α)
I,kα

(t),
[
ĥ
(α)
I,lα

(t′), ρ̃I(t
′)
]]
. (C.10)

This is simply the interaction picture version of Eq. (5.15), which was obtained
via the Novikov–Furutsu theorem.

C.2.2 Lindblad form

The final Lindblad master equation of Eq. (5.16) is obtained from Eq. (5.15)
by first making the Markov approximation ρ̃(t′) ≃ ρ̃(t) and then expanding the
double commutator. Simplifying our notation, this expansion is

∑

l,k

fl,k(t)(ĥlĥkρ̃− ĥlρ̃ĥk − ĥkρ̃ĥl + ρ̃ĥkĥl), (C.11)

which is already reminiscent of a master equation in standard form. The
latter is obtained in a final step in which we require the correlations to be
symmetric under an exchange of the indices, i.e., fl,k(t) = fk,l(t). This is
trivially fulfilled for static processes such as those of the SYK model. For
continuous processes, our requirement is equivalent to symmetry in time, i.e.,
E [ξl(t)ξk(t

′)] = E [ξl(t
′)ξk(t)]. We can then regroup the terms of Eq. (C.11) as

1

2

∑

l,k

[
fl,k(t)(ĥlĥkρ̃− ĥlρ̃ĥk − ĥkρ̃ĥl + ρ̃ĥkĥl) + l ↔ k

]

=
∑

k,l

2fk,l(t)

(
1

2

{
ĥkĥl, ρ̃

}
− ĥlρ̃ĥk

)
.

(C.12)

We thus finally obtain the Lindblad master equation in non-diagonal form,
given in the main text by Eqs. (5.16)–(5.17).

C.2.3 Limit of time-independent processes

Here we explicitly show that the Lindblad ME of Eqs. (5.16)–(5.18), formally
derived for Gaussian processes with arbitrary time-dependence, is valid in the
limit of time-independent (static) processes ξ

(α)
kα

(t) → ξ
(α)
kα

.
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In this limit, the generic Hamiltonian defined in Eq. (5.9) and the corres-
ponding ensemble averaged von Neumann equation given by Eq. (5.12) formally
remain the same, but with time-independent disorder contributions

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
− i
∑

α,lα

[
ĥ
(α)
lα
,E
[
ξ
(α)
lα
ρ̂(t)

]]
. (C.13)

We now have modified correlations E
[
ξ
(α)
lα
ρ̂(t)

]
, in which ρ̂(t) is a function

(as opposed to a functional) of the Gaussian distributed random numbers ξ
(α)
lα

(as opposed to random functions). These correlations may, however, still be
treated via the Novikov–Furutsu theorem, which simplifies accordingly to [263]

E
[
ξ
(α)
lα
ρ̂(ξ, t)

]
=
∑

kα

F
(α)
lα,kα

E

[
dρ̂(ξ, t)

dξ
(α)
kα

]
, (C.14)

where now we have disorder correlations F
(α)
lα,kα

= E
[
ξ
(α)
lα
ξ
(α)
kα

]
with infinite

correlation time. This static version of the Novikov–Furutsu theorem is also
known as Stein’s lemma [305].
The right-hand-side of Eq. (C.14) now contains an ordinary total derivative

(as opposed to a functional derivative), which we again obtain to lowest order
from the integrated von Neumann equation as

dρ̂(ξ, t)

dξ
(α)
kα

≃ −i
∫ t

0

dt′
[
ĥ
(α)
kα
, ρ̂(t′)

]
. (C.15)

Substituting Eqs. (C.15) and (C.14) into Eq. (C.13) then yields

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
−
∑

α,lα,kα

F
(α)
lα,kα

[
ĥ
(α)
lα
,

[
ĥ
(α)
kα
,

∫ t

0

dt′ρ̃(t′)

]]
. (C.16)

This is exactly the evolution equation that one obtains by taking the limit
of time-independent processes, i.e., of infinite correlation times in Eq. (5.15).
Taking the Markov approximation in Eq. (C.16) thus yields the Lindblad master

equation of Eqs. (5.16)–(5.18) for time-independent correlations F
(α)
lα,kα

. This
shows that starting from time-dependent noise and then taking the limit of
infinite correlation time is equivalent to working with static noise all the way.
The advantage of the time-dependent formulation used in the main text is that
it naturally incorporates static disorder and temporally fluctuating noise on
the same footing.
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C.3 Further numeric results

C.3.1 Details on numeric simulation of exact dynamics

Here, we provide a brief description of the algorithm implemented to solve the
exact dynamics of ĤSYK. We exploit particle number conservation by restricting
our simulations to a given particle number sector Q [Eq. (2.4)] of the Hilbert
space. In particular, all simulations are performed within the half-filling sector
Q = 1/2, whose Hilbert space dimension is D = N !/((N/2)!)2.

The matrix representation of ĤSYK is constructed with respect to the fermion
mode occupation number Fock basis: Each Fock state |sa⟩, where a = 1, . . . , D,
is represented by one of the N -bit strings sa of which NQ bits are 1 (rep-
resenting the occupied fermion modes). The Hamiltonian’s matrix elements
Hab ≡ ⟨sa|ĤSYK|sb⟩ are non-zero only for those pairs of states whose bit string
representation have a Hamming distance d(sa, sb) = 0, 2, 4. This follows from
the quartic operators ĉ†i1 ĉ

†
i2
ĉj1 ĉj2 appearing in ĤSYK, where d(sa, sb) = 0 corres-

ponds to (i1, i2) = (j1, j2), d(sa, sb) = 2 to ik = jl , ik′ ̸= jl′ for k, k
′, l, l′ = 1, 2,

and d(sa, sb) = 4 to i1 ≠ i2 ̸= j1 ̸= j2. These non-zero elements are populated
by independent random complex Gaussian variables Ji1i2;j1j2 , in accordance
with Eqs. (2.2) and (2.3) to ensure Hermiticity of the Hamiltonian and anti-
symmetry of the interaction amplitudes under permutation of the indices. In
this way, a single realization of the random SYK4 Hamiltonian is constructed.

For system sizes N ≤ 14, D is sufficiently small such that the full eigensystem
(energy basis) of the above matrix representation can be solved exactly. For
this we employ diagonalization routines from LAPACK [306]. Time evolution of
a given initial state |ψ(0)⟩ is then solved by rotating the corresponding vector
representation into the SYK energy basis and calculating the time-dependent
phases exp(−iϵnt) for any time t ∈ R, where ϵn for n = 1, . . . , D are the
eigenenergies of ĤSYK.

For system sizes N > 14, D is so large as to prohibit the above exact
numeric solution of the entire eigensystem. Instead, we utilize a Runge–Kutta 4
(RK4) method to solve the Schrödinger equation for ĤSYK. The matrix-vector
multiplication employed within the RK4 method makes use of a sparse matrix
representation of ĤSYK in order to exploit the large amount of zero matrix
elements, and thus enhance the speed of the algorithm. Further reduction of
computation time is achieved by parallelizing this matrix-vector multiplication
via MPI methods [307], allowing us to exactly solve (within numeric precision)
the dynamics for system sizes up to N = 20 at Q = N/2. To ensure accuracy
of this RK4 based algorithm, we benchmark its dynamics against those of the
above exact diagonalization scheme for N ≤ 14, verifying that they agree.
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Figure C.1: Kullback–Leibler divergence. Distribution of DKL(P (E)∥Q(E)) for
initial states taken as ground-states of the FH model with U/J = 0, 2, 4, 6, 8, 10,
as indicated on the panels, for 4000(2000) independent realisations of ĤSYK for
N = 8(N = 12) in panels (a–f)[(g–l)]. The states’ amplitude distribution over the
energy eigenbasis of ĤSYK, P (E) = |⟨ψ(0)|E⟩|2, is near-uniform Q(E) = 1/D.

Finally, we average over the dynamics of multiple disorder realizations of
ĤSYK. To this end, we again utilize MPI methods to solve the dynamics of
multiple disorder realizations in parallel.

C.3.2 Distribution of initial states over eigenbasis of ĤSYK

Figure C.1 shows the distribution of various initial states, taken as ground-
states of the FH model, over the eigenbasis of ĤSYK. In particular, we
study the Kullback–Leibler divergence DKL(P (E)∥Q(E)), between the uni-
form distribution Q(E) = 1/D and the initial states’ amplitude distribution
P (E) = |⟨ψ(0)|E⟩|2 with respect to the energy basis {|E⟩}. Since ĤSYK has ran-
dom matrix elements, we compute DKL for an ensemble of disorder realisations,
and plot the histogram of DKL over this ensemble.
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0 5 10

U/J

10−2

10−1 Figure C.2: Mean and standard-
deviation of Kullback–Leibler di-
vergence. Mean E [DKL] (circles),
and standard deviation

√
var[DKL]

(triangles) extracted from the dis-
tributions in Fig. C.1, for N = 8
(solid markers) versus N = 12 (empty
markers). Both mean and standard-
deviation decrease with N , suggest-
ing that DKL(P (E)∥Q(E)) → 0 as
N → ∞. Dashed lines included to
guide the eye.

The figure shows that, on average, the initial states are near-uniformly
distributed over the energy basis of ĤSYK. Comparison of the data for N = 8
(panels a–f) versus N = 12 (panels g–l), shows that both the mean, and the
variance of DKL reduce with N . This is shown quantitatively in Fig. C.2,
which shows the mean and standard-deviation of DKL over 4000 realisations
for N = 8 and over 2000 realisations for N = 12. This data suggests that in
the thermodynamic limit, the initial states become uniformly distributed over
the energy eigenbasis of ĤSYK.

C.3.3 Higher-order moments

In figure C.3, we present additional results for the quench dynamics of moments
k = 8, 10, 12 of the staggered magnetization R̂ defined in Eq. (5.6). The
original and rescaled dynamics show the same qualitative behaviour as moments
2 < k < 8 studied in Sec. 5.2.2.
The kth moment of R̂ contains interactions of up to k fermionic modes,

and thus probes increasingly non-local physics for larger values of k. As a
limiting case of a truly global many-body quantity, we show in Fig. C.4 the
disorder-averaged survival probability (or fidelity) E

[
|⟨ψ(0)|ψ(t)⟩|2

]
. For this

quantity, the curves corresponding to different initial states do not collapse.
Whilst this suggests that universality is absent for (superpositions of) highly
non-local observables, we do not exclude the possibility that one may be able
to specifically construct such an observable which does exhibit universality.

C.3.4 Additional observables

Here, we extend the investigations of Chap. 5 to other observables.
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Figure C.3: Equilibration dynamics of operator moments Mk, under ĤSYK.
(a–c) Dynamics of moments k = 8, 10, and 12 of the operator R̂, averaged over
400 realisations of ĤSYK for Q = 8 fermions occupying N = 16 modes. (d–f)
Corresponding dynamics rescaled by the function G given in Eq. (5.3). Dark to light
shading of the curves represents initial FH ground states for U/J = 0, 2, 4, 6, 8, and
10, respectively. The dotted black lines mark the values of the operator moments
calculated with respect to the Gibbs infinite temperature state. The rescaled curves
are well approximated by Gaussian fits, exp

[
−(Jt/τ)2

]
, with τ = 1.32, 1.3, 1.28

for increasing k, respectively (dashed red curves).
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Figure C.4: Ensemble averaged survival probability of ĤSYK. System sizes
N = 8 (green), 12 (yellow), 16 (blue), and sample sizes 90000, 10000, 400,
respectively. Shadings of a given colour represent different initial states, as in
Fig. C.3. There is a clear lack of universality with respect to different initial states
from early to late times. The early-time Gaussian decay followed by oscillations at
intermediate times are expected from random matrix theory (RMT) [249, 308]. In
contrast to RMT where universality is expected for the survival probability, here
we observe an initial state dependence, which can be attributed to the structure of
the SYK Hamiltonian, imposed by the fermionic statistics.

For this, we first consider the following 4-local operators defined in terms of
the κ̂i operators introduced in Eq. (5.6),

Ŝj = −κ̂2j−1κ̂2j = (n̂4j−2 − n̂4j−3)(n̂4j−1 − n̂4j). (C.17)

The system average of these operators is defined as Ŝ = 1
(N/4)

∑
j Ŝj, where

j ∈ {1, 2, ..., N/4}. For an N = 16 system, we can construct four such 4-local
operators, i.e., Ŝ1, Ŝ2, Ŝ3, and Ŝ4. In Fig. C.5(a–d), we show the representative
evolution of S1(t) = ⟨ψ(t)|Ŝ1|ψ(t)⟩ as well as of S(t) = ⟨ψ(t)|Ŝ|ψ(t)⟩. As in the
cases of the QFI and moments of the staggered magnetization, we recover the
super-exponential universal equilibration dynamics of these 4-local operators.
All the operators considered so far are diagonal with respect to the Fock-space

spanned by the occupation number basis vectors {|n1, n2, ..., nN⟩}. We thus
additionally investigate the dynamics of a non-diagonal operator,

T̂ =

N/2∑

i=1

(ĉ†2iĉ2i−1 +H.c.). (C.18)

The dynamics of the QFI, F ′
Q, computed with respect to this operator are
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Figure C.5: Universal equilibration dynamics of further obervables. (a–
d) Dynamics of the 4-local operators of Eq. (C.17), averaged over 400 disorder
realizations of ĤSYK for Q = 8 fermions occupying N = 16 fermionic modes. (e,f)
Dynamics of the QFI, F ′

Q with respect to the operator T̂ of Eq. (C.18), averaged

over 2000 realisations of ĤSYK for Q = 6 fermions occupying N = 12 fermionic
modes. The dotted black line in (e) marks the QFI calculated with respect to the
Gibbs infinite temperature state. The rescaled data of the operator moments (c,d),
and of the QFI (f) are well fitted by a Gaussian, exp

[
−(Jt/τ)2

]
, with τ = 1.52,

respectively, τ = 1.58 (dashed red curves). Dark to light shading represents
different initial states, as in Fig. C.3.

178



C.3 Further numeric results

0.1 1 10 100

Jt

0.00

0.25

0.50

0.75

1.00
G

(E
[M

2
])

1.2 1.4
0.45

0.50

0.55

5.0 7.5

0.00

0.02

Figure C.6: System-size dependence. Rescaled equilibration dynamics of the
disorder-averaged second moment G (E [M2]) of the operator R̂, averaged over
90000, 2700, 400, and 50 disorder realisations of ĤSYK for N = 8, 12, 16, and
20 (green, yellow, blue, and red curves, respectively). Dark to light shadings of
a given colour correspond to the different initial states of Fig. 5.2. Initial state
independence is observed for all N , and the universal curves equilibrate faster,
with an indication of convergence with increasing N to a fastest decay curve (right
inset). The small spread of the curves for a given N at intermediate times (left
inset) is of statistical nature due to finite sample sizes.

shown in Fig. C.5(e–f). Similar to all the previous cases, we again obtain the
super-exponential universal equilibration dynamics of this observable.

C.3.5 Finite-size analysis of universal decay

To study the finite-size dependency of the rescaled universal curves, we consider
in Fig. C.6 the representative case k = 2 of the operator moments [defined in
Eq. (5.8)].

We consider the (exact diagonalisation) evolution for systems consisting
of N = 8, 12, 16, and 20 complex fermionic modes. For the largest ac-
cessible system size N = 20, the Hamiltonian matrix dimension is D =
N !/[(N/2)!(N/2)!] = 184 756. Due to the disorder, no symmetries other than
particle number conservation can be used, and due to all-to-all connectivity
the matrix is denser than for models with finite-range interactions. However,
thanks to the self-averaging nature of the model [114], with increasing N smaller
numbers of disorder realisations suffice for satisfactory convergence [309] (we
consider 90 000, 2700, 400, and 50 ensemble members for the above values of
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N).
With increasing N , faster equilibration as well as an approach to convergence

is observed, as shown by the right inset of Fig. C.6, which highlights the
dynamics in the transient time domain. A similar feature has been seen in
the initial dynamics of other quantities for time evolution under the SYK [98]
and other disordered, chaotic Hamiltonians [308, 310], as well as random
matrices [311]. For smaller N , the curves show oscillations before equilibrating
to the steady state value. In addition, for N = 8, at large times the equilibrated
curves slowly drift from the steady state value, with a rate that depends on the
considered initial states. As a consequence, the rescaled curves cross zero and
become negative at intermediate time, which is in accordance with Eq. (5.3)
(see the left inset in Fig. C.6, which highlights the approach of the curves to
the steady state value). Further finite-size analyses can be found in Ref. [81].

C.3.6 Liouvillian spectrum

As mentioned in Sec. 5.4.2, we find also for other states, which are not ground-
states of the FH model, that for a given even moment, any non-zero amplitudes
Ai always occupy the same eigenspaces. This is shown in Fig. C.7 for the
symmetrised Néel state |ψ(0)⟩ = (|010101 . . .⟩+ |101010 . . .⟩)/

√
2.

To conclude this section, we comment on the system-size dependence of the
Liouvillian spectrum (see for instance, Table 5.1). We find numerically that all
non-zero eigenvalues decrease as N is increased from 6 to 8. In particular, for
λ2—the only timescale entering M2 [see Fig. 5.6(a–d)]—we find, respectively,
the values −0.28 and −0.33. This explains the shift to a faster equilibration
time of M2 with increasing N , as observed previously in Fig. C.6. As seen
there, this shift of M2 exhibits a convergence, i.e., decreases as N is increased.
We thus expect the eigenvalues λi to not decrease indefinitely with N , but to
individually approach some asymptotic value. However, the enlarged Hilbert-
space, inherent to the process of mapping D to the matrix form of Eq. (5.30),
limits our study of the Liouvillian spectrum to N ≤ 8, thus preventing us from
probing this convergence.
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Figure C.7: Distribution of effective amplitudes over Liouvillian eigenspaces
for Néel state. Distributions of ci,αioi,αi (blue circles) and Ai (red squares) of
Eq. (5.28) for moments Mk of R̂, with initial state given by the Néel state.
Horizontal axes indicate the eigenspace index of Table 5.1. All amplitudes Ai

vanish for odd moments. For M2, only A2 ≠ 0 (besides the steady-state amplitude
A0), in line with the universality observed for initial FH states in Chap. 5. For even
moments with k ≥ 4, the non-zero amplitudes occupy the same two eigenspaces
(besides the steady-state amplitude A0), yielding an approximate universality, see
discussion of Sec. 5.4.2.
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