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IntrodutionSine the early 20th entury the study of the spread of infetious diseaseshas been a theme of deep interest, great importane and often a hallengefor human and veterinary mediine. The main objetive of epidemiology isthe understanding of the leading fators and the omplex mehanisms thatprodue the observed outbreaks in order to provide tools for disease ontroland prevention, in the interest of publi health.In this ontext, the use of mathematial models is partiularly signi�ant.Indeed, mathematial models an give insight into the understanding of themehanisms behind the spread of infetious diseases, they are a tool forassessing the e�etiveness of ontrol measures and therefore seleting thebest strategy to be adopted for the ontainment of an outbreak, they an beused to assess the e�ay of vaine treatments, to explore what-if senariosand to inform poliy deisions.On Chapter 1 I present the atual introdution to this thesis, whih onsistsin a review of the main mathematial tools traditionally used in epidemiology.On the same hapter I also plae my orignial ontributions into the �eld.Below I am going to present a brief desription of my researh work and thespei� outline of this thesis.Researh desriptionThe works presented in this thesis are very di�erent one from the other butthey all deal with the mathematial modelling of emerging infetious diseaseswhih, beyond being the leitmotiv of this thesis, is an important researh areain the �eld of epidemiology and publi health.A minor but signi�ant part of the thesis has a theoretial �avour. This part1



Introdutionis dediated to the mathematial analysis of the ompetition model betweentwo HIV subtypes in presene of vaination and ross-immunity proposedby Poro and Blower (1998). We �nd the sharp onditions under whih va-ination leads to the oexistene of the strains and using arguments frombifuration theory, draw onlusions on the equilibria stability and �nd thata rather unusual behaviour of histeresis-type might emerge after repeatedvariations of the vaination rate within a ertain range.The most of this thesis has been inspired by real outbreaks ourred in Italyover the last 10 years and is about the modelling of the 1999-2000 H7N1avian in�uenza outbreak and of the 2009-2010 H1N1 pandemi in�uenza.From an applied perspetive, parameter estimation is a key part of the mod-elling proess and in this thesis statistial inferene has been performedwithin both a lassial framework (i.e. by maximum likelihood and leastsquare methods) and a Bayesian setting (i.e. by Markov Chain Monte Carlotehniques).However, my ontribution goes beyond the appliation of inferential teh-niques to spei� ase studies. The stohasti, spatially expliit, between-farm transmission model developed for the transmission of the H7N1 virushas indeed been used to simulate di�erent ontrol strategies and asses theirrelative e�etiveness. The modelling framework presented here for the H1N1pandemi in Italy onstitutes a novel approah that an be applied to a vari-ety of di�erent infetions deteted by surveillane system in many ountries.We have oupled a deterministi ompartmental model with a statistial de-sription of the reporting proess and have taken into aount for the preseneof stohastiity in the surveillane system. We thus takled some statistialhallenging issues (suh as the estimation of the fration of H1N1 ases re-porting in�uenza-like-illness symptoms) that had not been addressed before.Last, we apply di�erent estimation methods usually adopted in epidemiol-ogy to real and simulated shool outbreaks, in the attempt to explore thesuitability of a spei� individual-based model at reproduing empiriallyobserved epidemis in spei� soial ontexts.
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IntrodutionStruture of the thesisIn the �rst Chapter of this thesis I present a brief review of the mathemati-al models adopted in epidemiology for the modelling of emerging infetiousdiseases and plae the works presented in this thesis within the �eld.On Chapter 2 we analyse the Vaine Model with Cross-Immunity proposedby Poro and Blower (1998). Poro and Blower (1998) show that vainationan shift the ompetitive balane in favour of a strain that, without vaina-tion, would be out-ompeted and that vaination an also promote oexis-tene of di�erent strains, something that normally is not expeted (Bremer-mann and Thieme, 1989). Their results have been mainly obtained throughnumerial simulations, so that the onditions under whih a shift in ompet-itive balane or oexistene ours have not been fully established. We givea rather omplete desription of its behavior, at least in terms of equilibria.We �nd the exat onditions under whih vaination may lead to a shiftin ompetitive balane and show that, under these onditions, there alwaysexist a range of vaination rates under whih a oexistene equilibrium ex-ists. We also �nd that a oexistene equilibrium exists (and is unstable) in a`bi-stability' region, where both monomorphi equilibria are stable. This fathas been rarely observed in models of ompetition between pathogen strains.The work presented in this hapter has been submitted for publiation andis urrently under review.Chapter 3 is about the analysis of the between-farm transmission of the H7N1highly pathogeni avian in�uenza virus that disrupted the Italian poultryprodution in the 1999-2000 epidemi. We de�ne a SEIR model with a spa-tial transmission kernel, aounting for the ontainment measures atuallyundertaken, �nd signi�ant di�erenes in suseptibility between speies and aredution in transmissibility after the �rst phase. We performed simulationsto assess the e�etiveness of the implemented and new ontrol measures. Themost e�etive measure was the ban on restoking. An earlier start of pre-emptive ulling promotes eradiation; restrited pre-emptive ulling delayseradiation but auses lower losses. This work has been published on the3



IntrodutionEpidemis Journal, 2 (2010): 29-35 (doi:10.1016/j.epidem.2010.01.002).On Chapter 4 we propose a novel and general modelling framework whihallowed us to takle some statistial hallenges that were usually bypassedthrough the introdution of assumption and has been applied to the 2009-2010 H1N1 pandemi in Italy. The analysis of surveillane data, often theonly information available in real time, poses many statistial hallenges thathave not been addressed yet. For instane, the fration of ases that reportinfetion is unknown. We propose here a general modelling framework thatexpliitly takes into aount the way the surveillane data was generated.Our approah ouples a deterministi mathematial model with a statistialdesription of the reporting proess and has been applied to surveillane dataolleted in Italy during the 2009-2010 A/H1N1 in�uenza pandemi. We esti-mate that the reprodution number R0 has been into the range 1.3−1.4, thatthe youngest age-lasses reported the symptoms aused by the H1N1 virusinfetion signi�antly more than the adults and that, in the Italian popula-tion, shool-age hildren were e�etively the most a�eted by the A/H1N1virus. In terms of both estimated peak-inidene and attak rate of A/H1N1ases, the 5 − 14 years age-lass was about 5 times more a�eted than the
65+ years old age-group and about twie more than the the other age-lasses;the overall ase attak rate was about 30%.The �fth and �nal Chapter is about the �rst results of a topi I startedworking on only very reently. The hapter deals with the estimation of thereprodution number from real and simulated shool outbreaks data. In thisontext, we explore whether an individual-based model reently developedto model the spatio-temporal spread of the pandemi H1N1 virus in Europe(Merler and Ajelli, 2010), used here as a tool for generating within shooloutbreaks, gives ompatible results (in terms of estimated within shool re-prodution number) with real shool epidemis observed in Italy over the past2009-2010 pandemi in�uenza season. The real shool outbreaks in questionhave been retrospetively reonstruted through a survey and this topi ispresented in the last part of the hapter.4



Chapter 1Emerging and re-emerginginfetions
1.1 Fators driving the emergene of infetiousdiseasesAn emerging pathogen an be de�ned as an infetious agent whose ini-dene or geographi range is inreasing following its �rst introdution intoa new host population; a re-emerging pathogen is one whose inidene orgeographi range is inreasing in an existing host population as a result oflong-term hanges in its underlying epidemiology (Morse, 1995; Woolhouse,2002).Pathogen emergene an be based on subjetive riteria, whih an re�et in-reased awareness, improved diagnosis, disovery of previously unreognizedinfetious agents as muh as any objetive epidemiologial data. This is whyWoolhouse (2002) suggests that reporting bias must be onsidered as a possi-ble explanation for any apparent pattern. Indeed, despite dozens of pathogenspeies are regarded as emerging or re-emerging in livestok, domesti animaland wildlife, data for non-human hosts are likely to be far less omprehensivethan those for humans (Woolhouse, 2002).Infetious disease emergene an be viewed operationally as a two-step pro-ess onsisting in the introdution of the infetious agent into a new hostpopulation followed by the establishment and further dissemination of the in-5



1.1. Fators driving the emergene of infetious diseasesfetious agent within the new host population (also alled �adoption�) (Morse,1995).Broadly, there are three soures of emerging and re-emerging pathogens: fromwithin the host population itself (like Myobaterium tuberulosis, whose re-emergene in the 1980s was fuelled by the immune-de�ienies of people withAIDS), from the external environment (like Legionella pneumophila, whoseemergene as a human pathogen might not have ourred were it not for theenvironmental nihe provided by air-onditioning systems) and from popu-lations of other host speies (like the Human Immunode�ieny Virus (HIV)in humans). Many wildlife speies are reservoirs of pathogens that threatendomesti animal, human health and the onservation of the global biodi-versity as well (Daszak et al., 2000). Using the WHO de�nition, zoonotipathogens are de�ned as those produing diseases or infetions whih arenaturally transmitted between vertebrate animals and humans. Bats, arni-vores, primates, rodents, ungulates and other mammals and non-mammals(birds, reptiles, amphibians and �sh) onstitute the broad ategories intowhih we an split the �zoonoti pool�. Three-quarters of emerging and re-emerging human pathogens originate as zoonose (Woolhouse, 2002) and aredisproportionately viruses (Woolhouse and Gowtage-Sequeria, 2005; Wool-house et al., 2005).Several (not mutually exlusive) fators drive the emergene of infetious dis-eases: geneti hanges in the pathogen (for example the evolution of HIV fromthe simian immunode�ieny virus), immunoompromised hosts (for exam-ple M. tuberulosis in AIDS patients) and hanges in host-pathogen eology.This last ategory inludes hanges in host demography, movement or be-haviour; limate, agriultural hanges or hanges in the land use; hangesin industry and tehnology (e.g. food prodution); international travels andommere or the breakdown of publi health measures (Morse, 1995; Morenset al., 2004; Raaniello, 2004). It's worth notiing that suprisingly often dis-ease emergene is aused by human ations.In the following hapters we propose, analyse and apply di�erent modellingapproahes to the spread of HIV, of the Highly Pathogeni Avian In�uenza(HPAI) H7N1 virus and to the reent H1N1 virus that aused the 2009-2010in�uenza pandemi: these viruses are reognized as the ause of emerging or6



1.2. An overview on the mathematial models used in epidemiologyre-emerging infetious diseases. Despite the preise anestry of HIV is stillunertain, it appears to have had zoonoti origins. Genetial hanges are theleading fators of many in�uenza pandemis too. In�uenza A viruses, whihendemially live in the gastrointestinal apparatus of wild waterfowl, have in-deed evolved elaborate mehanisms to jump speies into domesti fowl, farmanimals and humans. It is widely known that antigeni drift (point muta-tions, primarily in the gene for the surfae protein, hemagglutinin) ausesannual or biennial in�uenza epidemis and antigeni shift (geneti reassort-ment generally between avian and mammalian in�uenza strains) aused theemergene of pandemi in�uenza strains as in 1888, 1918, 1957, 1968 andin the reent swine-origin H1N1 2009-2010 pandemi (Webster, 2001; Short-ridge et al., 2003; Neumann et al., 2009).The enormous global burden in terms of human and animal disease anddeaths posed by emerging and re-emerging pathogens makes the study ofemerging and re-emerging infetions a hallenge for human and veterinarymediine.1.2 An overview on the mathematial modelsused in epidemiologyAn impressive amount of works �ourished reently, given the emergene ofdramati disease outbreaks suh as the foot-and-mouth-disease (FMD) out-break of 2001 in the British attle farms, the severe aute respiratory syn-drome (SARS) outbreaks of 2003 in Asia and Canada and the reent 2009-2010 in�uenza pandemi aused by the A/H1N1 virus. Mathematial modelsare a useful tool that an given insight into the understanding of the leadingfators and mehanisms behind the spread of infetious diseases (Andersonand May, 1992; Diekmann and Heesterbeek, 2000; Fraser et al., 2004) andhave been used in the past to design e�ient observational studies and to planmass vaination ampaigns (Grassly et al., 2006; Yang et al., 2006). It iswidely reognized that they are a valuable tool to investigate the e�etivenessof ontrol measures, to assess the e�ay of vaine and prophylati treat-ments and to explore what-if senarios so that they have also been empolyed7



1.2. An overview on the mathematial models used in epidemiologyto inform poliy deisions (Ferguson et al., 2001; Halloran et al., 2007).The de�nition and onstrution of a useful model usually depends on theissues the modeller wants to takle and requires knowledge of a variety ofdi�erent aspets, from the biologial to the epidemiologial and demographiones. Whether the interest of the modeller is foused on the theoretial prop-erties of a model or the mathematial framework is used to make inferene onunknown quantities, model validation is an always desirable but often unfea-sible stage, sine it requires quantitative data, usually olleted by surveil-lane systems. The suessful appliation of statistial, mathematial andomputational tehniques for the analysis of outbreak data and the hoieof a suitable model framework strongly depends on the nature and availabil-ity of information at all the levels (biologial, demographi, epidemiologial)outlined above. As a matter of fat, limited data and inonlusive epidemi-ologial information plae severe restritions on the e�orts the modeller anmake to model the spread of the etiologial agent if his/her objetives gobeyond the intrinsi interests and the theoretial exploration of the model'sbehaviour.In this setion I would like to propose a brief and far from exhaustive reviewof the most ommon mathematial modelling approahes that have been un-dertaken in infetious disease epidemiology in presene of outbreaks ausedby emerging or re-emerging infetious entities both in the human and in someanimal populations.The mathematial models we will deal with in this setion and, at a broaderextent, in this thesis, are ompartmental models at a population level. Itmeans that our interest is foussed on the dynamis of disease spread amongthe individuals of a population rather than on the proesses ourring withinthe host after infetion by the infetious agent. Epidemiologial models ofdisease spread at a population level split the population into ompartmentsthat usually haraterize the infetious state (e.g. suseptible, infetious,reovered individuals) and an also inlude other forms of partitioning (e.g.vainated, treated, hospitalized, quarantined individuals).Within the wide variety of existing models, a �rst distintion an be madebetween the deterministi and the stohasti approah.Another distintion an be made in terms of the level of mixing so that we8



1.2. An overview on the mathematial models used in epidemiologyan distinguish models assuming homogenous mixing from models adoptingmore heterogeneous ontat patterns between the individuals of a popula-tion.A omprehensive introdution and an outline of the development of mathe-matial modelling of infetious diseases an be found in the texts by Andersonand May (1991), Bailey (1975) and the more reent works by Hethote (2000)and Keeling and Rohani (2008).1.2.1 Deterministi modelsThe history of epidemi modelling an be traed bak to the early 20thentury, when the deterministi approah �rst appeared in the literature(Hamer, 1906; Ross, 1916; Ross and Hudson, 1917a,b; Bailey, 1975) andulminated with the milestone and still relevant work by Kermak and MK-endrik (1927).The desription of a phenomenon is often translated, in mathematial terms,into a set of di�erential equations. The theory of di�erential equations is awell established branh of mathematis in whih both theoretial results andnumerial methods have been readily available sine the early 20th entury.A deterministi model is haraterized by the fat that, one that the initialonditions and the parameter values have been �xed, its evolution is uniquelydetermined. The suessful appliation of the deterministi approah in the�eld of epidemiology lies in the relative �exibility and ontemporary math-ematial tratability of the modelling framework. Deterministi models anindeed be enrihed to aount for realisti features suh as, for example, thepresene of di�erent stages of infetion, age-struture, spatial spread and ver-tial transmission, without ompletely losing their analytial tratability. De-terministi models have been employed to perform parameter estimation and�t surveillane data (Chowell et al., 2003; Wang and Ruan, 2004; Nishiuraet al., 2010) and to assess the impat of ontrol measures in the SARS epi-demi (Lipsith et al., 2003), to investigate how best to use antibiotis inpopulations harbouring drug-resistant organisms (Austin et al., 1997) andfor the analysis of the transmission dynamis of multiple strains pathogens(Gupta et al., 1998; Andreasen et al., 8 15) ausing infetious diseases suh9



1.2. An overview on the mathematial models used in epidemiologyas malaria (Gupta et al., 1994), dengue (Ferguson et al., 1999) and in�uenza(Minayev and Ferguson, 2009). Multi-strain models have been often anal-ysed through the use of omputer simulations and a theoretial analysis of theequilibria and the relative stability of a multi-strain model has been proposedby Gog and Grenfell (2002). The e�et of di�erent vaination poliies inthe presene of two ompeting HIV strains onferring partial ross-immunityhas been proposed and numerially analysed by Poro and Blower (1998,2000) and it is in this framework that the work presented in Chapter 2 anbe plaed. In the next hapter we indeed present a mathematial analysis(in terms of equilibria and their stability) of the 2-HIV strains ompetitionmodel proposed in (Poro and Blower, 1998).Deterministi models are rapid to simulate, relatively easy to parametrizeand apture the average epidemi behaviour, i.e. they an be onsidered avalid tool for preditions in large populations. On the ontrary, in preseneof low levels of infetions (i.e. near the start and the end of an epidemi) orof small populations, the deterministi approah fails to ath the randomnature of transmission events. Another limitation of the deterministi ap-proah onsists in an oversimpli�ed desription of the interations betweenindividuals. Due to mathematial onveniene, it is indeed assumed thateither an individual has an equal hane of ontating anyone in the popula-tion (homogeneous mixing at the population level) or random mixing oursbetween eah pairs of subgroups into whih the population is strutured.1.2.2 Stohasti modelsStohasti models an be onsidered the ounterpart of the deterministiase, are partiularly apt to model the spread of a disease in small popula-tions or in the early and �nal stages of an epidemi (i.e. when the number ofases is small) and an be added of variuos forms of heterogeneity in ontatpatterns. In the stohasti modelling framework the modeller attributes aprobability of ourrene to eah single event and ounts (in terms of disreteunits) their ourrene. The study of the evolution (in time) of the proba-bilities of the state of the system and the investigation of the distribution ofquantities of interest is muh more omplex. Due to the analytial omplexity10



1.2. An overview on the mathematial models used in epidemiologyof the study of a stohasti proess, often inreased by the need (or wish) toinlude very detailed information on the ontat strutures of a population,omputer simulations o�er an alternative approah to explore the behaviourof the system. Suh an example is given by Cooper et al. (1999), where om-puter simulations are used to explore the properties and the behaviour of astohasti ompartmental model that had been set up to study the spreadof hand-borne nosoomial pathogens within a general medial-surgial ward.Other examples of stohasti models used in epidemiology are given by (Keel-ing et al., 2001; Riley et al., 2003; Chis Ster and Ferguson, 2007) and manyothers more extensively disussed in the rest of the hapter.1.2.3 Beyond the homogeneous mixing assumptionIt is widely reognized that heterogeneity in ontat patterns due for exampleto age di�erenes between individuals, the spatial distribution of individualsand the presene of soial strutures in the population play an importantrole in disease spread. Strutured, mirosimulation, meta-population, net-work models and models with multiple levels of mixing are all examples ofpopulation models that attempt to ahieve an inreased realism by goingbeyond the rather unrealisti homogeneous mixing assumption. In priniple,all the models presented below an be plaed within both a deterministi anda stohasti framework; as a matter of fat, the most of the works reportedas examples belong to the stohasti ategory.Mirosimulation or individual-based modelsMirosimulation models, also alled individual-based models, are stohastisimulations of ontat patterns and disease progression operating at an indi-vidual level, where the individual unit needs to be spei�ed by the modeller.The 2001 UK foot-and-mouth epidemi generated a unique data-set desrib-ing the spatial spread of the infetion between livestok farms and o�eredthe opportunity to explore, mainly using miro-simulation models, the im-pat of spatial and individual heterogeneities on the ourse of the epidemi(Keeling et al., 2001; Morris et al., 2001; Chis Ster and Ferguson, 2007). Thefull spatio-temporal dynamis of the foot-and-mouth disease (FMD) epidemi11



1.2. An overview on the mathematial models used in epidemiologyhas indeed been explored by Keeling et al. (2001) and Chis Ster and Ferguson(2007) using stohasti, spatial, individual farm-based models inorporatingheterogeneity in farm size and speies omposition.The transmission of the highly virulent H5N1 in�uenza virus to humans inSouth-East Asia triggered the development of individual-based models in-vestigating the strategies to be applied for ontaining an emerging in�uenzapandemi (Ferguson et al., 2005, 2006; Longini et al., 2005; Germann et al.,2006). Individual-based model have also been employed to understand therole of population heterogeneity and human mobility in the spread of thereent 2009-2010 H1N1 pandemi in�uenza virus (Merler and Ajelli, 2010).Network modelsThe historial study of networks has its bases in two disparate �elds: soialsienes and graph theory. While the researh in graph theory and soialsienes generally onsiders an understanding of the network itself to be theultimate goal, in epidemiology the interest is foused on the spread of thedisease, in whih ase the network forms a onstraining bakground to thetransmission dynamis.In order to understand the role of network struture on epidemi dynam-is, a range of idealized networks, de�ned in terms of how individuals aredistributed in spae and how onnetions are formed, have been developedand analyzed. Random networks, latties, small-world, spatial and sale-free networks have been used to desribe di�erent aspets of the populationmixing behaviour, on the basis of the di�erent levels of lustering, degreedistribution and path length, intrinsially de�ned by the network strutureitself (Keeling and Eames, 2005).The spread of infetion on generi networks an also be modelled throughthe pairwise approximation whih, as the name suggests, takes the numberof di�erent pair types as variable of the model and requires some form of mo-ment losure approximation. A pairwise model has been used for exampleto provide real-time preditions during the 2001 foot-and-mouth epidemi inthe UK (Ferguson et al., 2001) and the extent to whih the ensemble be-haviour of stohasti spatial epidemi models may be aptured by modellingdisease proesses as ourring on networks derived from the underlying spa-12



1.2. An overview on the mathematial models used in epidemiologytial struture has been deeply analysed by Parham and Ferguson (2006) andParham et al. (2008). As a matter of fat, the di�erential equation formula-tion of pairwise models represents a more rapid parametrization alternativeto omputationally intensive mirosimulation models and may be amenableto obtain an analytial understanding into spatio-temporal dynamis.In the presene of an emerging infetion, three tehniques have been mainlyemployed to gather network information: infetion traing, ontat tra-ing and diary-based studies. Infetion traing onsists in the reonstrutionof the transmission network (or epidemi-tree), onsisting in all the linksthrough whih transmission ourred. Suh traing has been employed forexample to analyze the foot-and-mouth disease outbreak of 2001 (Haydonet al., 2003), to gather information about the individuals most involved indisease transmission (the so alled �super-spreader�) during the 2003 SARSoutbreak in Hong Kong (Riley et al., 2003) and to investigate the transmis-sion properties of the new H1N1 strain in the �rst few hundred ases studyin England, Wales and Sotland in the 2009-2010 in�uenza pandemi (Ghaniet al., 2009). Contat traing aims to identify all potential transmissionontats from a soure individual, has been largely applied in the study ofsexually transmitted diseases and relies on individuals providing ompleteand aurate data about personal relationships. At a farm level, expliitontat strutures have been used to analyze the spread of animal diseasessuh as the foot-and-mouth disease (Ferguson et al., 2001; Green et al., 2006;Kao et al., 2006) and avian in�uenza (Le Menah et al., 2006).Models with multiple levels of mixingHousehold models are a natural starting point if the attempt of the mod-eller is to inlude a more realisti soial struture than those assumed underthe homogeneous mixing hypothesis, still remaining within an analytiallytratable (but rather more omplex) framework. Household models parti-tion the population into households and homogeneous mixing within eahhousehold is superimposed on homogeneous mixing (typially at a smallerrate) in the population at large (Beker, 1995; Hall and Beker, 1996; Ballet al., 1997). Most e�ort has been typially plaed into analysing, within aprobabilisti framework, the asymptoti behaviour, the epidemi �nal sizes13



1.2. An overview on the mathematial models used in epidemiologyand the impat of targeted intervention strategies suh as vaination (Ballet al., 1997). Reently, household models have been fruitfully applied toapproximate the disease dynamis of an in�uenza pandemi (Dodd and Fer-guson, 2007; Fraser, 2007) and to explore the e�etiveness of publi healthintervention senarios (Wu et al., 2006; House and Keeling, 2009).An even more realisti soial struture is ahieved when individuals belongto more than one type of mixing group and di�erent groups are allowed tooverlap. Suh a generalization of the households model is given for examplein the two (i.e. households and workplaes) levels of mixing models de�nedby Ball and Neal (2002) and Pellis et al. (2009).Path modelsPath or metapopulation models are haraterized by the presene of alarge population whih is divided into a �nite number of groups, also alledpathes. Within eah group individuals are assumed to mix homogeneouslyand the di�erent pathes an be onneted either deterministially or ran-domly. Pathes usually represent geographial areas at various spatial sales(Rvahev and Longini, 1985; Hollingsworth et al., 2006; Colizza et al., 2007;Rizzo et al., 2008; Balan et al., 2009) and the onnetions among the pathestypially represent the existing transportation, air travel or ommuting net-work. In omparison to individual-based models, metapopulation models re-quire less information and omputational e�ort so that they an been plaedwithin an inferential framework. One of the �rst metapopulation models hasbeen proposed by Rvahev and Longini (1985) to desribe the global spreadof in�uenza. In this work the authors onsider 52 big ities of the worldinteronneted via air transport. This model has been later updated (Graiset al., 2003), revisited and extended to evaluate the e�etiveness of inter-vention strategies as travel restritions (Flahault et al., 2006). Stohastimetapopulation models have been proposed by Riley et al. (2003) to modelthe 2003 SARS outbreak in Hong Kong and by Colizza et al. (2007) andBalan et al. (2009) to investigate the role played by the airline transporta-tion system versus the short range onnetions in the global spatio-temporalspread of an in�uenza pandemi. A �rst omparison between individual-based and metapopulaton models has been reently proposed by Ajelli et al.14



1.3. Statistial Inferene(2010). The good agreement between the two modelling frameworks (interms of epidemi pro�le and spatio-temporal patterns) ould be the �rststep towards the future development of hybrid models ombining the om-putational e�ieny of path models to the high detail resolution providedby the individual-based approah in spei� loations of interest.1.3 Statistial InfereneStatistial inferene is the proess of drawing onlusions from data that aresubjet to random variation due to the nature of the phenomenon itself, ob-servational errors or sampling variation and is based on the de�nition of aprobabilisti model that usually provides a simpli�ed but adequate represen-tation of the phenomenon.Two statistial approahes an be distinguished: the non-parametri one aimsat estimating the distribution underlying the phenomenon under minimal as-sumptions, generally using funtional estimation. Conversely, the parametriapproah represents the distribution of the observations through a densityfuntion in whih only the parameter is unknown.A parametri statistial model onsists of the observation of a random vari-able x, distributed aording to f(x|θ) where only the parameter θ is un-known and belongs to a vetor spae Θ of �nite dimension. Making infereneon parameter θ means that we use observation x to improve our knowledgeon parameter θ. Compared with probabilisti modelling, statistial analysishas fundamentally an inversion purpose whih is obvious in the notion of thelikelihood funtion l(θ|x) (a funtion of the unknown θ given the observedvalue x) whih is just the sample density f(x|θ) rewritten in the �proper�order
l(θ|x) = f(x|θ)Within the parametri approah, statistial inferene on the unknown param-eter an be performed either within a lassial (or frequentist) framework orwithin a Bayesian setting. In the next few lines I am going to brie�y reallthe two approahes. Indeed, a signi�ant portion of the work presented inthis thesis deals with parameter estimation whih has been onduted within15



1.3. Statistial Infereneboth the frequentist approah (on Chapter 3 and 5) and the Bayesian frame-work (on Chapter 4).The lassial approah makes inferene on the unknown parameter by themethod of maximum likelihood whih was promoted by R.A. Fisher in hislassial 1925 paper. One �xed the underlying probability model f(x|θ), themethod of maximum likelihood selets the values of the model parameter θ̂that produe the distribution most likely to have resulted in the observeddata (i.e. the parameters that maximize the likelihood funtion)
θ̂ = arg maxθ∈Θl(θ|x)The maximum likelihood method is widely applied partly beause of the in-tuitive motivation of maximizing the probability of ourrene and partlybeause of the strong asymptoti properties of the maximum likelihood esti-mator (onsisteny, normality, e�ieny) and funtional invariane (i.e. forany funtion h(θ) the maximum likelihood estimator of h is h(θ̂)) (Beker,1989; Zaks, 1971). Maximum likelihood has been applied to a wide range ofepidemiologial models faing a variety of di�erent problems (Keeling et al.,2001; Boender et al., 2007; Le Menah et al., 2006; Nishiura et al., 2009;Lessler et al., 2009). Also mirosimulation models have been plaed within amaximum-likelihood inferene sheme for example by Pelupessy et al. (2002)to identi�ed the most important routes of transmission of resistant pathogensamong the patients of a hospital and by Matthews et al. (2006) to investigatethe reasons underlying the substantial variations in the on-farm prevaleneof E.Coli O157 both between farms and between sampling events on thesame farm observed in a ross-setional study onduted on Sottish attlefarms between 1998 and 2000. Despite the inreasing omputational poweravailable today, the dimensionality of the problem (i.e. the size of the simu-lated population) poses severe restritions on the extent to whih one an useindividual-based models to make inferene on unknown quantities. As a mat-ter of fat, it is nowadays unfeasible to plae very omplex individual-basedmodels ating on large populations (of the order of million of individuals)within any inferene sheme and the e�ort of the modeller is hene fousedon the parametrization of the model. We applied the maximum likelihood16



1.3. Statistial Inferenetheory to estimate the unknown parameters and the relative on�dene inter-vals of a stohasti spatially-expliit model for the farm-to-farm transmissionof the highly pathogeni H7N1 avian in�uenza virus in Italy (see Chapter 3).In this ontext, we an insert the least square method, also known as traje-tory mathing method (Turhin, 2003). The parameter values are estimatedby minimising the sum of the squares of the residuals, meant as the di�er-ene between the observed and simulated epidemis and an be interpretedas a maximum likelihood riterion if the measurement errors are assumed tobe normally distributed. From this point of view, it represents a simpli�edmaximum likelihood approah, in whih the dynamis of the epidemi aresimulated and then the likelihood of the observed data is evaluated. Theleast square method has often implemented to perform parameter estimationespeially in deterministi settings (Chowell et al., 2006, 2004, 2007b,a) andis the inferential method at the basis of the whole Chapter 5, where we es-timate the within shool reprodution number of real and simulated shooloutbreaks.The main di�erene brought by the Bayesian approah is to onsider a proba-bility distribution on the parameters. By de�nition (Robert, 1996) a Bayesianstatistial model is made of a parametri model f(x|θ) and a prior distribu-tion on the parameters, π(θ). Within this framework, statistial inferene isbased on the distribution of θ onditional on x

π(θ|x) =
f(x|θ)π(θ)

∫

f(x|θ)π(θ)dθwhih is alled posterior distribution. By Bayes's Theorem, the informationon θ is atualized with the information ontained in the observation x. Notiethat, from a Bayesian viewpoint, there is little di�erene between observa-tions and parameters, sine onditional manipulations allow for an interplayof their respetive roles. Whenever the posterior distribution π(θ|x) annotbe diretly simulated, inferene on the posterior distribution an be obtainedby Markov Chain Monte Carlo (MCMC) methods, whih are able to on-strut Markov hains whose stationary distribution is the distributions ofinterest. Markov Chain Monte Carlo tehniques have been often employedin the �eld of mathematial epidemiology and examples are given by (Lip-17



1.3. Statistial Inferenesith et al., 2003; Chis Ster and Ferguson, 2007; Cauhemez et al., 2009a).On Chapter 4 we present a novel modelling approah whih has been appliedto the reent 2009-2010 H1N1 in�uenza pandemi in Italy. In this work weouple together a deterministi desription of the infetion dynamis witha statistial model for the reporting proess where, by the appliation ofMarkov Chain Monte Carlo tehniques, we obtain the estimates (in terms ofposterior distribution) of epidemiologial relevant parameters suh as the re-prodution number R0, the age-dependent reporting rates and suseptibility.
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Chapter 2Analysis of a vaine model withross-immunity: when an twoompeting infetious strainsoexist?
2.1 IntrodutionControl poliies of infetious diseases an lead to unexpeted outomes whenthe infetious agents onsist of a variety of di�erent strains. In fat, it hasoften be argued that more pathogeni strains are in ompetition with lesspathogeni ones (Bremermann and Thieme, 1989), so that the appliationof ontrol poliies may shift the ompetitive balane in favour of the less �tstrains (MLean, 1995; Martheva et al., 2008) that might however be morevirulent.It has been observed in previous studies and in pratie that vaination, oneof the most powerful ontrol poliies, an have very dramati e�et on theoutome of the ompetition between more pathogens. This topi has beenexamined with the use of mathematial models in several papers (Poro andBlower, 1998; Lipsith, 1999; Iannelli et al., 2005; Martheva, 2006).Vaination an destabilize the existing host-pathogen evolutionary equilib-ria, aelerate pathogen evolution and also lead to the emergene or domi-19



2.1. Introdutionnane of a one-rare pathogen, a mehanism also known as strain replaement(Poro and Blower, 2000; Iannelli et al., 2005; Martheva, 2006). Vainesdi�er for their mode of ation; vaines with di�erential e�etiveness providedi�erent degrees of protetion against infetion by the di�erent strains ofthe pathogen and their e�ay has been extensively disussed in the liter-ature (Smith et al., 1984; Halloran et al., 1992; Blower and MLean, 1994;Martheva, 2006).Poro and Blower (1998) showed that vaination an indeed shift the om-petitive balane in favour of a strain that, without vaination, would beout-ompeted and that vaination an also promote oexistene of di�erentstrains, something that normally is not expeted (Bremermann and Thieme,1989). The results by Poro and Blower (1998) have been mainly obtainedthrough numerial simulations, so that the onditions under whih a shift inompetitive balane or oexistene ours have not been fully established.Here we examine in detail the �Vaine Model with Cross-Immunity� or �Dif-ferential Degree Model� proposed in Poro and Blower (1998) to desribe thespread of 2-HIV strains and the subsequent progression into AIDS in a pop-ulation of potential sex partners. More in general, the model an be thoughtas desribing the spread of two ompeting pathogens within a populationin presene of vaination and ross-immunity. We analyse the impat ofvaination at the ommunity level and give a rather omplete desription ofthe model behavior, at least in terms of equilibria. We �nd the exat ondi-tions under whih vaination may lead to a shift in ompetitive balane andalso show that, under these onditions, there always exist a range of vai-nation rates under whih a oexistene equilibrium exists. We �nd that theCoexistene Equilibrium may be stable or unstable, depending on anotherondition. The former ase orresponds to what had already been observednumerially. In the latter ase, the parameter region in whih a oexisteneequilibrium exists is atually a `bi-stability' region in whih both monomor-phi equilibria are stable, so that asymptoti behavior depends on initialonditions. This fat, that would lead to a sort of hysteresis yle if vai-nation rates were inreased then dereased, has rarely been demonstrated inmodels of ompetition between pathogen strains.20



2.2. Model Formulation2.2 Model Formulation
The �Vaine Model with Cross-Immunity� proposed by Poro and Blower(1998) is a partiular transmission dynamis model of HIV in presene of twosubtypes and a vaine that provides a degree of protetion against infetionby both subtypes.The state variables are X (the number of suseptible individuals), V (thenumber of e�etively vainated individuals), Y1 and Y2 (the number of in-dividuals infeted with subtype 1 and subtype 2 respetively and have notdeveloped AIDS), A1 and A2 (the number of individuals who have been in-feted with subtype 1 and subtype 2 respetively and have developed AIDS).The state variables are supposed to be C1 funtions of the time variable t.Individuals are part of a ommunity of potential sex partners and we assumethat individuals with AIDS do not aquire new sex partners. This meansthat the sexually ative ommunity N is given by N = X + V + Y1 + Y2.We assume that individuals enter the ommunity at a onstant rate π and afration p of these are vainated. The vaine indues a protetive immuneresponse in a fration e of the vainated individuals, that is the vainetakes only in a fration pe of the new entries.Uninfeted individuals either not vainated or who were vainated but inwhom the vaine did not take, are referred as being ompletely suseptible.The degree of protetion onferred by the vaine against subtype i is indi-ated with ξi (0 6 ξi 6 1); ξi = 0 orresponds to no protetion and ξi = 1orresponds to omplete protetion against infetion.Individuals leave eah lass at a onstant per apita rate µ when they easeaquiring new sex partners.The transmission probability of subtype i per partnership is indiated with
βi, the number of new sex partners per unit time is indiated by c, γi is forthe rate of progression to AIDS and α indiates the death rate due to AIDS.The �ow diagram in Figure 2.1 desribes the dynamis of the �Vaine Modelwith Cross-Immunity�. 21



2.2. Model Formulation
X Y1 A1
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γ2Y2

cβ2
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cβ1(1 − ξ2)
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N

µ µ µ + α

µ µ µ + αFigure 2.1: The �ow hart of the model
The di�erential equations desribing the orresponding dynamis are:

Ẋ = π(1 − pe) − µX − cβ1X
Y1

N
− cβ2X

Y2

N
(2.1)

V̇ = πpe − µV − (1 − ξ1)cβ1V
Y1

N
− (1 − ξ2)cβ2V

Y2

N
(2.2)

Ẏ1 = cβ1X
Y1

N
+ (1 − ξ1)cβ1V

Y1

N
− (µ + γ1)Y1 (2.3)

Ẏ2 = cβ2X
Y2

N
+ (1 − ξ2)cβ2V

Y2

N
− (µ + γ2)Y2 (2.4)

Ȧ1 = γ1Y1 − (µ + α)A1 (2.5)
Ȧ2 = γ2Y2 − (µ + α)A2 (2.6)where N = X + V + Y1 + Y2.We observe that equations (2.1)�(2.4) are su�ient to desribe the be-havior of the system. Furthermore, these equations an be suitable for anyinfetion of SI type, where γ1 and γ2 denote disease-indued mortality rates,and vaination ours at birth. The assumption of a onstant (indepen-dent of population size) input rate π in the population may then need tobe amended. We introdue the reprodution numbers (Anderson and May,1991)

R1
0 =

cβ1

µ + γ1
R2

0 =
cβ2

µ + γ2
. (2.7)22



2.2. Model FormulationThen, performing the hange of variables
x =

X

N
v =

V

N
y1 =

Y1

N
y2 =

Y2

Nand using R1
0 and R2

0 as parameters, system (2.1)�(2.4) an be equivalentlywritten as
ẋ =

π

N
(1 − x − pe) − x

[

(R1

0(µ + γ1) − γ1)y1 + (R2

0(µ + γ2) − γ2)y2

] (2.8)
v̇ =

π

N
(pe − v) − v

[

(R1

0(µ + γ1)(1 − ξ1) − γ1)y1 + (R2

0(µ + γ2)(1 − ξ2) − γ2)y2

](2.9)
ẏ1 = y1

[

R1

0(µ + γ1)(x + (1 − ξ1)v) − γ1(1 − y1) + γ2y2 −
π

N

] (2.10)
ẏ2 = y2

[

R2

0
(µ + γ2)(x + (1 − ξ2)v) − γ2(1 − y2) + γ1y1 −

π

N

] (2.11)
Ṅ = π − N(µ + γ1y1 + γ2y2) (2.12)In (2.8), we have dropped the dependeny on c, β1 and β2 using instead thenon-dimensional quantities R1

0 and R2
0 as parameters. It would be possible toredue the parameters to a smaller number of non-dimensional quantities; weprefer to keep them all, while later showing that di�erent behaviours dependon the ratios µ/γi and γ1/γ2.By adding together (2.8)�(2.11) we get

ẋ + v̇ + ẏ1 + ẏ2 =
( π

N
− γ1y1 − γ2y2

)

[1 − (x + v + y1 + y2)] (2.13)Sine
x + v + y1 + y2 = 1is invariant for (2.8)�(2.11), as intuitively obvious, we an drop (for instane)the equation for v and onsider the system



































Ṅ = π − N(µ + γ1y1 + γ2y2)

ẋ =
π

N
(1 − x − pe) − x

[

(R1

0
(µ + γ1) − γ1)y1 + (R2

0
(µ + γ2) − γ2)y2

]

ẏ1 = y1

[

R1

0
(µ + γ1)(x + (1 − ξ1)[1 − (x + y1 + y2)]) − γ1(1 − y1) + γ2y2 −

π

N

]

ẏ2 = y2

[

R2

0(µ + γ2)(x + (1 − ξ2)[1 − (x + y1 + y2)]) − γ2(1 − y2) + γ1y1 −
π

N

]

.(2.14)
23



2.3. Existene and Stability of EquilibriaWe an then obtain the fration of vainated individuals by subtration
v = 1 − (x + y1 + y2).2.3 Existene and Stability of EquilibriaWe study here the equilibria of (2.14); when this makes the derivation shorter,we will onsider also (2.8)�(2.11).Note �rst that, from (2.12), any steady state (x̃, ṽ, ỹ1, ỹ2, Ñ) of (2.14) satis�es
π

Ñ
= µ + γ1ỹ1 + γ2ỹ2. (2.15)2.3.1 Disease Free EquilibriumExisteneThe Disease Free Equilibrium (DFE) ours when the fration of infetedindividuals is null y⋆

1 = y⋆
2 = 0 and there are positive frations of suseptibleand vainated individuals x⋆ 6= 0, v⋆ 6= 0.From (2.15), we obtain N∗ =

π

µ
. Setting the right-hand side of (2.8)�(2.9)equal to 0 with y⋆

1 = y⋆
2 = 0, we immediately obtain for the DFE

x⋆ = 1 − pe and v⋆ = pe.This is always a feasible solution under the onstraints 0 ≤ p ≤ 1, 0 ≤ e ≤ 1arising from their de�nition. Otherwise said, the DFE always exists.StabilityWe study the loal stability of the DFE through the Jaobian matrix ofsystem (2.14) at the DFE (x⋆, 0, 0, N∗) = (1− pe, 0, 0, π
µ
). The eigenvalues ofthe Jaobian at the DFE are

λ⋆
1 = −µ

λ⋆
2 = −µ

λ⋆
3 = (µ + γ1) (R1

0(1 − pe) + (1 − ξ1)R
1
0pe − 1)

λ⋆
4 = (µ + γ2) (R2

0(1 − pe) + (1 − ξ2)R
2
0pe − 1)24



2.3. Existene and Stability of EquilibriaTherefore, the DFE is stable if and only if λ⋆
3 < 0 and λ⋆

4 < 0.Rearranging the terms, the neessary and su�ient onditions for the DFEto be stable an be written as
{

R1
p = R1

0(x
⋆ + (1 − ξ1)v

⋆) < 1

R2
p = R2

0(x
⋆ + (1 − ξ2)v

⋆) < 1.
(2.16)or

{

R1
p = R1

0(1 − ξ1pe) < 1

R2
p = R2

0(1 − ξ2pe) < 1
⇐⇒

{

pe > peDF
1

pe > peDF
2where















peDF
1 =

R1
0 − 1

R1
0ξ1

peDF
2 =

R2
0 − 1

R2
0ξ2

.
(2.17)Observe that if R1

0(1 − ξ1) > 1 or R2
0(1 − ξ2) > 1, then the DFE is neverstable.Notie moreover that if

{

R1
0 < 1

R2
0 < 1then the DFE is stable independently the hoie of pe, ξ1 and ξ2.For this reason we assume from now on that

{

R1
0 > 1

R2
0 > 12.3.2 Subtype-i-Only EquilibriumExisteneWe analyse here the Subtype-1-Only Equilibrium.By de�nition, at the Subtype-1-Only Equilibrium there are no individualsinfeted by subtype 2 (i.e. ȳ2 = 0) and there are positive frations of indi-viduals infeted by subtype 1 (ȳ1 > 0), suseptible (x̄1 > 0) and vainatedindividuals (v̄1 > 0).Setting equal to 0 equation (2.10), together with (2.15) and ȳ1 > 0 = ȳ2, one25



2.3. Existene and Stability of Equilibriaobtains
R1

0(x̄1 + (1 − ξ1)v̄1) = 1. (2.18)The equilibrium frations of suseptible x̄1 an be omputed by setting equalto 0 the right hand side of (2.8) so that it an be expressed as funtion of ȳ1as
x̄1 =

(µ + γ1ȳ1)(1 − pe)

µ + R1
0(µ + γ1)ȳ1

(2.19)Substituting v̄1 = 1 − x̄1 − ȳ1 and (2.19) into (2.18) we obtain that ȳ1 mustsolve G(ȳ1) = 1, where
G(y) = R1

0

[

ξ1
(µ + γ1y)(1 − pe)

µ + R1
0(µ + γ1)y

+ (1 − ξ1)(1 − y)

]Sine we assumed R1
0 > 1, we obtain

G′(y) = −
R1

0ξ1µ(1 − pe)[R1
0µ + (R1

0 − 1)γ1]

[µ + R1
0(µ + γ1)y]2

− R1
0(1 − ξ1) < 0 (2.20)and

G(1) =
R1

0(µ + γ1)(1 − pe)ξ1

R1
0(µ + γ1) + µ

< 1Hene, G(ȳ1) = 1 has a unique solution in (0, 1) if and only if
G(0) > 1 ⇐⇒ R1

0((1 − pe)ξ1 + (1 − ξ1)) = R1
0(1 − ξ1pe) = R1

p > 1We have then provedProposition 1. A su�ient and neessary ondition for a Subtype-1-OnlyEquilibrium to exist is R1
p > 1, i.e, pe < peDF

1 de�ned in (2.17). Moreover,under the assumption R1
p > 1, the Subtype-1-Only Equilibrium is unique.The equilibrium fration of vainated individuals v̄1 an be omputedby setting equal to 0 the right hand side of (2.9) and it an be expressed asfuntion of ȳ1 as

v̄1 =
(µ + γ1ȳ1)pe

µ + (1 − ξ1)R1
0(µ + γ1)ȳ1

(2.21)For future use, we prove the followingProposition 2. ȳ1 at the Subtype-1-Only Equilibrium is a dereasing fun-26



2.3. Existene and Stability of Equilibriation of pe on [0, peDF
1 ).Proof. We write expliitly the dependene of G on pe as G(pe, ȳ1(pe)) = 1.Sine by (2.20) we know that

∂G(pe, ȳ1(pe))

∂ȳ1

< 0and also
∂G(pe, ȳ1(pe))

∂pe
= −

R1
0ξ1(µ + γ1ȳ1)

µ + R1
0(µ + γ1)ȳ1

< 0by the Impliit Funtion Theorem we obtain
ȳ′

1(pe) = −

∂G(pe, ȳ1)

∂pe
∂G(pe, ȳ1)

∂ȳ1

< 0 (2.22)thus proving that ȳ1 is a dereasing funtion of pe.Completely similar arguments lead us to state that a Subtype-2-OnlyEquilibrium (x̄2, v̄2, 0, ȳ2) exists and is unique under the neessary and su�-ient ondition R2
p > 1.The equilibrium frations of suseptible and vainated individuals at theequilibrium are given by

x̄2 =
(µ + γ2ȳ2)(1 − pe)

µ + R2
0(µ + γ2)ȳ2

v̄2 =
(µ + γ2ȳ2)pe

µ + (1 − ξ2)R
2
0(µ + γ2)ȳ2where ȳ2 is the unique solution of equation H(ȳ2) = 1 where

H(ȳ2) = R2
0

[

(µ + γ2ȳ2)(1 − pe)

µ + R2
0(µ + γ2)ȳ2

+ (1 − ξ2)(1 − ȳ2)

]provided that R2
p > 1.In terms of pe, we get that the Subtype-2-Only Equilibrium exists for

pe < peDF
2 where peDF

2 =
R2

0 − 1

R2
0ξ2

.Finally, with the same argument used above, it an be proved that ȳ2 is a27



2.3. Existene and Stability of Equilibriadereasing funtion of pe.StabilityWe examine now the stability of the Subtype-1-Only Equilibrium. In orderto do that, we onsider the Jaobian matrix of (2.14) at the Subtype-1-OnlyEquilibrium E1 = (N̄1, x̄1, ȳ1, 0) and obtain a matrix of the form:
J(E1) =

(

E F

0 R2
0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2)

)where E is the 3 × 3 matrix
E =











−(µ + γ1ȳ1) 0 −N̄γ1

(γ1 − R1
0(γ1 + µ))

x̄1ȳ1

N̄
−[µ + R1

0(µ + γ1)ȳ1] −[R1
0(µ + γ1) − γ1]x̄1

(µ + γ1ȳ1)
ȳ1

N̄
R1

0(µ + γ1)ξ1ȳ1 [γ1 − R1
0(µ + γ1)(1 − ξ1)]ȳ1









We �rst show the followingLemma 1. All the eigenvalues of E have negative real part.The lemma implies that the Subtype-1-Only Equilibrium is always asymp-totially stable when it exists (R1
p > 1) in absene of individuals infeted withsubtype 2, as has been obtained in similar models with one strain and vai-nation (Pugliese, 1990).Proof. The harateristi polynomial of E (after a hange of sign) an bewritten as

λ3 + a1λ
2 + a2λ + a3 = 0 (2.23)Routh-Hurwitz riterion states that all solutions of (2.23) have negative realpart if and only if a1, a2, a3 > 0 and a1a2 − a3 > 0 (Murray, 2002).If we set

K = R1
0(µ + γ1)(1 − ξ1)ȳ1

L = R1
0(µ + γ1)ȳ128



2.3. Existene and Stability of Equilibriaafter some omputations (see the Appendix) we obtain
a1 = 2µ + K + L

a2 = (µ + L)(µ + K) + [R1
0(µ + γ1) − γ1]Lξ1x̄1 + (µ + γ1ȳ1)K

a3 = [R1
0(µ + γ1) − γ1]Lµξ1x̄1 + (µ + γ1ȳ1)(µ + L)K

a1a2 − a3 = (µ + L)(µ + K)(2µ + L + K) + [R1
0(µ + γ1) − γ1]Lξ1x̄1(µ + L + K) +

+(µ + γ1ȳ1)(µ + K)K.Sine R1
0 > 1 and hene R1

0(µ + γ1) > γ1 all these quantities are positive,thus proving that Routh-Hurwitz onditions are satis�ed.Sine J(E1) is blok-triangular, the set of eigenvalues of J(E1) is givenby the union of the set of eigenvalues of E and
λ̄4 = R2

0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2)Hene, the Subtype-1-Only Equilibrium is stable for (2.14) if and only if
λ̄4 = R2

0(µ + γ2)[x̄1 + (1 − ξ2)v̄1] − (µ + γ2) < 0.Rearranging the terms, the Subtype-1-Only Equilibrium is stable if and onlyif
R2:1

p = R2
0(x̄1 + (1 − ξ2)v̄1) < 1. (2.24)We wish now to express (2.24) in terms of ȳ1 only. To this aim, one animmediately insert (2.19) into (2.24). Instead, to obtain a simpler expressionthat does not ontain pe, we start by rewriting (2.18) as

R1
0(µ + γ1ȳ1)

µ + R1
0(µ + γ1)ȳ1

(

1 −
peµξ1

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

)

= 1and by algebrai manipulation of the expression we may write pe as funtionof ȳ1

pe =
[R1

0(1 − ȳ1) − 1][µ + R1
0(µ + γ1)(1 − ξ1)ȳ1]

R1
0(µ + γ1ȳ1)ξ1

(2.25)Substituting (2.25) into (2.19) we obtain the following expression for equi-29



2.3. Existene and Stability of Equilibrialibrium fration of e�etively vainated individuals
v̄1 =

R1
0(1 − ȳ1) − 1

R1
0ξ1

(2.26)Finally we obtain from (2.24)
R2:1

p = R2
0[x̄1 + (1 − ξ2)v̄1]

= R2
0[x̄1 + (1 − ξ1)v̄1 + (ξ1 − ξ2)v̄1]

= (using (2.18)) R2
0

[

1

R1
0

+ (ξ1 − ξ2)v̄1

]

=
R2

0

R1
0

[

1 +
ξ1 − ξ2

ξ1

[R1
0(1 − ȳ1) − 1]

]

. (2.27)Summarizing, we have obtained:Proposition 3. The Subtype-1-Only Equilibrium E1 = (N̄1, x̄1, ȳ1, 0) is asymp-totially stable [unstable℄ if R2:1
p < [>]1, where R2:1

p is given by expression(2.24) or (2.27).We now wish to express ondition R2:1
p < 1 in terms of pe.In all the rest of the paper let us assume, without loss of generality, that

R1
0 > R2

0.If ξ1 ≤ ξ2, (2.27) implies that R2:1
p < 1. In other words, if ξ1 ≤ ξ2, theSubtype-1-Only Equilibrium is asymptotially stable, when it exists.Therefore, we study the ondition R2:1

p < 1 under the additional assumption
ξ1 > ξ2.Sine (ξ1 − ξ2)

ξ1

R2
0ȳ1 > 0 and R2

0

R1
0

< 1, expression (2.27) implies that
R2:1

p =
R2

0

R1
0

[

1 +
(ξ1 − ξ2)

ξ1

R1
0 −

(ξ1 − ξ2)

ξ1

]

−
(ξ1 − ξ2)

ξ1

R2
0ȳ1

<
R2

0

R1
0

[

R1
0 −

ξ2

ξ1
R1

0 +
ξ2

ξ1

]

. (2.28)Sine
R2

0

R1
0

[

R1
0 −

ξ2

ξ1
R1

0 +
ξ2

ξ1

]

≤ 1 ⇐⇒ C := R1
0R

2
0(ξ1−ξ2)+R2

0ξ2−R1
0ξ1 ≤ 0. (2.29)30



2.3. Existene and Stability of Equilibriainequality (2.28) shows that, if R1
0 > R2

0, ξ1 > ξ2 and C ≤ 0, then R2:1
p < 1for every value of 0 ≤ pe ≤ 1.In order to study when R2:1

p > 1, we then add the assumption C > 0, usingthen the assumptions
R1

0 > R2
0, ξ1 > ξ2 and C > 0 (2.30)Let us now set R2:1

p = 1 and �nd the orresponding fration of infetedindividuals
ȳBP

1 =
R1

0R
2
0(ξ1 − ξ2) + R2

0ξ2 − R1
0ξ1

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)

. (2.31)The supersript BP is related to the fat that this value orresponds to abranhing point of equilibrium urves, as will be seen later.Beause of the monotoni dependene of R2:1
p on ȳ1 (2.27), we have

R2:1
p < [>]1 ⇐⇒ ȳ1 > [<]ȳBP

1By (2.25) and (2.31) we an ompute the pe values at whih branhing ours.We see that R2:1
p = 1 for

peBP
1 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) + µ] + R1

0(µ + γ1)(1 − ξ1)(R
2
0ξ2 − R1

0ξ1)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)] (2.32)where

v̂ =
(R1

0 − R2
0)

R1
0R

2
0(ξ1 − ξ2)

. (2.33)Sine ȳ1 is a dereasing funtion of pe (see (2.22)), we onlude that
R2:1

p < [>]1 ⇐⇒ pe < [>]peBP
1By algebrai manipulation of (2.32), peBP

1 may be written as
peBP

1 =
(R1

0 − R2
0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
µξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

(Cγ1 + µR1
0R

2
0(ξ1 − ξ2))

] (2.34)where C is de�ned in (2.29). 31



2.3. Existene and Stability of EquilibriaWe have the followingLemma 2. Assume (2.30).a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
1 < 1 at least for µ/γ1 > 0small enough.b) If R2

0(1 − ξ2) ≤ R1
0(1 − ξ1), then peBP

1 ≥ 1 for all µ > 0.The proof is in the Appendix.The assumption R2
0(1 − ξ2) > R1

0(1 − ξ1) is then neessary for strain 2 to beable to invade the Subtype-1-Only Equilibrium.Summing up, neessary assumptions for having R2:1
p > 1 with pe ≤ 1 are











ξ1 > ξ2

C > 0

R2
0(1 − ξ2) > R1

0(1 − ξ1)

(2.35)We onlude the followingProposition 4. Under the assumption R1
0 > R2

0, if any of the onditions(2.35) is violated, then the Subtype-1-Only Equilibrium is asymptotially sta-ble for all 0 ≤ pe ≤ 1 in whih this equilibrium is de�ned. If all of (2.35) aresatis�ed, then the Subtype-1-Only Equilibrium (when it is de�ned) is asymp-totially stable for 0 ≤ pe ≤ peBP
1 and unstable for pe > peBP

1 , where peBP
1 isde�ned by (2.32) or (2.34). Under (2.35) the quantity peBP

1 < 1 at least for
µ small enough.Completely similar (but reversed) arguments apply to the Subtype-2-OnlyEquilibrium. It is asymptotially stable [unstable℄ if

R1:2
p = R1

0(x̄2 + (1 − ξ1)v̄2) < [>]1.As before, we may write R1:2
p as

R1:2
p =

R1
0

R2
0

[

1 +
ξ2 − ξ1

ξ2
[R2

0(1 − ȳ2) − 1]

] (2.36)32



2.3. Existene and Stability of EquilibriaAgain, if we assume that R1
0 > R2

0, then (2.36) together with
v̄2 =

R2
0(1 − ȳ2) − 1

R2
0ξ1

> 0 (2.37)implies that
ξ2 ≥ ξ1 =⇒ R1:2

p > 1.That is, if R1
0 > R2

0 and ξ2 ≥ ξ1, then Subtype-1 invades the Subtype-2-OnlyEquilibrium, wherever it exists.Assume now ξ2 < ξ1 together with R1
0 > R2

0. By the same reasoning madebefore, expression (2.36) implies
R1:2

p =
R1

0

R2
0

[

1 +
ξ2 − ξ1

ξ2
(R2

0 − 1)

]

+
ξ1 − ξ2

ξ2
ȳ2 >

R1
0

R2
0

[

R2
0 −

ξ1

ξ2
R2

0 +
ξ1

ξ2

]

.(2.38)The right hand side of (2.38) is greater or equal than 1, if and only if C ≤ 0with C de�ned in (2.35). Hene
C ≤ 0 =⇒ R1:2

p > 1,i.e. strain 1 invades the Subtype-2-Only Equilibrium whenever this exists.To proeed, we also assume C > 0.As before, we �nd the fration of individuals infeted with strain 2 at theequilibrium orresponding to R1:2
p = 1:

ȳBP
2 =

R1
0R

2
0(ξ1 − ξ2) + R2

0ξ2 − R1
0ξ1

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)Notie that, sine (2.36) is an inreasing funtion of ȳ2 (remember ξ1 > ξ2),we have

R1:2
p < 1 ⇐⇒ ȳ2 < ȳBP

2 .Writing, analogously to (2.25), pe as funtion of ȳ2 as
pe =

[R2
0(1 − ȳ2) − 1][µ + R2

0(µ + γ2)(1 − ξ2)ȳ2]

R2
0ξ2(µ + γ2ȳ2)

(2.39)
33



2.3. Existene and Stability of Equilibriawe see that R1:2
p = 1 for

peBP
2 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) + µ] + R2

0(R
2
0ξ2 − R1

0ξ1)(µ + γ2)(1 − ξ2)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

2
0ξ2 − R1

0ξ1)] (2.40)using the de�nition (2.33) for v̂.Sine ȳ2 is a dereasing funtion of pe (by (2.22)), we onlude that
R1:2

p < 1 ⇐⇒ pe > peBP
2By manipulation of (2.40) we �nd that

peBP
2 =

(R1
0 − R2

0)

R1
0(ξ1 − ξ2)

[1 − ξ2 +
µξ2(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

γ2C + µR1
0R

2
0(ξ1 − ξ2)

]. (2.41)Anagolously to Lemma 2, we haveLemma 3. Assume (2.30).a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
2 < 1 at least for µ/γ2 > 0small enough.b) If R2

0(1 − ξ2) ≤ R1
0(1 − ξ1), then peBP

2 ≥ 1 for all µ > 0.The proof is idential to that of Lemma 2 and is skipped.Symmetrially to Proposition 4, we obtainProposition 5. Under the assumption R1
0 > R2

0, if any of the onditions(2.35) is violated, then the Subtype-2-Only Equilibrium is unstable for all
0 ≤ pe ≤ 1 in whih this equilibrium is de�ned. If all of (2.35) are satis�ed,then the Subtype-2-Only Equilibrium is unstable for 0 ≤ pe ≤ peBP

2 andasymptotially stable for pe > peBP
2 (when the equilibrium itself is de�ned),where peBP

2 is de�ned by (2.40) or (2.41). Under (2.35) the quantity peBP
2 <

1 at least for µ small enough.2.3.3 Coexistene EquilibriumExisteneAt the Coexistene Equilibrium ompletely suseptible (x̂ > 0), e�etivelyvainated (v̂ > 0), individuals infeted by subtype 1 (ŷ1 > 0) and individu-34



2.3. Existene and Stability of Equilibriaals infeted by subtype 2 (ŷ2 > 0) are all present in the ommunity.Setting equal to 0 equations (2.10)�(2.11), together with (2.15) one ob-tains
{

R1
0[x̂ + (1 − ξ1)v̂] = 1

R2
0[x̂ + (1 − ξ2)v̂] = 1

(2.42)The equilibrium frations x̂, v̂ an be omputed solving (2.42):
x̂ =

R2
0(1 − ξ2) − R1

0(1 − ξ1)

R1
0R

2
0(ξ1 − ξ2)

v̂ =
R1

0 − R2
0

R1
0R

2
0(ξ1 − ξ2)

(2.43)Fration v̂ is positive under the ondition thatif Ri
0 > Rj

0, then ξi > ξjwhih means that the Coexistene Equilibrium exists only if the vaineindues a higher degree of protetion against the subtype with the higher�tness in a ompletely suseptible population.Without loss of generality, let's assume R1
0 > R2

0 and require ξ1 > ξ2.The suseptible fration x̂ is positive if and only if
R2

0(1 − ξ2) > R1
0(1 − ξ1)By substitution of (2.43) into x̂ + v̂ < 1 one obtains

R1
0ξ1 − R2

0ξ2

R1
0R

2
0(ξ1 − ξ2)

< 1 ⇐⇒ C > 0where C is given by (2.29).Conditions (2.35) are then neessary for the existene of a Coexistene Equi-librium.Setting equal to 0 equations (2.8)�(2.9) together with (2.15) and using matrixnotation, one obtains
A

(

ŷ1

ŷ2

)

= µ

(

1 − pe − x̂

pe − v̂

) (2.44)35



2.3. Existene and Stability of Equilibriawhere
A =

(

R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe R2

0(µ + γ2)(1 − ξ2)v̂ − γ2pe

)

System (2.44) admits a unique solution if and only if
|A| = µ[R2

0(µ + γ2)(1− ξ2)v̂ −R1
0(µ + γ1)(1− ξ1)v̂ + pe(γ1 − γ2)] 6= 0 (2.45)Observation 1. If γ1 = γ2, then by (2.35) |A| > 0 for 0 ≤ pe ≤ 1.Under the further assumption that |A| 6= 0, we an expliitly solve (2.44)by Cramer's rule

ŷ1 =

∣

∣

∣

∣

∣

µ(1 − pe − x̂) R2
0(µ + γ2)x̂ − γ2(1 − pe)

µ(pe − v̂) R2
0(µ + γ2)(1 − ξ2)v̂ − γ2pe

∣

∣

∣

∣

∣

|A|

=
peµ[γ2(x̂ + v̂) − (µ + γ2)] + µv̂[R2

0(µ + γ2)(1 − ξ2 + ξ2x̂) − γ2]

|A| (2.46)
ŷ2 =

∣

∣

∣

∣

∣

R1
0(µ + γ1)x̂ − γ1(1 − pe) µ(1 − pe − x̂)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe µ(pe − v̂)

∣

∣

∣

∣

∣

|A|

=
peµ[γ1(1 − (x̂ + v̂)) + µ] + µv̂[γ1 − R1

0(µ + γ1)(1 − ξ1 + ξ1x̂)]

|A| (2.47)We onlude the followingProposition 6. Under the assumption R1
0 > R2

0, neessary onditions for aCoexistene Equilibrium to exist are given by (2.35). Moreover, if γ1 = γ2 theCoexistene Equilibrium is unique. If γ1 6= γ2 the Coexistene Equilibrium isunique under the assumption that |A| 6= 0, where |A| is given by (2.45).Let's now prove the following 36



2.3. Existene and Stability of EquilibriaLemma 4. The equilibrium frations x̂, v̂, ŷ1, ŷ2 satisfy ondition
x̂ + v̂ + ŷ1 + ŷ2 = 1 (2.48)Proof. Equations (2.8)�(2.9) together with (2.48) an be written as

B







ŷ1

ŷ2

1






= 0 (2.49)where

B =







R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe) µ(1 − pe − x̂)

R1
0(µ + γ1)(1 − ξ1)v̂ − γ1pe R2

0(µ + γ2)(1 − ξ2)v̂ − γ2pe µ(pe − x̂)

1 1 1 − x̂ − v̂





By (2.35) matrix B an be redued to the form






R1
0(µ + γ1)x̂ − γ1(1 − pe) R2

0(µ + γ2)x̂ − γ2(1 − pe) µ(1 − pe − x̂)

µ µ µ(1 − x̂ − v̂)

1 1 1 − x̂ − v̂





thus proving our laim.

In order to �nd su�ient onditions for the existene of a positive equi-librium, we start with the assumption |A| > 0.By (2.47) one obtains that ŷ2 > 0 for
pe >

v̂[R1
0(µ + γ1)(1 − ξ1 + ξ1x̂) − γ1]

µ + γ1(1 − (x̂ + v̂))37



2.3. Existene and Stability of EquilibriaSubstituting (2.43) and rearranging the terms one gets
pe > v̂

[

R1
0(µ + γ1)(1 − ξ1) + R1

0ξ1(µ + γ1)
R2

0(1 − ξ2) − R1
0(1 − ξ1)

R1
0R

2
0(ξ1 − ξ2)

− γ1

]

R1
0R

2
0(ξ1 − ξ2)µ + γ1[R

1
0R

2
0(ξ1 − ξ2) − R1

0ξ1 + R2
0ξ2]

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) − γ1] + R1

0ξ1(µ + γ1)[R
2
0(1 − ξ2) − R1

0(1 − ξ1)]

R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ + γ1)(1 − ξ1) + µ] + R1

0(µ + γ1)(1 − ξ1)(R
2
0ξ2 − R1

0ξ1)

R1
0R

2
0(ξ1 − ξ2)(µ + γ1) + γ1(R2

0ξ2 − R1
0ξ1)

(2.50)By (2.32) inequality (2.50) an be written as
pe > peBP

1Similarly, by (2.46), ondition ŷ1 > 0 an be expressed in terms of pe

pe <
x̂v̂[R2

0ξ2(µ + γ2)] + v̂[R2
0(µ + γ2)(1 − ξ2) − γ2]

µ + γ2(1 − (x̂ + v̂))Substituting (2.43) and rearranging the terms one gets
pe < v̂

[R2
0(1 − ξ2) − R1

0(1 − ξ1)][R
2
0ξ2(µ + γ2)] + [R2

0(µ + γ2)(1 − ξ2) − γ2]

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

1
0ξ1 − R2

0ξ2)]

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) − γ2] + R2

0ξ2(µ + γ2)[R
2
0(1 − ξ2) − R1

0(1 − ξ1)]

R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R2

0ξ2 − R1
0ξ1)

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ + γ2)(1 − ξ2) + µ] + R2

0(R
2
0ξ2 − R1

0ξ1)(µ + γ2)(1 − ξ2)

[R1
0R

2
0(ξ1 − ξ2)(µ + γ2) + γ2(R

2
0ξ2 − R1

0ξ1)]
(2.51)By (2.40) inequality (2.51) an be written as

pe < peBP
2With similar (but reversed) arguments, one �nds that under the assumption

|A| < 0, ŷ2 > 0 and ŷ1 > 0 for
peBP

2 < pe < peBP
1We have then proved the followingProposition 7. Under the assumptions R1

0 > R2
0 and (2.35), su�ient and38



2.3. Existene and Stability of Equilibrianeessary onditions for the Coexistene Equilibrium to exist are(a) if |A| > 0, R1:2
p > 1 and R2:1

p > 1 (i.e. peBP
1 < pe < peBP

2 );(b) if |A| < 0, R1:2
p < 1 and R2:1

p < 1 (i.e. peBP
2 < pe < peBP

1 ).where peBP
1 and peBP

2 are given by (2.34) and (2.41) respetively.Conditions for sub- or super-ritial bifurationsIt is therefore relevant �nding whether peBP
1 < peBP

2 or vie versa.Lemma 5. Under the assumption R1
0 > R2

0 and (2.35), peBP
1 and peBP

2 , givenby (2.34) and (2.41), are dereasing funtions of γ1 and γ2 respetively.If γ1 ≥ γ2 then peBP
1 < peBP

2 .If
R2

0(ξ1 − ξ2) ≥ ξ1 (2.52)then peBP
1 < peBP

2 for all values of γ1 and γ2.If R2
0(ξ1 − ξ2) < ξ1 then peBP

1 > peBP
2 for γ1 small enough, and γ2 largeenough.Proof. The fat that peBP

1 and peBP
2 are dereasing funtions of γ1 and γ2 isan immediate onsequene of expressions (2.34) and (2.41) and assumptions(2.35).Consider now γ1 = γ2 = γ. With some simple algebrai manipulations,one obtains

peBP
2 − peBP

1 =
(R1

0 − R2
0)(1 − ξ2)

R2
0(ξ1 − ξ2)

−
(R1

0 − R2
0)(1 − ξ1)

R2
0(ξ1 − ξ2)

+
µ(R2

0(1 − ξ2) − R1
0(1 − ξ1))

(Cγ + µR1
0R

2
0(ξ1 − ξ2))

[

(R1
0 − R2

0)ξ2

R2
0(ξ1 − ξ2)

−
(R1

0 − R2
0)ξ1

R2
0(ξ1 − ξ2)

]

=
(R1

0 − R2
0)(R

2
0(1 − ξ2) − R1

0(1 − ξ1))(µ + γ)C

R1
0R

2
0(ξ1 − ξ2)(Cγ + µR1

0R
2
0(ξ1 − ξ2))

> 0.From the fat that peBP
1 and peBP

2 are dereasing funtions of γ1 and γ2respetively, we may onlude that the inequality peBP
1 < peBP

2 holds also forevery γ1 > γ2.As for the �nal laim, if lim
γ1→0

peBP
1 ≤ lim

γ2→+∞
peBP

2 , then peBP
1 < peBP

2 forall �nite, positive γ1 and γ2. 39



2.3. Existene and Stability of EquilibriaVie versa, if lim
γ1→0

peBP
1 > lim

γ2→+∞
peBP

2 , by ontinuity peBP
1 > peBP

2 oversome range of γ1 and γ2 values.
lim
γ1→0

peBP
1 =

(R1
0 − R2

0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R1
0R

2
0(ξ1 − ξ2)

]while
lim

γ2→+∞
peBP

2 =
(R1

0 − R2
0)(1 − ξ2)

R2
0(ξ1 − ξ2)

.Hene, with some algebra
lim
γ1→0

peBP
1 − lim

γ2→+∞
peBP

2

=
(R2

0(1 − ξ2) − R1
0(1 − ξ1))(R

1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

(

−1 +
ξ1

R2
0(ξ1 − ξ2)

)

.This quantity is positive if and only if R2
0(ξ1−ξ2) < ξ1, yielding the onlusionof the proof.Finally, we showLemma 6. (a) if peBP

1 < peBP
2 , then |A| > 0 for all pe ∈ [peBP

1 , peBP
2 ];(b) if peBP

2 < peBP
1 , then |A| < 0 for all pe ∈ [peBP

2 , peBP
1 ].() if peBP

2 = peBP
1 , then |A| = 0 for pe = peBP

1 = peBP
2 .Through a) and b), we will be able to draw a lear bifuration pattern(see for example Britton (2003)) of the system, with transritial bifurationsourring at E1 for pe = peBP

1 , and at E2 for pe = peBP
2 .Proof. We denote by |A|BPi the determinant of A omputed with pe = peBP

i ,
i = 1, 2. Through simple, but tedious, algebrai manipulations, one arrivesat
|A|BP1 =

µ(R2
0(1 − ξ2) − R1

0(1 − ξ1))(R
1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

×

[

µ + γ2 −
γ2µR1

0ξ1

Cγ1 + µR1
0R

2
0(ξ1 − ξ2)

+
γ1µR1

0ξ1

Cγ1 + µR1
0R

2
0(ξ1 − ξ2)

]

.(2.53)40



2.3. Existene and Stability of EquilibriaIt is immediate to see that |A|BP1 is an inreasing funtion of γ1. We alreadyknow (Observation 1) that |A|BP1 > 0 for γ1 ≥ γ2.Setting (2.53) equal to 0, we see that
|A|BP1 = 0 ⇐⇒ γ1 = Ψ1(γ2) (2.54)with

Ψ1(γ2) =
µ(γ2R

1
0(ξ1 − R2

0(ξ1 − ξ2)) − µR1
0R

2
0(ξ1 − ξ2))

C(µ + γ2) + µR1
0ξ1

. (2.55)If Ψ1(γ2) < 0, then |A|BP1 > 0 for all γ1 > 0. In partiular Ψ1(γ2) < 0 forall γ2 > 0 if R2
0(ξ1 − ξ2) ≥ ξ1, i.e. (2.52) holds.Otherwise, |A|BP1 > 0 for γ1 > Ψ1(γ2) and |A|BP1 < 0 for γ1 < Ψ1(γ2).Similarly, we obtain

|A|BP2 =
µ(R2

0(1 − ξ2) − R1
0(1 − ξ1))(R

1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

×

[

µ −
γ2µR2

0ξ2

Cγ2 + µR1
0R

2
0(ξ1 − ξ2)

+ γ1 +
γ1µR2

0ξ2

Cγ2 + µR1
0R

2
0(ξ1 − ξ2)

]

.(2.56)Now it is immediate to see that |A|BP2 is a dereasing funtion of γ2 and
lim

γ2→∞
|A|BP2 =

µ(R2
0(1 − ξ2) − R1

0(1 − ξ1))(R
1
0 − R2

0)

R1
0R

2
0(ξ1 − ξ2)

(

µ + γ1 −
µR2

0ξ2

C

)

.Hene, if
C(µ + γ1) ≥ µR2

0ξ2 (2.57)
|A|BP2 > 0 for all γ2 > 0.Otherwise, when (2.57) does not hold, setting (2.56) equal to 0, we seethat

|A|BP2 = 0 ⇐⇒ γ2 = Ψ2(γ1) (2.58)with
Ψ2(γ1) =

µ(γ1R
2
0(ξ2 + R1

0(ξ1 − ξ2)) + µR1
0R

2
0(ξ1 − ξ2))

µR2
0ξ2 − C(µ + γ1)

. (2.59)41



2.3. Existene and Stability of EquilibriaWe see that, if (2.57) does not hold, Ψ2(γ1) > 0, and |A|BP2 > 0 for
γ2 < Ψ2(γ1) and |A|BP2 < 0 for γ2 > Ψ2(γ1).Finally, we observe that the onditions for |A|BPi = 0, i = 1, 2, are atu-ally the same; more preisely Ψ2(γ1) is the inverse of Ψ1, de�ned on theappropriate domain. Indeed, solving the equation γ1 = Ψ1(γ2) for γ2, weobtain

γ2 =
µ(γ1(C + R1

0ξ1) + µR1
0R

2
0(ξ1 − ξ2))

µR1
0(ξ1 − R2

0(ξ1 − ξ2)) − Cγ1
= Ψ2(γ1)where the last identity omes from the de�nition of C, so that

C + R1
0ξ1 = R2

0(ξ2 + R1
0(ξ1 − ξ2)) and R1

0(ξ1 − R2
0(ξ1 − ξ2)) = −C + R2

0ξ2.Summarizing, we have obtained that if (2.52) does not hold, the funtion
γ2 = Ψ2(γ1) divides the plane into two regions (see Figure 2.2) suh thatbelow and to the right both |A|BP1 and |A|BP2 are positive; above and to theleft both are negative.
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Figure 2.2: The funtion γ2 = Ψ2(γ1) and the orresponding regions in the plane (γ1, γ2)where ases (a) or (b) of Lemma 6 hold. Parameter values are R1
0 = 4, R2

0 = 2, µ = 1,
ξ1 = 0.9, ξ2 = 0.5.Sine |A| is an a�ne funtion of pe (see (2.45)), if it has the same signat both ends of a segment, it will have the same sign also within, yielding a)and b). 42



2.3. Existene and Stability of EquilibriaTo show ), through long omputations, one arrives at
peBP

2 − peBP
1 =

(R1
0 − R2

0)(R
2
0(1 − ξ2) − R1

0(1 − ξ1))C

R1
0R

2
0(ξ1 − ξ2)

×
γ2(C(µ + γ1) − µR2

0ξ2) + µR2
0(µR1

0(ξ1 − ξ2) + γ1(R
1
0(ξ1 − ξ2) + ξ2))

(Cγ1 + µR1
0R

2
0(ξ1 − ξ2))(Cγ2 + µR1

0R
2
0(ξ1 − ξ2))

.It is then easy to see that peBP
2 − peBP

1 = 0 if and only if γ2 = Ψ2(γ1).We an now summarise the onlusions about the existene of the Coex-istene Equilibrium.Proposition 8. Assume R1
0 > R2

0 and (2.35). Then there our transritialbifurations at E1 for pe = peBP
1 , and at E2 for pe = peBP

2 with the emergeneof a positive oexistene equilibrium. Either(a) peBP
1 < peBP

2 and the oexistene equilibrium is unique and feasible forall pe ∈ [peBP
1 , peBP

2 ];(b) peBP
2 < peBP

1 and the oexistene equilibrium is unique and feasible forall pe ∈ [peBP
2 , peBP

1 ].() peBP
2 = peBP

1 , and there is a ontinuum of positive equilibria for pe =

peBP
1 = peBP

2 .If (2.52) holds, (a) is true for all values of γ1 and γ2.Otherwise, () is true for γ2 = Ψ2(γ1); (b) is true for γ2 > Ψ2(γ1) > 0; (a) istrue for γ2 < Ψ2(γ1) and for all γ2 when Ψ2(γ1) < 0, where Ψ2(γ1) is de�nedin (2.59).Note that Ψ2(γ1) > γ1, so that, if γ1 ≥ γ2, (a) is always true.StabilityIt is easy to show that in ase (b) the oexistene equilibrium is alwaysunstable. This an be proved by bifuration theory, but an also be hekeddiretly using 43



2.4. ExamplesLemma 7. Let onditions (2.35) hold and let J be the Jaobian of (2.8)�(2.12) omputed at the oexistene equilibrium. Thensign(|J |) = sign(|A|).The proof is given in the Appendix.It follows that in ase (b), the Routh-Hurwitz stability onditions are vio-lated, and the oexistene equilibrium is unstable.As for ase (a), bifuration theory shows that the oexistene equilibrium isasymptotially stable for pe lose to peBP
1 and peBP

2 .We were not able to prove that Routh-Hurwitz stability onditions are satis-�ed for all pe ∈ (peBP
1 , peBP

2 ). We then performed a numerial study drawing
1 million sets of parameters (R1

0, R2
0, ξ1, ξ2, γ1/µ, γ2/µ) satisfying ondi-tions (2.35) and (2.52) or Ψ2(γ1) < 0 or γ2 < Ψ2(γ1). For eah suh draw,we divided the (peBP

1 , peBP
2 ) interval into 10000 sub-intervals and, for eahvalue of pe in this mesh, omputed, through standard routines (Press et al.,1992), the eigenvalues of the Jaobian at the oexistene equilibrium. Allthe omputed eigenvalues had negative real parts, suggesting that the oex-istene equilibrium never loses its stability through Hopf bifurations in theintervals (peBP

1 , peBP
2 ).2.4 ExamplesThe ase peBP

1 < peBP
2 had already been numerially observed by Poro andBlower (1998). In this ase oexistene ours in the parameter region wherethe other existing equilibria are unstable. The ase peBP

1 < peBP
2 ours for

γ1 = γ2, γ1 > γ2 and may our also for ertain γ1 < γ2 as shown by thefollowing example.Example 1: Let γ1 = 0.015 < γ2 = 0.517 and
R1

0 = 8.363, R2
0 = 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020 and π = 1By substitution into (2.17), (2.32) and (2.40) we get

peDF
1 = 0.888 peDF

2 = 36.496 peBP
1 = 0.153 peBP

2 = 0.55244



2.4. ExamplesThe Subtype-1-Only Equilibrium is stable for 0 ≤ pe < 0.153, the Subtype-2-Only Equilibrium is stable for 0.552 < pe ≤ 1 and the Coexistene Equilib-rium exists into the range 0.153 < pe < 0.552, where the DFE, the Subtype-1-Only and the subtype-2-Only Equilibria exist but are unstable. Numerialomputation of the eigenvalues of the linearized system on�rm that theCoexistene Equilibrium is stable where it exists. Figure 2.3 shows the equi-librium frations y1 and y2 as funtion of parameter pe.

Figure 2.3: Equilibrium frations y1 and y2 as funtion of pe for �xed γ1 = 0.015, γ2 =

0.517, R1

0
= 8.363, R2

0
= 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020, π = 1. Coexistene of thestrains ours for 0.153 < pe < 0.552.The ase peBP

1 > peBP
2 had never been observed before. In this ase theCoexistene Equilibrium exists in a `bi-stability' region in whih both theSubtype-1-Only and the Subtype-2-Only Equilibrium are stable and henethe asymptoti behavior of the system depends on the initial onditions. Thislatter ase ours only for ertain γ1 < γ2.Example 2: Consider the ase γ1 = 0.026 < γ2 = 0.966 and let

R1
0 = 4.723, R2

0 = 2.293, µ = 0.235, ξ1 = 0.923, ξ2 = 0.650 and π = 1.45



2.4. ExamplesBy substitution into (2.17), (2.32) and (2.40) we get
peDF

1 = 0.853 peDF
2 = 0.866 peBP

1 = 0.829 peBP
2 = 0.822The DFE is stable for pe > 0.866, the Subtype-1-Only Equilibrium is stablefor 0 < pe < 0.829 and the Subtype-2-Only Equilibrium is stable for 0.822 <

pe < 0.866. The Coexistene Equilibrium exists for 0.822 < pe < 0.829 andis unstable. Figure 2.4 shows the equilibrium frations y1 and y2 as funtionof parameter pe. Figure 2.5 shows two trajetories for the equilibrium fra-tions y1 and y2 starting lose to the Coexistene Equilibrium at pe = 0.8234and onverging one to the Subtype-1-Only Equilibrium and the other to theSubtype-2-Only Equilibrium. The bifuration and trajetory graphs havebeen obtained by the graphial pakage MatCont of the MATLAB software.
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2.5. Disussion
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Figure 2.5: Trajetories of the frations y1 (left panel) and y2 (right panel) as funtions oftime; parameter values are γ1 = 0.026, γ2 = 0.966, R1

0
= 4.723, R2

0
= 2.293, µ = 0.235, ξ1 =

0.923, ξ2 = 0.650, π = 1 and pe = 0.8234. Both trajetories start lose to the Coexis-tene Equilibrium x = 0.148, y1 = 0.007, y2 = 0.022, N = 3.896; the starting point ofthe red one, onverging to the Subtype-1-Only Equilibrium, is (0.148, 0.010, 0.029, 3.896);the starting point of the blue one, onverging to the Subtype-2-Only Equilibrium, is
(0.148, 0.007, 0.029, 3.896).
2.5 DisussionIn this hapter we have analysed a model for ompetition between two viralstrains with omplete ross-immunity and imperfet vaination. The modelwas �rst proposed by Poro and Blower (1998) with di�erent HIV strainsas ase system; the authors showed through simulations the possibility thatvaination shifted the ompetitive hierarhy, with potential side-e�ets onpubli health.Here we have examined the same model in greater detail, �nding for in-stane the exat onditions under whih vaination may lead to oexisteneof two strains; these are given by (2.35). It is worth ommenting on theirbiologial interpretation.The �rst ξ1 > ξ2 means that the vaine redues more the suseptibilityto the strain with the higher reprodution number (the better ompetitor inabsene of vaination) sine we assumed R1

0 > R2
0.47



2.5. DisussionThe seond ondition, that an be written as
ξ2

ξ1
<

R1
0(R

2
0 − 1)

R2
0(R

1
0 − 1)spei�es that the ratio of suseptibilities under vaination must be dereasedsu�iently relative to a ratio of reprodution numbers.The third ondition R2

0(1−ξ2) > R1
0(1−ξ1) means that, if every individualwere vainated, the seond strain would have a higher reprodution number(note that the third ondition implies the �rst one, whih is then pleonasti).Under these onditions there always exists a range of vaination ratesunder whih a (unique) oexistene equilibrium exists, at least if µ/γi is smallenough, i.e. natural mortality is su�iently lower than that indued by theinfetion (or, in ase of HIV, than the rate of progressing into AIDS).The relative values of γ1 and γ2 (i.e., of the expeted lenghts of sojourn inthe lasses I1 and I2) determine the ordering between peBP

1 given by (2.32)and peBP
2 given by (2.40). This in turn a�ets the qualitative behavior ofsystem (2.14).The ase peBP

1 < peBP
2 had already been numerially observed (Poroand Blower, 1998). In this ase, oexistene ours in the parameter regionwhere all the other equilibria are unstable. Numerially, we found that theoexistene equilibrium is asymptotially stable for parameter values in thisregion, but the possibility of destabilization via Hopf bifurations annotbe totally exluded, sine an analytial proof is missing. The unonditionalstability of the oexistene equilibrium has been proven in another modelwith oexistene of totally ross-immune pathogen strains (Andreasen andPugliese, 1995).On the other hand, the ase peBP

1 > peBP
2 is also possible, giving riseto phenomena that had not been antiipated. In this ase there exists aparameter region in whih both monomorphi equilibria (i.e. the Subtype-1-Only and the Subtype-2-Only Equilibrium) are stable and the oexisteneequilibrium exists unstable (see Figure 2.4). In this `bi-stability' region theasymptoti behavior of system (2.8)�(2.12) depends on the initial onditions.The presene of the bi-stability region implies that, with a gradual inreaseof vaination rates, one may enounter a sudden shift from a situation with48



2.5. Disussiononly strain 1 present in appreiable proportion, to one with only strain 2.Moreover, dereasing again vaination rates, one would see a hysteresis-typebehavior.As shown in the main text, bi-stability may our only if γ1 < γ2. Thismeans that the mortality rate (or rate of developing AIDS, in ase of HIV)must be larger for strain 2 (the one that is out-ompeted without vaination)than for strain 1. In other words, bi-stability may our only if vainationshifts the ompetitive balane in favour of a more virulent strain, a ratherunpleasant senario (Massad et al., 2006). Note that the model is de�nitelynot realisti for HIV, mainly beause its struture implies that the duration ofthe infetious stage is exponential, whih is ertainly not plausible, whetherinfetious are treated or not. The goal of our analysis is mainly exploratoryto suggest possible phenomena that may be then examined (probably withthe help of numerial software) in more realisti and omplex models. Onthe other hand, the model an be applied to many other fatal diseases of S-Itype, as long as one an assume that the entrane in the ommunity (withor without vaination) is onstant and independent from the populationsize. One an reasonably expet that similar results would be obtained alsounder other assumptions for the birth rate, but the analysis would be moreomplex. Thus, these results should be of interest in the analysis of severalemerging and re-emerging fatal infetious diseases.
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2.6. Appendix2.6 Appendix2.6.1 Computation of the Routh-Hurwitz oe�ientsWe report here the omputations of a1, a2, a3 and a1a2 − a3 that lead us toprove that the Subtype-1-Only Equilibrium is stable, wherever it exists.Remind that we set
K = R1

0(µ + γ1)(1 − ξ1)ȳ1

L = R1
0(µ + γ1)ȳ1

a1 = (µ + γ1ȳ1) +
[

µ + R1
0(µ + γ1)ȳ1

]

− γ1ȳ1 + R1
0(µ + γ1)(1 − ξ1)ȳ1

= µ + µ + R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1

= 2µ + K + L

a2 = (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

+

−
[

µ + R1
0(µ + γ1)ȳ1

] [

γ1ȳ1 − R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

− (µ + γ1ȳ1)
[

γ1ȳ1 − R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+ (µ + γ1ȳ1)γ1ȳ1

=
[

µ + R1
0(µ + γ1)ȳ1

] [

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

]

+

+
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

+ (µ + γ1ȳ1)R
1
0(µ + γ1)(1 − ξ1)ȳ1

= (µ + L)(µ + K) +
[

R1
0(µ + γ1) − γ1

]

Lξ1x̄1 + (µ + γ1ȳ1)K

a3 = (µ + γ1ȳ1)
{

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1 −

[

µ + R1
0(µ + γ1)ȳ1

]

[γ1ȳ1+

− R1
0(µ + γ1)(1 − ξ1)ȳ1]} + γ1N̄

[

γ1ȳ1 − R1
0(µ + γ1)ȳ1

]

R1
0(µ + γ1)ξ1

x̄1ȳ1

N̄
+

+ (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

] ȳ1

N̄

}
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2.6. Appendix
= (µ + γ1ȳ1){

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1 −

[

µ + R1
0(µ + γ1)ȳ1

]

[γ1ȳ1+

− R1
0(µ + γ1)(1 − ξ1)ȳ1]} −

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1γ1ȳ1+

+ (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

γ1ȳ1

=
[

R1
0(µ + γ1) − γ1

]

Lµξ1x̄1 + (µ + γ1ȳ1)(µ + L)K

a1a2 − a3 =
[

µ + R1
0(µ + γ1)ȳ1

] [

µ + R1
0(µ + γ1)(1 − ξ1)ȳ1

]

[2µ + R1
0(µ + γ1)ȳ1+

+R1
0(µ + γ1)(1 − ξ1)ȳ1] +

[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1[2µ+

+ R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1]+

+ (µ + γ1ȳ1)R
1
0(µ + γ1)(1 − ξ1)ȳ1·

[

2µ + R1
0(µ + γ1)ȳ1 + R1

0(µ + γ1)(1 − ξ1)ȳ1

]

+

−
[

R1
0(µ + γ1) − γ1

]

R1
0(µ + γ1)ξ1x̄1ȳ1+

− (µ + γ1ȳ1)
[

µ + R1
0(µ + γ1)ȳ1

]

R1
0(µ + γ1)(1 − ξ1)ȳ1

= (µ + L)(µ + K)(2µ + L + K)+

+
[

R1
0(µ + γ1) − γ1

]

Lξ1x̄1(µ + L + K)+

+ (µ + γ1ȳ1)(µ + K)K

2.6.2 Proof of Lemma 2Proof. a) It is lear that, under the assumptions (2.30), if R2
0(1− ξ2) > R1

0(1− ξ1),then 0 < peBP
1 . As for the other inequality, if µ = 0,

peBP
1 =

(R1
0 − R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)and

(R1
0 − R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)

< 1 ⇐⇒ R1
0(1 − ξ1) < R2

0(1 − ξ2).By ontinuity, if R2
0(1 − ξ2) > R1

0(1 − ξ1), peBP
1 < 1 for µ > 0 small enough.b) If R2

0(1 − ξ2) = R1
0(1 − ξ1), peBP

1 ≡ 1 for all µ > 0.If R2
0(1−ξ2) < R1

0(1−ξ1), peBP
1 is a dereasing ontinuous funtion of µ on [0,+∞).51



2.6. AppendixHene
peBP

1 > p∞ := lim
µ→+∞

peBP
1 =

(R1
0 − R2

0)

R2
0(ξ1 − ξ2)

[

1 − ξ1 +
ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R1
0R

2
0(ξ1 − ξ2)

]

.Now
p∞−1 =

(R1
0 − R2

0)(1 − ξ1) − R2
0(ξ1 − ξ2)

R2
0(ξ1 − ξ2)

+
(R1

0 − R2
0)ξ1(R

2
0(1 − ξ2) − R1

0(1 − ξ1))

R2
0(ξ1 − ξ2)R

1
0R

2
0(ξ1 − ξ2)

=
R1

0(1 − ξ1) − R2
0(1 − ξ2)

R2
0(ξ1 − ξ2)

(

1 −
(R1

0 − R2
0)ξ1

R1
0R

2
0(ξ1 − ξ2)

)

.We use the inequality (R1
0 − R2

0)ξ1 < R1
0ξ1 − R2

0ξ2 in the braketed term to have
1 −

(R1
0 − R2

0)ξ1

R1
0R

2
0(ξ1 − ξ2)

> 1 −
R1

0ξ1 − R2
0ξ2

R1
0R

2
0(ξ1 − ξ2)

=
C

R1
0R

2
0(ξ1 − ξ2)

> 0,proving p∞ − 1 > 0.2.6.3 Proof of Lemma 7Proof. Let J be the Jaobian matrix at the oexistene equilibrium:
J =



















−
π

N̂
0 −γ1N̂ −γ2N̂

−
π

N̂2
(1 − x̂ − pe) −

π

N̂
− a −x̂[R1

0(µ + γ1) − γ1] −x̂[R2
0(µ + γ2) − γ2]

π

N̂2
ŷ1 ŷ1R

1
0(µ + γ1)ξ1 −ŷ1b + γ1ŷ1 −ŷ1b + γ2ŷ1

π

N̂2
ŷ2 ŷ2R

2
0(µ + γ2)ξ2 −ŷ2c + γ1ŷ2 −ŷ2c + γ2ŷ2



















.

where
a = R1

0(µ + γ1)ŷ1 − γ1ŷ1 + R2
0(µ + γ2)ŷ2 − γ2ŷ2

b = R1
0(µ + γ1)(1 − ξ1)

c = R2
0(µ + γ2)(1 − ξ2)

(2.60)We apply the Gauss-Jordan algorithm in the following steps:1) substitute the fourth row of J with the sum of its fourth row multiplied times
ŷ1 and its third row multiplied times −ŷ2, thus obtaining matrix J12) substitute the third olumn of matrix J1 with the sum of the its thrid olumnand its fourth olumn multiplied times −1, thus obtaining matrix J23) substituite the third row of matrix J2 with the sum of its third row multiplied52



2.6. Appendixtimes N̂ and its �rst row multiplied times ŷ1, thus obtaining matrix
J3 =















−
π

N̂
0 (γ2 − γ1)N̂ −γ2N̂

−
π

N̂2
(1 − x̂ − pe) −

π

N̂
− a x̂d −x̂[R2

0(µ + γ2) − γ2]

0 N̂R1
0ŷ1(µ + γ1)ξ1 0 −N̂R1

0ŷ1(µ + γ1)(1 − ξ1)

0 ŷ1ŷ2e 0 ŷ1ŷ2(b − c)















.where a, b and c are given in (2.60) and
d = R2

0(µ + γ2) − γ2 − R1
0(µ + γ1) + γ1

e = R2
0(µ + γ2)ξ2 − R1

0(µ + γ1)ξ1Due to the properties of the determinant, we have
|J | = |J3|. (2.61)We ompute |J3| expanding through its �rst olumn obtaining

|J3| =
|A|πR1

0R
2
0(µ + γ1)(µ + γ2)ŷ

2
1 ŷ2(ξ1 − ξ2)

µ
(2.62)where |A| is given in (2.45). Conditions (2.35) and identities (2.61) and (2.62)imply our laim.
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Chapter 3Modelling the Spatial Spread ofH7N1 Avian In�uenza Virusamong Poultry Farms in Italy
3.1 IntrodutionIn 1999 − 2000 the Italian industrial poultry prodution was disrupted by an epi-demi of Highly Pathogeni Avian In�uenza (HPAI) aused by a H7N1 virus sub-type. Sine Marh 1999, the Low Pathogeni (LPAI) H7N1 virus subtype wasendemially irulating in the North of Italy, where more than 65% of the Italianpoultry prodution is onentrated, and the urrently aepted hypothesis is thata H7N1 LPAI strain mutated into a HPAI strain (Busani et al., 2009; Mannelliet al., 2007). This hypothesis has been widely disussed in the literature (Websteret al., 1992; Alexander et al., 2000; Stegeman, 2004). HPAI virus was �rst detetedin a poultry farm on November 28th, 1999; after that, the measures provided bythe European Union (EU) legislation 1 were applied, at di�erent times at variousspatial sales and were ontinued until the infetion was o�ially eradiated onApril 10th, 2000.The �rst goal of this study was to investigate whether a spatial transmission kernelwas adequate for desribing the atual epidemi spread in Northern Italy, onsid-ering also the implemented ontrol measures. We were furthermore interested in1CEC. Counil Diretive 92/40/EEC of 19 May 1992 introduing ommunity measuresfor the ontrol of avian in�uenza. O�ial Journal of the European Commission 1992L167:1-15 55



3.2. Dataanalysing potential di�erenes in suseptibility among poultry speies, onsistentwith the assoiation found between AI virus infetion and poultry speies (Busaniet al., 2009; Mannelli et al., 2006; Thomas et al., 2005), and with other reports ofspeies di�erenes in suseptibility to high pathogeniity viruses (Tumpey et al.,2004). Mannelli et al. (2007) found a redution in transmissibility during the ourseof the epidemi, using a non-spatial model. We then analysed whether this laimould be upheld using a more detailed spatial model. Finally, we assessed the ef-fetiveness of the measures implemented in �rst ontaining and then eradiatingthe infetion in order to disuss the relative merit of eah spei� measure, and tostudy whether a di�erent implementation of the measures ould have been moree�etive.Here we analyse the spatio-temporal spread of the infetion �rst using a SEIRmodel with a spatial kernel similar to the one proposed by Boender et al. (2007),to whih all ontrol measures were added just as they were atually implemented.We use maximum likelihood methods to estimate parameters and to establish theiron�dene intervals.We then extend the SEIR model allowing for speies di�erenes in suseptibil-ity, and test the improvement of �t relative to the basi model. We also allow forhanges in transmissibility during the ourse of the epidemi (Mannelli et al., 2007),onsidering di�erent epidemi phases, orresponding to steps in the implementationof ontrol measure, and to awareness of the ongoing epidemi.3.2 DataThe study area of this work onsists of the North-Eastern regions of Lombardiaand Veneto, where 392 out of 413 (94.9%) outbreaks ourred. Due to the lakof data on 10 infeted bakyard farms loated in the study area, we onsidered
382 outbreaks in our analysis (Capua and Marangon, 2000; Mannelli et al., 2007).In these regions there is a densely populated poultry area where di�erent avianspeies (laying hens, broilers, breeders of di�erent speies, meat turkeys, geese,quails, ostrihes and others) are bred.Poultry prodution onsists of repeated yles. A produtive yle starts with thestoking of the one day old hiks (typially all of the same poultry type) and, aftera period whose length depends on the speies (on average: 42 days for broilers,
95 − 145 days for female and male meat turkeys, up to 2 years for laying hens),it ends with the slaughtering of the whole �ok. Between suessive prodution56



3.2. Datayles there is usually an �empty period� during whih no birds are stoked sinethe buildings have to be leaned and sanitized, and maintenane proedures needto be performed.The study period started on November 28th, 1999 (i.e. the day that HPAI virus was�rst suspeted of having infeted a poultry farm) and ended on April 10th 2000(the day that infetion was eradiated). The data-sets upon whih this work isbased have been olleted by the Istituto Zoopro�lattio Sperimentale delle Venezie(IZSVe) and have already been subjet to analysis (Busani et al., 2009; Mannelliet al., 2006, 2007). Data on speies and prodution type, duration of eah produ-tion yle and geographial loation of the farms in the study area were olletedby veterinarians working for the Regional Veterinary Servie (Busani et al., 2009).The geographi distane between every pair of farms in the data-set has also beenomputed.To ontain the epidemi, the following measures outlined by EU legislation1 wereapplied starting from Deember 17th, 1999: the stamping-out of infeted or sus-peted of being infeted farms (IF) and the ban of restoking (BR) on emptiedfarms (either beause they ended a prodution yle in the at-risk area during theepidemi or beause they were ulled) (Busani et al., 2009; Mannelli et al., 2007).Pre-emptive ulling (PEC) of farms loated at less than 1 km from an infetedfarm started in Veneto from January 20th, 2000 (Busani et al., 2009) and in Lom-bardia from February 10th, 2000 (Mannelli et al., 2007). Further measures suh asthe pre-emptive slaughter at farms that had at-risk ontats with an IF and stritlimitations to the movements of live poultry, produts, vehiles and sta� were alsoapplied in the whole study area (Busani et al., 2009). As the epidemi unfolded,the IZSVe reorded the date of onset of linial signs (for every on�rmed ase) andthe date of ulling (either beause infeted or beause pre-emptively slaughtered)of every farm that underwent this measure.During the study period 382 farms were infeted (red dots in Figure 3.1), 72 (65 inVeneto and 7 in Lombardia) were pre-emptively slaughtered (blue dots in Figure3.1), the ban on restoking was imposed on 1486 farms (yellow dots in Figure 3.1)and 1307 esaped the infetion (green dots in Figure 3.1). H7N1 virus spread tothe maximum distane of 176.18 km from the soure farm. For every farm in thestudy area, starting and ending dates of eah prodution yle have been reorded.
57



3.3. Models Analysed

Figure 3.1: Infeted farms (red dots), not infeted farms (green dots), farms banned fromrestoking (yellow dots) and pre-emptive ulled farms (blue dots) in the HPAI epidemi ofyears 1999-2000 in Italy (left panel) and in the study area (Veneto and Lombardia) (rightpanel)
3.3 Models AnalysedThe SEIR models are de�ned on a farm level (i.e. the farms are the individual units)and our assumptions are similar to those made by Boender et al. (2007) to modelthe di�usion of HPAI in The Netherlands. Time is disrete and for eah of the135 days (November 28th, 1999 - April 10th, 2000) farms in a prodution yle arelassi�ed as suseptible (S), latently infeted (i.e. infeted but not yet infetious)(E), infeted (I) or removed (either beause they were ulled or beause they werebanned from restoking) (R). Farms are onsidered removed (R) also when theyare in the �empty period� between suessive prodution yles. Following Busaniet al. (2009), we assumed that infetion ourred 7 days before the detetion of�rst symptoms and this inluded a period of lateny of 2 days (Van der Goot et al.,2003); the infetious period lasted until the day of ulling (Busani et al., 2009).With these assumptions, the average length of the infetious period was T = 11.82days (5 − 95 perentile interval (6, 26)).In the Basi Model, transmission of infetion between an infetious farms j and a58



3.3. Models Analysedsuseptible farm i at distane rij an our (in a given day) with probability
h(rij) =

h0

1 +
(rij

r0

)α . (3.1)This is the same transmission kernel as used by Boender et al. (2007).The parameters h0, r0 and α have been estimated by maximum likelihood (ML),while other parameters have been kept �xed. Sensitivity analysis (not shown here)on the lengths of the inubation period (3, 5, 7 days) and of the latently infetedperiod (1, 2 days) show that the results obtained are robust to the exat hoie ofinubation and lateny period.In the Suseptibility Model, farms are divided into 5 groups, aording to thespeies produed during the epidemi. Preisely, the speies are: laying hens (1),meat turkeys (2), broilers (3), breeders (turkeys and hikens onsidered together)(4), others (5). The transmission kernel (3.1) is modi�ed by substituting the on-stant h0 with hk where k (= 1 . . . 5) represents the speies.In the models with varying transmission rate, the transmission onstant (h0 or hk)hanges with time, aording to the epidemi phase (see details in next Setion).In all models, the fore of infetion on a suseptible farm i at time t λi(t) is givenby
λi(t) =

∑

j 6=i

h(rij)where the sum is performed over all infetious farms j at time t.The overall model is a simple disrete stohasti model, where, given the stateof the system at time t, eah non-infeted farm i independently beomes infetedwith probability 1 − e−λi(t), while infeted farms progress through the latent orinfetious period.The likelihood of the observed events an then be omputed by multiplying (foreah time t) the probabilities of beoming infeted for eah farm infeted that day,times the probabilities of not beoming infeted for eah farm not infeted that day.This an be omputed in an e�ient way (Boender et al., 2007) by dividing farmsinto the following sets: M (farms infeted at time tinf ), K (farms not infeted andnot pre-emptively ulled within the end of the epidemi at time tmax), Λ (farmsnot infeted and pre-emptively ulled at time tcul) and B (farms not infeted andbanned from restoking at time tban). Then the log-likelihood funtion an be
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3.4. Parameter Estimateswritten as follows
l = −

∑

k∈K

tmax−1
∑

t=1

λk(t) −
∑
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tcul,l−1
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t=1

λl(t) −
∑
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tban,b−1
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λb(t) +

−
∑

m∈M

tinf,m−1
∑

t=1

λm(t) +
∑

m∈M

log[1 − e−λm(tinf,m)]3.4 Parameter EstimatesWe omputed the maximum likelihood estimates (MLE) of the parameters, therelative 95% on�dene intervals and AIC index for the Basi and the SuseptibilityModel. Con�dene intervals have been omputed by �nite di�erene approximationof the inverse of the Hessian matrix of the log-likelihood funtion, whih is thenatural plug-in estimator of the the Fisher information matrix (Rie, 2004). TheMLE of the parameters of interest, whih have been omputed by implementingthe simulated annealing algorithm given by Press et al. (2002), the value of thelog-likelihood funtion at the MLE and the AIC indexes are given in Tables 3.1and 3.2.Table 3.1: MLE and 95% Con�dene Intervals of the Basi Model's parametersEstimate 95% Con�dene Interval
h0 0.0064 (0.0037, 0.0090)
r0 2.1524 (1.3943, 2.9106)
α 2.0760 (1.8711, 2.2809)log-likelihood -2430.4558AIC 4866.9116Aording to Akaike's Criterion (Akaike, 1974), we �nd that the SEIR modelwith di�erent suseptibility aording to the speies better explains the data.As for the hanges in transmissibility during the ourse of the epidemi, we dividedthe study period into 4 phases: the �rst 19 days (Phase 1), during whih no ontrolor ontainment measures were undertaken; the next 34 days (20 ≤ t ≤ 53, Phase2) during whih stamping-out of IF and a ban on restoking (BR) were applied onthe whole study area; the suessive 20 days (54 ≤ t ≤ 74, Phase 3) during whihpre-emptive ulling (PEC) of farms loated at less than 1 km from an IF, beyondIF ulling and BR, was applied in Veneto; the remaining 61 days (75 ≤ t ≤ 135,Phase 4) during whih ulling of IF, BR and PEC were applied in the whole study60



3.4. Parameter EstimatesTable 3.2: MLE and 95% Con�dene Intervals of the Suseptibility Model's parametersEstimate 95% Con�dene Interval
h1 0.009562 (0.0049, 0.0141)
h2 0.007010 (0.0034, 0.0105)
h3 0.001000 (0.0004, 0.0015)
h4 0.005273 (0.0022, 0.0083)
h5 0.001190 (0.0003, 0.0020)
r0 3.0908 (1.7853, 4.3963)
α 2.1850 (1.9037, 2.4663)log-likelihood -2294.6860AIC 4603.372area.The temporal hanges in transmissibility were �rst explored on the Basi SEIRModel (i.e. without distintion among the di�erent speies). In the 4-Phases BasiModel eah phase had a di�erent transmissibility oe�ient h0 (hi

0, i = 1 . . . 4) inequation (3.1). A 2-Phases Basi Model has also been analysed where only Phase1 had a di�erent transmissibility oe�ient (h1
0 vs. h2

0 for all subsequent phases);the 2-Phases Model was onsidered on the basis of the results from the 4-PhasesModel, but an also be justi�ed beause the hange in transmissibility may be dueto the limitations introdued to the movements of live poultry, produts, vehilesand sta�.The maximum likelihood estimates of the parameters of the three variations ofthe Basi SEIR Model, together with the value of the log-likelihood funtion at theMLE and the AIC index are given in Table 3.3. By means of the log-likelihood ratiotest and the assumption that the test statisti is asymptotially χ2 distributed withthe degree of freedom equal to the di�erene in dimensionality of the parameters'spae of the tested models, we see that both the 2-Phases Basi Model and the 4-Phases Basi Model better explain our data at a signi�ane level of 0.01, omparedto the Basi SEIR Model. On the ontrary, the 4-Phases Basi Model does notprodue a (signi�antly) better �t when ompared to the 2-Phases Basi Model.Akaike's Criterion is slightly lower for the 4-Phases Basi Model than the 2-PhasesBasi Model, but the di�erene is too small to justify a more omplex model (Table3.3).When onsidering the model with temporal phases and di�erent host susepti-bility, the number of parameters beomes too large to obtain reliable ML estimates.We de�ned a 2-Phases Suseptibility Model assoiating a onstant redution of61



3.4. Parameter EstimatesTable 3.3: MLE of the Basi SEIR Model's parametersBasi Model 2-Phases Model 4-Phases Model
h1

0 0.0064 0.0107 0.0104
h2

0 0.0062 0.0056
h3

0 0.0067
h4

0 0.0078
r0 2.1524 2.1340 2.1824
α 2.0760 2.0717 2.0830log-likelihood -2430.4558 -2426.9912 -2424.6035AIC 4866.9116 4861.9824 4861.2070

transmissibility between the 2 phases, independently from the speies. The redu-tion fator c between the 2 phases was �xed at 0.58, whih is the value obtainedwith the 2-Phases Basi Model. We moreover �xed the proportionalities among thesuseptibility of the speies at the values obtained with the Suseptibility Model
r2 =

h2

h1
= 0.73, r3 =

h3

h1
= 0.10, r4 =

h4

h1
= 0.55, r5 =

h5

h1
= 0.12.With these assumptions, the transmissibility onstant ht

k to speies k at time t isgiven by
ht

k =

{

rkh1 if t ≤ 19

crkh1 if t ≥ 20
(3.2)where r1 = 1, and the only unknown quantity to estimate is h1. The MLE of the2-Phases Suseptibility Models and the relative 95% on�dene intervals are givenin Table 3.4 while the orresponding values of the transmissibility onstants using(3.2) are given in Table 3.5. By Akaike's Criterion the data are better explainedby the 2-Phases Suseptibility Model than by the Suseptibility Model. However,the 2-Phases Suseptibility Model improves the log-likelihood estimate of just 2.1units (see Tables 3.2 and 3.4) while the large AIC redution omes mainly fromits low number of parameters; the low number of parameters (just 3) omes outof the fat that we have �xed several proportionality fators (see (3.2)) at thevalues obtained from previous analysis. Hene, the statistial assumptions neededto ompare models through the AIC are not met, and it is not possible to hoosethe model on this basis solely. 62



3.5. SimulationsTable 3.4: MLE and 95% Con�dene Intervals of the 2-Phases Suseptibility Model'sparameters Estimate 95% Con�dene Interval
h1 0.0155 (0.0078, 0.0232)
r0 3.1595 (1.7703, 4.5487)
α 2.1921 (1.8937, 2.4904)log-likelihood -2292.5117AIC 4591.0234Table 3.5: Values of the transmissibility onstants for the 2-Phases Suseptibility ModelPhase 1 Phase 2

h1 0.0155 0.0090
h2 0.0113 0.0065
h3 0.0015 0.0009
h4 0.0085 0.0049
h5 0.0018 0.00103.5 Simulations3.5.1 How data are reprodued by the modelWe simulated AI epidemis using the Basi SEIR Model, the Suseptibility Modeland their 2-Phases versions in order to ompare them to observed data and assesstheir behavior.We assumed the observed spatial distribution of farms in the study area and thestart of the epidemi from the �rst infeted farm at time t = 1. We assigned theobserved prodution yles to the farms whih were not infeted during the 1999-2000 outbreak. Infeted farms were assigned the observed prodution yle untilthe day of infetion; the prodution yle was then ompleted from the distributionof the observed prodution yles, aording to the speies. The length of theinfetious period of eah IF was randomly drawn from the observed infetiousperiods. Note that in this way we were aounting for Ban on Restoking (BR)and IF stamping-out sine time t = 20. We assumed that PEC started at time

t = 54 in Veneto and at time t = 75 in Lombardia and that it took a randomnumber of days between 0 and 4 to ull an identi�ed ontiguous farm. Finally, welet epidemis evolve until extintion aording to eah of the onsidered models.We tested the simulation results on the following indiators: the mean numberof infeted farms (or total ase) (IF), the mean number of pre-emptively ulled63



3.5. Simulationsfarms (PEC), the mean number of farms banned from restoking (BR), the averageextintion time (Text) and the average maximum distane to whih H7N1 spread(Dmax). The number of ulled farms (beause either infeted or pre-emptivelyulled) gives a measure of the total losses (TL) due to the epidemi.For eah model, we averaged over 100 realizations that generated at least 10 aseseah; the number of repliates was suggested by similar analyses in the literature(Keeling et al., 2001; Matthews et al., 2003). Tables 3.6 and 3.7 show the averagevalues, together with the relative 5 − 95 perentile intervals, obtained using eitherthe Basi SEIR Model or the Suseptibility Model, with the respetive 2-Phasesvariations. Note that, aording to the riteria for applying the PEC, a totalnumber of 129 (instead of 72) farms should have been pre-emptively ulled; thuswe expet that models that inlude ulling at all farms within a radius of 1 kmfrom an IF will produe a higher number of ulling than atually observed.Table 3.6: Mean numbers and 5 − 95 perentile intervals omputed on 100 realizationsthat generated at least 10 ases, using the Basi Model and the 2-Phases Basi ModelBasi SEIR Model 2-Phases Basi Model Observed DataIF 169.82 (21, 361) 366.25 (117, 575) 382PEC 100.47 (10, 180) 147.72(70, 203) 72BR 1447.26(1105, 1638) 1307.13 (953, 1523) 1486
Text 123.53(77, 162) 133.89 (104, 177) 135
Dmax 118.22(58.69, 181.35) 144.89(102.23, 190.09) 176.18

Table 3.7: Mean numbers and 5−95 perentile intervals omputed on 100 realizations thatgenerated at least 10 ases, using the Suseptibility Model and the 2-Phases SuseptibilityModel Suseptibility Model 2-Phases Suseptibility Model Observed DataIF 266.53(90, 448) 385.01(196, 530) 382PEC 139.34(79, 196) 136.51(82, 179) 72BR 1403.06(1089, 1587) 1383.41(1125,1535) 1486
Text 135.64(104, 181) 130.17(109,162) 135
Dmax 139.33(89.97, 193.38) 151.07(108.48, 196.32) 176.18The numbers reported in Tables 3.6 and 3.7 show that the indiators produedby the models are reasonably onsistent with the data. The 2-Phases versions of the64



3.5. Simulationsmodels predit mean values of indiators loser to observed data; the agreement isfurther improved when taking into aount di�erene by speies in the suseptibilityto HPAI infetion. The maximum predited distane of virus spread, on average, isof 151.07 km from the soure farm, whih is less than the observed distane (176.18km).In order to have a more omplete omparison between data and simulations, we plot(Figure 3.2) the 3-day running (moving) averages (to remove extreme �utuations)of the data against the 3-day running averages of the 100 realizations of the the 2-Phases Suseptibility Model. In Figure 3.3 we ompare the 3-day running averageof the data to the trajetories in time (3-day running averages) of four realizations:those yielding the 20th, 40th 60th and 80th perentiles of the total number ofases. Finally, Figure 3.4 shows one simulation of the spatial di�usion of infetiongenerated with the 2-Phases Suseptibility Model.

Figure 3.2: Comparison of the number of new ases between the 3-day running averageof the observed epidemi and of 100 repliates of the stohasti 2-Phases SuseptibilityModel3.5.2 Assessment of the e�etiveness of the interventionmeasuresIn order to assess the e�etiveness of pre-emptive ulling (PEC) and of the imposi-tion of the ban on restoking (BR), we �rst explored the e�et of negleting them.Every test in this setion was onduted on the 2-Phases Suseptibility Model. The65



3.5. Simulations

Figure 3.3: Comparison of the number of new ases between the 3-day running average ofthe observed epidemi and the 20th, 40th, 60th and 80th of 100 repliates of the stohasti2-Phases Suseptibility Modelaverage quantities obtained with the 2-Phases Suseptibility Model (see Table 3.7)onstitute our baseline.When negleting BR, we assumed that every farm is suseptible for the wholeourse of the epidemi. In Table 3.8 we report the average values of the hosenindiators when negleting the imposition of ban of restoking (NO-BR) and whennegleting the appliation of pre-emptive ulling of farms lose to an infetiouspremise (NO-PEC). From our results (see Table 3.8) we onlude that the moste�etive intervention measure in stopping the infetion was the imposition of banof restoking on emptied farms.Table 3.8: Mean numbers and 5−95 perentile intervals omputed on 100 realizations thatgenerated at least 10 ases, using the 2-Phases Suseptibility Model with and without BRor PEC NO-BR NO-PEC baselineIF 984.02(817,1103) 421.81(202, 592) 385.01(196, 530)PEC 496.89(368, 671) 0 136.51(82, 179)BR 0 1326.67(1055, 1573) 1383.41(1125,1535)
Text 147.13(123, 170) 143.95(111, 179) 130.17(109,162)
Dmax 168.19(135.21, 203.17) 148.69(114.96,189.35) 151.07(108.48, 196.32)TL 1480.91 421.81 521.5266



3.5. Simulations

Figure 3.4: Status of farms in the study area at time t = 1 (top left), t = 50 (top right), t =
100 (bottom left), t = 150 (bottom right) in one simulation of the 2-Phases SuseptibilityModel. Yellow dots represent empty farms, green dots represent suseptible units, red dotsrepresent infetious units, blue dots represent (either pre-emptive or previously infeted)ulled farms.We also explored the e�et of applying PEC with some variations. An earlier(i.e. sine time t = 20) appliation of pre-emptive ulling (earlier-PEC) on thewhole study area produes on average less infeted ases and a higher number ofpre-emptive ulled farms, for a total number of losses whih is slightly lower thanthose produed by the basi senario (see Table 3.9).The appliation of pre-emptive ulling for farms within a radius of 0.5 km froman IF (restrited-PEC) produes on average a higher number of infeted farms anda lower number of pre-emptive ulled farms, for a smaller number of total losses inomparison to the base senario(see Table 3.8). Note that the NO-PEC strategyprodues on average an even lower number of total losses (equal to IF) (see Table3.8), whih is urrently the lowest among the simulated strategies, and ould thenbe onsidered to be the best one from this point of view. On the other hand, thetime required to eradiate the disease in the NO-PEC senario would be longer(about 10% on average) than with the baseline senario. From the point of view67



3.6. Results and DisussionTable 3.9: Mean numbers and 5 − 95 perentile intervals omputed on 100 realizationsthat generated at least 10 ases, using the 2-Phases Suseptibility Model with di�erentintervention strategiesearlier-PEC restrited-PEC earlier&restrited PECIF 222.05(98, 326) 409.33(208, 578) 334.66(174, 450)PEC 269.68(127, 379) 58.78(32, 83) 138.34 (83, 192)BR 1349.68(1074, 1505) 1321.70(1023, 1512) 1356.46(1080, 1522)
Text 125.11(96,163) 142.84(110, 199) 133.91(107, 169)
Dmax 132.82(94.79,183.24) 150.79(115.93, 197.43) 146.23 (105.99, 185.14)TL 491.73 468.11 473of eradiation time, the earlier-PEC strategy would have been the best one.Note �nally that the variation among simulations is rather high ompared to thedi�erenes among strategies. The only strategy that produes results unequivoallydi�erent from the other ones is the NO-BR.3.6 Results and DisussionOur study on�rms that proximity to an IF inreases the risk of infetion. Thissupports our hoie to take transmission kernels as power law funtions of the dis-tane; moreover the exponent α and sale r0 are rather similar to what was foundby (Boender et al., 2007), despite the di�erent ontext.Redution of virus transmissibility between Phase 1 and the subsequent phases anddi�erene in suseptibility by speies have been also observed in this analysis. Ourestimates suggest a great di�erene in exposure and/or suseptibility among thepoultry speies. Sine the model does not distinguish between di�erential levels ofexposure and intrinsi suseptibility, the estimates show that laying hens and meatturkeys are most exposed and/or suseptible to H7N1 virus. Breeders seem to beless exposed and/or suseptible to H7N1 than laying hens and meat turkeys butmore exposed and/or suseptible than broilers and all other speies together (Ta-ble 3.2). These results are onsistent with the umulative probability of infetionomputed by Busani et al. (2009) on the same datasets.We have also examined a model with di�erenes in infetivity among speies. Theresults (not shown) are on the border of signi�ane for di�erenes in infetivity.However, the �t to data and the agreement of simulations with observed data weremuh worse than in the model that aounts for the di�erene in suseptibility.Overall, we believe that the data annot demonstrate with good on�dene the68



3.6. Results and Disussionexistene of di�erenes in infetivity among speies.The 2-Phases Suseptibility Model turned out to be the model, among those testedhere, whose simulated outputs (Tables 3.6 and 3.7) are most similar to the observeddata. Figures 3.2 and 3.3 show that the observed epidemi falls within the rangeof the preditions obtained by the 2-Phases Suseptibility Model both in terms ofnumber of new ases at eah time t (Figure 3.2) and of the general pro�le of theepidemi urve over time (Figure 3.3). This supports the utility of the model asan adequate and useful tool for poliy testing.The results show that ontrol measures suh as ulling of infetious farms, pre-emptive ulling of ontiguous premises, ban of restoking on emptied farms andrestritions to the movement of animals, vehiles and sta� (i.e. derease of thenumber of ontats among farms) have e�etively redued virus transmission overtime, as observed also by Le Menah et al. (2006) for the epidemi in The Nether-lands.The BR resulted in the most e�etive intervention measure to ontrol and eradi-ate the epidemi. Simulations without BR measure but applying only ulling ofinfeted farms and neighboring premises resulted in a larger number of infetedor ulled farms than the observed number. Simulations without BR did not takeinto aount of the �empty period� between suessive prodution yles (i.e. everyfarm is assumed to be in prodution during the whole epidemi). For this reasonthe e�et of BR may have been overestimated. On the other hand, the overesti-mation was presumably small, sine only some of the farms would have not beenin prodution during the study period and for only a few days.The strategy that minimizes the total losses is the NO-PEC. However, its imple-mentation would delay the eradiation of the infetion. As a onsequene, thea�eted area would be submitted to the restrition measures longer, ausing ad-ditional eonomi losses. Establishing the overall best strategy would entail aneonomi analysis beyond our aims. Comparative studies of the outomes of alter-native ontrol strategies have been published for di�erent disease outbreaks (Keel-ing et al., 2001; Henzler et al., 2003; Bouma et al., 2003; Matthews et al., 2003;Stegeman, 2004; Tildesley et al., 2009).Earlier-PEC strategy ahieves eradiation more quikly than what observed in theatual shedule and has also smaller osts in terms of losses. Also, NO-PEC andrestrited-PEC lower the total losses but at the ost of delaying eradiation. Indeed,the data show that the atual poliy has been a sort of restrited PEC (espeially inLombardia) beause of the di�erene between the expeted (129 farms, aording69



3.6. Results and Disussionto the o�ial poliy) and observed (72 farms) pre-emptive ullings.As a �nal observation, it an be seen that the real epidemi spread farther thanmost simulations thus suggesting a role of the long-range transmission, mainly re-lated to human ativities and poultry farming praties (movement of personnel,truks, animals and birds in the infeted area). Indeed, as shown by Figure 3.5,the farthest infeted ases aquired infetion relatively early in time. In our study

Figure 3.5: Distane (km) reahed by infetion in time (days) in the 1999-2000 epidemiin Italywe have taken into aount the distane between an IF and an uninfeted farm,without any lue on the way of the HPAI viruses spreading. AI spreads mainlythrough diret or indiret ontat with infeted birds (�ow of people, movement ofmaterials and vehiles for instane) (Halvorson and Karunakaran, 1980; Thomaset al., 2005; Busani et al., 2009) but aerosol transmission, �ontiguous spread� bypoorly understood routes (Henzler et al., 2003; Sedlmaier et al., 2009) and inter-speies transmission via pigs (Webster et al., 1992; Ninomiya et al., 2002) annotbe exluded.More detailed data about the ourrene of at risk ontats between infeted anduninfeted poultry farms related to the movements of birds, people and vehileswould be neessary to inlude long-range transmission in the model.
70



Chapter 4A new approah to estimate thespread and transmission ofinfetious diseases from Sentinelsurveillane: appliation to the2009-2010 A/H1N1 in�uenzapandemi in Italy
4.1 IntrodutionThe detetion and ontrol of existing, newly emerging or re-emerging infetionsin the human population often relies on the analysis of syndromi and virologialsurveillane data whih are routinely olleted by most developed and many devel-oping ountries. Surveillane data are often the only kind of data available in realtime to inform deision makers and the analysis of these data provides important in-sights into the spread and transmission dynamis of diseases like in�uenza. Duringthe 2009-2010 A/H1N1 in�uenza pandemi, syndromi and virologial surveillanedata were routinely olleted by most of the ountries a�eted by H1N1 and avail-able in real time.The analysis of syndromi and virologial data poses many statistial hallengesthat have not been addressed yet. For example, the size of the population that is71



4.2. Datamonitored hanges over time; only a fration of syndromi ases who are detetedby the surveillane system have been infeted by the etiologial agent of interest(e.g. H1N1 virus, in the past 2009-2010 in�uenza pandemi) and the others aredue to other pathogens. These problems are usually either ignored or orreted bysaling the epidemi urve with multipliative fators, something whih is expetedto bias the variane of the estimates.Here we present a general framework to takle these issues and analyze syndromiand virologial data by taking expliitly into aount the stohastiity in the surveil-lane system. This is done by oupling a deterministi mathematial ODE (ordi-nary di�erential equations) model with a statistial desription of how the surveil-lane data is generated. Estimation of epidemiologial parameters suh as thereprodution number R0 and the age-dependent reporting rates and suseptibilityis then performed via Bayesian Markov Chain Monte Carlo (MCMC) sampling.The approah is applied to surveillane data olleted in Italy during the 2009-2010 A/H1N1 in�uenza pandemi.The general modelling framework proposed in this work an be applied to a vari-ety of di�erent infetions deteted by surveillane system in many ountries and ispotentially a powerful tool to be used in the future to provide poliy makers withimportant information in real time.4.2 DataSine the 1999-2000 in�uenza season, the Italian in�uenza surveillane system re-lies on INFLUNET. During the 2009-2010 H1N1 pandemi in�uenza season, IN-FLUNET reruited on average 1094 (minimum980,maximum1165) volunteer GPsand paediatriians per week, overing on average 1.4 million people (2.3% of theItalian population). Data olleted by INFLUNET on the weekly size of the mon-itored patients population and on the weekly number of observed In�uenza-Like-Illness (ILI) ases, aggregated by age groups (0-4 years, 5-14 years, 15-64 years and65+ years) are available online on the INFLUNET website (http://www.iss.it/i�u/).The virologial surveillane of the 2009-2010 in�uenza season has been ondutedby the Italian Ministry of Health, whih oordinated the olletion of the swabsthrough hospitals, laboratories operating within the national health servie, sen-tinel GPs and paediatriians. Weekly reports are available online on the ItalianMinistry of Health website under the voie �sorveglianza virologia�(http://www.salute.gov.it/in�uenza/in�uenza.jsp).72



4.3. Model FormulationThere is evidene that the number and struture of the ontats within an age-strutured population signi�antly vary over time, in partiular between holiday/week-end days and working days (Hens et al., 2009b,a). For this reason, usingraw data from the Italian arm of the POLYMOD survey (a diary-based survey ofdaily ontats in eight European ountries) (Mossong et al., 2008), we omputethe daily mean number of ontats among the onsidered age lasses during work-ing days and holiday/week-end days. In the Supplementary Information (SI) webrie�y disuss the methodology used to obtain the ontat matries used in thiswork. Finally, we use Italian demographi data for year 2008 whih an be foundon the Italian National Statistial Institute website (http://www.istat.it/).We analyze here the data for the time period between week 38 of year 2009 (or-responding to mid September 2009, when the shools re-opened after the summerbreak) and week 7 of year 2010 (orresponding to the end of February, when theepidemi had learly died out).
4.3 Model Formulation4.3.1 Mathematial modelWe de�ned an age-strutured deterministi SEIR model, where individuals aresuessively Suseptible, Exposed (def), Infetious (def) and Removed (def), with�ve age lasses (0-4, 5-14, 15-24, 25-64, 65+ years). The latent period (that is,the duration of stay in the Exposed state) and the infetious period are assumedto be Gamma distributed (this is ahieved by splitting the Exposed and Infetiousstates in 2 ompartments, eah). The addition of one age-lass to those onsideredby INFLUNET during the 2009− 2010 in�uenza season is meant to allow a betterspei�ation of the ontats among younger age-lasses whih were partiularly hitby H1N1 virus.The model is oded in C and is numerially solved using standard routines withvariable step size (Press et al., 2002). From the model we output Ct

i , the weekly(t) and age-spei� (i = 1, . . . , 5) number of A/H1N1 infetions in the Italianpopulation and, by saling down to the size of the monitored patients population,we get Z̄t
i , the expeted number of A/H1N1 infetions generated within lass iduring week t in the monitored patients population.73



4.3. Model Formulation4.3.2 Statistial modelIn what follows we adopt the notation graphially represented on Figure 4.1 for thepurpose of larity. Exept for the variable Ci
t , whih represents the age-struturedweekly number of A/H1N1 ases in the Italian population, all the other variablesare de�ned at the monitored patients population level. In partiular, sine noinformation on the patients age is provided for the samples tested in the virologialanalysis, we assume that πt, de�ned as the probability that a swabs tests positiveon week t, does not vary aross the age-groups.
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– PtFigure 4.1: Graphial representation of the populations taken into aount and notationadopted in the work. The Italian population is onsidered onstant over the whole studyperiod while the monitored patients population hanges every week, due to the volountarynature of the surveillane system. Index i denotes the age-lass (i = 1, . . . , 4) and index tdenotes the week, ranging from week 38 of year 2009 to week 7 of year 2010.In the following we desribe the assumptions that led us to the de�nition of thelikelihood funtion L.We divide the presentation in two parts. We �rst onsider the ase when the weeklynumber of H1N1 ases in the monitored patients population in the i-th age lass
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4.3. Model Formulation4.3.3 Fixed Z i
tLet us start by onsidering the ase Zi

t = Z̄i
t .Denote Tt the weekly (and age-unstrutured) number of swabs sampled (within themonitored patients population and among the individuals showing ILI symptoms)to be laboratory tested (Figure 4.1). Denote Pt the laboratory on�rmed H1N1samples among those tested (Tt) on the orresponding week (Figure 4.1). Sinewe lak information about the preise timing of olletion of the swabs, we assumethat samples tested on week t had been olleted during week t − 1.Given πt and Tt, the number of positive swabs Pt follows the Binomial distribution

P (Pt|Tt, πt) =

(

Tt

Pt

)

πPt
t (1 − πt)
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t the weekly number of H1N1 ases of age-lass i that reportILI symptoms (Figure 4.1). Hene, if ρi represents the probability that a personinfeted with H1N1 reports ILI symptoms, the distribution of F i
t is given by theBinomial model with parameters Z̄i
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4.3. Model Formulationand the probability distribution of ILIi
t is expliitly given by
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t (4.6)One given a prior distribution P (πt) to πt, using onditional probability andassumptions (4.4),(4.5) and (4.6), we de�ne the (up to a normalising onstant)probability of the data given the model
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(4.8)where α and β are shape parameters, substitute (4.1), (4.2), (4.5), (4.6) and (4.8)into (4.7), and obtain (see the SI for the omplete omputation)
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4.3. Model Formulationwhere P (θ) is the prior distribution.
4.3.4 Random Z i

tInstead of taking Zi
t �xed to the value Z̄i

t , we assume that Zi
t is drawn from aNegative Binomial distribution (Alexander et al., 2000; Lloyd-Smith et al., 2005;Lloyd-Smith, 2007; Mathews et al., 2007; Cauhemez and Ferguson, 2008)
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4.4. Models de�nition and parametrisationinto formula
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t , ρi, r)P (Pt|Tt, πt)P (πt)dπt (4.14)If we denote by θ the parameter vetor, the Bayesian model is de�ned by (4.10)with (4.14) in plae of (4.9).

4.4 Models de�nition and parametrisationIn the previous setion we have expliitly de�ned two families of models, depend-ing on the assumption on Zi
t either exatly predited by the deterministi modelthrough the solution Z̄i

t or taken as a negative binomial random variable withexpeted value given by Z̄i
t . The �rst ase will be referred as the �without overdis-persion� variant of the model, the seond as the �with overdispersion� one.From early on in the 2009 pandemi, it was notied that the young age-lasseswere partiularly hit by the H1N1 virus (Fraser et al., 2009; Ghani et al., 2009). Inorder to quantify this observation, we use here the results from the ross-setionalserologial study led by Miller et al. (2010) on serum samples olleted in 2008 inEngland.Details on how we used the results of the serologial study by Miller et al. (2010)and on alternative assumptions and de�ned models are given in the SI. Table 4.1summarizes the values of suseptibility we used in the �Suseptibility� model.We �rst assume that, during the 2009-2010 H1N1 pandemi, the reporting rateswere onstant over time. In the �Basi� variant of the model we assume that thereporting rates did not vary aross the age-groups (i.e. ρ1 = · · · = ρ5) whereas inthe Age-Dependent Reporting (ADR) version we allow reporting rates to be age-spei�. In the Time-Varying Reporting (TVR) version of the model we assumethat the age-dependent reporting rate of eah age-lass hanges over time t (weeks)proportionally among the age-lasses as given by the pieewise linear funtion

ρi(t) = ρig(t) (4.15)78



4.4. Models de�nition and parametrisationwhere g(38) = 1, g(45) = a, g(52) = b, g is linear on the whole domain and a, band ρi with i = 1, . . . , 4 are parameters to be estimated.Estimates of the infetivity h1 and h2 of the respetive infetious stages I1 and
I2 have been obtained through the �t of the infetivity funtion (after infetion)of a SEIR model to the average of the daily titres olleted from six volunteerswho were experimentally infeted with an H1N1 in�uenza virus, as desribed byBaam et al. (2006). The values used for h1 and h2 are reported on Table 4.1and a more extensive desription of the methodology adopted for this estimationis given in the SI.In agreement with some reent studies about H1N1 in�uenza (Cauhemez et al.,2009a; Ghani et al., 2009; Lessler et al., 2009), we �x the mean generation time Tgto 2.6 days and the mean lateny period to 1 day as in (Baguelin et al., 2010).In order to allow for a proper mixing, we seed the initial number of A/H1N1 ases
I0 (in the Italian population) on week 31 (mid August 2009) and �t the model tothe data on the temporal window between week 38 of year 2009 and week 7 of 2010.The initial number of ases I0 is distributed among the age lasses proportionallyto the vetor (5%, 10%, 45%, 35%, 5%) whih appears reasonable and omparableto the age distribution of reported ases over the summer (Rizzo et al., 2009).Sensitivity analysis on this assumption has been performed.In Italy shools re-opened, after the summer break, on September 15th 2009. Forthis reason, until week 38, we assign holidays/week-end ontats to shool-agedhildren (5 − 14 years). The same is done for Christmas holidays (Deember 23rd

2009-January 7th 2010) during whih the other lasses are assumed to have theaverage between week and holiday/weekend ontats.
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4.5. Parameter estimationmeaning of the parameter model
η lateny rate 2.0/day Basi, ADR
γ infetious rate 0.833/day Basi, ADR
σ1 suseptibility of age-lass 0 − 4 years 0.98 Basi, ADR, TVR
σ2 suseptibility of age-lass 5 − 14 years 0.96 Basi, ADR, TVR
σ3 suseptibility of age-lass 15 − 24 years 0.85 Basi, ADR, TVR
σ4 suseptibility of age-lass 25 − 64 years 0.87 Basi, ADR, TVR
σ5 suseptibility of age-lass 65+ years 0.73 Basi, ADR, TVR
h1 infetivity of the infetious stage I1 16.1 Basi, ADR, TVR
h2 infetivity of the infetious stage I2 9.6 Basi, ADR, TVR
α, β shape parameters of the Beta distribution in (4.8) 1.0 Basi, ADR, TVR
p probability of infetion given an infetious ontat ind.omp. Basi, ADR, TVR
R0 reprodution number estimated Basi, ADR, TVR
I0 number of H1N1 ases at week 31 estimated Basi, ADR, TVR
ρ1 ILI reporting rate of H1N1 ases of age 0 − 4 estimated ADR, TVR
ρ2 ILI reporting rate of H1N1 ases of age 5 − 24 estimated ADR, TVR
ρ3 ILI reporting rate of H1N1 ases of age 25 − 64 estimated ADR, TVR
ρ4 ILI reporting rate of H1N1 ases of age 65+ estimated ADR, TVR
a, b parameters de�ning the funtion in (4.15) estimated TVRTable 4.1: Summary of the parameter values �xed and estimated in the models. With theexpression �ind.omp.� we mean �indiretly omputed� from R0, as explained in the maintext.4.5 Parameter estimationIn a Bayesian setting, we make inferene on the parameters whih are summarizedin Table 4.1.Given the likelihood funtion L and hosen a (in our ase uniform) prior distri-bution of the parameters, the (target) posterior distribution is known up to anormalizing onstant. MCMC methods onstrut Markov hains whose stationarydistribution is the distribution of interest, when it annot be diretly simulated. Weimplemented the lassial Metropolis-Hastings algorithm (Gilks et al., 1996; Tier-ney, 1994; Walsh, 2004; O'Neill, 2002) and, starting from arbitrary initial valuesin the parameter spae, generated sequenes of draws from the unknown (target)probability distribution of the parameters. We assume a �at prior distribution for

πt, thus setting the shape parameters α and β of (4.8) equal to 1. A log-sale hasbeen used for sampling as the parameters were all positive de�nite and were ex-80



4.6. Resultspeted to potentially vary by orders of magnitude. Parameters have been updatedeither separately (i.e. omponent by omponent) in the low dimensionality modelsor in bloks of 2 − 3 parameters eah for the models with higher dimensionality,in order to improve the algorithm performane. We heked onvergene by as-signing di�erent starting values in the parameter spae (also far from the posteriormean) and by visual inspetion of the trae plots. The algorithm was iteratedfor 500.000 times and we �xed a �burn-in� period of 100.000 steps. By tuningthe variane of the proposal distribution, we adjusted the mixing of the hainsand attempted to reah a rate of aeptane (number of aepted moves/numberof proposed points) as losest as possible to the �golden� aeptane rate for theRandom Walk Metropolis Hastings of 23% (Roberts et al., 1997). As expeted, wefound some orrelations between ertain parameters (like R0 and I0, for example).We use the Deviane Information Criterion (DIC) for model omparison and sele-tion (the preferred model is the one showing the lowest DIC) (Spiegelhalter et al.,2002).4.6 ResultsThe ILI inidene urve peaked on week 46 (mid November), dereased over thenext 6 weeks and then slowly inreased again during the �rst weeks of 2010 (seeFigure 4.2). The H1N1-attributable ILI-inidene urve (red dots) in Figure 4.2has been simply obtained by multiplying the ILI inidene times the proportionof positive swabs olleted in that week, under the assumption that the samplestested on week t had been olleted during week t − 1.Table 4.2 reports the mean and the equal-tailed 95% redible interval of the es-timated parameters for the �Suseptibility� model �without overdispersion�. Theestimated mean value of R0 ranges from 1.36 to 1.42, respetively obtained bythe �Basi� and �Age-Dependent Reporting� versions of the �Suseptibility� model�without overdispersion�.Table 4.3 summarizes the estimates obtained by the �with overdispersion� vari-ant of the �Age-Dependent Reporting Suseptibility model� with overdispersionparameter r estimated from the data; aording to these estimates the estimatedmean value of R0 has been 1.29(1.27− 1.32). The �Age-Dependent Reporting Sus-eptibility model� with overdispersion shows the lowest DIC among the modelsonsidered in this work and using this model we estimate that, on average, in theItalian population the 25.9% of H1N1 ases of 0-4 years, the 16.6% of H1N1 ases81



4.6. Resultsof 5-14 years, the 6.9% of H1N1 ases of 15-64 years and the 6.5% of H1N1 asesof 65+ years reported ILI symptoms to the surveillane system.The di�erent models exhibit di�erent redibility interval ranges, whih are re�etedinto the di�erently wide predition bars of Figure 4.3. The �Age-Dependent Report-ing Suseptibility� model with overdispersion is the one with the widest redibilityinterval range.Figure 4.4 shows the age-spei� estimated inidenes (per thousand) of H1N1ases within the Italian population obtained from the numerial solution of theSEIR model (in the Italian population) having �xed the parameters as obtainedfrom eah of 500 random draws from the joint posterior distribution estimatedwith the �Age-Dependent Reporting Suseptibility� model with estimated disper-sion parameter r. Table 4.4 summarizes some statistis of the preditions plottedon Figure 4.4. The estimated peak-inidenes of A/H1N1 ases show a fair variabil-ity both within and between the age-lasses. At the ommunity level the estimatedpeak-inidene is of 55.7 (30.8, 91.6) (per thousand). On Table 4.4 we also reportthe estimated age-spei� and overall ase attak rates, omputed on the wholestudy period (weeks 31 − 7). In terms of A/H1N1 ase attak rate, we estimatethat the 5−14 years age-lass was about 5 times more a�eted than the 65+ yearsage-group and that the overall attak rate was of 29.6% (27.7%, 31.6%).Sensitivity analysis (see the SI) shows that the partiular seeding does not a�etthe model output and that the estimates are also robust to the hypothesis on thelength of the latent period.Basi Model ADR Model TVR ModelDIC 10104.5 2510.8 2468.4
R0 1.362 (1.357, 1.368) 1.412 (1.405, 1.418) 1.384 (1.371, 1.398)
I0 136 (116, 156) 37 (32, 44) 69 (45, 99)
ρ1 0.084 (0.082, 0.086) 0.188 (0.182, 0.195) 0.191 (0.141, 0.247)
ρ2 0.084 (0.082, 0.086) 0.175 (0.171, 0.179) 0.171 (0.128, 0.219)
ρ3 0.084 (0.082, 0.086) 0.055 (0.054, 0.057) 0.055 (0.041, 0.071)
ρ4 0.084 (0.082, 0.086) 0.035 (0.033, 0.038) 0.036 (0.027, 0.047)
a 1.180 (0.842, 1.657)
b 0.557 (0.377, 0.795)Table 4.2: Suseptibility model without overdispersion: DIC sore, mean and equal-tailed

95% redible interval of the marginal posterior distribution of the parameters for eahspei�ed model. 82



4.6. ResultsADR Suseptibility model with overdispersionDIC 1234.0 1478.3 1693.9 2127.3
R0 1.298 (1.275, 1.321) 1.304 (1.286, 1.322) 1.341 (1.332, 1.350) 1.385 (1.379, 1.392)
I0 900 (476, 1536) 753 (466, 1146) 263 (202, 332) 76 (63, 90)
ρ1 0.259 (0.205, 0.325) 0.254 (0.211, 0.305) 0.227 (0.211, 0.244) 0.201 (0.193, 0.210)
ρ2 0.166 (0.132, 0.207) 0.164 (0.138, 0.196) 0.169 (0.159, 0.180) 0.176 (0.170, 0.182)
ρ3 0.069 (0.056, 0.087) 0.069 (0.057, 0.082) 0.064 (0.059, 0.068) 0.058 (0.056, 0.060)
ρ4 0.065 (0.050, 0.084) 0.062 (0.050, 0.076) 0.047 (0.043, 0.052) 0.038 (0.036, 0.042)
r 6.309 (3.950, 9.285) �xed to 10 �xed to 100 �xed to 1000Table 4.3: ADR Suseptibility model with overdispersion: DIC sore, mean and equal-tailed 95% redible interval of the marginal posterior distribution of the parameters having�xed the dispersion parameter r to the spei�ed value and having estimated r from thedata.
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Figure 4.2: Inidene (per thousand) of the total number of reported ILI ases (blakdots) and of the number of reported H1N1-attributable ILI-ases (red dots), obtained bymultipliation of the weekly ILI datum times the proportion of positive samples on theorresponding week. 83



4.6. Results Estimated peak-inidene attak rate0-4 years 53.2 (19.7, 102.5) 31.6% (29.4%, 33.9%)5-14 years 99.2 (36.7, 192.1) 54.3% (51.6%, 57.1%)15-64 years 57.1 (21.2, 110.6) 31.5% (29.4%, 33.7%)65+ years 20.3 (7.5, 39.3) 11.4% (10.6%, 12.4%)overall 55.7 (30.8, 91.6) 29.6% (27.7%, 31.6%)Table 4.4: Estimated age-spei� peak-inidene (per thousand) and attak rate of H1N1ases aused by the A/H1N1 virus in the Italian population during the 2009-2010 pandemias resulted from simulations of the ADR Suseptibility model with estimated overdisper-sion parameter r having �xed the parameters at the values obtained by 500 draws fromthe joint estimated posterior distribution. Mean and, in brakets, 5-95 perentile interval.
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Basi model ADR model TVR model ADR model withwithout overdispersion without overdispersion without overdispersion estimated overdispersion
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4.6.ResultsBasi model ADR model TVR model ADR model withwithout overdispersion without overdispersion without overdispersion estimated overdispersion

Figure 4.3: Suseptibility model (in the Basi, Age-Dependent Reporting and Time-Varying Reporting versions without overdispersion andin the Age-Dependent Reporting version with overdispersion parameter estimated from the data) : plot of the simulated weekly reportedinidene (per thousand) of H1N1 ases in the 0 − 4 years age-lass (blue), 5 − 14 years age-lass (green), 15 − 64 years age-lass (orange),

65+ years age-lass (purple) and in the population as a whole (blak) in omparison to the respetive observed data (red).
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4.7. Disussion

Figure 4.4: Estimated inidene (per thousand) of H1N1 ases in the Italian populationusing the ADR Suseptibility model with overdispersion parameter r estimated from thedata: 0 − 4 years age-lass (blue), 5 − 14 years age-lass (green), 15 − 64 years age-lass(orange), 65+ years age-lass (purple), in the population as a whole (blak). Preditionshave been obtained from the numerial resolution of the SEIR model having �xed theparameters as resulted from 500 draws from the estimated joint posterior distribution.4.7 DisussionIn this work we propose a general and rigorous statistial framework whih expli-itly takes into aount the way surveillane data are generated. Our main objetivewas indeed to estimate the inidene of H1N1 ases at the national population level,without saling the epidemi urve with some multipliative fator.We found that, when aounting for an age-spei� suseptibility, the mean R0varies depending on the model into the range 1.298 − 1.412, where the �rst esti-mate has been obtained by the �Age-Dependent Reporting Suseptibility� modelwith dispersion parameter r estimated from the data and the latter one has beenobtained by the �Age-Dependent Reporting Suseptibility� model �without overdis-persion�. Our estimates are onsistent with those of (Ajelli et al., 2010) derivedfrom the exponential growth phase of the ILI number of ases.Our �nding that di�erent age lasses visited their GP with di�erent rates is proba-bly not surprising and the ommon sense would ertainly have suggested this fat.Here we quanti�ed this di�erene and found that infants and hildren reported87



4.7. Disussionthe H1N1 symptoms and infetion respetively around 3 and 4 times more oftenthan adults. This was obtained under the simplifying assumptions that the report-ing rates were either onstant or hanged linearly with time. We tried to test forreporting rates di�ering in time through the �Time-Varying Reporting Suseptibil-ity� model but the results were not ompletely satisfying, sine despite the relativewidth of the on�dene intervals, a fair number of data points still fell outside thevalues predited by the model. However, our estimates suggest a positive orrela-tion of the reporting rate with the number of ases, whih is onsidered a plausiblephenomenon by Cauhemez and Ferguson (2008) and may re�et the high level ofworry of the people towards the youngest age-lasses indued by the media duringthe past swine �u pandemi, as suggested by Rubin et al. (266). Studies in thespirit of (Rubin et al., 266) able to measure and quantify the behavioural hangesourred during the last H1N1 pandemi in the Italian population are desirable.Table 4.4 and Figure 4.4 on�rm that shool-age hildren led and sustained theepidemi, followed by adults and the youngest hildren, whilst elder people werethe less a�eted.The introdution of a negative binomial distribution for Zt
i inreases the stohasti-ity of the models that was otherwise on�ned to at only in the reporting proess.The hoie of a negative binomial distribution for the distribution of infetions hasbeen suggested by several authors (Mathews et al., 2007; Cauhemez and Ferguson,2008) and an be onsidered an approximation to a pure stohasti model. Theseleted values of r (mean value 6.30 and 95% CI = (3.95, 9.28)) are in the rangealready used by other authors and result in rather wide redible intervals for thenumber of infetions in any given week.In the �Suseptibility� model we assumed that at the beginning of the epidemi thewhole population is suseptible to H1N1 and assign an age-dependent suseptibilityto eah age-lass. A di�erent assumption onsists in assuming that a fration ofthe population is immune sine the beginning of the epidemi and that susepti-bility to H1N1 does not vary among the age-lasses (see the SI). The parameterestimates obtained when aounting for an immune fration of population are on-sistent with the respetive estimates obtained with the �Suseptibility� model sothat either hoies, to inlude a di�erential suseptibility depending on the age orto aount for the presene of an immune fration of the population at the begin-ning of the epidemi, �t the data equally well.In the �Age-Dependent Reporting Suseptibility� model we �xed the age-dependentsuseptibility to the values extrapolated by the study of Miller et al. (2010). In-88



4.7. Disussiondeed, the serologial study on the ross-reative antibody responses to the H1N1in�uenza virus in the pre-pandemi period, led in Italy by Rizzo et al. (2010) ouldnot be applied to our model due to inompatible divisions of the population intoage-lasses (1 − 55 years, 56 − 65 and 65+ years).In the �Age-Dependent Reporting Suseptibility� model, one �xed the age-dependentsuseptibility, we estimated the age-dependent reporting rates. The alternativehoie is to �x a onstant reporting rate and estimate the age-dependent susep-tibility and is disussed in the SI. The results on�rm a drop in suseptibility toH1N1 beyond shool-years but it's stronger than our initial assumption. Presum-ably reality lies in between, with drops both in suseptibility and reporting rate.For sure our analysis would bene�t from the availability of more detailed informa-tion on the riteria adopted for the olletion of the swabs (suh as, for instane,the weekly perentages of swabs olleted by sentinel GPs, the average delay be-tween olletion and testing of the samples et.) and the eventual hanges in theolletion proess, as the epidemi unfolded. It is indeed important to note thatour analysis has been led under the assumption that the swabs seleted for test-ing are a random sample of the ILI ases while a sizeable part has been olletedoutside the surveillane system (laboratories and hospitals operating within thenational health servie), presumably for linial reasons. Unfortunately, availabledata do not distinguish among swabs of di�erent soures. Finally, our model ouldbe extended to inlude age-spei� virologial data, if available.Our results show that the basi features of the epidemi are aptured by the model,in partiular the �Age-Dependent Reporting Suseptibility model� desribes ade-quately the overall epidemi ourse and the age distribution of the ases. There aresome minor systemati deviations of the data from the expeted values of the pre-ditions (for instane, the preditions regarding the starting weeks of the epidemiare systematially lower than the observed data in the 0-4 years age-lass and sys-tematially higher than the observed data in the 5-14 years age-lass) so that itould be argued that our model misses some details of the infetion and report-ing proess. It is possible that adding other fators suh as hanging behaviouralpatterns ausing more omplex variations of the reporting rates over time, het-erogeneity in infetiousness, spatial and network substruturing for instane ouldimprove the desription of the virus spread. Determining whih of these elementsare needed to aurately desribe the dynamis of virus spread in large populationsis topi of ongoing researh. Still, a simple model like the one we used appears ad-equate for an overall desription of the epidemi ourse.89



4.8. Supplementary InformationThe methodology developed here an be applied to the analysis of the temporalspread of the A/H1N1 pandemi in�uenza in other ountries, provided that epi-demiologial and virologial data are available. Finally, our approah ould beeasily adopted to analyse existing or future emerging infetious diseases.
4.8 Supplementary Information4.8.1 DataMethodology adopted to ompute the ontat matriesThe methodology we adopted to ompute the week and week-ends/holiday on-tat matries mimis very losely the one used by Mossong et al. (2008). Startingfrom the raw data of the POLYMOD survey, we omputed the equivalent matri-es reported in (Mossong et al., 2008) with the distintion between working daysand week-end/holiday ontats for Italy. The POLYMOD survey was ondutedin Italy between May 17th 2006 and June 1st 2006, a period during whih no of-�ial holidays ourred. For this reason we are able to distinguish only betweenthe ontats ourring during the working days from those ourring during theweek-ends. Sine the age distribution of the survey population does not maththe Italian population age distribution, we standardize the estimates as follows.First, we divide the total number of ontats had by the partiipants by the num-ber of partiipants, thus obtaining the average number of ontats per respondent.Multiplying the average number of ontats per respondent times the size of theorrespondent age lass in the Italian population, we get the estimated number ofontats in the Italian population (i.e. the average number of ontats of an agelass with the other age lasses, in the Italian population). We symmetrize theobtained matrix substituting two symmetri o�-diagonal elements with their arith-meti mean. After orretion for reiproity, we sale down to the individual levelagain thus obtaining Tables 4.5 and 4.6, whih represent the symmetri ontatmatries at the individual level. 90



4.8. Supplementary Information0-4 5-14 15-24 25-64 65+0-4 5.2258065 1.4971592 0.5942825 11.6781801 1.11125775-14 0.7616100 14.4929577 1.7232274 13.1401577 1.050361715-24 0.2775376 1.5820011 13.9405941 9.1557241 0.852374425-64 0.9948124 2.2004017 1.6700517 11.3832487 1.945924365+ 0.2618677 0.4865656 0.4300993 5.3830335 2.9318182Table 4.5: Symmetrized ontat matrix of all reported ontats (physial and non-physial)in Italy, onsisting of the average number of ontat persons reorded per working day persurvey partiipant (Polymod 2008). Row index represents the age lass of the partiipant,olumn index represents the age lass of the ontat.0-4 5-14 15-24 25-64 65+0-4 1.6923077 1.4236201 0.2998418 6.6052098 0.73076925-14 0.7242004 7.8387097 1.4178535 9.3789261 1.407101415-24 0.1400299 1.3016539 10.4090909 10.0278330 0.250000025-64 0.5626686 1.5705599 1.8291289 9.0559006 1.738157965+ 0.1722057 0.6518203 0.1261474 4.8082869 0.5714286Table 4.6: Symmetrized ontat matrix of all reported ontats (physial and non-physial)in Italy, onsisting of the average number of ontat persons reorded per holiday day persurvey partiipant (Polymod 2008). Row index represents the age lass of the partiipant,olumn index represents the age lass of the ontat.4.8.2 Model formulationMathematial modelThe equations of the age-strutured SEIR model de�ned in the main text are


















































Ṡi = −λi(t)Si

Ė1
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with i, j = 1, . . . , 5 orresponding to the �ve age-lasses 0-4, 5-14, 15-24, 25-64,65+ years. The rates of loss of lateny ν and infetiousness γ are assumed not to91



4.8. Supplementary Informationdepend on the age lass. The fore of infetion λi is given by
λi(t) = pσi

5
∑

j=1

cij(t)(h
1
I1
j (t)

Nj
+ h2

I2
j (t)

Nj
) (4.17)where σi represents the suseptibility of age-lass i, cij(t) indiates the mean num-ber of ontats between an individual of age lass i with individuals of age lass jon day t (the time variable is here used just to distinguish the working days fromthe week-end days), Nj represents the (onstant in time) size of age group j, with

i, j = 1, . . . , 5, p is for the probability of getting infeted upon a ontat with aninfetious individual and h1 and h2 represent the infetivity of the two infetiousstages I1 and I2 respetively.The mean number of new ases generated by an individual of age lass j in agelass i is given by
kji = pσicji

∫ +∞

0
A(τ)dτ i, j = 1, . . . , 5 (4.18)where A(τ) denotes the infetivity funtion at time τ after infetion. The entriesgiven in (4.18) de�ne the next generation matrix K and following Diekmann andHeesterbeek (2000) we de�ne the reprodution number R0 as the spetral radius

s(K) of the next generation matrix
R0 = s(K) = ps(M)

∫ +∞

0
A(τ)dτ (4.19)The reprodution number R0 is learly proportional to p, the probability of in-fetion given an infetious ontat. We used R0 as a parameter and adjusted paordingly. Matrix M on equation (4.19) is given by

mji = σicji(t) i, j = 1, . . . , 5 (4.20)For ompleteness, we de�ne the infetivity funtion A(τ) at time τ after infetion.Let g(t) denote the probability density funtion of the variable TE, the length ofthe latent period (i.e. the time spent in the lasses E1 and E2). The probabilityof being in lass I1 at time τ (after infetion) is given by
P (I1, τ) =

∫ τ

0
g(t)e−γ(τ−t)dt (4.21)
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4.8. Supplementary InformationIn a similar fashion, the probability of being in lass I2 at time τ (after infetion)is given by
P (I2, τ) =

∫ τ

0
g(t)

∫ τ

t

γeγ(u−t)e−γ(τ−u)dudt (4.22)
A(τ) is de�ned as follows

A(τ) = h1P (I1, τ) + h2P (I2, τ) (4.23)Equation (4.19) needs the omputation of
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(4.24)Hene the basi reprodution number is given by

R0 = ps(M)
h1 + h2

γ
(4.25)The mean generation time, de�ned as the mean duration between time of infetionof a seondary infetee and the time of infetion of its primary infetor (Wallingaand Lipsith, 2007), is given by

Tg =

∫ +∞
0 τA(τ)dτ
∫ +∞
0 A(τ)dτ

(4.26)In phase of parameterization, we �xed ν = 2.0 (it orresponds to a latent periodof 1.0 day) and tuned γ to obtain a generation time Tg of 2.6 days.93



4.8. Supplementary InformationStatistial modelFixed Z i
t : omputation of P (ILI i

t , Pt|Tt, Z̄
i
t , ρi)We report below the omputation of P (ILIi

t , Pt|Tt, Z̄
i
t , ρi) that led to expression(10) in the main text. The omputation is based on the mathematial de�nitionof the Beta funtion B for two variables x, y > 0
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4.8. Supplementary InformationRandom Z i
t : omputation of P (F i
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]rand hene by (4.31) we may onlude (4.12).4.8.3 Models de�nition and parametrizationAlternative modelsIn this work we de�ne two age-dependent parameters: suseptibility (i.e. the prob-ability of getting infeted given a ontat with an infetious individual) and report-ing rate (i.e. the probability that an H1N1 ase in the patients population reportsILI symptoms).Due to identi�ability issues, it is not possible to make inferene on both parameters(suseptibility and reporting rate) at the same time and one has to �x one of thetwo and make inferene on the other.In order to estimate the age-spei� reporting rates, we �x the age-spei� susep-tibility to the values extrapolated from the results of the ross-setional serologialstudy by Miller et al. (2010) as desribed below.Notie �rst that the presene of ross-reative antibody in the blood samples anbe interpreted as onferring either partial or omplete protetion to infetion byH1N1. In the �rst ase, we assume that at the beginning of the epidemi the wholepopulation is suseptible (i.e. no fration of the population is immune) and assignan age-spei� suseptibility to the di�erent age-lasses, thus de�ning what we all�Suseptibility� model. In the seond ase, we assume that at the beginning of theepidemi a fration of the population in eah age-lass is immune (i.e. removedfrom the infetion dynamis) and that the suseptible population is ompletelyand equally suseptible to H1N1 (σ1 = · · · = σ5 = 1.0), thus de�ning what we all�Immunity� model.As antiipated, we use the results given in the ross-setional serologial study byMiller et al. (2010) and average the perentages of samples showing mironeutral-ization titre at or above the ut o� value of 1:40 and haemagglutination inhibitionat or above 1:32 and in the �Suseptibility� model �x the suseptibility of the agelasses to the value obtained by subtration of the obtained average perentage to
1. For example, if 2% is the average perentage of hildren in the 0-4 years age-lass showing titres at or above the spei�ed thresholds, we �x the suseptibility96



4.8. Supplementary Informationof the youngest age-lass to σ1 = 1 − 2% = 98%. The values of suseptibility we�xed in the �Suseptibility model� are given in Table 1 of the main text. In the�Immunity model� we �x the fration of immune population at the beginning of theepidemi to the value obtained by subtration of the obtained average perentageto 1. Using the same example of above, we assume that the 98% of the populationin age-lass 0− 4 years is in the suseptible lass at the beginning of the epidemi(week 31). Similarly to what has been done for the �Suseptibility� model, we de-�ne a �Basi�, �Age-Dependent Reporting� and �Time-Varying Reporting� versionsof the �Immunity� model without overdispersion. The estimates obtained by the�Immunity� model are given on Table 4.7.Basi Model ADR Model TVR Model
R0 1.524 (1.518, 1.531) 1.574 (1.567, 1.581) 1.546 (1.531, 1.560)
I0 119 (101, 138) 37 (32, 44) 66 (45, 95)
ρ1 0.094 (0.092, 0.096) 0.205 (0.199, 0.212) 0.204 (0.156, 0.257)
ρ2 0.094 (0.092, 0.096) 0.188 (0.184, 0.193) 0.182 (0.140, 0.227)
ρ3 0.094 (0.092, 0.096) 0.062 (0.060, 0.64) 0.061 (0.047, 0.077)
ρ4 0.094 (0.092, 0.096) 0.040 (0.037, 0.043) 0.040 (0.030, 0.051)
a 1.193 (0.878, 1.602)
b 0.607 (0.413, 0.864)Table 4.7: Immunity model without overdispersion: mean and equal-tailed 95% redibleinterval of the marginal posterior distribution of the parameters for eah spei�ed model.Note that the estimates of R0 obtained with the �Immunity� model are higherthan those obtained with the relative versions of the �Suseptibility� model. Thisfat is due to the de�nition of R0 given in equation (4.19), whih is theoretiallyadequate only for the �Suseptibility� model (i.e. in the ase of the �Immunity�model, formula (4.19) does not aount for the presene of an immune frationof population at the early stages of the epidemi). For a proper omparison, adi�erent de�nition of R0 for the �Immunity� model would be needed.In order to estimate the age-spei� suseptibility, we �x the age-dependent re-porting rate. Hene, by �xing the reporting rate as resulted from the �Basi� and�Age-Dependent Reporting� version of the �Suseptibility� model without overdis-persion, we respetively de�ne a �Basi� and �Age-Dependent Reporting� versionof the �Fixed-Reporting� model. The suseptibility estimates obtained with the�Fixed-Reporting� model are given in Table 4.8.97



4.8. Supplementary InformationBasi Fixed-Reporting resaling ADR Fixed-Reporting resaling
R0 1.31 (1.29, 1.33) 1.30 (1.28, 1.32)
I0 645 (383, 1013) 651 (390, 1032)
σ1 3.02 (2.47, 3.62) 2.60 (2.12, 3.12) 1.20 (0.89, 1.42) 0.96 (0.77, 1.22)
σ2 1.32 (1.13, 1.52) 1.14 (0.97, 1.31) 1.02 (0.83, 1.24) 0.88 (0.71, 1.07)
σ3 �xed to 1.0 0.86 �xed to 1.0 0.86
σ4 0.92 (0.67, 1.25) 0.79 (0.58, 1.08) 0.75 (0.60, 0.95) 0.65 (0.51, 0.82)Table 4.8: Fixed reporting model with overdispersion (r = 10) in the �Basi� and �Age-Dependent Reporting� versions (i.e. having �xed the reporting rates as resulted respe-tively from the �Basi� and �Age-Dependent Reporting� versions of the �Suseptibility�model): mean and equal-tailed 95% redible interval of the marginal posterior distribu-tion of the parameters; the suseptibility estimated have also been resaled to the values�xed on Table 1 in the main text for the purpose of omparison.

Estimation of the infetivity parameters h1 and h2

The SEIR model used to estimate the infetivity values has one lateny lass andthree infetious stages with a mean lateny period of 1 day and a mean infetiousperiod of 3 days. Let ω1, ω2 and ω3 denote the unknown infetivity parameters ofthe three infetious stages I1, I2 and I3. Through the �t of the infetivity funtion(after infetion) of the SEIIIR model to the data reported in (Baam et al., 2006)we obtain the following estimates
ω1 = 0.0 ω2 = 16.1 ω3 = 9.6 (4.35)The infetivity funtion (after infetion) �tted to the data reported in (Baamet al., 2006) is given in Figure 4.5. 98
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Figure 4.5: Plot of the �t of the infetivity funtion sine infetion A(τ) (de�ned in theSI by equation (4.23)) to the data reported by Baam et al. (2006)Sine ω1 = 0.0 we interpreted the �rst infetious stage of the SEIIIR model asbeing equivalent to a latent stage, thus obtaining a SEIR model with two latenyand two infetious stages; this is the reason for whih we took h1 = ω2 and h2 =

ω3. We hose to onsider the infetivity estimates as values that haraterize theinfetious stages, independently of the assumptions on the rates of lateny andinfetiousness upon whih they were generated.4.8.4 Parameter estimationSensitivity analysisWe performed sensitivity analysis on two assumptions: the distribution (at week
31) of the initial ases I0 among the age-lasses and the mean length of the latentperiod. Sensitivity analysis was performed on the �Age-Dependent Reporting� ver-sion of the �Suseptibility� model without overdispersion.We onsidered the following distributions of the initial ases I0 among the age-lasses: (1%, 1%, 39%, 39%, 20%), (10%, 20%, 40%, 20%, 10%) and (20%, 20%, 20%, 20%, 20%)as alternatives to the original hoie and the results (Table 4.9) show that the par-tiular seeding does not a�et the model output.99
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I0 (1%, 1%, 39%, 39%, 20%) (10%, 20%, 40%, 20%, 10%) (20%, 20%, 20%, 20%, 20%)

R0 1.412 (1.405, 1.418) 1.411 (1.405, 1.417) 1.411 (1.405, 1.418)
I0 44 (38, 52) 37 (31, 44) 44 (37, 51)
ρ1 0.189 (0.182, 0.195) 0.188 (0.182, 0.195) 0.189 (0.182, 0.195)
ρ2 0.175 (0.171, 0.179) 0.175 (0.171, 0.179 0.175 (0.171, 0.179
ρ3 0.055 (0.053, 0.057) 0.055 (0.054, 0.057) 0.055 (0.054, 0.057)
ρ4 0.035 (0.033, 0.037) 0.035 (0.033, 0.037) 0.035 (0.033, 0.038)Table 4.9: Sensitivity analysis on the distribution of the initial ases I0: mean and equal-tailed 95% redible interval of the marginal posterior distribution of the parameters forthe �Age-Dependent Reporting Suseptibility� model without overdispersion.Regarding the mean length of the latent period, the results given in the paperhave been obtained under the assumption that the mean length of the latent periodis of 1 day and the mean generation time of 2.6 days. Here we assume a mean lengthof the latent period of 1.3 days and the same mean generation time of 2.6 days.The results obtained under this assumption are given on Table 4.10. The estimatesare robust also to the hypothesis on the length of the latent period.Basi model ADR model TVR model

R0 1.357 (1.351, 1.362) 1.405 (1.398, 1.411) 1.377 (1.365, 1.390)
I0 138 (118, 158) 39 (33, 46) 74 (51, 102)
ρ1 0.086 (0.084, 0.0875) 0.191 (0.185, 0.198) 0.183 (0.140, 0.228)
ρ2 0.086 (0.084, 0.0875) 0.177 (0.173, 0.181) 0.164 (0.127, 0.202)
ρ3 0.086 (0.084, 0.0875) 0.056 (0.054, 0.058) 0.053 (0.041, 0.066)
ρ4 0.086 (0.084, 0.0875) 0.036 (0.034, 0.038) 0.035 (0.027, 0.044)
a 1.255 (0.946, 1.684)
b 0.609 (0.416, 0.844)Table 4.10: Suseptibility model: mean and equal-tailed 95% redible interval of themarginal posterior distribution of the parameters for the �Suseptibility� model withoutoverdispersion assuming a mean length of the latent period of 1.3 days and a mean gener-ation time Tg of 2.6 days.4.8.5 How data are reprodued by the modelIn order to validate the model, we ompare the predited age-strutured weeklyinidene of A/H1N1 ases with the data.In the deterministi ase Zi

t = Z̄i
t we draw 1000 (sets of) parameters from the jointposterior distribution and for eah draw we numerially solve the SEIR model in the100



4.8. Supplementary InformationItalian population. After resaling into the patients population (and for eah drawnset of parameters) we obtain a realization of Z̄i
t , the number of patients infetedby the A/H1N1 virus. Given Z̄i

t and the seleted reporting rate(s), we apply theBinomial model given in equation (3) of the main text and draw 100 realizationsof F i
t , the number of �u (H1N1) ases within the patients population. We an thusompute the inidene (per thousand) of H1N1 infetions to be ompared to theobserved A/H1N1 inidene urve (red dots of Figure 2 in the main text).When Zi

t is taken as a random variable, for eah of the 500 parameter draws fromthe joint posterior distribution we repeat the proedure desribed above and obtain
Z̄i

t . For eah Z̄i
t we draw 20 values of Zi

t from the Negative Binomial distributiongiven on equation (12) in the main text having �xed the dispersion parameter r tothe spei�ed value and then for eah of this Zi
t generate 10 F i

t as random drawsfrom the Binomial model given in equation (13) of the main text.The number of draws to be performed from the distributions de�ned in the �xed
Zi

t = Z̄i
t ase and in the random Zi

t one has been hosen so that to obtain the samenumber of realizations of F i
t .Figure 4.6 shows the omparison between the inidene data and the preditionsobtained by the �Immunity� model without overdispersion.
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Figure 4.6: Immunity model without overdispersion: plot of the simulated weekly reportedinidene (per thousand) of the new H1N1 ases in the 0− 4 years age-lass (blue), 5− 14years age-lass (green), 15− 64 years age-lass (orange), 65+ years age-lass (purple) andin the population as a whole (blak) in omparison to the respetive observed data (red).102



Chapter 5Estimation of R0 from real andsimulated shool outbreaks
5.1 IntrodutionThe reent 2009-2010 pandemi in�uenza A/H1N1 virus mostly a�eted youngpeople, in partiular those in shool-age years. The high number of ases observedamong the youngest age-lasses an be explained in terms of higher levels of susep-tibility of hildren with respet to adults, something on�rmed also by serologialstudies (Miller et al., 2010; Rizzo et al., 2010), and by the fat that transmissionis favoured by the high ontat rates ourring among hildren within shools.There is evidene that shools play a ruial role in the transmission of infetiousdiseases suh as in�uenza so that the impat of shools losure and the extent towhih this non-pharmaeutial intervention an be used to redue the total numberof ases and slow the epidemi has been widely investigated and disussed (Fergu-son et al., 2006; Cauhemez et al., 2008, 2009b; Wu, 2010).Whenever a new infetious disease emerges, the estimation of the pathogen trans-missibility is an urgent issue whih is often addressed by modelling the infetionspread using an infetious sheme of SIR type and by estimating the real-timegrowth rate on the number of syndromi or laboratory on�rmed ases observed inthe population (if available). Surveillane systems monitor the spread of an infe-tion at a national level and surveillane data are often uninformative at the veryearly stages of disease transmission, due to the very low inidene (in terms of bothnumber of syndromi ases and on�rmed ases). On the ontrary, lusters of asesare more easily monitored in small ommunities or spei� soial ontexts and as103



5.2. Estimation of exponential growth ratea matter of fat the real-time estimation of infetion transmissibility has been of-ten performed on data olleted in households (Yang et al., 2009b), shools (Yanget al., 2009b; Lessler et al., 2009) and small ommunities (Fraser et al., 2009).The estimates for the reprodution number R0 obtained in shool settings (Yanget al., 2009b; Lessler et al., 2009; Nishiura et al., 2009) are generally higher thanthose obtained in ommunity settings (Ghani et al., 2009; Fraser et al., 2009;Nishiura et al., 2010). It has been argued that the early estimation of the repro-dution number R0 obtained from the analysis of data olleted in spei� soialontexts (suh as shools) overestimates the transmissibility of infetion at the levelof the general ommunity (Nishiura et al., 2010). Using an individual-based modelreently developed to model the A/H1N1 in�uenza pandemi in Europe (Merlerand Ajelli, 2010) we ompare here the estimates of the reprodution number R0obtained from the urve of the ases observed in the general ommunity and fromthe urve of the ases observed within seleted samples of shools; this is omparedalso to the theoretial value of within shool reprodution number, and to the themean number of ases atually generated by the index ase in a �random� shool.Model shools have been seleted for the analysis either as among the shools withthe highest number of ases (to simulate the ones that would presumably be hosenas target of outbreak analysis) or at random among all shools that had at leastone ase.Finally, we present a �rst analysis of the data olleted through a survey in twoItalian primary shools after the in�uenza outbreak during the 2009-2010 H1N1pandemi. These shools were hosen purely for onveniene and should representa �random� shool from the point of view of in�uenza outbreaks.5.2 Estimation of exponential growth rateInfetions emerging in large populations are haraterized by the fat that theinitial stohasti �utuations in the number of ases is soon overame by a learexponential growth phase. Whenever an epidemi is observed in smaller ontextssuh as shools, the stohasti �utuation in the number of ases annot be ne-gleted and an estimation of the growth-rate beomes more hallenging.In the literature, a few methods have been used to estimate the exponential growthrate of the number of ases and in this work we are going to onsider three verysimple of these tehniques (Chowell et al., 2007b; Favier et al., 2006). The methodsonsidered here are fast but not very re�ned and more aurate estimates an be104



5.2. Estimation of exponential growth rateobtained with other and more omplex tehniques (Cauhemez et al., 2010).Let us assume that, at the early stages of an epidemi, the number of ases growsexponentially. In other words, we assume that the inidene in the number of thenew ases i(t) grows exponentially with rate r in time t

i(t) = kert (5.1)with k ∈ R a onstant.By de�nition, the umulative funtion c(t) is given by
c(t) =

∫ t

0
i(s)ds =

k

r
(ert − 1) (5.2)By applying the logarithmi funtion to i(t), we expliitly �nd a linear relationship

loge(i(t)) = rt + loge kBy applying the logarithmi funtion to the umulative c(t), we obtain
loge(c(t)) = loge(e

rt − 1) + loge

(

k

r

)

= rt + loge(1 − e−rt) + loge

(

k

r

)

. (5.3)If we restrit ourselves to onsider t large enough that loge(1 − e−rt) ≈ 0 (butsmall enough that the exponential phase is still going on), we see that r an beobtained as the slope of a line approximating the values of loge(c(t)). The plotof funtion loge(c(t)) versus time t (Figure 5.2) visually shows the approximatelylinear behaviour of (5.3) for t large enough

105



5.2. Estimation of exponential growth rate
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Figure 5.1: Plot of the logarithm of the umulative funtion c(t) de�ned in (5.2) versustime t.Finally, notie the linear relationship existing between i(t) and c(t)

i(t) = rc(t) + kHere we estimate the exponential growth rate r through the least square �t of alinear model to the observed quantities just introdued and here summerized:L.1) to the logarithm of the inidene versus time [ i.e. loge(i(t)) vs t
];L.2) to the logarithm of the umulative number of ases versus time (Chowellet al., 2007b) [ i.e. loge(c(t)) vs t

];L.3) to the inidene versus the umulative number of ases (Favier et al., 2006)
[ i.e. i(t) vs c(t)

].These methods should be applied to data oming from a phase of exponentialgrowth in inidene. Furthermore, for method L.2, the temporal window shouldexlude times too lose to 0, where loge(1 − e−rt) is not negligible (Merler andAjelli, 2010). Some are hene has to be taken in hoosing a temporal window ofdata to whih these methods should be applied. In order to derease subjetivityin this hoie, we proeeded through a semi-automati proedure.The linear models are �tted on a sequene of temporal windows [ti, ti + δt], where
ti denotes the time at whih the i-th ase has been deteted in the shool and
δt assumes every integer value within [ti+1 − ti, tmax − ti], with tmax denoting the106



5.2. Estimation of exponential growth ratetime at whih the last ase is deteted in the shool. We take time t1 (i.e. the timeat whih the index ase is deteted into a shool) as a referene and set t1 = 1.We adopted an iterative rule to draw a sample from the vetor of the umulativenumber of ases ct: starting from c1 = 1, we generate a sample of length nit byiterating nit − 1 times the following rule
ci+1 = ci +

α

100
Ns (5.4)with Ns denoting the shool size and α to be hosen so that the sample overs afair part of the observed epidemi. We generate the sequene of starting times ofthe temporal windows ti by assoiating to eah sampled umulative number thetime at whih it was �rst observed.From an epidemiologial point of view, we assume to model the infetion dynamisusing a SEIR model with an exponentially distributed latent period of mean T̄Eand an exponentially distributed infetious period of mean length T̄I . Therefore,if r denotes the exponential growth rate in the number of ases, the reprodutionnumber R0 is given by

R0 = (1 + rT̄E)(1 + rT̄I) (5.5)Finally, let yt denote the observed data at time t and lt = q + rt denote the valuepredited by linear regression. We take R2, the fration of the total squared errorexplained by the model
R2 = 1 −

∑

t(yt − lt)
2

∑

t(yt − ȳ)2
(5.6)as measure of goodness of �t, with ȳ representing the sample mean.
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5.3. The individual-based model5.3 The individual-based modelThis part of the work makes use of an extended version of the disrete-time, stohas-ti, spatially-expliit, individual-based SEIR simulation model reently developedby Merler and Ajelli (2010) to model the spatio-temporal spread of the pandemiH1N1 virus in Europe. Here we brie�y review some key aspets of the model andrefer to Merler and Ajelli (2010) (in partiular to the relative Supplementary Ma-terial) for a detailed and exhaustive desription of the soiodemographi and theepidemiologial models.The authors divide the study area into ells (average surfae of about 77 kilometers)and on the de�ned spatial grid generate a syntheti population mathing the en-sus data. Shools and workplaes are distributed proportionally to the populationwhih is grouped into households, shools and workplaes following the ountryspei� soiodemographi data. In this model shools gather together individualswithin a wide age range, from nursery shool to university (a more realisti pro-edure of shool assignment is being developed, but the urrent analysis refers tothis version). Individuals are expliitly represented and haraterized by house-hold and shool/workplae membership (if any). Transmission of infetion oursin households, shools, workplaes and by random ontats with infetious indi-viduals in the global population (random ontats an be made within a radiusof 1000 kilometers and aording to the power-law distribution given in eq. 5.8(Gonzalez et al., 2008)).The original model (Merler and Ajelli, 2010) has been reently extended to explorethe heterogeneity in the patterns of spread observed in the past 2009-2010 H1N1pandemi in Europe (personal ommuniation). Here we use this last version of theindividual-based model, whose mainly di�erene from the original one onsists inthe introdution of a di�erential suseptibility: hildren (< 16 years) are assumedtwie as suseptible to infetion as adults. For the purpose of simpliity we furtherassume that all infeted individuals are symptomati and that sikness-induedabsenteeism does not our. Moreover, for the sake of omputational speed, themodel has been used on a single ountry (Italy) and workplae transmission (whihis not relevant to the present analysis) has been not expliitly modelled but inludedwithin the general ommunity transmission.The risk of infetion for eah individual is de�ned as the sum of the risk fatorsoming from the di�erent soures of infetions onsidered, namely:1. ontats with infetious members of the household (�rst term in eq. 5.7);108



5.3. The individual-based model2. ontats with infetious individuals attending the same shool (seond termin eq. 5.7);3. random ontats in the population (third term in eq. 5.7);
λi =

∑

{k=1,...,N |Hk=Hi}

Ikβh

ni

+
∑

{k=1,...,N |Pk=Pi}

Ikβs

Ni

+
∑

{k=1,...,N}

Ikβcf(dik)
∑

{k=1,...,N} f(dik) (5.7)The terms in equation (5.7) are de�ned as follows:� Hi is the index of the household where individual i lives in;� Pi is the index of the shool where individual i studies (if i is a student);� N is the size of the Italian population;� ni is the size of household Hi;� Ni is the size of shool Pi;� Ik = 1 if individual k is infeted, 0 otherwise;� f(dik) is the funtion de�ned in in (Gonzalez et al., 2008) and here realled
f(dik) = (dik + r0

g)
−βe

−
rg

k (5.8)where r0
g = 5.8km, β = 1.65 and k = 350km. It makes the transmission ofthe epidemi in the general ommunity expliitly dependent on patterns ofhuman mobility, as desribed in (Gonzalez et al., 2008);� βh (expressed in day−1) is the within�household transmission rate;� βs (in day−1) is the within�shool transmission rate;� βc (in day−1) is the transmission rate in the general ommunity.109



5.3. The individual-based model5.3.1 Parameterization of the individual-based modelWe adopt here the baseline parametrization proposed in (Merler and Ajelli, 2010):the disrete-time, stohasti SEIR model assumes an exponentially distributed la-tent period TE of mean 1.5 days and an exponential distribution of the infetiousperiod TI of mean 1.6 days with onstant infetiousness during the whole ourse ofinfetion. Eah epidemi is started by seeding 100 ases at random in the Italianpopulation, and the time step ∆t of the model has been �xed to 0.5 days. The�global� reprodution number R0 is omputed using formula (5.5) and the expo-nential growth rate r is estimated by �tting a linear model to the logarithm of theumulative number of new ases generated in the global population in time (i.e.using method L.2). We run 100 simulations and ompute the mean �global� R0and the mean number of ases generated within households, shools and by randomontats in the initial phase of disease transmission (i.e. on the �rst 1000 asesgenerated in the whole population) and at the end of the epidemi. The estimatesare very stable among the model realizations so that we are going to report onlythe mean values omputed on the 100 realizations. The adopted paramterization(βh = 0.691, βs = 0.771, βc = 0.506) results in a mean �global� R0 of 1.38. Atthe early stages of disease transmission the perentage of ases generated withinhouseholds is on average 28%, the perentage of ases generated within shools ison average 37% and those generated in the general ommunity amounts to 35%.At the end of the epidemi the proportion of ases generated in households, shoolsand in the general ommunity are respetively of 31%, 30% and 39%.5.3.2 Computation of the within shool reprodutionnumberThe model assumes homogeneous mixing within shools and households. If weassume that shool s represents an isolated population, we an de�ne the withinshool reprodution number Rs as the mean number of ases generated by a typialinfetious individual within shool s at the beginning of an epidemi.Reall that βs represent the within shool transmission rate and let γ be the re-overy rate (i.e. T̄I ≈ 1/γ). Furthermore, Ns represents here the size of shool sand remember that the simulation time-step has been �xed to ∆t = 0.5 days.Let us assume that at the beginning of an epidemi one infetious ase is seeded inshool s and that the remaining shool population is suseptible and large enoughto assume that Ns − 1 ≈ Ns. Any suseptible member i of shool s is subjeted110



5.3. The individual-based modelto a probability Pi of beoming infeted within a time step by a given infetiousindividual, with Pi given by
Pi = 1 − e

−
βs∆t

Ns . (5.9)If x infetives are present, the probability that a suseptible esapes infetion fora time step will be (1 − Pi)
x.On the basis of our assumptions (that imply that every infetive is infetious atleast for a period ∆t), the infetious period has length n∆t with probability

P (TI = n∆t) = e−γ(n−1)∆t(1 − e−γ∆t) for n = 1, 2, . . .The mean length of the infetious period is hene given by
T̄I =

∑

n

n∆te
−γ(n−1)∆t(1 − e−γ∆t)

= (1 − e−γ∆t)∆t

∑

n

ne−γ(n−1)∆t

= (1 − e−γ∆t)
∆t

(1 − e−γ∆t)2

=
∆t

(1 − e−γ∆t)
(5.10)With our parametrization (γ = 1/1.6 and ∆t = 0.5) we �nd T̄I = 1.86 and notiethat

lim
∆t→0

T̄I =
1

γ
.Similarly, the number T of temporal steps spent in the infetious stage is given by

P (T = n) = ρ(1 − ρ)n−1 n ≥ 1 (5.11)with ρ = (1−e−γ∆t). Let ps represent the fration of hildren (< 16 years) attend-ing shool s and σa represent the suseptibility of adults with respet to hildren(σa = 0.5). Let Ck denote the number of ases generated by an infetious individ-ual at time step k; we assume that Ck are independently distributed aording toa binomial model
Ck ∼ Bin(Ns, ω) with ω = (ps + (1 − ps)σa)






1 − e

−
βs∆t

Ns
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5.3. The individual-based modelThe number of ases H generated by an infetious individual at the beginning ofan epidemi is a random variable de�ned by
H =

T
∑

k=1

Ck (5.12)The mean number of ases generated by a typial infetious individual withinshool s at the beginning of the epidemi (i.e. assuming that all possible ontatsare suseptible) is given by
Rs = E [H] = E [E [H|T ]] =

Nsω

ρ
= Ns(ps + (1 − ps)σa)

(1 − e−
βs∆t
Ns )

(1 − e−γ∆t)
(5.13)where E denotes the expeted value.Notie that the reprodution number Rs depends on the length of the simulationstep ∆t, on the size of the shool Ns and on the fration of hildren ps attendingthe shool. Note furthermore that

lim
Ns→∞

Rs =
βs∆t

(1 − e−γ∆t)
(ps + (1 − ps)σa)and that (as an be seen from Figure 5.2) already for Ns ≈ 100 the value of Rs isnot very far from its limit value, that is almost reahed for Ns ≥ 600.Considering instead the e�et of time step (whih is atually kept �xed in theanalysis here), note that

lim
∆t→0

Rs =
βs

γ
(ps + (1 − ps)σa)i.e. the usual value (independent of Ns) for ontinuous-time models. Furthermorenote that Rs is an inreasing funtion of ∆t as long as γ > βs/Ns whih is true inour examples, as well as in any reasonable senario.The variane of H (5.12) is given by

V (H) = E
[

H2
]

− (E [H])2

= N2
s ω2(1 − ρ)/ρ2 + Nsω(1 − ω)(2 − ρ)/ρ2

=
Nsω

ρ2
(Nsω(1 − ρ) + (1 − ω)(2 − ρ)) (5.14)We ompute the mean shool size N̄s = 525 (SD= 236) and the mean fration ofhildren attending a shool p̄s = 0.65 (SD= 0.04) by averaging over 100 model112



5.3. The individual-based modelrealizations, the mean values of the respetive quantities omputed on 100 ran-domly seleted shools. Sine the distributions of Ns and ps are independent inthe model, the average value of Rs an be obtained inserting N̄s and p̄s in (5.13)obtaining 1.184; with N̄s and p̄s the variane given in (5.14) results 8.66. Thestandard deviation (SD) reported within brakets has been obtained by averagingover the 100 model realization the standard deviations obtained on the 100 shoolssampled for eah model realization. On Figure 5.2 we plot Rs given in (5.13) as afuntion of the shool size Ns having �xed ps = p̄s = 0.65 and ∆t = 0.5.

0 200 400 600 800 1000

1.
17

8
1.

18
0

1.
18

2
1.

18
4

school size

w
ith

in
 s

ch
oo

l r
ep

ro
du

ct
io

n 
nu

m
be

r 
R

_s

Figure 5.2: Plot of Rs given in (5.13) as a funtion of the shool size Ns having �xed
ps = p̄s = 0.65 and ∆t = 0.5.5.3.3 Analysis of simulated shool epidemisIn this setion we estimate the within shool reprodution number Rs using di�erenttehniques.Estimate of Rs using the infetion treeFor the �rst 20000 ases of eah model realizations we keep trak of the infetiontree (i.e. who infeted whom). Following the de�nition of Rs, we ount here themean number of ases generated (within the shool) by a �typial� infetious ase atthe beginning of the epidemi. For eah of 100 model realizations we randomly draw
100 shools among those infeted relatively early in time (i.e. among the shoolsthat had at least one infetious ase within the time of ourrene of the �rst 20000ases in the global ommunity) and for eah shool we ount the number of ases113



5.3. The individual-based modelgenerated by the index ase. By averaging over the sampled 100 shools and overthe 100 simulations we obtain an estimate of Rs amounting to 1.51 (SD= 1.83).Standard deviation (SD) has been omputed by averaging over the 100 simulationsthe standard deviations omputed for eah simulation on the sampled shools.It has to be noted that the value obtained in this way is quite higher than theaverage value obtained from (5.13), although, given the large SD, the on�deneinterval one would obtain inludes the theoretial value.
Estimate of Rs by the estimation of the exponential growth rateThe individual-based model allows us to to keep trak of the plae where eah aseaquired infetion and hene to distinguish a ase infeted within the shool froma ase infeted anywhere and attending the shool. For eah simulated shool epi-demi s, we an hene distinguish between the urve of the ases generated withinshool s and observed in shool s (but generated anywhere).We propose here the analysis of 10 simulated shool epidemis, whih have beensampled as follows. We �rst randomly draw 10 out of 100 realizations of the model.For tehnial reasons (the infetion-tree has been reorded up to the �rst 20000ases in the general ommunity), we seleted the shools to be analysed amongthose infeted relatively early in time (i.e. within the �rst 20 days sine the startof the epidemi in the ountry). From realizations 1 to 5 we draw one shool (foreah realization) at random. From simulations 6 to 10 we hoose the shool thataounts for the largest number of ases among the shools infeted during theinitial phase of the epidemi. This last hoie has been done to explore any de-pendeny between the number of ases and the within shool reprodution number
Rs. Moreover, these last shools would presumably be hosen as target of outbreakanalysis. For simpliity, the sampled shools have been numbered aordingly tothe simulation from whih they were drawn (s = 1, . . . , 10). Table 5.1 summarizesthe harateristis of the seleted shools (i.e. shool size Ns and the fration ofyoung (< 16 years) population ps), the �atual� value of Rs given by formula (5.13),the number of ases generated and observed within the respetive shools and theorresponding attak rate (AR) omputed on the number of observed ases untilthe time of ourrene of the 20000-th ase.114



5.3. The individual-based model
s Ns p Rs generated observed ARases ases
1 871 0.669 1.198 75 116 0.133
2 842 0.690 1.213 46 72 0.085
3 360 0.655 1.188 89 125 0.347
4 788 0.700 1.220 34 55 0.069
5 496 0.705 1.224 67 106 0.214
6 511 0.690 1.213 141 212 0.415
7 894 0.673 1.201 154 273 0.265
8 771 0.674 1.201 155 236 0.306
9 387 0.705 1.223 116 183 0.473
10 775 0.698 1.219 110 172 0.222Table 5.1: Some basi statistis on the simulated shool epidemis.For eah shool s = 1, . . . , 10 we applied the iterative rule (5.4) with α = 0.3and nit = 10 to generate the temporal-intervals to be used for the �t of a linearmodel on the logarithm of the number of new ases in time (method L.1), on theumulative number of new ases in time (method L.2) and on the inidene versusthe umulative (method L.3). We required the estimated values of the exponentialgrowth rate to satisfy the onditions given on Table 5.2; moreover, we disardedthe estimates obtained on inappropriate temporal frames and those onsidered notinformative enough, as spei�ed next.method R2L.1 > 0.20L.2 > 0.95L.3 > 0.10Table 5.2: Simulated shool epidemis: threshold values for R2, for the di�erent methodsL.1, L.2 and L.3. The values reported on Table 5.1 satisfy the onstrains here de�ned.For eah simulation, we disarded the estimates omputed on the very initialgenerations using method L.2 and those omputed after the exponential growthphase using methods L.1 and L.3. Given the random nature of the simulated shoolepidemis in terms of start and length of the exponential growth phase, we arefulseleted the appropriate time-frames on whih to perform linear regression, forevery method and for every seleted shool epidemi on the basis of the behaviourof the shool epidemis themselves. We disarded also the estimated obtained on115



5.3. The individual-based modeltime intervals shorter than 7 days (i.e. the estimates obtained for δt < 14) and thoseomputed on time intervals longer than 14 days (i.e. the estimates obtained for
δt > 28). Notie that for eah shool epidemi we estimate the exponential growthrate on two epidemi urves: those of the ases generated within the shool andthe urve of the observed ases. Table 5.3 summarizes the range for the estimatesof Rs obtained with the three methods L.1, L.2 and L.3 on the urve of the asesgenerated and observed in the respetive shools.

s Rs method L.1 method L.1 method L.2 method L.2 method L.3 method L.3generated observed generated observed generated observed
1 1.198 1.15-1.23 1.15-1.41 1.13-1.21 1.12-1.18 1.13-1.53 1.14-1.81
2 1.213 1.11 1.17-1.28 1.08-1.24 1.07-1.23 1.16-1.40 1.19-1.30
3 1.188 1.14-1.39 1.17-1.40 1.19-1.27 1.17-1.24 1.13-1.69 1.16-1.67
4 1.220 1.18 1.15 1.14-1.21 1.15-1.21 1.25-1.35 1.16-1.32
5 1.224 1.11-1.51 1.24-2.13 1.11-1.15 1.13-1.16 1.24-1.46 1.24-1.64
6 1.213 1.15-1.67 1.19-1.83 1.17-1.20 1.15-1.18 1.11-1.76 1.14-1.69
7 1.201 1.13-1.23 1.15-1.50 1.17-1.21 1.17-1.19 1.12-1.43 1.13-1.56
8 1.201 1.14-1.36 1.15-1.48 1.19-1.40 1.22-1.41 1.12-1.63 1.13- 1.77
9 1.223 1.1-1.22 1.21-1.41 1.17-1.23 1.15-1.21 1.17-1.33 1.18-1.39
10 1.219 1.12-1.20 1.13-1.31 1.14-1.29 1.13-1.26 1.11-1.30 1.13-1.19Table 5.3: Ranges (i.e. maximum and minimum value) of Rs estimated using methodsL.1, L.2 and L.3 for the relative shool epidemis and the theoretial value of Rs givenby formula (5.13) on the basis of the data provided on Table 5.1. The seleted estimatessatisfy the onstrains reported on Table 5.2 and the hoie of the temporal intervals usedto perform linear regression (in the three variants L.1, L.2 and L.3 and for eah shoolepidemi) has been disussed in the text.All methods L.1, L.2 and L.3 produe reasonable estimates of Rs in the ap-propriate time-intervals. Method L.2 revealed itself as the most stable methodamong the three. More preisely, the mean of the squared di�erenes between themidpoints of the ranges and the relative values of Rs given by theory is smallestfor method L.2; method L.3 tends to overestimate the �atual� value of Rs (i.e allthe midpoints of the ranges obtained with method L.3 overestimate the relativevalues of Rs given by theory, exept for s = 10). Therefore, method L.2 seems tobe preferrable to the others, at least for data generated by the simulation modeladopted here.
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5.4. Real shool outbreaks5.4 Real shool outbreaks5.4.1 The surveyIn Italy the �rst (or primary) level of ompulsory eduation starts at the age of
6 and ends at 11 years. During the 2009-2010 A/H1N1 in�uenza pandemi andpreisely over the months of Otober-November 2009, two primary shools loatedin the villages of Povo and Villazzano (Trento, Italy) experiened a lear epidemi.The survey, onduted on Deember 2009 in the two shools in question, aimedat retrospetively reonstrut the outbreaks ourred over the previous monthsin eah shool. To eah family of the shools we delivered a paper questionnaireomposed by a �rst part, where we gave the de�nition of in�uenza-like-illness (ILI)and by a seond part, where the parents on behalf of their hildren were asked toreport the date(s) of onset of ILI symptoms in the members of the family. Table5.4 summarizes some basi data and statistis olleted at the time of the survey.shool of Povo shool of Villazzanoshool size 307 213number of lasses 14 10number of responses 260 168number of ILI ases 121 103response rate 0.85 0.79attak rate 0.46 0.61Table 5.4: Some basi statistis on the survey led in the primary shools of Povo andVillazzano.5.4.2 Analysis of real shool epidemisShool of PovoOn the basis of the data olleted through the survey, two ases seeded infetion inthe shool of Povo (t1 = t2 = 1) and the last ase showed the onset of ILI symptoms
56 days after the index ases (tmax = 56). Figure 5.3 shows the number of newases (left panel) and the umulative number of ILI ases (right panel) observed inthe shool over time. 117



5.4. Real shool outbreaks
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Figure 5.3: Plot of the number of new ases (left panel) and of the umulative number ofobserved new ases (right panel) in the shool of Povo in time, starting from the day ofdetetion of the index ase.Using rule (5.4) with α = 2.5 and nit = 15 we de�ne the temporal-windows onwhih to perform the linear regressions. In terms of goodness of �t R2 we seletthe estimates that satisfy the onstrains given on Table 5.5. The thresholds valuesgiven on Table 5.5 have been hosen on the basis of the relative average valuesof R2 observed when �tting a linear model to this shool epidemi. Indeed, thePovo shool epidemi ould be better explained (using a linear model) than thesimulated shool epidemis given that, on average, we obtained higher sores forthe goodness of �t R2. method R2L.1 > 0.30L.2 > 0.98L.3 > 0.50Table 5.5: Threshold values for R2 for the estimates obtained for the shool of Povo.Tables 5.6, 5.7 and 5.8 summarize the estimated growth rate r and the orre-sponding values of R0 and R2 omputed on the spei�ed time intervals [ti, ti + δt]using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.4(a),5.4(b), 5.4() plot the linear �t marked with an asterisk in the respetive tablesand the �lled dots in the plot represent the data on whih linear regression hasbeen performed. 118



5.4. Real shool outbreaksL.1 - linear regression on loge(i(t)) vs t

ci ti δt r R2 Rs1 1 29 0.0634 0.426 1.211 1 30 0.0611 0.430 1.201 1 31 0.0589 0.433 1.1913 12 18 0.0798 0.327 1.26 *13 12 19 0.0724 0.312 1.2425 18 8 0.216 0.432 1.7825 18 9 0.184 0.416 1.6525 18 10 0.149 0.364 1.5225 18 11 0.146 0.416 1.5125 18 12 0.136 0.435 1.47Table 5.6: Shool of Povo: summary of the estimated values of the exponential growth rate
r obtained through the �t of loge(i(t)) vs t and the orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4(a).

L.2 - linear regression on loge(c(t)) vs t

ci ti δt r R2 Rs13 12 19 0.0993 0.982 1.3313 12 20 0.0982 0.984 1.3313 12 21 0.0966 0.984 1.3213 12 22 0.0947 0.982 1.32 *33 23 3 0.158 0.983 1.5541 24 2 0.178 0.987 1.6345 25 5 0.0916 0.988 1.345 25 6 0.0865 0.985 1.29Table 5.7: Shool of Povo: summary of the estimated values of the exponential growth rate
r obtained through the �t of loge(c(t)) vs t and the orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4(b). 119



5.4. Real shool outbreaksL.3 -linear regression on i(t) vs c(t)

ci ti δt r R2 Rs1 1 8 0.973 0.973 6.291 1 9 0.49 0.572 3.091 1 28 0.0959 0.508 1.321 1 29 0.0913 0.537 1.3013 12 3 0.667 0.651 4.1313 12 14 0.171 0.529 1.60 *17 15 11 0.195 0.521 1.7021 15 11 0.195 0.521 1.70Table 5.8: Shool of Povo: summary of the estimated values of the exponential growthrate r obtained through the �t of i(t) vs c(t) and the orresponding R0. Linear regressionhas been performed on the time intervals given by [ti, ti + δt]. The marked (*) linear �t isplotted on Figure 5.4().
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Figure 5.4: Plot of: (a) the inidene data olleted in the Povo shool (lin-log sale) andthe best linear approximation obtained by linear least square �tting to the �lled dots,(b) the umulative data olleted in the Povo shool (lin-log sale) and the best linearapproximation obtained by linear least square �tting to the �lled dots, () the inideneas a funtion of the umulative data olleted in the Povo shool and the best linearapproximation obtained by linear least square �tting to the �lled dots.Shool of VillazzanoOn the basis of the data olleted in the survey, one ase seeded the infetion inthe primary shool loated in Villazzano (t1 = 1) and the last ase showed theonset of ILI symptoms 64 days after the index ases (tmax = 64). Figure 5.5 plotsthe number of new ases (left panel) and the umulative number of ILI ases (rightpanel) observed in the shool of Villazzano over time.120
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Figure 5.5: Plot of the number of new ases (left panel) and of the umulative number ofobserved new ases (right panel) in the shool of Villazzano in time, starting from the dayof detetion of the index ase.To de�ne the temporal windows on whih to perform the �t, we apply theiterative rule given in 5.4 with nit = 15 and α = 2.5 and selet the estimatessatisfying the onstrains given on Table 5.9. The thresholds values given on Table5.9 have been hosen on the basis of the relative average values of R2 obtainedthrough the �t of the linear models to this shool epidemi. The seletion wouldhave been less aurate, if we had applyed the threshold values given on Tables5.2 and 5.5, and the estimates would have been muh poorer, in the sense that wewould have aepted wider ranges for Rs.method R2L.1 > 0.60L.2 > 0.95L.3 > 0.70Table 5.9: Threshold values for R2 for the estimates obtained for the shool of Villazzano.Tables 5.10, 5.11 and 5.12 summarize the estimated growth rate r and theorresponding values of R0 and R2 omputed on the spei�ed time intervals [ti, ti+

δt] using linear regression on the three quantities L.1, L.2 and L.3. Figures 5.6(a),5.6(b) and 5.6() plot the linear approximation marked with an asterisk in therespetive tables and the �lled dots in the plot show the time-interval on whihlinear regression has been performed. 121



5.4. Real shool outbreaksL.1 - linear regression on loge(i(t)) vs t

ci ti δt r R2 Rs4 7 24 0.0923 0.558 1.314 7 25 0.0922 0.586 1.314 7 26 0.0814 0.511 1.274 7 27 0.0789 0.52 1.267 19 9 0.205 0.562 1.747 19 10 0.213 0.647 1.777 19 11 0.201 0.674 1.727 19 12 0.208 0.736 1.75 *7 19 13 0.185 0.699 1.6510 24 5 0.362 0.854 2.4410 24 6 0.267 0.711 2.0010 24 7 0.258 0.773 1.9610 24 8 0.186 0.571 1.66Table 5.10: Shool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of loge(i(t)) vs t and the orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6(a).
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5.4. Real shool outbreaksL.2 - linear regression on loge(c(t)) vs t

i ti δt r R2 Rs10 24 7 0.281 0.98 2.0610 24 8 0.263 0.974 1.98 *10 24 9 0.24 0.954 1.8813 26 2 0.409 0.98 2.6713 26 3 0.347 0.968 2.3613 26 5 0.273 0.958 2.0316 27 2 0.271 0.994 2.0216 27 3 0.231 0.978 1.8516 27 4 0.227 0.988 1.8316 27 5 0.206 0.978 1.7428 28 2 0.193 0.984 1.6928 28 3 0.205 0.992 1.7428 28 4 0.184 0.983 1.65Table 5.11: Shool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of loge(c(t)) vs t and the orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6(b).
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5.4. Real shool outbreaksL.3 -linear regression on i(t) vs c(t)

i ti δt r R2 Rs1 1 27 0.305 0.788 2.171 1 28 0.265 0.822 1.991 1 29 0.214 0.774 1.781 1 30 0.22 0.856 1.801 1 31 0.172 0.736 1.604 7 20 0.423 0.834 2.744 7 21 0.355 0.875 2.404 7 22 0.29 0.864 2.104 7 23 0.227 0.789 1.834 7 24 0.229 0.867 1.844 7 25 0.176 0.73 1.627 19 8 0.538 0.933 3.367 19 9 0.389 0.886 2.577 19 10 0.296 0.837 2.13 *7 19 11 0.219 0.721 1.797 19 12 0.224 0.824 1.81Table 5.12: Shool of Vilazzano: summary of the estimated values of the exponentialgrowth rate r obtained through the �t of i(t) vs c(t) and the orresponding R0. Linearregression has been performed on the time intervals given by [ti, ti + δt]. The marked (*)linear �t is plotted on Figure 5.6().
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Figure 5.6: Plot of: (a) the inidene data olleted in the Villazzano shool (lin-log sale)and the best linear approximation obtained by linear least square �tting to the �lled dots,(b) the umulative data olleted in the Villazzano shool (lin-log sale) and the best linearapproximation obtained by linear least square �tting to the �lled dots, () the inideneas a funtion of the umulative data olleted in the Villazzano shool and the best linearapproximation obtained by linear least square �tting to the �lled dots.124



5.5. First results & disussionOn the basis of the data olleted through the survey onduted in the primaryshools of Povo and Villazzano, we estimate that the within shool reprodution
Rs has been into the range 1.2 − 1.8 in the shool of Povo and into the range
1.6−2.7 in the shool of Villazzano. If we selet the estimates obtained with meth-ods L.1 and L.2 on the most reasonable time-intervals, the estimated within shoolreprodution number is into the range 1.25− 1.35 for the Povo shool and into therange 1.7 − 2.1 for the shool of Villazzano. The ranges given here orrespond tothe values of Rs estimated on di�erent exponential growth time-intervals, providedthat we seleted the most reasonable time-frames for the �t of a linear model to thedata. Our analysis shows that the estimates of the reprodution number obtainedby least square �t of a linear model to observed data are sensitive to the hoie ofthe exponential growth phase seleted for the �t.The estimates of the within shool reprodution number Rs omputed in this workare smaller but omparable to the estimates of the reprodution number obtainedfrom the analysis of a pandemi H1N1 outbreak in the St. Franis Preparatoryshool in New York [2.4 (95% CI: 1.8 − 3.2)] (Yang et al., 2009b) and to the esti-mates obtained from the analysis of a high shool outbreak in Queens, New York
[

3.3 (95% CI: 3.0 − 3.6)] (Lessler et al., 2009).Finally, notie that the estimates of Rs obtained for the shool of Villazzano withmethod L.1 learly re�et the two exponential growth phases that make this epi-demi rather unommon. The estimates obtained through the �t of the initialdata (i.e. from day 7) are lower than the estimates obtained on the time inter-vals starting at day 19; these last seem muh more reasonable to us. A moredetailed analysis of the spread of infetion among the shool-lasses ould possiblylarify the unommon behaviour of the epidemi urve observed in the shool ofVillazzano.5.5 First results & disussionThe individual-based model developed by Merler and Ajelli (2010) has been re-ognized as a tool able to suessfully reprodue the patterns of spread observed inthe population-wide epidemi; here we explored its ability in reproduing shooloutbreaks. The model's heterogeneity, in terms of proportion of adults and hil-dren attending the same shool and within shool reprodution number, ould beertainly improved. Despite this, the individual-based model is a valuable tool forthe omparison of the estimats of the within shool reprodution number with its125



5.5. First results & disussion�true� value given by theory. The estimates of the exponential growth rate dependon the hoie of the exponential growth time-intervals adopted in the �t. One�xed the most appropriate time-intervals, we �nd that the estimates of Rs ob-tained through the estimates of the exponential growth rate using linear regressionlosely reprodue the theoretial values of the within shool reprodution number.The analysis of simulated data show that the least square �t of a linear modelto the data performed on the umulative number c(t) of the ases versus time t(method L.2) is the most stable estimation method among the three exploited here.Moreover, the estimates of Rs omputed on the ases observed within the shoolsdo not signi�antly di�er from the estimates obtained from the urve of the asesgenerated within the shools so that the importation of ases seems not to sub-stantially a�et the within shool dynamis. The estimate of Rs obtained throughthe infetion tree (i.e. ounting the mean number of ases generated by a �typial�index ase) amounts to 1.51 (standard deviation 1.83) and slightly overestimatesthe theoretial value of Rs = 1.18. On the basis of our estimates obtained by lin-ear regression, the within shool reprodution number Rs is lower than the �global�
R0; this fat is in on�it with some estimates obtained during the past 2009-2010H1N1 pandemi (Lessler et al., 2009; Nishiura et al., 2009, 2010).We ompared the simulated results with two real within shool outbreaks ourredin Italy during the 2009-2010 H1N1 pandemi. On the basis of the data olletedthrough the survey onduted in the primary shools of Povo and Villazzano, theestimated within shool reprodution number is into the range 1.25 − 1.35 for thePovo shool and into the range 1.7−2.1 for the shool of Villazzano. These estimatesare lower than those obtained from the analysis onduted on the data olleted inthe St. Franis Preparatory shool in New York [2.4 (95% CI: 1.8 − 3.2)] (Yanget al., 2009b) and in the Queens shool, New York [3.3 (95% CI: 3.0−3.6)] (Lessleret al., 2009). The reasons that ould explain this di�erene are manifold and oulddepend on the delay of the survey in respet to the timing of the epidemi, on somespei� harateristis of the shools where the outbreaks have been monitored andon ountry-spei� di�erenes in terms of virus transmissibility, for instane.The estimates of Rs obtained for the shools of Povo and Villazzano are slightlyhigher than those omputed on the simulated Italian shools, whih have been ob-tained for a �global� R0 of 1.38. Despite the individual-based model ould ertainlybe improved in a variety of di�erent aspets (and indeed a more realisti proe-dure of shool assignment is being developed), we �nd that even in the urrentversion, the model an satisfatory reprodue within shool outbreaks, so that it is126



5.5. First results & disussionpotentially a powerful tool for the simulation and analysis of disease transmissionin spei� soial ontexts.
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