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Abstract

Downside risk measures, such as semivariance, are essential for evaluating investment risk.
Focusing on semivariance allows investors to emphasize loss mitigation without considering
upside volatility as risk. However, minimizing the semivariance of a portfolio is an analytically
intractable and numerically challenging problem due to the endogeneity of the parameters
in the semicovariance matrix. We introduce a methodology for consistent estimation of the
portfolio semivariance based on a smooth approximation of the empirical semicovariance
matrix. Differently from existing methods, the new estimator does not rely on biased surrogate
semicovariance models and enables the treatment of large problems with many assets. The
extent of smoothing is determined by a single tuning constant, which allows our method
to span an entire set of optimal portfolios with limit cases represented by the minimum
semivariance and the minimum variance portfolios. The methodology is implemented through
an iteratively reweighted algorithm, which is computationally efficient for high-dimensional
problems with many assets. Our numerical studies confirm the theoretical convergence of
the smoothed semivariance estimator to the traditional sample semivariance. The resulting
minimum smoothed semivariance portfolio performs well in- and out-of-sample compared
to other popular selection rules.
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1 Introduction

A strand of literature suggests that investors do not treat gains and losses in the same way.
As a consequence, a distinction between “good” and “bad” target deviations is helpful for
volatility forecasts, risk management, and asset pricing (for an exhaustive overview see
Bollerslev, 2021). This distinction is crucial in financial markets to explain stylized facts
such as fat tails, negative asymmetry, and non-normality in asset returns, and to construct
more robust portfolio selection strategies. By recognizing the empirical regularities in asset
returns, especially those implying negative asymmetry and aggregational Gaussianity over
longer time horizons, loss-averse investors can use alternative portfolio selection rules like
minimum semivariance optimization (see Cont, 2001, 2010; Ratliff-Crain et al., 2023).

Shortly after introducing the mean-variance framework, Markowitz (1959) formally
describes the concept of semivariance of a portfolio and illustrates its theoretical advan-
tages over the variance as a measure of risk. Some decades later, Sortino and Prince (1994)
introduce the Sortino ratio, which is similar to the Sharpe ratio but relies on the downside
risk, i.e., the square root of the semivariance, to quantify risk.

So far, research has mostly focused on mean-variance efficient portfolios and minimum-
variance portfolios (see Zopounidis et al., 2014, and the references within the special issue
on Markowitz’s contributions in portfolio theory), although targeting the downside volatility
allows the investor to focus on loss minimization without considering the upside volatil-
ity as risk. Downside risk measures are better suited for assessing the investment risk of
investors who consider potential losses relative to their target returns. For further elucidation
on downside risk measures, see Harlow (1991) and Nawrocki (1991), and more recently
Pla-Santamaria and Bravo (2013) and Klebaner et al. (2016).

The standard deviation is more widely used as a risk measure because calculating optimal
semivariance portfolios is more challenging from an optimization perspective compared
to using quadratic programming for the mean-variance framework (see Ballestero, 2005;
Estrada, 2008; Cumova & Nawrocki, 2011). In order to minimize the portfolio semivariance
it is necessary to compute a semicovariance matrix. Differently from the covariance matrix,
the semicovariance matrix only considers periods in which the portfolio underperforms the
benchmark. As a consequence, the semicovariance matrix is endogenous in the sense that
changes in the portfolio weights affect the periods in which the portfolio return underperforms
the benchmark, which in turn determines the value of the semivariance. This means that the
semivariances and semicovariances contained in the semicovariance matrix depend not only
on a given set of data but also on the chosen portfolio weights.

From a mathematical viewpoint, the semivariance relies on a non-smooth indicator func-
tion to identify periods where the portfolio is below a certain threshold. As a consequence,
analytical solutions do not exist, and naive numerical optimization procedures, such as
grid search, are only feasible for a relatively small number of assets. Previous attempts
to estimate the semicovariance matrix exist in the literature (see Hogan & Warren, 1972;
Nawrocki, 1991; Ballestero, 2005; Estrada, 2008; Cumova & Nawrocki 2011). However,
all available approaches suffer from serious drawbacks, including lack of matrix symmetry,
presence of simplifying assumptions on the semivariance structure or on the preferences of
investors, restrictions on the choice of the benchmark value, and poor performance in terms
of approximation error (see Estrada, 2008; Cheremushkin, 2009; Rigamonti, 2020).

In this work, we introduce an estimator for the portfolio semivariance, which we refer
to as smoothed semivariance (SSV) estimator in the rest of the paper. The main idea is to
approximate the indicator function in the classical definition of the empirical semivariance by
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a continuous function with accuracy of approximation controlled by a smoothing constant.
The resulting estimator has the advantage to be a smooth function in the portfolio weights,
while it can be made arbitrarily close to the usual semivariance estimator. We explore the
minimization of the SSV estimator as a rule for portfolio selection. Depending on the value of
the smoothing constant, the resulting minimum SSV portfolios allow spanning an entire set
of solutions, ranging from the minimum semivariance to the portfolio obtained by equally
weighting all the observations in the estimation set (i.e., without discriminating between
upside and downside volatility). When the benchmark is equal to the sample mean, the
latter case coincides with the minimum variance portfolio. In order to present this additional
theoretical property, in this paper we focus on the special case in which the benchmark is equal
to the mean. However, our methodology can be used with any benchmark.! To compute the
minimum SSV portfolios, we introduce an easy-to-implement iteratively reweighted scheme,
which allows tackling large problems with many assets.

To corroborate the precision of our SSV algorithm, for a small problem we show that
our results are almost identical to the one obtained via grid search, which can be considered
as the global optimum. Moreover, we illustrate that the estimated semicovariance matrix
might suffer from greater parameter uncertainty than the estimated covariance matrix. This
suggests that an estimator that perfectly separates positive and negative data points might not
be optimal in terms of out-of-sample performance, and that intermediate levels of the SSV
tuning parameter might lead to better out-of-sample properties. This is confirmed on simulated
and on empirical data when comparing the SSV approach with benchmarks such as the global
minimum-variance portfolio and the minimum semivariance portfolios obtained using the
techniques proposed by Ballestero (2005), Estrada (2008) and Cumova and Nawrocki (2011).
Furthermore, in order to address parameter uncertainty in the out-of-sample exercise, we
show that the proposed SSV approach can be easily combined with well-known shrinkage
techniques.

The remainder of this paper is structured as follows. Section 2 describes the SSV estimator
and its theoretical properties. Section 3 addresses the issue of portfolio selection through the
optimization of the SSV and describes the algorithm. Sections 4 and 5 illustrate the properties
of the new method using simulated and real data, respectively. Section6 concludes and
discusses future research. Proofs of propositions are deferred to the “Appendix A”. Robustness
results are provided in “Appendix B”.

2 Methodology

2.1 Background and setup

Let X = (X1, ..., Xn) " be arandom vector representing the returns for N assets with mean
vector E(X) = n € RY and covariance matrix cov(X) = £ € RNV*N  The portfolio return
is defined by the weighted average Y (w) = w' X, where w = (w1, ..., wy) ! is the vector

of portfolio weights to be determined and satisfying the budget constraint ley:l w; = 1.
The expected return and variance of the portfolio are given by

pw) = E[Y (w)] =w'n, 4))
o?(w) = var[Y W) = w' Sw. )

I As robustness test, we report also empirical results for the benchmark being equal to the median return as
in Bernard et al. (2019), see “Appendix B”.
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The portfolio semivariance is defined as
ol(w) = E [min{Y (w) — b, 0)*] = E[(Y (w) — b)*I (Y (w) < b)], 3)

where I(-) represents the indicator function, and b is a benchmark set by the investor. The
portfolio semivariance is similar to the variance, but it considers only the variability of
portfolio returns below b.

Let Xy,..., X7 be T independent observations on X, where X; = (Xy,, ..., Xy T
and X;; denotes the observation on asset i at time ¢. Consider the empirical semivariance
estimator

T T
o (w) = % > min{¥;(w) — b, 01 = % Y (i) = b1 (Y, (w) <b), (&)

t=1 t=1

where Y, (w) = w' X;. Particularly, we are interested in finding the optimal portfolio @ by
solving the minimum semivariance problem

N
min Gy (w) st Y wj=1. Q)
j=1

The optimal portfolio weights obtained by solving (5) do not coincide with those of the
minimum variance portfolio if asset returns are asymmetric and/or the benchmark differs
from the mean (see Klebaner et al., 2016). Solving the optimization task in (5) is challenging
as it relies on the non-smooth indicator function /(Y;(w) < b), which impedes the use of
standard optimizers, and requires the semicovariance matrix as an endogenous input.

To address the above challenges, several algorithms based on linear or quadratic pro-
gramming have been suggested to minimize the semivariance of a portfolio (for a review
see Estrada, 2008). Taking a different approach, Estrada (2008) proposes to approximate
the semicovariance matrix using a heuristic approach based on whether the single assets,
and not the portfolio as a whole, underperform the benchmark. Although this yields a sym-
metric and positive semi-definite matrix which is easy to compute, the discrepancy between
this heuristic definition and the actual semicovariance asz(w) can be substantial and gener-
ally increases with the number of assets. The approximation error implied by this heuristic
approach cannot be neglected and implies a significant estimation bias and performance loss
(see Cheremushkin, 2009; Rigamonti, 2020). Differently from existing approaches, we pro-
pose a smoothed version of the empirical semicovariance matrix. The estimator is shown to
converge to the sample semicovariance estimator in (4). The proposed approximation can be
conveniently optimized through a reweighting algorithm.

2.2 The smoothed semivariance estimator

Motivated by the above computational issues, we introduce the smoothed semivariance (SSV)
estimator defined by

T
G (w,0) = % > Xiw) = b’ (Yi(w) — b3 0), (6)

t=1

where 7 (-; 6) is a continuous function indexed by the smoothing parameter 6, which we use
to relax the binary weights I (Y; (w) —b < 0) in (4). In this paper, 7 is given by the parametric

@ Springer



Annals of Operations Research

(a) 6=0.0001 (b) 6=0.05 (c) 6=1000
o _ _
o | i |
o o o
o _| © | © |
o o o
S
< | < | < |
o o o
~ | [ N
s
> | . > o |
T T T T T ° N T T T T S H T T T T
-02 -01 00 01 02 -02 -01 00 01 02 -02 -01 00 01 02
Return Return Return

Fig. 1 Smoothing weights 7 (z; 0) for different values of the smoothing parameter 6: (a) 6 = 0.0001, (b)
6 = 0.05 and (c) 6 = 1000

model

1 — F(z/0), 0 >0

I(z<0), 6=0, )

w(z;0) = {
where F(-) is the distribution function of Y (w) — b, and the smoothing parameter 6 may
be determined based on the sample. We let 8 = Or be a positive sequence decreasing to
zero with the sample size T. This choice, while ensuring smoothness of the estimator (6)
with respect to w, it also makes the discrepancy between the smoothed estimator (6) and the
traditional sample semivariance estimator (4) negligible as 7" diverges.

For 6 — 0, the smoothing function 7 converges to the indicator function 7(-) in (4),
and in the limit 33.2(w; 0) coincides with the traditional empirical semivariance a?(w) =
52(w; 0), regardless of the benchmark b set by the investor; see Fig.la. If b = Y(w) =
7! ZzT=1 Y;(w) and & — oo, the SSV weighs equally all the observations, and converges
to the sample covariance estimator; see Fig. 1c. Therefore, we focus on the special case where
the SSV is defined as

1 o _ _
52w, 0) = = > IYi(w) = ¥ )P (¥, (w) = ¥ (w); 0), ®)

t=1

with smooth function 7 (-; 0) as defined in (7). In Sect.4, we show that, due to parameter
uncertainty, the lowest downside deviation in an out-of-sample exercise might be achieved
with an intermediate value of 6. This corresponds to the situation in Fig. 1b.

The following proposition shows that the SSV estimator 52 (w, ) is asymptotically equiv-
alent to the non-smoothed semivariance Zf_?(w), and uniformly in w, as the sample size T
increases. The proposition also provides information on the convergence rate.

Proposition 2.1 Let 6 = Or be a sequence such that O — 0 as T — oo. Assume: (i)
{X;,t > 1} are iid vectors with finite moment up to second moment; and (ii) the portfolio
Y, = w' X, has continuous and bounded density f(-) such that yf(ay) — 0 as |y| — 00
foralla € Rt and w € RY. Then for any w such that |lw|l < C, C > 0, we have

(2w, 0r) ~52w)| = 0, (67" F ko)) ©)
where k > 0 is some positive constant.

The main requirement is that the portfolio ¥; (w) = w ' X; has density with sub-linear tail
behavior, meaning its tails go to zero quicker than y as y — oo. This is a relatively mild
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condition satisfied by a large number of distributions used in financial modelling. Then, the
rate of convergence between the smoothed and non-smoothed estimators is governed by the
tail behavior. For example, when X; follows the N-variate normal distribution Ny (n, ¥),
then (Y;(w) — b) follows the univariate normal distribution N (w ™y — b, w " Zw). In this
case, for any a > 0 and ||w]||, < C we have

£(ay) 1 a(y — an +b)?
ay) =y————expj—————
Y yv27erEw P 2w Tw

The tail of the normal distribution decreases exponentially fast in y2 and clearly satisfies the
requirement of Proposition 2.1.

Proposition 2.1 contains information on the convergence rate of the smooth estimator,
thus providing us with some guidance on how to set 67 in applications. For the case of
normally distributed assets, the SSV estimator approximates the non-smoothed estimator up
to a vanishing term of order exp{—k0, 2}, k > 0, in probability, because of the dominating
effect of the exponential term in the normal pdf. This means that setting 67 = T ~!/2 ensures
an approximation of order O, (exp{—kT'}) for sufficiently large 7. In real data applications,
we recommend setting 07 = T—1/2 or even smaller, such as & = T~!, as these choices are
expected to have negligible impact on the statistical accuracy of either smoothed or non-
smoothed estimators. Particularly, the standard deviation of such estimators is expected to
be of order T~!/2 by the Central Limit Theorem.

}—>0, as |y| — oo.

3 Optimal portfolio selection

Consider a random sample Xi,..., X7 from X ~ Ny(n, ¥£) and define the sample
covariance matrix > = 7! Zszl(Xz — X)(X;, — X)T. The global minimum variance
(GMV) portfolio W, is found by minimizing the portfolio variance 52(w) = w! Zw sub-
ject to the constraint Zﬁvz jw; = 1. The GMYV portfolio has the closed-form expression
Wiy = f)‘ll/(l—rf)_]l), where 1is the N x 1 vector of ones.

The semivariance minimization problem (5) can be similarly formulated. Particularly,
note that the portfolio semivariance is given by &Sz(w) =w' ﬁ]S (w)w, where fls(w) is the
N x N semicovariance matrix

. 1 & N _ _
Bw) = = Y (X = X =T Hw (X - X) <0} (10)

=1
The minimum semivariance portfolio Wy is found by solving

N
. T
min w Ys(w)w s.t. ij =1. (11)
j=1
This is a challenging optimization task that cannot be tackled using gradient-based optimiza-

tion techniques due to the non-smoothness of p) s (w). To address this issue, we replace by s(w)
in (11) by the smoothed semicovariance matrix

. 1< _ _ _
£wi0) = = Y (X = XX = %) T (w7 (X = %):6). (12)

t=1
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where the function 7 (-; ) is defined in (7). Thus, given 6 > 0, we compute the smoothed
minimum semivariance portfolio by solving the approximate optimization task

N
mui)n wTES(w; w s.t. ij =1. (13)
j=1
The solution to the above problem clearly depends on the choice of the smoothing parameter
6, and we denote it by Wy in the rest of the paper.

Note that the minimum semivariance portfolio wg and the minimum variance portfolio
Winw are recovered as limit cases from the optimization (13). In particular, for 86 — 0, we
have E. (w,0) — 3;(w) for all w € RN, meaning that the minimum SSV portfolio g
approximates the target (non-smooth) minimum semivariance portfolio Wy for a sufficiently
small 6. For certain special cases, the minimum semivariance portfolio g may be obtained by
brute-force computation, for example using grid search. However, this is typically unfeasible
in realistic applications where the number of assets N is moderate or large. On the other
hand, our smoothing approach with 6§ > 0 can be applied to situations with arbitrary, and
possibly very large, number of assets N. For 6 — oo, the SSV estimator converges to the
sample minimum variance portfolio W, .

The next proposition shows that the minimum SSV portfolio Wy converges to the popula-
tion minimum semivariance portfolio as long as 6 decreases to O with the sample size T'. For
the following analysis, we define the Lagrangian function L (v; ) = osz (w; 0)+A Z;‘: LWj
with v = (w',2)7 and let v* = (w*, A*)" be the minimizer of Ly (v; 0). Here w* is the
optimal portfolio that minimizes the theoretical non-smooth population semivariance (3) in
the absence of sampling variability. Note that (13) can be written in terms of the empirical
objective

T N
Liwio) = 2> 1w X = XX =X 7@ (X = X 0w +2 ) w;
t=1 Jj=1

Particularly, Ly(v; 6) can be regarded as an M-estimating function, with w representing a
statistical parameter. From this viewpoint, the minimizer vy = (ﬁ);— , )ALQ)T of i(w; 0) can
be viewed as an M-estimator, which enables us to exploit existing theory to analyze its
properties.

Proposition 3.1 Assume: (i) for every € > 0, infy.jy—p*|,>e Ls(v; 0) > Ly(v*; 0), and (ii)
X; has finite moments up to fourth moment. Then, under the conditions given Proposition
2.1, we, — w™* in probability as T — oo.

Consistency for Wy with 6 decreasing to zero is obtained through standard arguments
for M-estimators (e.g. see Theorem 5.7 in van der Vaart, 2000). The main assumptions
for consistency of Wy are the uniform convergence of the semivariance estimator shown in
Proposition 2.1 and the uniqueness of the minimizer w* of o?(w; 0) in a neighborhood of

w*.

3.1 Iteratively reweighted algorithm
The optimization task in (11) cannot be solved by a gradient-based approach due to the non-

smoothness of the objective function. Solving (11) using a generic optimization algorithm
may still be challenging when the number of elements in w is moderate or large. To address this
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issue, we propose a reweighting optimization approach whereby, starting from some initial
portfolio weights, we alternate the estimation of the weighted covariance matrix s (w; 0)
and the solution of (13) to update the weights. Note that, given S (w; ), the optimization
task in (13) is a standard minimum-variance problem which admits a closed-form solution
for T > N.This reweighting strategy leads to a fast and easy-to-implement algorithm, which
we describe next.

Letxj, ..., x7 be T realizations on the vector of asset returns with x; = (x1;, ..., Xn:) "
and x;; denotes the realization of the return for asset i at time . Moreover, define z; (w) =
w' (x; —x), withx = 7! Zthl x;. We use the superscript [k] to denote the k-th step of our

/
algorithm, i.e., wlkl = (wﬁk], R w%{]> are the portfolio weights obtained at Step k. For a

given 0, we carry out the following steps:
Algorithm 1: Iteratively reweighted algorithm for minimum SSV portfolio

0. Initialization. Set k = 0 and nt[o] =1(z (w®) <0),fort =1,..., T, where w! are
initial weights. For example, set w; l—... = wE\(,)] =1/N.
1. Parametric smoothing update. Compute n,[k] =7 (z, (w[k]) ; 9), forl1 <t < T, where
7 (-; 6) is the parametric smoother in (7).
2. Update of the optimal portfolio. Given m;
w*+1 by solving

[k ], t =1,..., T, update the portfolio weights

min 59 w) = w'SMw s Zw,_l (14)

where fl[k] =71 ZIT 1 — ) (x — )E)Tn,[k] is the sample covariance matrix with

observations reweighted using the smoothing constants 71[ ] ,t =1,...,T. The solution

of (14) is
. -1
(£4) 1
D1l —

17 (2£k1)_1 1

3. Set k < k 4 1 and repeat Steps 1 and 2 until a convergence criterion is met; e.g.,
|+ — K, /| w* ||, < T, for some tolerance T > 0.

A greater degree of flexibility is achieved by replacing Step 1 with non-parametric weights
computed by kernel smoothing.

1’. Non-parametric smoothing update. Compute 7(, —1-F ( ( ) ) forl <t <T,
where F is a non- parametric estimator for the cdf of Z; (w”‘]) Y; (w”‘]) -y (w[k])
with observations z; (w¥) ..., z, (w!).

To find the final solution, the above algorithm solves a sequence of convex optimization
tasks. In particular, note that Step 2 corresponds to a minimum variance portfolio optimization
task where the usual sample covariance matrix is replaced by a weighted covariance matrix.
Since the solution is available in closed-form, the computational time for this step is usually
negligible. Based on our numerical experiments, the algorithm converges very quickly within
a few iterations, even when the number of assets is large. Finally, note that our procedure
is not limited to the constraint Zﬁ'\;l w; = 1. A different set of constraints on the portfolio
weights may be included in Step 2 of the algorithm, depending on the application at hand.
Then a quadratic programming solver may be used to compute the update w! !l instead of
the explicit formula given above.
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4 Simulation study

In this section, we study the performance of the SSV estimator compared to the global
minimum variance portfolio (GMV) and the following competing semivariance estimation
algorithms: Estrada (2008), Cumova and Nawrocki (2011), Ballestero (2005), both in-sample
and out-of-sample. First, we compare our method with the minimum semivariance portfolio
obtained via grid search, which can be considered as the global optimum for computationally
feasible cases. To this end, we focus on a simple setting with two assets only, and we consider
both assets having either negatively skewed or positively skewed returns. We generate 100 000
returns from a multivariate skew-normal with the skewness of both assets equal to —0.5 or
0.5 (see Azzalini and Dalla Valle, 1996).2 The variance of the two assets is set equal to 0.0050
and 0.0034 respectively, while their covariance is set equal to 0.0019.3 We set the benchmark
b = Y (w), such that the SSV estimator converges to the sample covariance matrix estimator
when 6 — oo, and we evaluate the results based on the portfolio downside deviation.

We use rolling windows of different lengths to compare our SSV approach with various
other proposed in the literature. We rely on a parametric smoothing based on a normal cdf,
testing three different values for the smoothing parameter & = 1/T, which gives a portfolio
very close to the one obtained with grid search, & = 100, a high value that results in a portfolio
close to the sample minimum variance portfolio, and an intermediate value @ = 1/+/T . These
choices for 0 are corroborated by our theoretical analysis in Proposition 2.1. We consider also
other portfolio selection rules: the minimum semivariance portfolio obtained via grid search,
the sample global minimum variance portfolio, and the minimum semivariance portfolios
obtained with the techniques proposed by Ballestero (2005), Estrada (2008) and Cumova
and Nawrocki (2011).

Figure 2 shows the in-sample and the out-of-sample results with negatively skewed (Panels
a and b) and with positively skewed (Panels ¢ and d) returns. In the in-sample analysis, all
strategies except for Cumova and Nawrocki (2011) achieve a lower downside deviation with
shorter rather than longer estimation windows. This is due to the fact that, instead of the true
(unknown) inputs, sample estimates are used in the calculations. In other words, overfitting
creates the appearance of better results in-sample when the sample size in not very large.
In case of multivariate normal distributed returns the size of the effect could be derived
analytically.* For longer estimation windows, as the sample estimates converge to the true
values, this effect wanes out.

In the out-of-sample evaluation, the total downside deviation is larger for shorter estima-
tion windows due to the unknown input parameters.’ As the estimation window increases,
the downside deviation converges to the true downside deviation under known parameters.
Asymptotically, the in-sample and the out-of-sample estimates of the downside deviation
tend to the same values.

For all panels in Fig.2, the dashed black line, which corresponds to the SSV estimator
with & = 1/T, perfectly overlaps the green line, obtained by minimizing the semivariance
via grid search and which gives the global optimum. This means that our estimator provides

2 We randomly generated the returns using the R package “sn", see Azzalini (2020).

3 We use the sample covariance matrix of two of the 30 industry portfolios from July 1926 to November 2022.

4 For the minimum-variance portfolio, the relationship between the estimated variance Fr% = W' S and the

true variance o2
Memmel (2010).

5 To quantify the effect for the minimum-variance portfolio with multivariate-normal distributed returns, see
Frahm and Memmel (2010).

= w'Tw is given by T&%/az ~ X%—N’ see Kempf and Memmel (2006) and Frahm and
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a) Skew = (0.5, -0.5), in—sample eval. b) Skew = (-0.5, —0.5), out-of-sample eval.
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Fig. 2 The figure illustrates the in-sample (left panels) and out-of-sample (right panels) downside deviation
achieved by minimum variance and minimum semivariance portfolios with two assets and skewness of both
assets equal to —0.5 (top panels) and 0.5 (bottom panels). Competing semivariance estimation algorithms:
Estrada (2008), Cumova and Nawrocki (2011), Ballestero (2005)

an extremely precise approximation of the true sample semicovariance matrix. The SSV
estimator with & = 100, indicated as dashed light blue line, matches the red line obtained
by using the sample covariance matrix. As expected, the SSV estimator corresponds to the
sample covariance estimator when 0 is sufficiently large. Targeting the semivariance always
gives the best results in-sample, but using the variance or an intermediate approach given by
smoothing with 6§ = 1/ VT (dashed brown line) can work better out-of-sample, especially
for negatively skewed returns and short estimation windows, where parameter uncertainty is
high.® Overall, our strategy significantly outperforms the three competitor semicovariance
matrix estimation algorithms across all considered settings in approximating the target sample
covariance matrix.

Besides considering different estimation windows, we also study the in-sample effect
of varying the number of assets. We generate 63,000 returns for a number of assets
N € {20,40, ..., 160} by randomly sampling with replacement daily returns of S&P 500

6 A positive skewness reduces the estimation error as more observations—used in the calculation of the
downside deviation—are below the mean (for a more in-depth discussion see Rigamonti, 2020).
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Fig. 3 Downside deviation for positively skewed data when varying the number of assets N. Smoothing
with @ = 1/+/T not plotted to improve the clarity of the illustration. Competing semivariance estimation
algorithms: Estrada (2008), Cumova and Nawrocki (2011), Ballestero (2005)

constituents with data spanning from November 2, 1999, to April 28, 2023.7 As we use the
same sample of days for all assets, we capture the cross-correlation of stock returns. We
use a rolling estimation window of 5 years (i.e., 1 260 days) to calculate the asset weights.®
We then compute the downside deviation achieved by the different portfolio selection rules.
Results are reported in Fig. 3.

An interesting finding is that the approximation from Cumova and Nawrocki (2011)
performs well with small portfolios, but it no longer works as N gets larger as the estimated
semicovariance matrix is quasi-singular. The Estrada (2008) heuristic generally performs
very poorly, and the algorithm proposed by Ballestero (2005), although much better than
Estrada (2008), also fails to beat the sample covariance matrix. The SSV, on the other hand,
matches the covariance matrix with & = 100 and significantly improves overit with6 = 1/T.
Moreover, the improvement over the other strategies gets larger as N grows. For the largest
portfolio, the SSV estimation time with 6 = 1/T and required convergence precision set at
0.01% (i.e., we stop the iterations when the difference between the portfolio weights estimated
in the current and previous round is less than 0.01%) is only 0.27ss. This is significantly less
than the 0.67s required by Cumova and Nawrocki (2011), although Ballestero (2005) and
Estrada (2008) are by far the fastest methods, with 0.041 and 0.042 s respectively. The exercise
was carried out using a computer equipped with an Intel Core 17-8565U processor and 24
GB of RAM.

7 The dataset from which we sample includes 350 stocks whose returns are available for the entire time-period
considered. We sample from the first N stocks sorted alphabetically according to their ticker symbol. Data
were downloaded from Alpha Vantage: https://www.alphavantage.co/.

8 Thisisa typical estimation window for daily data. See e.g. Lim et al. (2011), who suggests not using daily
returns older than 5 years to avoid including outdated information in the estimation sample.
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5 Real data application

We now consider real-world financial data to evaluate the in-sample and the out-of-sample
performance of the minimum SSV portfolios. As in our Monte Carlo simulations, for the
in-sample results of the SSV portfolios we use the normal cdf with & = 1/T,6 = 1/+/T and
6 = 100. According to the theoretical analysis in Proposition 2.1, a choice for the smoothing
parameter 6 of order 1/+/T, or smaller, provides an accurate approximation of the empirical
SSV to the standard non-smoothed empirical SV assuming normally distributed portfolios.
We compare these results with the global minimum variance portfolio and the minimum
semivariance portfolios obtained with the methods of Ballestero (2005), Estrada (2008) and
Cumova and Nawrocki (2011). We employ monthly returns of the 17, 30 and 48 industry
portfolios, and those of the 100 portfolios formed on size and book-to-market, all downloaded
from the Kenneth R. French data library.® The 48 industry portfolios returns start from July
1969, as the dataset contains missing data before that date. The other datasets start from
July 1926, but for the 100 portfolios formed on size and book-to-market we do not consider
30 portfolios that contain missing data, and therefore for this dataset we have N = 70. All
datasets span up to April 2023.

For estimation, we use a rolling window of 20 years, i.e., T = 240, obtaining 406 portfolio
returns for the 48 industry portfolios and 922 returns for the other datasets. To calculate
realized portfolio returns, for the in-sample analysis we use the asset returns of the last month
X7 in our estimation sample, i.e., the rolling window, while for the out-of-sample analysis
we use the returns x741. As in our simulation experiments, we set the benchmark equal to
the sample mean such that for &6 — oo the SSV estimator perfectly converges to the sample
covariance estimator. For the in- and out-of-sample calculated portfolio returns, in addition
to the downside deviation (DD), we report the standard deviation (SD), skewness, excess
kurtosis, the Sortino ratio and the Sharpe ratio. To better compare the last two measures, we
work with excess returns over the risk-free rate from the Kenneth R. French data library.
Furthermore, to consider potential trading costs of the various portfolio selection rules, we
report the average turnover (7' O). The turnover at time ¢ is 7 O; = ZlN:] |w;i (1) —w; (t—1)],
where each weight w; (¢ — 1) is adjusted for the effect of the returns realized in the previous
period, as in DeMiguel et al. (2009). A T O of 1 means that, on average, an amount of assets
equal to 100% of the wealth has to be traded.

For the out-of-sample exercise, we present only the SSV results for minimizing the semi-
variance of the portfolio with & = 1/7.1° In addition to the comparison with the other
strategies used in Table 1, we also use our method in combination with a shrinkage-technique
to consider parameter uncertainty and to improve the out-of-sample results.!! In particular,
when estimating the sample covariance matrix (for the GMV strategy) and the sample semi-
covariance matrix (for the SSV and the Ballestero, 2005, strategies) we shrink the implied
correlation matrix R towards the identity matrix I. For the minimum-variance portfolio strat-
egy (GMV), we decompose the sample covariance matrix in a vector of sample standard
deviations ¢ and a sample correlation matrix R. The shrunk correlation matrix is then given
by RS =8R+ (1 — )1, with I the identity matrix and 0 < § < 1. For the calculation of the
portfolio weights w, we use the shrunk covariance matrix 3= diag(o) RS diag(c). We

9 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

10 Results for 6 = 1/5/T and 6 = 100 are available upon request. Again, the SSV results for § = 100
correspond to those of the minimum variance portfolios.

1T While using an intermediate 6 value can also improve results out-of-sample, as shown in the simulation,
choosing the best value is not straightforward and left for future research.

@ Springer


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Annals of Operations Research

1L01°0 £081°0 Lo vT6r'l 1980°0— 9z£0°0 9170°0 (umys) L/1 = 6 ASS
80600 61810 91ST°0 1650°C 95€T0— TEL00 §2T0°0 (uriys) o1)sy[eg
70010 LT81°0 TE91°0 £689'1 LLTT'0— LTE0'0 81200 (fuuys) AIND
91€T0 £€291°0 68S1°0 68151 8800°0 22300 §TT0°0 001 = 6 ASS
£2ST0 LLST'O €IL10 6601 LTT0'0 SPE0°0 §TT0°0 LM/1=6ASS
88LT0 §951°0 TULLTO €T80'1 §550°0 15€0°0 82200 L/T=06ASS
LETEO 68¢1°0 9€81°0 $008°0 12200~ 18€0°0 9¥20'0 EpEnsy
¥2eeo PeEl0 1551°0 $655°0 05100~ 65€0°0 9€20°0 eAOUIND
1961°0 9891°0 8CST0 L88L'T $L80°0— LEEO0 §TT0'0 o118 [ee
91€T0 £€291°0 68S1°0 6181 8800°0 4200 §TT0'0 AND Puz 0€
95L0°0 0€81°0 P10 655S°1 L8ST0— E7E00 £€20°0 (urs) .2/1 = 6 ASS
L0900 SELIO SIET0 L691'C PrEE0— 15€0°0 7200 (uuys) oxsdqreg
9890°0 9L10 00¥1°0 2088’1 1270~ YrE00 9€20'0 (fuLys) AND
69S1°0 LYS10 sTr1o £ees’l €180°0— ¥SE0°0 8€20°0 001 = 6 ASS
0SLI'0 86S1°0 1o LYsT1 LETT'0— 65€0°0 0v20°0 LNM1=06ASS
$061°0 910 €L91°0 soor'l 0ze1'0— 19€0°0 17200 L/1 =6 ASS
12€2°0 18€1°0 1Z51°0 6CrL0 $T80°0— 8LEO0 5200 epensg
STIT0 P0ST'0 TEST0 8€L80 LEIT'0— ¥9€0°0 SYT00 eAOWIND
0LTI0 0091°0 S9€1°0 188’1 50T°0— 1S€0°0 0200 oIS [eg
69S1°0 9rST0 sTr1o LEEST 18070~ ¥SE0°0 8€20°0 AND puz L1
- 99¥1°0 05600 6099'1 L98Y°0— 1€70°0 80£0°0 - NN
oL adreys ouniog oy MNS as aa A3areng (N) 10serR@

uinjor ueowr ojdures o) fenba yrewyouaq ‘ejep Aqypuow ‘ojdwres-jo-InQ g 3jqel

pringer

Qs



Annals of Operations Research

p1oq ut payiodar sanfea q( 1599
sjaselep Ioyjo Y} 10J €70z 11dy 01 9461 A[nf woij ‘sorjoptod Ansnpur g4 ay) 10J €70 [1dy 01 6861 [11dy woiy Suruueds suIniar O1j0J104 “XLIjBW
AMUapr N X N 2y) ] pue X1ew uone[a110d ojduwres ay) 3ureq ¥ ‘1(8°0— 1) + ¥8°0 = ¢ PIM ‘ (yf XIIBUI UOIB[ILIOD YUNIYS B UO PAseq Ik ‘(ULIYS) ASS ‘XLNBU OUBLIBAODIWIDS
Nunys ynm /1 = 6 ASS Pue ‘(ULIYS) 0I9)SI[[eg ‘XLIJBW 9OUBLIEAOD JUNIYS YIIM 0I)S[[eq ‘(JULIYS) AJAD ‘XINBW QOUBLIBAOD JUNIYS YIM AND " .L/1 = ¢ Yy sorjojaiod ASS
wnwrum (] 0g) DooIMeN pue eaown)) pue (8007) epensy ‘(S007) 011saf[ed Suisn o1[0j310d 90UBLIBATWISS WNWIUIW $(AJND) OI[0J110d 9oUBLIA-WUNWIUTW [BQO[3 :SAI31RNS
*(OL) 2161 1a0uwn) aSeraae pue ‘(adreyg) oner adieyg ‘(OunIog) onel ouniog ‘(JNY[) SISOUNY $SAOXI ‘(MAS) SSAUMAS ‘((S) UOIBIAIP pIepue)s ‘((I(]) UONRBIASD IPISUMO(]

9LETO 1E€LT°0 9811°0 0180°1 Y¥9T0— 6L£0°0 79700 Oruuys) /1 =6 ASS
121144 1081°0 10 C0L9'1 Y6LE0— 08¢0°0 89200 (urrys) orsaqreg
¥8CC°0 9YLT"0 socIo €61¢’l L66C°0— LLEODO 79700 (Qurgs) AIND
91180 69L1°0 98¢1°0 [45%a! SIST0— 0Zr0°0 98200 001 = 6 ASS
60 OILT'0 81€1°0 €L98°0 SeEvT0— 9¢¥0°0 L6200 LM =6 ASS
(4! ¥891°0 1210 9590°1 8T 0— sv0°0 01€0°0 L/1=0ASS
68LE’T Seel’o 1691°0 998¢°1 ¢100°0— 1150°0 §e€00 epensyg
96S¥°LT ¢leo0 LOY0'0 1861°6£S €805°L1 0CL8°0 090%°0 eaowny
1LOL0 ¢S81°0 LEETO €LYl LEIE0— LOY0'0 1820°0 olasafred
S118°0 69L1°0 98¢1°0 YIETT SIST0— 02r0°0 98200 AND (0L) 001 WES
9861°0 €6L1°0 Yerro 9CsS1 PeEIE0— 0€€0°0 1€20°0 Oruuys) /1= 6 ASS
1SET°0 ¥981°0 001T°0 14281 67650~ €00 8€20°0 (utys) oxnsareg
YLY1°0 GG81°0 81110 €ILST 8L6V'0— 62€0°0 €200 (Qurys) AWD
866€°0 ¥8IT°0 08L0°0 9YSLO 8C8E°0— 99¢0°0 9200 00T = 6 ASS
886¢°0 €el1’0 6980°0 2e90°1 09vC0— CLEDO £€9¢0°0 LNM1 =6 ASS
06510 9L0T°0 §060°0 ILIST 0L1T0— ¥8€0°0 0L20°0 L/1=10ASS
¥L0S°0 96C1°0 6Cv1°0 CL8T0 0S¥T0— LEYO'0 L6200 epensyg
£¢6S°0 °L60°0 SL900 LLLS O LYS1'0— [1¥0°0 L8C00 eAowny
ClLieo 81€1°0 1€80°0 0690°1 69SY°0— G600 65200 olasared
866€°0 ¥8I1°0 08L0°0 IYSL0 678¢°0— 99¢0°0 9200 AIND PUl 8%
oL adreyg ounios ny e IN as ada A39reng (N) 19se1RQ

panunuod g ajqel

il
[
50
=)
g
o
)
Sl



Annals of Operations Research

apply the same shrinkage procedure for the estimated semicovariance matrix of Ballestero
(2005), and iteratively in our SSV approach (Algorithm 1). For each loop k, after estimating
the sample semicovariance matrix by E"] =7"! ZtT:] (xr —x)(xy — )?)Trr,[k], we decompose
2&"] in &S[k] and 1%_&"], we shrink the semi-correlation matrix I?T?Ek] = 81%“ + (1 — &)1, and

we use the semicovariance matrix fls[k] = diag (&s[k]) I/K’TS'Lk]diag (As[k]) to calculate the

portfolio weights.

The aim of this exercise is to show that our SSV approach can be easily combined with a
shrinkage approach, with greater benefit compared to the Ballestero (2005) approach, which
is a difficult benchmark to beat out-of-sample. An exhaustive comparison of the proposed
minimum-semivariance strategy (SSV) under different shrinkage approaches is beyond the
scope of the present paper, and it is left for future research.

Tables 1 and 2 report the in-sample and out-of-sample results, respectively, with the lowest
downside deviation for each data set in bold. The first row of each table reports values for the
broad US market as defined in the Kenneth R. French dataset, which uses all NYSE, AMEX
and NASDAQ firms to compute its returns. Almost all portfolio selection rules improve out-
of-sample over the broad market portfolio: They show lower downside deviation, standard
deviation, and excess kurtosis, and higher skewness, Sortino and Sharpe Ratio.

In Table 1, when considering the in-sample downside deviation (DD), parameter uncer-
tainty is avoided, and the SSV estimator is a very close approximation to the traditional
sample semicovariance matrix. The SSV with 6 = 1/T shows the best results in terms of
DD. On the other hand, the other three semicovariance matrix estimation methods suffer
because of the worse approximation of the semicovariance matrix compared to the proposed
SSV method. In line with intuition, GMV shows the lowest standard deviation among the
competitors. SSV with 8 = 100 matches, as expected, the GMV portfolio, showing the
flexibility of the proposed approach. In terms of turnover, the SSV strategy is competitive
with the other portfolio selection rules. Despite the estimation window of 240 observations is
larger than the portfolio size, for an increasing number of assets the estimated semicovariance
matrix using Cumova and Nawrocki (2011) is quasi-singular. As a consequence, the extreme
portfolio weights imply that this method strongly underperforms for SBM 100.

The positive performance of the SSV approach also largely holds out-of-sample, see
Table 2. While the SSV performs worse than the GMV and the Ballestero (2005) approaches
without shrinkage, it still significantly improves over Estrada (2008) and Cumova and
Nawrocki (2011). As mentioned before, the performance of the latter strategy quickly
degrades as N increases, leading to very poor results with N = 70. The good performance
of GMYV reflects the trade-off between minimizing downside deviation and minimizing the
estimation error in a out-of-sample exercise where the data generating process changes over
time. Although GMYV uses another objective function, i.e., optimizes over variance rather
than semivariance, it benefits from using all the observations for estimation. As in our data
sets returns are not heavily skewed, the benefit from using all observations and having lower
estimation errors might outweigh the drawback of using variance instead of semivariance.
When combined with shrinking, the SSV approach outperforms for all datasets, except for
the largest dataset, where it achieves the same downside deviation as the GMV. Furthermore,
the turnover more than halves when using shrinkage, with basically the same values for SSV
6 = 1/N (shrink) and GMV (shrink).

As a robustness analysis, in “Appendix B” we report additional in- and out-of-sample
results for daily and quarterly data. For daily data we use an estimation window of 1260
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observations, i.e., approximately 5 years.!? For quarterly data we use 80 observations in the
estimation window, i.e., 20 years (as with monthly data). Furthermore, for all data frequencies
we also report results for the benchmark being equal to sample median return (see Bernard et
al., 2019). Our findings remain unaltered for these additional settings. The problem affecting
the Cumova and Nawrocki (2011) algorithm disappears with daily data (due to the much
larger sample size used for estimation), while it becomes more serious with quarterly data
(as fewer observations are used for the estimation). Again, out-of-sample most portfolio
selection rules improve over the broad US market in terms of downside deviation and the
other risk-return measures, and—across the different portfolio selection rules — the SSV
results are the most promising one. As optimal shrinkage is not the focus of our analysis, for
the out-of-sample results we simply set the shrinkage factor equal to 0.9 for daily data, to 0.8
for monthly data, and to 0.7 for quarterly data. This corresponds to a stronger shrinkage effect
with lower frequency data, justified by the fact that less observations are used for estimation,
which is therefore less precise. Selecting an optimal, time-varying, value for the shrinkage
parameter would likely improve our results, but it is beyond the scope of this work.

6 Conclusions

The SSV matrix estimator introduced in this paper provides an extremely precise approxi-
mation of the sample semicovariance matrix of a set of assets. By changing the single tuning
parameter 6, the SSV can span the entire set of portfolios included between the minimum
semivariance and the minimum variance portfolio. The low computational intensity of this
procedure makes it suitable for portfolio optimization problems with many assets, contrary to
the grid search algorithm, which despite being accurate, is only feasible for relatively small
portfolios. Compared to other approaches considered in this paper, the proposed method is
unbiased in large samples since it targets the actual portfolio semivariance instead of a heuris-
tic approximation. Our theoretical derivation and numerical findings support these claims.
Although we illustrate our algorithm on the relatively simple case of minimum semivari-
ance optimization, our procedure is very general. With minor modifications, our algorithm
can accommodate more sophisticated constraints on the portfolio weights, depending on the
specific application at hand. Furthermore, other types of objective functions involving the
semivariance, beyond the quadratic objective function studied in this paper, may be considered
in the future using a similar framework.

For real-world data, we show that in-sample the proposed SSV approach outperforms the
competing portfolio selection rules in terms of downside deviation. Out-of-sample, while
the SSV approach underperforms some of the considered portfolio selection rules, it out-
performs all of them when combined with shrinkage estimation of the semivariance. This
indicates that the higher parameter uncertainty implied by the semicovariance estimation
can offset the benefits from targeting a more realistic objective function. Overall, our SSV
approach provides a robust and flexible framework for semivariance portfolio minimization.
Out of sample, almost all of our considered portfolio selection rules improve over the broad
market portfolio. They show lower downside deviation, standard deviation, and excess kur-
tosis, and higher skewness, Sortino ratio and Shape ratio. Across the different settings, our

12 This choice allows for portfolio return series that cover a larger time-span compared to monthly data,
where 20 years are used in the estimation window. However, for consistency and better comparability, we only
consider the portfolio returns during the same time-span for which they are available when using monthly
data.
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SSV approach results as the most promising portfolio selection technique, especially when
combined out-of-sample with a shrinkage approach.

Looking forward, several avenues for further research present themselves. Firstly, extend-
ing the application of the smoothed semivariance (SSV) estimator to periods where asset
returns present particularly heavy-tailed distributions or skewed distributions could provide
insights into its performance under different market conditions and risk profiles. Although
we have considered both b equal to the mean and the median and different time frequencies
(i.e., daily, monthly and quarterly), further analysis is required to provide additional insights
on the applicability and performance of the SSV method. While the performance of smooth
weights depending on the normal cdf worked reasonably well in our numerical studies, a more
detailed understanding on the choice of the smoothing function in a wider range of scenar-
ios would be useful. Secondly, investigating adaptive approaches for selecting the smoothing
parameter 6 in the SSV estimator based on changing market conditions or asset characteristics
could enhance its flexibility and robustness. For instance, 6 might be considered as a tuning
parameter in an appropriate data-fitting procedure. Thirdly, further analyses should focus on
combining SSV with shrinkage techniques as well as the development of other procedures
to mitigate the effects of parameter uncertainty in the semicovariance matrix estimation.
Fourthly, analyzing the risk-return tradeoff in portfolio optimization using the SSV approach
under different risk preferences and investment objectives could offer valuable guidance for
investors. Lastly, extending the application of the SSV estimator beyond traditional asset
classes to alternative investments like cryptocurrencies, commodities, or real estate could
broaden its applicability across different investment domains.

Appendix A: Proof of Propositions
Proof of Proposition 1

For fixed w and b, define Z; = Y;(w) — b. Let 7 = Ss}l where sy — o0 is an arbi-
trary sequence diverging with 7. Consider the following first-order Taylor expansion of
G2(w, &s; ') around £ = 0

8}2 (w, E) = crsz(w, 0)+& (833 (w, 5)‘ )
5T ST/ le=t

dy
&1 4 ZisT Zsst
=3,0+:—§<—-><-)’ Al
oy (w,0) ET : S : (AD)

where £ is some constant such that 0 < £ < &. By our assumptions we have

E[(Zist/E) f (Zisr /€)1 < o0,

for all T > 1. Therefore, the weak Law of Large Numbers for triangular arrays implies

1 Z[ST Z[ST Z[ST Z[ST
= = —FE| — = = 1). A2
Zsf<s> [sf<f)]’0”() A

t=1

~|
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Moreover, by Cauchy—Schwartz inequality we can write

21/2
el ()] ()T w

By our assumptions, E [th] < oo for any ||lw|l2 < C. Moreover, for sufficiently large s7
there is a constant ky such that f(Zrs7 /&) < f(kist/€). This means that right-hand side
of (A3) is bounded by |k267| f (k10r) for some constants k1, ko > 0. This shows that the
reminder term in (Al) is O, (01 f (k167)).

Proof of Proposition 2
First, we show ‘I:?(v; Or) — Lg(v; O)‘ converges to zero in probability uniformly in v. By
the triangle inequality, we have

sup
T M):llwll2<C

Lywsbr) = Liw;0)| = sup  [62wior) —o2wi0)]  (A4)

willwl2<C

< sup |6Z(w; 0r) — &5(w; 0)]

w:|wl2<C
+ sup ‘&sz(w; 0) — o5 (w; 0)’ (AS)
wiflwll2<C

The first term converges in probability to zero by Propostion 2.1. For the second term,
Markov’s inequality implies, for any ¢ > 0

IA

P ( sup |62 (w; 0) — o5 (w; 0)| > e)

w:l|lwl2<C

1
——E| sup (' X)*(w'X, <b)’
eT | wiwla<c

4 4
_ CUENXIS
- 2T
The right-hand side converges to zero as T — oo. This shows that the second term in (A4)
converges to zero in probability. Hence, by Theorem 5.7 in van der Vaart (2000) we have

N D
vg, — v* and we, — w*.

Appendix B: Tables

See Tables 3, 4,5,6,7,8,9, 10, 11, 12.
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