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Abstract
In this paper we consider the Shigesada-Kawasaki-Teramoto (SKT) model to account for

stable inhomogeneous steady states exhibiting spatial segregation, which describe a situation
of coexistence of two competing species. We provide a deeper understanding on the condi-
tions required on both the cross-diffusion and the reaction coefficients for non-homogeneous
steady states to exist, by combining a detailed linearized analysis with advanced numerical
bifurcation methods via the continuation software pde2path. We report some numerical
experiments suggesting that, when cross-diffusion is taken into account, there exist positive
and stable non-homogeneous steady states outside of the range of parameters for which the
coexistence homogeneous steady state is positive. Furthermore, we also analyze the case in
which self-diffusion terms are considered.
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1 Introduction
Competition is a fundamental aspect in the interaction of populations. Intraspecific competition
occurs among individuals of the same species, when the resources (for survival or reproduction)
are limited. Interspecific competition happens among individuals of different species and it
mainly occurs when the population exploit the same (limited) resources. The outcomes of these
types of interaction among ecologically similar species can be the competitive exclusion or the
coexistence of the species, through niche differentiation or spatial segregation. In particular,
spatial segregation describes a situation where two competing species coexist, but they mainly
concentrate in different regions of the habitat: territorial segregation leads to an exclusive
exploitation of the resources and it can minimize the encounters, and consequently also the
conflicts, between individuals [55].

Both intraspecific and interspecific competition have been observed in real populations, often
related to territoriality and aggressive behavior. For instance, the exclusion principle explains
the dramatic decline of native Eurasian red squirrels on the British Isles and parts of north-
ern Italy caused by the introduction of eastern grey squirrels [54]. On the contrary, spatial
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segregation has been observed in birds, mammals, amphibians, fishes and insects, resulting in
checkerboard patterns [13]. More concrete examples are wolves and coyotes [3], jaguars and
pumas [48], different species of reed warbler [22], lesser kestrels [7], gibbons [50], eels [32] and
salamanders [21].

From a modelling point of view, several mathematical models have been proposed to explain
these natural phenomena and to predict the outcomes, both for a biological control purpose
and for general ecological studies. A simple mathematical model can be formulated in terms of
ordinary differential equations of Lotka–Volterra–Gause type. This model is able to predict the
mutual exclusion or the coexistence of the species depending on the parameter values, but spatial
movements of individuals are here neglected. When spatial variations of the populations are
considered, reaction–diffusion equations can be formulated. In this context, spatial segregation
is explained through non-homogeneous solutions of the reaction–diffusion model, and then linked
to pattern formation. However, typical Lotka–Volterra–Gause reaction–diffusion models with
only constant diffusion coefficients fail to produce such patterns, at least on convex domains [33].
Therefore spatial segregation in a two-species competition-diffusion system must be caused by a
specific mechanism such as competition-pressure [49, 44] or non-convexity or non-homogeneity
of the habitat [42, 15, 49, 37]. To account for stable inhomogeneous steady states exhibiting
spatial segregation, the so called SKT model, which includes nonlinear cross-diffusion terms,
was proposed in [49]. The system is given by

∂tu = ∆((d1 + d11u+ d12v)u) + (r1 − a1u− b1v)u, on R+ × Ω,

∂tv = ∆((d2 + d22v + d21u)v) + (r2 − b2u− a2v)v, on R+ × Ω,
∂

∂n
((d1 + d11u+ d12v)u) = 0, on R+ × ∂Ω,

∂

∂n
((d2 + d22v + d21u)v) = 0, on R+ × ∂Ω,

u(0, x) = uin(x), v(0, x) = vin(x), on Ω,

(1.1)

where the quantities u(t, x), v(t, x) ≥ 0 represent the population densities of two species at time
t and position x, confined and competing for resources on a bounded and connected domain
Ω ⊂ RN . The coefficients di, ri, ai, bi (i = 1, 2) describe the diffusion, the intrinsic growth, the
intra-specific competition and the inter-specific competition rates, while d11, d22 and d12, d21
stand for competition pressure, they are called self- and cross-diffusion coefficients. To prevent
any confusion, we will refer to d1 and d2 as the standard diffusion coefficients. Throughout
this paper we consider the cross-diffusion system (1.1) and assume that the standard diffusion
coefficients are positive, and that all the other coefficients are non-negative.

While standard diffusion models random movements, nonlinear terms account for direct
movements. In particular, these terms describe the attempt of individuals to avoid the others of
the same species (self-diffusion) and the competitor species (cross-diffusion). Even though their
particular form can seem artificial, it can be easily seen (at least at a formal level) that the SKT
model is the limiting system of a three-species system presenting only standard diffusion and
fast-reaction terms [23]. The convergence of solutions of the microscopic model to the ones of the
cross-diffusion system has been rigorously proven for the triangular case (d11 = d21 = d22 = 0)
in [12]. More details can be found in [6, 36]. This mechanism, namely how cross-diffusion terms
can be replaced by standard diffusion and additional species with singularly perturbed kinetics,
has been also described in a general framework [4].
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Looking at homogeneous steady states, system (1.1) admits the total extinction (0, 0), two
non-coexistence states (ū, 0) = (r1/a1, 0) and (0, v̄) = (0, r2/a2), and one coexistence state

(u∗, v∗) =
(
r1a2 − r2b1
a1a2 − b1b2

,
r2a1 − r1b2
a1a2 − b1b2

)
.

The non-coexistence equilibria are dynamically robust due to the predator-prey modelling as-
sumptions and exist for all the parameter values, yet the coexistence steady state is admissible
(i.e. u∗ > 0 and v∗ > 0) only in two cases:

• weak competition or strong intra-specific competition, when

b1
a2

<
r1
r2
<
a1
b2
. (1.2)

In this case, for the homogeneous system (when all diffusion coefficients are taken equal to
zero), the coexistence steady state is stable, while the non-coexistence ones are unstable.
With only standard diffusion, in a convex domain and with zero-flux boundary conditions,
any non-negative solution generically converges to the coexistence steady state (u∗, v∗),
and this implies that the two species coexist but their densities are homogeneous in the
whole domain [33].

• strong competition or strong inter-specific competition, when

a1
b2
<
r1
r2
<
b1
a2
. (1.3)

In this case, for the homogeneous system the coexistence steady state is unstable, while the
non-coexistence ones are stable. Adding only standard diffusion, in a convex domain and
with zero-flux boundary conditions, it has been shown that if positive and non-constant
steady states exist, they must be unstable [33], and numerical simulations suggest that any
non-negative solution generically converges to either (ū, 0) or (0, v̄), that is, the competitive
exclusion principle occurs between the two species.

Starting from the seminal paper [49], the question of the existence of non-homogeneous
steady states for (1.1), when cross-diffusion terms are taken into account, has been extensively
investigated, both numerically and theoretically. We provide below a brief overview of the main
results that are the most relevant for the present work. For a broader discussion we refer the
reader the review papers [24, 27] and the references therein.

In the weak competition regime, if one of the cross-diffusion coefficients is sufficiently large
compared to all other parameters, then the homogeneous co-existence steady state looses its
stability and non-homogeneous steady states appear [38, 40, 47, 41, 45]. Besides, the shape and
the amplitude of these pattern can be predicted [17]. Still in the weak competition regime, the
question of whether non-homogeneous steady states can exist if both cross-diffusion coefficients
are large and qualitatively similar is also raised in [38]. A (partial) negative answer is given in [8],
in the particular case where b1 = b2 = 0, for which entropy methods can be used to prove that all
steady states must be homogeneous. Yet, it is known that for other cross-diffusion systems the
transition in parameter space between the validity of entropy methods and bifurcation techniques
is intricate [29]. Hence, we are going to quantify the parameter dependence of the bifurcations
in the SKT system carefully.
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The strong competition case is more complicated, already when only standard diffusion is
considered (see again [38] and the references therein). Nevertheless, non-homogeneous steady
states can also be obtained in that case, and previous results [38] seem to indicate that cross-
diffusion is even more helpful in obtaining patterns in the strong competition regime, as the
conditions on the cross-diffusion coefficients are less restrictive. In particular, non-homogeneous
steady states are proven to exist when both cross-diffusion coefficients are large.

In both regimes (weak and strong competition), the qualitative properties of these non-
homogeneous steady states have also been investigated, especially in the so-called triangular
case where d21 = 0. In [46, 39], the existence of spike-layer solutions is shown, in the asymptotic
limit where one of the cross-diffusion coefficients goes to infinity. This asymptotic limit has
been the subject of several subsequent works, see e.g. [40, 47], where simpler limiting systems
describing the solutions when one of the cross-diffusion coefficient goes to infinity are intro-
duced and studied. Very recently, the asymptotic limit where both cross-diffusion coefficients
go to infinity has also been investigated in [31], where another limiting system is obtained by
formal computations, and numerical experiments suggesting the presence of non-homogeneous
steady states when both cross-diffusion coefficients are large are presented. On the other hand,
when all parameters stay bounded, intricate bifurcation diagrams of steady states were obtained
numerically in [23, 26], and then validated in [6, 5].

Finally, while we focus our attention on non-homogeneous steady states in this paper, we
mention that the SKT model can also exhibit other types of patterns, such as stable time-
periodic solutions arising through a Hopf bifurcation point, describing a dynamical coexistence
between the two species, see e.g. [26]. In [30], the proof of the existence of periodic solutions
in the strong competition regime can be found. The existence of stable time-periodic solutions
which bifurcate from a Hopf bifurcation point in the weak competition regime has been proven
in [25], applying the center manifold theory and the standard normal form theory.

In this work, we provide a deeper understanding on the conditions required on both the cross-
diffusion and the reaction coefficients for non-homogeneous steady states to exist, by combining a
detailed linearized analysis with numerical bifurcation methods. More precisely, we analytically
predict the existence of local branches of non-homogeneous steady states bifurcating from the
homogeneous one, and then continue these branches numerically to get a more global picture,
including secondary bifurcations which can sometimes lead to stability changes. To this end, we
used the continuation software for PDEs pde2path [14, 52, 53], based on a FEM discretization
of the stationary problem. Here is a summary of the main contributions of this paper.

• We recover two conditions on the reaction coefficients that were already noticed in previous
studies [38] about the existence of non-homogeneous steady states, and explain their role from
the linearized analysis, see Propositions 2.1 and 2.2 (and Figures 1 and 2). We point out that
a similar study was also done in [43] in the triangular case.

• This condition allows us to clearly explain, why cross-diffusion can be “more helpful” to obtain
non-homogeneous steady states in the strong competition case, and why, when both cross-
diffusion coefficients are large, it is harder to get such non-homogeneous steady states in the
weak competition regime.

• Nevertheless, we show in Theorem 2.3 that such non-homogeneous solutions do actually exist
in the weak competition regime when both cross-diffusion coefficients are large and equal, thus
answering positively the question raised in [38].

4



• We also study how the bifurcation structure is affected, when one of the cross-diffusion param-
eter is varied, and in particular what becomes of the non-homogeneous steady states obtained
in the extensively studied triangular case, when d21 is then turned on.

• Finally, we go beyond the linearized analysis by numerically computing global bifurcation
diagrams of steady states in the non-triangular case. Our results highlight, among other things,
that the non-homogeneous solutions obtained in the triangular case for the weak competition
regime can quickly collapse and disappear when the other cross-diffusion coefficient is turned
on.

• Our numerical continuation calculations also suggest the existence of stable non-homogeneous
steady states outside of the weak (1.2) or strong (1.3) competition regimes, which to the best
of our knowledge had only been observed before in some asymptotic regime, see Section 4.

Remark 1.1. We make some preliminary simplifications. We are mainly interested in the
existence of non-homogeneous steady states when one or both of the cross-diffusion become large
compared to the diffusion coefficients. To match with previous studies, we will mostly take
d1 = d2 = d as a bifurcation parameter, and study the appearance of these solutions when d
decreases (it has been proven [38], that if at least one of the standard diffusion coefficients is large
enough compared to the cross-diffusion coefficients, there can not exist any non-homogeneous
steady state). To simplify the presentation, we start in Section 2 by considering the case when
there is no self-diffusion (i.e. we take d11 = d22 = 0). We then discuss in Section 5 qualitative
changes that are induced by including self-diffusion.

Remark 1.2. The boundary conditions of (1.1) write (at least for smooth solutions)
(d1 + 2d11u+ d12v)∂u

∂n
+ d12u

∂v

∂n
= 0,

d21v
∂u

∂n
+ (d2 + 2d22v + d21u)∂v

∂n
= 0.

In this work, the matrix

J∆ =
(
d1 + 2d11u+ d12v d12u

d21v d2 + 2d22v + d21u

)

will always be non-singular (we are only interested in nonnegative solutions, and take d1 and d2
positive), therefore the boundary conditions in (1.1) can be replaced by

∂u

∂n
= 0, on R+ × ∂Ω,

∂v

∂n
= 0, on R+ × ∂Ω,

which will be convenient both for theoretical and for numerical considerations.
The fact that J∆ is always non-singular also means that, rather than studying directly (1.1),

one could consider the change of variable (ũ, ṽ) = ((d1 + d11u+ d12v)u, (d2 + d22v+ d21u)v) and
rewrite (1.1) in terms of (ũ, ṽ). This alternative approach was used for instance in [51], where
a linear study similar to the one we conducted in Section 2 was carried out using this change of
variable.
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Before going further, let us briefly mention that in order to understand the long time dynam-
ics of (1.1), we not only need a good understanding of the steady states (which is the objective
we are pursuing in this work), but also a theory of global existence and regularity of the time de-
pending solutions. The first main result in this direction was obtained in [1, 2], where a general
theory about the existence of local solutions for general quasilinear parabolic PDEs is developed.
To then get global solutions, one must show that some Sobolev norms remain bounded, which
has been the subject of many works, all imposing some restrictions on the coefficients of the
system. In particular, the triangular case (d21 = 0) has been thoroughly investigated, mainly
because the reduced coupling then allows to get a maximum principle for the second equation.
In this setting, the most general result was obtained in [20], where the existence of a unique
smooth global solution is established assuming d21 = 0 and d11 > 0. Another breakthrough was
made in [16], where an entropy structure for (1.1) was discovered. Entropy-based methods were
then generalized, for instance to handle a broader class of cross-diffusion terms (see e.g. [10]),
and we refer the reader to the book [28] for a more complete review on the subject.

The paper is organized as follow. In Section 2 we perform a detailed linearized analysis
and we detect bifurcations from the homogeneous coexistence steady state. We exploit this
result to answer the question raised in [38] and to understand what happens when one cross-
diffusion coefficient increases. In Section 3 we both illustrate and complement the obtained
results by numerically computing bifurcation diagrams of steady states, while Section 4 shows
the existence of stable non-homogeneous steady states outside of the range of parameter for
which the homogeneous solution is positive. In Section 5 we also take into account non-zero self-
diffusion coefficients and we briefly describe the main changes induced by self-diffusion. Finally,
in Section 6 some concluding remarks and biological comments can be found.

2 Analysis without self-diffusion
Both numerically and theoretically, one of the main ways to obtain non-homogeneous steady
states for (1.1) is to study bifurcations from the homogeneous coexistence steady state (u∗, v∗).
We mention that a connection between usual Turing instabilities and cross-diffusion induced
instabilities was made in [23].

We start by studying “mode by mode” the linear stability of (u∗, v∗) [19, 35]. To do so we
will consider the eigenfunctions ψk and associated eigenvalues −λk of the Laplacian with zero
Neumann boundary conditions: 

−∆ψk = λkψk, on Ω,
∂ψk

∂n
= 0, on ∂Ω,

which satisfy λ0 = 0, λk > 0 for all k ∈ N≥1, and λk → +∞ as k → +∞. In the sequel we
always assume that the eigenvalues are labeled in ascending order. Throughout this section, we
assume d11 = d22 = 0.
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2.1 Existence of bifurcations

The Jacobian matrix of the reaction part and the linearization of the diffusion part of (1.1),
evaluated at the equilibrium (u∗, v∗), are

J∗ =
(
−a1u∗ −b1u∗
−b2v∗ −a2v∗

)
, J∗∆ =

(
d+ d12v∗ d12u∗
d21v∗ d+ d21u∗

)
.

Then, the characteristic matrix associated to the k-th mode, k ∈ N, is

M∗k = J∗ − J∗∆λk =
(
−a1u∗ − (d+ d12v∗)λk −b1u∗ − d12u∗λk

−b2v∗ − d21v∗λk −a2v∗ − (d+ d21u∗)λk

)
.

and its determinant can be written as a second order polynomial in d

Pk(d) := detM∗k = λ2
kd

2 + (d12v∗λ
2
k + d21u∗λ

2
k − trJ∗λk)d− d12αλk − d21βλk + det J∗, (2.1)

where

α := (b2u∗ − a2v∗)v∗, β := (b1v∗ − a1u∗)u∗, det J∗ = (a1a2 − b1b2)u∗v∗.

Note that, since we are not going to varying the inter- and intra-specific competition rates
ai, bi, (i = 1, 2) (excluding the possibility to pass from the weak to the strong competition
regime or vice versa), the sign of the determinant of J∗ is constant. In detail, it is positive in
the weak competition case, and negative in the strong competition case. Moreover, the trace of
M∗k is always negative (assuming (1.2) or (1.3)), therefore the k-th mode is stable if Pk(d) > 0,
unstable if Pk(d) < 0, and a bifurcation occurs for Pk(d) = 0. Obviously, no bifurcation can
happen for k = 0, since P0 reduces to det J∗ and does not depend on d. Let us introduce

Ak = λ2
k, Bk = d12v∗λ

2
k + d21u∗λ

2
k − trJ∗λk, Ck = −d12αλk − d21βλk + det J∗, (2.2)

so that
Pk(d) = Akd

2 +Bkd+ Ck.

Obviously Ak ≥ 0, and we have trJ∗ < 0 (again assuming (1.2) or (1.3)) which implies Bk > 0.
Therefore, a bifurcation associated to the k-th mode (k ≥ 1) can occur if and only if Ck < 0.
The signs of α and β are thus crucial, as they change the monotonicity of Ck with respect to
d12 and d21 respectively. These signs depend on the parameter values ri, ai, bi, (i = 1, 2), and
the different possibilities in the weak and strong competition regimes are presented in Figures 1
and 2.

There we see why the weak competition regime (1.2) and the strong competition regime (1.3)
can have different behaviors. Indeed, in the weak competition regime, α and β cannot both be
positive at the same time, which means that when both d12 and d21 are large, at most one of the
terms −d12αλk and −d21βλk helps to get a negative Ck, while the other one does not. Worse,
there are cases when both α and β are negative, which means that no amount of cross-diffusion
will be able to produce bifurcations from (u∗, v∗). On the other hand, in the strong competition
regime there is always at least one of the terms between −d12αλk and −d21βλk that helps to
get a negative Ck. Besides, there are cases where both do help (when α and β are positive), and
in this regime it is easy to see that bifurcations from (u∗, v∗) can occur when both d12 and d21
are large. These observations can be made precise as follows:
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α

β

r1
r2

b1
a2

[1
2

(
b2
a1

+ a2
b1

)]−1 1
2

(
b1
a2

+ a1
b2

)
a1
b2

+ − −

− − +

case (1w) case (2w) case (3w)

Figure 1: Sign of the quantities α and β in the weak competition regime (1.2), depending on
the value of r1/r2.

α

β

r1
r2

a1
b2

[1
2

(
b2
a1

+ a2
b1

)]−1 1
2

(
b1
a2

+ a1
b2

)
b1
a2

− + +

+ + −

case (1s) case (2s) case (3s)

Figure 2: Sign of the quantities α and β in the strong competition case (1.3), depending on the
value of r1/r2.

Proposition 2.1. Consider ri, ai, bi (i = 1, 2) satisfying the weak competition hypothesis (1.2).

Case (1w): If
b1
a2

<
r1
r2
<

[1
2

(
b2
a1

+ a2
b1

)]−1
,

then, for all k ∈ N≥1, there exists d > 0 such that Pk(d) = 0 if and only if

0 ≤ d12 <
1
|α|

(
βd21 −

det J∗
λk

)
.

Case (2w): If [1
2

(
b2
a1

+ a2
b1

)]−1
≤ r1
r2
≤ 1

2

(
b1
a2

+ a1
b2

)
,

then, for all k ∈ N≥1 and all d > 0, Pk(d) > 0.

Case (3w): If
1
2

(
b1
a2

+ a1
b2

)
<
r1
r2
<
a1
b2
,

then, for all k ∈ N≥1, there exists d > 0 such that Pk(d) = 0 if and only if

0 ≤ d21 <
1
|β|

(
αd12 −

det J∗
λk

)
.
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Proof. We just rewrote the condition Ck < 0 according to the signs of α and β in the different
cases, and used for case (2w) that, in the weak competition regime (1.2), det J∗ > 0.

Proposition 2.2. Consider ri, ai, bi (i = 1, 2) satisfying the strong competition hypothe-
sis (1.3).

Case (1s): If
a1
b2
<
r1
r2
<

[1
2

(
b2
a1

+ a2
b1

)]−1
,

then, for all k ∈ N≥1, there exists d > 0 such that Pk(d) = 0 if and only if

0 ≤ d21 <
1
|β|

(
αd12 −

det J∗
λk

)
.

Case (2s): If [1
2

(
b2
a1

+ a2
b1

)]−1
≤ r1
r2
≤ 1

2

(
b1
a2

+ a1
b2

)
,

then, for all k ∈ N≥1, there exists d > 0 such that Pk(d) = 0.

Case (3s): If
1
2

(
b1
a2

+ a1
b2

)
<
r1
r2
<
b1
a2
,

then, for all k ∈ N≥1, there exists d > 0 such that Pk(d) = 0 if and only if

0 ≤ d12 <
1
|α|

(
βd21 −

det J∗
λk

)
.

Proof. We just rewrote the condition Ck < 0 according to the signs of α and β in the different
cases, and used for case (2s) that, in the strong competition regime (1.3), det J∗ < 0.

We now go one step further, and use the above analysis of the linearized system to answer
the question raised in [38] of whether non-homogeneous steady states can exist if both cross-
diffusion coefficients are large and qualitatively similar, in the weak competition regime. We
point out that, in the strong competition regime, the answer is obviously yes, at least in case
(2s). In the weak competition regime, our next results show that, assuming d12 = d21 = dcross,
there exists parameter values in case (1w) and case (3w) for which, when dcross is large enough,
bifurcations of non-homogeneous steady state occur.

Theorem 2.3. Consider ai, bi, (i = 1, 2) such that

b1b2 < a1a2 and 4a1a2 < (b1 + b2)2,

and ri (i = 1, 2) such that
r1
r2

= (b1 + b2)(3a1a2 + b1b2)
2a2(a1a2 + b1b2 + 2b22) ,

Then (1.2) holds (i.e. the coexistence steady state (u∗, v∗) is admissible) and α + β > 0, hence
we must be in case (1w) or case (3w). Besides, assuming d12 = d21 = dcross we have that for all
k ∈ N≥1, there exists d > 0 such that Pk(d) = 0 if and only if

dcross >
det J∗

(α+ β)λk
.
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Proof. It is straightforward to check that, with the given definition of r1/r2 and the assumption
b1b2 < a1a2, (1.2) holds. The main task it to prove that α+ β > 0. If that is the case, then Ck

will be negative for d12 = d21 = dcross large enough.
We start by rewriting α + β > 0 so that its sign depends only on the sign of a quadratic

polynomial in r := r1/r2. In order to shorten some of the formula, we introduce a = a1a2,
b = b1b2. We have

α+ β = 2(b1 + b2)u∗v∗ − (r1u∗ + r2v∗)

= 2(b1 + b2)r1a2 − r2b1
a− b

r2a1 − r1b2
a− b

−
(
r1
r1a2 − r2b1

a− b
+ r2

r2a1 − r1b2
a− b

)
=
(

r2
a− b

)2
(2(b1 + b2)(a2r − b1)(a1 − b2r)− (a− b) (r(a2r − b1) + (a1 − b2r)))

=
(

r2
a− b

)2
Q(r),

where
Q(r) = −a2(a+ b+ 2b22)r2 + (b1 + b2)(3a+ b)r − a1(a+ b+ 2b21).

Notice that Q reaches its maximum at

(b1 + b2)(3a+ b)
2a2(a+ b+ 2b22) ,

which explains why we defined r1/r2 this way. We then compute

Q

(
r1
r2

)
= 1

4a2(a+ b+ 2b22)
(
(b1 + b2)2(3a+ b)2 − 4a(a+ b+ 2b22)(a+ b+ 2b21)

)
= 1

4a2(a+ b+ 2b22)
(
(b21 + b22)(a− b)2 − 4a3 + 10a2b− 8ab2 + 2b3

)
= 1

4a2(a+ b+ 2b22)
(
(b21 + b22)(a− b)2 + (−4a+ 2b)(a− b)2

)
= (a− b)2

4a2(a+ b+ 2b22)
(
(b1 + b2)2 − 4a1a2

)
,

which is positive by assumption, hence α+β > 0. From Figure 1 we see we must be in case (1w)
or case (3w) (one can in fact check that, if b1 < b2 we are in case (1w), and that if b1 > b2 we
are in case (3w)). Finally, with d12 = d21 = dcross we see that having Ck negative is equivalent
to having

dcross >
det J∗

(α+ β)λk
.

We point out that most of the parameter sets that have been studied in the literature (see
Table 1 below) lead to α+β < 0, in which case the homogeneous steady state must remain stable
for d12 = d21 = dcross large enough. In Section 3, we present a global bifurcation diagram and
non-homogeneous stationary solutions (including a stable one) obtained with a set of parameters
satisfying the hypothesis of Theorem 2.3.
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2.2 Varying one cross-diffusion parameter

The linearized study in the previous subsection allows us to understand how the the occurrence
of bifurcations from the coexistence steady state (u∗, v∗) is influenced by the variation of the
cross-diffusion coefficients d12 and d21.

In this subsection, we want to address the following question: given parameters values
ri, ai, bi (i = 1, 2) and d12, d21 for which bifurcations can occur, what happens if d21 increases
(of course a “symmetric” question can be asked about d12)?

This question is motivated from two different directions. First from fact that, as we already
mentioned, the SKT system and in particular its steady states have been extensively studied in
the triangular case d21 = 0 (see e.g. [5]). It is then natural to wonder what happens to these
steady states in the more general case where the second cross-diffusion term is also taken into
account. Second, the asymptotic regime where one of the cross-diffusion coefficients goes to
infinity has also been studied, but mainly from the viewpoint of elliptic theory (see e.g. [39, 40]),
and we believe that bifurcation analysis and complementary numerical continuation analysis can
shed a new light on this question.

Let us consider values ri, ai, bi (i = 1, 2) and d12, d21 for which, for all k ∈ N≥1, there exists
d > 0 such that Pk(d) = 0, i.e. for which Ck < 0 for all k. From the linearized analysis performed
in Section 2.1, we see that the effect of increasing d21 depends only on the sign of β. That is,
if β is negative, then increasing d21 increases each Ck and the bifurcations gradually disappear.
Indeed, from Proposition 2.1 and Proposition 2.2 we see that when d21 reaches

d̃k
21 := 1

|β|

(
αd12 −

det J∗
λk

)
, (2.3)

the bifurcation associated to the k-th mode disappears. In particular, whenever d21 is larger
than αd12/|β|, there is no longer any bifurcation from the coexistence steady state (u∗, v∗). This
phenomena is illustrated in Section 3.

On the other hand, if β is positive, then increasing d21 decreases each Ck and all bifurcations
persist. In particular, we can compute the asymptotic value of d for which each bifurcation takes
place, in the limit d21 → ∞. Indeed, for the k-th mode we have that the bifurcation occurs
when d crosses

dk
bif =

−Bk +
√
B2

k − 4AkCk

2Ak
,

and we can compute
dk

bif,∞ := lim
d21→+∞

dk
bif = β

u∗λk
. (2.4)

This situation is also investigated in more details in Section 3.
Let us briefly mention that, if β is equal to 0, then increasing d21 does not change any of the

Ck, and all bifurcations persist. However, the computation (2.4) is still valid in that case, hence
all the bifurcation points collapse to 0 when d21 goes to infinity. However, and very interestingly,
the global branches of non homogeneous steady states themselves do not seem to collapse to 0,
see Section 3.2. Having β exactly equal to 0 is probably not very meaningful from a biological
point of view, but it turns out that the parameter values used in [26] to compute a bifurcation
diagram in the strong competition regime and in the triangular case d21 = 0 actually yield β = 0.
Therefore, this singular behavior is observed if one tries to extend the study [26] and considers
the non-triangular case with d21 large.
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Of course, all the above discussion can be transposed to predict what happens when d12
is increased, the sign of α then being the determinant factor. In addition, the results we have
presented above analytically are robust in the sense that co-dimension one isolated branch points
are robust in one-parameter families according to standard Crandall-Rabinowitz theory. Yet,
additional parameters may lead to bifurcations of higher co-dimension, which we briefly discuss
in the conclusion.

3 Beyond linear stability analysis, numerical continuation and
secondary bifurcations

In this section, we both illustrate and complement the results obtained in Section 2 by numer-
ically computing bifurcation diagrams of steady states for (1.1), and analysing the obtained
solutions. We focus here on the one dimensional case, which is already very rich. The two-
dimensional case was analysed looking at the process of pattern formation in [18], and the
bifurcation diagram will be investigated in [36].

In dimension one, without loss of generality, we can consider Ω = (0, 1). As already men-
tioned in the Introduction, we take d1 = d2 = d as the bifurcation parameter, and also study
what happens to the bifurcation diagrams when d21 or d12 is varied. All the parameter sets
that we consider in this section are listed in Table 1, where the sign of the crucial quantities
α and β are highlighted. The first and the second parameter sets were already studied in the
literature (see the references in the table). As far as we know, these parameters do not have
any specific biological relevance, but they showcase the richness of the SKT model which can
lead to many interesting and different behaviors. Similarly, the remaining parameter sets were
selected to highlight some specific features of (1.1). The third one selects the weak competition
case and leads to α + β > 0 in order to illustrate the analytical results of Theorem 2.3, while
the fourth one corresponds to the strong competition case, but it selects a less particular case
than the second parameter set (for which β was exactly equal to 0). For this last parameter set,
we show that the system admits a non trivial bifurcation diagram even without cross-diffusion.
However, all the non-homogeneous steady states obtained there seem to be unstable (in accor-
dance with [33]). We then numerically study how/when the addition of cross-diffusion leads to
the stabilization of some of these non-homogeneous steady states.

Remark 3.1. We use several conventions for the figures. Hereafter, thicker lines in the bifur-
cation diagrams denote stable solutions, while we use thinner lines for unstable ones. Circles,
crosses and diamonds indicate the presence of branch points, fold points and Hopf points, re-
spectively.

3.1 First parameter set in Table 1

As we already said, the first parameter set in Table 1 corresponds to the weak competition case
and it was already used in literature [23, 26, 5] in the triangular case (d21 = 0). The corre-
sponding bifurcation diagram, already known in the literature and carefully described in [36],
is reported in Figure 3a with respect to the quantity v(0). In this work, we will use another
projection to display the bifurcation diagrams, namely ||u||L2 instead of v(0), as shown in Fig-
ure 3b. This representation reduces the number of branches, and therefore there is some loss
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r1 r2 a1 a2 b1 b2 regime α β

5 2 3 3 1 1 weak competition + − [23, 26, 5]
2 5 1 1 0.5 3 strong competition + 0 [26]

15/2 16/7 4 2 6 1 weak competition − +
5 5 2 3 5 4 strong competition + +

Table 1: The parameter sets used in the numerical simulations presented in this section.

of information, but it also makes upcoming diagrams with many more branches easier to read.
This reduction of the number of branches is due to the fact pairs of branches of the same color
on Figure 3a are related by some symmetry which leave ||u||L2 invariant [36]. For instance,
the two blue branches are related by the transformation (u(x), v(x)) 7→ (u(1 − x), v(1 − x)),
whereas the solutions on the red branches are all symmetric with respect to 1/2 (i.e. they are
invariant under the above x 7→ 1 − x transformation) but are related by the transformation
(u(x), v(x)) 7→ (u(x+ 1/2 mod 1), v(x+ 1/2 mod 1)).

Different types of solutions occur on the branches, and some of them are reported in Figure 4;
we refer to [36] for a more detailed characterization. Solutions in Figures 4a and 4b correspond
to different points on the blue bifurcation branch in Figure 3 and presenting half a bump, while
Figure 4c shows a solution on the red branch, characterized by a complete bump.
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Figure 3: Bifurcation diagrams represented with different quantities in the weak competition
case (first parameter set in Table 1, with d12 = 3 and d21 = 0). (a) “Usual” bifurcation diagram
with respect to v(0). (b) Bifurcation diagram with respect to ||u||L2 .
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Figure 4: Different types of stable solutions on the blue and red branches of the bifurcation
diagram 3. The densities of u and v on the domain are denoted with black and blue lines
respectively.

3.1.1 Transition between the triangular case and the full one when d21 increases,
disappearance of primary bifurcations

With the parameter set that we choose here (the first line of Table 1, with d12 = 3 and d21 = 0)
we are in case (3w) of Proposition 2.1, and we have

αd12
|β|

>
det J∗
λ1

.

Thus there is a bifurcation from the homogeneous steady state (u∗, v∗) associated to each mode
when d21 = 0, as highlighted in Figure 3 (we can only display the first few, as they accumulate
toward d = 0). However, notice that β is negative. Therefore, as discussed in Section 2.2, if
we increase the cross-diffusion parameter d21 the bifurcations corresponding to the first modes
disappear one after the other.

In Figure 5a, corresponding to d21 = 0.045, the first bifurcation branch (blue branch in Figure
3b) is no longer present, while the other branches are still bifurcating from the homogeneous one.
However, stable solutions also arise on a secondary bifurcation branch (light blue), bifurcating
from the red one. Choosing d21 = 0.055 (Figure 5b), we see that also the second (red) branch
of Figure 3b has disappeared as primary bifurcation branch from the homogeneous one, but it
is still present (and it can be stable) as a secondary bifurcation branch (pastel red) from the
green one. Notice that this behavior cannot be predicted from the linear analysis, and it leads
to the appearance of stable non-homogeneous stationary solutions in a parameter regime where
the homogeneous steady state is still stable. In Figure 6 some stable solutions (on the pastel
blue and red branches for d21 = 0.045, and pastel blue and pastel red branches for d21 = 0.055)
coexisting with the homogeneous one are reported. On these secondary branches, the solutions
still present half a bump and a complete bump, as in the triangular case.

The disappearance of the first branch can be better visualized in Figure 7, where we zoom
in on the first two branches and vary d21 more slowly, showing for increasing values of d21
the first two bifurcation branches (blue and red), corresponding to non-homogeneous solutions
presenting half a bump and a complete bump (as in Figures 4 and 6). In Figure 7a we have
d1

bif > d2
bif and the first (blue) branch becomes unstable after a fold bifurcation and then it

14



0 1 2 3 4 5 6 7

10
-3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
||u
|| L

2

d

(a) d21 = 0.045
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(b) d21 = 0.055

Figure 5: Bifurcation diagrams for different values of the cross-diffusion coefficient d21 in the
weak competition case (first parameter set in Table 1, with d12 = 3). Notice that the range of
values of d for which non-trivial solutions exist is getting smaller and smaller when d21 increases
(especially compared to Figure 3b).

connects with the second (red) which becomes stable. In Figure 7b the first bifurcation point
gets closer to the second but still d1

bif > d2
bif, the first bifurcation point is now subcritical and

the bifurcation point between the two branches is closer to the homogeneous one. Note that the
system exhibits now multistability as there are simultaneously locally stable steady states. In
Figure 7c the blue branch presents a Hopf bifurcation point (which can give rise to time-periodic
spatial patterns). Then the first bifurcation point crosses the second, meaning that d1

bif < d2
bif

(Figure 7d). In this case, we also see that the system can exhibit even more co-existing stable
solutions for a certain range of parameters.Further increasing d21, the blue branch gets closer
to the magenta one, shown in 3b. In Figure 7d the light blue branch is a secondary bifurcation
branch (originating from the red one) which seems the result of the interaction of the blue and
the magenta branches.

In particular, we emphasize again that increasing d21 leads to the appearance of stable non-
homogeneous solutions coexisting with the stable homogeneous one.

3.1.2 Asymptotic behavior when d12 goes to infinity

We now want to verify the values of d for which each bifurcation takes place, in the limit
d12 → ∞. To this end we still consider the first parameter set in Table 1, fixing d21 = 0 and
increasing d12. In this case we have that α > 0, β < 0, therefore the limiting bifurcation values
are given by

dk
bif,∞ := lim

d12→+∞
dk

bif = α

v∗λk
, (3.1)

corresponding to (2.4). In Table 2 the convergence of the first three bifurcation points, numeri-
cally detected, to the predicted limited values is shown. In particular we observe that the values
dk

bif increase when d12 increases, in contrast to the behavior with respect to d21. Looking at the
solutions for d12 = 1000 in Figure 8, we observe that, when d12 is large, the product of the two
densities uv (red dotted line) is close to constant, as predicted in [39].
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(d) pastel red branch, d = 1.5 · 10−3

Figure 6: Different types of stable solutions coexisting with the homogeneous one. Species u and
v on the domain are denoted with black and blue lines respectively. Figures (a) and (c) refer to
d21 = 0.045 and correspond to solutions on the pastel blue and red branches of the bifurcation
diagram in Figure 5a. Figures (b) and (d) refer to d21 = 0.055 and correspond to solutions on
the pastel blue and pastel red branches of the bifurcation diagram in Figure 5b.

d12 d1
bif d2

bif d3
bif

3 0.0328 0.0205 0.0113
10 0.0762 0.0273 0.0131
100 0.1190 0.0311 0.0139
1000 0.1258 0.0315 0.0140

dk
bif,∞ 0.1267 0.0317 0.0141

Table 2: Convergence of the first three bifurcation points, numerically detected, to the predicted
limited values α/(v∗λk) when d12 increases (d21 = 0).
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Figure 7: Bifurcation diagrams for different values of the cross-diffusion coefficient d21 in the
weak competition case (first parameter set in Table 1, with d12 = 3). We start in Figure 7a with
a zoom in of Figure 3b, and then slowly increase d21.

3.2 Second parameter set in Table 1: singular behavior due to having β = 0
We consider now the second parameter set of Table 1, already used in [26] and corresponding
to a very specific case in the strong competition regime, since β = 0. According to (2.4), we
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Figure 8: Solutions belonging to different branches when d12 = 1000. The species u and v are
denoted with black and blue lines respectively, while the red line corresponds to uv. As in the
bifurcation diagrams, thin lines indicate unstable solutions, while thicker lines corresponds to
stable ones. The red dotted line represents the product uv.

expect that the bifurcation points on the homogeneous branch collapse to zero as the cross-
diffusion coefficient d21 is increased, but we do not have information about the behavior of the
bifurcating branches. In Figure 9, the bifurcation diagrams for increasing values of the cross-
diffusion coefficient d21 are reported, showing that, at first, the whole diagram seems to collapse
as d21 is increased. Incidentally, we can also see that at the same time the stable part of the first
(blue) branch (arising from a Hopf bifurcation) shrinks, reducing the possibility of having stable
inhomogeneous solutions. However, further increasing the value of d21 we observe a different
trend, also shown in Figure 10. Here we plot on the same graph the first branch for increasing
values of d21: the lightest blue corresponds to d21 = 0, the darkest to d21 = 1000, while as
usual the homogeneous solution is denoted in black. As predicted, the bifurcation points move
to zero, but the branch folds (the corresponding value in the picture is d21 = 20) and then
expands again, leading to the appearance of stable inhomogeneous solutions. We recall that
with this parameter set the homogeneous solution (u∗, v∗) is unstable, while the non-coexistence
homogeneous states (namely (ū, 0) = (2, 0) and (0, v̄) = (0, 5)) are both stable. With small d21
and d → 0, the solution along the first bifurcating branch is almost constant and presents a
sharp interface, with u(0) ≈ 0, v(0) ≈ v̄ but u(x) ≈ ū, v(x) ≈ 0 for x ∈ (ε, 1) (or analogously,
depending on symmetries). Increasing the cross-diffusion coefficient d21, the first bifurcating
branch folds and along the branch we observe a sort of travelling front: the location of the
interface moves toward 1 as d goes to 0, i.e. u remains close to 0 on a larger and larger portion
of the domain, is why ‖u‖L2 goes to 0. A similar, but opposite, behavior is observed for v, which
becomes close to v̄ on most of the interval as d goes to 0. This suggests that the branch fold is
related to a change of non-coexistence steady state. Note that this behavior cannot be noticed
with the v(0) projection.
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Figure 9: Bifurcation diagrams for different values of the cross-diffusion parameter d21 in the
strong-competition case (second parameter set in Table 1, with d12 = 3).
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Figure 10: Evolution of the first bifurcation branch for increasing values of d21 ∈ [0, 1000] (darker
the blue, greater the value), corresponding to the second parameter set in Table 1, with d12 = 3.

3.3 Third parameter set in Table 1: existence of non homogeneous solutions
in the weak competition case when both cross-diffusion parameters are
large

The third parameter set corresponds to α+ β > 0 and it illustrates Theorem 2.3, showing that
non-homogeneous steady states exist when both cross-diffusion coefficients are large and quali-
tatively similar. Figure 11 shows the bifurcation diagram with large cross-diffusion coefficients
(dcross = d12 = d21 = 100) and some solutions. In particular, stable non-homogeneous solutions
arise on the first branch.

3.4 Fourth parameter set in Table 1: changes of stability in the strong com-
petition regime

The fourth parameter set in Table 1 corresponds to the strong competition case, with β >
0 in order to select a more generic case than the one considered in [26]. Note that in the
strong competition case, there is already an intricate bifurcation diagram originating from the
homogeneous coexistence steady state (u∗, v∗) without cross-diffusion, but it does not contain
any stable solutions. We recall that in this case the two non-coexistence states (ū, 0) and (0, v̄)
are stable, and the time evolution of the system typically leads to the extinction of one of the
two species. Increasing the cross-diffusion coefficient d12 (meaning that we put cross-diffusion
in the system), we can observe when/how stable coexistence solutions appear. In Figure 12 the
evolution of the first branch for increasing values of d12 ∈ [0, 3] and d21 = 0 is shown: the lightest
blue corresponds to d12 = 0, the darkest to d12 = 3, while as usual the homogeneous coexistence
solution is denoted in black. We observe that the first bifurcation point on the homogeneous
branch decreases as d12 is increasing, while the branch tends to fold. In particular, looking at
stable solutions, we can see that the system needs enough cross-diffusion to admit stable non-
homogeneous coexistence solutions. In addition, these regions arises first between two successive
fold points, and then between a Hopf and a fold. The same considerations apply to the other
branches.
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Figure 11: Bifurcation diagram and some solutions (third parameter set in Table 1 and
d12 = d21 = 100). (a) Bifurcation diagram with respect to the parameter d. Yellow points in-
dicate the positions on the branches at which solutions are shown. (b)–(d) Solutions u(x), v(x)
for different values of d (black lines correspond to species u, while blue lines to species v).

4 Beyond the usual weak and strong competition regime
The reason why (1.2) and (1.3) are sometimes referred to as the strong intra-specific competition
regime and the strong inter-specific competition regime, is because they respectively imply b1b2 <
a1a2 and a1a2 < b1b2 (we recall that the ai represent the intra-specific competition rates, whereas
the bi represent the inter-specific competition rates). These conditions on the competition rates
are usually supplemented with conditions on the growth rates ri (as those in (1.2) and (1.3)),
ensuring that the homogeneous coexistence steady state (u∗, v∗) is positive, and thus that it can
be used as a starting point for the analysis.

However, we believe that these conditions on the growth rates are not necessarily meaningful,
for mainly two reasons. The first one is that, under the assumptions (1.3), while the homogeneous
coexistence steady state (u∗, v∗) is positive it is, in fact, unstable and thus also not so meaningful
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Figure 12: Evolution of the first bifurcation branch for increasing values of d12 ∈ [0, 3] (darker
the blue, greater the value), corresponding to the fourth parameter set in Table 1, with d21 = 0.

biologically. Therefore, if we have a1a2 < b1b2 but not the conditions on the growth rate in (1.3),
the situation would not be so different in the homogeneous case since the solutions would still
converge towards (ū, 0) or (0, v̄). The second reason is that we report here some numerical
experiments suggesting that, when cross-diffusion is taken into account, there exist positive and
stable non-homogeneous coexistence steady states of (1.1) outside of the range of parameters
for which (u∗, v∗) is positive. To the best of our knowledge, stable non-homogeneous steady
states outside of this parameter range were only obtained before in some asymptotic parameter
regime, namely when d12 goes to infinity (see e.g. [47]), which is in contrast with the present
study.

We present in Figure 13 bifurcation diagrams with respect to the parameter r1 (the growth
rate of species u), in the weak and strong competition cases, where positive non-homogeneous
steady states appear outside of the range of parameters where (u∗, v∗) is admissible. They are
obtained in the triangular case (d21 = 0), using the first and second parameter sets reported in
Table 1 except for r1 which is varied, and fixing the value of the diffusion coefficient (d = 0.005
in the weak competition case and d = 0.05 in the strong competition case).

In Figure 13a, there are stable non-homogeneous solutions when r1 > 6, that is outside
of the range of parameters for which (u∗, v∗) is positive; recall that we are in the usual weak
competition regime (1.2) if and only if r1 belongs to (2/3, 6). Moreover those solutions, reported
in Figures 14a, 14c for r1 = 7.5 and in Figure 14e for r1 = 15, are qualitative similar to the
others already obtained in the previous sections. In Figure 13b, we are in the usual strong
competition regime (1.2) if and only if r1 belongs to (2/3, 5/2). We can see that also in this case
the system admits stable non-homogeneous steady states (up to four) where the homogeneous
steady state (u∗, v∗) is no longer meaningful. Note also that the red branch, corresponding to
the second (red) branch in Figure 3, can become stable. Stable solutions are shown in Figures
14b, 14d with r1 = 10 and Figure 14f for r1 = 18.
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Figure 13: Bifurcation diagrams with bifurcation parameter r1. (a) Weak competition case with
d = 0.005 and the other parameter values as in the first parameter set in Table 1, with d12 = 3
and d21 = 0. (b) Strong competition case with d = 0.05 and the other parameter values as in
the second parameter set in Table 1, with d12 = 3 and d21 = 0.

5 Changes induced by self-diffusion
In this section, we briefly discuss the changes that are induced by taking non-zero self-diffusion
coefficients d11 and d22. Taking them into account in the computations made in Section 2, the
characteristic matrix becomes

M̃∗k = J∗ − J̃∗∆λk =
(
−a1u∗ − (d+ d12v∗ + 2d11u∗)λk −b1u∗ − d12u∗λk

−b2v∗ − d21v∗λk −a2v∗ − (d+ d21u∗ + 2d22v∗)λk

)
.

It still has a negative trace, and its determinant is

P̃k(d) := det M̃k = Ãkd
2 + B̃kd+ C̃k, (5.1)

where

Ãk = λ2
k, B̃k = 2(d11u∗ + d22v∗)λ2

k + d12v∗λ
2
k + d21u∗λ

2
k − trJ∗λk,

and

C̃k = −d12(α−2d22v
2
∗λk)λk−d21(β−2d11u

2
∗λk)λk+2u∗v∗λk((d11a2+d22a1)+2d11d22λk)+det J∗.

Again, we get a bifurcation for the k-th mode if and only if C̃k < 0. Therefore, adding self-
diffusion can only hinder the appearance of non-homogeneous steady states, because C̃k increases
with d11 and d22. Even for small (but non zero) values of the self-diffusion coefficients d11 and
d22, we see a main difference with some of the situations described in Section 2, namely that we
can only have a finite number of bifurcations from (u∗, v∗). Indeed, as soon as

λk ≥ max
(

β

2d11u2
∗
,

α

2d22v2
∗

)
, (5.2)
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Figure 14: Stable non-homogeneous solutions appearing beyond the usual weak or strong com-
petitions regimes (species u and v are denoted with black and blue lines respectively). Weak
competition case (d = 0.005, the other parameter values as in the first parameter set in Table
1, with d12 = 3 and d21 = 0): (a), (c) stable solutions with r1 = 7.5, (e) stable solution with
r1 = 15. Strong competition case (d = 0.05, the other parameter values as in the second param-
eter set in Table 1, with d12 = 3 and d21 = 0): (b), (d) stable solutions with r1 = 10, (f) stable
solution with r1 = 18. The colors of the branches refer to Figure 13.
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there is no bifurcation associated to the k-th mode.
The pde2path setup requires slight and straightforward modifications (see [36] for the code

setup) to implement self-diffusion terms. In Figure 15 we show how the bifurcation structure
behaves when one self-diffusion coefficient increases. As in the previous sections, the first, second
and third branches are denoted in blue, red and green, respectively. As in Figure 3, the magenta
and the orange branches correspond to secondary bifurcations. We consider the first parameter
set of Table 1, with d12 = 3 and d21 = 0, fix d11 = 0 and vary d22. The bifurcation diagram
corresponding to d22 = 0 is obviously the usual one, already shown in Figure 3, while with
non-zero values the successive disappearance of primary bifurcations points is confirmed. Figure
15a is obtained with d22 = 0.03: the bifurcation diagram seems shifted to the left and stretched,
and only four primary bifurcation points are detected for positive values of d. When d22 = 0.05
(Figure 15a) we observe only two primary bifurcation points, and on the first (blue) branch no
unstable regions have been detected. Finally in Figure 15b the second bifurcation point is no
longer present.

Moreover, in this case the numerical computation of the branches does not present criticalities
approaching the value d = 0, but instead the bifurcation diagram exists for negative value of
the standard diffusion coefficients and solutions are still meaningful. Looking at system (1.1)
with d11 = d21 = 0 and d12, d22 > 0, negative values of d can still yield an elliptic operator. In
general, considering expressions (5.1) and (2.1) of the determinants, we have that

P̃k(d) = Pk(d− ds) + ps,

where ds and ps depend on the parameters and on λk.

6 Concluding remarks
In this work we have extensively analyzed the cross-diffusion SKT model by detailed local
linearized analysis and numerical continuation over a large range of parameters. This approach
has revealed some interesting effects of the cross-diffusion terms on the steady states, and the
results can also be interpreted in the original context of species competition.

First of all, we proved that the intraspecific competition pressure (self-diffusion) contrasts
the spatial segregation. The effect of interspecific competition pressure (cross-diffusion) is more
intricate instead. If the competition for the resources is weak, meaning that the two populations
could coexist, the habitat segregation of too similar species is not feasible even in the presence of
interspecific pressure. On the contrary, it is more likely that distinguishable populations exhibit
habitat segregation. In this case the relative competition pressures play an important role on
the outcomes. They non-simultaneously help to destabilize the homogeneous equilibrium. When
the competition is strong and the exclusion principle is the predicted scenario, the competition
pressure helps the species to coexist, segregated in different habitat regions through bifurcations
of the homogeneous steady state. We note that relatively small values of the inter-specific
pressure for species v lead to a stable solution which favors species u, whereas stronger inter-
specific pressure in species v favors v itself. Moreover, there is a relation between the decreasing
of the standard diffusion coefficient d and the type of pattern: when the directionless mobility
of the individuals is reduced, so there is less mixing in the system, we observe the formation
of multiple clusters. Finally the obtained results are robust with respect to small perturbation
of the parameter values, since they hold in open sets. Transitions from one case to the other
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Figure 15: Bifurcation diagrams with bifurcation parameter d obtained with the first parameter
set in Table 1 (weak competition case), with d12 = 3, d21 = 0, d11 = 0 and different values of
the self-diffusion coefficient d22.

are possible on the boundary of these regions. These bifurcations at the boundary are of higher
codimension and can often be viewed as organizing centers, so their study would be an interesting
aspect for future work.

Furthermore, the model often shows multistability of solutions, and in particular stable
inhomogenous solution can coexist with the homogeneous one. The outcome of the system
depends on the initial conditions and perturbing the system it is possible to pass from one
branch to the other, namely from a homogeneous distribution of the species on the habitat to
spatial segregation.

Due to its innovative interplay between linearized analysis and numerical continuation, this
work highlights new interesting aspects and opens several different questions that can be ad-
dressed in future works. From the theoretical point of view, the analytical characterization of the
first bifurcation point (sub or supercritical) is an interesting open question, and more generally
the study of the stability of the bifurcating branches. From the numerical study we found the
appearance of Hopf bifurcation points in both weak and strong competition regimes, suggesting
the formation of time-periodic spacial patterns. The effective presence of these time-varying
patterns, their type and stability properties are biologically relevant, as well as the influence of
the cross-diffusion terms on the Hopf point. To this end, the analytical results obtained in [25]
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can be extended to the full cross-diffusion case. Since the linearized analysis and the numerical
continuation also reveal the possible presence of higher co-dimension points, it would be interest-
ing to better characterize their presence and their impact on the whole bifurcation diagram and
on the stability of steady states. However, pde2path is not immediately suited for the detection
of codimension-2 bifurcation points, so this will be matter of future investigations. In addition,
we focused on bifurcation curves connected to the homogeneous branch, while it could also be
interesting to study isolated bifurcation curves (“isolas”), which may be found using pde2path
in combination with multiple solution methods [34].

Finally, the same study could be carried out for other quasilinear problems involving cross-
diffusion terms. For instance, in the context of predator–prey systems, it is possible to derive
by time-scale arguments another type of cross-diffusion terms [9, 11]. The linearized analysis
suggests that they do not increase the parameter region in which patterns appear, but as in the
present work, the global influence cannot be captured only by the linearized analysis. Taken
together, these results will better clarify the role of cross-diffusion terms as the key ingredients
in pattern formation.
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