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Abstract - A new suboptimal search strategy suitable for feature selection in very 

high-dimensional remote-sensing images (e.g. those acquired by hyperspectral 

sensors) is proposed. Each solution of the feature selection problem is represented 

as a binary string that indicates which features are selected and which are 

disregarded. In turn, each binary string corresponds to a point of a 

multidimensional binary space. Given a criterion function to evaluate the 

effectiveness of a selected solution, the proposed strategy is based on the search for 

constrained local extremes of such a function in the above-defined binary space. In 

particular, two different algorithms are presented that explore the space of 

solutions in different ways. These algorithms are compared with the classical 

sequential forward selection and sequential forward floating selection suboptimal 

techniques, using hyperspectral remote-sensing images (acquired by the AVIRIS 

sensor) as a data set. Experimental results point out the effectiveness of both 

algorithms, which can be regarded as valid alternatives to classical methods, as 

they allow interesting tradeoffs between the qualities of selected feature subsets 

and computational cost. 
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I. INTRODUCTION 

The recent development of hyperspectral sensors has opened new vistas for the 

monitoring of the earth’s surface by using remote sensing images. In particular, 

hyperspectral sensors provide a dense sampling of spectral signatures of land covers, 

thus allowing a better discrimination among similar ground cover classes than 

traditional multispectral scanners [1]. However, at present, a major limitation on the use 

of hyperspectral images lies in the lack of reliable and effective techniques for 

processing the large amount of data involved. In this context, an important issue 

concerns the selection of the most informative spectral channels to be used for the 

classification of hyperspectral images. As hyperspectral sensors acquire images in very 

close spectral bands, the resulting high-dimensional feature sets contain redundant 

information. Consequently, the number of features given as input to a classifier can be 

reduced without a considerable loss of information [2]. Such reduction obviously leads 

to a sharp decrease in the processing time required by the classification process. In 

addition, it may also provide an improvement in classification accuracy. In particular, 

when a supervised classifier is applied to problems in high-dimensional feature spaces, 

the Hughes effect [3] can be observed, that is, a decrease in classification accuracy 

when the number of features exceeds a given limit, for a fixed training-sample size. A 

reduction in the number of features overcomes this problem, thus improving 

classification accuracy.  

Feature selection techniques generally involve both a search algorithm and a criterion 

function [2],[4],[5]. The search algorithm generates and compares possible “solutions” 
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of the feature selection problem (i.e. subsets of features) by applying the criterion 

function as a measure of the effectiveness of each considered feature subset. The best 

feature subset found in this way is the output of the feature selection algorithm. In this 

paper, attention is focused on search algorithms; we refer the reader to other papers 

[2],[4],[6],[7] for more details on criterion functions. 

In the literature, several optimal and suboptimal search algorithms have been proposed 

[8]-[16]. Optimal search algorithms identify the subset that contains a prefixed number 

of features and is the best in terms of the adopted criterion function, whereas suboptimal 

search algorithms select a good subset that contains a prefixed number of features but 

that is not necessarily the best one. Due to their combinatorial complexity, optimal 

search algorithms cannot be used when the number of features is larger than a few tens. 

In these cases (which obviously include hyperspectral data), suboptimal algorithms are 

mandatory. 

In this paper, a new suboptimal search strategy suitable for hyperdimensional feature 

selection problems is proposed. This strategy is based on the search for constrained local 

extremes in a discrete binary space. In particular, two different algorithms are presented 

that allow different tradeoffs between the effectiveness of selected features and the 

computational time required to find a solution. Such algorithms have been compared 

with other suboptimal algorithms (described in the literature) by using hyperspectral 

remotely sensed images acquired by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS). Results point out that the proposed algorithms represent valid 

alternatives to classical algorithms as they allow different tradeoffs between the qualities 

of selected feature subsets and computational cost. 

The paper is organized into five sections. Section 2 presents a literature survey on 

search algorithms for feature selection. Sections 3 and 4 describe the proposed search 
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strategy and the two related algorithms. In Section 5, the AVIRIS data used for 

experiments are described and results are reported. Finally, in Section 6, a discussion of 

the obtained results is provided and conclusions are drawn. 

 

II. PREVIOUS WORK 

The problem of developing effective search strategies for feature selection algorithms 

has been extensively investigated in pattern recognition literature [2],[5],[9], and several 

optimal and suboptimal strategies have been proposed. 

When dealing with data acquired by hyperspectral sensors, optimal strategies cannot be 

used due to the huge computation time they require. As is well-known from the 

literature [2],[5], an exhaustive search for the optimal solution is prohibitive from a 

computational viewpoint, even for moderate values of the number of features. Not even 

the faster and widely used branch and bound method proposed by Narendra and 

Fukunaga [2],[8] makes it feasible to search for the optimal solution when high-

dimensional data are considered. Hence, in the case of feature selection for 

hyperspectral data classification, only a suboptimal solution can be attained. 

In the literature, several suboptimal approaches for feature selection have been 

proposed. The simplest suboptimal search strategies are the sequential forward selection 

(SFS) and sequential backward selection (SBS) techniques [5],[9]. These techniques 

identify the best feature subset that can be obtained by adding to, or removing from, the 

current feature subset one feature at a time. In particular, the SFS algorithm carries out a 

“bottom-up” search strategy that, starting from an empty feature subset and adding one 

feature at a time, achieves a feature subset with the desired cardinality. On the contrary, 

the SBS algorithm exploits a “top-down” search strategy that starts from a complete set 

of features and removes one feature at a time until a feature subset with the desired 
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cardinality is obtained. Unfortunately, both algorithms exhibit a serious drawback. In 

the case of the SFS algorithm, once the features have been selected, they cannot be 

discarded; analogously, in the case of the SBS search technique, once the features have 

been discarded, they cannot be re-selected.  

The plus-l-minus-r method [10] employs a more complex sequential search approach to 

overcome this drawback. The main limitation on this technique is that there is no 

theoretical criterion for selecting the values of l and r to obtain the best feature set. 

A computationally appealing method is the max-min algorithm [11]. It applies a 

sequential forward selection strategy based on the computation of individual and 

pairwise merits of features. Unfortunately, the performances of such a method are not 

satisfactory, as confirmed by the comparative study reported in [5]. In addition, Pudil. et 

al. [12] showed that the theoretical premise providing the basis for the max-min 

approach is not necessarily valid. 

The two most promising sequential search methods are those proposed by Pudil et al. 

[13], namely, the sequential forward floating selection (SFFS) method and the 

sequential backward floating selection (SBFS) method. They improve the standard SFS 

and SBS techniques by dynamically changing the number of features included (SFFS) 

or removed (SBFS) at each step and by allowing the reconsideration of the features 

included or removed at the previous steps.  

The representation of the space of feature subsets as a graph (“feature selection lattice”) 

allows the application of standard graph-searching algorithms to solve the feature 

selection problem [14]. Even though this way of facing the problem seems to be 

interesting, it is not widespread in the literature. 

The application of genetic algorithms was proposed in [15]. In these algorithms, a 

solution (i.e. a feature subset) corresponds to a “chromosome” and is represented by a 
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binary string whose length is equal to the number of starting features. In the binary 

string, a zero corresponds to a discarded feature and a one corresponds to a selected 

feature. Satisfactory performances were demonstrated on both a synthetic 24-

dimensional data set and a real 30-dimensional data set. However, the comparative 

study in [16] showed that the performances of genetic algorithms, though good for 

medium-sized problems, degrade as the problem dimensionality increases. 

Finally, we recall that also the possibility of applying simulated annealing to the feature 

selection problem has been explored [17]. 

According to the comparisons made in the literature, the sequential floating search 

methods (SFFS and SBFS) can be regarded as being the most effective ones, when one 

deals with very high-dimensional feature spaces [5]. In particular, these methods are 

able to provide optimal or quasi-optimal solutions, while requiring much less 

computation time than most of the other strategies considered [5],[13]. The investigation 

reported in [16] for data sets with up to 360 features shows that these methods are very 

suitable even for very high-dimensional problems.  

 

III. THE STEEPEST-ASCENT SEARCH STRATEGY 

Let us consider a classification problem in which a set X of n features is available to 

characterize each pattern: 

 X={x1, …, xn}.  (1) 

The objective of feature selection is to reduce the number of features utilized to 

characterize patterns by selecting, through the optimization of a criterion function J (e.g. 

maximization of a separability index or minimization of an error bound), a good subset S 

of m features, with m<n: 
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 S={s1, …, sm: si∈ X, i=1,..,m}. (2)

    

The criterion function is computed by using a preclassified reference set of patterns (i.e. 

a training set); the value of J depends on the features included in the subset S (i.e. 

J=J(S)). 

The entire set of all feature subsets can be represented by considering a discrete binary 

space B. Each point b in this space is a vector with n binary components. The value 0 in 

the k-th position indicates that the k-th feature is not included in the corresponding 

feature subset; the value 1 in the j-th position indicates that the j-th feature is included in 

the corresponding feature subset. For example, in a simple case with m=4 features, the 

binary vector b=(0, 1, 0, 1) indicates the feature subset that includes only the second and 

fourth features: 

 b=(0, 1, 0, 1)  ⇔  S={x2, x4}. (3) 

The criterion function J can be regarded as a scalar function defined in the aforesaid 

discrete binary space. Let us consider, without loss of generality, the case in which the 

criterion function has to be maximized. In this case, the optimal search for the best 

solution to the problem of selecting m out of n features corresponds to the problem of 

finding the global constrained maximum of the criterion function, where the constraint is 

defined as the requirement that the number of selected features be exactly m (in other 

words, the solution must correspond to a vector b with m components equal to 1 and (n-

m) components equal to 0). 

With reference to the above description of the feature selection problem, we propose to 

search for suboptimal solutions that are constrained local maxima of the criterion 

function. According to our method, we start from a point b0 corresponding to an initial 

subset of m features, then we move to other points that correspond to subsets of m 
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features which allow the value of the criterion function to be progressively increased. 

This strategy differs from most search algorithms for feature selection, which usually 

progressively increase (e.g. SFS) or decrease (e.g. SBS) the number of features in S, with 

possible “backtracking” (e.g. SFFS and SFBS).  

We now need to give a precise definition of local maxima in the previously described 

discrete space B. To this end, let us consider the neighborhood of a vector b that includes 

all vectors that differ from b in no more than two components. We say that a vector b is a 

local maximum of the criterion function J in such a neighborhood if the value of the 

criterion function in b is greater than or equal to the value the criterion function takes on 

any other point of the neighborhood of b. We note that the neighborhood of any vector b 

is made up of n vectors that differ only in one component, and of n×(n-1)/2 vectors that 

differ in two components. However, if b satisfies the constraint, only m×(n-m) vectors 

included in the neighborhood of b still satisfy the constraint. Constrained local maxima 

are defined with respect to this subset of the neighborhood.  

 

The Steepest Ascent Algorithm 

Symbol definitions 

J(S) value of the feature selection criterion function computed for the 

  feature subset S; 

S0 feature subset utilized for the initialization; 

Si best feature subset selected at the i-th iteration (i>0); 

B discrete binary space representing the entire set of all feature subsets; 

bi  vector of n binary components that represents  Si in the space B; 

Di set of features discarded by the search algorithm at the i-th iteration; 

Ω i set of vectors corresponding to the portion of the neighborhood of bi that  
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 satisfies the constraint on the number of features to be selected; 

 Jmax  maximum value of J found by the search algorithm by exploring Ω i-1 . 

 

Initialization 

An initial feature subset S0, composed of m features selected from the set X of n 

available features, is considered. The corresponding starting vector b0 in B can be 

easily obtained starting from S0. The discarded (n-m) features are included in the 

complementary set D0: 

  D0={si: si∈X, si∉So}.  (4) 

The value J(So) of the criterion function is computed for the initial subset So. 

 

 i-th Iteration 

At the i-th iteration of the algorithm, all possible exchanges of one feature 

belonging to Si-1 for another feature belonging to Di-1 are considered and the 

corresponding values of J are computed. This is equivalent to evaluating J in the 

set of vectors Ω i-1 corresponding to the portion of the neighborhood of bi-1 that 

satisfies the constraint. The maximum value obtained in this way is considered: 

  Jmax = max{J(S)}    S∈ Ω i-1.  (5) 

If the following relation holds: 

 Jmax > J(Si -1) (6) 

then the feature exchange that results in Jmax is accepted and the subsets of features 

Si and Di are updated accordingly.  

 



   10 

Stop Criterion 

When the condition   

 Jmax ≤ J(Si -1)  (7) 

 holds, it means that a local maximum has been reached; then the algorithm is 

stopped. Finally, Si is set to Si-1.  

 

The name “steepest ascent” (SA) search algorithm derives from the fact that, at each 

iteration, a step in the direction of the steepest ascent of J, in the set Ω i-1, is taken. The 

algorithm is iterated as long as it is possible to increase the value of the criterion 

function. Convergence to a local maximum in a finite number of iterations is guaranteed. 

At convergence, Si contains the solution, that is, the selected subset of m features. The 

algorithm can be run several times with random initializations (i.e. starting from different 

randomly generated feature subsets S0) in order to better explore the space of solutions (a 

different local maximum may be obtained at each run). An alternative strategy lies in 

considering only one “good” starting point S0 generated by another search algorithm (e.g. 

the basic SFS technique); in this case, only one run of the algorithm is carried out.  

 

IV.  A Fast Algorithm for a Constrained Search 

We have also investigated other algorithms aimed at a constrained search for local 

maxima, in order to reduce the computational load required by the proposed technique. 

For the sake of brevity, we shall consider here only one of such search algorithms. To get 

an idea of the computational load of SA, we note that, at each iteration, the previously 

defined set of vectors Ω i-1 is explored to check if a local maximum has been reached 

and, possibly, to update the current feature subset. As stated before, such a set includes 
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m×(n-m) points; the value of J is computed for each of  them. Globally, the number of 

times required to evaluate J is: 

 k× m×(n-m) (8) 

where k is the number of iterations required. The fastest search algorithm among those 

we have experimented is the following “fast constrained search” (FCS) algorithm. This 

algorithm is based on a loop whose number of iterations is deterministic. For simplicity, 

we present it in the form of a pseudocode. 

 

The Fast Constrained Search Algorithm 

START from an initial feature subset S0   composed of m features selected from X 

Set the current feature subset Sk to S0 

Compute the complementary subset Dk of Sk  

FOR each element si ∈ S0 

FOR each element sj ∈Dk 

Generate Sij by exchanging si for sj in Sk 

Compute the value J(Sij) of the criterion function 

CONTINUE 

Set Ji,max to the maximum of J(Sij) obtained by exchanging si for any possible sj  

IF Ji,max>J(Sk), THEN  update Sk by the exchange si←sj that provided Ji,max  

 Compute the complementary subset Dk of Sk  

ELSE leave Sk unchanged 

CONTINUE 

 

FCS requires the computation of J for m×(n-m) times. Therefore, it involves a 
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computational load equivalent to that of one iteration of the SA algorithm. By contrast, 

the result is not equivalent, as, in this case, the number of moves in B can range from 1 

to m (each of the features in S0 can be exchanged only once or left in S0), whereas SA 

performs just one move per iteration. However, it is not true any more that each move in 

the space B is performed in the direction of the steepest ascent. We expect this 

algorithm to be less effective in terms of the goodness of the solution found, but it is 

always faster than or as fast as the SA algorithm. In addition, as the number of iterations 

required by FCS is a priori known, the computational load is deterministic. Obviously, 

for this algorithm the same initialization strategies as for SA can be adopted. 

 

V. EXPERIMENTAL RESULTS 

A. Data Set Description 

Experiments using various data sets were carried out to validate our search algorithms. 

In the following, we shall focus on the experiments performed with the most interesting 

data set, that is, a hyperspectral data set. In particular, we investigated the 

effectivenesses of SA and FCS in the related high-dimensional space and we made 

comparisons with other suboptimal techniques (i.e., SFS and SFFS).  

The considered data set referred to the agricultural area of Indian Pine in the northern 

part of Indiana (USA) [18]. Images were acquired by an Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) in June 1992. The data set was composed of 220 

spectral channels (spaced at about 10 nm) acquired in the 0.4-2.5 µm region. A scene 

145x145 pixels in size was selected for our experiments (Figure 1 shows channel 12 of 

the sensor). The available ground truth covered almost all the scene. For our 

experiments, we considered the nine numerically most representative land-cover classes 

(see Table 1). The crop canopies were about a 5% cover, the rest being soil covered with 
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the residues of the previous year’s crops. No till, a minimum till, and a clean till were 

the three different levels of tillage, indicating a large, moderate, and small amount of 

residue, respectively [18]. 

 Overall, 9345 pixels were selected to form a training set. Each pixel was characterized 

by the 220 features related to the channels of the sensor. All the features were 

normalized to the range from 0 to 1.  

 

B. Results 

Experiments were carried out to assess the performances of the proposed algorithms and 

to compare them with those of the SFS and SFFS algorithms in terms of both the 

solution quality and the computational load. SFS was selected for the comparison 

because it is well-known and widely used (thanks to its simplicity); SFFS was 

considered as  it  is very  effective  for  the  selection of features from large feature sets, 

and allows a good tradeoff between execution time and solution quality [5],[13]. 

As a criterion function, we adopted the average Jeffries-Matusita (JM) distance 

[4],[6],[7], as it is one of the best-known distance measures utilized by the remote 

sensing community for feature selection in multiclass problems: 
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where c is the number of classes (c=9, for our data set), Pi is the a priori probability of 



   14 

the i-th class, bhk is the Bhattacharyya distance between the h-th and k-th classes, Mi and 

Ci are the mean vector and the covariance matrix of the i-th class, respectively. The 

assumption of Gaussian class distributions was made in order to simplify the 

computation of the Bhattacharyya distance according to (11). As JM is a distance 

measure, the larger the obtained distance, the better the solution (in terms of class 

separability). 

To better point out the differences in the performances of the above algorithms, we used 

the results of SFS as reference ones, that is, we plotted the values of the criterion 

function computed on the subsets provided by SA, FCS and SFFS, after dividing them 

by the corresponding values obtained by  SFS (Fig. 2). For example, a value equal to 1 

on the curve indicated as SFFS/SFS means that SFFS and SFS provided identical values 

of the JM distance. For the initializations of SA and FCS, we adopted the strategy of 

performing only one run, starting from the feature subset provided by SFS. 

As can be observed from Figure 2, the use of SFFS and of the proposed SA and FCS 

algorithms resulted in some improvements over SFS for numbers of selected features 

below 20, whereas, for larger numbers of features, differences are negligible. The 

improvement obtained for 6 selected features is the most significant. Comparing the 

results of SA and FCS with those of SFFS on the considered data set, one can notice that 

the first two algorithms allowed greater improvements than the third (about two times 

greater, in many cases). Finally, a comparison between the two proposed algorithms 

shows that SA usually (but not always) provided better or equal results than/to those 

yielded by the  FCS algorithm; however, differences are negligible (the related curves 

are almost completely overlapped in Fig.2).  

In order to check if numbers of selected features smaller than 20 are sufficient to 

distinguish the different classes of the considered data set, we selected, as interesting 
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examples, the numbers 6, 9 and 17 (see Fig. 2). In order to assess the classification 

accuracy, the set of labeled samples was randomly subdivided into a training set and a 

test set, each containing approximately half the available samples. Under the hypothesis 

of Gaussian class distributions, the training set was used to estimate the mean vectors, 

the covariance matrices and the prior class probabilities; the Bayes rule for the 

minimum error [2] was applied to classify the test set. Overall classification accuracies 

equal to 78.6%, 81.4% and 85.3% were obtained for the feature subsets provided by the 

SA algorithm and numbers of selected features equal to 6, 9 and 17, respectively. The 

error matrix and the accuracy for each class in the case of 17 features are given in Table 

II. The inspection of the confusion matrix confirms that the most critical classes to 

separate are corn-no till, corn-min till, soybean-no till, soybean-min till and soybean-

clean till; this situation was expected, as the spectral behaviors of such classes are quite 

similar. The above classification accuracies may be considered satisfactory or not, 

depending on the application requirements. 

The other important characteristics to be compared are the computational loads of the 

selection algorithms, as not only the optimal search techniques, but also some 

sophisticated sub-optimal algorithms (e.g., generalized sequential methods [5]) exhibit 

good performances, though at the cost of long execution times. 

For all the methods used in our experiments, the most time-consuming operations were 

the calculations of the inverse matrices and of the matrix determinants (the latter being 

required for the computation of the Jeffries-Matusita distance). Therefore, to reduce the 

number of operations to be performed, we adopted the method devised by Cholesky 

[19],[20]. In Fig.3, we give the execution times for SFS, SFFS, SA and FCS. All the 

experiments were performed on a SUN SPARC station 20. 

For every number of selected features (from 2 to 50), SFS is the fastest, and the 
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proposed SA algorithm is the slowest. In the most interesting range of features (2 to 20), 

SFFS is faster even than the proposed FCS algorithm; it is slower for more than 25 

selected features. In general, we can say that all the computations presented in Fig.3 are 

reasonable, as also the longest one (i.e. the selection of 50 out of 220 features by SA) 

took less than one hour. In the range 2 to 20 features, the SA algorithm took, on 

average, 5 times more than SFFS; the FCS algorithm took, on average, about 1.5 times 

more than SFFS. In particular, the selection of 20 features by the SA algorithm required 

about 3 minutes, i.e., 5.8 times more than SFFS; for the same task, FCS took about 1.6 

times more than SFFS. 

Finally, an experiment was carried out to assess, at least for the considered hyperspectral 

data set, how sensitive the SA algorithm is to the initial point, that is, if starting from 

random points involves a high risk of converging to local maxima associated with low-

performance feature subsets. At the same time, this experiment allowed us to evaluate if 

adopting the solution provided by SFS as the starting point can be regarded as an 

effective initialization strategy.  To this end, the number of features to be selected ranged 

from 1 to 20 out of the 220 available features. In each case, 100 different starting points 

were randomly generated to initialize the SA algorithm. The value of JM was computed 

for each of the 100 solutions; the minimum and the maximum of such JM values were 

determined, as well as the number of times the maximum occurred. For a comparative 

analysis, the minimum and maximum JM values are given in Fig.4 in the same way as in 

Fig.2, i.e., by using as reference values the corresponding JM values of the solutions 

provided by the SFS algorithm. In the same diagram, we show again the performances of 

the SFFS algorithm.  As one can observe, with the 100 random initializations, even the 

worst performance (Min/SFS curve) can be considered good for all the numbers of 

selected features except 13 and 14. For these two numbers, considering only one random 



   17 

starting point would be risky. To overcome this problem, one should run the SA 

algorithm a few times, starting from different random points. For example, with 5 or 

more random initializations, one would be very likely to obtain at least one good 

solution, even for 13 features to be selected. In fact, in our experiment, for 13 features to 

be selected, we obtained the maximum in 45 cases out of 100. 

If one compares the diagram Min/SFS (Fig.4) with the SA/SFS one (Fig.2), one can 

deduce that the strategy that considers only the solution provided by the SFS algorithm 

represents a good tradeoff between limiting the computation time (by using only one 

starting point) and obtaining solutions of good quality. In particular, in only one case 

(four features to be selected), the solution obtained by this strategy was significantly 

worse than that reached by the strategy based on multiple random initializations. In 

addition, thanks to the way the SA algorithm operates, one can be sure that the final 

solution will be better than or equal to the starting point. Therefore, starting from the 

solution provided by SFS is certainly more reliable than starting from a single random 

point. 

 
VI. DISCUSSION AND CONCLUSIONS 

A new search strategy for feature selection from hyperspectral remote-sensing images 

has been proposed that is based on the representation of the problem solution by a 

discrete binary space and on the search for constrained local extremes of a criterion 

function in such a space. According to this strategy, an algorithm (SA) applying the 

concept of “steepest ascent” has been defined. In addition, a faster algorithm (FCS) has 

also been proposed that resembles the SA algorithn, but that makes only a prefixed 

number of attempts to improve the solution, no matter if a local extreme has been 

reached or not.  The proposed SA and FCS algorithms have been evaluated and 

compared with the SFS and SFFS ones on a hyperspectral data set acquired by the 
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AVIRIS sensor (220 spectral bands). Experimental results have shown that, considering 

the most significant range of selected features (from 1 up to 20), the proposed methods 

provide better solutions (i.e. better feature subsets) than SFS and SFFS, though at the 

cost of an increase in execution times. However, in spite of this increase, the execution 

times of both proposed algorithms remain quite short, as compared with the overall time 

that may be required by the classification of a remote sensing image. For a comparison 

between the two proposed algorithms, we note that the FCS algorithm allows a better 

tradeoff between solution quality and execution time than the SA algorithm, as it is much 

faster and requires a deterministic execution time, whereas the solution qualities are 

almost identical. In comparison with SFFS, the FCS algorithm provides better solutions 

at the cost of an execution time that, on average, is about 1.5 times longer. For a larger 

number of selected features (more than 20), all the considered selection procedures 

provide solutions of similar qualities. 

We have proposed two strategies for the initialization of the SA and FCS algorithms, that 

is, initialization with the results of SFS and initialization with multiple random feature 

subsets. Our experiments performed by the SA algorithm pointed out that the former 

strategy provides a better tradeoff between solution quality and computation time. 

However, the strategy based on multiple trials, which obviously takes a longer execution 

time, may yield better results. For the considered hyperspectral data set, when there was 

a significant difference of quality between the best and the worst solutions with 100 

trials, the best solution was always obtained in a good share of the cases (at least 45 out 

of 100). Consequently, for this data set, the number of random initializations required 

would not be large (e.g., 5 different starting points would be enough).  

According to the results obtained by the experiments, in our opinion, the proposed search 

strategy and the related algorithms represent a good alternative to the standard SFFS and 
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SFS methods for feature selection from hyperspectral data. In particular, different 

algorithms and different initialization strategies allow one to obtain different tradeoffs 

between the effectiveness of the selected feature subset and the required computation 

time; the choice should be driven by the constraints on the specific problem considered. 
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FIGURE AND TABLE CAPTIONS 

 

Figure 1.  Band 12 (wavelength range between about 0.51 and 0.52 [µm]) of the 

hyperspectral image utilized in the experiments. 

 

Figure 2. Computed values of the criterion function for the feature subsets selected by 

the different search algorithms versus number of selected features. The values of the 

criterion function obtained by the proposed SA and FCS algorithms and by SFFS have 

been divided by the corresponding values provided by SFS. 

 

Figure 3. Execution times required by the considered search algorithms versus number 

of selected features. 

 

Figure 4. Performances of the SA algorithm with multiple random starts. The plot 

shows the minimum and maximum values of the criterion function obtained with 100 

random starts versus number of selected features. For a comparison, the performances 

of SFS are used as reference values; the performances of SFFS are also given. 

 

 

Table I. Land-cover classes and related numbers of pixels considered in the 

experiments. 

 

Table II.  Error matrix and class accuracies for the test-set classification based on the 

17 features selected by the SA algorithm. Classes are listed in the same order as in 

Table I. 
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TABLE I 

Land-cover classes Number of training pixels 
 C1. Corn-no till 1434 
 C2. Corn-min till 834 
 C3. Grass/Pasture 497 
 C4. Grass/Trees 747 
 C5. Hay-windrowed 489 
 C6. Soybean-no till 968 
 C7. Soybean-min till 2468 
 C8. Soybean-clean till 614 
 C9. Woods 1294 

Overall 9345 
 

 

TABLE II 

 
  Ground Truth  
  C1 C2 C3 C4 C5 C6 C7 C8 C9 Class Accuracy 

C1 584 9 0 4 0 24 65 6 0 84.4% 
C2 25 286 0 0 0 2 65 14 0 73.0% 
C3 0 0 223 4 0 0 5 4 1 94.1% 
C4 0 0 3 352 0 2 0 0 1 98.3% 
C5 0 0 0 0 253 0 0 0 0 100.0% 
C6 33 5 2 1 0 368 70 2 0 76.5% 
C7 99 44 10 1 0 58 949 62 0 77.6% 
C8 1 14 0 0 0 2 25 267 0 86.4% 

C
la

ss
if

ic
at

io
n 

C9 0 0 7 2 0 0 0 0 634 98.6% 
 

 

 


