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Abstract

We consider a finite horizon optimal control problem for an ODE
system, with trajectories presenting a delayed two-values switching
along a fixed direction. In particular the system exhibits hysteresis.
Due to the presence of the switching component of the trajectories,
several definitions of value functions are possible. No one of these
value functions is in general continuous. We prove that, under general
hypotheses, the “least value function”, i.e. the value function of the
more relaxed problem, is the unique lower semicontinuous viscosity
solution of two suitably coupled Hamilton-Jacobi-Bellman equations.
Such a coupling involves boundary conditions in the viscosity sense.

1 Introduction.

In the recent paper [1], the author applied the dynamic programming tech-
nique and the viscosity solutions theory to an optimal control problem of
infinite horizon type for a “scalar” switching system. This means that the
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controlled state variable is the pair (y, z) where y is a scalar quantity (di-
rectly controlled by the controlled state equation), and z is a switching scalar
quantity, which may assume only the values —1 and 1, and whose switchings
are subject to the evolution of y by means of a so-called delayed relay hys-
teresis relationship. The motivation was to study an optimal control problem
for a system presenting discontinuous hysteresis of delayed relay type, which
appears in particular in the behavior of thermostats. Moreover, applications
were given to an optimal control problem with a “discrete” version of the
Preisach hysteresis operator (see [2] for the “continuous” version case).

In this paper, we study a problem of optimal control of finite horizon
type, for a switching system where the directly controlled quantity is the
multidimensional y € IR", and the switchings of the scalar quantity z are
subject to the evolution of a fixed component of y, let us say y - S, where
S is a fixed unit vector of IR". More precisely, if we represent by z(-) =
hly(-)- S, w](-) the evolutive switching relationship between z and y-S (where
w is a suitable initial state for z), we then consider the controlled system

y'(t) = fy(t), 2(1), a(t)) ift >0,
(1) = hly(t) - S,w](t)  ift >0, (1.1)
y(0) =z,

where « : [0,4+00[— A is a measurable control, and x € IR" is a suitable
initial state for y. The delayed switching hysteresis relationship z = hly -
S,w] may be naively explained as follows. We have a pair of thresholds
p1 < po which are respectively the threshold for switching down (from 1
to —1) and for switching up (from —1 to 1). This means the following: if
y(t) - S > po, then z(t) = 1; if y(t) - S < pi1, then z(t) = —1; if p; <
y(t)- S < po then the values of z(t) depends on the past evolution of y- S by
a suitable hysteresis rule; if y(¢) - S is on a threshold, then the value of z(t)
depends on the particular switching rule we are considering (and many of
them may be considered). In this contest, hysteresis is due to the fact that
the thresholds for switching up and for switching down are different. Hence,
in the input-output relationship between y-.S and z, we experience a delay in
the occurrence of the switchings, in the sense that, after a possible switching
we cannot immediately have another switching, but a delay appears. In
particular such a delay is not in time (i.e. waiting a sufficiently long period
we have another switching), but instead it is in “space”, in the sense that
another switching may occur only if the input - S reaches a suitable values



(i.e. the other threshold). A possible evolution of the pair (y, z) solution of
(1.1) is shown in Figure 1.

The finite horizon optimal control problem consists in minimizing, over
all the measurable controls, a cost functional of the form

J(z,w,t,a) = /Ot e Uy (s), 2(s), as))ds + e Mg(y(t), (1)), (1.2)

where (y, z) is solution of (1.1) with control « and initial state (z,w). We
are interested in characterizing the value function

V(z,w,t):= ing(x,w,t, ), (1.3)

as the unique viscosity solution of a suitable Hamilton-Jacobi problem. Ac-
tually, as in [1], the definition of the value function depends on the particular
switching rule we are considering (for instance: z switches exactly when y-S
reaches the threshold, or z switches when - S is going to get over the thresh-
old, or z may switch at any instants when y - S is on the threshold). To any
possible switching rule, different trajectories are corresponding, and hence
we get different value functions (this is also a typical feature of the so-called
exit-time problems, and indeed we are going to regard our switching problem
as a suitable coupling of exit-time problems).

The present problem has new complicate features with respect to the one
in [1]. Indeed, since it is a finite horizon problem, there is the presence of the
time-variable which, in correspondence of the switchings, may cause some ir-
regularities; moreover there is the presence of the final cost g which depends
on the discontinuous variable z; and finally the discount factor A may be
zero. However, a more critical aspect is the fact that y is multidimensional,
and hence it may happen that no one of the possible value functions is con-
tinuous, even not lower or upper semicontinuous (in [1], without assuming
any controllability condition, it is proved that some suitable value functions
are continuous on the set of admissible initial states, and this fact of course
is used in the proof of the main result).

Our goal is to derive a suitable problem for Hamilton-Jacobi equations,
such that it is uniquely satisfied in the viscosity sense by a significant one of
the possible value functions. Since the Hamiltonian of our control problem
is

H(x,w,p) :(Sllel}z{_f(xawﬂa) -p—E(m,w,a)}, (1'4)



which is convex in the p-variable, then that suitable value function should be
at least lower semicontinuous in (z,w,t) € IR" x IR X [0, +oc[. In order to
have lower semicontinuity we have to relax our problem. A first relaxation
is to consider the so-called “complete delayed switching rule”, which in some
sense may z free whether to switch or not when - .S is on the threshold (but
it must switch if y - S gets over the threshold). This relaxed switching rule of
course may have different outputs z for the same input y-S (for instance if y-S
reaches the threshold and then it comes back without getting over it, then
we may have two different evolutions for z: the constant evolution without
switchings, and the evolution with one switching). This fact implies that,
for any choice of initial state (z,w) and measurable control «, the system
(1.1) may have more than one trajectory. Let us denote by 7 (z,w,a) the
set of possible trajectories corresponding to (x,w,«). We may then define
the value function as

V(z,w,t) =inf inf J(z,w,t,y(-), 2(-),a) |, 15
( ) @ ((y(-),z(-))eT(z,w,a) ( y(), 2(-) )) (1.5)

where J(z,w,t,y(-), 2(-), @) is the cost functional as in (1.2) evaluated along
the trajectory (y(-),2(-)). The second relaxation is the use of the so-called
“relaxed controls” which are probability measures on the set of controls (see
for instance Warga [16]). With these two relaxations, and without any con-
trollability assumption, the relaxed value function V as defined in (1.5) (when
the relaxed controls are used) turns out to be lower semicontinuous on its
domain of definition. In particular, such domain of definition is

(F UH_) x [0, 400,

where, for instance, H; is the closure in IR" x IR of the open horizontal
semi-hyperplane (see Figure 1)

’le{(x,l)EIR"x]R‘x-S>p1}.

Note that, in some sense, the relaxed value function is the least value function
among all the possible ones.

By using dynamic programming techniques, on every branch H,, x [0, +o0[
with w € {1, —1}, we can regard the value function V as the value function
of a finite horizon control problem with exit time. In particular, the final cost
is g(+,w) and the exit cost is f/(-, —w,-). In other words, the value function
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itself, evaluated on the other branch H . % [0, +00[, plays the role of an exit
cost. Hence, V' solves the following Hamilton-Jacobi problem

([ Vw € {1,—1}, V is a discontinuous viscosity solution of
Vi(-, w, )+)\V( )+ H(z,w,DV(-,w,-)) =0 in H,ux]0, +00],
g Vi, w,)=V(—w,-) on 0H,, x]0, +o0],
V(,UJ,)ZQ(, ) On%wX{O},
\ V(,w,- )=mn{ (,—w,-),g(-,w)} on 0H,, x {0},

(1.6)
where also the boundary conditions are to be interpreted in the viscosity
sense. By discontinuous viscosity solution, we mean that the lower semicon-
tinuous envelop is a supersolution and the upper semicontinuous envelop is
subsolution.

The boundary-initial value problems in (1.6) (one per w € {1, —1}), have
discontinuous boundary data, (the value function V itself evaluated on suit-
able points of the other branch). Usually, such problems, even with con-
tinuous data, do not have a unique solution. What is possible to prove is
that they have a unique lower semicontinuous solution, provided that the
boundary datum (let us say ) satisfies

("), = @x, (1.7)

where “*” and “,” stay respectively for upper and lower semicontinuous en-
velop. However, note that the uniqueness of the solution for both Hamilton-
Jacobi problems in (1.6) does not immediately imply the uniqueness of the
solution of (1.6).

We introduce some controllability hypotheses in order to guarantee that
the value function satisfies (1.7). With such hypothesis and other control-
lability ones (standard for exit time problems), we are able to prove that,
among a rather general class of functions, the relaxed value function V is the
unique lower semicontinuous solution of (1.6). Moreover, all the possible so-
lutions of (1.6) have the same lower semicontinuous envelop, which coincides
with V. In particular, such uniqueness result is possible by the fact that the
switching rule is delayed (i.e. presents hysteresis).

The theory of discontinuous viscosity solutions for Hamilton-Jacobi equa-
tions, with convex Hamiltonians, and with continuous data, goes back to the
works of Barles-Perthame [6], [7], Ishii [11], and Barron-Jensen [8], where



different approaches are considered. For the case of discontinuous data we
refer to the works of Blanc [9], [10], where the results of Barles-Perthame are
suitably extended. In particular, up to the knowledge of the author, [10] is
the unique work concerning final horizon-exit time problems, which lead to
an initial-boundary value problem for Hamilton-Jacobi equations with dis-
continuous data. Our proof of the comparison result for the initial-boundary
value problem in (1.6) follows the one in [10]. However, our situation is dif-
ferent for the fact that the state-space is unbounded (i.e. #,,), and also for
the possibility of non zero discount factor A\. Hence, we need to introduce
some non obvious modifications in the proof. In [10], the notion of Barron-
Jensen solution is also treated (see [8]), which again gives the uniqueness of
the lower semicontinuous solution. A similar approach seems to be possible
also in our case, and the results partially cover each other. An interesting
approach to discontinuous viscosity solutions is also given in Soravia [14].
However, it does not seem to be possible in our case. Indeed, it requires a
particular hypothesis satisfied by the boundary datum which is not obviously
adapted to our case, where the boundary datum is given by the unknown
function itself (see (1.6)), which is the value function of a problem starting
with different dynamics and costs (f(-, —w,-), (-, —w, ), g(-, —w) in place of
f('7 w, ')1 E(, w, ')a g(" w))

For a comprehensive account of the applications of viscosity solutions for
Hamilton-Jacobi equations to optimal control problems, we refer to the book
by Bardi-Capuzzo Dolcetta [4]. For the theory of hysteresis operator, and in
particular of the delayed relay and its generalizations, we refer to the book
by Visintin [15].

Optimal control problems for delayed switching systems are of course of
very importance for the applications, when thermostatic components are con-
sidered, and in general when discontinuous hysteresis appears in the system
under control. For instance, in the recent paper [12], Lenhart, Seidman, and
Yong studied an optimal control problem for a bioreactor, where a bacterial
population is suitably activated in order to metabolize some pollutant. The
activity of the bacteria has two modes: “dormant” and “active” respectively.
The transition from one mode to the other occurs with a delayed switching
rule subject to the evolution of the nutrient amount. The state of the prob-
lem is the 4-upla given by the nutrient amount, the bacterial population,
the pollutant amount, and the mode of activity. The control is the rate of
introduction of nutrient and the cost to be minimized takes account of the
pollutant remaining. Hence, such a problem enters the class of problems for



multidimensional delayed switching system we address in this paper. How-
ever, in that paper, the authors are mainly concerned in existence of (non
relaxed) optimal controls, and not in dynamic programming technique and
in the viscosity solutions theory.

The plan of the paper is as follows. In Section 2, we describe the com-
plete delayed switching rule, presenting it as a hysteresis operator between
spaces of time dependent functions; we then give some results for ordinary
differential equations with such switching rule. In Section 3, we introduce
the control problem and its relaxation. In Section 4, we represent the prob-
lem as an exit time problem. In Section 5, we prove the uniqueness result.
In Section 6, we give general results on Hamilton-Jacobi problems for finite
horizon-exit time problems with discontinuous data; we also give the defini-
tion of discontinuous viscosity solutions, and of boundary conditions in the
viscosity sense.

2 The complete delayed switching rule.

Let us consider a continuous input u € C°([0, +o0[), a discontinuous output
z 1[0, 4+o00[— {—1,1}, and two different thresholds for values of u, let us say
p1 and po, with p; < po, for which z respectively switches “down” from +1
to —1, and “up” from —1 to +1. We define the set

0= (] — 00, p] x {=1}) U ([p1, +o0[x{1}) C IR,

and we can think to the switching evolution as a “continuous” evolution
of the couple (u(-),z(-)) on the set O. The quotation marks on the word
“continuous” mean that such evolution is certainly continuous at any instant
t such that (u(t),z2(t)) € O, where

O = (] = 00, po[x{=1}) U (Jp1, +oo[x{1}) C IR,

but discontinuities may occur at any instant ¢ such that (u(t), 2(¢)) = (p1,1)
or (u(t), 2(t)) = (p2, —1). How such switchings (discontinuities) occur is now
addressed. In principle, we may have several rules for switching (see for
instance the two rules respectively called “exact switching rule” and “getting
over rule” in Bagagiolo [1]). Here, we are going to consider the most relaxed
one, which leaves the output z free whether to switch or not when (u, z) is
on one of the “switching points” (p1, 1) or (ps, —1). Obviously, such freedom
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implies that, for a single continuous input u , we may have more than one
output z. We give the following definition

Definition 2.1 Let u : [0,+o0o[— IR be a continuous function, p; < ps be
two thresholds, and w € {—1,1} be an initial state for the output such that
(u(0),w) € O. A function z : [0, +oo[— {—1,1} is an output of the complete
delayed switching rule with couple of thresholds p = (p1, p2), input u, and
initial state w, if and only if

,2(1
i) (u(+), z(+)) is continuous at every t > 0 such that

(u(t), 2(t)) & {(p1,1), (p2, —1)},
i) 2(0) = w if (u(0), w) & {(p1,1), (p2, =1)}

We equivalently say that z is an output of the “complete delayed relay” with
couple of thresholds p, input u, and initial state w. We also write

z(t) € hplu, w](t) Vt > 0.

Note that the condition iii) in Definition 2.1 means that, at the initial time
t = 0, the output z must be equal to the initial state w if (u(0), w) is not a
switching point, otherwise we allow both z(0) = w and 2(0) = —w. In other
words, if we start from a switching point, then z can immediately switch,
but this means that it switches at ¢ = 0 or that it has already switched at
t = 0. More generally, this consideration applies to any switching instant
t > 0. A switching instant ¢ > 0 is a time such that z = w € {1,—-1}
immediately before ¢ (for instance in |t — §,¢[), and z = —w immediately
after ¢ (for instance in ¢, ¢+ 0[). Hence, for every switching time we have the
output z; = w in |t — 6,1], 21 = —w in [¢,t + J], as well the output zo = w in
|t —0,t], 22 = —w in [t, t + 4.

Since the input u is continuous, and hence locally uniformly continuous,
after any switching instant ¢, z cannot immediately switch back. Indeed, at a
switching time, the value of the input coincides with one of the two switching
thresholds p; or ps, and hence z may switch back only when the input u
will possibly reach the other switching threshold. For the local uniformly
continuities, this cannot happen before a sufficiently large interval of time,
whose size may be chosen locally constant. This implies the existence of at
least one output, even for fast oscillating inputs (see also Visintin [15]).

We define the set of admissible entries for A, by
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D := {(u,w) € C°([0, +00[) x {~1,1}{(u(0),w) € O},
We can then assert that h, operates as

hy : D — P (BVjee(0,+00)),

where P(A) is the set of the parts of the set A. Hence, h,[u,w] is the
set of admissible outputs, and moreover h,u,w]|(t) is the set of values at
time ¢ achieved by all the outputs z € h,[u, w]. The fact that the outputs
z € hylu,w] are locally of total bounded variation, comes from the fact that
their total variations change of a quantity equal to 2 exactly at every time
when they switch, but for any compact time interval, they cannot switch
more than a finite number of times.

The completed delayed relay has the following three properties: respec-
tively “causality”, “hysteresis”, and “semigroup” property (see Visintin [15]):

i) (u,w), (v,w) € D, u=win [0,t] = h,[u, w|(t) = h,v, w|(?),
it) hplu o p,w] = hylu, w] o ¢ Y(u,w) € D
V continuous, increasing, and surjective ¢ : [0, +o0[— [0, +00]
i11) Yz € hylu,w] Vt; > 0 V2 € hyfu(- + t1),2(t1)], the function
Z(t) = z(t) in [0,¢1], Z(t) = z1(t — t1) in ]¢1, +o0[ belongs to h,[u, w].
(2.1)
We consider an ordinary differential system with a switching component.
Let f: R" x {=1,1} x [0,400[— R", (z,w,t) — f(x,w,t), satisfy:

Vwe {-1,1} Vz € R" t — f(z,w,t) is measurable,
3L > 0 such that Vz,y € R", Yw € {—-1,1}, Vt > 0: (2.2)
|f($awat) - f(y,w,t)| S L‘LE - y|a \f(x,w,t)\ S L.

We consider the following system
y'(t) = f(y(t), (t),t) t>0,

y(0) ==z,
(x - S,w) € Hy,

where S is a fixed unit vector of IR", and, for w € {1, —1}, H,, is respectively



Hy = {(z,1) € R" x {1}]z- S > p1},
H oy ={(z,~1) € R" x {—1}z -5 < po}.

In the sequel, for every w € {—1, 1}, we will use respectively the notations:
0Hy :={(z,1) € R"x{1}|z-S = p1}, and OH 1 := {(z,-1) € R"x{—1}|z-
S = py}. With this notation, the closure of H,, is given by H,, = H, UO0H.,,
and we refer to OH,, as the boundary of H,,. The points of OH,, will also be
called “switching points”, since the switching may occur only on that points.

Moreover, if (z, w) is a switching point, then its “conjugate point” is (x, —w).

(2.4)

Definition 2.2 A solution of (2.3) is a couple of functions t — (y(t), z(t))
belonging to C°([0, +-o00[; IR™) x (BViee(0, +00) U L®(0, +00)) such that,

y(O) =5+ [ (yls),2(), 9)ds, =(0) € hyly() - S; () Vi 0.

The fact that the switching rule presents hysteresis (which is essentially
the fact that the “switching down threshold” p; is strictly less than the
“switching up threshold” p,), immediately leads to the existence of at least
one solution for (2.3). Indeed, since f is bounded, after any possible switching
we have to wait a strictly positive time > 0 in order to possibly have a
further switching (we have to wait that the input y(-) - S passes from one
threshold to the other). Hence, since ¢ is independent from (z,w,t), we have
a sequence of time intervals of length ¢ where z (the switching variable) is
constant, and hence the solution exists. We can then construct a solution
defined in [0, 400, by gluing together such solutions on the d-intervals (see
Bagagiolo [1] for similar constructions). By the fact that the h, may admit
several outputs for the same input, the system (2.3) is lacking uniqueness.

We regard the switching as a switching between the two parallel horizontal
closed semi-hyperplanes in IR" x IR 3 (z,w), H; and H_; (see Figure 1).

By the considerations made after Definition 2.1, if the initial datum (z, w)
is a switching point, then we have trajectories for (2.3) starting from that
point as well as starting from its conjugate point (z, —w). Similarly, if we
consider trajectories defined in the time interval [0,7], and if at the final
time T we are in a switching point, then we have two different trajectories
to consider: the one ending on the switching point and the other one ending
on the conjugate point. For switchings occurring on intermediate instants,
the reasoning is the same. Roughly speaking, whenever, at the time ¢, a
trajectory (y,z) reaches a switching point, this fact may generate for the
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Figure 1: Delayed switching evolution, starting from F.

remaining time interval several different trajectories: a) the trajectory that
at t has not yet switched, but switches exactly after ¢, i.e. z(7) is constant
for 7 € [t — 4,t], and z(7) = —z(¢) for 7 €]t,t + ¢], for a suitable § > 0 (this
trajectory always exists); b) the trajectory that switches exactly at time ¢,
i.e z(7) is constant in [t,¢ + J], and 2(7) = —z(t) in [t — 4, ¢, for a suitable
d > 0 (this trajectory always exists); ¢) any possible other trajectory which
does not switch at ¢, i.e. z(7) is constant (let us say equal to w) in [t —§, £+ 0]
for a suitable § > 0 (such trajectories exist only if, at time ¢, they are not
forced to switch, i.e. if y(-) - S, whose evolution in [t — §,t + J] is governed
by ¥ - S = f(y,w,s) - S, in that time interval is not forced to cross the
corresponding switching threshold (p; if w = 1, pg if w = —1)).

3 The control problem and its relaxation.
Let A be compact, f: IR" x {—1,1} x A — IR" continuous, and

3L > 0 such that Vz,y € R", Vw € {—1,1}, Va € A:

few.a)~ fw.0) < Ll -y, |f@wa<L O
We consider the following system
y'(t) = fy(t),2(t),a(t)) >0,
D) € hyly() - Sul(t) £20, i
y(0) =, (3:2)
(x-S w) € Hy-
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In (3.2), h, is the complete delayed relay with threshold p = (p1, p2), p1 < p2;
S is a fixed unit vector of IR™; a(-) is a measurable control belonging in

A :={«a:[0,+00[— Alsuch that « is measurable} (3.3)

The existence of possible multiple solutions for (3.2) is discussed in the previ-
ous section. Let 7 (z,w, a) be the set of all trajectories of (3.2) corresponding
to the choices of (x,w) € H,, as initial point, and of o € A as control.

Then we consider a running cost ¢ : IR" x {—1,1} x A, and a final cost
g: IR" x {—1,1} such that

¢ is bounded and continuous in R" x {w} x A Vw € {-1,1},

3 a modulus of continuity w, such that Yw € {—1,1}, Va € A :

[z, w,a) — L(y,w,a)| <wlzx—y|) Ve,y € R,

g is bounded and uniformly continuous in R" X {w} Vw € {—1,1}.

(3.4)

Let A > 0 be a discount factor. We consider the cost functional J, defined
for every (z,w) € H,, for every a € A, for every (y, z) € T (z,w, «), and for
every t > 0, by

J(z,w,t,a,y, 2) = /Ot e 0(y(s), 2(s), as))ds + e Mg(y(t), z(t)). (3.5)

Then the value function is defined by

V(z,w,t) := inf (( : inf J(x,w,t,y,z)) . (3.6)
Y,z

acA eT(z,w,a)

If (z,w) is a switching point, since all trajectories starting from (z, —w) are
also trajectories starting from (z,w), then

V(z,w,0) = min{g(z,w),g(z,—w)}, V(z,w,t) <V(zx,—w,t)Vt>0,
(3.7)
Because of the discontinuity of the switching variable z, the value function
is discontinuous. For our purpose, we prefer that the value function would
be at least lower semicontinuous. The use of the complete delayed switching
rule certainly helps to have such property. However, it is not enough. To
show that, one can easily adapt a counterexample given in Barles-Perthame
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[6]. Hence, we need a further relaxation (the first one is the use of the
complete delayed switching rule) which should ensure that the uniform limit
of trajectories is still an admissible trajectory. This is important to avoid that
from a switching point we are forced to switch, whereas from a converging
sequence of points to it, we may not switch in a time interval [0, §] with § > 0.
In particular, the non lower semicontinuity still holds if we also suppose that
we have an outer field property, i.e. a further choice of a control for which
the field is outward with respect to H,, (such controllability condition on the
boundary is the one that we will assume in the next sections).

We then introduce the relaxed controls. Let us suppose that (3.1) and
(3.4) hold. We define the set of relaxed measurable controls

A= {a:[0,+00[— M(A),t — & measurable}, (3.8)

where M(A) is the set of Radon probability measures on A. If we suppose w
fixed (i.e. not switching), and we take a relaxed control &, then the relaxed
trajectory g(-) with relaxed dynamics f(-,w,éz.), i.e. the solution of the
Cauchy problem

is given in integral form by

t):x—i-/otf(g( ), w, &) s—a:—i—/ (/f wadas>ds. (3.10)

Classical results (see Warga [16]), ensure that the solution of (3.9) exists, is
unique, is continuous and suitably depends on data. We consider the relaxed
switching controlled system (compare with (3.2))

g = f5(),2(0), ) >0,
Z(t)eh [@7() S,wl(t)  t>0, (3.11)
§9(0) =z, (z,w) € Hy-
Because of the continuity of the relaxed (non switching) trajectory of (3.9),
the relaxed trajectories (¢, 2) of (3.11) is defined just using the complete de-

layed switching rule of h,, as we did for the solutions of (3.2). The regularity
(9,2) € C°0,+oo[, R") x BVe.(0,400) still holds. Moreover, for every
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initial point (z,w) and every relaxed control &, there are possible many tra-
jectories. Let ’7'(35, w, &) be the set of such trajectories.

For every point (z,w), final time ¢ > 0, relaxed control &, and relaxed
trajectory (4, 2) € T(z,w, &), we define the relaxed cost and value function

J(x,w,t,&, g, 2) = /Ot e_)‘sé(g)(s), 2(s), &(s))ds + e Mg(9(t), 2(t))
=/ e ( /A £(9(s), 2(s), a)d&s> ds + e Mg (5(t), 2(1)); (3.12)

V(z,w,t) == inf ( inf J(z, w,t,&, 7, 2)) :

acA \(9,2)eT (z,w,a)
Here are the main properties of the relaxed controls (see Warga [16]).

Proposition 3.1 If we endow M(A) by the weak topology for measures, and
A by the weak star topology associated, we then have the following results:
i) A s compact; i) every classical control o € A is uniquely associated
to the relazed control t w— 04y, where 0, is the Dirac mass at the point
a € A. Moreover, by such identification, the classical controls are dense in
the set of relazed controls; iii) if &y, is a sequence of relaxed controls weakly
star converging to &, then, regarding the (non switching) system (3.9), the
sequence of relazed trajectories 4, starting from x with control &, uniformly
converges over the compact sets of [0, +00] to the relazed trajectory § starting
from x with control &. Moreover, for every t > 0, and for every w € {—1,1}

lim [ e 0(G,(s), w, in(s))ds = /te_)‘sé(gj(s),w,d(s))ds. (3.13)

n—+oo Jo 0

Proposition 3.2 For every (z,w,t) € H,, X [0, +00[, there erist an optimal
relaxzed control & € A and an optimal relazed trajectory (9,2) € T (z,w, &).

Proof. If t = 0 then the conclusion is obvious by definition (see (3.7)).

Let &, € A and (§n,%,) € T(x,w,d,) be respectively a sequence of
minimizing relaxed controls and of minimizing trajectories for V(z,w,?).
Let & be the weakly star limit of a subsequence of &, (still labelled by n).
Moreover, for every n let r, be the number of switchings of 2, during the
time interval [0,¢], and let {¢}},—1, . .. be the sequence of switching times
(0<tl <t?<...<t»<t). Since the quantities 7, are equibounded with
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respect to n (this is true since f is bounded and the switching is delayed,
i.e. py > p1, and hence there exists ¢ > 0 independent from n such that
e+l — i > ¢)), then there exists a subsequence, still labelled by n such that
Ty is equal to a constant . We analyze two cases: a) r =0, b) r > 0.

a) r = 0. This means that z, = w for every n, that is there are no
switchings in the time interval [0,%]. By Proposition 3.1, we classically can
prove that &, the constant trajectory Z = w, and the corresponding trajectory
¢ solution of (3.11) are optimal. Note that, since (§2,) = (§n,w) € H, in
[0,¢] for all n, the same also holds for (g, w).

b) r > 0. We have 2, = w in |0,¢.[ (= 0 if £, = 0), 2, = —w in Jt}, 2],

n°n

zZ=win [t2,3], and so on. At least for a subsequence, we can suppose that,
as n — +oo, tt, — t* € [0,t], for every i = 1,...,r. Note that, we certainly

have t* < t**'. Moreover we define t = 0 and #'*" = ¢. In the interval Jt°,¢'[,
we define 2 = w, and solve the equation § = f(¢,w,&),4(0) = z, and we
also define z; = §(t'). By Proposition 3.1, §, uniformly converge to 7, on
every compact sub-interval of |9, #![ (if ¢! = 0, then we do not consider this
first step). Moreover,
t! t!

/to e U (Gals), w,an(s))ds > [ e Eg(5), w, 6(5))ds.
In the interval ¢!, 2], we define 2 = —w, we solve §' = f(§, —w, &)) §(t*) =
71, and we define x5 = §(¢?). Again, g, uniformly converge to § on every
compact set of |t #?[, and

t2 12

/t | €M UGals), —w,an())ds > [ e (s), —w, a(s))ds.

~

In general, in [t',¢"![, we define 2 = (—1)'w, we solve § = f(7,2,&),
9(t") = z;, and we have similar convergences as before. Then we have
constructed a continuous function ¢ on [0,¢]. When t" < ¢, then the def-
inition of 2 on t!,... ¢ is irrelevant (note, that we are eventually inter-
ested to the convergence of the costs). On the other hand, if t" = ¢, then
Z, has the last switching in ¢/ < ¢, with |t/ — ¢| infinitesimal. Hence,
9(n(t), 20 (t)) — g(9(t), 2(t)). We then conclude that (7, 2), which solves
the system (3.2), in [0,¢] with control &, is an optimal trajectory (and & is
an optimal control). 0

Proposition 3.3 The relazed value function V is lower semicontinuous in
Hyp X [0, 400, for every w € {—1,1}.
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Proof. Let (x,, w, t,) be a sequence converging to (z,w, t) in H, x [0, +-00l.
For every n, let &, € A and (jp, 2,) € T (Zn, w, Gy,) be optimal for (z,, t,).
Moreover, let & be a relaxed control such that (a subsequence of) &, weakly
star converges to it. Our aim is to select (9, 2) € T (x,w, &) such that

A

liminf V (2, w, t,) > J(z,w,t, &4, 2) > V(z,w,t). (3.14)

n—-+o0o

As in the proof of Proposition 3.2, there exists a subsequence (still labelled
by n) such that, for every n, in the time interval [0, t,], (Jn, 2,) has a constant
number of switchings, let’s say r. We have some cases.

a) r = 0. Then no trajectory 2, switches. Hence, by Proposition 3.1, we
get (3.14).

b) r = 1. For every n, let 7, € [0, t,] be the switching instant. Hence, for
every n, we have

V (n, 0,ta) = / " N0 g (s), w0, 6n(5)) ds
0

[ N Uns), —w, (5))ds + Mg (3(0) — )

Let 7 € [0, t] be such that (at least for a subsequence) 7,, — 7. By Proposition
3.1, we get two limit trajectories (,2) in [0,7] (= 0 if 7 = 0) and in |7, ]

(= {t} if 7 =¢), with 2 = w and 2 = —w respectively. Moreover we define
z(T) = —w. Hence, (7, 2) € T (z,w, &), and we get (3.14).
c) r > 1. We divide the analysis in 7 steps as the previous ones. O

4 Dynamic programming.

Warning 4.1 In this section, unless differently advised, we are always con-
cerned with the relazed control problem and with the relazed value function.
However, to simplify notations, we drop the use of the word “relaxed” and of
the symbol “~ 7 to indicate the relaxed quantities. Hence, for instance, we will
speak of value function, of cost, of controls, and of trajectories, but we will
always mean relaxed value function, relazed cost, relazed controls, and relazed
trajectories, as defined in Section 3. Finally, even if we do not display the
“hat” on our quantities, we will refer to their definitions and properties by
using the numbers of the equations of Section 3, where the “hat” is displayed.
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Let w € {—1,1} and (x,w,t) € H, X [0, +oc[. For every control o € A
and for every trajectory (y,z) € T (x,w, ) we define the set X, ,) := {7 €
[0, —i—oo[‘z(s) = w for s € [0,7]}, and then the “first switching time” by

ty) = SuP Xyz) if Xy,) # 0, (4.1)
liy,2) =0 otherwise. '

Proposition 4.2 For every w € {—1,1}, and for every (x,w,t) € H, X
[0, +o00], the following holds

t/\t(y,z)
V(z,w,t) = inf (( inf ){/ e Uy (s), w, a(s))ds
0

a€A \ (y,2)€T (z,w,
e MM w.2) [X[o,t(y,z)[(t)g(y(t), w) (4.2)
+X {1,003 (8) min (g(y(t), w), V(y(t), —w,0))
Xty my ool )V Wty —w, E = )] })

where, xp is the characteristic function of the set B.

Proof. Let us take o € A, and (y,2) € T(z,w,a). For 7 > 0, we
define the shifted control o, : s — a7 + s) and the shifted trajectory
(Yry2r) © s = (y(T + 5),2(T + s). Note that (y,,z;) € T(y(7), 2(7), a,).
This is true by the semigroup property of the complete delayed relay (2.1).
Moreover, if 7 < #(,,), then t(.) = 7 + t(,.). We use the notations
I = " e=Msg(y(s), w, a(s))ds. By the definition of the cost (3.12), and
by standard techniques, we get

J(z,w,t, 0,9, 2) = I + Xjou, ., (De Vg (y(t), w)
Xty ey ool (D)€ T (Y (b)), 2(Ewo))s T = Ege)s Qg Ve o Zt(y,ng' )
4.3

Let us prove the “>” inequality in (4.2). We prove that J(z,w,t, «,y, z) is
not smaller than the right-hand side of (4.2). We analyze some cases.

a) t < tg,.. By (4.3), we have that J(z,w,t, o, y,2) is equal to the
right-hand side of (4.2).

b) t = 1(y,,). We have two possibilities

J(y(t(y,z)), z(t(y,z)), 0, at(y,z)’ yt(y,z), Zt(y,z))
_ { min{g(y(ty,): w), 9y (b)) —w)} i 2(ty,z) = w,
g(y(t(y,z))a _w) if Z(t(y,z)) —w.
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In both cases, by (4.3), we get

J(@,w,t, 0,9, 2) > I+ e Moo min{g(y(t,), w), 9(y(t,), —w)},

and we conclude observing that g(y(t(,z)), —w) = V(y(tw,)), —w,0).
c) t > t(y,)- In this case we obtain the conclusion by

JW(tw) 2(tw.n) t = e Qs Yty Z.0))
= J(y(t(y,z)): —w,t — t(y,z)a at(y,z)a yt(y,z): Zt(y,z)) > V(y(t(y,z))a —w,t— t(y,z))a

Now, we prove the opposite inequality in (4.2). Let us fix @ € A and
(y,2) € T(z,w, ). Let us suppose that ¢ < t(y ). Then

V(z,w,t) < J(z,w,t,a,y,z) = /Ot e M0(y(s), w, afs))ds + e Mg(y(t), w)

Otherwise, if ¢ > t(, ,), we take a; € A and (y1,21) € T (Y(ty,2)), 2(t,2)), 1)
optimal (for (y(tw,»)), 2(tw,z),t — t,2))) As usual, we define the control @
gluing together o and oy in #(y,y. It is clear that, gluing together (y, z) and
(y1, z1) we obtain a trajectory (y,z) € T (z,w,@). Hence, we get

V(LL', w, t) S J(ZE, w, t: a, y: E) = Il + e_At(y’Z)V(y(t(yaz))’ Z(t(%z))’ t— t(y’z))’

where I; is defined as above. We may conclude, since, by (3.7),

V(y(t,) 2(twe)s t = twe) < V(Ytee) —w,t —ty,z)-

O

The equation (4.2) suggests that, on every H,, X [0,+0c[, we can view
the value function V' as the value of a finite horizon-exit time problem, with
V(-,—w,-) as exit cost, and g as final cost. In particular, such problem has
x as the only state variable (note that w is fixed in (4.2)), and the exit time
is from the set 7, where % is the projection of #, on IR". Moreover, the
“exit rule” is given by the complete delayed switching rule, and then the exit
time coincides with what is called the “best exit time” in Barles-Perthame
[6] (see also Barles-Perthame [7], and Blanc [9], [10]). Indeed, if for every

x € H, and for every a € A we define the exit time from the closed set H as

T(z, ) := inf{s >0

va(s) ¢ A}, (4.4)
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where y,(-) is the trajectory of the non switching system (3.9), with w fixed,
then (4.2) is equivalent to

o tne
V(z,t) = 01£1E1Jf41nf {/0 e M l(y(s), w,a(s))ds

+e M [xoa (D9 (y(1), w) (4.5)
g0y (1) min (g(y(t),w) V(y(t), ~w,0))
+X)0-400[ )V (y(0), —w,t = )] |0 < 0 < 7(z,0), y(0) € OH},

To understand the equivalence between (4.2) and (4.5), just note that, for
example, in the case of one switching only, the choice of the switching tra-
jectory (y,2) € T(z,w,a) is equivalent to the choice of the exit instant
satisfying 0 < 0 < 7(z, ), and y,(0) € OH.

5 Uniqueness.

For this section, we again launch Warning 4.1.

By (4.5), we know that, for every w € {—1,1}, in H, X [0,+oo[ the
value function V (-, w,-) (i.e. with w fixed) is the value function of the finite
horizon-exit time problem with final cost g(-,w) and exit cost V (-, —w, ).
Hence, by Proposition 6.2, we can say that V' (-, w,-) is a viscosity solution of

Vil w, ) + AV (L w, )+ H(-,w, DV (-,w,-)) =0 in H,x]0, +o0],
V(i-,w,)=V(,—-w,-) on OH,,x]0, +o0],
V(,w,0)=g(-,w) on H, x {0},
V (-, w,0) =min (g(-,w), V(-, —w,0)) on OH,, x {0},
(5.1)
where H(-,w,) is defined for (x,p) € R" x R", (z,w) € H,, by
H(z,w,p) :=sup{—f(z,w,a)-p—L£(z,w,a)}. (5.2)
acA

We point out again that, in (5.1), the function V' (-, —w, -) plays the role
of a boundary datum: we are only considering a Hamilton-Jacobi problem
in H,, x [0,+o00[ (i.e. with w fixed).
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Remark 5.1 The Hamiltonian (5.2) is the Hamiltonian of the non relazed
problem. Indeed, in its definition, the (non relazed) constant controls a € A
are used. In the same way, the next controllability assumptions (5.3), (5.4)
refer to classical constant controls a € A.

We assume a controllability hypothesis on the boundaries 0H; and OH _1:

there exists ¢ > 0 such that
i) Y(z,1) € OH; Ja € A such that f(z,1,a)-S < —c <0, (5.3)
i1) V(x,—1) € OH_1 Ja € A such that f(z,—1,a)-S > ¢ > 0.

Condition (5.3) means that at every point of the boundaries 0H; and OH _1,
there exists a (classical) constant control which gives an outward admissible
field with respect to H, and H_; respectively.

For every w € {—1, 1}, let us define the set

(OH)" = {(z,~w)|(z,w) € OH,, } .

Roughly speaking, (0H)" is the line on H_,, where the state “drops” af-
ter a possible switching from #,. We assume the following controllability
hypothesis on (0H)"

Vw € {-1,1} V(z,—w) € (OK)” Fd',a" € A such that

f(z,—w,a")-S <0< f(r,~w,a")-S. (5.4)

We want to give conditions in order to guarantee that for every w €
{—1,1}, the restriction to (OH)" x [0, +o0o[ of the value function satisfies

V"), (x,—w,t) = V(z, —w,t) Y(z, —w,t) € (OH)" X [0, o0, (5.5)

*

w »

where the lower semicontinuous envelop “,”, and the upper semicontinuous

envelop “*” are performed with respect to (0H)" x [0, +oo[ only.

Proposition 5.2 If (5.3), (5.4) hold, then (5.5) also holds.

Proof. Since V is lower semicontinuous, it is sufficient to prove that
(V). < V. (5.6)
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To prove (5.6), we have to prove that, for every (z, —w,t) € (0H)" x [0, +o0],
for every p > 0, and for every ¢ > 0 there exist ({, —w,7) € (OH"Y) x [0, +00],
and a ball B around ((, —w,7), such that |((,7) — (z,t)| <&, and

sup V < V(z,—w,t) + p.
BN(OH)w X [0,+00]

Let o« € Aand (y, 2) € T (z, —w, «) be optimal for (z, —w, t). As example,
we only analyze the case where z has exactly two switches, and the last one
occurs at the end time £. The other cases are similarly treated. In particular,
recall that the numbers of switchings cannot be large of a fixed integer k,
and hence, in the general case we have only to repeat the procedure we are
going to explain for a bounded finite number of steps.

Let t; €]0,¢] be the first switching time. Hence, we have: z(7) = —w for

T € [0,t1[, 2(7) = w for T €]ty, [, and z(t) = —w. For any measurable control
B € A, let us consider the (non switching) backward controlled system
{ 7'(s) = —f(5(s),w, Bt —5)) s €[04, (5.7)
9(0) = y(®).

By (5.3), for the system (5.7), on the boundary of H,,, there is an admissible
inward field. Moreover, the property of (backward) inner field is also satisfied
by the closed semi-hyperplane

Hus = {(:v,w) € ﬁw‘dist((x,w), OH,y > (5},

for a suitably small 6 > 0, at least locally around (y(t),w) € O0H, (but
this is not a problem since in [0,%], 3(-) does not exit from a compact set).
Let a; € A be such that f(y(t),w,a;) is outward with respect to H,. If in
(5.7) we firstly use the constant control a;, § enters in H,, s in a small time
ts, with ¢ — 0 as 6 — 0. Hence, starting from (4(¢;),w) € Hys, using
a result of Soner [13] (see also Bagagiolo-Bardi [3] for the time depending
case), and using the controllability condition (5.4), we can construct a control
@ € A such that the corresponding trajectory g of the backward system (5.7)
satisfies in [0,¢ — t; + ns] (with 75 > 0, 75 — 0 as § — 0)

(#(7), w) € Ho V7 € [0,85], (§(7),w) € Hup V7 € [ts,1 —t1 + 1],

(G(t = t1 +ms),w) € (OH)™,
e ((§(s), w,alt — 5)) — Ly(t — 5), w, ot — 5)))ds| € O(5),

(5.8)
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where « and (y, z) are the optimal control and the optimal trajectory for
(x,—w,t). Now, we let the backward trajectory (backward) switch from
(g(t — t1 + ns),w) to (g(t — t1 + ns, —w). Starting from the latter point,
we then perform a similar procedure as before. We eventually get four pos-
itive numbers ts, 75, 15, 05 Which go to zero as § — 0, and we construct a
measurable control @, and a trajectory (g, Z) in [0, + 75 + 05| such that

Z(0) = —w, Z(1) =win |0,t —t; +ns[, 2(7) = —w in |t —t1 +ns, t + 15 + 0],

(5(7), w) € Hy V7 € [0, —t1 + 1],

(§(7), w) € Hus V7 € [ts, T —t1 + ],

(G(7), —w) € H_y V7T €|t —t1 + ns,t + 105 + 05),

(G(7), —w) € H s VT € [t — t1 + 15 + Ts, t + 15 + 5],

(Gt +ns + 05), —w) € (OH)”, (Gt +ns + 05), —w) — (z, —w)| € O(J),

/0t+"5+05 o (E(Q(S)a Z(s),a(t—s)) — L(y(t —s),2(t — s), ot — 8)))d8
€ O(9).

In other words, we have constructed a control @ and a (forward) trajectory

@(),2() = Gt +m5 + 05 =), Z(t + 716 + 05 =) € TGt + 15 + 05), —w, @)
such that (recall that we are supposing z switching at the final time ¢).

J(g(t + 15+ 06)7 —w,t+n5 + 0'5,@,@,2) < V(‘Ta —’U),t) + 0(5)

Now, we further modify the trajectory (7,z). Let a1, a2 € A be constant
(classical) which respectively gives an outward field to H_,, in (g(t1), —w),
and a outward field to H,, in (¥(t + ns + o5, w. We fix ¢ > 0, define

a(s) if 0 <s <t + oy,

OJ(S)_ aq ift1+0'5§SSt1+0'5+€,

Y a(s—e) ifti+oste<s<t+mns+os+e,
a9 ift+ns+os+e<s<t+mn;+o;+ 2,
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and, in [0, 4+ 15 + 05 + 2¢], we consider a trajectory (y,z) solution of (3.2)
with control a and initial state 7(0), —w). Hence, we still get

J(@(0), —w,t+ms + 05+ 26,0, y,2) < V(z,—w,t) + O(0) + O(e).

Observe that, by the definition of @, the trajectory (y,z) has exactly two
switches, but it is “forced to switch”, otherwise it should cross the switching
boundary. Moreover, for times preceding the first switching time for at least
the quantity oy, it is “uniformly bounded away” from the switching boundary.
Similarly happens for the second switching time. We also note that the
second switching time is not the final time ¢+ ns + 05 + 2¢. Hence, if we start
from point sufficiently near to (g(0), —w) with control o, we can choose an
admissible trajectory for (3.2) which is still close to (y,z) (in particular it
has exactly two switchings, at two switching times close to the ones of (y, z)).
Hence, we conclude the proof observing that, if (£, —w) € (9H)" is close to
(7(0), —w), and if 7 is also close to t + ns + o5 + 2¢, we then get

V(f: —w, T) < J(y(()), —w, t+ ns + o5 + 28; Q, Y, é)
+0(|(€5 7—) - (y(o)a t+ Ns + 05+ 26)|)7

O

Remark 5.3 Other controllability hypotheses are suitable in order to have
property (5.5). For instance, we may assume a sort of “global” controlla-
bility inside (OH)" for every w € {1,—1}. However, since condition (5.3)
must hold for the comparison result, then (5.8)—(5.4) seem in some sense the
weaker ones. Examples may be given where, even failing one inequality only

in (5.4), with (5.3) still holding, (5.5) is not more true.

Now we want to prove the uniqueness result. For every w € {—1,1}, and
for every function u defined on H_,, X [0, +0o0], let us define

u?: (OH)Y x [0,400[— R, u":= ((u*g)*)*, (5.9)

where the nested lower envelop is performed in H_,, x [0, +oc[ (indeed it
is denoted by the index g which stays for “global”); the other two exterior
envelopes are performed with respect only to (0H)" X [0,+oc[. For the
definition of t-linearly bounded function, see Theorem 6.3.
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Theorem 5.4 Let us suppose that (5.3), and (5.5) hold (see Proposition 5.2,
and Remark 5.5). Then, the relazed value function V is the unique t-linearly

bounded, lower semicontinuous function v defined on (ﬁl U ﬁ,l) x [0, +o0[
which solves

for every w € {—1,1} u is a viscosity solution of
ug(sw, ) + Au(-w, ) + H(,w, Du(-,w, ) =0 in H,x]0, +00],

u(-,w,-) =u"(-,—w,-) on OH,,%x]0, +o0],

u(-,w,0) = g(-,w) on H,, x {0},

u(-,w,0) = min (g(-, w),u”(:, —w, 0)) on OH,, x {0},
(5.10)

where the Hamiltonian H is defined in (5.2). In particular, every t-linearly
bounded solution of (5.10) has the lower semicontinuous envelope coincident

with V. Finally, V has also the property (V*), =V in (ﬁl U ﬁ,l) x [0, +ool.

Proof. Since V is lower semicontinuous, and it satisfies (5.5) by hypoth-
esis, then it satisfies (5.10). Moreover, it is t-linearly bounded. A simple
calculation shows that, for every function u, u™ has the stability property
(5.5). For every w € {—1,1}, let us denote by (5.10),, the initial-boundary
value problem in (5.10).

Let u be a t-linearly bounded solution of (5.10). We are going to prove
that its lower semicontinuous envelope coincides with V. Let us fix w €
{-1,1}. By the uniqueness result Theorem 6.4, we know that, on H, X
[0, +00[, the lower semicontinuous envelope wu, (-, w,-) of u(-,w,-) is the re-
laxed value function of the relaxed problem with dynamics f(-,w,-), running
cost £(-,w,-), final cost ¢g(-,w) and exit cost u®(-, —w,-). Such a control
problem differs from the one solved by V' only for the exit cost.

Since the switchings are delayed (i.e. p; > po), and the dynamics f is
bounded, there exists a positive time § > 0 such that every trajectory in
H,, starting from (OH) " does not exit from H,, in the time interval [0, §].
Hence, in the time interval [0, §] the exit cost (whichever it is) does not play
any role. It follows that u,(-,w,-) = V(-,w,-) on (OH) “ x [0, d]. From (5.5)
we then get

v (- w, ) =V(,w,:) on (OH)™ x [0,4]. (5.11)

Now, we use the fact that u is solution on H_,, x [0, +oc[ with boundary
datum u~*. By Theorem 6.4, this implies that, in H_,, X [0, +00[, u, co-
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incides with the relaxed value function of the relaxed control problem with
dynamics f(-, —w, ), running cost £(-, —w, -), final cost g(-, —w, -), and exit
cost u ¥(-,w,-). Again, every trajectory on H_,, starting from (0H)" does
not exit from H_,, in the time interval [0, ). Moreover if the trajectory exits
at 0 € [0,20], and if the selected final horizon is ¢ € [d,20] with ¢ > 6, then
the (discounted) cost payed is uv=*(-,w,t — 6). By (5.11), this is equal to
V(-,w,t—0), and we then get u, =V in H_,, x [0,26]. Hence, we also get

(-, —w,-) =V(-,—w, ) on (OH)" x [0,24].
Applying again the same argument, we obtain u, = V in H,, x [0,36], and
u™ =V on (OH) “ x [0,3d]. Repeating this procedure we conclude that

u, =V in (H UH_1) x [0, +o0].
The other properties come from Theorem 6.4. O

6 On finite horizon-exit time problems.
Let us consider the following open semi-space of IR"
H = {x € Bn‘xl > O},

where z; is the first coordinate of z = (z1,...,2,). We consider the set of
measurable controls as in (3.3); a dynamics f : R" x A — IR", a running
cost £ : IR" x A — [0,+0c[, and a final cost g : IR" — [0, +o0] satisfying
the usual regularity properties (compare respectively with (3.1) and (3.4));
and a lower semicontinuous, ¢-linearly bounded (see Theorem 6.3) exit cost
¢ 1 OH x [0,400[— [0,400][. Let y(-) be the solution of the controlled
dynamical system given by f, by a measurable control o € A, and by an
initial point z € H (compare with (3.9)). Moreover, for the trajectory y, let
ts(c) be the first exit time from H

te(@) = inf{t > O|y(t) ¢ ﬁ} :

For a discount factor A > 0, we consider the following cost, which is defined
on H x [0, +oo[x.A x {6 > 0|y(#) € OH} (see the discussion in Section 4)

J(z,t,a,0) :/Ot/\é’ e MUy (s),a( ))ds

+Xo,01(t)e” ( (1)) + xqo3 (t)e ™ min{g(y(t)), @(y(t),0)}
+x78,+00[(t) e M 0(y(0),t — 6).
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We then have the value function

V(1) = inf {J (2,1, 0,0)|a € A,0 € [0,t:(c)], y(0) € OH} . (6.1)

Of course, this is a classical (non relaxed controls) version of the optimal
control problem with finite horizon and exit time. The value function we
want to study is the one of the problem with relaxed controls as in Section 3,
which is defined as the previous one, except for the use of relaxed controls.
We denote it by an “hat”, V, as well as for all the other relaxed quantities
(see Section 3).

Proposition 6.1 is standard (see similar results in Sections 3 and 4).

Proposition 6.1 The relazed value function V is lower semicontinuous in
H x |0, ioo[, and satisfies the Dynamic Programming Principle: for every
(x,t) € H x [0,400[, and for every 0 < 7 <, we have

V(z,0) = inf inf { | ™ e Mi(g(s),a(s))ds + xreo(rhe VTV ()t~ 7)
+xr>0(T)e 0 (§(8),t = 0)|6 € [0, £(@)], 9(6) € IH].
(6.2)

We consider the following Hamiltonian H : IR" x R" — IR

H(z,p) := sup{ — f(z,a)-p— E(x,a)},

a€A
and we denote by DV the “spatial gradient”, and by V, the time derivative.

Proposition 6.2 The relazed value function Vois wiscosity solution of the
initial-boundary value problem

V,+ AV + H(z,DV) =0 in Hx]0, +00],

‘A/(a:, t) = p(z,t) on OH x]0, +oo, (6.3)
V(z,0) = g(z) on H x {0}, '
V(z,w,0) = min (g(z), ¢(x,0)) on OH x {0}.
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Let us denote by u* and by u, respectively the upper and the lower
semicontinuous envelop of a function u. A function u : H x [0, +oo[— IR
which is bounded on H x [0, 7] for every T > 0, is a viscosity solution of
(6.3) (with boundary conditions in the viscosity sense), if for every function
Y € CH(H x [0, 4+00[), and for every point (x,t) € H x [0, +oo[ of local null
minimum for u, — 9 (respectively: local null maximum for u* — 1) with
respect to H x [0, +00|, we respectively have

( (1) ¥s(2,t) + Aun(z,1) + H(x, Dp(x,1)) > 0 if (z,t) € Hx]0, +oc,
(17) if uu(z,t) < @(z,1),

then ¢y (z,t) + Aus(z,t) + H(z, DY(z,t)) >0 ifx € 0H, t >0,

< (i19) if uy(z,0) < g(x),

then ¢y(z,0) + Au.(z,t) + H(z, Dy(x,0)) >0 ifxz e H, t=0,

(1) if u.(z,0) < min{g(z), ¢(z,0)}

then 9y (z,0) + Au,(z,0) + H(z, DY(z,0)) >0 ifz € OH, t = 0;

(6.4)

( (1) (2, t) + Mu*(z,t) + H(z, D(z,1)) <0 if (z,t) € Hx]0,4o0],
(17) if u*(z,t) > ¢*(x,
then ¢y (z,t) + Au*(z,
< (449) if u*(z,0) > g(x)
then vy (x,0) + Au*(z,t) + H(xz, DY(z,0)) <0 ifz e H, t =0,

(i) if u*(z,0) > max{g(z), ¢*(z,0)}
then 94 (z,0) + Au*(z,0) + H(z, DY(z,0)) <0 ifx € OH, t =0.

+
t)
t)+ H(z, DY(z,t)) <0 ifx e dH, t >0,

\

(6.5)
If a function satisfies (6.4), then it is said a supersolution. If it satisfies (6.5),
then it is said to be a subsolution. Note that the boundary of H x [0, +00]
is OH x [0, +oo[UH x {0}. If on such boundary, we define

g(x) iftreH, t=0,
h(z,t) := < min{g(z), ¢(z,0)} ifx € oM, t=0,
o(z,t) ifeeH, t>0,

then the boundary data inequalities in (6.4), (6.5), are just u, < hy, u* > h*.

Proof of Proposition (6.2). Starting from the dynamic programming prin-
ciple (6.2), this proof is almost standard, and we refer the reader to the one
in Ishii [11]. Here, we only say something about the third and the fourth

27



boundary conditions of (6.4), and (6.5). First of all, recall that V is lower
semicontinuous. By the definition of 1% (and by the fact that the dynamics
f is bounded), V is continuous on the points of # x {0}, where we have
V(x,0) = g(x). Hence, the third boundary conditions of (6.4) and (6.5) are
point-wise satisfied by V(x,0) = Vi(z,0) = V*(z,0) = g(z,0). Moreover,
also the fourth boundary conditions are point-wise satisfied by V in (6.4)
and by V* in (6.5). Indeed, V(z,0) = min{g(z), ©(z,0)} by definition; we
claim that V*(z,0) < max{g(z),¢*(z,0)}. Let M be a bound for £. By
definition of V, for every (£,s) € H x [0, +oc[, end for every relaxed tra-
jectory § starting from z, we have: i) V(£,s) < Ms + g(y(s)) if § does not
exit before s; ii) V(€,5) < Ms + @(§(0), s — 0) if § exits in a time # < s;
i) V(€,s) < Ms+min{g(5(s)), ¢(§(s),0)} if § exists at time s. Taking the
superior limit as (£, s) goes to (z,0), we then get the claim. 0
We now assume the following hypothesis

(¢*), = ¢ on IH x [0, +0o0]. (6.6)
We recall that the semicontinuous envelopes in (6.6) are performed with
respect to OH x [0, +00[. Moreover we assume the controllability hypothesis

de > 0: Vx € OH Ja € A such that f(z,a) e < —c <0, (6.7)
where e; = (1,0,...,0) € IR". That is, there is a “uniform” outward field.

Theorem 6.3 Let (6.6)-(6.7) hold. Let u,v : H x [0,+oco[— IR be two
functions which have linear growth at infinity with respect to t (briefly t-
linearly bounded), i.e. 3By, By > 0 such that

|w(z,t)| < Byt + By ¥(z,t) € H X [0, +oo[, Yw = u,v. (6.8)

If u is a subsolution and v is a supersolution of (6.3), then

(u*), (z,t) < vi(z,t) inH x [0, +o0l. (6.9)

From Theorem 6.3, we immediately get the following uniqueness result.
Theorem 6.4 If (6.6) and (6.7) hold, then the relazed value function V
is the unique t-linearly bounded, lower semicontinuous viscosity solution of
(6.3). In other words, every t-linearly bounded viscosity solution u of (6.3)

has the same loy)er semicontinuous envelop, which coincides with the relared
value function V', and moreover it has the regqularity property (u*), = us.
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Proof of Theorem 6.4 The relaxed value function is ¢- linearly bounded
by its definition. We already know that it is lower semicontinuous and that
it is a viscosity solution of (6.3). The conclusion follows from the fact that,
by Theorem 6.3, if u and v are t-linearly bounded viscosity solutions

(), < v, < (v°), <. < (u),.

O

Proof of Theorem 6.3. This proof will be split in several steps. Let u be

a t-linearly bounded subsolution of (6.3). Let us take four constants C; > 0,
1=1,2,3,4, to be fixed later on. For the moment we require that

Cy > Tl' (6.10)

Let us take o > 0, and define the function ¢, on H x H by

balz,y) = |z — 9‘4 + Cilz — y‘g(xl —) + Colzy — y1|4
(8] Y - -

(07

Applying the Young inequality to the second addendum in the definition of
¢a, and using (6.10), we get

$a(,y) >0 V(z,y) € H X H. (6.11)
Let us take 8 > 0 and v > 0, and define, on H x [0, +o0o[ (compare with [10])

w(z,t) = inf {(u7), (y,9)
yE'H,SZO
|t —s?

_ T,
+e % | po(z,y) + -+ — +
(a4 2+ 24

Lemma 6.5 For T > 0, K := K[T,«, 3,7] > 0 exists such that for every
(z,t) € H x [0,T], the infimum in the definition of u®?(x,t) is achieved in
a point (4, 8) such that §; >0, § >0 and |(z,t) — (7,5)] < K.

(6.12)

) o)

Proof of Lemma 6.5. We define 5 := (7, ...,7,), by 71 = max(z,/7)
¥; = x; for i = 2,...,n, and 5 := max(t, /7). We then have

ua’ﬂ”(x, 1)
t—3|?
< (u), (7,3) + e~ (cba(w,?) tsrg +u> Ol =)



By the linear growth of u, the definitions of ¢,, ¥ and 5, we get

1+ C
T % + 24 = C[T, o, B,7).

On the other hand, for (z,t) € H x [0, T], using again the Young inequal-
ity, in general we have

u®P(z,t) < BiT + By +

_ t—s|?
). 9+ e ot + L+ L D) 0oy >
1

B
x—uylt |t—s/?
—B;s — Bg+e_C3T <| 4ay‘ | 3 | ) — Cy(|zr — 11))-

+

When |z — y| and |t — s| tend to 400, the right-hand side tends to infinity
also, depending only on the distances |z — y| and |t — s| and not on (z,t) €
H x [0,T]. Hence, we find a constant K = K|[T,a,(3,7] > 0 such that if
|(z,t) — (y,s)| > K then

‘ Gyt v, lt=sP
@), o)+e (g + T4 2 1

and hence (y, s) cannot be a point of minimum. We then get

) +C4($1_y1) > C[T’ «, ﬂa ’7]

B,y _ . .
U z,t) = inf u*), (y, 8)+
( ) |($,t)—(y,s)\§1({( ) (y2 )
t—s
o oo+ 20 2+ =) o),
5 % B

and we conclude by lower semicontinuity. Finally, we have ¢; > 0,§ > 0. O
Remark 6.6 We point out that K[T,«, 5,7] does not depend on (x,t) €
H x [0,T]. Moreover, if we perform the following order of limits: v — 0,
(a, B) — (0,0), we have K[T, a, 8,7] — 0, for every T > 0.

We also have

e—CsT

~ ~ : ’y
e _ 6.13
S’yl_mm<’B1+BQ+C[T,a,B,v]+C4K[T7aw3’7]> -

Indeed, by definitions, we cannot have (recall that ¢, > 0)
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6703T (% -+ %) > B1§+ B2 + O4K[T,Od,,8,’}/] + C[T,Ck,ﬁ,’)/]-
1

If 0 < § <1, then we cannot have
e_CST% Z Bl + B2 + C4K[T7 «, /6: 7] + C[T7 «, 57 ’Y]a

from which we obtain (6.13). We argue in a similar way for ¢;.
Lemma 6.7 The function u®?" is locally Lipschitz in H x [0, 4+o0].

Proof of Lemma 6.7. Let us consider R > 0, T > 0, and (z,1), (2,7) €
H N Br(x) x [0,T]. Let (y,s) € Hx]0,+oo[ be a point where the infimum
in the definition of u®#7(z, 1) is achieved and such that |(z,7) — (y,s)| <
K[T,«, 3,7]. Then we have

ua,/jﬁ(x, t) — ua”B”y(z, 7_) S (U*)* (y7 8)

T
+6703t <¢a(~7;;y) + 1 + l + |t 5| ) + 04(1,'1 — yl) - (u*)* (y,S)

S U1 | 5 ‘
_—Cs7 A S I _
e (%(Z,y) to T " + 3 ) Ci(z1 — y1).

Note that we have (also recall (6.13))

|$—Z|,‘$—y‘,‘2—y‘ SK[T,O&,ﬁ,’Y]‘*‘R,
|t_7—|,|t_8|a|7—_5| SK[T,OJ,ﬁ,’Y]-l-T,

B, +By+C,K +C
Lk < max (7, P ST ) = LT 9]
S U1 e 3

Hence, we get
ua,ﬂ,’y(x’ t) _ ua,ﬂ,’Y(Z _ ,7-) S (e—C’st(ﬁa(x’ y) _ efC’s'r(ﬁa(Z’ y))
—Cgt|t_5|2 C3T|7'—5|2
+ (Cu(z1 —y1) = Cu(z1 — 1))+ | € - e 5
+ (2£[T, 0, B,7]Je — &),

Every term inside the parentheses of the right-hand side may be respectively
seen as the difference of a suitable C' function 1, defined on IR x IR x IR",
Y(t,t —s,x —y) — (1,7 — s,z — y). Since such every ® is locally Lipschitz,
we then conclude.

O
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Remark 6.8 Let us note that the Lipschitz constant depends only on the
radius of the compact set (i.e. on |z —y| and |t — s|).

By just a calculation, (6.7) implies the following

JA > 0 such that the function p — H(z,p + ue;)

is nondecreasing in [A(1 + |p|), +oo[, V (z,p) € OH x R™. (6.14)

Moreover, by the uniform continuity of f and ¢ with respect to the space
variable, there exists v > 0 such that the controllability hypothesis (6.7),
and (6.14) uniformly extend to a v-neighborhood of OH.

Also the following estimate, as usual, holds: there exists C' > 0 such that

\H(z,p) — H(y,p)| < C(1+ |p|)|z —y| Va,y € R", Vpe R", (6.15)

Lemma 6.9 Let us fit T > 0, (z,t) € Hx|0,T[ a point of differentiability
for u®P7, and suppose that

04 = A, and 01 Z 603, (616)

then there exist K > 0, independent from o, 3,7, Cs, and C > 0 which linearly
depends on KT, «, 8,7] such that

~ a,B, —cst Y ~ a,f, Y
H(y7 Du ﬂ’y(l‘at) +e 3t?el) 2 H(y,DU ﬂ’Y(:L.,t)) - C.’IZ'_%’ (617)

—J1 ~
|Du? (z, 1) |z — §] < K(jz — §| + €% dalz, 7)),

Proof of Lemma 6.9. See the analogous ones for Lemma 3.6 in [9] and
Lemma A.3 in [10]. In particular, for the first inequalities of (6.17), due to
the unboundedness of #, a modification of the reasoning in [10] is needed.
Referring to that proof, if (n — 1)K[T,«, 8,7] < z1 < nK|[T,«, 3,7] with
n > 3, then §; > (n — 2)K|[T, a, 5,7| and hence

l < 1 < n
gl B (n—Q)K[T,a,B,’y] - (n_2)$1

Hence, for 21 > 2K|[T, «, 3, 7] we are done, and for the other case we argue
as in [10]. 0

3
< —.
= I
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Proposition 6.10 If u is an upper semicontinuous subsolution of (6.3) in
Hx]0, +00[, then w = u, is a viscosity supersolution of

—w; — A\w — H(z, Dw) =0 in Hx]0,+o0|. (6.18)

Proof of Proposition 6.10. See [8]. We only recall that a fundamental
hypothesis for this result is that the Hamiltonian is convex with respect to
the variable p (the gradient). 0

Lemma 6.11 Let C > 0 be as in (6.15), and K be as in (6.17). We fiz

Cs > CK + . (6.19)

Then, for every T > 0, u®?7 is a viscosity subsolution in Hx]0,T| of

wt-i-/\w-l-H(x,Dw)+F(C+1+)\C4)K[T,a,,3,’y]—c% =0.
1

Proof of Lemma 6.11. Since u®#" is Lipschitz and the Hamiltonian is
convex with respect the gradient, then it is sufficient to show that u®#" is
subsolution almost everywhere (see for instance Bardi-Capuzzo Dolcetta [4]).

Let (z,t) € Hx]0,T[ be a point of differentiability, then, by classical results
on inf-convolution (see Bardi-capuzzo Dolcetta [4]), we have

Du®P7(x,t) = e~ D,¢o(z, ) + Caer,
Ou®P

) ) t— 32\ o, 20— 3)
—Cew<a% + 21424 >+ ==,
3 ¢a(2,7) R 3 € 3

where, as previously, (7, §) is a point where the infimum is achieved in the
definition of u®?(z,t). Then, for every (y, s) € Hx]0,+o0|, we define

_ <l2
bly,s) = e~ (%(x, R e

Noting that, for every z,y € H, it is Dy¢o(z,y) = —Dyda(2,y), we obtain

) = Cu(z1 = w1).

Diy(7,3) = Dua’5’7(x, t) + e_C3t~l2el,

Y1
oy . _ QP st Y
g(y, 5) = En (z,t) +e ]

t— 32
+C3e (@, ) + L + L + !> -
S Y1 5
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Since (7, §) is of local minimum for (u*), — v, by Proposition 6.10, we get

A
0s
Since u®#(z, 1) = (u*), (7, ) — (7, 3), da > 0, by (6.19) we have

(9,8) + A ("), (9, 5) + H(g, Dy(,5)) < 0.

AP _
8t (.’13, t) + )\ua,ﬂ,'y(m’ t) - /\04(371 — yl)
+(Cy — Ne oy (z,9) + H (y Du®P(z,t) + ecﬁgl%q) <0.

We then conclude by the Lemma 6.9, by the estimate of |z — §| in Lemma
6.5, and by (6.15). 0

Remark 6.12 By a classical result, u®?" is also a viscosity subsolution in
Hx]0,T] (in the same way, if v is a viscosity supersolution of (6.3); in
Hx]0, T, then it is also a supersolution in Hx|0,T]).

Now, we denote by u®??, the function defined in (6.12), when we take
v = 0. Similarly, we define the positive constant K[T, «, 3, 0].

Lemma 6.13 When y goes to 0%, then u®? converges to u®?° uniformly
over the compact sets of H x [0, 4+o00[. Moreover, u®#° is locally Lipschitz in
H x [0, +00[, and, for every T > 0, it is a viscosity subsolution of

wi+ Aw+ H(z, Dw)+K(C+1+AC)K[T,, 3,0] =0 in Hx]0,T]. (6.20)

Proof of Lemma 6.13. By classical stability properties for viscosity so-
lutions, the result comes from the fact that u®#7 uniformly converges to
u®P0 on the compact sets of H x [0,T[, and, on every compact subset of
H x]0, +00[, there is the uniform convergence of the Hamiltonians. The uni-
form convergence of u®# comes from the fact that they are equi-lipschitzian,
and that they point-wise converge to u®#? in H x [0, +-0c[. To obtain the lat-
ter we adapt the proof in [10]. Note that, for every (z, ) € H x [0, +oc[ there
exists a sequence of points (z,,t,) € Hx]0, +oo], such that (z,,t,) — (z,1t)
and (u*), (zn,tn) — (u*), (x,t) (note that, we cannot say that the infimum
in the definition of u®#? is achieved in the interior H x]0, +oc[). Hence, for
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every (z,t) € H x [0,+00], and € > 0, there exists (y,s) € Hx]0, +oo[ such
that, (taking also 7 small)

[t = s

B

u®P(z,y) + & > (u*), (y,5) +e (‘/506(‘”’@/) *

) + Cu(z1 — y1)
> uP(z,t) — ¢,

and we conclude since u®?0 < 487 in H x [0, +ool. O
Note that Remark 6.8 still holds for u®#?°,

Lemma 6.14 The following boundary inequalities hold
u®P0 < @ on OH x [0, +o0[, u*?’ < g onH x {0}. (6.21)

Proof of Lemma 6.14. Let us prove only the first condition. Condition
(6.7) implies u* < ¢* on OH x]0,+00[ (see Barles [5]). Hence, for (z,t) €
OH x [0, +oc], by (6.6), we get

liminf w*(y,s) < liminf  ©*(y.5) = (©*). (z.t) = 1).
Jminf u (y’s)—@,s)i?i,ifyeaﬂ (y,8) = (¢"), (x,t) = ¢(x,1)

The first equality of the last row is certainly true if ¢ > 0, but, by virtue
of the regularity property (6.6), it is true even if ¢ = 0. Then, by the
continuity of u®#, by the fact that u®# < (u*), in H x [0, +oo|, for every
(z,t) € OH %]0, +00[ we get

o(z,t) > liminf (u*), (y,s) > liminf u®?0(y,s) = u®PO(z,1).
(y,5) (1) (y,5)—=(z1)
Lemma 6.15 For every (z,t) € H x [0, +o0[ we have

liminf u®?0(z,t) = (u*), (z,1).
Aiminf (@,1) = (u*), (z,1)

Proof of Lemma 6.15. Let us take (z,t) € H x [0,+oc[ and (7,3) €
H x]0, +o0o[ which realize the minimum in u®#(z,t). We have

(u), (7,5) + Calz1 — §1) < u®P7(z,1).
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The minimum point (g,5) depends on «, (3, and 7, and it belongs to a
compact set around (z,t). Hence, letting v go to 0, (7, §) converges, at least
for a subsequence, to a point (7,5). By the Lemma 6.13, passing to the
inferior limit as v — 0, noting that u*?(x,t) < (u*), (x,t), we obtain

("), @3) + Ca(wr = 71) < u™(x,8) < (w), (3,1).

Then we perform the inferior limit as (a, 8) — 0, and we obtain the conclu-
sion, recalling also that (7,5) — (z,t) (see Remark 6.6). O

End of the proof of Theorem 6.3. We claim that, for every T > 0, u®?° —
v, < K(C+1+\C)KIT,,$3,0] in H x [0,T], from which we conclude by
Remark 6.6 and by Lemma 6.15. Since u®*? is subsolution of (6.20), the
claim is proved by a classical comparison technique, where one needs to use
suitable penalization terms as in Soner [13] (see also Bagagiolo-Bardi [3] for
the evolutive Hamilton-Jacobi equation in unbounded domains), to use the
fact that u®#? is continuous, to use the boundary properties (6.21), and to
use Remark 6.12 (see also Bardi-Capuzzo Dolcetta [4], Section V.4.2). O
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