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Summary

Biexponential time-series models commonly find use in biophysics, biochemistry
and pharmacokinetics. Indeed, reactions that are described by biexponential func-
tions are typical for many biological processes. The kinetics of these reactions is
modelled by transcendental irrational equations interconnecting the reagent concen-
trations, time and rate constants. The biexponential is apparently a case of non-linear
regression, and as such, very often the estimate of its parameters is obtained with
methods and software tools performing non-linear fits. The first problem that the user
encounters when using these techniques consists in having to provide the software
with a not too inaccurate estimate of the intervals within which the parameters can
vary. Providing arbitrary initial guesses on the parameter ranges to the non-linear fit
procedure causes its non-convergence. The second problem is the need to obtain an
estimate of the parameters with an error interval due to the propagation of the experi-
mental error that affects themeasurements of the dependent variable. In this study, we
propose an extension of a well-established mathematical method based on linearisa-
tion techniques of integral equations for the efficient and unsupervised estimation of
the parameters of a bi-exponential function. Our extension consists in the integration
of a model of error propagation from the measurements of the dependent variable
to the parameter estimates. There are three main innovative contributions of this
work: 1. having made the unsupervised regression method available in experimental
practical applications; 2. having provided methods for error propagation in complex
operations, such as integration, matrix inversion and multiplication; 3. the calibra-
tion of the biexponential dynamics of (i) water desorption of a small ligand from a
surface where two types of binding sites are present, and (ii) of the decrease of a
determinant of viability of organs sustaining ischaemic injury before transplantation.

KEYWORDS:
biexponential chemical kinetics, fitting sum of exponentials, error propagation, integro-differential
equations, linearisation

1 INTRODUCTION

Regression studies the relationship between a variable of interest y and one or more explanatory or predictor variables x =
X1, X2,… , Xn. The general model is

y = F (x1, x2,… , xn; �1, �2,… , �p) + � (1)
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where F is an appropriate function that depends on the predictor variables x1, x2,… , xn, and parameters �1, �2,… , �p. In non-
linear regression, we use functions F that are not linear in the parameters. In principle, there are unlimited possibilities for F .
This flexibility often means a greater effort to make statistical statements on the model.
Given a model, the estimation of its parameters is performed by fitting the model to experimental data. It is well-known that

the estimation of model parameters from experimental data is a hard task. This difficulty can be encountered in linear regression,
but is particularly insidious in the case of non-linear regression. As reported by Transtrum et al.1 a non-linear model with
tens of parameters, fit, for instance, by non-linear least squares minimization to experimental data, often demands a noticeably
time expensive human guidance to find suitable initial guesses of the parameters. Furthermore, even then, accurate, physically
plausible estimate of the parameters cannot usually be inferred from the data.
In presence of noise in the data and/or irregular spaced data, both general minimization algorithms2 and algorithms like

the Levenberg-Marquardt algorithm and its recent refinements3,4, that are designed for least-squares fits routinely explore the
parameter space without converge to a solution unless the user instructs themwith suitable initial guesses of the parameter values.
It is well-known that fitting scattered experimental data with a multi-parameter model by non-linear regression is often hampered
by the difficulty in making sufficiently good guesses of the parameters’ initial values. Furthermore, typically, algorithms get lost
in regions of parameter space in which the model is unresponsive to changes in parameters, and the user is again left to make
adjustments by hand. It is worth to say that this is a serious obstacle to progress when one is unsure of the validity of the model.
The biexponential regression, and more in general the fit of a sum of exponentials to numerical data, is a common problem in

experimental sciences. The problem consists in approximating the behaviour of a given set of data consisting of n pairs of real
numbers (ti, yi) by the following equation

y(t) = �0 +
n
∑

i=1
�ie

−�iti . (2)

where �i, �i are unknown real numbers which have to be chosen so that the fit of the Eq. (2) to the data is optimal. If the �i were
known, the problem would be a well posed linear problem, but if the �i are unknown, the problem turns out to be ill posed5,6,7.
Fitting Eq. (2) to the data looks a difficult non-linear problem, whose solution is hampered by the difficulties discussed above.
However, it has been shown by8,9, that Eq. (2) can be expressed as a linear combination of powers of t and successive integrals
of y(t). In this way, the problem is reduced to a multi-linear regression procedure. More recently, Jacquelin10 also showed that
Eq. (2) can be expressed as a suitable integral equation that can turn a difficult non-linear regression problem into a simple
linear regression. The method of linearisation of Jacquelin in10 was applied to the biexponential case, is unsupervised, i.e. does
not ask a priori guesses on parameters, and is particularly suitable for an efficient algorithmic implementation. However, in
order to make it usable in real application contexts where the biexponential model is frequently encountered, such as in biology,
biochemistry and applied physics, it needs to be extended in such a way as to take into account the experimental errors by which
the data are affected.
In this work, we present an extension of the Jaquelin’s biexponential regression method. Our extension implements the exper-

imental error propagation in the Jacquelin’s method, in order to provide the estimates of the parameters �i and �i with their error
interval. Moreover we provide a software implementation in R language11. The method of error propagation constitutes the main
innovative contribution of our study. Error propagation calculation make any procedure of unsupervised fit more usable in prac-
tical experimental contexts. Furthermore, the methods that we propose in this paper, unlike previous methods such as7, provide
general procedures for the propagation of the experimental errors in mathematical operations such as derivation, integration,
calculation of the determinant, and matrix inversion, that are frequently performed in many parameter inference methods.
At the same time, as already mentioned, the solution of the problem of sum of exponential regression is not only of purely

mathematical interest, but is of considerable importance when the independent variable t is the time, as currently occurs in
biology. Looking at relatively short-time scale phenomena, a special case is found when the same biological event proceeds
following a two-phase model, that is, it results from contemporary fast and slow exponential processes. This is indeed a very
common situation, which is encountered looking at molecular transformations, but also in more complex physiological events.
In general, a transformation process fits an exponential law when the rate of transformation of the variable is proportional to the
present value of the variable itself. A biexponential law means that two independent processes contribute to the transformation,
with different time scale. Representative examples of biexponential processes are: a) the kinetics of consumption of a substrate
when two different enzymes contribute to the control of the substrate level and first-order kinetic conditions hold. This situation
occurs in liver where sulfation and glucoronidation reactions compete for drug removal12 b) the biexponential dissociation
kinetics of a protein which interacts with two distinct receptors such as nucleoporins interacting with nuclear pore complexes13;
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c) the dark-time decays of green fluorescent proteins (GFP) trajectories of fluorescence emission, where blinking and switching
contribute with different time scales14; d) the behaviour of biological water at the interface of macromolecules and solid surfaces
which is a process with two general types of trajectories due to weak interactions15 with the selected surface sites, and to
a stronger interaction producing a rigid water structure16; e) the magnetic relaxation times (T 1, T 2 and T 1�) of protons in
biological tissues, which depend on different water pools17 and must be correctly evaluated for quantitative diagnostic NMR
imaging; f) the bimodal response of tissues to ischemia which occurs according to a two-phase consumption of high energy
metabolites18,19.
In all the above reported examples the physical process underlying the time course is essentially known and rationally trans-

lated into biexponential models. However, there are situations where the behaviour of the system under investigation is not
completely understood so that a mathematical model is a high-level abstraction of the reality. This could be the case of con-
formational changes associated to protein folding20 or to the biomolecular recognition process21,22, the dynamic of which fits
biexponential models with reasonable, but not a priori proved, physical justification.
In this study we applied our implementation of the extended Jacquelin’s method to two representative experimental processes

whose dynamics is known to be biexponential: a) the desorption of a small ligand from a surface where two types of binding sites
are present15, and b) the decrease of a determinant of viability of organs sustaining ischemic injury before transplantation19.
The case study b) is particularly challenging because the data are noticeably noisy and and irregularly sampled. In spite of this,
we show that even in this limiting case the method is able to give parameters estimates that within their error interval are in
agreement with the estimates obtained by well-established supervised method of non-linear fitting. This agreement proves that
the method is directly applicable without the need of regularization procedures, that are generally used to mitigate the overfitting
in case of data affected by large experimental errors, but that require a careful selection of the best regularization techniques,
initial guesses on the parameters, and the multiple solutions of the regularized optimization problem23.
The paper is organized as follows. In Section 2 we review the theoretical foundation of the Jacquelin’s method and of its

algorithmic procedure. In Section 3, we present how the experimental errors propagate from the experimental input data to the
estimate of the parameters. In Section 4, we present numerical experiments aimed at analysing the response of the methods
to an increasing of the experimental error and at determining the maximum value of the experimental error on the input data
within which the method is able to give a good estimate of the parameters without crashing due to numerical software errors or
instabilities. In Section 5, we report the performances of the method on two representative experimental processes, and finally
in Section 6 we draw some conclusions.

2 FIT OF SUM OF EXPONENTIAL

Here we first summarize the method proposed by J. Jacquelin10 to perform unsupervised non-linear regression, and then we
describe our adaptation to regression of biexponential model from noisy data.

2.1 Theoretical foundations
Jacquelin10 showed that a suitable integral equation can turn a difficult non-linear regression problem into a simple linear regres-
sion. The Jacquelin’s method is based on the following principles of the linearization of the differential and / or integral equations.
Given n experimental time points (ti, yi) located in proximity of a representative function y(�⃗; t), where �⃗ = (a, b, c,…) is the
vector of parameters a, b, c,… , and t, in our study, is the time variable, we can approximate the integral and the double integral
of the y(u) in the following way

ti

∫
t1

y(u)du ≈ Si (3)

where

Si =

{

0 if i = 1
Si−1 +

1
2

(

yi + yi−1
)(

ti − ti−1
)

i = 2,… , n.
(4)

where Si = S(ti), and similarly yi ≡ y(ti).
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The double integral of f (u)y(u) is thus
ti

∫
t1

[

v

∫
t1

y(u)du
]

dv ≈ SSi (5)

SSi =

{

0 if i = 1
SSi−1 +

1
2

(

Si + Si−1
)(

ti − ti−1
)

i = 2,… , n
(6)

where SSi ≡ SS(ti). Consider now a biexponential model for y(�⃗; t), with �⃗ = (a, b, c, p, q, ), i.e.

y(�⃗; t) = a + bept + ceqt. (7)
Applying two successive integrations to y(�⃗; t), we obtain two formulas, which can be combined with the y(u) formula in

order to eliminate the terms ept and eqt: the function y can be expressed as follows10:

y(�⃗; t) = pq

t

∫
t1

(

v

∫
t1

y(u)du
)

dv + (p + q)

t

∫
t1

y(u)du + Ct +D (8)

where C and D are constants depending on the lower bound of the integral. Jacquelin10 notes that is possible to analytically
express C andD., but the formulas are complicated. Instead of using C andD to compute the approximates of b and c, Jacquelin
proposes to implement a complementary linear regression, according to which the Eq. (8) can be re-written as

y(�⃗; t) = C1 ⋅ SS(t) + C2 ⋅ S(t) + C3t + C4 (9)

that is a linear equation in the parameters C1, C2, C3, C4, and

C1 = pq; C2 = (p + q) (10)

S(t) =

t

∫
t1

y(u)du (11)

SS(t) =

t

∫
t1

(

v

∫
t1

y(u)du
)

dv (12)

where S(t) and SS(t) are estimated via numerical integration with the trapezoidal rule (i.e. Eqs. (4) and (6)). Using Eq. (9), a
non-linear regression is turned into a linear regression. Denoting with Ĉ1 and Ĉ2 the estimates of C1 and C2 obtained from the
regression of Eq. (9), the estimates of p and q, denoted respectively with p̂ and q̂ are

p̂ = 1
2
(

Ĉ2 +
√

Ĉ22 + 4Ĉ1
)

(13)

q̂ = 1
2
(

Ĉ2 −
√

Ĉ22 + 4Ĉ1
)

(14)

2.2 The algorithmic procedure
The algorithmic procedure based on the theoretical foundations described above is as follows. Suppose to have nmeasurements
of y at n time point,

(y1, t1), (y2, t2),…(yn, tn)
in increasing order of ti (i = 1,… , n). We introduce the quantities Si defined as

S1 = 0, (15)

Si = Si−1 +
1
2
(yi + yi−1)(ti − ti−1)), i = 2,… , n

(16)
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and the quantities SSk defined as

SS1 = 0, (17)

SSi = SSi−1 +
1
2
(Si + Si−1)(ti − ti−1)), i = 2,… , n.

(18)

In order to solve the regression systems for C1, C2 a vector V , and a full rank matrixM are introduced as follows

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑n
i=1 SSiyi

∑n
i=1 Siyi

∑n
i=1 t

2
i yi

∑n
i=1 xiti

∑n
i=1 yi

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(19)

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑n
i=1 SS

2
i

∑n
i=1 SSiSi

∑n
i=1 SSit

2
i
∑n
i=1 SSiti

∑n
i=1 SSi

∑n
i=1 SSiSi

∑n
i=1 S

2
i

∑n
i=1 Sit

2
i

∑n
i=1 Siti

∑n
i=1 Si

∑n
i=1 SSit

2
i

∑n
i=1 Sit

2
i

∑n
i=1 t

4
i

∑n
i=1 t

3
i

∑n
i=1 t

2
i

∑n
i=1 SSiti

∑n
i=1 Siti

∑n
i=1 t

3
i

∑n
i=1 t

2
i

∑n
i=1 ti

∑n
i=1 SSi

∑n
i=1 Si

∑n
i=1 t

2
i

∑n
i=1 ti n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

The vector C = (C1, C2, C3, C4, C5) is the product of the inverse of matrixM and the vector V

C =M−1V . (21)

The coefficient p and q in equation (7) are calculated as

p = 1
2

(

C2 +
√

C22 + 4C1

)

(22)

q = 1
2

(

C2 −
√

C22 + 4C1

)

. (23)

Finally, the coefficients a, b, c in equation (7) are given by
[

a b c
]

= Q−1
1 Q2 (24)

where

Q1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

n
∑n
i=1 �i

∑n
i=1 �i

∑n
i=1 �i

∑n
i=1 �

2
i

∑n
i=1 �i�i

∑n
i=1 �i

∑n
i=1 �i�i

∑n
i=1 �

2
i

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(25)

Q2 =
⎡

⎢

⎢

⎣

∑n
i=1 yi

∑n
i=1 �iyi

∑n
i=1 �iyi

⎤

⎥

⎥

⎦

(26)

and
�i = epti , �i = eqti . (27)

We implemented the Jacquelin procedure as a R language11 function biexponential.fit reported in Tables A1 -A2 of
the Appendix. In the script we used the same nomenclature of the variable also used in the formulae in these sections.

3 ERROR PROPAGATION

We estimated the errors on the coefficients p, q, a, b, and c that propagated from the experimental uncertainties affecting yi.
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3.1 Errors on coefficients p, q
In order to estimate the errors on p and q, we have to estimate the errors on C1 and C2 that appear in the equations defining p
and q (Eqs. (22) and (23)). Since from the Eq. (21) C =M−1V , we first find an explicit expression forM−1.
The elements of matrixM in (20) are affected by errors that propagated from the experimental errorsΔyi on themeasurements

yi. Consequently, each element ofM−1 is affected by an uncertainty too. Since inverting a m×mmatrix means to solve m linear
systems

MX(j) = e(j) (28)
whereX(j) is an array of unknown variables and e(j) is a vector of the standard basis ofℝ. Since in our casem = 5, j = 1, 2,… , 5,
and

e(1) = [1 0 0 0 0], e(2) = [0 1 0 0 0]
e(3) = [0 0 1 0 0], e(4) = [0 0 0 1 0]
e(5) = [0 0 0 0 1].

Using the Cramer rule, the i-th component of the vector X(j), say X(j)
i , is calculated as

X(j)
i =

|M(col i)←e(j) |

|M|

(29)

where | ⋅ | denotes the determinant, M(col i)←e(1) is the matrix obtained from M , by replacing the i-th column of M with the
vector e(j). Therefore,M−1 is

M−1 = 1
|M|

⎡

⎢

⎢

⎢

⎢

⎢

⎣

|M(col 1)←e(1) | |M(col 1)←e(2) | |M(col 1)←e(3) | |M(col 1)←e(4) | |M(col 1)←e(5) |

|M(col 2)←e(1) | |M(col 2)←e(2) | |M(col 2)←e(3) | |M(col 2)←e(4) | |M(col 2)←e(5) |

|M(col 3)←e(1) | |M(col 3)←e(2) | |M(col 3)←e(3) | |M(col 3)←e(4) | |M(col 3)←e(5) |

|M(col 4)←e(1) | |M(col 4)←e(2) | |M(col 4)←e(3) | |M(col 4)←e(4) | |M(col 4)←e(5) |

|M(col 5)←e(1) | |M(col 5)←e(2) | |M(col 5)←e(3) | |M(col 5)←e(4) | |M(col 5)←e(5) |

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

Consequently, according to Eq. (21), the r-th component of the vector C is the inner product of the r-th row of matrixM−1 and
the vector V , i.e.

Cr =M−1
row r ⋅ V

= |M(col r)←e(1) |

n
∑

i=1
SSiyi + |M(col r)←e(2) |

n
∑

i=1
Siyi

+|M(col i)←e(3) |

n
∑

i=1
t2i yi + |M(col r)←e(4) |

n
∑

i=1
xiti (31)

+|M(col r)←e(5) |

n
∑

i=1
yi

where r = 1, 2,… , 5. For the sake of convenience, let us introduce C (1)r , C (2)r , C (3)r , C (4)r , C (5)r denoting the terms of the sum in
Eq. (31), i.e.
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C (1)r =
|M(col r)←e(1) |

|M|

n
∑

i=1
SSiyi

C (2)r =
|M(col r)←e(2) |

|M|

n
∑

i=1
Siyi

C (3)r =
|M(col i)←e(3) |

|M|

n
∑

i=1
t2i yi

C (4)r =
|M(col r)←e(4) |

|M|

n
∑

i=1
xiti

C (5)r =
|M(col r)←e(5) |

|M|

n
∑

i=1
yi.

Using the error propagation rules, we found that the error on Cr is given by

ΔCr =
√

(ΔC (1)r )2 + (ΔC
(2)
r )2 + (ΔC

(3)
r )2 + (ΔC

(4)
r )2 + (ΔC

(5)
r )2 (32)

where

ΔC (1)r = C (1)r

√

√

√

√

√

(

Δ
(
∑n
i=1 SSiyi

))2

(
∑n
i=1 SSiyi

)2
+

(

Δ|M|

)2

|M|

2
+

(

Δ
(

|M(col r)←e(1) |
))2

|M(col r)←e(1) |
2

(33)

ΔC (2)r = C (2)r

√

√

√

√

√

(

Δ
(
∑n
i=1 Siyi

))2

(
∑n
i=1 Siyi

)2
+

(

Δ|M|

)2

|M|

2
+
Δ
((

|M(col r)←e(2) |
))2

|M(col r)←e(2) |
2

(34)

ΔC (3)r = C (3)r

√

√

√

√

√

(

Δ
(
∑n
i=1 t

2
i yi

))2

(
∑n
i=1 t

2
i yi

)2
+

(

Δ|M|

)2

|M|

2
+
Δ
((

|M(col r)←e(3) |
))2

|M(col r)←e(3) |
2

(35)

ΔC (4)r = C (4)r

√

√

√

√

√

(

Δ
(
∑n
i=1 xiti

))2

(
∑n
i=1 xiti

)2
+

(

Δ|M|

)2

|M|

2
+
Δ
((

|M(col r)←e(4) |
))2

|M(col r)←e(4) |
2

(36)

ΔC (5)r = C (5)r

√

√

√

√

√

(

Δ
(
∑n
i=1 yi

))2

(
∑n
i=1 yi

)2
+

(

Δ|M|

)2

|M|

2
+
Δ
((

|M(col r)←e(5) |
))2

|M(col r)←e(5) |
2

(37)

and

Δ
( n
∑

i=1
SSiyi

)

=

√

√

√

√

n
∑

i=1

(

Δ(SSiyi)
)2

=

√

√

√

√

n
∑

i=1

[(

ΔSSi
SSi

)2

+
(

Δyi
yi

)2]

SS2i y
2
i (38)

Δ
( n
∑

i=1
Siyi

)

=

√

√

√

√

n
∑

i=1

(

Δ(Siyi)
)2

=

√

√

√

√

n
∑

i=1

[(

ΔSi
Si

)2

+
(

Δyi
yi

)2]

S2i y
2
i (39)

Δ
( n
∑

i=1
t2i yi

)

=

√

√

√

√

n
∑

i=1

(

Δ(t2i yi)
)2

=

√

√

√

√

n
∑

i=1

[(Δt2i
t2i

)2

+
(

Δyi
yi

)2]

t4i y
2
i (40)

Δ
( n
∑

i=1
xiti

)

=

√

√

√

√

n
∑

i=1

(

Δ(xiti)
)2

=

√

√

√

√

n
∑

i=1

[(

Δxi
xi

)2

+
(

Δti
ti

)2]

x2i t
2
i (41)

Δ
( n
∑

i=1
yi

)

=

√

√

√

√

n
∑

i=1

(

Δ(yi)
)2

=

√

√

√

√

n
∑

i=1

[(

Δyi
yi

)2

y2i

]

. (42)
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Finally, in order to propagate the errors on the entries mij of the matrix M (i, j = 1, 2,… , 5) defined in Eq. (20) to the
determinant, we calculated the determinant using the Dodgson condensation method24,25,26. According to this method the 5×5
matrixM can be reduced first to a 4×4 matrix whose elements Dij are calculated as the following determinant

Dij =
|

|

|

|

|

mij mi (j+1)
m(i+1) j m(i+1) (j+1)

|

|

|

|

|

, i, j = 1, 2, 3, 4 (43)

then to a 3×3 matrix whose elements D′
ij are

D′
ij =

1
m(i+1) (j+1)

|

|

|

|

|

Dij Di (j+1)
D(i+1) j D(i+1) (j+1)

|

|

|

|

|

, i, j = 1, 2, 3 (44)

and finally to a 2×2 matrix whose elements D′′
ij are

D′′
ij =

1
D′
(i+1) (j+1)

|

|

|

|

|

D′
ij D′

i (j+1)
D′
(i+1) j D

′
(i+1) (j+1)

|

|

|

|

|

, i, j = 1, 2. (45)

The determinant ofM calculated with the Dodgson method is

|M| = D′′
11D

′′
22 −D

′′
12D

′′
21. (46)

The errors on the determinants defined by Eqs (43), (44), and (45) are then

ΔDij =
{[

mijm(i+1) (j+1)

(Δmij
mij

+
Δm(i+1) (j+1)
m(i+1) (j+1)

)]2

+
[

mi (j+1)m(i+1) j

(Δmi (j+1)
mi (j+1)

+
Δm(i+1) j
m(i+1) j

)]2} 1
2

, i, j = 1, 2, 3, 4.

(47)

ΔD′
ij =

{[Δm(i+1) (j+1)
m(i+1) (j+1)

]2

+
[

DijD(i+1) (j+1)

(ΔDij

Dij
+
ΔD(i+1) (j+1)

D(i+1) (j+1)

)]2

+
[

Di (j+1)D(i+1) j

(ΔDi (j+1)

Di (j+1)
+
ΔD(i+1) j

D(i+1) j

)]2} 1
2

, i, j = 1, 2, 3.

(48)

ΔD′′
ij =

{[ΔD′
(i+1) (j+1)

D′
(i+1) (j+1)

]2

+
[

D′
ijD

′
(i+1) (j+1)

(ΔD′
ij

D′
ij
+
ΔD′

(i+1) (j+1)

D′
(i+1) (j+1)

)]2

+
[

D′
i (j+1)D

′
(i+1) j

(ΔD′
i (j+1)

D′
i (j+1)

+
ΔD′

(i+1) j

D′
(i+1) j

)]2} 1
2

, i, j = 1, 2.

(49)

Using the above expressions, we can calculate ΔD11,ΔD22,ΔD12, and ΔD21, and finally the error on |M|, that is

Δ|M| = |M|

[

√

(

ΔD11

D11

)2

+
ΔD22

D22

)2

+

√

(

ΔD12

D12

)2

+
ΔD21

D21

)2] 1
2

(50)

Finally, using the rules of errors’ propagation we find that the errors on p and q are

Δp = Δq = 1
2

√

√

√

√(ΔC2)2 +
C22 (ΔC2)

2 + 4(ΔC1)2

C22 + 4C1
. (51)
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3.2 Errors on coefficients a, b, c
In order to calculate the errors on the coefficients a, b, and c we implemented the same methodology adopted to calculate the
errors on p and q. First, we calculate the inverse of Q1 (given in Eq. (25) using the Cramer rule as shown in the previous
subsection. Q−1

1 results

Q−1
1 = 1

|Q1|

⎡

⎢

⎢

⎣

|Q1 (col 1)←e(1) | |Q1 (col 1)←e(2) | |Q1 (col 1)←e(3) |

|Q1 (col 2)←e(1) | |Q1 (col 2)←e(2) | |Q1 (col 2)←e(3) |

|Q1 (col 3)←e(1) | |Q1 (col 3)←e(2) | |Q1 (col 3)←e(3) |

⎤

⎥

⎥

⎦

, (52)

where here e(1) = [1 0 0], e(2) = [0 1 0], and e(3) = [0 0 1]. The coefficients a, b, and c then result

a = 1
|Q1|

(

|Q1 (col 1)←e(1) |

n
∑

i=1
yi + |Q1 (col 1)←e(2) |

n
∑

i=1
�iyi

+|Q1 (col 1)←e(3) |

n
∑

i=1
�iyi

)

(53)

b = 1
|Q1|

(

|Q1 (col 2)←e(1) |

n
∑

i=1
yi + |Q1 (col 2)←e(2) |

n
∑

i=1
�iyi

+|Q1 (col 2)←e(3) |

n
∑

i=1
�iyi

)

(54)

c = 1
|Q1|

(

|Q1 (col 3)←e(1) |

n
∑

i=1
yi + |Q1 (col 3)←e(2) |

n
∑

i=1
�iyi

+|Q1 (col 3)←e(3) |

n
∑

i=1
�iyi

)

. (55)

Again, using the rules of error propagation, we found that the errors of a, b, and c are

Δa =
√

(

Δa(1)
)2 +

(

Δa(2)
)2 +

(

Δa(3)
)2 (56)

where

Δa(1) =
|Q1 (col 1)←e(1) |

∑n
i=1 yi

|q1|
×

×

√

√

√

√

(Δ|Q1 (col 1)←e(1) |

|Q1 (col 1)←e(1) |

)2

+
(Δ

(
∑n
i=1 yi

)

∑n
i=1 yi

)2

+
(

Δ|Q1|

|Q1|

)2

(57)

Δa(2) =
|Q1 (col 2)←e(1) |

∑n
i=1 yi

|q1|
×

×

√

√

√

√

(Δ|Q1 (col 2)←e(1) |

|Q1 (col 2)←e(1) |

)2

+
(Δ

(
∑n
i=1 �iyi

)

∑n
i=1 �iyi

)2

+
(

Δ|Q1|

|Q1|

)2

(58)

Δa(3) =
|Q1 (col 3)←e(1) |

∑n
i=1 yi

|q1|
×

×

√

√

√

√

(Δ|Q1 (col 3)←e(1) |

|Q1 (col 3)←e(1) |

)2

+
(Δ

(
∑n
i=1 �iyi

)

∑n
i=1 �iyi

)2

+
(

Δ|Q1|

|Q1|

)2

(59)
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where

Δ
( n
∑

i=1
�iyi

)

=

√

√

√

√

n
∑

i=1
�2i y

2
i

[(

Δ�i
�i

)2

+
(

Δyi
yi

)2]

(60)

Δ
( n
∑

i=1
�iyi

)

=

√

√

√

√

n
∑

i=1
�2i y

2
i

[(

Δ�i
�i

)2

+
(

Δyi
yi

)2]

(61)

Δ�i =
|

|

|

t�i
|

|

|

Δp (62)

Δ�i =
|

|

|

t�i
|

|

|

Δq. (63)

The error on the determinant of matrix Q1 is calculated by exploiting the Dodgson condensation methods as reported in
Section . So, here for the sake of brevity we omit the details of its calculation.
In the Supplementary Material (Tables A1 -A2 ) we provide scripts in R code implementing the biexponential regression

method with error propagation.

4 ANALYSIS ON SYNTHETIC DATA

We show the performance of the method on a synthetic case study. We considered a biexponential curve in Eq. (7) with a = 0.3,
b = c = 1, p = −1, q = −0.1. In order to study the response of the algorithm to the increase of the experimental error, we
choose the value of q much larger than the value of p. In this way, we place ourselves in the condition in which the difference
between the exponents is very large and therefore the eventual poor perfomance of the procedure cannot be attributed to the
impossibility of discriminating with great accuracy between two close values.
In order to mimic real experimental data we added to this curve normal noise with mean zero and variance ranging form 0 to

0.12 in steps of 0.001. 0.12 is the upper limit for the input data standard deviation beyond which the algorithm implementing
the Jacquelin method (see Supplementary Material Tables A1 -A2 ) warns the user that a calculation produced NaN values:

Warning: In sqrt(C[2]^2 + 4 * C[1]) : NaNs produced.

For each value of the standard deviation of the noise we simulated in this way 500 noisy biexponential curves, and for each
curve we estimated the values of the parameters. In Figures 1 and 2 , we report the behaviour of the mean parameter estimates
and its standard error, respectively, as the standard deviation of noise (plotted on x-axis) changes.
The way in which parameter estimates deviate from the correct value is different from parameter to parameter. In Figure 1 we

observe that the average of the estimate of p, q and of c is an increasing monotonic function of the standard deviation of the data
noise. The averages of the estimates of a and b exhibit a slight downward trend close to the real value for standard deviations of
the data noise less than 0.06, and once this value is exceeded they become unstable showing considerable fluctuations. In Figure
2 we observe an increasing monotonic behaviour of the standard error on the parameter estimates for p and c, an increasing
trend of the standard error on q while the standard deviation of data noise is less than 0.08 followed by a slight downward
trend. The standard error on a and b shows significant fluctuation for standard deviation of data noise greater than 0.06. Finally,
in Figure 2 we observe an exponential increasing of the residual sum of squares as the standard deviation of the data noise
increases. Further experiments (not reported here) done by progressively increasing the value of parameter q, (keeping all the
others constant) till to reach the value of p = −1, gave very similar results. In summary, regardless of the value of ratio between
p and q, the threshold of tolerance of this method to experimental noise on values of y - exponentially decreasing in the range
[0, 2] (as defined by the choice of a = 0.3, b = c = 1, p = −1, q = −0.1) - is around 0.06. For a standard deviation of data noise
equal to 0.06, the means of the parameter estimates are still fairly close to value of the parameters initially chosen to generate
the curve, i.e p ≈ −0.09, q ≈ −0.65, a ≈ 0.3, b ≈ 0.87, and c ≈ 1.1.

5 CASE STUDIES

Herein we tested the code on two cases taken from the personal experience of the authors: a) the dynamic of desorption of
a small ligand from a surface where two types of binding sites are present15; b) the decrease of a determinant of viability of
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FIGURE 1 Mean of the parameters p, q, a, b, and c estimates of the model obtained in 500 simulated noisy biexponential
y = a + be−pt + ce−qt + �, where � ∼ (0, �2), with �2 ∈ [0, 0.12].

FIGURE 2 Standard errors on the estimate of the parameters p, q, a, b, and c and deviance (RSS) of the model obtained in 500
simulated noisy biexponential y = a + be−pt + ce−qt + �, where � ∼ (0, �2), with �2 ∈ [0, 012].
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organs sustaining ischemic injury before transplantation19. In both these case studies the rate at which the monitored variable
is transformed is proportional to the amount which is left, according to a first-order law, and two mechanisms at different time
scales are responsible for the transformation. Accordingly, the experimental data fit a double exponential law. These two case
studies differ in the amount of experimental error on the measurements.

5.1 Water desorption
Case study a) is representative example of the behaviour frequently observed when ligands bind to macromolecules or molecules
and nanoparticles undergo adsorption on a solid surface. Information about the kinetics of these mechanisms contributes to
the understanding of fundamental biological or physical processes such as: gene expression patterns, which are regulated by
the binding of transcription factors to high and low affinity sites27; metabolic control mechanisms28, or the forces determining
absorption or desorption at the interface. The experimental data used in case study a) concern the dynamic of heavy water (D2O)
desorption from a filmmade of nanosized cellulose fibrils (NC) which fits a double exponential time course. The experiment was
performed in two steps: a dry NC film was saturated with vapors of D2O, which was then left to desorb. Infrared spectroscopy
(FTIR) was used to monitor the time course of decrease of the characteristic spectral features of D2O during desorption. The
time steps between the data points was determined by the time necessary to acquire the FTIR spectrum with a good signal to
noise ratio (> 5) and was of the order of 1 min. The experimental details and data are reported in15. From these data, it appears
that D2O desorbs from NC film according to a double-stage process, the first of which ends in about 15 min, supporting the
presence of two types of D2O binding sites with different values of kinetic time constants of release. The desorption kinetic data
shown in Figure 3 were satisfactorily fitted to a double exponential decay, and the exponential time constants calculated by a
set of four replicated experiments using different NC films were found �1 = (2.2±0.9)min and �2 = (50±24)min, respectively .
Figure 3 shows the biexponential fit of the experimental data obtained with the linearization method. The parameters of the

fit are reported in Table 1 (first row). These values within their error intervals are in agreement with those obtained with the
software Origin R© by OriginLab29.
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FIGURE 3 Dotted lines is the curve fitting the experimental data. The parameter estimates of the biexponential fit for the
desorption dynamics are p =-0.016, q = -0.511, a = 0.0542, b = 0.075, c = 0.050. RSS = 0.00012. The experimental relative
error amounts to 1% of the measurement, so the errors bars are scarcely visible on this plot.
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FIGURE 4 Dotted lines is the curve fitting the experimental data. The parameter estimates of the biexponential fit for the high
energy metabolite decay in kidney are a = −0.25; b = 1.1; c = 1.2; p = −0.0051; q = −0.3. The residual sum of squares is 0.38.

5.2 High energy metabolite decay in organs stored for transplantation
Case study b) is the time course of physiological response to ischemic injury of explanted kidneys. The parameter monitored to
assess the residual viability of the organs is the ratio between a class of high energy metabolites (i.e. the phosphate monoesters,
PE) and the product of of consumption of these metabolites, that is inorganic phosphate (Pi). The PE/Pi ratio has been demon-
strated to correlate with viability in human recipients and is considered a good determinant of the postoperative function30,31.
The double exponential time course of the PE/Pi ratio is indicative of two types of classes of the energy consumption reactions:
one faster, probably due to membrane protein pumps which require high energy amounts but are progressively denatured, and
one slower due to all the other metabolic processes. The PE/Pi can be experimentally measured on whole explanted organs by
31P Nuclear Magnetic Resonance Spectroscopy (31P NMR). The data set here used is a representative example of what is often
obtained performing experiments on whole organs or living beings, when the intrinsic biological variability and the complex-
ity of the overall experimental set-up are responsible for the acquisition of scattered results. Case study b) was used for stress
testing the software under conditions of noisy experimental data. In particular, in case study b), the source of noise is due to: 1)
the intrinsic biological variability between different subjects and between the two kidney explanted from the same subject; 2)
the experimental procedure which requires the organ transfer from the container for storage to the measurement site inside the
magnet of the nuclear magnetic resonance instrument; 3) the time scale of the experiment which lasts several days. In fact, to
monitor the time dependence of the PE/Pi ratio of the kidneys excised from a pig on cold storage, the two organs of each pig were
kept in a cold solution and transferred inside the magnet, one by one, at selected time intervals. The time the kidney remained
inside the instrument was about 20 min for each experimental point. This is source of uncertainty, since during this time the
storage conditions are not controlled, and the kinetic of PE/Pi decrease could be consequently affected. This uncertainty is more
remarkable at the kinetic start when the PE/Pi decrease rate is higher. Moreover, due to the long time scale of the experiment, it
is not possible to record the kinetic end since biological specimens undergo degradation process due to bacterial contamination.
The experimental data of case study 2) are shown in Figure 4 . These data refer to kidneys excised just after flushing the organ
with a cold solution and stored immersed in a cold solution. Since the organs did not suffer for warm ischemia before explan-
tation, the starting PE/Pi values are in the highest range. The values and the error bars reported in the plot are the average and
the standard deviation of two experimental runs (one run for the left and one for the right kidney from the same pig). The time
course of the PE/Pi decay is visibly biphasic and the standard deviation between each measurement point performed on the two
kidneys is about 40% for the faster phase and decrease progressively up to 20%. The kinetic was stopped at 120 h, when visible
signs of organ suffering were observed. The kinetic constants p and q calculated using a data set of 10 kinetic runs (two kidneys
from 5 pigs) were 0.100 h−1 and 0.010−1, respectively with an estimated error of 40% and 20% for the faster and slower phase,
respectively.
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Figure 4 shows the biexponential fit of the experimental data of this case study. The parameters of the fit are reported in Table
1 (second row). Also in this case the mean values we obtained are in agreement with those obtained by SigmaPLot non-linear
fitting procedure32 by Corazza et al.19. We note however, the considerable error that affects the estimates of a, b, and q. This
second case study is in fact a limiting case for this procedure, as the experimental error on the input data exceeds the threshold
of tolerance 0.06 of an order of magnitude.

TABLE 1 Parameters and residual sum of squares of the biexponential fit for the desorption and PE/Pi temporal behaviours.
For the case study of high energy metabolite decay, in spite of the considerable errors affecting the input data, the mean values
of the estimate are in agreement within their interval errors with those obtained with the software Origin R© by OriginLab29,
and SigmaPlot fitting program32. Some notes follow. (1) The parameter estimates have been calculated with OriginLab29 by15.
The error on the estimates is the standard error (SE), as usually estimated in non-linear fitting procedures, i.e. SE(�i) =
√

(RSS∕DF )Cov(i, i), where RSS is the sum of squared residual, DF denotes the degrees of freedom (the number of data
points minus number of parameters fit by regression), and Cov(i, i) the diagonal element of the covariance matrix of best-fit
parameters. (2) The parameter estimates have been calculated with SigmaPlot fitting program by19. The estimates of a, b, and c
are indicated as "NA" (not available), because they are not present in the model of the biphasic kinetics presented in19.

Case study p (in hours−1) q (in hours−1) a b c RSS

Linearization method

Desorption 0.016 ± 0.001 0.511 ± 0.001 0.0542 ± 0.001 0.075 ± 0.001 0.050± 0.001 0.00012
High energy 0.0051 ± 0.0015 0.3 ± 0.16 -0.2 ± 0.12 1.1 ± 0.1 1.2 ± 0.1 0.38

metabolite decay

Non-linear fit

Desorption 0.016 ± 0.001(1) 0.5753 ± 0.0006(1) 0.053 ± 0.002(1) 0.076 ± 0.002(1) 0.051± 0.002(1) not reported(1)
High energy 0.007 ± 0.0014 0.74 ± 0.3 NA NA NA not reported

metabolite decay(2)

6 CONCLUSIONS

We have presented an extension of the Jacquelin linearisation method for the parameters of a bi-exponential. Our extension
consists of a procedure that allows us to calculate the propagation of experimental errors from the measurements of the variable
dependent on the estimates of the parameters obtained with this method. The inclusion of the error propagation allows to alert the
user about the adequacy of the experimental data for the purpose of estimating the kinetic parameters. The analysis on synthetic
data allowed to establish a tolerance threshold on the experimental error, beyond which the linearisation procedure provides
unreliable estimates of the parameters. The application of the method to real case studies made it possible to assess its efficiency
and accuracy. The proposed method, of a part of which (e.g. the parameter estimation mode) we present an implementation
in R language, becomes in this way usable in the laboratory practices concerning the analysis of the acquisitions, where it is
not possible to establish suitable initial guesses on parameters and it is desirable not to use computational time with iterative
regression methods, and, finally, where it is necessary to monitor the propagation of errors on the estimates of the parameters
of a model. The proposed method in this way, usable in the laboratory practices concerning the analysis of the acquisitions in
terms of odds where it is not possible to establish a suitable interval of variation of the parameters and we do not want to use
computational time with iterative regression methods, and where it is necessary to monitoring the propagation of experimental
errors.
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APPENDIX

A THE CODE

We implemented a R script that execute the biexponential regression by calling the function biexponential-fit.R (Tables
A1 -A1 ). To run the script the user must install R software and the libraries matrixcalc, stinepack, open a command
prompt window and launch the command

Rscript biexponential-fit.R

The script takes as an input a .TXT file with three columns named x, y, error, where x is the independent variable (on x-axis),
y is the dependent variable (on y-axis), and error is the experimental error of y, usually its standard deviation.

TABLE A1 The R script implementing the biexponenital fit algorithm of J. Jacques10. The scripts call the functions
biexponential.fit and error.propagation implemented in biexponential_functions.R.

#####################################################################
# Call to the biexponential function #
#####################################################################

# Include libraries
library(MASS, matrixcalc, stinepack)

# Include the functions "biexponential.fit" and "error.propagation"
source("./biexponential_functions.R)

# Ask the user to type the input data file
cat("Enter input file name: ");
input <- readLines("stdin",1);

input.df <- read.table(input, header=T)
x1 <- input.df$x; y1 <- input.df$y

sdev <- input.df$error
adds <- seq(tail(input.df[,1],1)+0.1, 2*tail(input.df[,1],1), 0.1)

# plot the data
plot(x1, y1, ylim=range(c(y1-sdev, y1+sdev)), pch=19,
xlab="Measurements",
ylab="Mean +/- SD", main="Scatter plot with std.dev error bars")
arrows(x1, y1-sdev, x1, y1+sdev, length=0.05, angle=90, code=3)

# Perform the bi-exponetial fit and error propagation
biexponential.fit(x1, y1))
error.propagation
#####################################################################
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TABLE A2 The R script implementing the function biexponential.fit proposed by10.

#####################################################################
# R function: biexponential.R
#####################################################################

# function implementing the biexponential fit
biexponential.fit <- function(x, y)
{
print("Bi-exponential model: y(x) = a + b*exp(p*x) + c*exp(q*x)")

n <- length(y); S <- array(0, n); SS <- array(0, n)
S[1] <- 0; SS[1] <- 0

for (k in 2:n)
{S[k] <- S[k-1] + 0.5 * (y[k] + y[k-1]) *(x[k] - x[k-1])
SS[k]<- SS[k-1] + 0.5 * (S[k] + S[k-1]) *(x[k] - x[k-1])}

# build matrix M and vector V
M.row.1 <- c(sum((SS)^2), sum(SS*S), sum(SS*x^2), sum(SS*x), sum(SS))
M.row.2 <- c(sum(SS*S), sum((S)^2), sum(S*x^2), sum(S*x), sum(S))
M.row.3 <- c(sum(SS*x^2), sum(S*x^2), sum(x^4), sum(x^3), sum(x^2))
M.row.4 <- c(sum(SS*x), sum(S*x), sum(x^3), sum(x^2), sum(x))
M.row.5 <- c(sum(SS), sum(S), sum(x^2), sum(x), n)

M <- rbind(A.row.1, A.row.2, A.row.3, A.row.4, A.row.5)
V <- (c(sum(SS*y), sum(S*y), sum((y*x^2)), sum(x*y), sum(y)))

# compute vector C
C <- solve(M) %*% V

# coefficients p and q
p <- 0.5*(C[2] + sqrt(C[2]^2 + 4*C[1]))
q <- 0.5*(C[2] - sqrt(C[2]^2 + 4*C[1]))

# build matrices Q1 and Q2
beta <- exp(p*x); eta <- exp(q*x)

Q1 <- rbind(c(n, sum(beta), sum(eta)),
c(sum(beta), sum(beta^2), sum(beta*eta)),
c(sum(eta), sum(beta*eta), sum(eta^2)))
Q2 <- c(sum(y), sum(beta*y), sum(eta*y))

abc <- solve(Q1) %*% Q2

# calculate coefficients a, b, and c
a <- abc[1]; b <- abc[2]; c <- abc[3]
res <- c(p, q, a, b, c); names(res) <- c("p", "q", "a", "b", "c")

y.model <- res["a"] + res["b"]*exp(res["p"]*x) + res["c"]*exp(res["q"]*x)
deviance <- sum((y - y.model)^2)

# return coefficients, p, q, a, b, and c
res.final <- c(p, q, a, b, c, deviance)
names(res.final) <- c("p", "q", "a", "b", "c", "deviance")
res.final
}

#######################################################################
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