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Abstract

In this thesis, we address several problems related to the bosonic classical and algebraic quantum
field theories in curved spacetime. In particular, the main question is: how do the theories
change under finite global variations of the spacetime metric tensor? To answer this question a
new deformation tool, the paracausal deformation, is developed and studied on its own as a new
approach to investigate the structure of the space of globally hyperbolic metric tensors associated
with a smooth manifold M. Then the classical Mgller maps are constructed to compare solutions of
the hyperbolic PDEs defining the classical field theories and the quantum Mgller #-isomorphisms
follow to compare the CCR quantum algebras associated to the propagation of the quantum fields
on the different background geometries. These maps possess the important property of preserving
Hadamard states, providing a new way to implement the deformation argument used to prove
the existence of such states in general globally hyperbolic spacetime. Moreover, the algebraic
quantization of the Proca field, i.e the massive spin 1 field, on a general globally hyperbolic
spacetime is for the first time studied in detail: by employing techniques coming from microlocal
analysis and spectral theory a Hadamard state is constructed on ultrastatic spacetimes and then
the Mgller operator is used to prove the existence of such states in general globally hyperbolic
spacetimes. A discussion about the definition of Hadamard states for the massive vector fields
closes the work.

The thesis is based on two works on algebraic quantization of bosonic field theories and
Hadamard states: [87], [88]. The papers are co-authored by my supervisor Prof. Valter Moretti
(UniTN) and cosupervisor Simone Murro (UniGe). The first [90] has not been included since,
at the time it was written, the paracausal deformation, the construction of Mgller operators,
the right approach to intertwine the causal propagators and all the other tools developed in the
subsequent works were still at a rough stage.
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Introduction

Algebraic quantum field theory [12,18] (AQFT) is a mathematically rigorous framework where
quantum field theory on curved spacetime can be defined, according to the Haag-Kastler axioms,
assigning #-algebras or C*-algebras of abstract operators to open regions of a spacetime manifold
in such a way that they satisfy physical properties such as locality, causality and the time slice
axiom. The choice of algebraic states leads through the GNS construction to representations
of the quantum algebras via unbounded operators defined on a common dense subspace of a
Hilbert space. Among all possible states these algebras admit, a prominent role is played by
the ones satisfying the Hadamard condition, since they finely generalize to curved spacetime the
Minkowski vacuum.

In this thesis we study how the behaviour of aforementioned classical and quantum field
theoretical structure one can build on a Lorentzian globally hyperbolic manifold changes under
variations of the background geometry, with special attention on Hadamard states.

The main novelties presented are:

e the introduction of the paracausal relation in order to investigate the structure of the space
of globally hyperbolic metrics;

e the construction of geometric Mgller operators to compare quasi-free classical and quantum
field theories living on different, though paracausally related spacetimes;

e the use of the aforementioned construction to constructively prove the existence of Hadamard
states for the (generalized) Klein-Gordon field, rewriting a standard deformation argument
through explicit operators, [50,51]:

e the application of such a technique to prove existence of Hadamard states for the Proca
field in general spacetime, concluding a discussion started in [44] where the existence had
been proved just in Cauchy compact spacetimes;

e the explicit construction of a Hadamard state for the Proca field on ultrastatic spacetimes
exploiting techniques coming from microlocal analysis and elliptic Hilbert complexes.

The thesis is organized as follows. Chapter 1 is totally devoted to Lorentzian geometry and
thought to be self-consistent: basic results of causality theory are introduced as tools to review
the geometry of globally hyperbolic spacetimes, then the paracausal relation is introduced and a
lot of results about it are proved. A brief discussion about the topology of the space of globally
hyperbolic metrics concludes.

In chapter 2 we introduce Green hyperbolic operators and compare the spaces of solutions of
partial differential equations describing classical fields propagating on curved spacetimes, under
the assumption that the spacetimes are paracausally related. Again this chapter discusses prob-
lems in linear Green hyperbolic differential operators and is self contained, despite dependent on
the geometric notions developed in chapter 1. Therefore Mgller operators and Mgller maps are
defined and their properties are investigated.

Chapter 3 deals with problems in quantum field theory in curved spacetimes: we briefly intro-
duce the algebraic approach to quantum field theory, focusing on CCR algebras and Hadamard
states. Then the geometric Mgller operators are promoted to algebra isomorphisms preserving
the singularity structure of states and the construction is employed to prove the existence of



Hadamard states for Klein-Gordon and Proca quantum fields on curved spacetime. Such a con-
struction, known in the literature as ”deformation argument”, is in this work implemented in a
new fashion through explicit operators. This approach allows to prove rigorously the existence
of Hadamard states for Green hyperbolic field theories on any globally hyperbolic spacetime.

Since the chapters are as independent as possible, each one has its own conclusive sections
summarizing the results and discussing possible future research lines.

General notation and conventions

- A c B permits the case A = B, otherwise we write A < B.
- The symbol K denotes any element of {R, C}.

- (M, g) denotes a (n + 1)-dimensional spacetime (cf. Definition 1.1.5) and we adopt the
convention that g has the signature (—, +...,4). g* denotes the associated dual metric on
the cotangent bundle.

- Mm, Tm € Mm and GHpm < T denote respectively the sets of smooth Lorentzian metrics,
time-oriented Lorentzian metrics and globally hyperbolic metrics on M;

- JE(A) and I*(A) are respectively the causal and chronological future/past of the set A;
+

- V" are the the future/past lightcones w.r.t the metric g at the point p € M;

- g < ¢ denotes that g,¢g’ € My and the open light cone V;J of g is a subset of the open
lightcone V;J of ¢’ at every point p € M;

- g ~ ¢’ denotes that g and ¢’ are paracausally related (cf. Definition 1.3.1);
- We denote by E a general K-vector bundle over a manifold M with finite rank N;

- We denote by I'c(E),I'yc(E), I'fc(E), I'tc(E), I'sc(E) resp. I'(E) the spaces of compactly sup-
ported, past compactly supported, future compactly supported, timelike compactly sup-
ported, spacelike compactly supported resp. smooth sections of a vector bundle E.

- Tensor fields and sections of K-vector bundles on M are always supposed to be smooth.

- E® E’ denotes the tensor product of the two K-vector bundles over M. This K-vector
bundle has basis M 5 p and fibers given by the pointwise tensor product E, ® E; of the
fibers of the two bundles.

- EXE’' denotes the external tensor product of the two K-vector bundles over M. This
K-vector bundle has basis M x M 3 (p, ¢) and fibers given by the pointwise tensor product
E,® Ef] of the fibers of the two bundles.

- Referring to T'(EXIE’), if f € E and f' € E/, then f®§ € I'(EXIE’) denotes the section defined
by F®1)(p,q) := f(p) ®f (q) where the tensor product on the right-hand side is the one of
the fibers and (p,q) € M x M.

- £:I(T*M) — I'(TM) and its inverse b : I'(TM) — I'(T*M) denote the standard (fiberwise)
musical isomorphisms (c¢f. Section 1.2.1) referred to a given metric g on M.

- Let X be a topological vector space, we indicate by X' its topological dual. For example
'/ (E) represents the space of distributions acting on compactly supported test sections of
the bundle E, and shall not be confused with the space of compactly supported distributions.



Chapter 1

Paracausal deformations of globally
hyperbolic spacetimes

The aim of this chapter is twofold. On the one hand we shall investigate the properties of convex
interpolation of Lorentzian metrics and, as a natural consequence, we introduce and discuss
paracausal deformations of globally hyperbolic metrics.

As we shall see, these mathematical tools rely on a non strict preorder relation on the set of
Lorentzian metrics on a given manifold, very similar to the strict preorder used by Geroch to
define the interval topology with respect to which the globally hyperbolic metrics are stable, [65].
The equivalence relation we define later is quite interesting in its own right and will be exploited in
the second part of this work to construct Mgller operators and Mgller #-isomorphisms of algebras
of quantum fields and, in the end, to construct Hadamard states for different theories on general
globally hyperbolic spacetimes. We refer to [4,9,92] for standard results in Lorentzian geometry.
To the authors’ knowledge this equivalence relation represents a complete novelty on the subject.
Though the effective definition of paracausal equivalence relation on the set of globally hyperbolic
metrics on M (Definition 1.3.1) is effective for the issues regarding Mgller maps we will discuss
later, a complete characterization of it can be stated as follows in terms of elementary Lorentzian
geometry:

Theorem 1 (Theorem 1.3.7). The globally hyperbolic metric g on M is paracausally related to the
globally hyperbolic metric g’ on M if and only if there is a finite sequence gy := ¢,g1,...,gN =g’
of globally hyperbolic metrics on M such that, at each step g, gri1, the future open light cones of

+
these metrics have non-empty intersection VIR A VIRt & at every point x € M.

Despite the class of paracausally related metrics on a given manifold M is very large, for example
we will see that any class admits ultrastatic representatives, some elementary counterexamples
of topological nature can be constructed and some of them are not trivial. This fact suggests
that the paracausal classes may be related to topological properties of the Cauchy surfaces. Such
a problem, possible future research lines and other counterexamples of differential topological
nature will be sketched in section 1.4 concluding the chapter.

The chapter is organized as follows. Section 1.1 contains a recap on the relevant notions
of Lorentzian geometry we exploit throughout, in section 1.2 we introduce some results about
convex interpolations of globally hyperbolic metrics which are preparatory to section 1.3, where
we present the definition of paracausal deformation and we give all the results we obtained about
this equivalence relation. In section 1.4 some possible future research lines are discussed.

1.1 Lorentzian geometry

In this section we review the basic tools of Lorentzian geometry and causality theory, which are of
fundamental importance in the mathematical formulation of general relativity and, consequently,



in the formulation of quantum field theory in curved spacetime, with focus on the geometry of
the so called globally hyperbolic spacetimes, i.e spacetimes where the hyperbolic PDEs describing
the propagation of classical fields have a well posed Cauchy problem. We will therefore fix all the
geometric setup of the thesis and then proceed in the rest of the chapter with the discussion of
the original contribution given to such a field.

1.1.1 Lorentzian manifolds and causality

Let M be a smooth connected paracompact Hausdorff manifold and assume that M is noncompact
or its Euler characteristic vanishes. Under these assumptions, M admits a Lorentzian metric and
we denote the space of Lorentzian metrics on M by My (see e.g. [9]). Once that a Lorentzian
metric g is assigned to a smooth manifold M 3 p, we can classify the vectors v, € T,M into three
different types:

e spacelike i.e. g(vp,vp) >0o0rv, =0,
o timelike i.e. g(vp,vp) <O,
e lightlike (also called null) i.e. g(vp,vp) = 0 and vy, # 0.

As usual, we denote as causal vectors any timelike or lightlike vector. Piecewise smooth
curves are classified analogously according to the nature of their tangent vectors.

Remark 1.1.1. Notice that, with our convention, the tangent vector 0 is spacelike to prevent
constant curves to fall in the class of causal curves.

Embedded codimension-1 submanifolds ¥ < M of a Lorentzian manifold (M, g), also called
hypersurfaces, are classified according to their normal covector n: They are spacelike, time-
like, null if respectively n is timelike, spacelike, null everywhere in . Notice that an embedded
n — 1 submanifold ¥ < M is spacelike if and only if its tangent vectors are spacelike in (M, g).
The restriction of g to the tangent vectors to a spacelike hypersurface ¥ defines a Riemannian
metric on it.

Remark 1.1.2. In the rest of this chapter we are going to deal with different metric tensors
associated to the same manifold M. We remark that the normal n is metric dependent, so it will
be better to define spacelike surfaces with respect to a metric tensor g € My according to their
tangent space which is intrinsic and metric independent.

Keeping in mind this classification, the open lightcone of (M, g) at p € M is the set
V= {vp € TM | g(vp,vp) <0} .

It is not difficult to see that it is an open convex cone made of two disjoint open convex halves
defining the two connected components of V.

The notion of time orientation is defined as in [4]: A smooth Lorentzian manifold (M, g) is
said to be time-orientable if there is a continuous timelike vector field X on M.

If (M, g) is time orientable and a preferred continuous timelike vector field X has been chosen
as above, the future lightcone V) = V) at p € M is the connected component of V}/ containing
X,. The other connected component V;/~ is the past lightcone at p. V; * and VJ™ respectively
include the future-directed and past-directed timelike vectors at p. The terminology extends
to the causal (lightlike) vectors which belong to the closures of the said halves. A classification
of (piecewise smooth) causal curves into past-directed and future-directed curves (see [4]) arises
according to their tangent vectors.

If (M, g) is time orientable, the continuous choice of one of the two halves of V}/ for all p e M
through a continuous timelike vector field as above defines a time orientation of (M, g). (M, g)
with this choice of preferred halves of cones is said to be time oriented. If (M, g) is connected
and time orientable, then it admits exactly two time orientations.



Notation 1.1.3. In the following, we denote with My, the set of smooth Lorentzian metrics on
the smooth manifold M and with 7y the set of time-oriented Lorentzian metrics on M.

We have an elementary fact whose proof is immediate if working in a g-orthonormal basis.
Proposition 1.1.4. Assume that g € T, pe M, and Yy, Z, € V. Then
(i) Y, € VIF and Z, € VI* if and only if g(Yp, Zp) > 0,
(i) Yy, Zp € Vpgir if and only if (Y, Z,) < 0.

If g € My, the associated standard (fiberwise) musical isomorphism § : I'(T*M) — I'(TM)
is pointwise defined by

9(fwp, vp) = wp(vp) for every v e I'(TM) and w € I'(T*M) and p e M,

and we denote the (fiberwise) inverse musical isomorphism by b : I'(TM) — I'(T*M). The
notation ¢gf € I'(TM ® TM) indicates the Lorentzian metric induced on 1-forms from # as

g* (Wip, wap) = g(fwip, fway,)  for every wi,wo € I'(T*M) and p € M.

Once that a Lorentzian metric is introduced on 1-forms, we can distinguish three different types
of co-vectors: w, € T/M is spacelike, timelike, null and causal if, respectively, fw, € T,M
is spacelike, timelike, null or causal. With the definition, we can define the open lightcone of
1-forms at p € M analogously to the case of vectors

4
vy = {wp e T,M | ¢ (wp, wp) < 0} .
Analogously, if g € Tm, the future and past lightcones of 1-forms at p € M are defined as

f
|74 Ti={we ToM | fwy € V}f’i} .

1.1.2 Spacetimes and causality

We are ready to give the precise definition of spacetime we will use throughout this work.

Definition 1.1.5. A spacetime is a (n + 1)-dimensional (n > 1), connected, oriented, time-
oriented, smooth Lorentzian manifold (M, g)

Remark 1.1.6. Sometimes it not assumed that M is orientable and oriented, but we do adopt this
hypothesis here since later on we will need to integrate over the manifold, see chapter 16 of [80].
However none of the results discussed in this chapter depends on the choice of an orientation.
Conversely, the time orientation is crucial. So, when we write that (M, g) is a spacetime, we also
mean that a time-orientation of (M, g) as Lorentzian manifold has been chosen. In this case, with
a little misuse of language, we speak of the time-orientation of the metric g.

According to the amount of time-like symmetry, three important nested subclasses of space-
times can be defined:

e stationary if it admits a globally defined time-like smooth Killing vector field K;
e static if it is stationary and the Killing vector field is also irrotational;

e ultrastatic if it is static and g(K, K) = —1.



Let now A < M for a spacetime (M, g). The causal sets J; (A) and the chronological sets
I, (A) are defined according to [4]: J+(A) is made of the points of A itself and all p € M such
that there is a smooth future-directed/past-directed causal curve v : [a,b] — M with y(a) € A
and v(b) = p. Notice that J+(A) > A by definition, while I1 (A) is made of the points p € M such
that there is a smooth future-directed/past-directed timelike curve v : [a,b] — M with y(a) € A
and v(b) = p. As usual we define J(A) := J;(A) u J_(A).

A closed set A ¢ M, with (M, g) time-oriented, is past compact if J_(p) n A is compact
for every p € M. The definition of future compact is analogous, just replacing J_ for J,. A
closet set A < M is called space compact or spatially compact if there exists a compact set
K < M such that A ¢ J(K). Sections of a bundle are called past/future/space compact if
their support is, respectively, past, future or space compact.

Let us recall that, on a spacetime (M, g), a smooth causal curve v : I — M with [ < R
open interval is said to be future inextendible [92] if there is no continuous curve 7' : J — M,
defined on an open interval J c R, such that sup J > sup I and 7/|; = 7. A past inextendible
causal curve is defined analogously. A causal curve is said to be inextendible if it is both past
and future inextendible.

We eventually define the future Cauchy development D, (A) of A to be the set of points
p € M such that every past inextendible future-directed smooth causal curve passing through p
meets A in the past. Similarly, the past Cauchy development D_(A) is the set of points p € M
such that every future inextendible future-directed smooth causal curve passing through p meets
A in the future.

On a generic Lorentzian manifold, the Cauchy problem for the differential operators we will
deal with is in general ill-posed: This can be a consequence of the presence of closed timelike
curves or the presence of naked singularities. Therefore, it is convenient to restrict ourselves to
the class of globally hyperbolic spacetimes.

Definition 1.1.7. A globally hyperbolic spacetime is a spacetime (M, g) such that
(i) there are no closed causal curves;
(ii) for all points p,q € M, J4(p) n J—(q) is compact.

Notation 1.1.8. If M is a smooth connected (n + 1)-manifold, GHp < Ty denotes the class of
Lorentzian metrics g such that (M, g) is globally hyperbolic for a time-orientation. Any g € GHm
is called globally hyperbolic metric on M.

Remark 1.1.9. The first condition in 1.1.7 is also known as causality. We remind the reader
that this definition of global hyperbolicity is recent, see [17] for the proof of the equivalence of
the two. In the standard definition, see for example [9], the first condition is replaced by the so
called strong causality. It requires that at all points p € M and for all neighbourhoods U, = M
there exists a smaller neighbourhood Uz’) < U which is causally convex, that is such that any
causal curve with endpoints in UZ’) does not intersect the complement of UI’7 in a disconnected set.

However globally hyperbolic spacetimes can be characterized by more physically intuitive and
practically useful conditions.
In his seminal paper [65], Geroch established the equivalence for a Lorentzian manifold being
globally hyperbolic and the existence of a Cauchy hypersurface.

Definition 1.1.10. A subset ¥ = M of a spacetime (M, g) is called Cauchy hypersurface if it
intersects exactly once any inextendible future-directed smooth timelike curve.

In particular, a Cauchy hypersurface is achronal: it intersects at most once every future-
directed smooth timelike curve.

Theorem 1.1.11 ( [65, Theorem 11]). A spacetime (M, g) is globally hyperbolic if and only if it
contains a Cauchy hypersurface.



It turns out that Cauchy hypersurfaces of (M, g) are closed co-dimension 1 topological sub-
manifolds of M homeomorphic one to each other. As a byproduct of Geroch’s theorem, it follows
that the globally hyperbolic manifold (M, g) admits a continuous foliation with Cauchy hyper-
surfaces ¥ as leaves, namely M is homeomorphic to R x 3. The proof of these facts was carried
out by finding a Cauchy time function, i.e., a continuous function ¢t : M — R which is strictly
increasing on any future-directed timelike curve and such that its level sets t~1(¢o), to € R, are
Cauchy hypersurfaces homeomorphic to X. Geroch’s splitting appears at a topological level, and
the possibility to smooth them remained as open folk questions for many years. Only recently,
in [15] Bernal and Sénchez “smoothened” the result of Geroch by introducing the notion of
Cauchy temporal function.

Theorem 1.1.12 ( [15, Theorems 1.1 and 1.2], [16, Theorem 1.2], ). For every globally hyperbolic

spacetime (M, g) there is an isometry ¥ : M — R x X, where the latter spacetime is equipped with
the smooth Lorentzian metric

— fdr @dr ® h, , (1.1.1)
and the time-orientation induced from (M, g) through 1. Above T is the canonical projection
RxX>(t,p)—teR
and the following facts are valid:
(i) VT :=fdr is past-directed timelike,
(ii) B:R x ¥ — (0,400) (called lapse function) is a smooth function,
(iii) hy (called spatial metric) is a smooth Riemannian metric on each leaf {t} x X, t € R,

(iv) every embedded co-dimension-1 submanifold {to} x ¥ = 77 1(ty) is a spacelike (smooth)
Cauchy hypersurface.

Finally, if S € M is a spacelike Cauchy hypersurface of (M, g), then we can define an isometry
Y :M—>R xS, and 7, B, h as above in order that S = 1~1({0} x 9).

Remarks 1.1.13.

(1) As we will see later global hyperbolicity is a sufficient condition to guarantee such a smooth
orthogonal splitting, but not a necessary one.

(2) A globally hyperbolic ultrastatic spacetime is always diffeomorphic to R x ¥ and isometric
to a spacetime with metric of the form:

g=—dt®dt®h,
where h is a Riemannian metric on ¥ and dt = K.

The characterization given by Bernal and Sdnchez immediately allows us to give some relevant
definitions.

Definition 1.1.14. Given a spacetime (M, g), a smooth surjective function ¢t : M — R with dt
past-directed timelike is

(a) a Cauchy temporal function if

(i) (M, g) is isometric, through some isometry ¢ : M — R x 3, to a spacetime (R x X, h)
with the time-orientation induced from (M, g),

(ii) t =709 (where 7 : R x ¥ 3 (¢,p) — t € R),
(iii) A has the form (1.1.1) as in Theorem 1.1.12 satisfying (i)-(iv);



(b) a smooth Cauchy time function if
(i) (M, g) is isometric, through some isometry ¢ : M — R x 3, to a spacetime (R x X, h)
with the time-orientation induced from (M, g),
(ii) t =T o (where 7: R x ¥ 3 (¢,p) — t € R),

(iii) every Xy, :=t"1(tg) = ¥ ({to} x X) is a spacelike Cauchy hypersurface of (M, g) for
tg € R.

Remarks 1.1.15.

(1) An intrinsic way to write (1.1.1) for a Cauchy temporal function ¢ without making use to
the splitting diffeomorphism 1 is, for p € 35 = t~1(p)

dt ® dt(X,Y)
gp(X, Y) = W + h5(7t79X7 7Tt7gY) s )(7 Ye TpM = L(ﬁgdt) (‘B ES
where (e X b dt
X _ ) 9
TpM 53X — ﬂ't’gX =X gﬁ(dt, dt) € szs

defines the orthogonal projector onto T,¥ associated to t and g, using f,dt as normal
(contravariant) vector to Y.

(2) If an either smooth Cauchy time or temporal function ¢ exists for (M, g), the level sets
Y4, =t 1(tg) are smooth spacelike Cauchy surfaces diffeomorphic to each other and (M, g)
is globally hyperbolic. Theorem 1.1.12 proves that Cauchy temporal functions — thus also
smooth Cauchy time functions — exist for every globally hyperbolic spacetime. Furthermore,
every smooth spacelike Cauchy hypersurface can be embedded in the foliation induced by
a suitable Cauchy temporal function.

(3) A Cauchy temporal function is always a Cauchy time function, but even a smooth time
function may not be a temporal one, since the manifold may be foliated in level sets of
such a function, which are spacelike and Cauchy, but the metric tensor could not be in the
orthogonal form.

(4) A Cauchy hypersurface may meet a causal curve in more than a point (say, a segment),
but this is not the case for the spacelike Cauchy hypersurfaces since they are acausal:
they intersect at most once every future-directed smooth causal curve, as easily arises from
Theorem 1.1.12.

On a globally hyperbolic spacetime the past/future/space compact sets can be characterized
in a very useful way by exploiting the notion of Cauchy surface. in fact:

Proposition 1.1.16. Let (M, g) be a globally hyperbolic spacetime. Then we have that:

o A is past compact if and only if it is closed and there exists a Cauchy surface ¥ < M such

that A < J*T(X2);

o A is future compact if and only if it is closed and there exists a Cauchy surface X < M such

that A < J~ ().

o A is space compact if and only if it is closed and for any Cauchy surface X c M A n X is
compact.

Examples 1.1.17. We shall list a few globally hyperbolic spacetimes which appear commonly
in general relativity and quantum field theory over curved backgrounds. As one can infer per
direct inspection, they are all in the orthogonal form of Theorem 1.1.12:



e the prototype example is Minkowski spacetime which isometric to R**! with Cartesian
coordinates (¢,z!,...,2") and equipped with the Minkowski metric

—dt@dt + ) do' @ da’ ;
=1

e de Sitter spacetime, that is the maximally symmetric solution of Einstein’s equations with
a positive cosmological constant A. As a manifold it is topologically R x S* and the metric
reads:

A
g = —dt® + %coshz <« /375) [dx? + sin® x(d6* + sin® Odp?)]
where t € R while (x, 0, ) are the standard coordinates on S3;

e the Friedmann-Robertson-Walker (FRW) cosmological spacetimes, i.e., an isotropic and
homogeneous manifold which is topologically R x 3 and

dr?

_ a2
g=—dt +a(t)[1—k:r2

+ r2(df?* + sin? 9dg02)]

where k can be either 0 or £1 and function a(t) is smooth and positive valued,;

e The external Schwarzschild spacetime, i.e., a stationary spherically symmetric solution of
vacuum Einstein’s equations which is topologically R? x S? with metric

2M oM\ !
g=— (1 - 7’) dt? + (1 — r) dr? + r2(d6? + sin® 0dp?) .

Here M > 0 is interpreted as the mass of the spherically symmetric source (a black hole,
a star,...) and the domain of definition of the coordinates is t € R, r € (2M, +00) and
(0, ¢) € $%

e finally, given any n-dimensional complete Riemannian manifold (3, h), an open interval
I € R and a smooth function f : I — (0,+0), the Lorentzian warped product defined
topologically by I x ¥ with metric g = —dt? + f(t)h is a globally hyperbolic spacetime, [9].

e A static spacetime R x ¥ with metric tensor g = —fdt?> + h where h\B is a complete
Riemannian metric on the slice is globally hyperbolic, [96]. In particular any ultrastatic
spacetime with complete slices is globally hyperbolic.

A non-trivial result about global hyperbolicity of a spacetime is the following lemma, which
we will use a lot in the next sections. Essentially, it says that we can open-up or close-down the
cones of any globally hyperbolic metric, uniformly and smoothly all over the manifold, without
spoiling global hyperbolicity.

Lemma 1.1.18. Let (M, g) and a globally hyperbolic spacetime, t : M — R a Cauchy temporal
function according to Definition 1.1.14, ¥ : M — R x X a diffeomorphism mapping isometrically
(M, g) to (R x ¥, —B%dT ® dT @ h.) and, moreover, let (M, g’) be a time oriented spacetime with
time orientation such that dt is past directed. If 1 maps (M, g") isometrically to (R x 3, go) with

Jae — dT @ dT @ o*(7) 2R,

and a € C*(R, (0,00)), then (M, g") is globally hyperbolic.
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Proof. We will henceforth omit to write the isometry v and consider, without loss of generality,
M=RxX t=19g=—-B%dt®dt®h; and g, = —dt ® dt ® o*(t)3~2h;. We proceed to prove
the global hyperbolicity of g, implying global hyperbolicity of ¢'.

We want to prove that X, viewed as the ¢ = 0 slice of the temporal function ¢, is a spacelike Cauchy
hypersurface for g,. Evidently ¥ is a spacelike hypersurface for g, so that it suffices to prove that
it meets exactly once every inextendible future directed g,-timelike curve v : I 3 s +— y(s) € M.
Since % = ga(0t,¥) < 0 by hypothesis, that v can be re-parametrized by ¢t itself as ' : J 2
t — ~'(t) € M for some open interval J — R. There must exist a finite a > 0 such that
(—a,a) nJ # &. Since 7'|(_gq)~s is inextendible in the spacetime (—a,a) x ¥ (otherwise it
would not be inextendible in the whole spacetime), to conclude it is sufficient to prove that
(—a,a) x ¥ equipped with the metric g, and the time-orientation induced by dt admits ¥ as a
Cauchy hypersurface. Indeed, in that case, 7 must meet X exactly once in (—a, a) x ¥ and thus ¥
would be a Cauchy hypersurface for (R x ¥, g,). Moreover, notice that it cannot meet ¥ = ¢=1(0)
again outside (—a, a) x 3 because 7/ is parametrized by ¢. Global hyperbolicity of ((—a,a) x X, ga)
can be proved as follows. If @ > 0, there exists a positive constant ag such that a(t) = ag > 0 for
all t € [—a, a]. We therefore have g, < go, on (—a,a) x X. In particular, with the time-orientation
declared in the hypothesis, every future-directed causal tangent vector for g, is a future-directed
causal vector for go,. Therefore, according to (2) in Lemma 1.2.3, it suffices to show that ga,
is globally hyperbolic on (—a,a) x ¥ and that ¥ is a Cauchy hypersurface for g,,. To this end,
consider an inextendible future-directed timelike curve v = (7°,4) in ((—a,a) x ¥, ga,). The
curve ¥ := (o Lo, 4) is future directed timelike w.r.t. g and still inextendible , therefore it meets
¥ = t71(0) exactly once, but ¥ and ~ intersect in 79 = ¢t = 0. Thus + intersects ¥ once. This
shows go, and therefore g, to be globally hyperbolic on (—a,a) x X. O

1.2 Convex interpolation of Lorentzian metrics

We are now interested in the structure of the set My of Lorentzian metrics on a given manifold
M. In particular, we are interested in the following problem:

Are there some natural operations which can be used to produce (globally hyperbolic) Lorentzian
metrics starting from (globally hyperbolic) Lorentzian metrics?

Given two globally hyperbolic metrics g,¢’, a linear combination of them is in general not a
Lorentzian metric and, when it is, it fails to be globally hyperbolic in general. However, as shown
in [19, Appendix BJ, if g and ¢’ coincide outside a compact set, then there exists a sequence of 5
globally hyperbolic metrics starting with ¢ and ending with ¢/, such that for each neighbouring
pair all pointwise convex combinations are globally hyperbolic metrics. Therefore, this section
aims to provide sufficient conditions for some kind of linear combination of globally hyperbolic
metrics to be a globally hyperbolic Lorentzian metric. We shall see that convex combinations are
an interesting case of study under suitable conditions. We point out the recent work [97] where, in
addition to several related issues, the convex structure of the space of globally hyperbolic metrics
on a given manifold is addressed with a number of results. In particular we had claimed that the
set of globally hyperbolic metrics sharing a Cauchy temporal function was convex, while in that
paper a counterexample is found.

Even if such a problem is of mathematical interest on its own, it was posed because of the problem
of constructing Mgller operators for symmetric hyperbolic systems [90], and normally hyperbolic
operators.

1.2.1 A preorder relation of Lorentzian metrics

Definition 1.2.1. Let g, ¢’ € M and denote

g=<g it VIcVY forallpe M.
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We say that g,¢’ € My are <-comparable if either g < ¢’ or ¢’ < g (see e.g. Figure 1.1).

of

p 4
Vi
/

#
8
VP

Figure 1.1: Lorentzian metrics <-comparable

Remarks 1.2.2.

(1) Let us remark that the definition above can be generalized by considering the so-called
causal diffeomorphisms, namely a time-orientation preserving diffeomorphism ¢ : M — N
such that the open light cone V}/ of g is included in the open light cone V},‘p*g/ of p*g’ for
every p € M. For further details and properties we refer to [48,52,53].

(2) The preorder relation introduce in Definition 1.2.1 has a corresponding for the associated
metrics in the cotangent space: If g, ¢’ € My,

¢t < g"* iff V;Dgu c V;,g’u for all p e M.

We observe that if g < ¢’ for g, ¢’ € Ty and the two metrics share the same time-orientation —
i.e., there is a continuous vector field on M which is timelike for both metrics and defines the same
time-orientation for both of them — then V¥t < V" and V¥~ < V¥~ for every p € M. Similar
inclusions hold when considering the closures of the considered half cones. As a consequence, we
have both inclusions with obvious notations

TL(A) < TL(A), JL(A) < JL(A) for every A c M.

The relation < in My, has several consequences whose most elementary ones are established
in the following proposition.

Lemma 1.2.3. Let M be a smooth (n + 1)-dimensional manifold and g,g9' € Mwm. The following
facts are valid for the preordering relation < in My.
(1) Forpe M and ve TyM, if g < ¢ then
(i) g(v,v) =0 implies ¢'(v,v) < 0.
(i1) ¢'(v,v) >0 implies g(v,v) > 0.
(11i) ¢'(v,v) = 0 implies g(v,v) = 0.

(2) If g < ¢ with g € Tm and g’ € GHwm, then (M, g) is globally hyperbolic as well when, e.g.,
equipped with the same orientation and time-orientation of (M,g') and
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(i) a spacelike Cauchy hypersurface for (M, g') is also a spacelike Cauchy hypersurface for
(M, g);
(ii) a smooth Cauchy time function for (M, g") is also a smooth Cauchy time function for
(M, g);
(iii) a closed set A < M s past/future compact in (M, g) if it is respectively past/future
compact in (M, g").
(3) g < g if and only if g" < ¢*.
(4) If 9,4 € Tm, g < ¢' and pe M, then VJ* < Vpgur if and only if Vpg%r c ngh.

¢ 1%
Vp P

o

Figure 1.2: Inclusion-of-cones relations

Proof. (1) is trivial. Let us pass to (2). Notice that if g < ¢, then a smooth g-timelike vector
of M is also a smooth ¢'-timelike vector of M, so (M, g) receives a time-orientation from a time-
orientation of (M, ¢). A spacelike Cauchy surface X of (M, ¢’) (it exists in view of Theorem 1.1.12)
is a smooth spacelike hypersurface of (M, g) since the tangent vectors to 3 are spacelike for ¢’
and thus for g because g < ¢’. Every inextendible timelike curve v for (M, g) is a inextendible
timelike curve for (M, ¢’), since (a) g < ¢’ and (b) the notion of inextendibility is just topological.
Hence 7 meets 3 exactly once. Therefore ¥ is a Cauchy surface of (M, g) as well, which is globally
hyperbolic for Theorem 1.1.11. (i) has been proved above. Let us prove (ii). If t : M — R is a
smooth Cauchy time function for ¢/, then its level sets are smooth spacelike Cauchy surfaces for
(M, ¢') and ¢"*(dt, ) is timelike (and past-directed). As seen above, the level sets of t are therefore
also spacelike Cauchy surfaces for (M, g). Moreover, these submanifolds are spacelike also for g
in view of (1)(ii). This is equivalent to saying that their normal vector ¢f(dt,) is timelike (and
past-directed if choosing the same time-orientation as for ¢’). All that proves that ¢ is also a
smooth Cauchy time function for (M, g). The proof of (iii) easily arises from (i).

(3) We take advantage of the following elementary fact.

Lemma 1.2.4. Let g : VxV — R, withdimV = n+1 be a Lorentzian scalar product. § € V*\{0}
is timelike if and only if there is a set of n linearly-independent elements eq,...,e, € V whose
span is made of spacelike vectors, such that (ey) =0 fork=1,...,n.

Proof. If £ € V* is timelike, §¢ € V is timelike as well. Completing eg := #&/4/—g(f&, 8€) to

a pseudo orthonormal basis eg, e1,...,e, of V, the vectors ey, ..., e, satisfy trivially the thesis.
Suppose that £ € V*\{0} admits a set of vectors ey, ..., e, € V whose span S is made of spacelike
vectors and such that £(eg) = 0 for k = 1,...,n. Extract an orthonormal basis f1, ..., f, of S out

of e1,...,e,, and complete it to a pseudo orthonormal basis fy, f1,... fn of V. It holds #¢ = ¢* f;,
and g(£&, fr) = Sp_  blen(€) = 0 for k = 1,2,...,n, so that ¢ = ?fy which is timelike. ¢® = 0
is not permitted since &£ # 0. This concludes our claim. ]
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Evidently, by duality, v € V\{0} is timelike if and only if there is a set of n linearly-independent
forms wi, ...,wy € V* whose span is spacelike and such that wy(v) =0 for k=1,...,n.
Let us pass to the proof of (3). If g < ¢/, let £ € V},g/ﬁ, then there is a set of n linearly-independent
vectors eq,...,e, € T,M whose span is ¢g’-spacelike and such that {(e;) = 0 for k = 1,...,n.
These vectors span a g-spacelike subspace because g < ¢’ and (1)(ii) is valid. Therefore & € V;J*,
ie., g < ¢ implies g’* < g*. The same argument stated for vectors instead of forms proves that
" < ¢f implies g < ¢'.
(4) Fix a basis of T,M, denote by X € R™! the ordered set of components of X € T,M with
respect to that basis and by G (resp. G’) the invertible symmetric matrix representing g (resp.

. ) / e g
¢') with respect to that basis. Let us assume VT < V& * and we prove that VJ ~ < VI *. If
/ f 't f . . .
X eVIT cVZT, then g X € VI * and by X € VI * < V¥, where the last inclusion is due to

(3). From that we have that by X € V"™ also satisfies by X € VI if g (b, X by X) < 0. This
condition is actually satisfied because

g by X by X) = (GX)GTIG'X = X!IG!'GIG'X = XIGGTIG'X = XIG'X = ¢/(X,X) <0

L. . /t f . 1t #

and Proposition 1.1.4 holds. We have so far established that VI TAVZ ™ = &. Since VI T < V¥
. f f_ . '

may intersect only one of V7 © and VJ ~ (otherwise Vf would have more than two connected

. 1t f % Bb . . '
components), it must be Vi © < VZ' 7. The fact that Vi © < V" implies VT < VZ T can be
proved with an analogous argument. O

Using the lemma above, we can immediately conclude that (pointwise) conformally equivalent
metric tensors are obviously in relation.

Proposition 1.2.5. If g€ My and p: M — (0,+0) is smooth, then
(a) pg and =g are Lorentzian,
(b) png < g < pg,
(¢) wlg=<g=<puly.

(d) pg and p~tg are globally hyperbolic if g is, and the spacelike Cauchy hypersurfaces of g are
also spacelike Cauchy hypersurfaces for pug and p~'g.

Proof. Properties (a)-(c) follow easily from the definitions and (d) is a direct consequence of
(a),(b),(c) and Proposition 1.2.3 point (2). O

Remark 1.2.6. Since any two metric tensors having identical lightcones are (pointwise) confor-
mally equivalent our preorder descends to an actual partial ordering on conformal classes.

1.2.2 Properties of convex combinations of Lorentzian metrics

A more interesting set of properties arises when focusing on smooth conver combinations of
Lorentzian metrics. This is the first main result of this section.

Theorem 1.2.7. Let M be a smooth (n + 1)-dimensional manifold, g,g" € My, and consider a
smooth function x : M — [0,1]. If g < ¢, the following facts are valid

(1) (1 —x)g+ xg’ is a metric of Lorentzian type;
(2) g<(1=x)g+x9 <9';
(3) if ggi( = (1 —x)g* + xg%, then ggc := (gy)* for a (unique) metric g, of Lorentzian type;

(4) 9<gx<49';
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(5) If ¢’ is globally hyperbolic and g time-orientable, then (1 — x)g + xg' and g, are globally
hyperbolic.

Proof. (1) Tt is sufficient to prove the thesis point by point. Let ¢, ¢ be quadratic forms in a real
n + 1 dimensional linear space V of signature (—, +,...,+) such that ¢’(z) < 0 implies ¢(z) < 0.
We prove that the strict convex combination ¢” = cq + (1 — ¢)¢’ for ¢ € (0,1) has signature
(—,4,...,+). Indeed, there is a 1-dimensional subspace L on which ¢'(z) < 0 if x # 0. So
q(z) < 0on L and hence ¢"(z) < 0 on L for x # 0. There is also a n-dimensional subspace H on
which ¢(z) > 0 if z # 0. Then ¢/'(z) > 0 on H for x # 0 and hence ¢"(z) > 0 on H if x # 0. By
construction, L n H = {0} necessarily, so that V = L @® H. The bilinear form Q" : V x V - R
associated to ¢”, in a basis of V made of 0 # ey € L and {ex}x=1.., € H with Q" (ex,ep) = dgp, is

/" t
represented by the (n+1) x (n+ 1) matrix [q (060) CI] Since the determinant is ¢”(eg) —cfc < 0

and n eigenvalues are +1, its signature is (—, +,...,+).

(2) Suppose that g(v,v) < 0, then ¢'(v,v) < 0 because g < ¢’ and thus (1 — x)g(v,v) +
xg' (v,v) < 0 because x,1 —x = 0. We have obtained that ¢ < (1 — x)g + x¢’. Let us pass
to the remaining inequality. If (1 — x)g(v,v) + x¢'(v,v) < 0 then ¢'(v,v) < 0 or g(v,v) < 0,
in this second case also ¢'(v,v) < 0 because g < ¢’. In both cases ¢'(v,v) < 0. Summing up,
(1—x)g9+ xg < ¢, concluding the proof of (2).

(3) g* and ¢* are Lorentzian metric on T*M and ¢’* < ¢f due to Lemma 1.2.3, we can recast the
same argument used to establish (1) with trivial re-arrangements, obtaining that gi is Lorentzian
and ¢ < gi = (1—-x)g" + x'¢* < g* with X’ := 1 — x. Notice that g, (v,v) := gi(bv, bv) defines
a Lorentzian metric as well, since it has the same signature of h by construction, and ¢* = h
trivially (and it is the unique metric with this property since b is an isomorphism).

(4) Tt immediately arises from Lemma 1.2.3 by using ¢’ < gi = (1 - x)g"* + xX'¢* < ¢* with
X =1-x.

(5) A smooth timelike vector field of (M, g) is also timelike for (1 — x)g + x¢’ and g, for (2) and
(4) respectively. Hence these metrics are time-orientable and the thesis follows from Lemma 1.2.3
point (2). O

1.3 Paracausal deformation of Lorentzian metrics

The aim of this section is to provide a new definition that shall encode the idea to deform
a Lorentzian metric equipped with a time-orientation into another Lorentzian metric with a
corresponding time-orientation, taking advantage of a procedure consisting of a finite number of
steps. At each step, the light cones of the final metric g; are related to those of the initial one
gi—1 through an inclusion relation, either g;_1 < gr or g < gx—1 preserving the time-orientation
at each step, i.e., the future cone of gi, respectively, includes or is included in the future cone of

gk—1-

1.3.1 Paracausal relation

Definition 1.3.1. Consider a pair of globally hyperbolic spacetimes on the same manifold M
with corresponding metrics g, ¢’ € GHn and corresponding time-orientations. We say that g is
paracausally related to ¢’ — and we denote it by g ~ ¢ — or equivalently ¢’ is a paracausal
deformation of g, if there is a finite sequence, said paracausal chain, gy = ¢,¢91,...,9g8 = ¢ €
GHwm with corresponding time-orientations, such that either

Vot c VP T for all pe M

or
VT c VOt for all pe M,

where the choice may depend on kK =0,..., N — 1.
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Remarks 1.3.2.

Let us remark that our notion of paracausally deformation implies in particular that g, and
gr+1 are always <-comparable.

Evidently, to be paracausally related is an equivalence relation in GHy.

We stress that paracausal deformations explicitly consider the time-orientations of the used
sequences of globally hyperbolic spacetimes. So, even if we say that “metrics are para-
causally related”, the relation actually involves the metrics equipped with corresponding
time-orientations.

We shall show below a characterization of the paracausal relationship which seems more
natural from a geometric and physical viewpoint. However, the definition above as it stands
is much more directly suitable for the applications to Mgller operators we shall introduce
in the second part of this work.

Examples 1.3.3.

There are two elementary cases of paracausally related (globally hyperbolic) metrics go, g1
on M which are not directly <-comparable:

1. There is a globally hyperbolic metric g on M such that, simultaneously g < go and
g < g1 and the future lightcones are correspondingly included.

2. There is a globally hyperbolic metric ¢ on M such that, simultaneously gy < ¢ and
g1 < g and the future lightcones are correspondingly included.

In both cases, the existence of sequence gg, g, g1 proves that go ~ g1.

Let us give an elementary concrete example of paracausally related metrics. Consider the
following smooth manifold R” endowed with the Minkowski metrics

noz—dt®dt+2d:ﬂi®d$i 771=—d7'®d7'+2dyi®dyi
i=1 =1

where (t,21,...,2zy,) and (7, y1,. .., yn) are two different systems of Cartesian coordinates on
R"*1. Here t and 7 are Cauchy temporal functions associated to the respective Lorentzian
metric and defining the time-orientation of the two metrics: dt and dr are assumed to be
past directed for the respective metric. More precisely, we assume that the two coordinate
systems are related by means of a physically non-trivial permutation which interchanges
space and time, as in Figure 1.3, 7 = x1, y1 = t, and yx = z for k£ > 1. It is not difficult
to see that even if 1y # 71 evidently, we have 1y ~ n;: they are paracausally related by the
sequence of metrics 79, g1, g2, M1 Whose future cones are given as in Figure 1.4. It is evident
that by further implementing the procedure, it is possible to reverse the time-orientation
of (M, no) through a sequence of paracausal deformations leaving the final metric identical
to the initial one.
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Figure 1.3: Future light cones of different Minkowski metrics on R+,

Tlo 81
VP VP

Figure 1.4: Auxiliary future light cones to prove ng ~ n;

(3) We pass to present a case where a pair of globally hyperbolic metrics are not paracausally
related. Consider the 2D Minkowski cylinder M obtained by identifying z and = + L
in R? with coordinates x,y. The first globally hyperbolic spacetime is (M, n1) where 1, =
—dy®dy + dx®dzx, taking the identification into account, and with time-orientation defined
by assuming that 0, is future-directed. The second globally hyperbolic spacetime is (M, 1)
where again 10 = —dy ® dy + dz ® dx, taking the identification into account, but with the
opposite time-orientation, i.e., defined by —d,. See also Figure 1.5.

Ao N
SN I

Figure 1.5: 2-D Minkowski cylinder.

These two metrics are not paracausally related. Any attempt to use the procedure as in the
previous example to rotate the former into the latter faces the insurmountable obstruction
that one of the auxiliary metrics would have Cauchy hypersurfaces given by the z-constant
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lines. This Lorentzian manifold is not globally hyperbolic because it admits closed temporal
curves as in Figure 1.6.

P

timelike
curye. -~ SN

for g4 v

N S

Figure 1.6: Sequence of metrics where g4 is not globally hyperbolic

Notice that this obstruction does not take place without the identification x = x + L.

1.3.2 Characterization of paracausal deformation in terms of future cones

There is a natural situation where two globally hyperbolic metrics g and ¢’ on M are paracausally
related. The generalization of the following result leads to a natural characterization of the
paracausal relationship.

Proposition 1.3.4. Let (M, g) and (M, g¢’) be globally hyperbolic spacetimes on the same manifold
M. If VEY A VEY £ & for every x € M, then the metrics g and ¢’ are paracausally related.

Proof. To prove the assertion it is sufficient to prove the existence of a Lorentzian metric h € Ty
such that h < g and h < ¢’. In this case, h would be globally hyperbolic according to (2) in
Lemma 1.2.3 and the same argument as in (1) Examples 1.3.3 would prove the thesis.

Let us start by proving that a smooth vector field X on M exists such that X, € V}/ A V[-}g'-ﬁ-
for all p € M. Let us define the smooth functions

G:TM 3 (p,v) — gp(v,v) eR, Gy : TM 3 (p,v) — gp(v,Y) e R,

where Y is a smooth timelike future oriented vector field for g. By construction (with obvious
notation) UpemVy " = G71(—0,0) NGy (—00,0) = TM is an open set. With the same argument,
we have that also upey\/ﬂ/jpgur < TM is open. Finally, UpemVy™ N upel\/ﬂ/}[,gur = UpemVy N Vpg/+ is
therefore open, non-empty by hypothesis, and projects onto the whole M by construction. As a
consequence, given a local trivialization patch TU around p € U, where (U, %) is a local chart on
M (with dim(M) = n + 1), the set <Upe|\/|‘/;9g+ N V},gur) N TU is diffeomorphic to an open subset
AcV xR with V := ¢(U) ¢ R*™! and 71(A4) = V (7 : R*™! x R**L — R being the
standard projection onto the first factor). Working in coordinates, it is then trivially possible
first to pick out a smooth local section X(U) of TU such that X,gU) eVITAVITifqeU. To
conclude, consider a partition of the unity {x;},c;r of M subordinated to a locally finite covering
{Ui}ier of domains of local charts of M and let XI(,Ui) e VIt n Vpg’+ be constructed as above
when p € U; for every i € I. The smooth vector field constructed as a locally finite convex linear
combination X := 3., x; X U9 satisfies X, € VI* A Vi * for every p € M because the cones V7™,
ng/+ are convex sets in a vector space and thus their intersection is also convex. X is the vector
field we were searching for.

As the second step we construct a Lorentzian metric h, whose future cones VXL* satisfy

X, e VI < VT VI for every p € M. Notice that it means h € Ty since X is future
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directed for h (and also for the two metrics g and ¢’) and thus it defines a time-orientation for
(M, h). Since h < g, ¢’, this would conclude our proof.
Let us construct h taking advantage of the vector field X. Consider p € M and define a
. X .
-pseudo orthonormal basis eg,...,e, where ¢ = ———2—— and the remaining vectors are
g-p 0 n 0 /77g(Xp7Xp) g

g-spacelike. If v,v" € T,M,
n
g('l),’l)/) = _9(607v)g(607 Ul) + Z g(ek,v)g(ek,v/) :
k=1

If a € (0,1), the new Lorentzian scalar product in T,M 3 v, v’

Xpu /U)g(va /U/)
Q(Xanp)

g"(v,0') := —ag(eo, v)g(eo, ') + Y glex, v)glex,v) = g(v,v') + (a— 4 (1.3.1)
k=1

trivially satisfies (the closure being taken in T,M\{0})
X e VIt VT Vgt forae (0,1).

The strong inclusions are due to the fact that the lightlike boundary of Vpga+ is made of timelike
vectors of g as it arises from the definition of g*. Now note that oV} * becomes more and more
concentrated around the set {A\X,, |\ > 0} as a approaches 0 from above. (In particular, the limit

and degenerate case gg=0 (v,v) = 0 implies v is parallel to X,.) Since X, € V},g/+ which is also an
open convex cone as %ga+7 there must exist a, € (0, 1) such that Vpgaer C Vpg,+. This property is

locally uniform in a as established in the following technical lemma;:

Lemma.! Within the hypotheses of the proposition, if x € M, there is a coordinate patch with

domain V' 3 x, an open set U 3 x with compact closure U < V, and a constant ay € (0,1) such
that VI"" " < VI for every pe U.

Proof. If x € M, there is a coordinate patch with domain V' 3 x and coordinates V' 3 p — ¢(p) =
(2°(p),...,2"(p)) € R**! such that U 3 x for some open subset U < V such that U is compact.
We will henceforth deal with U and the coordinates (zV,...,2") restricted to thereon. We will
also take advantage of the compact set K := o(U) < R"*! and identify TU with K x R**! using
the coordinates. Finally, we will equip both K and R"*! (representing T,M at each p € U=K)
with the standard Euclidean metric of R"*! whose norm will be denoted by || - ||.

Let us start the proof by proving that the family of cones Vpg'+ of ¢’ has a minimal width
m > 0 when p ranges in K. We henceforth view the above future-directed timelike vector field
X and ¢’ as geometric objects on K using the coordinate system. In particular, if p € K, let us
indicate by v, € R™*! the unique future-directed timelike vector parallel to X, (now viewed as a
vector in R"*1) such that ||v,|| = 1. Consider the set made of future-directed elements of TM

C:={(p,u) € K xS" | g,(u,vp) <0, g,(u,u) = 0}
(above S" := {z € R""! | ||z|| = 1}) and the continuous function
WC (pu) o lu—uyll >0,

which computes the width of 51/}79,+ (that is of Vpg'+ itself) around X, along the direction u
by using the Euclidean distance induced by || - ||. Observe that C' is compact since it is the

L As noticed by the referee, a different strategy for proving this lemma would be showing that the function

a r+
M 3 p — a(p) = sup{a € (0,1) : V}J T e V7 } is continuous. In that case, one can alternatively define
ay := min,g, . However the proof of continuity is not technically easy.
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intersection of preimages of a pair of closed sets along two corresponding continuous maps and
it is included in a compact set. Since this map is continuous and C' is compact, there exists

m:=ménW>O.

In particular, m > 0, otherwise u = v, for some (¢,u) € C and this is not possible since it
would imply ¢'(vg,vq) = ¢'(u,u) = 0, but v, is timelike (g;(vq,vq) < 0) since it does not vanish
(||vg]] = 1) and it is proportional to the timelike vector X,.

An analogous width-cone function can be defined for the cones of g* (including the degenerated
case a = 0) on a set C’ which also embodies the dependence on a:

C':={(a,p,u) €[0,1/2] x K x S™| gg(u,vp) <0 ,gg(u,u) =0}.
We also define the continuous function
W':C" 3 (a,p,u) — [[u—vpl|| =0

Observe that C” is again compact since it is the intersection of preimages of two closed sets along
a pair of corresponding continuous maps of (a,p,u) and C” is included in a compact set.

We want to prove that there exists a” € [0,1/2] such that W/ (a™, p,u) < m for all (p,u) € C.
If this were not the case, then for every a, := 1/n there would be a pair (py,u,) € C such that
W' (ap, pn,u,) = m. Since C' is a compact metric space, we could extract a subsequence of triples
(@ny s Prgs Ung) = (0, Poo, us) € [0,1/2] x C for k — +00 and some (po, us) € C. By continuity

0 = gan (un, un) — g9, (U, uew) where [[ug|| = 1. From (1.3.1), g5 (uw,uy) = 0 would entail
that uy is parallel to vy, and thus W’ (0, pe, up,,) = ||tues — Up,.|| = 0. That is in contradiction
with the requirement W' (ayn, pn,u,) = m > 0 for every n = 1,2,... in view of the continuity of
w’.

We have therefore established that there exists a™ € [0,1/2] such that W/(a™, p,u) < m for

all (p,u) € C. From the definition of W and W', we have also obtained that V,J" = VI for
all pe K. It is enough to conclude that V},gaU+ V) * for all p e U as wanted simply by taking

ay := a™. This concludes our claim. ]

Let us go on with the main proof. For every U as in the previous lemma, define the constant
function a(p) = ay for p € U. Since this can be done in a neighbourhood of every point p € M,
using a partition of the unity {x;}ic; subordinated to a locally finite covering of charts {U;}cr,
we can construct the metric h, where now every a; := ay, : U; — (0,1) is a constant in U; and
thus it is a smooth function therein.

= 2xP)g5 sz (gp v,0) + (ai(p) — 1)gp(Xp’”)9p(vav’)>

/ 9p(Xp, v)gp(Xp, V')
— gp(v,0)) + (; xi(p)ai(p) — 1) 90(Xp, X,)

Since ), xi(p)ai(p) € (0,1), this metric is still Lorentzian and of the form (1.3.1) point by point,
where now a(p) = >}, xi(p)ai(p). By construction X, € VX‘* c VJT for every p € M, just
because it happens point by point with the above choice of a(p). In particular, we can endow
h with the time-orientation induced by X as it happens for g, ¢’ and all local metrics g%

Finally, V}“r c Vg’+ because, if hy(v,v) < 0, at least one of the values g%o (P )(v v) appearing in
> xi(p)gp iP) (4, v) must be negative and thus, if v is future-directed, v € vy e VI, The

proof is over because h satisfies all requirements X, € V;Dh* c vy + nVy " for every p € M. ]

As an immediate by-product, it is easy to see that for any globally hyperbolic metric g, there
exists a paracausal deformation ¢’ of g which is ultrastatic.
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Corollary 1.3.5. Let (M, g) be a globally hyperbolic spacetime. Then there exists a paracausal
deformation g' of g such that (M, g’) is an ultrastatic spacetime.

Proof. Let t be a Cauchy temporal function for the globally hyperbolic spacetime (M, g) so that
M is isometric to R x ¥ with metric —3%dt? + h;. We indicate by ¢y the tangent vector to the
submanifold R. Let h be a complete Riemannian metric on Y. Then the ultrastatic metric
g := —dt? + h is globally hyperbolic [96] and the vector &; is contained in the intersection of V;J +

and Vz',glJr for any p € M. Proposition 1.3.4 ends the proof. O

Remark 1.3.6. The complete Riemannian metric h on the slice can be chosen, in particular, of
bounded geometry since any paracompact manifold admits one, [67]. This important fact will be
exploited in the last chapter to construct a Hadamard state for the massive vector field.

The result established in Proposition 1.3.4 leads to a crucial characterization of paracausally
related metrics, which represent the second main result of this section.

Theorem 1.3.7. Let M be a smooth manifold. Two metrics g,q' € GHm are paracausally related
if and only if there exists a finite sequence of globally hyperbolic metrics g1 = ¢,92...,9n = g on
M such that all pairs of consecutive metrics gi, gpi1 satisfy VI A et o & for every x € M.

Proof. If g, ¢’ are paracausally related, then a sequence of metrics as in Definition 1.3.1 trivially
satisfies the condition in the thesis. If that condition is wvice versa satisfied, then the metrics of
each pair g, gr+1 of the sequence are paracausally related in view of Proposition 1.3.4. Since
paracausal relation is transitive, g and ¢’ are paracausally related. O

We conclude this first analysis of the paracausal relation with a very important necessary con-
dition coming as a corollary of the equivalence of the very first definition and the characterization
above.

Corollary 1.3.8. Let M be a smooth manifold and g,g' € GH(M) be such that g ~ ¢g'. Then two
Cauchy surfaces ¥ and X', respectively for g and for ¢', are diffeomorphic.

Proof. Let g = g1,92...,9n8 = ¢’ be the paracausal chain connecting the two metrics. We have
proved that it exists if and only if there exists another sequence of globally hyperbolic metrics
g=31,...,9m = ¢ such that their future cones intersect pairwise. But this means that for each
couple of consecutive metrics §; and §; 1 their intersection is non-empty and a paracausal chain
can be built by constructing a metric g; j+1 such that (1) gi;+1 < g; and (2) Giit1 < Git1-

But by 1.2.3, (1) implies that any Cauchy surface ¥; of g; is a Cauchy surface of §; ;41 and (2)
implies that any Cauchy surface ¥;;1 of g;+1 is a Cauchy surface of g; ;4+1, but since all Cauchy
surfaces associated to a globally hyperbolic metric are diffeomorphic we get that 3; and ;.1 are
diffeomorphic. Iterating the procedure to the whole chain proves the claimed result. O

1.3.3 Paracausal deformation and Cauchy temporal functions

We now study the interplay of the notion of Cauchy temporal function and the one of paracausal
deformation.
We first state and prove a result concerning Cauchy surfaces and the paracausal relation?.

Proposition 1.3.9. Let (M, g) and (M, g’) be globally hyperbolic spacetimes on M which share a
Cauchy temporal function t : M — R according to Definition 1.1.14. Then g ~ ¢'.

2The following proof is actually extracted by a result due to M. Sanchez who, with Theorem 3.4 of [97], improved
a similar statement in a previous version of this work where we also assumed that the Cauchy surfaces were compact.
We are grateful to M. Sanchez for providing this improved version of our result.
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Proof. As before, we will henceforth omit to write the isometries identifying the various space-
times. However we may have two different isometries from M to R x X for g and ¢’. Proposition
125 yieldsg<g<g, 9 <9 <g if

§:=0By%g=—dt@dt+ B;°hy  and ¢ :=p;%d = —dt®@dt+ By ?hy,

where ﬁg, B% are the lapse function we choose in accordance with Theorem 1.1.12. The metrics ¢
and ¢’ are globally hyperbolic for Lemma 1.1.18 (with o = 1). The proof ends by proving that §
and ¢’ are paracausally related. Referring to the splitting of M as R x ¥ induced by the Cauchy
temporal function ¢, define the globally hyperbolic metric —dt ® dt + h, where h is a complete
Riemannian metric on X (see, e.g., [96]). For every A € (0, 1), direct inspection proves that,

gy = A—dt@dt +h) + (1 —A)g = —dt @dt + A\ + (1 — \)By by < —dt @ dt + \h
and
gy = A—dt@dt +h) + (1 = NG = —dt@dt +  \h + (1 — \)By *hy < —dt @dt + (1 — \) By 2hy -

Since Ah is complete, from the former line we conclude that the metric gy is globally hyperbolic
due to (2) Lemma 1.2.3 and that it is paracausally related to dt ® dt + Ah. From the latter, since
—dt@dt+ (1 —=X\)5y 2h, is globally hyperbolic in view of Lemma 1.1.18, we have that this metric
and gy are paracausally related. Since (1 — \) € (0,1), the cones of —dt ® dt + (1 — \)3y 2hy
include the cones of —dt @ dt + 3 2h, = § so that these metrics are paracausally related as well.
Transitivity implies that —dt®dt + Ah and § are paracausally related. The same argument proves
that —dt ® dt + Ah and §' are paracausally related so that g ~ ¢’ and the thesis holds. O

Now we prove another non trivial result about paracausally related metrics for Cauchy com-
pact spacetimes and conclude the chapter.

Proposition 1.3.10. Let (M, g) and (M, g’) be spacetimes such that g,g' € GHm. Suppose that g
admits a Cauchy temporal function t : M — R whose spacelike Cauchy hypersurfaces are compact
and are also g'-spacelike, then g ~ g’ up to a change of the temporal orientation of g'.

/N

8+
4

Figure 1.7: Over a point P € ¥;, which is g-Cauchy, we see a case in which the hypersurface is
spacelike also for the metric ¢’, nevertheless the lightcones do not intersect.

bodt
X = Xyng + mg(X), where X, = g(ng, X) and my(X) = Id — g(ng, X)ng projects on the Cauchy
surface.

The metric tensor g =

Proof. First of all, by defining the g-normal n, = any vector field X can be written as

__adt*
g#(dt,dt)

phism 1), gets recast in the orthogonal form g,.+ = —Bdt? + h;. This metric is obviously, by 1.2.5,

+ h(rw(-),7(+)), following 1.1.12, under the action of a diffeomor-
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paracausally related to the conformal metric g. = —dt? + éht, which is, in turn, paracausally

related to a globally hyperbolic metric § = —dt? 4+ h with h a complete Riemannian metric on
the slice and if we choose coherently the time orientation, see corollary 1.3.5.

Then we look at the metric ¢’ after the action of the isometric diffeomorphism v, and define
g = v¥5g’. The proof ends if we are able to find a globally hyperbolic metric g” such that

If we choose a function @ € C*(R,(0,00)), then, by lemma 1.1.18 the metric tensor g, =
—dt? + a(t)h is globally hyperbolic and, by 1.3.4, paracausally related to §. We want to tune the
function « in order to have that the cones of g, intersect the cones of §'.
First we define pointwise n’ the smooth vector field g’-normal to the Cauchy hypersurfaces of g
of the foliation induced by the temporal function ¢ and decompose it with respect to the splitting
of the tangent space induced by the metric g, through its normal n,. We get n’ = Zn, + W
where Z = go(nq,n’) and W =y (n).
Since the Cauchy hypersurfaces of g and g, are spacelike also for ¢/, we have that Z # 0. The
cones of the two metrics intersect if « is such that n’ is g,-timelike i.e. iff

1w

/ 2 2
In'llg. = =127 + a@)W][; <0 < ORI

The manifold R x ¥ can be covered by the time-strips 7S,, = {[—n,n] x X},en which are obviously
compact since ¥ is compact by hypothesis.
W15

This means that for all n € N the smooth function f : M — R defined by f := Vi

maximum M,, and a minimum m,, when restricted to the strip 7S,. So we construct the required

function ﬁ : R — R* such that

attains a

ojt) =M,+1 te[-n—1,—n)u (n,n+1].
This function isn’t even continuous, but it piecewise constant. The maximum has been increased
by one to avoid the possibility that this function gets null: it could happen if the normal n’ and
ne get aligned in the first time-strip and then depart.
The last thing to do is to smoothen the function «(t), something which can of course be done by
standard gluing arguments.
Now that we know that the cones of g, and ¢’ intersect, if the temporal orientation of ¢’ is such
that V- n ng # & we define ¢” := g, ~ ¢’ and the proof is concluded.
If quz N ng = (f the metric ¢”, and therefore the metric §, is paracausally related to §’ with
opposite time orientation. ]

1.4 Conclusions

A lot of problems remain open about the paracausal relation, which definitely deserves to be
studied separately from the problem of Mgller operators. To conclude the chapter we list and
briefly discuss some of the possible research lines that should be followed in the future.

Two equivalent characterizations of such a relation have been proved to be equivalent and
some useful sufficient conditions and a necessary condition have been studied and are known. To
summarize, it has been proved that:

(1) paracausally related metrics have diffeomorphic Cauchy surfaces;

(2) if g,¢9’ € GHm satisfy the condition that supp (¢ — ¢’) is compact in M the two metrics are
paracausally related, [19];

(3) globally hyperbolic metrics sharing Cauchy slicings are paracausally related;
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(4) for Cauchy compact spacetimes if the Cauchy surfaces of g are spacelike for ¢’, then they
are paracausally related;

(5) all paracausal classes have a, of course non-unique, ultrastatic representative.

However in general almost nothing is known about the paracausal classes, i.e the quotient set
GHwm/ ~: the first thing to ask is if in 4 spacetime dimensions, in the case of R%, all globally
hyperbolic metrics are paracausally related or how the classes are related to the topology of the
spacetime manifold and of the (diffeomorphic) Cauchy surfaces associated to each metric in the
chain.

Since we know that paracausally related metrics necessarily have diffeomorphic Cauchy sur-
faces the following proposition, using the interesting results described in [91], holds. In fact it is
known that R* admits infinite globally hyperbolic metrics whose Cauchy splittings are R* >~ Rx ¥,
and R* >~ R x ¥y with ¥; 2% 3¢

Proposition 1.4.1. R* endowed with the standard smooth differentiable structure admits at least
a paracausal class of globally hyperbolic metrics for each of the (uncountable) possible smooth 3-
manifolds ¥ such that R* =g R x X,

And such a result can be generalized for a general non compact smooth manifold as follows:

Proposition 1.4.2. A smooth non-compact d > 1 dimensional manifold M, admitting Lorentzian
metrics, admits at least a paracausal class of globally hyperbolic metrics for each of the possible
smooth, non diffeomorphic d — 1 dimensional manifolds 3 such that M =g;ry R x X.

Outside of the real world 3 dimensional Cauchy surfaces more classes may arise whenever the
differentiable structures compatible with the topology of 3 are more than one, up to diffeomor-
phisms.

Fortunately Cauchy-compact globally hyperbolic spacetime 4-manifolds would not suffer such
pathologies, because if there exists a closed oriented smooth 3-manifold ¥ such that M =4 s Rx X,
then ¥ is unique up to diffeomorphisms, [26].

However we still have no rigorous proofs regarding metrics that are not paracausally relates
when the Cauchy surfaces are diffeomorphic, even thought in 1.3.3 we have conjectured that
Cauchy compact metrics with equal cones, but opposite temporal orientation, should fall in
different paracausal classes.

Conjecture 1.4.3. Let (R x 3,g) and (R x X, ¢’) spacetimes with g, ¢’ € GHpm such that the
hypersurface ¥ is compact and Cauchy for both metrics. If Vg = Vf, then g and ¢’ are not
paracausally related.

The idea behind the conjecture is that g and ¢’ in part (3) of the Example 1.3.3 have somehow
‘different time-orientation’. Since the time-orientation depends on the metric on M, we have to
provide criteria to translate the requirement that g and ¢’ have in some sense a common ‘future-
direction’. Keeping in mind what said above, a conjecture which urges to be proved or disproved
is the following one, maybe adding further hypothesis, for example concerning the dimension of
the spacetime.

Conjecture 1.4.4. Let t and t' be Cauchy temporal functions for globally hyperbolic spacetimes
(M, g) and (M, ¢’). Denote with (-,-) the natural paring between T*M and TM. Then

g~d if and only if (O, dt'y >0 and (Oy,dty >0,
where 0; (resp. 0y) is the dual of dt (resp. dt’) with respect to g (resp. ¢’).

Remark 1.4.5. The requirement (d;,dt’) > 0 implies that the integral curve v = ~(t) of d; on
(M, ¢) satisfies t/(y(t2)) > t'(7y(t1)) if t2 > t1. This requirement is weaker than assuming the 0
is timelike and future-directed for ¢’. The reason why we also impose {(Jy,dt) > 0 is that being
paracausally related is an equivalence relation in GH .
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Something interesting which has been observed (and is obvious to prove) is that paracausal chains
are in one to one correspondence with specific curves joining the metrics in GHwy.

Proposition 1.4.6. Let g,g' € GHm. Then g ~ ¢ with a chain {g;}; = 1V made of N € N
metrics, if and only if there exists a piecewise convex curve v : [0, N] — GH(M), v(0) = g and

(1) =4¢".

The following question immediately arises: is this piece-wise convex curve continuous w.r.t some
suitable topology? If that is the case one could prove that metrics such as the ones of the previous
conjecture lie in different connected components on the space GHy, then no paracausal chain
joining them can exist. But of much more interest would be if all paracausal chains were necessary
‘samplings’ of a continuous curve joining the metrics in the space of globally hyperbolic metrics,
seen as a subset of the space of all Lorentzian metrics.

Conjecture 1.4.7. There is a one-to-one correspondence between paracausal classes and con-
nected components of GHy < My with respect to some suitable topology.

In such a case the existence of the Mgller operators, that will be largely discussed in the next
chapters, would depend on the topology of the space of globally hyperbolic metrics, whose struc-
ture is supposed to be related to the topology of the manifold M.

The possible topologies that may be considered are the Geroch interval topology, [65], which
does not seem suitable because of its coarseness preventing the convex segments to be continu-
ous, Whitney topologies and compact-open topology.
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Chapter 2

The Mgller map for Green
hyperbolic operators

In this chapter we develop and apply to several examples a technique to compare solutions of
Green hyperbolic differential operators, describing the propagation of free classical fields on curved
spacetime, under finite global variations of the background metric tensor. Recently a great deal of
progress has been made in this directions as well as in the comparison of the associated quantum
field theories. More precisely, given a pair P and P’ of Green hyperbolic differential operators
on (possibly different) globally hyperbolic spacetimes (M, g) and (M, ¢'), a natural issue concerns
the existence of a linear isomorphism S : Solp — Solps between the linear spaces of the solutions
of the equations Pi) = 0 and P’+)’ = 0. Such an isomorphism, if it exists, is called a Mgller map.
These problems have been tackled in the past for special cases of metrics g, ¢’ and several types
of Green hyperbolic field operators which rule the dynamics of bosonic fields [27,35] or fermionic
fields [37,90]. In loc. cit., the pairs of Lorentzian metrics g, ¢’ had to satisfy one of the following
assumptions: they shared a common foliation of smooth spacelike Cauchy surfaces; they coincided
outside a compact set.

In this work we exploit the notion of paracausal relation, described in detail in the previous
chapter to show that, whenever g ~ ¢’ a geometric Mgller operator can be constructed. The
procedure can be summarized as follows. The overall idea is inspired by the scattering theory in
the special case of a pair of globally hyperbolic metrics gg, g1 over M such that the light cones of gg
are included in the light cones of g; (this is the most elementary case of paracausal relation). We
start with two “free theories”, described by the space of solutions of Green hyperbolic operators
Py and Py in corresponding spacetimes (M, gg) and (M, g1 ), respectively, and we intend to connect
them through an “interaction spacetime” (M, g,) with a “temporally localized” interaction defined
by interpolating the two metrics by means of a smoothing function y. Here we need two Mgller
maps: {24 connecting (M, go) and (M, gy) — which reduces to the identity in the past when x
is switched off — and a second Mgller map connecting (M, gy) to (M, g1) — which reduces to
the identity in the future when y constantly takes the value 1. The “S-matrix” given by the
composition S := Q_Q, will be the Mgller map connecting Py and P;.

The above construction generalizes to the case of a pair of globally hyperbolic metrics g, ¢’
on M which are paracausally related and this fact is denoted by g ~ ¢'.

The chapter is structured as follows. In the very beginning we recap the basic properties of
Green hyperbolic operators. In the first main section 2.1 a class of differential operators that we
will analyse is discussed: normally hyperbolic operators. They generalize the d’Alembert wave
operator, i.e the classical Klein-Gordon field, in a sense that will be immediately clarified; for sake
of generality this operator will act on smooth sections of hermitian vector bundles with bundle
metric that does not depend on the spacetime metric.

Later the problem of constructing the interpolating spacetime and the interpolating operator
through convex combinations of differential operators is tackled and its Cauchy problem is studied.
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For this reason we introduced the problem of the convex combination of globally hyperbolic
metrics which led to the study of the paracausal relation, which was subject of the previous
chapter.
Finally the Mgller operator is introduced for the first time and its properties are discussed in
detail, especially its adjoint and the feature that it intertwines the causal propagators of the
compared theories, which will be crucial in the next chapter in order to construct Hadamard
states. The definition of the adjoint operator Rng’, mapping objects related to a spacetime to
another spacetime, is completely new and all its useful properties are immediately investigated.
In the last main section 2.2 the Proca vector field is analyzed. Since it is a one form, the Proca
field is a section of the cotangent bundle equipped with the dual of the spacetime metric, so it is
not a hermitian bundle with a metric which does not depend on the spacetime. Moreover, in this
case, the interpolating differential operator is not a convex combination of two Proca operators
since the latter would fail to be Green hyperbolic in general. The Cauchy problem for this field
is discussed in detail as one of a constrained normally hyperbolic PDE and, finally, the Mgller
operator an the definition of the adjoint are carefully modified to incorporate the change of the
bundle metric.
We then conclude describing possible future research lines in such a field.

2.1 The normally hyperbolic Klein Gordon field

The main purpose of this section is to realize a geometric map to compare the space of solutions of
normally hyperbolic operators defined on possibly different globally hyperbolic manifolds. Before
starting to introduce our theory, we remind some general definitions and we fix the notation
that will be used from now on. Let E be a vector bundle (always on K and of finite rank )
over a spacetime (M, g), whose generic fiber (a K vector space isomorphic to a canonical fiber)
is denoted by E, for p € M. T'(E) is the K-space of smooth sections of E. I'(E) has a number of
useful subspaces we list below.

(i) T(E) = I'(E) is the subspace of compactly supported smooth sections.

(ii) T'pe(E) and I'y.(E) denote the subspaces of I'(E) whose elements have respectively past
compact support and future compact support.

(iii) If (M, g) is globally hyperbolic, T's.(E) = T'(E) is the subspace of spatially compact
sections: the smooth sections whose support intersects every spacelike Cauchy hypersurface
in a compact set.

These spaces are equipped with natural topologies as discussed in [4]. In case there are several
metrics on a common spacetime M basis of E, the used metric g will be indicated as well, for
instance T'§.(E), if the nature of the space of sections depends on the chosen metric (this is not
the case for I'.(E)).

A summary of the main results obtained in the case of normally hyperbolic operators is the
following where also the special notion of adjoint operator Rfss’ is used.

Theorem 2 (Theorems 2.1.20, 2.1.21, and 2.1.27). Let E be a K-vector bundle over the smooth
manifold M with a non-degenerate, real or Hermitian depending on K, fiber metric {-|-). Consider
9,9 € GHr with respectively associated normally hyperbolic formally-selfadjoint operators N, N'.
If the metrics are paracausally related g ~ ¢, then it is possible to define a (non-unique) K-vector
space isomorphism R : T'(E) — T'(E), called Mgller operator of g,¢' (with this order), such that
the following facts are true.

(1) The restrictions to the relevant subspaces of T'(E) respectively define symplectic Moller maps
SY (see Definition 2.1.22) which preserve the symplectic forms 03‘, 02',/ defined as in Equa-
tion (2.1.7), namely

JgN,/(SO\I/, S0) = UgN(\I/, ®)  for every ¥, € Ker? (N).
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(2) The causal propagators Gy and Gy, respectively of N' and N, satisfy RGy Rfss’ = Gnr, where
Riss’ is the adjoint of the Moller operator (see Definition 2.1.9).

(3) By denoting ¢’ the smooth function such that vol 4 = ¢ vol 4, we have ¢/N'R =N .

(4) It holds R'ss'N'|r £y = Nlr,(g) -

2.1.1 Green hyperbolic operators

The reason why we focused on globally hyperbolic spacetimes comes from their very first reason
of existence, [81]: linear partial differential operators defining linear field theory have a well posed
Cauchy problem thereon.

As a consequence of the well-posedness of the Cauchy problem with “finite propagation speed of
the solutions” stated in (2.1.2), one may establish the existence of Green operators. We review
now briefly what Green hyperbolic operators are and the most important results we will use
throughout the whole chapter.

Definition 2.1.1. Let E be a real or complex vector bundle over the spacetime (M, g). A linear
differential operator P : I'(E) — T'(E) is called Green hyperbolic if

(1) there exist linear maps, dubbed advanced Green operator G*: I',.(E) — T'(E) and
retarded Green operator G™: I'y.(E) — I'(E), satisfying

(i.a) Gt oPf=PoG*f=fforall fe 'y (E),
(ii.a) supp (G*f) < J*(suppf) for all § € T'pe(E);
(ib) G- oPf=PoG f=fforall feT(E),

)

(ii.b) supp (G™f) < J~(suppf) for all f € I'y.(E);
(2) the formally dual operator P* admits advanced and retarded Green operators as well.

For sake of completeness, let us recall that the formally dual operator P* : I'(E*) — I'(E*)
is the unique linear differential operator acting on the smooth sections of the dual bundle E*
satisfying

f (', P vol, = f (PH ) vol,
M M

for every f € T'.(E) and ' € T'.(E*) (which is equivalent to saying f € I'(E) and §f € I'(E*) such
that supp(f) N supp(f)’ is compact), vol, being the volume form induced by g on M.

Remarks 2.1.2.

(1) The Green operators we define below are the extensions to I',./ s (E) of the analogues defined
in [3] and indicated by G4 therein.

(2) It is possible to prove that the Green operators are unique for a Green hyperbolic operator
(cf. [3, Corollary 3.12]). Furthermore as a consequence of [3, Lemma 3.21], it arises that if
"€ T'.(E*) and f € I').(E) or f € I'¢.(E) respectively,
P !

J (Gpsf', §) voly :f {f',Ghf)y volg J (GEsF . F) volg :j {f',Gpf) volg (2.1.1)
M M M M

where G;—S indicate the Green operators of P and GIJ—S* indicate the Green operators of P*.

Proposition 2.1.3. If P is a Green hyperbolic operator on a vector bundle E over the globally
hyperbolic spacetime (M, g) and p : M — (0, +00) is smooth, then pP is Green hyperbolic as well
and G;*FP = G%p‘l.
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Proof. The thesis immediately follows form the fact that G;—r p~tand pflG;—r* satisfy the properties

of the Green operators for pP and (pP)* = P*p respectively. O

Given a Green hyperbolic operator with Green operators G, a relevant operator constructed
out of G is the so-called causal propagator,

G:=G"lr.e) — G Ir.(g) : Te(E) = T'(E) .
It satisfies remarkable properties we are going to discuss (see e.g. [4, Theorem 3.6.21]).

Theorem 2.1.4. Let G be the causal propagator of a Green hyperbolic differential operator P :
I'(E) — T'(E) on the vector bundle E over a globally hyperbolic spacetime (M, g). The following

sequence is exact

{0} = Te(E) B To(E) S Tue(E) B Too(E) — {0} .

Proof. Injectivity of I'.(E) LN I'.(E) easily arises from G* Pf = f. Let us pass to the other parts of
the sequence. First of all notice that G*(I'.(E)) < T's.(E) since supp(G*(§)) = J4(supp(f)) and

the first assertion then follows form known facts of globally hyperbolic spacetimes. Let us prove

that I'.(E) S [sc(E) is surjective when the image is restricted to the kernel of I'y.(E) 5 s (E).

Suppose that PU = 0 for U € 'y (E). If ¢ is a smooth Cauchy time function of (M,g) and
X : M — [0,1] is smooth, vanishes for ¢ < ¢y and is constantly 1 for ¢ > ¢;, then

fo := P(x¥) € T'.(E)

is such that ¥ = Gfy. Notice that supp(fy) is included between the Cauchy hypersurfaces t~*(¢g)
and t~1(¢1). Indeed,

Gfy = GTP(x¥) =G P(x¥) =GP(x¥) + G P(1—x)¥) =x¥ + (1 - x)¥ = V.

It is obvious that that fg can be changed by adding a section of the form Ph with h € T'.(E)

preserving the property Gfy = W. This exhaust the kernel of I'.(E) S I'sc(E) as asserted in

the thesis. Indeed, if Gf = 0, then G*f = G~f. From the properties of the supports of Gf, we
conclude that G*f = hy € T'(E) < I'pe(E) n I'fe(E). Hence § = PG*f = Ph,. To conclude, we

prove that I's.(E) i Isc(E) is surjective. If f € I's.(E), with x as above,
f=xf+ (1 —=x)f=PG"(xf) + PG ((1 —)f) = P[G"(xf) + G ((1 — x)f)]
and G*(xf) + G~ ((1 = x)f) € Fse(E). O

2.1.2 Normally hyperbolic operators

Let g € My and g¢f be the induced metric on the cotangent bundle. If (M, g) is globally hyperbolic,
by fixing a Cauchy temporal function ¢ : M — R such that g = —3%dt ® dt + h;, we have

g =—B20,®0, +h.

Definition 2.1.5. A linear second order differential operator N : T'(E) — T'(E) is normally
hyperbolic if its principal symbol oy satisfies

on(é) = —g*(€,€) 1de

for all £ € T*M, where Idg is the identity automorphism of E.
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Referring to a foliation of (M, g) as in Definition 1.1.14, in local coordinates (¢,xz) on M
adapted to the foliation so that z = (z1,...,z,) are local coordinates on ¥, and using a local
trivialization of E, any normally hyperbolic operator N in a point p € M reads as

162

N:@t

= N W00, + A%t @), + Y A (t,2)0., + Blt,x)
ij=1 j=1

where Ag, A; and B are linear maps E(; ;) — E(; ) depending smoothly on (¢, z).

Examples 2.1.6. In the class of normally hyperbolic operators we can find many operators of
interest in quantum field theory:

e Let E be the trivial real bundle, i.e. E = M x R, so that the space of smooth sections of
E can be identified with the ring of smooth functions on M. The Klein-Gordon operator
N =[]+ m? is normally hyperbolic, where [] is the d’Alembert operator and m is a mass-
term.

e Let now E = A¥T*M be the bundle of k-forms and d (resp d) the exterior derivative (resp.
the codifferential). The operator N := dé + dd + m? is normally hyperbolic and it is used
to describe the dynamics of Proca fields, for further details we refer to [6, Example 2.17].

e Let SM be a spinor bundle over a globally hyperbolic spin manifold My and let V be
a spin connection. By denoting with v : TM — End(SM) the Clifford multiplication,
the classical Dirac operator reads as D = v o V : I'(SM) — T'(SM), see [37, 38, 68] for
further details. By Lichnerowicz-Weitzenbock formula we get the spinorial wave operator
N=D2=VIV+ iScalg, where Scaly is the scalar curvature.

It is well-known that, once that the Cauchy data are suitably assigned, the Cauchy problem
for N turns out to be well-posed, see e.g. [4,66].

Theorem 2.1.7. Let E be a vector bundle (of finite rank) over a globally hyperbolic manifold
(M, g), let N be a normally hyperbolic operator with a N-compatible connection V (see (2.1.3)
below) and 3¢ a (smooth) spacelike Cauchy hypersurface of (M, g). Then the Cauchy problem for
N is well-posed, i.e. for any § € T¢(E), b1, b2 € Te(E|s,) there exists a unique solution ¥ € T'.(E)
to the initial value problem

NT = f
\P‘Eo = by
(VH\P)|EO = h2

being n the future directed timelike unit normal field along ¥o, and it depends continuously on
the data (f,H1,b2) w.r.to the standard topologies of smooth sections and satisfies

supp(W) < J(supp(f)) v J(supp(h1)) U J(supp(h2)) . (2.1.2)

2.1.3 Formal selfadjointness and the symplectic form

Let E be a K-vector bundle on a globally hyperbolic spacetime (M, g). As shown in [8, Lemma
1.5.5], for any normally hyperbolic operator N : T'(E) — T'(E) there exists a unique covariant
derivative V on E such that

N = —try,(VV) + ¢ (2.1.3)

for some some zero-order differential operator ¢ : I'(E) — I'(E). In the formula above the left V
is actually the connection induced on T*M® E by the Levi-Civita connection associated to g and
the original connection V given on E Adopting the terminology of [4], we shall refer to V as the
N-compatible connection on E.
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We stress that, if we suppose that E is equipped with a smooth assignment of Hermitian fiber
metrics
1 op i Ep x Ep > K.

then the above V is g-metric but not necessarily metric with respect to {-|-).

The physical relevance of the fiber metric is that it permits to equip Kers.(N) with a symplectic
form with important properties in the formulation of QFT in curved spacetime. This symplectic
form can be derived using the Green identity for a normally hyperbolic operator N and its formal
adjoint. As anticipated, we have the following result:

Proposition 2.1.8 ( [4, Corollary 3.4.3]). A normally hyperbolic operator N on a vector bundle
E (of finite rank) on a globally hyperbolic manifold (M, g) is Green hyperbolic.

Definition 2.1.9. The formal adjoint of a differential operator P : I'(E) — I'(E) is the unique
differential operator PT: I'(E) — T'(E) satisfying

j G| PP vol, = f P | ) vol,
M M

for every f,f € T'.(E) (which is equivalent to saying f,f € TI'(E) such that supp(f) n supp(f)’ is
compact). If P = P then N is said to be (formally) selfadjoint.

Remark 2.1.10. If P : I'(E) — I'(E) is normally hyperbolic on the bundle E over (M, g), equipped
with a non-degenerate, Hermitian fiber metric (- |-), P is Green hyperbolic as said above. In this
case PT has the same principal symbol as P and thus it is Green hyperbolic as well. Taking
advantage of the natural (antilinear if K = C) isomorphism I'(E) — I'(E*) induced by {:|-) and
(2.2.33), it is not difficult to prove that, if f € I'.(E) and f € I',c(E) or f € I'4-(E) respectively,

| Gmi 1wl = | @16 vl | @i IDvly = | @Gzl (214

where G]J—S indicate the Green operators of P and G;—F,T indicate the Green operators of PT.

Let us pass to introduce a Green-like identity where we explicitly exploit the N-compatible
connection V.

Lemma 2.1.11 (Green identity). Let E be a non-degenerate, Hermitian K vector bundle over
a (n + 1)-dimensional spacetime (M, g) and denote the fiber metric {-|-). Moreover, let N :
I'(E) — I'(E) be a normally hyperbolic operator with N-compatible connection V. Let My < M be
a submanifold with continuous piecewise smooth boundary. Then for every ®, ¥ e I'.(E))

f (<\IJ|N<I>>—<N\IJ|<I>>)VOIQ=J =, (T, @) , (2.1.5)

Mo oMo

where EB'MO is the n-form in oM

=N (T, ) 1= 1% [ﬁ <<x11 |V®) — (V| <I>>> . volg]

10M, : OMg — M being the inclusion embedding. If the normal vectors to My are either spacelike
or timelike (up to zero-measure sets), then

=D, (0, @) = (U] Vo) — (T | @) ) vol oy, (2.1.6)

where n is the outward unit normal vector to dMg and vol om, = n _Ivol 4 is the volume form of
OMy induced by g.

31



Proof. Consider the n-form in M
Z = tt(<\11 | VD) — (V| <1>>) Ivol, .

If the normal vectors to M are either spacelike or timelike, some computations with the exterior
differential of forms yields (2.1.6). In all cases it is easy to prove that

dZ = (<x11 | g1V V8 — (g, V0| <I>>)Volg - (<\1f IN®) — (N | <I>>)Volg .

At this juncture, Stokes’ theorem for (n + 1)-forms,

f sz dz
oMo Mo

produces (2.1.5). O

We have the following crucial result when applying the previous lemma to the theory on
globally hyperbolic spacetimes.

Proposition 2.1.12. Let X < M be a smooth spacelike Cauchy hypersurface with its future-
oriented unit normal vector field n in the globally hyperbolic spacetime (M, g) and its induced
volume element vols,. Furthermore, let N be a formally self-adjoint normally hyperbolic operator.
Then

U?'Mm : Kerge(N) x Kerge(N) - C  such that U?IM,Q)(‘I”(I)) = ifz =N(w, @) (2.1.7)

where Eg is defined in Equation (2.1.6), yields a non-degenerate symplectic form (Hermitian if
K = C) which does not depend on the choice of .

Proof. First note that, referring to a spacelike Cauchy hypersurface 3, supp(¥) n ¥ is compact
since supp (V) is spacelike compact, so that the integral is well-defined. The fact that oy is not
degenerate can be proved as follows. If U?lM,g)(\I]’ ®) =0 for all € I's.(E), from the definition of
on and non-degenerateness of (- |-), (passing to local trivializations referred to local coordinates
on ¥ re-writing {-|-), in terms of the pairing with E}), we have that the Cauchy data of W
vanishes on every local chart on ¥ and thus they vanish on . According to Theorem 2.1.7,
U = 0. The other entry can be worked out similarly.

Let U, ® € Kers.(N) and X} and X4 be a pair of smooth spacelike Cauchy hypersurfaces associated
to a smooth time Cauchy function ¢ with ¢” > t'. Let us focus on the submanifold with boundary
Mo = t=((¢',t")). Tts boundary is dMg = ¥y U Xy. The supports of ¥ and ® between the two
Cauchy surfaces are included in the causal future of the compact supports of the Cauchy data on
Yy of ¥ and ® respectively, and these portions of causal sets are compact as (M, g) is globally
hyperbolic (see e.g. [4, Proposition 1.2.56]). We end up with a pair of functions in I'.(E) and we
can apply the Green identity (see Lemma 2.1.11) to My. Using a smoothly vanishing function
as a factor, we can make smoothly vanishing ¥ and ® before ¥y and after > without touching
them between the two Cauchy surfaces. As a matter of fact the resulting sections constructed
out U and ® by this way are smooth, compactly supported and coincide with ¥ and ® between
the two Cauchy surfaces. We can therefore apply Lemma 2.1.11, obtaining

J (W |N®) — (N¥ | ®))vol , = J =N — f =N,

Mo 30 )

Since N is assumed to be self-adjoint, (¥ | N®Y—(NW¥ | ®) = (¥ | N®)—(¥ | NT®) = 0. Therefore we
can conclude that SZ/ Eg, = SZ Eg Finally consider the case of two spacelike Cauchy functions

Y and ¥’ belonging to different foliations induced by different smooth Cauchy time functions
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(notice that a spacelike Cauchy hypersurface always belong to a foliation generated by a suitable
smooth Cauchy time (actually temporal) function for Theorem 1.1.12). We sketch a proof of the

identity
=N _ =N
f =N, — f =N
b3l by

Let K < ¥ a compact set including the Cauchy data of ¥ and ®. If ¢ is the smooth Cauchy time
function such that ¥y, = ¥/, let T'= maxy t. If t; < T we can always take to > T and to consider
the symplectic form evaluated on ¥,. In view of the previous part of our proof the symplectic
form on ¥, and ¥, coincide, so that our thesis can be re-written

=N _ =N
i—lE/ - I—IE .
Yo by

As to > maxgt, we conclude that ¥;, does not intersect ¥ in the set K. Therefore we can
define the solid set Lx made of the portion of Jy(K) between ¥ and 3. L is compact (see
e.g. [4, Proposition 1.2.56]) and is a “truncated cone” whose “lateral surface” is part of the
boundary of J;(K) and whose “non-parallel bases” are parts of 32 and . We can include L
in the interior of a larger manifold with boundary My whose part of the boundary are portions
of ¥ and 3, including the support of the Cauchy data of ¥ and ®. Notice that My includes
the supports of ¥ and ® between the two Cauchy surfaces according to Theorem 2.1.7 and these
supports do not touch the “lateral surface” of My. We can now apply the Green identity 2.1.11
to Mg proving the thesis. O

There is a nice interplay of the causal propagator G of N : I'(E) — I'(E) as above and the
symplectic form a?'M )"

Proposition 2.1.13. With the same hypotheses as of Proposition 2.1.12, if f,h € T'.(E) and
U; .= Gf, Uy := Gbh, it holds

U?IM,Q)(‘I'fv ) = jM<f | Gh) vol ;.

Proof. If f, € T'.(E), consider a smooth Cauchy time function ¢ and fix ty < ¢; such that the
supports of f and h are included in the interior of the submanifold with boundary My contained
between the spacelike Cauchy hypersurfaces ¥y, := t~1(¢9) and Xy, := t~1(¢1). It holds

J<x1/f\h>volg:f <qff\r;>volg:f (s |NG*h) vol
M Mo Mo

Since N¥; = 0, we have found that

fM<f|\Ilh>volg = fM (CWFNGTh) — (N | GF W) volg .
0
Applying Lemma 2.1.11, we find
| ey vol, == | (05,670 = |, (95.67).
M Mo St

where we noticed that GTh vanishes on the remaining part of the boundary 3;,. On the other
hand, we can replace G*h for GTh—G~h = Gh in the last integral, since G gives no contribution
to the integral on ¥;,. In summary,

| temyvot, = | Gilwyvol, = [ = (0,60) = ol (81 05).

t1

and this is the thesis. O
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2.1.4 Convex combinations of normally hyperbolic operators

Let now Ng, N; be normally hyperbolic operators with respect different Lorentzian metric go and
g1 (the former time-orientable and the latter globally hyperbolic) on the same manifold M and
assume that they are acting on the smooth sections of the same vector bundle E. It turns out, that
a positive (and convex) combination (1 —x)Ng+ xN; is also (a) normally hyperbolic with respect
to the naturally associated metric g, — the unique Lorentzian metric in TM whose associated
metric in T*M is (1 — x) g + Xgﬁ according to Theorem 1.2.7 — and (b) Green hyperbolic with

respect to g1, everything provided that gy < ¢g;. This is the main result of this section.

Theorem 2.1.14. Let E be a K-vector bundle over a smooth manifold M, let be gg,g1 € GMp
with go < g1, and let Ng,Ny : T'(E) — I'(E) be normally hyperbolic operator with respect to go and
g1 respectively. If x € C*(M,[0,1]), define g, as the unique Lorentzian metric whose associated
metric in T*M is (1 —x) §+ ng according to Theorem 1.2.7. Then the second order differential
operator defined by

Ny := (1 —x)No + xN; : T'(E) - T'(E) (2.1.8)
satisfies the following properties:

(1) It is normally and Green hyperbolic over (M, gy);

(2) It is Green hyperbolic over (M, g1) and, with obvious notation,
T9(E) = The(E),  T(E) < TE(E)
+ _ _
GgleJr = Gﬁ; ’Ff,%(E) ) GKllx = GgN); ’Ff}c(E) :
In particular, (2) is true for Ng by choosing x = 0.

Proof. (1) Since Ny is a normally hyperbolic operator for (M, gg) and N; is a normally hyperbolic
operator for (M, g1), by linearity

02(Ny, &) = (1 — x)o2(No, &) + xo2(N1, ).

In particular, we have that IV, is normally hyperbolic with respect to g,:

73 (Ny, &) = —(1 = X)gh(&, E)Ide — xg (€, €)Ide = —gh (€, €)1de -

By Theorem 1.2.7, the metric g, is globally hyperbolic and, on account of Proposition 2.1.8 N,
is Green-hyperbolic over (M, gy ).

Regarding (2), and referring to the existence of Green operators of N, in (M, g1) we can proceed
as follows. Observe that, since g, < g1, we have J{(A4) = J¥'(A) and, with obvious notation,
I'9L(E) = I'ps(E) together with I'%.(E) = ch’é(E), in view of (iii) (2) Lemma 1.2.3. As a conse-
quence, the Green operators of N, with respect to (M, g,) are also Green operators with respect
to (M, g1). Finally we pass to the existence of the Green operators of N} — where * is here re-

ferred to the volume form of g1 and not g, — in (M, g1). Since N3 has the same principal symbol

gi(f ,§)Idg as N, it is normally hyperbolic in (M, g,) and hence Green hyperbolic thereon. With
the same argument used above, we see that the Green operators of N (with * always referred to
g1) in (M, g,) are also Green operators in (M, g1). O

Remark 2.1.15. We stress that, when gg < g1 are globally hyperbolic, N, and N are therefore
Green-hyperbolic second-order differential operators on (M, g;) though they are not normally
hyperbolic thereon. These are examples of second-order linear differential operators which are
Green hyperbolic but not normally hyperbolic in a given globally hyperbolic spacetime.
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2.1.5 General approach to construct Mgller maps when gy < g;

We are in the position to introduce the notion of so-called Mgller operator, which we shall later
specialize to the case of a Mgller map, namely the claimed (geometric) map which compares the
space of solutions of different normally hyperbolic operators. The novelty of this approach consists
in defining the notion of Mgller map in a more general fashion. More in detail, in [27,37,39,90] the
Mgller operator was constructed once that a foliation of M in Cauchy hypersurfaces was assigned
and referring to the family of the metrics which are decomposed as in (1.1.1) with respect to that
foliation. Here we shall see, that the construction of a Mgller map still requires the choice of
a foliation (associated to some smooth Cauchy time function), but the involved metrics do not
have any particular relationship with the choice of the foliation. Instead they should enjoy some
interplay concerning their light-cone structures which generalizes g < ¢’ in the sense of paracausal
deformations.

Let us consider a globally hyperbolic spacetime (M, g) equipped with a vector bundle E — M
as before. If P : I'(E) — I'(E) is a linear differential operator, a family of physically relevant
solutions of the inhomogeneous equation Pf = b is the linear vector space of spacelike compact
smooth solutions with compactly supported source:

Sold, .(P):={feTY.(E)|PfeT.(E)}.

sc,c

Its subspace corresponding to the solutions of the homogeneous equation Pf = 0 is denoted by
Kerl.(P) := {f e I'{.(E) | Pf = 0}

and it will play a pivotal role in the formulation of linear QFT.

We now specialize the operators P to 2nd-order normally-hyperbolic linear operators N1, No, N
(2.1.8) over I'(E) associated to globally hyperbolic metrics go < g1 and g, on the common space-
time manifold M. Our goal is to construct several families of Mgller maps, namely linear operators
such that

(a) they are linear space isomorphisms between Sol%2 .(Ng), Sol%% .(N1), Sol%X (N, );

sc,c sc,c
(b) they restrict to isomorphisms to the subspaces Ker% (Np), Kerf: (Ny), Ker%s (Ny).

For later convenience, we shall additionally require that the Mgller maps preserve also the sym-
plectic forms, which are of interest in applications to linear QFT.

The overall idea is inspired by the scattering theory. We start with two “free theories”, de-
scribed by the space of solutions of normally hyperbolic operators Ny and N; in corresponding
spacetimes (M, gg) and (M, ¢1), respectively, and we intend to connect them through an “inter-
action spacetime” (M, g,) with a “temporally localized” interaction defined by interpolating the
two metrics by means of a smoothing function x. Here we need two Mgller maps: €24 connecting
(M, go) and (M, gy) — which reduces to the identity in the past when x is switched off — and a
second Mgller map connecting (M, gy) to (M, g1) — which reduces to the identity in the future
when x constantly takes the value 1. The “S-matrix” given by the composition S := Q_Q, will
be the Mgller map connecting Ng and Nj.

The first step consists of comparing No and Ny with N, separately to construct the Mgller
map. As usual, we denote with E the K-vector bundle over a spacetime (M, g).

We first start with operators denoted by Ry defined on the whole space of smooth sections
I'(E) which is in common for the three metrics on M and next we will restrict these operators to
the special spaces of solutions with spatially compact support and compactly supported sources,
proving that these restrictions 24 are still linear space isomorphisms.

Proposition 2.1.16. Let go, g1 € GMpy be such that go < g1 and V" < VI for all x € M.
Let E be a vector bundle over M and No,N; : I'(E) — T'(E) be normally hyperbolic operators
associated to gy and g1 respectively. Choose
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(a) a smooth Cauchy time gi-function t : M — R and x € C*(M;[0,1]) such that x(p) = 0 if
t(p) < to and x(p) = 1 if t(p) > t1 for given tog < ti;

(b) a pair of smooth functions p,p’ : M — (0,+0) such that p(p) = 1 for t(p) < to and
p'(p) = p(p) =1 if t(p) > t1. (Notice that p = p' =1 constantly is allowed.)

The following facts are true.
(1) The operators
Ry =1d — G;NX(pNX —Np) : I'(E) - I'(E) (2.1.9)
R_=1d - G;,Nl(p’Nl —pNy) : I'(E) - I'(E) (2.1.10)

are linear space isomorphisms, whose inverses are given by

RT" = Id + Gy (pNy — No) : I'(E) — I'(E) (2.1.11)
RZ' =1d + G,y (p'Ni = pNy) : T(E) — T'(E). (2.1.12)
(2) It holds
pNyRL = Ny and P'N1R_ = pN,, . (2.1.13)
(8) If fe T'(E), then
(ReP)(p) = f(p) for t(p) < to, (2.1.14)
(R-P)(p) =f(p) for t(p)>t1. (2.1.15)

Proof. Observe that pN, and p’N; are Green hyperbolic with respect to g, (as in Theorem 2.1.14)
and g; respectively according to Theorem 2.1.14 and 2.1.3, and thus they are with respect to g;.
Moreover GlfNX = Gﬁxp_1 and G;—F,Nl = Gﬁlp’_l.

(1) If § € I'(E), in view of the hypotheses ((pN,, — No)f)(p) = 0 and ((N; — Ny )f)(p) = 0 is
respectively t(p) < to and t(p) > t; where t~!(tg) and t~(¢1) are spacelike Cauchy hypersurfaces
in common for the metrics go, gy, g1. Therefore the operators R_ and R, are linear and well
defined on the domain I'(E) because (pNy, — No)f € ['pe(E) < I'ps(E) Dom(G:NX) and (p'Ny —
pN,)f € I‘?lc(E) < Dom(G ;). A similar argument holds for Ri'. To prove bijectivity of Ry it
suffices to establish that RZ! in (2.1.12) is a two-sided inverse of R_ and that R}! in (2.1.11) is
a two-sided inverse of Ry on I'(E):

R_oRZ'=RZ'oR_=1d and R;oR;'=R;'oR, =1Id.

We prove that R_ defined as in (2.1.12) inverts R_ from the right by direct computation:

R_oR™! = (Id — Gy, (/N1 — pNy)) © (Id + Gy (/N1 — N, )) =
=1d - G;,Nl(p'Nl — pNy) + G;NX(PINI — pNy) — G;,Nl(p'Nl - pNX)G;NX(p/Nl — pNy).

Now, by exploiting the identity
G, (P'N1 — PNY)G . =Gy — Gy, Pjgg(E) N T4 (E) — I(E),

we can prove our claim

R_oRZ'=1Id— G;,Nl(p’Nl — pNy) + G;Nx(p/Nl — pNy) — (G;NX — G;,Nl)(p/Nl —pNy) =1d.

The proof that R=! is also a left inverse is the same with obvious changes and analogous calcu-
lations show that R is a left and right inverse of R*.
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(2) Taking advantage of (ia)-(iib) in Definition 2.1.1 and the definition of N, and the one of R,
a direct computation establishes (2.1.13).

(3) Let us prove (2.1.14). Consider a compactly supported smooth section h whose support is
included in the set ¢t~!((—o0,tg)). Taking advantage of the former in (2.2.33), we obtain

[, 0.6 (o0 = N ol = [ (G (oM = NPy voly, =0

since supp( *b) c J”(supp(h)) from Definition 2.1.1 and thus that support does not meet
supp((pNy — No)f) because ((pNy — No)f)(p) vanishes if t(p) < to. As b is an arbitrary smooth
section compactly supported in t L(—o0,tp)),

. .65, (o, = N voly, =0
entails that G;NX (pNy —Ng)f = 0 on t~1((—00,9)). Eventually, the very definition (2.1.9) of G;NX
implies (2.1.14). The proof of (2.1.15) is strictly analogous, so we leave it to the reader. O

We can now pass to the second step, namely we perform restrictions of Ry to the relevant
subspaces of solutions.

Proposition 2.1.17. With the same hypotheses as in Proposition 2.1.16 (in particular x(p) = 0
if t(p) < to and x(p) =1 if t(p) > t1 for given ty < t1), we have

R4+ (Sol% .(No)) = Soldc(Ny) and R_(Sold¥.(Ny)) = Sol%: .(N1) (2.1.16)

and
Ri(Ker®(Ng)) = Ker2x(Ny) and R_(KerZx(Ny)) = Kerf:(Ny). (2.1.17)

As a consequence, the restrictions

Oy = R+|SO|90 (No) * S0l .(No) — SolZXc(Ny), 99 : R lkerto (no) 1 Kerfe(No) — KerZx (N,) ,
Q- = R_sox ) - : Solfc(Ny) — Sol%! .(Ny), Q2 R-lkertx () KerZx (Ny) — Ker?.(Ny),

sc r(

define linear space isomorphisms such that
PNy Q4 =Ng,  p'NiQ_ = pN,, (2.1.18)
and, for § in the respective domains,

(p) for t(p) <to, (2.1.19)
(p) for t(p)>t1. (2.1.20)

Before we prove our claim, we need a preparatory lemma.

Lemma 2.1.18. Let P : T'(E) — I'(E) be a 2nd order normally hyperbolic differential operator on
the vector bundle E — M on the globally hyperbolic spacetime (M, g). Let ¥ € T'(E) be such that
PU e T'.(E). Then the following facts are equivalent.

(a) U eT(E);

(b) there is a spacelike Cauchy hypersurface of (M,g) such that U has compactly supported
Cauchy data thereon.
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Proof. If ¥ € TY.(E) then, by definition, (b) is true. Suppose that (b) is true for ¥g. According
to Theorem 2.1.7, ¥ is the unique solution of the Cauchy problem whose equation is P¥ = f,
where f € I':(E). As a consequence the support of ¥ completely lies in J(supp(f)) v J(supp(ho)) v
J(supp(h1)) < J(K) where by and bh; are the Cauchy data of ¥ on ¥y and K := supp(f) u
supp(ho) U J(supp(h1). In particular K is compact. In view of well known properties of globally
hyperbolic spacetimes (see e.g. [4, Proposition 1.2.56]), since K is compact J(K) n X is compact
for every Cauchy hypersurface  of (M, g) so that ¥ € T'%.(E). O]

Proof of Proposition 2.1.17. Ry and R;l are bijective on I'(E). As a consequence (2.1.16) and
thesis for Q4, including (2.1.18) which is a specialization of (2.1.13), immediately arise when
proving that

R (S0l .(Ng)) = Sol%c(Ny), R:'(Sol%.(Ny)) = Sol .(No) (2.1.21)

sc,c sc,c

and
R_(Sol%xc(Ny)) = Sol?% .(N1), RZ'(Sol%. .(N;)) = SolX.(N,)

sc,c sc,c

The identities in (2.1.17) and the thesis for QQ_F immediately arises by bijectivity of the linear
maps 4 and (2.1.18) where we know that p,p’ > 0. To conclude, let us establish the first
inclusion in (2.1.21), the remaining three inclusions have a strictly analogous proof. Suppose
that f € Sol% .(Ng). Hence pNyRif = Nof € Te(E) and NyRyf = p~!Nof € Tc(E). Next pass to
consider the Cauchy hypersurfaces of ¢ which are in common with the three considered metrics
90, 91, gy and choose t' < tg. (3) in Proposition 2.1.16 yields (Ryf)(¢',x) = f(¢/, x) where x € Xy.
The Cauchy data of § on %y have compact support because f € Solf .(Ng). On the ground
of Lemma 2.1.18, noticing that N, is normally hyperbolic in (M, gy ), referring to the Cauchy
problem on Xy for the equation NyR.f = p~'Nof € TZ¥(E) in the spacetime (M, gy ), we conclude
that Ry f € I'%.(E) because its Cauchy data on ¥y (now interpreted as a Cauchy hypersurface

for g,) have compact support as they coincide with the ones of § itself. O

2.1.6 General Mgller maps for paracausally related metrics

We are now in a position to state a result regarding the existence of Mgller maps between two
normally hyperbolic operators Ng and N; on respective globally hyperbolic spacetimes over the
same manifold (and vector bundle) whose metrics are < comparable. The final goal is to extend
the results to pairs of paracausally related metrics.

Proposition 2.1.19. Let gg, g1 € GMm be such that either go < g1 or g1 < go with, respectively,
either V2" c VI'F for allz € M or VIt < V2 for all x € M. Let E be a vector bundle over
M and No,N; : T(E) — T'(E) be normally hyperbolic operators associated to gy and g1 respectively.
There exist (infinitely many) vector space isomorphisms,

S : Sol%,,(Ng) — Sol? ,(Ny)

such that, for some smooth function u : M — (0,4+00) depending on S (which can be chosen
H= 1);

(1) referring to the said domains,

pNiS =Ny and p 'NeS™t=N;
(2) the restriction S° := Slkerso (ng) defines a vector space isomorphism

SO : Ker%(Ng) — Kerf:(Ny).
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Proof. First consider the case gp < g1. Referring to a smooth Cauchy time function ¢ of (M, g1)
and a smoothing function y, S := Q_Q, constructed as in Proposition 2.1.17 satisfies all the
requirements trivially for pu := p/. The previous result is also valid for g; < go. It is sufficient
to construct 24 as in Proposition 2.1.17, but using g1 as the initial metric and gy as the final
one, and eventually defining p := p~!, S := (Q_Q,)7! = QIIQZI, and S° := (Q2Q9%)7! =
(Q9)1(Q0) . =

We can pass to the generic case g ~ ¢/, obtaining the first main result of this work.

Theorem 2.1.20. Let (M, g) and (M, g’) be globally hyperbolic spacetimes, E a vector bundle over
M and N,N": T'(E) — I'(E) normally hyperbolic operators associated to g and g’ respectively.
If g ~ ¢, then there exist (infinitely many) vector space isomorphisms, called Mgller maps of
9,49 (with this order),

S : Sol, (N) — Sol?, (N")

sc,c sc,c

such that

(1) referring to the said domains,
uN’S = N

for some smooth p : M — (0,4+00) (which can be always taken p = 1 constantly in particu-
lar),

(2) the restriction S° := Slkers,(ny (also called Mgller map of ¢',g') defines a vector space
isomorphism
SO Ker?,(N) — Ker,(N) .

Proof. First of all we notice that there always exists a normally hyperbolic operator N on E
associated to every g € GMy: For instance the connection-d’Alembert operator in [4, Example
2.1.5] referred to a generic connection V on E, which always exists, and the Levi-Civita connection
on (M,g). Let us consider a sequence gy = ¢,91,...,98v = ¢ of globally hyperbolic metrics
on M satisfying Definition 1.3.1 and a corresponding sequence of formally selfadjoint normally
hyperbolic operators N with Ng := N and Ny := N’. We can apply Proposition 2.1.19 for each
pair gg, gr+1 for Kk =0,1,..., N — 1. It turns immediately out that, with an obvious notation,

S:= SN_1SN_2"-S(), M=o UN—-1 where /,l/ka+1Sk:Nk kZO,...N—l.

satisfies the thesis of the theorem, where either Sy, := Qp_Qpy, pr := pr or S := (e ) 1)1,
Wi 1= plzl according to g < gr+1 OF grt1 < gi respectively. With the same convention it results
that SY = S%_,S%_y -+ - S) where either S) = Q)_Q) , or S, = (Q7, )" (Q)_) "' according to the
discussed cases. O

Moreover the Mgller maps S° as in Theorem 2.1.20 preserve the symplectic forms of the
normal operators they relate when these operators are formally selfadjoint.

Theorem 2.1.21. Consider g,g9' € GHr with respectively associated normally hyperbolic oper-
ators N, N’ on the K-vector bundle E over M. If ¢ ~ g and N and N' are formally selfadjoint
with respect to a non-degenerate, Hermitian fiber metric {-|-), then there are Mgller maps S°
satisfying the thesis of Theorem 2.1.20 such that

Uy/(SO\I/, S0) = UgN(\I/, ®)  for every ¥, € Ker? (N),

N

where we used the notation og

in place of J?‘Mvg).
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Proof. 1t is sufficient to prove the thesis for the maps Q% referred to two metrics gg < g1, which
immediately implies the thesis also for the inverse maps (Qg)_l they being isomorphisms. Indeed,
according the proof of Theorem 2.1.20, the isomorphisms S° are compositions of various copies
of Qg and their inverses. Let us consider Qg : Kerge(Ng) — Kerg.(N,) and we prove the thesis
for it, the other case being very similar. Consider a smooth Cauchy time function ¢ for g; and
the associated foliation made of spacelike Cauchy hypersurfaces ¥; in common for go, g1, and g,.
If the smoothing function x used to build up g, and N, vanishes before ¢y and we use ¥X; with
t <ty to compute the relevant symplectic forms, due to (2.2.31),

(O 00) = oW, ) for every ¥, € Ker(No)

Above, we have used the definition of the symplectic form, we have noticed that g, = go around >}
and that the Ng and N, compatible connections must coincide there as they are locally defined
and uniquely determined by No¥ = N, W = (—try,(VV) + ¢)¥ for every smooth ¥ compactly
supported around a point p with ¢(p) < tg. Thinking of ogNXX(Qg\II, Q0 ®) as defined in (M, gy)
and of JgNOO(\IJ, ®) as defined in (M, gp), though both computed on ¥; with ¢ < ¢y, Proposition
2.1.12 concludes the proof. d

Definition 2.1.22. We call symplectic Mgller map any linear isomorphism defined in accor-
dance with Theorem 2.1.21.

2.1.7 Adjoint operators

We pass now to prove how it is possible to choose the functions p and p’ affecting the definitions
(2.1.9)-(2.1.10) of Ry in order to satisfy a further requirement with some crucial implications in
QFT: the preservation of the causal propagator of two operators N and N’ when the associated
metrics are paracausally related. Essentially speaking, a Mgller map satisfying this further re-
quirement will be named Mgaller operator.
To study the relation between Mgller maps and the causal propagator of normally hyperbolic
operators defined on a vector bundle equipped with a non-degenerate (Hermitian) fiber metric,
we need a suitable notion of adjoint operator which generalizes the notion of formal adjoint of
differential operators.

Let E be a K-vector bundle on the oriented manifold M equipped with a non-degenerate,
symmetric if K = R or Hermitian if K = C, fiber metric (- |-). Suppose that g and ¢’ (possibly
g # ¢') are Lorentzian metrics on M. Consider a K-linear operator

T :Dom(T) - I'(E),
where Dom(T) < I'(E) is a K-linear subspace and Dom(T) > I'.(E).
Definition 2.1.23. An operator

Thoo' : Te(E) — Te(E)

is said to be the adjoint of T with respect to g,¢’ (with the said order) if it satisfies

| @ 1@l (@) = [ ((Th) @) i)l (o) ¥f e Dom(T) , v € Tu(E).
M M

Notation 2.1.24. If g = ¢’ then we shall denote the adjoint of T with respect to g simply as
Tt

We prove below that TTs’ is unique if it exists so that calling it “the” adjoint operator of T
is appropriate.
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Remark 2.1.25. If T : Dom(T) — I'(E) is defined as in Definition 2.1.23 and T'ss’ exists, then

J | Tippvoly — 0 VheT'(E) as I'.(E) 3 f, — 0 for n — +00 in the topology of test sections [4].
M

Vice versa, this only condition is not sufficient to guarantee the existence of Tles' as a I'.(E)-
valued operator. Using a straightforward extension of the Schwartz kernel theorem, the condition
above just implies the existence of a weaker version of Tles' which is distribution-valued.

From now on if T : Dom(T) — I'(E) and T’ : Dom(T’) — I'(E), we define the standard
domains of their compositions as follows, where a € K.

(a) Dom(aT) := Dom(T) — or Dom(aT) :=I'(E) if a = 0 — is the domain of aT defined pointwise;
(b) Dom(T 4+ T’) := Dom(T) n Dom(T’) is the domain of T + T’ defined pointwise;
(¢) Dom(T' o T) := {f € Dom(T) | T(f) € Dom(T’)} is the domain of T' o T.

Proposition 2.1.26. Referring to the notion of adjoint in Definition 2.1.23, the following facts
are valid.

(1) If the adjoint Tles of T emists, then it is unique.

(2) If T : T(E) — T(E) is a differential operator and g = g¢', then Tl erxists and is the
restriction of the formal adjoint to T(E). (In turn, the formal adjoint of TT is the unique
extension to I'(E) of the differential operator T as a differential operator)

(3) Consider a pair of K-linear operators T : Dom(T) — T'(E), T' : Dom(T’) — T'(E) and
a,be K. Then
(aT + bT’)TW/ =aTles + 5T Tes

provided Tles' and T'Mes' ewist.

(4) Consider a pair of K-linear operators T : Dom(T) — T'(E) and T’ : Dom(T’) — I'(E) such
that

(i) Dom(T o T) o I'.(E),
(ii) Tlas' and T'o's" euist,

then (T o T)as" exists and
(T, o T)ng” = Tng’ o T’Tg’g” .
(5) If Tlas' exists, then (Tles')Ta'a = Tlr.(e)-

(6) If T : Dom(T) = T'(E) — I(E) is bijective, admits Tles', and T~1 admits (T~1)¢'s, then
Tlos' is bijective and (T~1)o's = (TTes' )1,
Proof. We write below T in place of {44 if it is not strictly necessary to specify the metrics.

To prove gl) let’s assume that, fixed an operator T : Dom(T) — T'(E) there exist two different
adjoints Ty, Tg :I'.(E) — I'c(E) both satisfying definition 2.1.23, i.e.

| Tty = | o ipvol,
M M

for all f € Dom(T) and all h € T'.(E). Then by linearity of the integration and (anti) linearity of
the product, the former identity is equivalent to

fM<TIh —Thh [} vol, =0.
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Since I'.(E) € Dom(T), the thesis follows by reducing to every fixed local trivialization over every
arbitrarily fixed coordinate patch U on M. Restricting to U, the equation above can be recast to

N
L D1(TTh = TEh)*(p)fa(p) vol 4(p) = 0.
a=1

where f,(p) is a fiber component of (- [f), € Ej with p € U. Since U 3 p — (TI[] - T;h)“(p) is
continuous and U 3 p — f,(p) is smooth, compactly supported (with support in U) and arbitrary
(because (- |-) is non-degenerate), the fundamental lemma of calculus of variations implies that
Uspw— (Tif) — T;f))“(p) is the zero function for ¢ = 1,...,N. Since U can be fixed as a
neighbourhood of every point of M, (1) follows.

The proof of (2) and (3) is obvious: (2) follows by comparing definitions 2.1.23 and 2.1.9, while
(3) follows by direct computation checking that aTT + bT'T satisfies the definition of (@T + bT’)T
(notice that I'.(E) € Dom(aTt + bT'T) if TT and T’ exist).

To prove (4), since the composition is well defined on a suitable domain, we can just use twice
the definition 2.1.23

fMa) | T o Tf) vol g = JM<T’Tg’g"h | Ty vol s = fM<Tng/ o T'ea" | ) vol ,

for all f € Dom(T' o T) and all h € T'.(E): notice that using the definition of the adjoint in
the second equality is possible because T'fe's” : T'.(E) — I'.(E). The found identity proves that
Tles’ o T'o's” satisfies the definition of (T’ o T)Tss” ending the proof of (4).

(5) is true because, if TTss' : T(E) — I'.(E) exists, then Tlr.(g) satisfies the definition of

(TTQQI )Tg’g .
Finally, (6) arises by taking the T9s adjoint of both sides of the identity 7o T~ = I and the
fos' adjoint of both sides of the identity 77! o T = I and taking (4) into account. O

2.1.8 Mpgller operators and causal propagator

We are in a position to state one of the most important results of this work by specializing the
isomorphisms introduced in Theorem 2.1.20 by means of a suitable choice of the function u. As
a matter of fact (1) and (3) have been already established in Theorem 2.1.20.

Theorem 2.1.27. Let E be K-vector bundle over the smooth manifold M with a non-degenerate,
real or Hermitian depending on K, fiber metric {-|-). Consider g,q' € GHpr with respectively
associated normally hyperbolic formally-selfadjoint operators N, N'.

If g ~ ¢, then it is possible to define (in infinite ways) a K-vector space isomorphism R : T'(E) —
I'(E), called Mgller operator of g,g (with this order), such that the following facts are true.

(1) The restrictions to the relevant subspaces of T'(E) respectively define Moller maps (hence
linear isomorphisms) as in Theorem 2.1.20.
Rlsors, vy = S S0l o(N) — Solf, (N') and Rz, = S : Kerd.(N) — Kerf,(N').

sc,c sc,c

(2) The causal propagators Gy and Gy, respectively of N' and N, satisfy

RGNRTss = Gy . (2.1.22)

(3) By denoting ¢ the smooth function such that vol g = ¢’ vol 4, we have

INR=N. (2.1.23)

(4) It holds
RTQQIN/|FC(E) = N\FC(E) .
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(5) The maps Rlss’ : T(E) — To(E) and (RTes’)~1 = (R"1)Tos : To(E) — T.(E) are continuous
with respect to the natural topologies of T'¢(E) in the domain and in the co-domain.

Remarks 2.1.28. Before we prove our claim we want to underline the following:

(1) Any Mpgller operator defines a symplectic Mgller map (c¢f. Definition 2.1.22). Indeed, the
preservation of the causal propagator (¢f. (2) in Theorem 2.1.27) implies that the symplectic
forms are preserved in view of Proposition 2.1.13. However, the converse is false since the
preservation of the causal propagator relies upon a suitable choice of the function p, whereas
this choice is immaterial for the preservation of the symplectic forms.

(2) Mgller operators can be explicitly constructed as follows. If ¢’ ~ g, and referring to a
finite sequence of metrics g := ¢,91,...,9N := g’ € GHnm as in Definition 1.3.1, then there
exists a corresponding sequence of formally selfadjoint gi-normally hyperbolic operators
No := N,Ny,...,Ny := N : T'(E) - I'(E) such that

R=Ry_1-Ro, (2.1.24)
is a Mgller operator of g, g’ where
Re = RERY if g <gepr o Rpi= REYTITR™YT if gy < gp (2.1.25)

Above, for every given k, Rgf) are defined as R4 as in Equations (2.1.9) and (2.1.10) where

(i) N is replaced by Ni and N; is replaced by Ngy1 if gx < grt1,
(ii) Np is replaced by Ng;1 and N; is replaced by Ny if gx+1 < gk,
(ili) p:= ¢, and p’ := ¢f (assuming vol g = cgvol 4, and vol g, = civol g ).
The smooth Cauchy time function x in (2.1.9) and (2.1.10) can be chosen arbitrarily and

depending on k in general. The final Mgller operator R of g, ¢’ also depends on all the made
choices.

Proof of Theorem 2.1.27. We divide the proof into several steps.
(1)-(3) Let us first prove the thesis for the special case of g = go < g1 = ¢/, with V" < V#*
for all x € M, and specialize the definition of the isomorphisms (2.1.9) and (2.1.10) to

R, =Id— GjXNX(cgNX —Np) : I'(E) — T'(E) (2.1.26)
0
Ro=1d— G (cgN1 — gNy) : T(E) — T'(E) (2.1.27)
0
where
volg = civoly, and volg, = cjvolg,

It is easy to see that
(XN )90 = XN, and  (¢fNy)Too = ¢IN; . (2.1.28)

Our goal is to prove that the isomorphism R := R_Ry : I'(E) — I'(E) satisfies the thesis.
Per direct inspection, applying the definition of adjoint operator and taking advantage of (2.1.28),
Proposition 2.1.3, and (2.1.4), we almost immediately have that

REO =Id — (¢fNy — No)Gc_écNX|FC(E) and R =1d — (ciNy — cf)‘NX)G;%NJFC(E) . (2.1.29)
Again per direct inspection we see that
egNyR: =Ng and  ¢§NiR_ = N,

and thus
cANiR = ¢}NJR_R, = Ny
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as wanted.
As we prove below, the following identities are valid

f f -
RiGNoRY® = Goxy,  and  R-Goxy R = Gy, = G, (cp) ™ (2.1.30)

so that
R_R.Gn R RI™ = Gy, (c}) ™

which is equivalent to
R_R, Gy, (R_Ry)f0cl =Gy, .

On the other hand, we have
Afooch = Afaon

so that
RGn,Rf01 = R_R, Gy, (R_Ry )T = Gy, .

To conclude the proof of (1)-(3) for the case g = go < g1 = ¢’ we prove (2.1.30).

Since G, is defined as the difference of the advanced and retarded Green operators restricted to
compact sections, we perform the computation separately for the two operators.

We start from Ry Gy, |r, (k) RIfO: the adjoint of the Mgller operator is defined over I'.(E) and
gives back compactly supported sections, then the advanced Green operator maps a compactly
supported section f € I'.(E) to a solution such that supp (Gﬁof) < Jg (supp () = J; (supp (f)),
where the last inclusion is due to the crucial hypothesis go < g, < g1. Now since supp (f) is
compact the smooth Cauchy time function ¢ attains a minimum ¢y € R therein, so we choose a
common smooth Cauchy hypersurface ¥, of the foliation induced by ¢ such that ¢; < tp and
deduce that supp (G f) = Ji (supp (f)) = J(3,) which implies by [4, Lemma 1.2.61] that
G f e TKe(E).

Omitting the restriction of the domain of the causal propagators from the notation for sake of
clarity, but having in mind that it is crucial for the validity of the argument, we obtain:

+ _ct ot X + + + _ ot
R+Gy, = Gy, GcgNXCO Ny Gy, + GcgNXNOGNo = GcgNX'

A similar reasoning proves that
— pfeo _ ~—
Gy R = GcgNX.
where now the restriction of the domains of the causal propagators to compactly supported
sections is assumed from the definition of the adjoint. Collecting together the two identities
found, we have

R+GNo R = (R4 Gy, — G, RI) + M = Gy + M,

with, where both sides have to be computed on compactly supported sections,
M := (1d - Ry)Gy R'® — Ry Gf (1d — Ri™).

A direct evaluation of M using (2.1.26) and the former in (2.1.29) shows that M = 0. All that
establishes the first identity in (2.1.30), while the latter follows by almost identical facts.

Let us pass to prove (1)-(3) for the case g1 < go, with VZ'" < V&7 for all € M. First of all we
observe that from the previously treated case (go < g1) we have (JNoR™' = Ny where ¢ = ()~!
and vol g, = c{vol,,. Interchanging the names of gy and gi, this result implies that (2.1.23) is
true for g; < go when using R™! in place of R. An analogous procedure proves (2.1.22) for the
case g1 < go from the same equation, already established, valid when gy < ¢g1. Also in this case
the relevant Mgller operator is R™'. To this end, we have only to prove that (R™1)Ts190 exists and
coincides to (RTe091)~1. Indeed, under these assumptions (2.1.22) implies

N; = R_lNo(RTgogl)_l = R_lNo(R_l)TQL‘JO
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which is our thesis when interchanging go and g;. This fact that (R™1)fs190 = (Rfsos1)~1 actually
can be established exploiting (6) in 2.1.26: R is bijective over I'(E), and admits the adjoint Rfsos1
so if the inverse R™! admits the adjoint (R™1)Ts190, then Rfs091 is bijective and its inverse is such
that (Rtsos1)~1 = (R™1)To190. Let us prove that R™' admits adjoint (with respect to any metric
among go, gy, g1 since the existence of the adjoint with respect one of them trivially implies the
existence of the adjoint with respect to the other metrics) to end the proof for the case g1 < go.
By recalling that R=! = R;l o RZ! it suffices to show that R;l and RZ! both admit adjoints. We
explicitly give the gg-adjoint of Rjrl the other case being analogous,

(RyNTs0 =1d + (¢fNy — No)Gy, Ir. (m) -

Let us pass to the proof of (1)-(3) for the general case g ~ ¢’ also establishing the last part of
the thesis. In this case there is a sequence gy = ¢, 91,...,9n = g of globally hyperbolic metrics
on M satisfying Definition 1.3.1 and a corresponding sequence of selfadjoint normally hyperbolic
operators N with Ng := N and Ny := N’. (This sequence always exists because, for every globally
hyperbolic metric g, there is a normally hyperbolic operator N as proved in the proof of Theorem
2.1.20. The operator N := 5(N 4+ Nfs) is simultaneously formally selfadjoint with respect to (- |-
and normally hyperbolic.) Taking advantage of the validity of the thesis in the cases g < ¢’ and
g’ < g, using in particular (4) and (6) in Proposition 2.1.26, one immediately shows that we can
build a Mgller map for a paracausal deformation of metrics just by defining R as the composition
of the various similar operators defined for each copy gk, gr+1 as in (2.1.24) and (2.1.25).
(4) If f € T(E),

fog
RTQQIN/f = RTQQ’N/TQ’f = (N/R)ng’f = <1N) 9 f — NTgf — Nf .

c/
(5) It is sufficient to prove the thesis for the case ¢ = go < g1 = ¢’ and for RE’O. The
case of RJE’O is analogous. In the case g1 < go one uses the inverses of the operators above,

and all remaining cases are proved just by observing that the considered Mgller operators are

compositions of the elementary operators RT_fO and/or their inverses and smooth functions used
as multiplicative operators. We know that

RI% = 1d — (c§Ny — No) 3Ny Te(®) -

The identity operator has already the requested continuity property so that we have only to focus
on the second addend using the fact that a linear combination of continuous maps is continuous
as well. The map GC_B‘NX Ir.g) : [e(E) — T'(E) is continuous with respect to the natural topologies
of the domain and co-domain (see e.g. [4, Corollary 3.6.19 ]). Since (¢yNy — Np) is a smooth
differential operator (c§N, — NO)GC%NX‘FC(E) : T.(E) — I'(E) is still continuous. To conclude the
proof it is sufficient to prove that if I'.(E) 3 §, — 0 in the topology of I'.(E) and K > supp(f,) for
all n € Nis a compact set, then there is a compact set K’ such that K’ > supp((c%‘NX—No)Gc_ngfn)
for all n e N. If ¢ : M — R is the Cauchy temporal function of ¢g; used to construct Ry and R_,
whose level sets ¥, := ¢~!(7) are Cauchy hypersurfaces for go, gy, g1 and g, = go in the past of
Y4,, then the set JEM’QX)(K )N DSFM’gX)(EtD), which is compact for known properties of globally
hyperbolic spacetimes, includes all supports of (¢¥N, — N())Gc_%(,\len from the very definition of

retarded Green operator also using the fact that (¢¥N, — Ng) vanishes in the past of Xy,. O

As a by-product of Theorem 2.1.27 we get a technical, but important, corollary.

Corollary 2.1.29. Consider g,q',¢" € GHm, corresponding formally selfadjoint and normally
hyperbolic operators N, N, N” on the K-vector bundle E on M equipped with a non-degenerate,
Hermitian, fiberwise metric. Assume that g ~ ¢' and ¢’ ~ ¢" and suppose that Ryy is a Mpller
operator of g, 9" and Ry g is a Mpller operator of ¢', " according to (2.1.24). The following facts
are true.
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(1) R;glx is a Moller operator of ¢, g.
(2) RygRyrgr is a Moller operator of ¢/, g".

Proof. Tt is immediate form the construction of R described at the end of Theorem 2.1.27 relying
on (2.1.24). O

Remark 2.1.30. Observe that the construction of the Mgller operator R of gg, g1, for gg < ¢1, as
R = R_R; we used several times in this work is nothing but an elementary case of (2). Indeed,
in that case, go < gy < g1 and Ry, R_ are, respectively, a Mgller operator of gg, g, and gy, g1.

2.2 The Proca field

In this section we apply the same construction to the Proca operator. Below, GlJ;r denote the
retarded and advanced Green operators of the Proca equation (2.2.3), we shall discuss in 2.2.6.
The symbol kg, denotes a linear fiber-preserving isometry from the spaces of smooth sections
I'(Vy) to I'(Vy) constructed in 2.2.5. Here, V, indicates the vector bundle of real 1-forms over
the spacetime (M, g) whose sections are the argument of the Proca operator P. The main result
can be summarized as follows.

Theorem 3 (Theorems 2.1.20 and 2.2.14). Let (M, g) and (M, g’) be globally hyperbolic space-
times, with associated real Proca bundles V4 and V¢ and Proca operators P,P’.

If the metric are paracausally related g ~ ¢', then there exists a R-vector space isomorphism
R:T(Vy) — I'(Vy), called Mgller operator of g,g' (with this order), such that the following
facts are true.

(1) The restriction, called Mgller map
SY 1= Rlker..(p) : Kerse(P) — Kero(P')
1s well-defined vector space isomorphism with inverse given by

(SH™t .= Rfl\Kersc(p/) : Kergo(P') — Kery.(P).

(2) It holds ryyP'R = P.

(8) The causal propagators Gp := GIJ{ — Gp and Gpr := G;, — Gp,, respectively of P and P',
satisfy RGp Riss’ = Gpr.

(4) It holds Rfss P'rgglr.cv,) = Plr.(v,), where the adjoint Yos' is defined in Definition 2.1.23.

2.2.1 The Proca operator as a constrained Klein Gordon field

We will frequently deal with real smooth k-forms f, h € Q¥(M), where k = 0,...,n = dimM (and
one usually adds Q"*1(M) = Q~1(M) = {0}). The Hodge real inner product can be computed
by integrating the fiberwise product with respect to the volume form induced by g:

(o= | §r 5= | oh 0.0 vol,.

where at least one of the two forms has compact support and g?k) is the natural inner product of
k-forms induced by g. This symmetric real scalar product (-|-), x is always non-degenerate but it
is not positive when g is Lorentzian as in the considered case. It is positive when g is Riemannian.
If £ =1, we simply write

(116 = JM 45,1 vol ;. (2.2.1)
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In this context, d®) : Q¥(M) — QF*+1(M) is the exterior derivative and 5_((,k) cQF(M) — QF1(M) is
the codifferential operator acting on the relevant spaces of smooth k-forms Q¥(M) on M depending
on the metric g on M. d®) and 5§k+1) are the formal adjoint of one another with respect to the

Hodge product (2.2.1) in the sense that
(d(k)f|b)97k+1 = (ﬂéé(]kH)f))M . Yie Q¥ (M), vh e Q¥ H(M) if f or b is compactly supported.

We will often omit the indices 4 and (k) referring to the metric and the order of the used forms,
when the choice of the used metric and order will be obvious from the context.

If (M, g) is globally hyperbolic, we call Proca bundle the real vector bundle V,, := (T*M, g*)
obtained by endowing the cotangent bundle with the fiber metric given by the dual metric g*
(also appearing in (2.2.1)) defined by

gﬁ(wp,w}’,) := g(fwp, ) for every w,w’ € T(T*M) and p € M,

where § : I'(T*M) — I'(TM) is the standard musical isomorphism.

By construction I'(V,) = QY(M) and T'.(V,) = QL(M). Here and henceforth Q¥(M) = QF(M)
is the subspace of compactly supported real smooth k-forms on M.

The formally selfadjoint Proca operator P on (M, g) is defined by choosing a (mass) constant
m > 0, the same for all globally hyperbolic metrics we will consider on M in this work,

P =dd+m?:T(V,) — [(V,), (22.2)

where d = dV), § = 5;2). Actually P depends also on g, but we shall not indicate those
dependencies in the notation for the sake of shortness.
The Proca equation we shall consider reads

PA=0 for Ael(Vy), (2.2.3)

where, as said above, I's.(Vy) is the space of real smooth 1-forms which have compact support
on the Cauchy surfaces of the globally hyperbolic spacetime (M, g).

We pass to tackle the issue of normal hyperbolicity of P. As we shall see here, it is not really
necessary to construct the Mgller maps, and the weaker requirement of Green hyperbolicity is
sufficient.

Let N be the Klein-Gordon operator associated to the Proca operator P (2.2.2) acting on
1-forms

N :=6d + ds +m? : T(V,) — T'(Vy). (2.2.4)

Notice that this operator is normally hyperbolic: its principal symbol oy satisfies

on(§) = —gﬁ(f, §)1Idy, for all £ € T*M, where Idy, is the identity automorphism of V.
(2.2.5)
Therefore the Cauchy problem for N is well-posed [3,6]. Both N and P are formally selfadjoint
with respect to the Hodge scalar product (2.2.1) on QL(M) = T'¢(V,).
Since m? > 0 and 5}11)(5572)
to the pair of equations

= 0, it is easy to prove that the Proca equation (2.2.3) is equivalent

NA=0, forAeT(Vy), (2.2.6)
SA=0. (2.2.7)

As already noticed, differently from N, the Proca operator is not normally hyperbolic. However,
it is Green hyperbolic [3,6,12] as N, i.e. there exist linear maps, dubbed advanced Green
operator GJ : I'yc(V,y) — I'(V,) and retarded Green operator Gp : I'y.(Vy) — I'(V,) uniquely
defined by the requirements
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(ia) GF oPf=PoGhf=fforall f € T)e(V,) ,
(ii.a) supp (GEf) < J* (suppf) for all f € [pe(Vy);
(i.b) Gp oPf=PoG,f=fforall feI's(Vy),

(ii.b) supp (Gpf) < J~ (suppf) for all f € I'¢.(Vy);

The causal propagator of P is defined as

Gp :=Gf — Gp : T'e(Vy) — [se(Vy) . (2.2.8)

All these maps are also continuous with respect to the natural topologies of the definition spaces
[12]. As a matter of fact (see [12, Proposition 3.19] and also [6]), the advanced and retarded
Green operator G,J;r  Tpe/pe(Vg) = Tpespe(Vyg) can be written as

ds ds
Gy = <Id+ ) Gy = Gy <Id+ m2>

m2
where Gﬁ are the analogous Green operators for the Klein-Gordon operator N. Therefore

dé dé
Gp := (Id + 2> Gn = Gy (Id + 2) . (2.2.9)
m m
The fact that P is Green hyperbolic can be proved just by checking that the operators above
satisfy the requirements which define the Green operators as stated above, using the analogous
properties for G,J\l—r.
Eq. (2.2.9) and the analogous properties for Gy entail

Gp(Te(V,)) = {A € Tuo(V,) | PA = 0} . (2.2.10)

Indeed, if PA = 0 then NA = 0 and dA = 0. If A € T's.(Vy), [87, Theorem 3.8] implies A = Gyf
for some f € I'c(V,), so that A = (Id + %) A = Gpf as said.
Furthermore,

KerGp = {Pg|gel.(Vy)}. (2.2.11)

Indeed, if PA = 0 then m? (Id+ 45)PA = NA = 0. If A € T's(V,), again [87, Theorem 3.8]
implies that A = Nf for some f € I'.(V,). Since we also know that 6A = 0, the form (2.2.5) of N
yields A = Pf. On the other hand, if A = Pf for some f € ['s(V,), then GpA = G f—Gp§ = f—f = 0.

On account of [87, Proposition 3.6], for any smooth function p : M — (0, +o0) also pP is Green
hyperbolic and G;P = G%p‘l.

2.2.2 The Cauchy problem in ultrastatic spacetimes

We study here the Cauchy problem for the Proca (real and complex) field in ultrastatic spacetimes
(M, g) = (R x 3, —dt ®dt + h), where (X, h) is complete. A more general treatise appears in [98]
where the Cauchy problem is studied, also in the presence of a source of the Proca field, in
a generic globally hyperbolic spacetime and the continuity of the solutions with respect to the
initial data is focused.

Let us consider the Proca equation (2.2.3) (where m? > 0) on the above ultrastatic spacetime.
As observed in [44], every smooth 1-form A € Q'(M) naturally uniquely decomposes as

A(t,p) = AO(t, p)dt + AV (¢, p) (2.2.12)
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where AW (t,-) e Q}(X) for i = 0,1 and ¢ € R. By direct inspection and taking the equivalence of
(2.2.3) and (2.2.6)-(2.2.7) into account, one sees that Eq. (2.2.3) is equivalent to the constrained
double Klein-Gordon system

2A0 = (A 4 2O (2.2.13)
240 — (A £ m?)Am (2.2.14)
5 A0 — A0 (2.2.15)

Above, A,(f) = 6,(Ik+1)d(k) + d(kfl)é,(lk) is the Hodge Laplacian on (X, k) for k-forms and the last
condition (2.2.15) is nothing but the constraint 65(,1)14 = ( arising from (2.2.3).

The theory for the fields AN and A© is a special case of the theory of normally hyperbolic
equations on corresponding vector bundles with positive inner product over a globally hyperbolic
spacetime [3,6]. In our case,

(1) there is a real vector bundle Vgl)with basis M, canonical fiber isomorphic to T;E, and

equipped with a fiberwise real symmetric scalar product induced by hg. AW ¢ I‘(V:q(l));

(2) there is another real vector bundle Vgo) with basis M, canonical fiber isomorphic to R,
and equipped with a positive fiberwise real symmetric scalar product given by the natural
product in R. A©) ¢ F(V:q(o)).

Evidently
Vy =V @Vl (2.2.16)

Equations (2.2.13) and (2.2.14) admit existence and uniqueness theorems for smooth compactly
supported Cauchy data and corresponding smooth spacelike compact solutions in Fsc(VéO)) and

Fsc(Vél)) respectively, as a consequence of very well-known results in the theory of normally
hyperbolic equations [3,6,66]. However, when viewing A(®) and A1) as parts of the Proca field
A, we have also to deal with the additional constraint (2.2.15). Notice that (2.2.15) imposes two
constraints on the Cauchy data of A® and AM on ¥

A0 (0,p) = =010 AN (0,p) A0, p) =~V 24D (0, p).

The second constraint is only apparently of the second order. Indeed, taking (2.2.13) into account,
it can be re-written as a condition of the Cauchy data

(A +m2) A0 (0,p) = 114D (0,p).

At this juncture we observe that, with some elementary computation (use Ago)(s,(:) = 5,(11)A,(11)),

Equations (2.2.13) and (2.2.14) imply also the crucial condition
(@2 + ALY —m?)(3,40 + 5D A0y = 0

which, in turn, implies Equation (2.2.15) , if the initial condition of that scalar Klein-Gordon
equation for (6;A©) + 5}(3)14(1)) are the zero initial conditions. This exactly amounts to

A 0,p) = =50 A0©0,p)  and (ALY +m?)A® = 5V5,4M (0, p) .

In summary, we are naturally led to focus on this Cauchy problem

0240 4 (A 4 ;)40 — ¢, (2.2.17)
2240 4 (A 4 m2)aM 0, (2.2.18)
@2+ Al — (8,40 4 5D ADY — 0, (2.2.19)
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with initial data

A(O)((), N = a(O)(.), atA(O)((), N = 7T(O)(.)7 A(l)(o, N = a(l)(.), &sA(l)(O, N = 7T(l)(.) (2.2.20)

where a(@, 70 ¢ 7(1) are pairs of smooth compactly supported, respectively 0 and 1, forms

on X, and the constraints are valid
0 = —5Ya® (A +m)a® = 507 (2:221)

If A is a spacelike compact solution of the Proca equation (2.2.3), then it satisfies (2.2.13)-
(2.2.15) and its Cauchy data (2.2.20) satisfy the constraints (2.2.21). On the other hand, if we
have smooth compactly supported Cauchy data (2.2.20), then the two Klein-Gordon equations
(2.2.13) and (2.2.14) admit unique spacelike compact smooth solutions which also satisfies (2.2.19)
as a consequence. If the said Cauchy data satisfy the constraint (2.2.21), then also (2.2.15) is
satisfied, because it is equivalent to the unique solution of (2.2.19) with zero Cauchy data. In
that case, the two solutions A©® and A® define a unique solution of the Proca equation with
the said Cauchy data.

We have established the following result completely extracted from the theory of normally
hyperbolic equations.

Proposition 2.2.1. Let (M,g) = (X, —dt ® dt + h) be a smooth globally hyperbolic ultrastatic
spacetime with dt past directed, where h is a smooth complete Riemannian metric on 3. Consider
the Cauchy problem on (M, g) for the smooth 1-form A satisfying the Proca equation (2.2.3) for
m? > 0, with smooth compactly supported Cauchy data (2.2.20) on ¥ viewed as the t = 0 time
slice.

The Proca Cauchy problem for A with constraints (2.2.21) is equivalent, regarding existence and
uniqueness of spacelike compact smooth solutions , to the double normally hyperbolic Klein-Gordon
constrained Cauchy problem (2.2.13)-(2.2.15), for the fields A©) e Fsc(Véo)) and AM) e FSC(Vél)),
with the same initial data (2.2.20) and constraints (2.2.21). As a consequence,

(1) every smooth spacelike compact solution of the Proca equation A € I's.(Vy) (2.2.3) defines
compactly supported smooth Cauchy data on ¥ which satisfy the constraints (2.2.21);

(2) if the Cauchy data are smooth, compactly supported and satisfy (2.2.21), then there is a
unique smooth spacelike compact solution of the Proca equation A € I's.(Vq) (2.2.3) associ-
ated to them;

(3) the support of a solution A € I's.(Vy) with smooth compactly supported initial data satis-
fies supp(A) < JT(S)uJ(S), where S < X is the union of the supports of the Cauchy data.

Remark 2.2.2. (1) All the discussion above, and Proposition 2.2.1 in particular, extends to
the case of a complex Proca field and corresponding associated complex Klein Gordon fields.
The stated results can be extended easily to the case of the non-homogeneous Proca equation
and also considering continuity properties of the solutions with respect to the source and
the initial data referring to natural topologies. (See [98] for a general discussion.)

(2) A naive idea may be that we can freely fix smooth compactly supported Cauchy data for A
and then define associated Cauchy conditions for A by solving the constraints (2.2.21).
In this case the true degrees of freedom of the Proca field would be the vector part AW
whereas A(©) would be a constrained degree of freedom. This viewpoint is incorrect, if we
decide to deal with spacelike compact solutions, because the second constraint in Equa-
tion (2.2.21) in general does not produce a compactly supported function a(®) when the

source 5,(11)7r(1) is smooth compactly supported (the smoothness of a® is however guaran-

teed by elliptic regularity from the smoothness of 621)741)). a9 is compactly supported only
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for some smooth compactly supported initial conditions 7). Therefore the linear subspace
of initial data (2.2.20) compatible with the constraints (2.2.21) does not include all possible
compactly supported initial conditions 71 which, therefore, cannot be freely chosen.

(3) However this space of constrained Cauchy data is non-trivial, i.e., it does not contain only
zero initial conditions and in particular there are couples (a(o), F(l)) such that both elements
do not vanish. This is because, for every smooth compactly supported 1-form f) (with
dMW M) 20 in particular) and for every smooth compactly supported 2-form f @),

al®) .= 521)]"(1) 1) = (Ag) + m2> f(l) + 5,(12)]"(2)

are smooth, and compactly supported, they solve the nontrivial constraint in (2.2.21)
(5}9)%(1) = (A + m?)a® and f1), f@ can be chosen in order that neither of a(?) and

(1) vanishes. The easier constraint 7(®) = —(521)a(1) is solved by every smooth compactly
supported 1-form V) by defining the smooth compactly supported 0-form 7(9) correspond-
ingly.

2.2.3 The Proca symplectic form in ultrastatic spacetimes

Consider two solutions A, A" € T's.(V4) N KerP of the Proca equation in our ultrastatic spacetime,
choose t € R and consider the bilinear form
agp)(A, A') = J hﬁ(agl),ﬂgl), - dago),) - hﬂ(a,gl)/,ﬂgl) — dago)) volp, , (2.2.22)
X

where we are referring to the Cauchy data on X of the smooth spacelike compact solutions of the
Proca equation. X is viewed as the time slice at time ¢. As is well known, it is possible to define
a natural symplectic form for the Proca field in general globally hyperbolic spacetimes [12] with
properties analogous to the ones we are going to discuss here. Here we stick to the ultrastatic
spacetime case which is enough for our ends.

According to [12] (with an argument very similar to the proof of Propositions 3.12 and 3.13
in [87]) we have immediately that

oA, 4) =P, 4) vt eR,

and, omitting the index ¢ as the symplectic form is independent of it,
oPl(4, A = f g* (1, Gpf) vol, (2.2.23)
M

where A, f (resp. A, f’) are related by A := Gpf (resp. A" := Gpf').

Remark 2.2.3. The important identity (2.2.23) is also valid in a generic globally hyperbolic
spacetime when o) is interpreted as the general symplectic form of the Proca field according
to [12].

Let us suppose to deal with the Cauchy data of the real vector space Cy < Q2(X)% x
QL(2)2 of smooth compactly supported Cauchy data (ag, 7, a1, 71) subjected to the linear con-
straints (2.2.21),

Oy = {(a<°>,7r<0>,a<1>,7r<1>) e Q)2 x QL()? | 7@ = 5@ (AL 4 1p2)a© = 5,(}%(1)}
(2.2.24)

Not only the Cauchy problem is well behaved in that space as a consequence of Proposition 2.2.1,
but we also have the following result.
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Proposition 2.2.4. The bilinear antisymmetric map o) : Csx x Cx — R defined in (2.2.22) is
non-degenerate and therefore it is a symplectic form on Cx.

Proof. Taking (2.2.10) into account, suppose that I's.(V4) n KerP 3 A" = Gpf whose Cauchy data
are (a0, 70 o' 7(0') e Oy is such that 0P (A, A’) = 0 for all A = Gpf € T's(Vy)nKerP = Cs,
we want to prove that A’ = 0 namely, its initial conditions are (0,0,0,0). From (2.2.23), using
the fact that ¢ is non-degenerate, we have that A’ = Gpf’ = 0 so that its Cauchy data are the
zero data in view of the well-posedness of the Cauchy problem Proposition 2.2.1. O

To conclude we prove that, when using Cauchy data in Cs;, the expression of o(P) can be re-
arranged in order to make contact with the analogous symplectic forms of the two Klein-Gordon
fields A and AM the solution A is made of, as discussed in 2.2.2. Indeed, remembering the
constraint 7(0) = —§ }(Ll)a(l), and using the duality of § and d, part of the integral in the right-hand
side of (2.2.22) can be rearranged to

JE hﬁ(agl), dago)/) - hﬁ(agl)l7 dago)) voly, = JZ hﬁ(él(ll)agl), ago)/) - hﬁ(5,(11)a§1)/, ago)) voly,
= J; hu(ﬂ'go), ago)’) — hﬁ(ﬂ't(o)/, ago)) voly, .

As a consequence, if n; = 1 for ¢ = 1 and n; = —1 for ¢ = 0 and h%i) is hf for i = 1 and the

pointwise product for ¢ = 0,
1
oP)(A,4") = 2 nif h%i)(af),wtu) ) — h%i)(ay) ,ng)) volp, . (2.2.25)
i=0 V¢

In other words, referring to the (Klein-Gordon) symplectic forms introduced in [87] for normally
hyperbolic equations (2.2.13) and (2.2.14)

i

cP/(A,A") = oM (AD A — 5040 A0

where o(®) is the symplectic form for a normally hyperbolic field operator on a real vector bundle
defined, e.g., [87, Proposition 3.12].
A similar result is valid for the causal propagators. Decomposing f = §fOdt + §1) e I'e(Vy)

where {0 e FC(Véo)) and §V) e FC(VS)), (2.2.23), the analogues for scalar and vector Klein
Gordon fields [87] and (2.2.25) imply

| #GGervol, = | GO, 605 ol — [ FOGOvol,

where G®, i = 0,1 are the causal propagators for the normally hyperbolic operators

N® = 02 + AP 4+ 2T : Ty (VW) - T (V) i =0,1
according to the theory of [87]. Here Ago) coincides with the standard Laplace-Beltrami operator
for scalar fields on 3.

Remark 2.2.5. With the same argument, the found results immediately generalize to the case
of complex k-forms. More precisely, if the Cauchy data belong to Cy + iCy,

o)A, A') = oV (AW, AV — g O (AT, A©))

where the left-hand side is again (2.2.22) evaluated for complex Proca fields, i.e., complex Cauchy
data. Above, the bar denotes the complex conjugation and the Cauchy data of the considered
complex Proca fields satisfy the constraints (2.2.21). Furthermore

| G Gepvol, = | HEGW. 605l — | FOGO vol,
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where the smooth compactly supported sections are complex. We have used the same symbols
as for the real case for the causal propagators since the associated operators commute with the
complex conjugation. As a consequence, a standard argument about the uniqueness of Green
operators implies that the causal propagators for the real case are nothing but the restriction of
the causal propagator of the complex case which, in turn, are the trivial complexification of the
real ones.

2.2.4 The Proca energy density in ultrastatic spacetimes

Starting from the Proca Lagrangian in every curved spacetime (see, e.g, [42])

1 m?
E = _ZFNVFMV - TA.“'AM with F/LV = 6,U,AV - &,A#
and referring to local coordinates (2, ..., 2" 1) adapted to the split M = R x ¥ of our ultrastatic
spacetime, where 2 = ¢ runs along the whole R and z!, ..., 2" are local coordinates on ¥, the

energy density reads in terms of initial conditions on ¥ of the considered Proca field

Too = % W (D — da® 7V — @) + éhﬁm (da™, daM)
) (2.2.26)

M (hta® g™ (0),(0)
+ 5 (h(a ,a') +aVa )20.

Above h%Q) is the natural scalar product for the 2-forms on ¥ induced by the metric tensor. It is

evident that the energy density is non-negative since the metric h and its inverse h¥ are positive

by hypothesis. The total energy at time ¢ is the integral of Tpy on X, using the natural volume

form, when replacing A and AM) for the respective Cauchy data. As & is a Killing vector and

the solution is spacelike compact, the total energy is finite and constant in time.
gp 1 f (hn(ﬂu) ~da® 7D — 4a©®) 4, (da), da))

2Js @ (2.2.27)

+m? (hﬁ(a(l), oMy + a(o)a(o)))volh .
Using Hodge duality of d and § and the definition of the Hodge Laplacian, the expression of the
total energy can be re-arranged to

5P _ % J (hﬂ(ﬂmmu)) T 1E(da®), da®) — 20t (rD), da©@) — 5D M5 M)
b

+h (aV), Ai(ll)a(l)) +m?(a©a® + pF (), a(l)))>volh .

Using again the Hodge duality of d and § the third term in the integral can be rearranged to

- j B (D, da®)vol , — — j a5 7 (W yol,, .
b by

The term 67 above and the term 5,21)a(1)5}(11)a(1) appearing in the expression for the total
energy can be worked out exploiting the constraints (2.2.21). Inserting the results in the found
formula for the total energy, we finally find, with the notation already used for the symplectic
form,

1
1 4 . . ' .
B =Y nig L By (e, 7 0) + hE (@ (A + m21a®) vol (2.2.28)
i=0

when the used Cauchy data belong to the constrained space Cy. It is now clear that the total
energy of the Proca field is the difference between the total energies of the two Klein-Gordon

93



fields composing it exactly as it happened for the symplectic form. This difference is however
positive when working on smooth compactly supported initial conditions satisfying the constraints
(2.2.21), because the found expression of the energy is the same as the one computed with the
density (2.2.26).

Remark 2.2.6. We notice that the negative energy component of the field can be interpreted as
a ghost, in this case however no issues arise since dynamical constraints covariantly remove such
a state. A different approach to the problem by generalizing to curved spacetime the Stuckelberg
Lagrangian, can be found in [10], where it is apparently argued the no Hadamard states exist for
the Proca field, contrarily to the results of [44] and of this work.

Remark 2.2.7. With the same argument, the found result immediately generalizes to the case
of complex k-forms and one finds

1
Z 771'1 f h%.) (7@, 7@ + h%.)(a(i), (AS) +m2I)a)vol j, =
o 2" '

1 - -
=2LQMﬂn_m®mm—mﬁh+wﬂmm¢d%

+m? (hﬁ(m, aV) + ma(o))volh> =0

(2.2.29)

where the bar over the forms denotes the complex conjugation and (a(o), 70 ¢, 7r(1)) are com-
plex forms of Cy, + iCy,.

2.2.5 Linear fiber-preserving isometry

As said above, to construct Mgller maps for the Proca field we should be able to compare different
fiberwise metrics on T*M when we change the metric ¢ on M. This will be done by defining
suitable fiber preserving isometries.

If g and ¢’ are globally hyperbolic on M and g ~ ¢/, it is possible to define a linear fiber-
preserving isometry from I'(Vy) to I'(Vy) we denote with k,, and we shall take advantage of it
very frequently in the rest of this work. In other words, if f € I'(V), then ky4f € T'(Vy), the map
Kgg: T'(Vg) = I'(Vy) is R linear, and

9 (kg gF)(0), (rgg8) (P)) = g*(F(p), 8(p)) VPEM.

Let us describe the (highly non-unique) construction of k4. If x € C*(M;[0,1]) and go < g1,
then

gy == (1 =Xx)g0 + x01 (2.2.30)

is a Lorentzian metric globally hyperbolic on M (see chapter 1 for details) and satisfies

go X gy < g1 .

Now consider the product manifold N := R x M, equipped with the indefinite non-degenerate
metric

hi=—dt®dt+ g,

where g; = (1 — f(t))go + f(t)gy and f : R — [0,1] is smooth and f(t) = 0 for t <0, f(t) =1
for ¢ > 1. Notice that g; is Lorentzian according to [87] because gy < g, and h is indefinite non-
degenerate by construction. At this point Ky : TM — TM is the fiber preserving diffeomorphism
such that Kyo(w,v) is the parallel transport form (0,z) to (1,x) of v € T,M < TN along
the complete h-geodesic R 3 t — (t,z) € N. Standard theorems on joint smoothness of the
flow of ODEs depending on parameters assure that Ko : TM — TM is smooth. Notice that
Rxo|T,M : TzM — T;M is also a h-isometry from known properties of the parallel transport and
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thus it is a go, gy-isometry by construction because h; ) (v,v) = gi(v,v) if v € T:M < T )N,
Taking advantage of the musical isomorphisms, %, induces a fiber-bundle map r,o : T*M — T*M

which can be seen as a map on the sections of I'(Vy, ) and producing sections of I'(V, ), preserving

the metrics gg, gi. Then the required Proca bundle isomorphism kgyy = kg4, is defined by

composition:
"51,0 = Iilxﬁ,xo.

where k1, from I'(Vy, ) to T'(Vy,) is defined analogously to xyo. The general case g ~ g’ can be
defined by composing the fiber preserving linear isometries kg, g4, OF Kg; g, .-

2.2.6 Mpgller Maps and Mgller Operators

We recall that a smooth Cauchy time function 1.1.14 in a globally hyperbolic spacetime (M, g)
relaxes the notion of temporal Cauchy function, it is a smooth map ¢ : M — R such that dt
is everywhere timelike and past directed, the level surfaces of ¢t are smooth spacelike Cauchy
surfaces and (M, g) is isometric to (R x 3, h). Here, t identifies with the natural coordinate on R
and the Cauchy surfaces of (M, g) identify with the sets {t} x 3.

From now on we indicate by Ng, N1, N, the Klein-Gordon operators (2.2.4) on M constructed
out of gg, g1 and g, respectively, where the globally hyperbolic metric g, is defined as in (2.2.30)
(and thus go < gy < g1 [87, Theorem 2.18]) and depends on the choice of a function x €
Cy(M,[0,1]). Similarly, Py, P1, Py denote the Proca operators (2.2.2) on M constructed out of
go, g1 and g, respectively.

We can state the first technical result.

Proposition 2.2.8. Let gy, g1 be globally hyperbolic metrics satisfying go < g1 and let be
x € C*(M;[0,1]). Choose

(a) a smooth Cauchy time gi-function t : M — R and x € C*(M;[0,1]) such that x(p) = 0 if
t(p) < to and x(p) =1 if t(p) > t1 for given to < ti;

(b) a pair of smooth functions p,p’ : M — (0,+m) such that p(p) = 1 for t(p) < to and
p'(p) = p(p) =1 if t(p) > t1. (Notice that p = p' =1 constantly is allowed.)

Then the following facts are true where g, is defined as in (2.2.50).
(1) The operators
Ry: F(Vgo) - F(Vgx) Ry i=kyo — G;PX (PPXKXO - HXOPO) )
R :T(Vg) = T'(Vy) R-:=rix = Gyp, (p'P1s1x — pr1xPy)
are linear space isomorphisms, whose inverses are given by
RT':T(Vg) = T(Vg) Ry = koy + GE, (prox Py — Poprioy),
REV:T(Vy) = T(Vy)  RZVi=ra + G (0ryaP1— priyPy).
By composition we define the Maller operator:
R:T'(Vg) = I'(Vg,) R:=R_oRy4,
which is also a linear space isomorphism.

(2) It holds
proyPyRy = Po and P ry1P1RZ = pPy .

and also
proy Py = PORJ_F1 and pry1P1 = PXRZI.
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(3) If fe I'(Vg,) or I'(Vy,) respectively, then

(Ref)(p) = §(p)  for t(p) <to, (2.2.31)
(R-F)(p) =f(p) for t(p)>t1. (2.2.32)

Proof. First of all, we notice that the operator R, is well defined on the whole space I'(V,, ) since

for all sections f € I'(Vy,) we have that (PX% - F”XO Po)f € I'pe(Vg, ): indeed by definition, there

exists a tg € R such that on t~!(—00,tg) and we have that P, = Py, ko = Id and ? is a smooth g;-

Cauchy time function. Moreover, since g, < g1 it follows that Ipe(Vgy) © Tpe(Vy, ) = Dom(Gp,).
To prove (1), we can first notice that

Ri'oRy = (HOX + Gp, (proxPy POF;OX)> o <I€X0 - G:PX (pPyry0 — /@XOPO))
=1Id — KOXGpPX (pPXHXO — KxOPO) + G$0 (,OI{()XPX — Poliox)/-ixo
- G;O (prox Py — POF&OX)G;PX (PPxfix0 — FixoPo) -
To conclude it is enough to show that everything cancels out except the identity operator, but
that just follows by using basic properties of Green operators and straightforward algebraic steps.
We easily see that the last addend can be recast as:
G;O (proxPx — Poroy) G;PX (PPxrx0 — KxoPo)
= G;OpKUXPXG;PX (PPxrx0 — ExoPo) — G;O POK;OXG;PX (PPxkx0 — ExoPo)
= G;_OK’OX (PPxrixo — FixoPo) — HOXG;_PX (PPxrix0 — Fx0Po),
which fulfils its purpose.
A specular computation proves that R;l is also a right inverse. Almost identical reasoning prove
that RZ! is a two sided inverse of R_ which is also well defined, then bijectivity of R is obvious.
(2) follows by the following direct computation
,OH()XPXR+ = pK/OXPX (’fxO - G;_PX (prﬁxo - KvaPO))

= HOXIQXUPO = Po.

(3) Let us prove (2.2.31). In the following P* denotes the formal dual operator of P acting
on the sections of the dual bundle I'c(V,). It is known that it is Green hyperbolic if P is (e.g.,
see [3]) and, if f € ['c(V}) and § € T'ye(Vy) or § € T'pe(V}) respectively,

f (Gpaff ) voly = f . GHP) vol, f (Ghaff ) vol, = f §.Gopvoly,  (22.33)
M M M M

where G}S indicate the Green operators of P and G]ig* indicate the Green operators of P*. Consider
now a compactly supported smooth section h whose support is included in the set t~1((—c0, tg)).
Taking advantage of the Equation (2.2.33), we obtain

. .Gl (0P = POl voly, = [ (G b (9P = PO vl =0

since supp(G(;PX)*b) c J%(supp(h)) and thus that support does not meet supp((pP, — Po)f)

because ((pPy — Po)f)(p) vanishes if ¢(p) < to. As b is an arbitrary smooth section compactly
supported in t~1((—00,t)),

| .65, (0P~ Pavoly, =0

entails that G;PX (pPy — Po)f = 0 on t~1((—00,t0)). The proof of (2.1.15) is strictly analogous, so
we leave it to the reader. O
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Using Proposition 2.2.8, we can pass to the generic case g ~ ¢'.

Theorem 2.2.9. Let (M, g) and (M, g’) be globally hyperbolic spacetimes, with associated Proca
bundles V4 and Vg and Proca operators P,P’.
If g ~ ¢, then there exist (infinitely many) vector space isomorphisms,

R:T(V,) - [(V,)

such that
(1) referring to the said domains,
K ggr PPR=P
for some smooth 1 : M — (0,+m) (which can always be chosen p = 1 constantly in

particular), and a smooth fiberwise isometry kgq : I'(Vg) — I'(Vy).
(2) The restriction, called Mgller map
SY 1= RlKer..(p) : Kerse(P) — Keryo(P')
1s well-defined vector space isomorphism with inverse given by

(SO 1= R |kers.(p) : Kerse(P') — Kerge(P).

Proof. Since g ~ ¢’, there exists a finite sequence of globally hyperbolic metrics go = g, g1, .., gn =
g such that at each step gx < gr+1 Or gr+1 < gg. For all k € {0,.., N} we can associate to the
metric a Proca operator Py.

At each step the hypotheses of Proposition 2.2.8 are verified, in fact we can choose functions
pr and p) and the Mgller map is given by Ry = R;_ o Ry . The general map is then built
straightforwardly by composing the N maps constructed step by step:

RZRNO...ORl.

Regarding (1), by direct calculation we get that p = H,ivzl P> While Kgg = Kgog, © ... © Ky 1gn-
The proof of (2) is trivial. O

2.2.7 Mpgller operators and the causal propagator

We now study the interplay between Mgller maps and the causal propagator of Proca operators.
To this end, we use a natural extension of the notion of adjoint operator introduced in the previous
section.

Let g and ¢’ (possibly g # ¢') globally hyperbolic metric and let V, and Vg be a Proca bundle
on the manifold M. Consider a R-linear operator

T: Dom(T) — T'(Vy)
where Dom(T) < I'(V,) is a R-linear subspace and Dom(T) > I'¢(V,).

Definition 2.2.10. An operator
Tl 1 To(Vyr) — Te(Vy)
is said to be the adjoint of T with respect to g,¢’ (with the said order) if it satisfies
| % 0. @) vol @) = [ g (Thb.7) (@) volyo) Ve Dom(T). Vo e T (E)
M M
When ¢ = ¢/, we use the simplified notation TT := TTos,
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As in [87], the adjoint operator satisfies a lot of useful properties which we summarize in the
following proposition. Since the proof is analogous to the one of [87, Proposition 4.11], we leave it
to the reader. We will focus on the the real case only, but now we state the theorem encompassing
the case where the sections are complex and the fiber scalar product is made Hermitian by adding
a complex conjugation of the left entry in the usual fiberwise real g* inner product, which becomes
gﬁ(i, g), where the bar denotes the complex conjugation. Definition 2.2.10 extends accordingly.
For this reason K will denote either R or C, and the complex conjugate ¢ reduces to c itself when
K = R. We keep the notation V, for indicating either the real or complex vector bundle T*M or
T*M + iT*M corresponding to two possible choices of K.

Proposition 2.2.11. Referring to the notion of adjoint in Definition 2.2.10, the following facts
are valid.

(1) If the adjoint Tles' of T emists, then it is unique.

(2) If T : T(Vy) — T'(Vy) is a differential operator and g = ¢', then Tlos exists and is the
restriction of the formal adjoint to T'.(E). (In turn, the formal adjoint of T is the unique
extension to T'(E) of the differential operator T1 as a differential operator.)

(3) Consider a pair of K-linear operators T : Dom(T) — I'(Vy), T : Dom(T’) — I'(Vy) with
Dom(T), Dom(T") c I'(Vy) and a,be K. Then

(aT + bT)os = @Tles’ + bT o
provided Tlos' and T'Tes' exist.

(4) Consider a pair of K-linear operators T : Dom(T) — I'(Vy), T' : Dom(T") — I'(Vgr) with
Dom(T) < T'(Vy) and Dom(T’) < I'(Vy) such that

(i) Dom(T' o T) o T(Vy),
(ii) Tlas' and T'No's" euist,

then (T' o T)1es” exists and

(Tl OT)ng// _ Tng/ OT/Tg/g// )
(5) If Thes' exists, then (TTQQ/)TQ’Q = T\pc(vg).

(6) If T : Dom(T) = I'(Vy) — I'(Vy) is bijective, admits Tlas', and T~ admits (T~1)1os, then
Tleo' s bijective and (T_I)Tg’g = (Tng’)_l.

Now we are ready to prove that the operators R admit adjoints and we explicitly compute
them.

Proposition 2.2.12. Let go, g1 be globally hyperbolic metrics satisfying go < ¢1. Let R4, R_ and
R be the operators defined in Proposition 2.2.8 and fiz, once and for all, p = ¢ and p' = C(I) where
cf)(, c(l) are the unique smooth functions on M such that:

volg, = cgvolg,  volg, = covolg,. (2.2.34)
Then we have:

(1) quogx :Te(Vg,) = Te(Vy,) satisfies:

Taoe _
R_i_gqu = (C%(/iox — (Cgff()xpx — PofioX) GPX) |Fc(VX)
and can be recast in the form

; —
RJrgogx — POﬁOXGpX|FC(Vx)'
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(2) Rlovar . Le(Vy,) = Le(Vy, ) satisfies

T
fogl = (C>1</€X1 — (C)f"‘fxlpl — PX’i'Xl) G;_l) |FC(V1)>
and can be recast in the form

f
RI = Poria Gy I vy)-

(3) The map Risoo : To(V,,) — Te(Vy,) defined by Risos = Rirfog" o R is invertible and
(Rt )L = (Rt Tu(V,,) — TulVyy).

We call it adjoint Mgller operator.
Moreover Rfso91 is a homeomorphism with respect to the natural (test section) topologies of
the domain and of the co-domain.

Proof. We start by proving points (1) and (2). For any § € Dom(Ry) = I'(V,) and b € T'.(Vy, )
we have

J;vl gi (b? R+f> VOlgx = J;\/I g;i( (ha (KXO - G;E)(PX (C())CPXHXO - HxOPO) )f) VOng -
JM gi (b, Kyof) vol g, — JM gi (h, (G:%(PX (c3Pykx0 — Kx0Po) )f) vol g, .

We now split the problem and compute the adjoint of the two summands separately.
The adjoint of the first one follows immediately by exploiting the properties of the existing
isometry and Equations (2.2.34)

f gt (b, rxof) vol g, =f g8 (croyb. ) vol .
M M

For the second summand the situation is trickier and we cannot split the calculation in two
more summands since it is crucial that the whole difference (cf)< Pyky0 — ky0oPo) acts on a general
f e I'(Vg, ) before we apply the Green operator whose domain is I'pc(Vy, )-

So we first rewrite G::FXPX = G,‘ﬁ Cix and use the properties of standard adjoints of Green operators
for formally self-adjoint Green hyperbolic differential operators to get

_ Rx0
fM g (h, (G%PX (c3Pykx0 — KxoPo) )f) vol g = JM i (prh, (Pykixo — %P@f) vol g .

Now we are tempted to exploit the linearity of the integral and of the fiber product, but first, to
ensure that the two integrals individually converge, we need to introduce a cutoff function:

o We notice again that there is a Cauchy surface of the foliation ¥, such that for all leaves
with ¢ < to the operator (PX/{XO — H—%’Pg) = 0;
o

e So take a t’ <ty and define a cutoff smooth function s : M — [0, 1] such that s = 0 on all
leaves with ¢t <t and s = 1 for t > 9.

In this way we are allowed to rewrite our last integral and split it in two convergent summands
without modifying its numerical value.
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JM gi (GEXF), (PX"{XO — ,ZXO P0)5f>Vong =

X

0
— i — o # _ HXO
- JM 9y (prf), mexosf) vol gx jM 9y (prf), —Cg Posf> vol 9
= | & (cyroxPyGp Lo — | & (PoroyGs I

80 ( CoroxPxGp, b, sf) volg, go(Poroy Pxf),sf)vo 90
M M

- JM g(ﬁ) ((CéclioxPX - Po/iox)G;Xb, Sf) vol ¢,

= JM gg ((Cg)(’fOXPx — PO%OX)GF_;XU, f) vol 4.

where in the last identities we have used properties of the standard adjoints of the formally self-
adjoint operators, of the isometries and of the cutoff function.

Since the domain of the operator is just made up of compactly supported sections, we may exploit
the inverse property of the Green operators to immediately obtain that

X X — _ —
cyroy — (CgroxPy — Pokox) Gp [r.(v,) = PoroxGp, Ir.(v,)-

To see that the image of the operators is indeed compactly supported we can focus on Risoox
the rest follows straightforwardly. The first summand cjxo, does not modify the support of the
sections, whereas the second does. Let us fix f € I'¢(Vy, ), then supp (G;X f) = Jg. (suppf) which

means that GEXf € I'spe, i.e it is space-like and future compact. The thesis follows by again

observing that there is a Cauchy surface such that in its past <Px“x0 - %P(]) G;Xf =0.
0

The computation of the adjoint of R_ is almost identical to the one just performed.
The first part of (3) is an immediate consequence of property (4) in Proposition 2.1.26, while
the invertibility of the adjoint can be proved by explicitly showing that the operator

T _ K0 RNQ ~_
(RY) ™ = ( + (Px”xo - ’§<Gpo)>
o &0}

RL‘IO-‘?X

Fe(Vgg)

serves as a left and right inverse of . An analogous argument can be used for RE’X"“.

The continuity of both the adjoint and its inverse comes by the same arguments used in the proof
of [87, Theorem 4.12] (with the only immaterial difference that this time the smooth isometry
Kyo is included in the definition of the Mgller operator.) O

Remark 2.2.13. An interesting fact to remark is that having defined the adjoints over compactly
supported sections makes the dependence on the auxiliary volume fixing functions disappear.

We conclude by proving the second part of Theorem 3.

Theorem 2.2.14. Let (M, g) and (M, g') be globally hyperbolic spacetimes, with associated Proca
bundles V4 and Vg and Proca operators P,P’.

If g ~ ¢, it is possible to specialize the R-vector space isomorphism R : T'(Vy) — T'(Vy) of
Proposition 2.1.20 such that the following further facts are true.

(1) The causal propagators Gp and Gpr (2.2.8), respectively of P and P’, satisfy

RGPRTQQ' = Gp/ .

(2) It holds
Rng/ P/K9/9|FC(VQ) = P|FC(V9) :
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R as above is called Mgller operator of g, g (with this order).

Proof. Since g ~ ¢’ and the Mgller map is defined as the composition R = Ry o ... o Ry, we can
use properties (4) in Proposition 2.1.26 and reduce to the case where g = go < g1 = ¢’. With
this assumption, (2) can be obtained following the proof of Proposition 2.2.8. So we leave it to
the reader.

It remains to prove (1). Decomposing R as above, we define the maps R‘ffg", R?_ﬁ‘gl by choosing
the various arbitrary functions as in Proposition 2.2.12. We first notice

t _
R_,_G;_()Rfogx = (KJXO — G;%PX (Cgprfxo — HX0P0)> GE;O <P0/€0XGPX) ’FC(VX)

= G;%PXKJXO (P()H()XG;X> ‘FC(VX) = G;x — G-th (PX — /ZE(OPOHOX) GF_,X
where the first equality follows by definition, in the second one we have used the properties
of Green operators, while in the third one we have just equated the two expressions for the
adjoint operator according to (1) in Proposition 2.2.12 and performed some trivial algebraic
manipulations.
Another analogous computation can be performed for the retarded Green operator yielding

_ _ K _
R.Gp R =Gy —Gf <PX - %()Pom) Gp..

Therefore, subtracting the two terms we get

R Gpo RO = Ry (Gf, — G JRI™ = Gp

x°

Applying now R_ and its adjoint we get the claimed result. O

2.3 Conclusions

In this chapter we have seen that an interesting family of (infinitely many) geometric isomorphisms
can be constructed to relate the solution spaces of three classes of Green hyperbolic operators
under variations of the background geometry, namely normally hyperbolic and Proca operators.
For the latter also the Cauchy problem has been studied in detail and the energy density has
been presented, ready to be used in the next chapter to construct Hadamard states.

For the two classes of operators the Mgller maps depend on various elements: the paracusal chain
chosen, the interpolating spacetimes and the chosen interpolating operators.

The strategies only differ in some aspects related to the chosen interpolating operators:

e for normally hyperbolic operators, at each step, the interpolating operator was a convex
combination of the two starting operators, since it was proved to be Green hyperbolic on
an interpolating spacetime;

e for the Proca operator every strategy based on convex combinations is doomed to fail, so
we have developed one which is probably the most general and would work also for the
previous cases: to associate to the interpolating spacetime a Proca operator built out of its
geometry.

The last approach suggests that this strategy may work to study the solution space of any Green
hyperbolic operator under variations of the background geometry, even though the problem of
building interpolating operators preserving Green hyperbolicity by convex combinations is still
interesting on its own, since such a space of operators is not stable under linear combinations.

More specifically whenever we have smooth spacetime manifolds (M, g) and (M, ¢') with g < ¢’
and the associated interpolating spacetime (M, g, ), if there is a rule to map globally hyperbolic
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spacetime metrics to Green hyperbolic operators to g — P, in a way that Py equals P, in the
past of some Cauchy surface ¥; and equals Py in the future of another one Xy with t' > ¢, then a
Mgller operator and a related Mgller map are supposed to exist and the kernels of these operators
can be compared in the ways discussed throughout all this section.
Some possible operators whose solutions may be compared through Mgller maps are Dirac type
operators, twisted Dirac operators, Buchdahl operators and the Rarita-Schwinger operator [6].
Another interesting problem comes from the possibility to extend such a procedure to non-
Green hyperbolic operators like the ones describing gauge theories: for example to the abelian
Maxwell field. The problem has not been tackled because it does not seem to be compatible with
the quantization of the Mgller operators and in the quantum realm the studied procedure finds
its main applications. However a Mgller map for the classical electromagnetic field is supposed
to exist and could be constructed in Lorentz gauge exploiting the Mgller operator for normally
hyperbolic field theories.
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Chapter 3

The Mgller *-isomorphism and
Hadamard states

Since the spaces of solutions compared in the previous chapter are the first step in the construc-
tion of corresponding (algebraic) free quantum field theories, a natural related issue concerns the
possibility to promote the Mgller map R to a *-isomorphism between the associated abstract op-
erator algebras A and A’ constructed out of the Green hyperbolic operators P and P’ respectively
on (M, g) and (M, ¢’), in terms of corresponding generators given by abstract field operators ®(h)
and ®'(h’) and the associated causal propagators Gp, Gps. Actually, off-shell linear QFT can be
used to build up a perturbative approach to interacting QFT, a final problem would concern the
possibility to extend the Mgller isomorphism of algebras to an isomorphism of more physically
interesting algebras, for instance including Wick powers or time-ordered powers.

Therefore one of the aims of this chapter is to investigate the role of the Mgller operator at the
quantum level. In order to achieve our goal, we will follow the so-called algebraic approach to
quantum field theory, see e.g. [6,7,12,47,76]. In loc. cit. the quantization of a free field theory
on a (curved) spacetime is interpreted as a two-step procedure:

1. The first consists of the assignment to a physical system of a =x-algebra of observables
which encodes structural properties such as causality, dynamics and canonical commutation
relations.

2. The second step calls for the identification of an algebraic state, which is a positive, linear
and normalized functional on the algebra of observables.

Using this framework, in this chapter we shall lift the action of the Mgller operators on the
algebras of the free quantum fields and then we will pull-back the action of the Mgller operators
on quantum states, showing that the maps preserve the Hadamard condition, which will be
discussed precisely later, with quite weak hypotheses which, in principle, permit an extension
of the theory to a perturbative approach. Existence of Hadamard states in general globally
hyperbolic spacetimes is then a consequence of the fact that any spacetime is paracausally related
to an ultrastatic one, where Hadamard states are known to exist.

For a more detailed introduction to the algebraic approach to quantum field theory we refer
to [18,54] for textbook and to [11-13,20,23,24,27-33,35,56-63] for some recent applications.

The second aim of this chapter is to characterize Hadamard states for the Proca field. In
[44] Proca Hadamard states are defined and, just for Cauchy compact spacetimes, a state is
constructed in ultrastatic spacetimes and a standard deformation argument is employed to prove
their existence on general globally hyperbolic spacetimes. In this work we aim to prove that
the ad hoc definition given in that work is equivalent to the standard one in term of wavefront
sets, then we employ techniques coming from microlocal analysis and elliptic Hilbert complexes
to construct a state on a general ultrastatic globally hyperbolic spacetime without topological

63



assumptions on its Cauchy surfaces and prove that it satisfies the Hadamard condition. By
properties of Mgller operators we obtain the existence on general globally hyperbolic spacetimes.
The chapter is structured as follows. We begin section 3.1 by discussing the CCR algebraic
quantization of the normally hyperbolic Klein-Gordon field, reviewing in particular states and
Hadamard states and then perform the construction outlined above.
Secondly 3.2 for the Proca field we describe in detail its CCR quantization, the construction of
the Hadamard states first in ultrastatic, and then in general globally hyperbolic spacetime. In
the end we compare the standard definition of Hadamard states with the Fewster-Pfenning one.
We close the chapter and the whole work in 3.3 by discussing possible future research lines related
to the topic treated in this chapter.

3.1 The normally hyperbolic quantum field

In this section the on-shell and off-shell CCR, #-algebras describing the quantization of the nor-
mally hyperbolic Klein Gordon field is introduced along with the procedure to promote the
Mgller operators studied in the previous chapter to x-isomorphisms of x-algebras. Then states
and Hadamard states over these algebras are introduced in generality and their importance and
physical relevance is discussed. Finally the most important feature of the Mgller operator is
revealed: the pullback of a Hadamard state of the spacetime (M, g) is a Hadamard state of the
spacetime (M, ¢’), if g and d’' are paracausally related. In this sense Mgller operators imple-
ment via explicit operators the standard deformation argument known to prove the existence of
Hadamard states in general globally hyperbolic spacetimes, [50,51].

In fact, Theorem 2 allows us to promote R to a #-isomorphism of the algebras of field operators
A, A’ respectively associated to the paracausally related metrics g and ¢’ (and the associated
N, N’) and generated by respective field operators ®(f) and ®'(f') with f,§ compactly supported
smooth sections of E. These field operators satisfy respective CCRs

[2(5), (0)] = iGn(f, H)T,  [®(f), 2'(h")] = iGn (F, b))’

and the said unital #-algebra isomorphism R : A" — A is determined by the requirement (Propo-
sition 3.1.5)
R(®'()) = B(Rlo'f)

The final important result regards the properties of R for the algebras of a pair of paracausally
related metrics g, ¢’ when it acts on the states w : A — C, ' : A" — C of the algebras in terms
of pull-back.

W =woR.

As is known, the most relevant (quasifree) states in algebraic QFT are Hadamard states charac-
terized by a certain wavefront set of their two-point function. To this regard, we prove that the
pull-back through R of a Hadamard state w : A — C is a Hadamard state of the off-shell algebra
A’ provided the metrics g, g’ be paracausally related. The result is extended to a generic bidis-
tribution v (corresponding to the two-point function of w, dropping the remaining requirements
included in the definition of state). The proof of the theorem below is both of geometrical and
microlocal analytic nature (see also Theorem 3.1.13).

Theorem 4 (Theorem 3.2.8). Let E be an R-vector bundle on a smooth manifold M equipped with
a non-degenerate, symmetric, fiberwise metric (-|-). Let g,g' € GHwm, consider the corresponding
formally-selfadjoint normally hyperbolic operators N,N' : T'(E) — T'(E) and refer to the associated
CCR algebras A and A'.

Let v e TL(EXIE) be of Hadamard type and satisfy

v(z,y) —v(y,z) = iGn(z,y) mod CF,
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Gn(z,y) being the distributional Kernel of Gy.
Assuming g ~ ¢, let us define
V' :=vo Rl @ Rles ,

for a Moller operator R : T'(E) — T'(E) of g,¢g’. Then the following facts are true.
(i) v and V' are bisolutions mod C* of the field equations defined by N and N respectively,
(ii) v/ e T (ERE),
(i1i) V'(x,y) — V' (y,z) = iGn/(x,y) mod C®,
(iv) V' is of Hadamard type.

As this crucial result concerns off-shell algebras, in principle, it could be exploited in pertur-
bative constructions of interacting theories. Indeed the preservation of the Hadamard singularity
structure plays a crucial role in the development of the perturbative theory [35].

3.1.1 The CCR algebra of observables and the Mgller x-isomorphism

Given a formally-selfadjoint normally hyperbolic operator N : I'(E) — I'(E) and its causal prop-
agator G, we first define the unital complex #-algebra A; as the free complex unital *-algebra
with abstract (distinct) generators ¢(f) for all § € T'.(E), identity 1, and involution * as discussed
in [76]. (As a matter of fact A is made of finite linear complex combinations of 1 and finite
products of generic elements ¢(f) and ¢(h)*). Then we define a refined complex unital %-algebra
by imposing the following relations by the quotient A = A;/T where T is the two sided #-ideal
generated by the following elements of A:

o ¢(af +bh) —ag(f) —bo(h), Va,beR Vf bel (E)
b QZ)(f)* - ¢(f) ) Vf € FC(E)
o ¢(f)o(h) — d(h)e(f) —iGn(F,b)1, Vi, heT(E),

where we have used the notation

On () = | (i) | (Gu) (@)l (o).
We have the further possibility to enrich the ideal with the generators:

e o(Nf), Viel.(E).

Notation 3.1.1. The equivalence classes [¢(f)] will be denoted by ®(f) and they will be called
field operators (on-shell if the ideal is enlarged by including the generators ¢(Nf)), and we use
the notation I for the identity [1] of Af/T.

Definition 3.1.2. Given a formally-selfadjoint normally hyperbolic operator N : T'(E) — T'(E)
and its causal propagator G, we call CCR algebra of the quantum fields ®, the unital %-algebra
defined by A := Af/Z. The algebra is said to be on-shell in case the ideal is enlarged by including
the generators ¢(Nf). Furthermore, we call observables of A any Hermitian element of it.

With the above notation, the following properties are valid
e R-Linearity. ®(af + bh) = a®(f) + b®(h), Va,beR Vf,hel (E)
e Hermiticity. ®(f)* = ®(f), VfeI.(E)

o CCR. &(j)®(h) — @(h)®(f) = iGn(f,b)T, Vf b eTe(E).
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The on-shell field operators also satisfy
e Equation of motion. ®(Nf) =0, VfeI'.(E).

Remark 3.1.3. The idea behind the notation ®(f) is a formal smearing procedure which uses
the scalar product

B(f) = fM@(w) [(a)yvol ()

From this perspective, since N is formally selfadjoint, the identity ®(Nf) = 0 for all f € I'.(E) has
the distributional meaning N® = 0. Alternatively, as explained in [95], one may use a different
representation where ® is viewed as a “generalized section” of the dual bundle E*. In that case the
formal identity N® = 0 corresponding to the equation of motion has to be replaced by N*® = 0.

Given different normally hyperbolic operators N, N’ all the information about causality and
dynamics is encoded in the ideal Z,7Z’. In that case we have two corresponding initial unital
x-algebras A; and A’f with respective generators ¢(f) and ¢'(f). Though the freely generated
algebras are canonically isomorphic, under the unique unital *-isomorphism such that ¢(f) — ¢'(f)
for all f € T'.(E), the quotient algebras are intrinsically different because the CCR are different
depending on the choice of the causal propagator Gy or Gys. However there is an isomorphism
between them as soon as a Mgller operator exists. Indeed, the existence of the Mgller operator
discussed in the previous sections can be exploited to define first an isomorphism of the free
algebras Ay and A’ since the operator Riss’ : T.(E) — I'.(E) is an isomorphism.

Definition 3.1.4. Let NN’ : I'(E) — I'(E) be two formally-selfadjoint (with respect to a fiber
metric (- | -)) normally hyperbolic operators on globally hyperbolic spacetimes (M, g) and (M, ¢).
If g ~ ¢, we define an isomorphism R : A} — Ay as the unique unital *-algebra isomorphism

between the said free unital *-algebras such that R¢(¢'(f)) = #(RTss'f)  VfeT.(E). where Ris a
Mgller operator of g, ¢’ (in this order) satisfying Theorem 2.1.27 and Equation (2.1.24).

As we shall see in the next proposition, the isomorphism between freely generated algebras
induces an isomorphism of the quotient algebras.

Proposition 3.1.5. Let N and N’ be two formally-sefadjoint normally hyperbolic operators acting
on the sections of the R-vector bundle E over M, and referred to respective g,g € GMp.

If g ~ ¢ and R is a Mpller operator of g.g' in the sense of Theorem 2.1.27 and Equation (2.1.24),
then the CCR algebras A and A’ (possibly both on-shell) respectively associated to N and N are
isomorphic under the quotient isomorphism R : .A'f/I’ — Ay /T constructed out of Ry, the unique

unital x-algebra isomorphism satisfying R(®'(f)) = ®(RTes'§) Vf e T.(E).

Proof. To prove the statement it suffices to show that the operator Ry maps the ideal Z’ to
the ideal Z. Each ideal Z and Z’ is the intersection of three (four) ideals corresponding to the
requirements of linearity, Hermiticity, CCR (and equation of motion). The fact that R preserves
the ideals due to linearity and Hermiticity is an immediate consequence of the fact that R, is
a =-algebra homomorphism of the involved freely generates algebras. The ideal arising from the
equation of motion condition is preserved due to the first statements of Theorem 2.1.27 and item
(4) therein.

The situation is more delicate regarding the ideal generated by the CCR. Preservation of that
ideal is actually an immediate consequence of Ry(I') = I (R is unital by hypothesis) and the
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structure of CCR together with (2.1.22):
GN(flv h,) = GNO(Rng,f7 Rng/h)
= f (RTss'§ | GyRTss’ h)Hvol ,
M

= J {f|IRGNRTss h)vol
M

_ fM<f| Gbyvol
= GN’(fa h) .

This concludes our proof. ]

Definition 3.1.6. A unital *-isomorphism R : A" — A defined in Proposition 3.1.5 out of the
Mpller operator R of g, ¢’ as in Theorem 2.1.27 and (2.1.24) is called Mgller #-isomorphism of
the CCR algebras A, A’ (in this order)

3.1.2 Pull-back of algebraic states through the Mgller *-isomorphism

As explained in the beginning of this section, the subsequent step in the quantization of a field
theory consists in identifying a distinguished state on the =-algebra of the quantum fields. The
GNS construction then guarantees the existence of a representation of the quantum field algebra
through, in general unbounded, operators defined over a common dense subspace of some Hilbert
space. We will not care about the explicit representation and recall some definitions (see [40] for
a general discussion also pointing out several not completely solved standing issues).

Definition 3.1.7. We call an (algebraic) state over a unital *-algebra B a C-linear functional
w : B — C which is

(i) Positive w(a*a) >0 Vae B,
(ii) Normalized w(l) =1

A generic element of the CCR algebras A of a quantum field & associated to the normally
hyperbolic operators discussed before can be written as a finite polynomial of the generators
®(f), where the zero grade term is proportional to I, to specify the action of a state it’s sufficient
to know its action on the monomials, i.e its n-point functions

W1 oor ) 1= W(B(f1)...8(Fn)) (3.1.1)

The map T¢(E) x -+ x Te(E) 3 (f1,...,fn) — wn(f1,..,fn) can be extended by linearity to the
space of finite linear combinations of sections f; ® --- ® f,, € FC(E”), where E™ is n-times
exterior tensor product of the vector bundle E with itself. If we impose continuity with respect
to the usual topology on the space of compactly supported test sections, since the said linear
combinations are dense, we can uniquely extend the n-point functions to distributions in I',(E™)
we shall hereafter indicate by the same symbol w,. It has a formal integral kernel,

wn(f1y - fn) = JMR Wn (21, oy )1 (21)e Fn(zn)vol pn (21, . . -, ),

where
volmn (21,. .., %) 1= vol g(21) ® - - - (n times) - - - ® vol g(x,)

henceforth. Notice that if more strongly w, € I'.(E™), then
wn(h) = J Wn (21, ey xn)b(1, . ooy xp)VOlpgn (21, ..o, )

67



is also defined for h € I'.(E"™™). The case n = 2 is the easiest one. The Schwartz kernel theorem
implies '.(E) 3 §f — wa(h,f) is (sequentially) continuous at § = 0 for every fixed h € I'.(E) if
and only if wy continuously extends to a unique distribution we hereafter indicate with the same
symbol wy € T (EX E).

An important fact (see the comment after [95, Proposition 5.6]) is that, if the CCR algebra
A admits states, then the fiberwise metric {:|-) must be positive. In other words, {:|-) is a real
symmetric positive scalar product. We shall assume it henceforth.

Differently from a free quantum field theory on Minkowski spacetime, where the Poincaré
invariant state — known as Minkowski vacuum — might be a natural choice, on a general curved
spacetime there might be no choice of a natural state. However there is a class of states, known
as quasifree (or Gaussian) states, whose GNS representation mimics the Fock representation of
Minkowski vacuum (see e.g. [76]).

Definition 3.1.8. Let A be the CCR algebra. A state w : A — C is called quasifree, or
equivalently Gaussian, if the following properties for its n-point functions hold

(i) wn(fiy., fn) =0, if n € N is odd,

(ii) wan(fr, - fon) = Zpartitions w(fir, fiz) W fin_y, fin), if n € N is even,

where “partitions” for even n refers to the class of all possible decompositions of the set {1,2,...,n}
into n/2 pairwise disjoint subsets of 2 elements {i1,i2}, {is,i4}, ..., {in — 1,4} With dop_1 < igg
for k=1,2,...,n/2.

For these states all the information is encoded in the two-point distribution, as one can expect
in a free theory. It is not difficult to prove that, for a quasifree state in view of the definition
above, wo € I',(E) entails that w,, continuously extends to w,, € I'.(E"™) obtained, for n = 2k, as
a linear combination of tensor products of distributions we and trivial if n = 2k + 1.

Remark 3.1.9. If A is on-shell, then the n-point function satisfies trivially
wn(f1y s Nfgy ..., fn) =0 forevery k =1,...,n and f; € T'(M).

as a consequence of (3.1.1) and ®(Nf) = 0. However it may happen that these identities are valid
(for some n) even if the algebra is not on-shell.

In the next proposition, we shall see that the action of the Mgller isomorphism R between
CCR-algebras can be pull-backed on the quantum states. Furthermore, the pull-back of a
quasifree state is again a quasifree state.

Proposition 3.1.10. Let be g,g' € GHwm, consider the algebras A, A’ respectively associated to
formally-selfadjoint normally hyperbolic operators N,N' : T'(E) — T'(E) constructed out of g and
g and let w : A — C be a state. Assuming that g ~ ¢', we define a functional ' : A — C by
pull-back through a Moller x-isomorphism R : A" — A of A, A’ as in Definition 3.1.6, i.e.

W =woR.
Then the following statements hold true:
(1) & is a state on A’;
(2) wh e T(ERE) if and only if we € T(EXE);

(3) W' is quasifree if and only if w is.
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Proof. (1) Linearity is obvious since we are composing linear maps. Normalization follows from
1in 3.1.5 and from the fact that w is normalized. Positivity follows from positivity of w and the
fact that R preserves the involutions, the products, and is surjective. (2) Since wy € I',(E x E),
then it is I'.(E)-continuous in the right entry (taking values in I',(E) and with respect to the
corresponding topology). As a consequence, by composition of continuous functions, if h € I'.(E)
is given,

To(E) 3 > wh(h,f) = wa(Rles'h, RTes'f)

is T'.(E)-continuous as well because Rlss’ : T',(E) — I'+(E) is continuous in the I'.(E) topology in
domain and co-domain for (5) of Theorem 2.1.27. In other words I'.(E) 3 f — w)(-,f) € T'L(E) is
continuous. We conclude that w) € I'.(EXIE) due to the Schwartz kernel theorem. The result can
be reversed swapping the role of the states and the metrics, noticing that w = w’ o R™! where
R~ is also a Mgller #-isomorphism, the one constructed out of R™! which is, in turn, a Mgller
operator associated to the pair ¢/, ¢ in this order in view of Corollary 2.1.29.

(3) The proof is immediate and follows by construction. O

3.1.3 States and Hadamard states

It is widely accepted that, among all possible (quasifree) states, the physical ones are required
to satisfy the so-called the Hadamard condition. The reasons for this choice are manifold: For
example, it implies the finiteness of the quantum fluctuations of the expectation value of every
observable and it allows us to construct Wick polynomials [71,75] and other observables, as
the stress energy tensor, relevant in semi-classical quantum gravity following a covariant scheme
[70, 82], encompassing a locally covariant ultraviolet renormalization [72] (see also [76] for a
recent pedagogical review). These states have been also employed, e.g. (the following list is far
from being exhaustive) in the study of the Black hole radiation [31,55,77,89], in cosmological
models [28,30] and other applications to spacetime models [45, 46, 83], and to study energy
quantum inequalities [43]. For later convenience, we decided to present the Hadamard condition
as a microlocal condition on the wave-front set of the two-point distribution [93,94] instead of the
equivalent geometric version based on the Hadamard parametrix [2,78,84]. Let’s briefly sketch
what they are and why they are useful.

From now on we adopt the definitions of wave-front set W F' (1)) of distribution ¢ on R-vector
bundles equipped with a non-degenerate, symmetric, fiberwise metric! as in [95].

We shall use some very known definitions and results of microlocal analysis applied to distri-
butions of I',(F) where F is a K-vector bundle, F = EX E for instance (see [95] for details). In
particular,

e ¢y € T(F) is a smooth section of the dual bundle F*, indicated with the same symbol
Y e I'(F*), if and only if WF (v) = &.

o We say that ¢, € T',(F) are equal mod C®, if ¢ — ¢’ € T'(F*).

e Let us assume that F = E [X] E where E is equipped with a non-degenerate, symmetric
(Hermitian if K = C), fiberwise metric and let P : T'.(E) — T'.(E) be a formally selfadjoint
smooth differential operator. We say that v € I',(EXIE) is a bi-solution Pf = 0 mod C®,
if there exist ¢, ¢’ € T'(F*) such that

u(Pf@b)=fM<w,f®h>volg®volg, u(f@Pb)=fM<¢’,f®h>volg®volg ¥, b e To(E).

We are in a position to state the definition of micro local spectrum condition and Hadamard
state. Below, ~ is the relation in T*M*\{0} such that (z,k;) ~| (y, ky) if there is a null geodesic

'The authors of [95] more generally study the case of a complex Hermitian vector bundle endowed with an
antilinear involution (here the identity bundle map) there indicated by T
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passing through x,y € M and the geodesic parallely transports the co-tangent vector to that
geodesic k; € Ty M into the co-tangent vector to that geodesic ky € TM. Finally, k; = 0 means
that the covector k, is future directed.

Definition 3.1.11. With A as in Definition 3.1.8, a state w : A — C is called a Hadamard
state if wy € T',(EX E) and the following microlocal spectrum condition is valid

WF(w2) = {(, kai y, —ky) € T*MA\{0} | (2, ka) ~| (3, ky), kg =0} . (3.1.2)

More generally, a distribution v € T',(EXI E) is said to be of Hadamard type if its wave-front
set WF(v) is the right-hand side of (3.2.26).

Remark 3.1.12.

(1) Notice that (z, ky; x, —kz) € WF(v) for every future directed lightlike covector k, € T M if
v e I'.(EIE) is of Hadamard type.

(2) Tt is possible to prove that a fiberwise scalar product {:|-) must be necessarily positive if
A admits quasifree Hadamard states as proved in the comment after [95, Proposition 5.6].
We henceforth assume that (|-) is positive.

3.1.4 Mgller preservation of the microlocal spectrum condition for off-shell algebras

The theorem below shows that the Hadamard condition is preserved under the pull-back along
the Mgller isomorphism.

Theorem 3.1.13. Let E be an R-vector bundle over the smooth manifold M and denote with {-|-)
positive, symmetric, fiberwise metric. Let be g,q" € GHwm, consider the corresponding formally-
selfadjoint normally hyperbolic operators NN’ : T(E) — T'(E) and refer to the associated CCR
algebras A and A’ (off-shell in general). Finally, suppose that g ~ ¢'.

w: A — C is a quasifree Hadamard state, if and only if

Wi=woR: A - C,
constructed out of a Moller x-isomorphism R of A, A’, is a quasifree Hadamard state of A’.

Remark 3.1.14. We stress that it is not required that the algebras are on-shell nor that the
relevant two-point functions satisfy the equation of motion with respect to the corresponding
normally hyperbolic operators.

The rest of this section is devoted to prove Theorem 3.1.13, a refinement of it stated in the
last Theorem 3.2.8, and a proof of existence of Hadamard states based on our formalism.
Our first observation is the following.

Lemma 3.1.15. Let S: T'(E) — T'(E) be any of the four operators Ry, R_, Ry, RZY, defined as
in (2.1.9), (2.1.10), (2.1.11), (2.1.12), and U < R™ an open set.
If {§.}.ev < T(E) is such that M x U 3 (z, z) — f,(x) is jointly smooth, then

M x U 3 (z,z) — (Sf.)(z)
is jointly smooth as well.

Proof. We consider the case of R, the remaining three instances having a similar proof. What
we have to prove is that M x U 3 (z,2) — (G;NX(pNX - No)fz> (x) is smooth under the said

hypotheses. Let us first consider the case where there is compact K < M such that supp(f,) ¢ K
for all z € U. In this case, defining F(z,2) := (pNy — No)f.(z), the projection 7 : supp(F') 3
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(z,2) = z € U is proper? and this fact will be used shortly. Interpreting G:NX : Te(E) —
I'.(E) and thus as a Schwartz kernel, we can compute the wavefront set of the map M x U >
(r,2) — (G:NX (pNy — No)fz) (z) viewed as the distributional kernel of the composition of the

kernel G;Nx(x, y) and the smooth kernel F'(y, z). We know that (see, e.g. [76] for the scalar case,
the vector case being analogous)

WF(Gly ) = {(2,ksiy, —ky) € T*MA{O} | (2, ka) ~| (y,ky) x € Jo(y) or kg = ky s =y}

whereas, since F' is jointly smooth,
WF(F)=J.

The known composition rules of wavefront sets of Schwartz kernels, which use in particular the
fact that the projection 7 above is proper (in [76, Theorem 5.3.14] which is valid also in the vector
field case), immediately yields

WF(G;LNX oF)c g.
It being WF(G;NX o F') = &, we conclude that M x U 3 (z,z2) — <G:NX(pNX - No)fz> (x) is a
smooth function as desired.
Let us pass to consider the generic jointly smooth family {f.}.cy < I'(E) without restrictions
on the supports. First of all, we observe that f,(z) := ((pNy, — No)f)(z) is past compact by
construction for every z € U, because its support is contained in the future of 3, referring to the
construction of Ny. According to the proof of [4, Theorem 3.6.7], if b is past compact, zg € M,
and A O supp(h) n J_(x0) is an open relatively compact set, for every compactly supported
smooth function s4 € C(M; [0, 1]) such that sa(x) = 1 if x € A, it holds

(G, B)(0) = (GJy_sab) (o)

We want to apply this identity for h = §,. Take t’ < tg. Given xyp € M we can always define
A =1 (o) n IT(Zy) where ¥ € I (xg) 3. With this choice, A does not depend on z € U and
the same A can be used for z varying in an open neighbourhood A’ of zg, since I_(Z¢) is open.
We conclude that, if (x,z) € A’ x U, then

(G;NX (pNy — No)fz> (x) = (G;NX o F)(z,z) where F(z,z) = sa(z)(pNy — No)fz(x). (3.1.3)

In this case K := supp(s4) includes all the supports of the maps M 3 x — F\(x,z) for every
z € U. The first part of the proof is therefore valid for the map M x U 3 (z,2) — (G;NX o F)

which must be jointly smooth as a consequence. In particular, its restriction A’ x U 3 (z, 2)
(G;NX(pNX - No)fz) (x) is jointly smooth as well. Since A’ can be taken as a neighbourhood
of every point in M and z € U is arbitrary, from (3.1.3) the whole function M x U 3 (z,z2) —
(G;NX(pNX ~ No)fz) () is jointly smooth. O

Relying on Lemma 3.1.15, we can notice the following.

Lemma 3.1.16. Consider a pair of globally hyperbolic metrics go and g, on M as in Proposition
2.1.16 and corresponding normally hyperbolic operators No,N, : T'(E) — T'(E) for the R-vector
bundle on M equipped with the positive symmetric fiberwise metric (-|-).

Then, vy € T,(ERIE) is a bisolution of Nof = 0 mod C* if and only if v, :=vo Rifogx ® R]jfogx is
a bisolution of Ny f = 0 mod C®, where Ry is defined in (2.1.26).

2If C = U is compact and thus closed, then 7~ *(C) is a closed set, 7 being continuous, contained in the compact
K x C, so that 77!(C) is compact as well.

3Notice that since the spacetime is globally hyperbolic, I+ (z) = J+(z) and I_(Zo) n I+ (Zy) = J_ (o) nJ T (Zy¢)
which is compact because ¥y is a smooth spacelike Cauchy surface.
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Proof. We start by stressing that, as already noticed, in view of the known continuity properties

of szlogx and its inverse and using Schwartz’ kernel theorem, vy € T'.(E X E) if and only if
vy €T (EXE).

We pass to prove that if 1y is a bisolution mod C®, then v, is a bisolution mod C*, referring to the
corresponding operators. Let us hence suppose that v9(Nof, h) = ¥ (f®b) and vy (f, Noh) = ¢’ (F®b)
for some smooth sections 1,1’ € T'((EXIE)*) and all f,h € T'.(E). The identity

t
RNy|r.e) = Nolr.() -

immediately implies that, if p(x,y) := cé‘(x)cé‘(y)w(ﬂv, y), ¢ (z,y) = cg(x)cg(y)z//(m, Y),
ND) = [ ol (4@ R (10 ) (a2 g)vol () @ voly, 1)

and

vx(F, Nyh) = foM<@'($7y)7 (R @1d(5 @ ) (. y))vol , () ® vol 5, (1)

The proof ends if proving that there are smooth sections @1, ¢} € T'((EX E)*), such that

JM M<g0,1d® RI0% (5@ h))vol 5, @ vol 4, = f

M x

M<<p1(x, y), f(x)h(y)yvol 4, (x) @ vol g, (y)
and

f (o, R @TA(F @ h))vol 4, @ vol g = f (@ (2, ), F(2)b(y)pvol g, () @ vol (1)
MxM M

xM

for every pair f,h € I'.(E). We prove the former identity only, the second one having an identical
proof. To this end we pass to the index notation (also assuming Einstein’s summing convention),
the indices being referred to the fiber in the local trivialization,

JM M<% leqogx ®Id(f® h))vol gy @ volg,

= fM y 5 (@)X (1) Pa(, 1) (RTOPF)2 ()b (y)vol 4. () @ vol 4. (1)
jok IMx

Above {x;}jes and {X} }rek are partitions of the unity of M subordinated to corresponding locally
finite coverings of M supporting local trivializations, whose fiber coordinates are labelled by ¢
and ®. Moreover, only a finite number of indices (j,k) € J x K give a contribution to the sum,
uniformly in 2, y, in view of the compactness of the supports of § and h and the local finiteness
of the used coverings. The right-hand side can be rearranged to

-3 | ) (2 | xj<x>soab<x,y)(RTfOf'Xf)a(x)) B (y)vol g, ()

keK JjeJ

= ¥ [t ([ huto) R Dol ) 1 5vol )

= | 2 %) (] (Repy) (@) [f@)vol g (x) ) b (y)voly, (y)
Jo 2o (], )

keK

=), - X5 ()5 (1) (2) (Ry @y)a (@) ()5 (y) vol g, (x) @ vol 4, (v)
Gk OV

_ j (p1(2, ), T ® bz, y))vol 5 () @ Vol 4, (1)
MxM
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where we have locally defined ¢y () := £%(x)@ep(, y), with £%(z) being the inverse fiber metric
at x € M in any considered local trivialization. Above, @1 gp(x,y) = c%‘(:c)(RJrcp;b)a(x) is the
candidate section of (EXIE)* we were looking for, represented in local coordinates of the atlas of
the said trivialization. That section is smooth, i.e., ¢1 € I'((EXIE)*) as desired. Indeed, the maps
M x U 3 (z,y) — gpgb(ac) define a family of sections of I'(E) parametrized by y € Uy for every
given b € {1,..., N}, where Uy, — M is the projection onto M of the domain of the considered
local trivialization. This family is jointly smooth in z,y as established in Lemma 3.1.15.

The converse statement, that v is a bisolution mod C® if v, is, can be proved with the same
procedure simply replacing R, with (R;)~! and using Lemma 3.1.15 again. O

Before giving the proof of Theorem 3.1.13, we need a final lemma, which shows that any
Hadamard distribution whose antisymmetric part is given by the causal propagator of a normally
hyperbolic system N is actually a bisolution of N itself modulo smooth errors.

Lemma 3.1.17. Let N: T'(E) — I'(E) be a formally selfadjoint normally hyperbolic operator and
suppose that v € T(EXIE) is of Hadamard type and satisfies

v(z,y) —v(y,x) = iGn(z,y) mod C*

where G(x,y) is the distributional kernel of the causal propagator Gy. In this case v is a
bisolution of Nf = 0 mod C™.

Proof. The proof is a straightforward re-adaptation of the proof appearing in the Note added in
proof of [93]. O

We are finally in a position to prove Theorem 3.1.13.

Proof of Theorem 3.1.13. We have only to prove that w’ is Hadamard if and only if w is, since the
other preservation property has been already proved in (4) of Proposition 3.1.10. If gy ~ g1, there
is a sequence of globally hyperbolic metrics gy = go, 91, .., 9y = g1 such that either g < g, or
G141 =< gj, and the future cones satisfy a corresponding inclusion. The Mgller operator R of A, A’
is obtained as the composition of the Mgller operators Ry of the formally-selfadjoint normally
hyperbolic operators Nj,Nj , , associated to the pairs g;, g;

R = RUR, Ry,

as in the proof of Theorems 2.1.20, 2.1.27 and (2.1.24). The thesis is demonstrated if we prove
that, with obvious notation, w**! is Hadamard if and only if w* is. So in principle we have to
prove the thesis only for a pair of metrics gg, g1 with the two cases gy < g1 and g1 < ¢gg. Actually
the latter is a consequence of the former, using the fact that Mgller #-isomorphisms are bijective
and that a Mgller operator of the second case is the inverse operator of a Mgller operator of the
first case in accordance to Corollary 2.1.29. In summary, the proof is over by establishing the
thesis for the case g = go < g1 = ¢’ and we shall concentrate on that case only in the rest of the
proof.

Recalling by (2.1.27) and (2.1.26) that Risos = RJ_rng" RJE’X‘“, we write
wh(f1, T2) = Wh(RTos 1, Rl ) = Wf(RI0RI jy, REoRIn gy,
To analyze the wave-front set of this bidistribution, we split again the operation in two steps.
First we define a pull-back state on the algebra A, of quantum fields defined for the formally-

selfadjoint normally hyperbolic operator N, i.e a normally hyperbolic operator on (M, g, ). This
intermediate pull-back states reads

WX (1. f2) = WY (RI0Fy, RI00%5,). (3.1.4)
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We intend to prove that wy € I'.(E) is of Hadamard type if and only w9 is. Notice that both
two-point functions have antisymmetric parts that coincide with iGy, and iGy,, respectively, in
view of the CCRs of the respective algebras. If w) € I'.(E) is of Hadamard type, then it is a
a bisolution of Nof = 0 mod C® in view of Lemma 3.1.17. The same argument proves that,
if wy € IT(E) is of Hadamard type, then it is a bisolution of Nyf = 0 mod C* due to 3.1.17.
Applying Lemma 3.1.16 to both cases we have that,

(a) w9 e I',(E) of Hadamard type implies that w§ is a bisolution Nof = 0 mod C® and wy is a
a bisolution of Nyf = 0 mod C%;

(b) wy € I'’(E) of Hadamard type implies that wy is a bisolution Nyf = 0 mod C® and w9 is a
a bisolution of Nof = 0 mod C'*.

We are now in a position to apply the Hadamard singularity propagation theorem. Consider
the smooth Cauchy time function ¢ in common with gg and gy, such that x(z) = 0 if t(z) < to.

As a preparatory remark we notice that RTngXf = f from (2.1.29) when the support of § stays in
the past of the Cauchy surface ¥, = t~1(¢). In that region gy = gy by definition of g,. Finally
due to (3.1.4),

wy (f,h) = wi(f,b) if t(supp(f)) < to, t(supp(h)) < to

Hence, in particular, wy is of Hadamard type when the supports of the test functions are taken in
that region if and only if w9 is of Hadamard type when the supports of the test functions are taken
there. More precisely, it happens when the supports of the arguments f, h are taken in a (globally
hyperbolic) neighbourhood of a Cauchy surface (for both metrics!) %, := t71(7) with 7 < g
between two similar slices. Since both distributions are bisolutions of the respective equation
of motion mod C* and the operators are normally hyperbolic, the theorem of propagation of
Hadamard singularity (see, e.g., Theorem 5.3.17 in [76]*) implies that wy and w§ are of Hadamard
type everywhere in (M, g,) and (M, go), respectively.

A similar reasoning shows that wi € I'.(E[X] E), with

w% (fla fQ) = w%((RT_me fl; RT_9X91 f2) s

is Hadamard on (M, g1) if and only if w) is on (M, g,). Combining the two results we have that
W' = w! is Hadamard on (M, ¢’ = g1) if and only if w = w" is Hadamard on (M, g = gg) concluding
the proof. ]

We are now in the position to prove our last result.

Theorem 3.1.18. Let E be an R-vector bundle on a smooth manifold M equipped with a pos-
itive, symmetric, fiberwise metric {-|-). Let g,q' € GHwm, consider the corresponding formally-
selfadjoint normally hyperbolic operators NN’ : T(E) — T'(E) and refer to the associated CCR
algebras A and A’.

Let v e T.(EXIE) be of Hadamard type and satisfy

v(z,y) —v(y,z) = iGn(z,y) mod C*,

Gn(z,y) being the distributional Kernel of Gy.
Assuming g ~ ¢, let us define
V' :=vo Rl @ Rles ,

for a Moller operator R : T'(E) — T'(E) of g,9’. Then the following facts are true.

4The proof which appears there is valid for the on-shell algebra of the scalar real Klein-Gordon field, but
the passage to normally hyperbolic operators also weakening the bisolution requirement to bisolution mod C® is
immediate, since it is based on standard Hérmander theorems about singularity propagation which works mod C*.
See the comments in Remark 5.3.18 in [76]
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(i) v and V' are bisolutions mod C* of the field equations defined by N and N’ respectively,
(i) V' e TL(EXIE),
(iii) ' (2,y) — V'(y, %) = i (2, y) mod C*,
() V' is of Hadamard type.

Proof. Since we never exploited the fact that w is positive, nor the fact that the antisymmetric
part of its two points function is exactly the causal propagator, nor the fact that the relevant
algebras of fields are on-shell (i.e., the equation of motion are satisfied by the two-point functions),
we can use the same arguments as in the proof of the previous theorem to conclude. ]

We conclude this section with the following straightforward result of existence of Hadamard
quasifree states which apparently does not use the Hadamard singularity propagation argument
(actually this argument was used in the proof of Theorem 3.1.13).

Corollary 3.1.19. Let (M,g) be a globally hyperbolic spacetime, N be a formally-selfadjoint
normally hyperbolic operator acting on the sections of the R-vector bundle E over M and refer to
the associated CCR algebras A. Then there exists an Hadamard state on A.

Proof. Tt is well-known [49] that, in a globally hyperbolic ultrastatic spacetime, the (unique) CCR
quasifree ground state which is invariant under the preferred Killing time is Hadamard. Hence,
combining Corollary 1.3.5 with Theorem 3.1.13 we can conclude. O

3.2 The Proca quantum field

Most of the quantum theories are described by Green hyperbolic operators [3], as Klein-Gordon
operators N discussed above or the Proca operator [44,98], studied in this section,

P =dd +m?

acting on smooth 1-forms A € Q'(M) and where m? > 0 is a constant. These operators are for-
mally self-adjoint w.r.t. a (Hermitian or real symmetric) scalar product induced by the analogue
~ on the fibers of the relevant vector bundle. In general v is not positive definite. Very common
and physical examples are: the standard vector Klein-Gordon field, the Proca field, the Maxwell
field, more generally, the Yang-Mills field and also the linearized gravity. Referring to the Proca,
and in general all 1-form fields, we have that v = g* is the inverse (indefinite!) Lorentzian metric
of the spacetime (M, g).

Unfortunately, in those situations, the Hadamard condition is in conflict with the positivity of
states, respectively. It is known that for a vectorial Klein-Gordon operator that is formally self-
adjoint w.r.t. an indefinite Hermitian/real symmetric scalar product, the existence of quasifree
Hadamard states is forbidden (see the comment after [95, Proposition 5.6] and [59, Section 6.3]).

The case of a (real) Proca field seems to be even more complicated at first glance. In fact, on
the one hand differently from the Klein-Gordon operator, the Proca operator is not even normally
hyperbolic and this makes more difficult (but not impossible) the proof of the well-posedness of
the Cauchy problem, in particular. On the other hand, similarly to the case of the vectorial Klein-
Gordon theory, the Proca theory deals with an indefinite fiberwise scalar product. Actually, as
we shall see in the rest of the work, these two apparent drawbacks cooperate to permit the existence
of quasifree Hadamard states. Positivity of the two-point function ws is restored when dealing
with a constrained space of Cauchy conditions that make well-posed the Cauchy problem.

In the present section, we study the existence of quasifree Hadamard states for the real Proca
field on a general globally hyperbolic spacetime. A definition of Hadamard states for the Proca
field was introduced by Fewster and Pfenning in [44], to study quantum energy inequalities, with
a definition more involved than the one based on the microlocal spectrum condition. They also
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managed to prove that such states exist in globally hyperbolic spacetimes whose Cauchy surfaces
are compact.

Differently from Fewster-Pfenning’s definition, here we adopt a standard definition of Hadamard
state and we consider a generic globally hyperbolic spacetime. At the end of the work, we actually
prove that the two definitions of Hadamard states are substantially equivalent.

Before establishing that equivalence, using the technology of the Mgller operators we intro-
duced in [87] for normally hyperbolic operators, and here extended to the Proca field, we prove
the existence of quasifree Hadamard states in every globally hyperbolic spacetime, also in the
case in which their Cauchy hypersurfaces are not compact.

As a matter of fact, it is enough to focus our attention on wultrastatic spacetimes of bounded
geometry. In this class of spacetimes, we directly work at the level of initial data for the Proca
equation and we establish the following, also by taking advantage of some technical results of
spectral theory applied to elliptic Hilbert complexes [21].

1. The initial data of the Proca equations are a subspace Cy, of the initial data of a pair
of Klein-Gordon equations, one scalar and the other vectorial, however both defined on
bundles with fiberwise positive real symmetric scalar product;

2. The difference of a pair of certain Hadamard two-point functions for two above-mentioned
Klein-Gordon fields becomes positive once that its arguments are restricted to Cy. There,
it defines a two-point function ws for a quasifree state w of the Proca field;

3. w is also Hadamard since it is the difference of two two-point functions of Klein-Gordon
fields which are Hadamard. They are Hadamard in view of known results of microlocal
analysis of pseudodifferential operators on Cauchy surfaces of bounded geometry, for more
details the interested reader can refer to [54].

Every field theory defined on a globally hyperbolic spacetime (M, g) is connected to one defined
on an ultrastatic spacetime of bounded geometry (R x X, —dt? + h) through a Mgller operator:
the associated Mgller #-isomorphism between the algebras of Proca observables preserves the
Hadamard condition. We therefore conclude that every globally hyperbolic spacetime (M, g)
admits a Hadamard state for the Proca field. This state is nothing but the Hadamard state on
(R x X, —dt? + h) pulled back to (M, g) by the Mgller *-isomorphism.

One novelty of this work is in particular a direct control of the positivity of the two-point
functions, obtained by spectral calculus of elliptic Hilbert complexes. Some microlocal property
of the Mgller operators then guarantees the validity of the Hadamard condition as in the case of
normally hyperbolic field theories.

3.2.1 The CCR algebra of observables of the Proca field

We now introduce the algebraic formalism to quantize the Proca field [44,98].
Let (M, g) be a globally hyperbolic spacetime, V, be a Proca bundle and denote by P :
I'(Vy) — I'(Vgy) the Proca operator. Following [76], we call on-shell Proca CCR x-algebra,

the x-algebra defined as
Ag =Ag/Tg

where:

- 2, is the free complex unital algebra generated by the set of abstract elements I (the
unit element), a(f) and a(f)* for all §f € I'.(Vy), and endowed with the unique (antilinear)
s-involution which associates a(f) to a(f)*and satisfies I* = I and (ab)* = b*a*.

- J4 is the two-sided #-ideal generated by the following elements of 2 :
L a(af + bb) - aa(f) - ba(h) , Va,beR vab € FC(VQ)a
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2. a(f)* —a(f), Vielc(Vy)
3. a(f)a(h) —a(b)a(f) —iGp(f,H)I, Vi, heTc(Vy);
4. a(Pf), VfeT(Vy).

The four entries of the list respectively implement linearity, Hermiticity of the generators, canon-
ical commutation relations and the equations of motion for the quantum field.

Remark 3.2.1. As in [44], we adopt the interpretation of a(f) as (alf), where the pairing is the
Hodge inner product of 1-forms (2.2.1).

An equivalence class in Ay is denoted by [a(f)] = a(f), the equivalence class corresponding to the
identity is denoted by [I] = Id. The hermitian elements of the algebra A, are called observables.

Remark 3.2.2. Requirement 4, when we pass to the quotient algebra corresponds to the distri-
butional relation Pa = 0, when we take Remark 3.2.1 into account and the fact that P is formally
selfadjoint. Since every solution of the Proca equation is a co-closed solution of the Klein-Gordon
equation and wice versa, we conclude that da = 0, i.e. a(df) = 0 for every f € I'.(V,), must be
valid.

If, moreover, we deprive the ideal J, of the generators in 4, the quotient algebra is said to be
off-shell, however it would still be convenient to assume the closedness constraint when defining
the off-shell algebra. That is when defining the relevant ideal of the free off-shell algebra, we
should keep 1-3, we should drop 4, and we should replace it with the weaker condition

4. a(df), VieT(Vy).

This work however deals with the on-shell algebra only, we shall indicate by Ay throughout. A
study of the off-shell algebra, which may result in some relevance in perturbative renormalization
procedure will be done elsewhere.

3.2.2 Pull-back of Proca algebraic states through the Mgller #-isomorphism

Having built the CC R-algebra, the subsequent step in quantization consists in finding a way to
associate numbers to the abstract operators in A, by identifying a distinguished state.

Regarding the notion of Hadamard state for the Proca field, which is a vector field, we adopt
the notions of microlocal analysis for vector-valued distributions introduced in [95].

Remark 3.2.3. The interpretation of the action of a distribution on test sections is formalized
in the sense of the Hodge product (2.2.1). This interpretation is necessary in order to agree with
the interpretation of the symbol a(f) stated in Remark 3.2.1, since some of the distributions we
shall consider arise from field operators, as the two-point functions ws(f, g) := w(a(f)a(g)). If

[e(Vyg) 29— wal,9) € Flc(vg)

is well-defined and continuous, wy actually defines a distribution of I',(V, X] V) and vice versa,
as a consequence of the Schwartz kernel theorem as clarified below.

From now on, if F' € I',(V,) and § € T'¢(Vy), the action of the former on the latter is therefore
interpreted as the Hodge product (2.2.1)

F() = (FIf) = G1F) = | (P ivol,
With a straightforward extension of the Definition 2.2.10, operators working on a generic space

of k test-forms T : QF(M) — QF(M) can be extended to the topological duals, i.e the associated
distributions, in terms of the action TT on the argument of the distribution:

(TF)(f) == F(TT).
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For instance, if F € Q2,(M) and H € Q°,(M),

(6F)(f) == F(df), (dH)(§) := H(5f), FeQe(M).

If S: Te(Vy) — T.(V,) is continuous (in particular if S : T'.(Vy) — T'c(V,) is continuous), the
standard Schwartz kernel theorem permits to introduce the distribution indicated with the same
symbol S € I',(Vy4 [X] V), which is the unique distribution such that

S(f®g) :=S(f,9) := (Se)(f) “= (fSa)" .

Conversely, a distribution of I',(V, [X] V) defines a unique map I'c(Vy) — I'.(V,) that fulfils the
identity above. In the rest of the work we shall take advantage of these facts and notations above.

Furthermore, we adopt the notion of wavefront set of a distribution on test sections of a vector
bundle on M as defined in [95].

Definition 3.2.4. Consider the globally hyperbolic spacetime (M, g) and a state w : Ag — C
for the Proca algebra of observables on (M, g). w is called Hadamard if it is quasifree and its
two-point function wsy € I',(V, X1V,) satisfies the microlocal spectrum condition?, i.e.

WF(w2) = H = {(z, ka;y, —ky) € T*M\{0} | (2, ks) ~|| (y, ky), ko =0} . (3.2.1)

Above, (v, kz) ~| (y,ky) means that = and y are connected by a lightlike geodesic and k, is the
co-parallel transport of k, from z to y along said geodesic, whereas k, =0 means that the covector
k; is future pointing.

As for Klein-Gordon scalar field theory, Hadamard states for Proca fields have two important

properties which were also established in [44] for the notion of Hadamard state adopted there.
We present here independent proofs only based on Definition 3.2.4. Indeed, [44] uses a definition
of Hadamard states which is apparently different from our definition. A comparison of the two
definitions and an equivalence result appear in Section 3.2.5.
The first property of Hadamard states is the fact that the difference between the two-point
functions of a pair of Hadamard states is a smooth function. This fact plays a crucial role in
the point-splitting renormalization procedure (for instance of Wick polynomials and time-ordered
polynomials [71,72,74,75] and of the stress-energy tensor [70,82,99]) and is, in fact, one of the
reasons for assuming that Hadamard states are the physically relevant ones.

Proposition 3.2.5. Let w,w’ € I',(V, X Vy) be a pair of two-point functions of Hadamard states
on the algebra Ay of the Proca field according to Definition 3.2.4. Then, w —w' € T'(V, X V,),
i.e., w—w s smooth.

More generally, w — w' is smooth if w,w’ are distributions satisfying (3.2.1) such that their anti-
symmetric parts coincide mod. C®.

Proof. Let us first prove the second statement. Let us define wy (f,g) := wa(f, g) and w, (f,g) :=
w2 (ga f)a

N* 1= {(a,k) € M0} [ kak® = 0, k=0}, N~ = {(,k) € T"M\{0} | kak* = 0, k =0},

I' = {(z, ko;y, —ky) € T*M\{0} | (2, ky3y, ky) € T} . (3.2.2)
for every T' = T*M?\{0}. If both distributions satisfy (3.2.1), then

WF(wf) c N* x N*. (3.2.3)

5The notion of wavefront set refers to distributions acting on complez valued test sections in view of the pervasive
use of the Fourier transform. For this reason, when dealing with these notions we consider the natural complex
extension of the involved distributions, by imposing that they are also C-linear.
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With the hypotheses of the proposition define R* := wi — wit. Since wy —wy = wh" —wh + F

where F' is a smooth function, we have that R™ = R~ mod. C®. At this juncture, (3.2.3)
yields WF(RT) nWF(R™) = & because Nt n N~ = &. Since WF(RT) =WF(-R 4+ F) =
WF(—R™) = WF(R™), we conclude that the wavefront set of the distributions R* is empty
and thus they are smooth functions. This is the thesis of the second statement. The latter
statement implies the former because, since both w and w’ are states on the Proca =-algebra,
their antisymmetric part must be identical and it amounts to iGp, furthermore w and w’ satisfy
(3.2.1) in view of Definition 3.2.4. O

The second property regards the so called propagation property of the Hadamard singularity
or also the local-global feature of Hadamard states. It has a long history which can be traced
back to [51] passing through [78], [93,94] and [95] (and the recent [84]) at least.

Proposition 3.2.6. Consider a globally hyperbolic spacetime (M, g) and a globally hyperbolic
neighbourhood N of a smooth spacelike Cauchy surface 3> of (M, g). Finally, let war be a quasifree
state for the on-shell algebra of the Proca field in (N, g|n). The following facts are valid.

(a) There exists a unique a quasifree state w : Ay — C for the Proca field on the whole (M, g)
which restricts to wa on the Proca algebra on N

(b) If wn is Hadamard according to Definition 3.2.4, then w is.

Proof. (a) According to (2.2.11), Gpf = Ofor f € I'.(V,) if and only if f = Pg for some g € I'.(Vy).
We will use this fact to construct w out of wys. Consider two other smooth spacelike surfaces
(for both M and N) X in the future of 3 and ¥_ in the past of 3. Let xT,x~ : M — [0,1] be
smooth maps such that x*(p) = 0 if p stays in the past of X_ and x(p) = 1 if p stays in the
future of ¥ and x* + x~ = 1. Then, defining

T := PxTGpf, feTo(V,) (3.2.4)
we have that Tf e I'.(Vy|n) (more precisely supp(Tf) stays between ¥_ and ), and
Tf—§=Pg for some geI'.(Vy), (3.2.5)
because by standard properties of Green operators:
GpTf=GiTf— GpTf = (GEP) x"Gpf — Gp P(1 — x 7 )Gpf =
X" Gpf — Gp (PGpf) + Gp Px ™~ Gpf = X" Gpf + x~ Gpf = Gpf.

Therefore we can apply (2.2.11) obtaining (3.2.5).
With these results, let us define

w2(f7 g) = WNZ(Tfa Tg) , T,o€ FC(Vg) . (326)

Taking the continuity properties of Gp into account, we leave to the reader the elementary proof
of the fact that there is a unique distribution I',(V, X V,) such that its value on f ® g coincides
with® wo(f,g). (We will indicate that distribution by ws with the usual misuse of language.)
Furthermore, in view of the definition of T, it is obvious that ws is also a bisolution of the Proca
equation, since GpP = PGp = 0. To construct a candidate quasifree state w on 4, out of its two-
point function ws, it is clear that the positivity requirement is guaranteed because wys satisfies
it. We conclude that there is a quasifree state w on A, whose two point function is (3.2.6), and
this two point function is a distribution which is also bisolution of the Proca equation. Finally,
observe that w extends to the whole A, the state wy since the states are quasifree and the
two-point function of the former extends the two point function of the latter. Indeed,

wa(f, 9) = wae(TF, Tg) = waa(f,9) if f,g € Te(Vgln) -

51f wy indicates the distribution associated to the two-point function: wy = wa2 0 T® T.
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This is because, specializing (2.2.11) and (3.2.4)-(3.2.5) to the globally hyperbolic spacetime
(N, g|n) since f € T'¢(Vg|nr), we have that Tf —§ = Pg with g € I'c(V,|n) and waro vanishes when
one argument has the form Pg, because it is a bisolution of the Proca equation in .

There is only one such quasifree state which is an extension of was to the whole algebra A,
and such that its two-point function is a bisolution of the Proca equation. In fact, another such
extension w’ would satisfy

wé (fa g) = wé(Tf> Tg) = WN(va Tg) = WQ(va Tg) = wQ(fa g) ) for all fa g€ FC(VQ)

(b) We pass to the proof that w is Hadamard if wxr is. We have to prove that (3.2.1) is valid if it
is valid for wpr in (N, g|nr). Interpreting the two-point functions as distributions of I',(V, X V,),

W9 = WN2 O PXJFGP ® PX+GP . (327)

The wavefront sets of Gp and Px*tGp can be computed as follows. First of all, let N be the
normally hyperbolic operator associated to P from (2.2.9),

Gp = QG = GNQ (3.2.8)
where Q = I + m*2d59. It is known that
WF(Gn) = {(z, ka; y, —ky) € T*M\{O} | (2, k) ~ (y, Ky)}

Notice that, in particular k, # 0 and k, # 0 nor simultaneously by definition, nor separately
since they are connected by a coparallel transport.

So, since Q is a differential operator we immediately deduce by 3.2.8 that WF(Gp) € WF(Gy).
Then we associate to the two operator their distributional kernels Gp(z,y) and Gyn(z,y) and
recast equation 3.2.8 in the form:

Gp(z,y) = (Ids ® Qy) Gn(2, ),
which, by standard microlocal analysis results, implies that
WF(Gn) € Char(ld, ® Q) u WF(Gp).

However explicit computations give that Char(Id, ® Qy) = {(, kz;y,0)|(z,kz) € T*M,y € M}
which does not intersect W F(Gy) at any point, implying

WF(Gn) € WF(Gp) € WF(Gy).
So Gp and Gy have the same wavefront set. Therefore, since Px™" is a smooth differential operator,
WE(PXGN) < {(x, kuiy, —hy) € TMA(0} | (2. ko) ~) (5. k,)}
A this point, a standard estimate of composition of wavefront sets in (3.2.7) yields (see, e.g., [76])
WF(w2) «H

where the Hadamard wavefront set H is the one in (3.2.1). To conclude the proof, it is sufficient
to establish the converse inclusion. To this end, observe that, since the antisymmetric part of wo
. + _ - G
is wy —w, =iGp,

WF(Gp) c WF(wy)uWF(wy),
where we adopted the same notation as at the beginning of the proof of Proposition 3.2.5: wy =
wa, wy (f,9) = wa(g,f). If, according to that notation, the prime applied to wavefront sets is
defined as in (3.2.2), the above inclusion can be re-phrased to

{(@, ka3 y, ky) € T*MA{O} | (2, ko) ~| (. ky)} = WF(Gp) « WF(wy) UWF(wy)  (3.2.9)
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Above
WF(w3) cH ={(2,ke;y, ky) € T*M\{0} | (2, k) ~| (y, ky), ko = 0}

and, with a trivial computation,
WE(wy ) € {(@,—kaiy, —ky) € T*MALO}| (2, ka) ~| (5, k), Ky =0}

Now suppose that (z, kz; y, ky) € H' does not belong to W F(wy ). According to (3.2.9), (@, ku; y, ky) ¢
WF(Gp)" (notice that H' 3 (z, ky;y, ky) ¢ WF(w, ) since the two sets are disjoint). This is impos-
sible because every (z, ks; y, ky) € H' belongs to WF(Gp)' as it immediately arises by comparing
the explicit expressions of these two sets written above. In summary H' < WF(wq)', that is
H < WF(ws), concluding the proof. O

We are finally ready to extend the Mgller operator to the quantum algebras, proving that
they are indeed isomorphic. To this end, for any paracausally related metric g ~ ¢’, we define
an isomorphism of the free algebras Ryy : 2y — 2, as the unique unital =-algebra isomorphism
between the said free unital *-algebras such that

Ryg (@' (§) = a(RTos'f)  Vie T (Vy),

where R is a Mgller operator of g, ¢’ and the adjoint Riss’ is defined as in Proposition 2.2.12.

When we pass to the quotient algebras, the preservation of the causal propagators discussed
in the previous sections, immediately implies that the induced map on the quotient algebras is
an isomorphism, that we call Mgller #-isomorphism.

Proposition 3.2.7. Let now Ryy : Ay = Ay/Ty — Ay = Ay/Ty be the quotient morphism
constructed out of Ryg. Then Ryy is well defined and is indeed a %-algebra isomorphism.

Proof. The proof of this statement is identical to the one performed in [87, Proposition 5.6].
Indeed it just relies on the preservation of the causal propagators proved in Theorem 2.2.14,
which implies that the associated C'C'R-ideals are s-isomorphic. 0

The final step in our construction is to define a pullback of the Mgller #-isomorphism to the
states and then to prove that the Hadamard condition is preserved, as done in [87, Theorem 5.14]
for normally hyperbolic field theories.

Theorem 3.2.8. Let R,y be the Moller *-isomorphism and let w : Ay — C be a quasifree
Hadamard state, we define the pull-back state w': Ay — C by ' = woRyy. The following facts
are true:

1 W' is a well-defined state;
2 W' is quasifree;
3 ' is a Hadamard state.

Proof. The proof of 1-2 is trivial and discussed in [87, Proposition 5.11]. The proof of 3 follows
from the Hadamard propagation property stated in Proposition 3.2.6. To prove the statement
we can just focus on the case in which the Mgller operator is constructed out of two spacetimes
such that g < ¢/, the reasoning can then be iterated at each step of the paracausal chain.

The two-point function of the pullback state can be written as

wWy(7,0) = w'(8' (&' () = w(Ryg (& (NA'(H))) = w(@(Rlow'fa(RTso'h)) = wa(RTos'f, RTao’h).

. . . Toy g’ .
We recall that the operator is the composition of two pieces Rfss’ = RE’Q X o R and split the
proof in two steps.

First we focus on the bidistribution wX(f, h) := wg(RngX f, ngg Xp) on (M, gy) defining a quasifree
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state therein. By the property 2.1.14, in the region in which g, = g, there is, for some ty, there
is a Cauchy surface ¥;, in common for g and g,, a common globally hyperbolic neighbourhood
N of that Cauchy surface such that w(f,h) = wa(f,h) when the supports of §f and g are chosen
in A and thus the corresponding state is Hadamard in (N, gy). Now Proposition 3.2.15 implies
that w) is Hadamard in the whole (M, gx)- Secondly, the same argument can be used once again

Tgr g’ . .
for the operator R*** on the Hadamard state wX on (M, g, ), proving that the state induced by

wa(Rlas’. RTas’) = w%‘(RE]Xg/-, RT_“"XQI-) is Hadamard as well on (M, ¢’). In other words the full
Mgller operator preserves the Hadamard form. ]

3.2.3 Existence of Proca Hadamard states in globally hyperbolic spacetimes

The next subsections are devoted to the construction of Hadamard states for the real Proca
field in a generic globally hyperbolic spacetime. Actually, the technology of Mgller operators, in
particular Theorem 3.2.8, allows us to reduce the construction of Hadamard states for the Proca
equation to the special case of an ultrastatic spacetime with Cauchy hypersurfaces of bounded
geometry. Indeed, as shown in the first chapter, for any globally hyperbolic spacetime (M, g),
there exists a paracausally related globally hyperbolic spacetime (M, go) which is ultrastatic. In
other words, first of all (M, gg) is isometric to R x ¥ where (3, hg) is a t-independent complete
Riemannian manifold and go = —dt ® dt + hg, where ¢ is the natural coordinate on R and dt is
past directed. We also denote by d; the tangent vector to the submanifold R of R x ¥. In view of
the completeness of h, these spacetimes are globally hyperbolic (see e.g. [49]) and ¥ is a Cauchy
surface of this spacetime. In turn, it is possible to change the metric on ¥ in order that the final
metric, indicated by h is both complete and of bounded geometry [67]. By construction, the final
ultrastatic spacetime (M, —dt ® dt + h) is paracausally related to (M, gg) because the intersection
of the corresponding open cones is non-empty as it always contains d;. By transitivity (M, g) is
paracausally related with (R x 3, —dt ® dt + h).

Hence, we assume without loss of generalities, that (M, g) = (R x X, —dt®dt + h) is a globally
hyperbolic ultrastatic spacetime, with dt past directed, whose spatial metric h is complete. When
dealing with the construction of Hadamard states we also assume that the spatial manifold (X, h)
is also of bounded geometry. In the final part of the section, we will come back to consider a
generic globally hyperbolic spacetime (M, g)

We can proceed to the construction of quasifree states. As we shall see shortly, this construc-
tion for the Proca field uses some consequences of the spectral theory applied to the theory of
elliptic Hilbert compleves [21] defined in terms of the closure of Hodge operators in natural L?
spaces of forms.

Some of the following ideas were inspired by [44]. However we now work in the space of Cauchy
data instead of in the space of smooth compactly supported forms and/or modes. Furthermore
we do not assume restrictions on the topology of the Cauchy surfaces used in [44] to impose a
pure point spectrum to the Hodge Laplacians.

To define quasifree states for the Proca field we observe that, as P is Green hyperbolic,
the CCR algebra A, is isomorphic to the analogous unital #-algebra Aésymp ) generated by the
solution-smeared field operators U(P)(&, A), for A € Kery.(P), which are R-linear in A, Her-

mitian, and satisfy the commutation relations”
[U<P>(a, 4),0®)(a, A’)] — io®)(4, AN . (3.2.10)
The said unital *-algebra isomorphism F' : A4, — Agsymp ) is completely defined as the unique

homomorphism of unital #-algebras that satisfies

F:a(f) — o (a,Gpf) with A =Gpf, feTeu(V,).

"Notice that, as O'(P)(A, A’) is non degenerate, we have that J(P)(&7 A) =0onlyif A=0.
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The definition is well-posed in view of (2.2.23), (2.2.10), (2.2.11), and the definition of A,. Within
this framework, the two point function we is interpreted as the integral kernel of

w (a“’)(a, A)o®(a, A’)) .

In particular, its antisymmetric part is universally given by $o0(F)(4, A’) due to (3.2.10). The
specific part of the two point function is therefore completely embodied in its symmetric part
(A, A").

According to this observation, a general recipe for real (bosonic) CCR in generic globally
hyperbolic spacetimes to define a quasifree state on the *-algebra A, (e.g., see [76,78,99] for the
scalar case and [54, Chapter 4, Proposition 4.9] for the generic case of real bosonic CCRs) is to
assign a real scalar product on the space of spacelike compact solutions

w: Kerge(P) x Kerg(P) = R
satisfying
(a) the strict positivity requirement (A, A) > 0 where u(A, A) = 0 implies A = 0;

(b) the continuity requirement with respect to the relevant symplectic form o) (see, e.g., [54,
Proposition 4.9]),
o) (A, AN < ap(A, Ap(A', AT . (3.2.11)

The continuity requirement directly arises from the fact that the quasifree state induced by p on
the whole #-algebra A, = Ag"""" is a positive functional. The converse implication, though true,
is less trivial [54,78]. The two mentioned requirements are nothing but the direct translation of
(2)’ and (3) stated in the introduction. (Regarding the latter, observe that o(¥) corresponds to
the causal propagator at the level of solutions — Eq. (2.2.23) in our case — as discussed in Section
2.2.3.) At this point, it should be clear that the quasifree state defined by p has two-point
function, viewed as bilinear map on I'.(Vy) x I'c(Vy),

wp(a()af)) = walf, ) = (Gof, GoT) + 50 (Gof, Go).

However, since the Cauchy problem is well posed on the time slices 3 of an ultrastatic space-
time (R x ¥, —dt ® dt + h), as proved in Proposition 2.2.1, we can directly define y (and o)) in
the space of Cauchy data Cx; on X, for smooth spacelike compact solutions, viewed as the time
slice at t = 0,

o CE X CZ —R.

In view of the peculiarity of the Cauchy problem for the Proca field as discussed in Section 2.2.2,
the real vector space of the Cauchy data Cy is constrained. We underline that working at the
level of constrained initial data does not affect the construction of quasifree states. Indeed, it is
sufficient that the space of constrained initial conditions is a real (or complex) vector space and
that the constrained Cauchy problem is well posed. With this in mind, referring to the canonical
decomposition A = A@dt + AD of a real smooth spacelike compact solution A of the Proca
equation, we remember that

O = {(@®, 7,0, M) e QD) x Q) | 7@ = —5alV, (A +mHa® = 507D}
Above (a®, 7)) := (A®) 9, A0)],_g and (aM),7(D) := (AD, 9, AD)|,_q.

With the said definitions and where A denotes both a solution of Proca equation and its Cauchy
data on X, we have the first result.
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Proposition 3.2.9. Consider the *-algebra A, of the real Proca field on the ultrastatic spacetime
(M,g) = (R x X, —dt ® dt + h), with dt past directed and (X,h) a smooth complete Riemannian
manifold. Let ng := —1, m1 := 1 and h%j) denote the standard inner product of j-forms on 3
induced by h. The bilinear map on the space Cx, of real smooth compactly supported Cauchy data

(2.2.2))
1 —_— N/ . —_— N/
(A, A Z ZJ hﬁ 79 (AL + m2)~1/27 ) )—l—h%j)(a(]), (AG) + m2)2a0) Yvol, (3.2.12)

is a well defined symmetric positive inner product which satisfies (3.2.11) and thus it defines a
quasifree state w, on Ay completely defined by its two-point function

wu (a(F)a(f)) = wua(F, ) = 1 (Gpf, Gf') + %U(P) (Gpf, Gef) (3.2.13)

where f,§ € Tc(Vy) satisfy

P) (Gpf, Gpf') = fM 45, Gef) vol ,

The bar over the operators in (3.2.12) denotes the closure in suitable Hilbert spaces of the
operators originally defined on domains of compactly supported smooth functions. To explain
this formalism, before starting with the proof we have to permit some technical facts about
the properties of the Hodge operators at the level of L? spaces. Given the complete Riemannian
manifold (3, h), with n := dim(X) consider the Hilbert space Hy, := Pj_, L4 (3, vol ), where the
sum is orthogonal and L%(E, vol ;) is the complex Hilbert space of the square-integrable k-forms
with respect to the relevant Hermitian Hodge inner product:

(alb)y := L Wiy (@b)voly, . a,be LE(S,voly),

where @ denotes the pointwise complex conjugation of the complex form a. The overall inner
product on H;, will be indicated by (-|-) and the Hilbert space adjoint of a densely-defined operator
A: D(A) — Hp, with D(A) < Hp,, will be denoted by A* : D(A*) — Hj,. The closure of A will
be denoted by the bar: A : D(A) — Hy,.

If Q(X)c == Bj_p QF(X)c denotes the dense subspace of complex compactly supported
smooth forms QF(X)c := QF(X) + iQF(X), define the two operators (we omit the index h for
shortness)

d:=@P_od® : Q.(D)e = WX)e, §:= 0% Q(D)c = Q(D)c

with d® := 0 and 69 := 0. Finally, introduce the Hodge Laplacian as

Z Ne — Qe(D)e  with AF) = s+ qk) 4 gk=1) (k)

Since (X, h) is complete, A can be proved to be essentially selfadjoint, for instance exploiting
the well-known argument by Chernoff [25] (or directly referring to [1]). Since A is essentially
selfadjoint, if ¢ € R, also A + ¢l is essentially selfadjoint. In particular, its unique selfadjoint
extension is its closure A + cl.

Referring to the theory of elliptic Hilbert complezes developed in [21, Section 3] and focusing in
particular on [21, Lemma 3.3] based on previous achievements established in [1], we can conclude
that the following couple of facts are true. (The compositions of operators are henceforth defined
with their natural domains: D(A + B) := D(A) n D(B), D(AB) = {z € D(B) | Bx € D(A)},
D(aA) := D(A) for a # 0, D(0A) := Hj, and A © B means D(A) ¢ D(B) with B|p) = A.)
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(a) The identities hold S
=35, 6 =d (3.2.14)

where * denotes the adjoint in the Hilbert space Hj,.

(b) The unique selfadjoint extension A of A satisfies

A=dd+0dd= Z with A() := §k+1) gk) 4 gh=T k), (3.2.15)

A trivial generalization of the decomposition as in (3.2.15) holds for A + ¢l = A + cI with
ceR.

We are now prompt to prove a preparatory technical lemma — necessary to establish Proposi-
tion 3.2.9 — that will be fundamental for showing that the bilinear map p is positive on the space
Cx.

Lemma 3.2.10. For every given k =0,1,...,n, ¢ >0, and a € R, the identities hold

(AGD  eT)2d®y
(AF=D § cI)*5

® (AR + ez, Vo e D(A® + cI)®) A D((AF+D) + c1)*d®) >)
§F)y = sk=D(A® + ey, Vye D(A® + D)) A D((AED + c1)*6®) .

Proof. Since dd = 0 and 6§ = 0, from (3.2.14), we also have d dr = 0 if x € D(d) and 6 0y = 0 if
y € D(0), and thus (3.2.15) yields®
dA>déd=Ad.

However, if D(d A) 2 D(d d d), we would have z € D(A) = D(6 d) n D(d §) such that Az =

ddx+déx € D(d), but x ¢ D(ddd), namely dz ¢ D(d). This is impossible since §dz+ddx € D(d),

D(d) is a subspace and d dz € D(d) (and more precisely d d 5z = 0 as stated above). Therefore

dA=déd=Ad

and the same result is valid with ¢ in place of d. Evidently, in both cases A can be replaced by
the selfadjoint operator A + c¢I = A + ¢l for every c € R:

dA+cl=A+cld, dA+cl=A+clé. (3.2.16)

We henceforth assume ¢ > 0. In that case, as A is already positive on its domain, the spectrum
of the selfadjoint operator A + ¢l is strictly positive and thus A + ¢l -1, Hp, — D(A + cI) is well
defined, selfadjoint and bounded. The former identity in (3.2.16) also implies that D(d A + cI) =
D(A + ¢l d), so that

1= i
A+cl dA+ CI|D(3m)$ = d‘D(Em)x )

By construction, we can choose © = A + ¢l 71y with y € D(d) in view of the definition of the
natural domain of the composition d A + ¢I). In summary

Atcl 'dy=dA+cl 'y, VYyeD(@).

Since the argument is also valid for §, we have established that

Avecl '‘decdAvel ', Atxe Scontvel !

Iterating the argument, for every n =0,1,.. .,
A+c Ydecd@+e ), (A+c YVocs@Btc )

8Tt holds (B + C)A = BC + BA, but AB + AC < A(B + C).
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This result extends to complex polynomials of A + ¢l “lin place of powers by linearity. Using the
spectral calculus (see e.g. [85]) where pizy(F) = (z|Pgpy) and P is the projector-valued spectral

measure of A + ¢l _1, the found result for d can be written
| 3,0 = | s, , ) (3:2.17)
[0,b] [0,b]

for every complex polynomial p, where [0, b] is a sufficiently large interval to include the (bounded
positive) spectrum of A + cI_l, z € D), y € D(d), and where we have used § = d". Since the
considered regular Borel complex measures are finite and supported on the compact [0,b], we
can pass in (3.2.17) from polynomials p to generic continuous functions f in view of the Stone-
Weierstrass theorem. At this juncture, P;, = Pg and the uniqueness part of Riesz’ representation
theorem for regular complex Borel measures, implies that

(Pgdy|x) = (Ppy|dx) for all x € D(3), y € D(d), and every Borel set E — R.

which means Pgé a*PE, namely Pré < §Pg. Analogously, we also have Prd c dPg.

If f: R — C is measurable and bounded, the standard spectral calculus and (3.2.14), with
a procedure similar to the one used to prove Ppd — 6Pg and taking into account the fact that
D(f(A+cl 1)) = Hy, yields

FATd YocdfAred ), fATc HNdcdf(Are (3.2.18)

If f is unbounded, we can choose a sequence of bounded measurable functions f,, such that f,, — f
pointwise. It is easy to prove that (see, e.g. [85]) @ € D({; fdP) entails § f,dPz — {; fdPux.
This is the case for instance for f(\) = A\? with 8 < 0 restricted to [0, b]. Referring to this function
and the pointed out result for some sequence of bounded functions with f,, — f pointwise, the
latter of (3.2.18) implies that? ,

(A+c)¥x =d(A+cl)®x ifze D(A+cl)®) n D(d) and dz € D((A + cl)®),

where we used also the fact that d is closed. The case of § can be worked out similarly. Summing
up, we have proved that, if o € R,

(A + )%z =d(A+cl)*x, Vze D(A+c)*) nD((A+cl)™d)
(A+cD)%y=0(A+cl)y, VYyeD(A+c)*) nD((A+cl)*).

~—

Let us remark that for o < 0 it is sufficient to choose z € D(d) and y € D(J). For every given
k=0,1,...,n,c> 0, and o € R, taking the decomposition of H;, into account the above formulae
imply

(AKHD 4 e*d®)z = dF)(AK) 4 )%z, Vo e D(AK) + c)®) n D((AKHD 4 cI)*d(k)

(AG=D 4 eD)*6F)y = §E-D(AK) + D)y, VYye D(A® +c)*) n D((AE-D 4 e)*5(K))
That is the thesis. O

We are now prompted to prove that the bilinear map defined by Equation (3.2.12) defines
a quasifree state defined by the two-point function given by (3.2.13) establishing the thesis of
Proposition 3.2.9.

9Below, a > 0 otherwise (A + cI)® is bounded in view of its spectral properties and (3.2.18) is enough to
conclude the proof.
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Proof of Proposition 3.2.9. To continue with the proof of the proposition, we now demonstrate

that p is well-defined and positive. That bilinear form is well-defined because 2 (X) € D(AW + m?2] Oé)
for a < 1 as one immediately proves from spectral calculus. Furthermore, the integrand in the
right-hand side of Equation (3.2.12) is the linear combination of products of L? functions (of
which one of the two has also compact support). Let us pass to the positivity issue. Our strategy

is to re-write pu(A, A), where A = (a9, 70 o) 7(1) e Cx, as the quadratic form of the energy

(A, A) = EP)(A,), where the right-hand side is defined in Equation (2.2.27), for a new set of
initial data A, which are not necessarily smooth and compactly supported but such that E(*) (Ap)

is well defined. If A € Cy, define for j = 0,1

AO = (ag(])v 7T(()0)’ agl) ) ng))
a$) := (AU) + m21)~V4a0) (3.2.19)
7 = (AUG) 4 m21)~Vir )

Notice that the definition is well posed and the forms ag 7) and 7r(() 7) belong to the respective Hilbert

spaces of j-forms, because Qg )( ¥) c D(AW + m2I ) for a < 1 as said above. Furthermore the

new forms are real since the initial ones are real and AU + m2]" commutes with the complex
conjugation'’. At this juncture, we have from (3.2.12)

(A, A) Z " f ),79) + B (09, (B0 + mPT)ad)vol (3.2.20)
Furthermore, the new Cauchy data, though they stay outside Cy; in general, they however satisfy
the natural generalization of the constraints defining Cy, in view of Lemma 3.2.10:

MONEFOMON m O — 5Dz (3.2.21)

These identities arise immediately from Definitions (3.2.19), the constraints (2.2.21), and by
applying Lemma 3.2.10 and paying attention to the fact that ng)(Z) < D((AU-D + eI)26())
for every a < 1 and also using (AU) + m2I)(AG) + m2I)~14 = (AG) + m21)~Y4AG) + m2] (for,

g., [85, (f) in Proposition 3.60 |). Using (3.2.14) and (3.2.21) in the right-hand side of (3.2.20),
we can proceed backwardly as in the proof that (2.2.27) is equivalent to (2.2.28). Indeed, the
only ingredients we used in that proof were the constraint equations which are valid also for A,
and the duality of § and d with respect to the Hodge inner product, which extends to § and d.
In summary,

1 - - - E—
w(A,A) = 5 J; (hjgl) (71’(()1) — d(O)a(OO)’ 7r(()1) — d(o)a(()[))) + h%Q) (d(l)agl)’ d(l)a(ol))

+m? (h%l)(agl), aVy + ago)ago))>vol h -

From that identity, it is clear that u(A,A) > 0 and pu(A,A) = 0 implies A, = 0, which in

turn yields A = 0 because the operators A() + m2[ i are injective. We have established that
Oy x Oy, — R is a positive real symmetric inner product.

Let us pass to prove (3.2.11). First of all, we change the notation concerning the scalar
product 4 making explicit the decomposition of A, and we work with complex valued forms. We

use
A= (a,7) = (@@, 70 @ 20y g (4O o0y, 1 (20 70

107t easily arises from spectral calculus using the fact that the complex conjugation is bijective from Hj to Hn,
continuous, and commutes with AG) 4+ m?2T.
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so that, if (a,7), (a’, ') € (LE(%, vol ) ® L3 (3, vol ,)) x (L3 (%, vol ;) ® L3 (X, vol ;) are such that
the right-hand side below is defined, we can write

S U N _ N/ — N/
(@), (@, 7)) = ), 2]f Wy (D, Higg a9 + hfy (a0, Hgyal Yol

———1/2
where H ;) := AU) +m?2T / , and the bar on forms denotes the complex conjugation. Finally, for
a = +1, we defined

H% := (Ha ), HeyaV),  HOm = (Hyn©, HeywD)

By direct inspection one sees that, if (a,7), (a’,7’) € Cx + iCy, then the right-hand side of the
first identity below is well-defined and

A((a,7), (d', 7)) ::%u (7 +iH 'a,a—iH7),(x' —iH 'd',d +iH7'))
(@7, (7)) + 5o (@), (@, 7))

where o(P) is the right-hand side of (2.2.25), which however coincides with the original symplec-
tic form (2.2.22) evaluated on complex Cauchy data because (a, ), (¢/,7’) € Cx + iCx, and Re-
mark 2.2.5 holds. Finally notice that if (a,7) € Cs +iCyx then a, := 7 —iHa and 7, := a+iH " '7
satisfy the constraints (though they do not belong to Cx. + iCyx, in general)

70 = 5060 Hga® = 5Dl

o

The proof is direct, using Lemma 3.2.10 once more. As a consequence, exploiting the same
argument to prove (2.2.29) and observing that H® commutes with the complex conjugation — so
that it holds 7 — iH '@ = m + iH 1a for instance — we have that

2A((a,7), (a,7)) = p ((7 + iH '@,a — iH7), (r —iH 'a,a + iHn))

=L ((W—iH—la,a+ iHr), (7 —iH_la,a+iH7r)> >0.

The final inequality is due to the fact that p is (the complexification of) a real positive bilinear
symmetric form. All that means in particular that the Hermitian form A on (Cyx + iCy) x
(Cx + iCy) is (semi)positively defined and thus it satisfies the Cauchy-Schwartz inequality. In
particular,

(ImA((a,m), (', 7")))* < |A((a,7), (', 7)) P < A((a,m), (a, 7)) A(a',7"), (', 7)) -
If choosing (a,7), (a’, ") € Cx, (thus real forms), the above inequality specialises to

o ((a,m), (', 7))* < 4p((a, 7), (a,m)) p((d, '), (', 7))

which is the inequality (3.2.11) we wanted to prove. O

3.2.4 Hadamard states in ultrastatic and generic globally hyperbolic spacetimes

With the next proposition, we show that the quasifree states defined in Proposition 3.2.9 is
a Hadamard state when (3, h) is of bounded geometry. To prove the assertion we will take
advantage of the general formalism developed in [54] and [57]. An alternative proof, which does
not assume that the manifold is of bounded geometry (however we here take advantage of [67]),
could be constructed along the procedure developed in [50] and extending it to the vectorial
Klein-Gordon field.
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Proposition 3.2.11. If the metric h on the time slice 33 is of bounded geometry, then the quasifree
state wy, : Ag — C defined in Proposition 3.2.9 is Hadamard according to Definition 3.2.4.

Proof. Consider a pair of complez Klein-Gordon fields A©) and A®M) in the ultrastatic spacetime
(M, g) = (R x 3, —dt ®dt + h), with (£, h) a smooth complete Riemannian manifold of bounded
geometry obeying the normally hyperbolic equations (2.2.13) and (2.2.14) in the respective vector
bundles on M, according to Section 2.2.2. We stress that we now assume that the two fields are
complex. Referring to [54, Chapter 4], we define the covariances, for j = 0,1
. ., 1
Aa)(A(J)’A(J) ) :ZQJ Bt

(7@, H 120"y + 1E (a0, Hjal)') vol, + %am(m, A6

) OK ()

(3.2.22)

. -\/ 1 \/ N =\ / TN Z : Y N

— — f -1 f

Ay (AY), A0 =3 L Wy (@9 o w)) + b (aV9) HijyaW)) vol y, + 5a—U)(A(ﬂ ,AG)

(3.2.23)
——=1/2 .

where H(;) := AU) +m2 / , o) are the symplectic forms of the corresponding Klein-Gordon

fields taking place in the right-hand side of (2.2.25), now evaluated on complex fields. Above,
a), 70) € QJ(2)¢ are the Cauchy data on ¥ of AW respectively and o), 79" € QL(E)¢ are the
Cauchy data on ¥ of AW respectively. Notice that we are not imposing constraints on these
initial data since we are dealing with independent Klein-Gordon fields. )\6) are evidently positive
because, if all involved forms in the right-hand side are smooth and compactly supported, then
the right-hand side of the identity above is well-defined and

At
j

Gy (AD, A = % f h’gj)(Hl/za(ﬁ +iH*1/27r(j),H(1j/)2a(j)/ +iH 270y vol, .
by

The case of )\(_j) is strictly analogous. Furthermore

)\;;.)(A(j),A(j)/) _ )\(*j)(A(j),A(j)/) = igW(AG), AWy .

Therefore /\z—rj) satisfy the hypotheses of [54, Proposition 4.14]'! so that they define a pair, for
j = 0,1, of quasifree states for the complex Klein-Gordon fields respectively associated to Equa-
tions (2.2.13) and (2.2.14). We pass to prove that both states are Hadamard exploiting the fact
that (X, h) is of bounded geometry. By rewriting the covariances )\z—rj) as )\z—;) = iqcz—;.) (q = ic\))
a quick computation shows that

—1
ct :1 1 iH(J') )
G 2 iH(j) 1

We can immediately realize that the operator cz—;) is the same Hadamard projector obtained

in [57, Section 5.2]'? — see also [54, Section 11] for a more introductory explanation for the scalar
case. This operator belongs to the necessary class of pseudodifferential operators C{°(R; U} (X))
because (X, h) is of bounded geometry. Therefore, on account of [57, Proposition 5.4], the two
quasifree states associated to /\a), for AU and 7 = 0,1, are Hadamard. In other words, the
Schwartz kernels provided by the two-point functions )\z;.) (GU).,GUY).), viewed as distributions of
I‘(ng) V;j))’, satisfy

+
WEQAG)
"The reader should pay attention to the fact that the Cauchy data used in [64], in the complez case, are defined
as (fo, f1) := (a, —iw) instead of our (a,w)! This is evident by comparing (2.4) and (2.20) in [54]. With the choice
of [54], i(fo,fl)t ~q(fo, f1) = § foft + fifovoly, = io((a,m), (a’,7")), where -g = o1 (the Pauli matrix) according
to [54].

121t follows immediately since b* (t) = —b~(t) = H := AW + m2l'

(GU)., GUY) = 3,

/2
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where #H is defined in (3.2.1) and G®, i = 0,1 are the causal propagators for the normally
hyperbolic operators
NG = 62 + AW 4+ m?1: Ty (VD)) - T (VW) i =0,1.

Above and from now on we use the same notation to indicate a bidistribution and the associated
Schwartz kernel. Notice that we have used the same symbol GU) of the causal propagator we
used for the real vector field case. This is because the causal propagators for the complex fields
are the direct complexification of the scalar case (see Remark 2.2.5). We pass now to focus on the
expression of w2 provided in (3.2.13) taking the usual decomposition Q!(M)¢ 3 § = §f0dt + §V)
into account. It can be written

wua (5, ) = wiy GO, 5 — wl) (O, 5O
where, comparing (3.2.12) and (3.2.13) with (3.2.22) for real arguments f,{ € I'(V,), we find

wi]é)(f(j))f(j)') — AE)(G(j)f(j)’ G(j)f(j)/) .

We have

WF(tw) = WF(EN GV, G0) = WF(, (G-, GU).)) = H  for j =0,1.
Taking (2.2.16) into account, we now observe that w,s € T'(V,XV,) = F((Véo) @ Vg(l)) (Véo) @
Vg(l)))’ . As a matter of fact, however, w,2 does not have mixed components acting on sections

of Vg(l) Véo) and Vg(o) Vél) and the only components of that distribution are those which act

on sections of Vg(o) Véo) and Vg(l) Vgl). These are respectively represented by —wl(g) and wf};
whose wavefront set is H in both cases. The remaining two components have empty wavefront set
since they are the zero distributions. Applying the definition of wavefront set of a vector-valued

distribution [95], we conclude that
WF(wu) = WF(-wQ) UWF(W)vgu@=HOoHLUBUD =H,
concluding the proof. O

Combining the results obtained so far, we get the main result of this section.

Theorem 3.2.12. Let (M, g) be a globally hyperbolic spacetime and refer to the CCR-algebra A,
of the real Proca field. Then there exists a quasifree Hadamard state on A,.

Proof. As already explained in the beginning of Section 3.2.3, for any globally hyperbolic space-
time (M, g), there exists a paracausally related globally hyperbolic spacetime (M, gg) which is
ultrastatic and whose spatial metric is of bounded geometry. In particular, in this class of space-
times, the quasifree states defined in Proposition 3.2.9 satisfy the microlocal spectrum condition,
as proved in Proposition 3.2.11. Therefore, since the pull-back along a Mgller #-isomorphism
preserves the Hadamard condition on account of Theorem 3.2.8, we can conclude. O

3.2.5 Comparison with Fewster-Pfenning’s definition of Hadamard states

Though the paper [44] by Fewster and Pfenning concerns quantum energy inequalities, it also offers
a general theoretical discussion about the algebraic quantization of the Proca and the Maxwell
fields in curved spacetime. In particular, the authors propose a definition of a Hadamard state
which appears to be technically different from ours at first glance, even if it shares a number of
important features with ours.

The definition of Hadamard state stated in [44, Equation (35)] is formulated in terms of
causal normal neighbourhood of smooth spacelike Cauchy surfaces (see also below) and the global
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Hadamard parametriz for distributions which are bisolutions of the vectorial Klein-Gordon equa-
tion. Our final goal is to prove an equivalence theorem of our definition of Hadamard state
Definition 3.2.4 and the one adopted in [44].

As a first step, we translate the original Fewster-Pfenning’s definition of a Hadamard state
into an equivalent form which will turn out to be more useful for our comparison. The equivalence
of the version stated below of Fewster-Pfenning’s definition and the original one was established
in [44, Section III C] (see also the comments under Definition 3.2.13).

Definition 3.2.13. [Fewster-Pfenning’s definition of Proca Hadamard state| Consider
the globally hyperbolic spacetime (M, g) and a state w : A; — C for the Proca algebra of
observables on (M, g). w is called Hadamard if it is quasifree and its two-point function has the
form

w(a(f)a(h)) = W,(}, @h) (3.2.24)

Vf,h € Te(Vy), where @ : T'(V,) — I'(V,) in the differential operator @ = Id + m~2(dd,). Above
W, eI (VgX1V,) is a Klein-Gordon distributional bisolution such that

Wy(f,8) — Wy(g.f) = iGn(f,g) mod C*, (3.2.25)

GN being the causal propagator of the Klein-Gordon operator (2.2.4) and which satisfies the
microlocal spectrum condition

WE(Wy) = {(2.ksiy, —ky) € T*MA(O} | (2, ko) ~| (9, k), ko =0 (3.2.26)

Remark 3.2.14. The equivalence of Definition 3.2.13 and the original one stated in [44] relies
on Sahlmann -Verch’s [95] generalization to vector (and spinor) fields of some classic Radzikowski
results originally formulated for scalar fields. In practice, (a) if a distribution which is a bisolution
of the vectorial Klein-Gordon equation and it is of Hadamard form in a normal causal neighbour-
hoods of a smooth spacelike Cauchy surface, then it necessarily has the wavefront set of the form
(3.2.26) ((a) [95, Theorem 5.8]) and its antisymmetric part satisfies (3.2.25) directly from the
definition of parametrix; (b) if a distribution which is a bisolution of the vectorial Klein-Gordon
equation satisfies (3.2.26) and (3.2.25), then it is of Hadamard form in some normal causal neigh-
bourhoods of a smooth spacelike Cauchy surface (see [95, Remark 5.9. (i)]).

For the Proca field in [44] established the property of propagation of the Hadamard condition
stated in the next proposition. That result was already established for the Hadamard states of
scalar and vector (including spinor) fields in [51,78,95] (see [76,86] for a general recap for the
KG scalar field). The pivotal tool is the already mentioned notion of causal normal neighbour-
hood N of a smooth spacelike Cauchy surface ¥ in a globally hyperbolic spacetime (M;g). The
notion introduced in [78] has been recently improved (closing a gap in the geometric definition
of Hadamard states) in [86]'%. The propagation results established in [78,95] and [44] are valid
with the improved notion of causal normal neighbourhoods and Hadamard states of [86].

Proposition 3.2.15. Let w : A; — C be a quasifree state for the Proca field in the globally
hyperbolic spacetime (M, g). Let N be a causal normal neighbourhood of a Cauchy surface X of
(M, g). Suppose that the restriction of w to (N, g|n) is Hadamard according to Definition 3.2.13.
Then w is Hadamard in (M, g) according to the same definition.

Remark 3.2.16. In order to compare Proposition 3.2.6 and Proposition 3.2.15 we stress that
the requirement that the neighbourhood A of a Cauchy surface is causal normal can be relaxed
also in Proposition 3.2.15 to make contact with our Proposition 3.2.6. One may only assume that
(N, gln) is globally hyperbolic also therein. That is a consequence of the following facts.

13Where these open sets are named normal neighbourhoods of smooth spacelike Cauchy surfaces, omitting
“causal”.
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(a) Every causal normal neighbourhood N' = M of a Cauchy surface X of (M, g) is, by definition
[78,84], a globally hyperbolic spacetime with respect to the restriction of the metric and ¥
is also a Cauchy surface in (N, g|y).

(b) Every smooth spacelike Cauchy surface admits a causal normal neighbourhood [78, 84].

(¢) According to the proof of [78, Lemma 2.2 | whose validity extends to [84], every neighbour-
hood of a smooth spacelike Cauchy surface includes a causal normal neighbourhood of that
Cauchy surface'.

The smoothness property corresponding to our Proposition 3.2.5 also holds for Hadamard
bisolutions in the sense of Fewster-Pfenning. In [44], it is an immediate consequence of (3.2.24)
and the analogous feature of Klein-Gordon bisolutions (see the discussion on p. 4488 in [44]).

Proposition 3.2.17. Let w,w’ € T.(V, X Vy) be a pair of bisolutions of the Proca equation
satisfying the Hadamard condition (3.2.24) for corresponding Klein-Gordon bisolutions which,
in turn, satisfy (3.2.25). Then, the differences between the two bisolutions is smooth: w — W' €

LV, & V).

Finally, [44] also contains a proof of the existence of Hadamard states for the Proca (and
the Maxwell) field in globally hyperbolic spacetimes with compact Cauchy surfaces (whose first
homology group is trivial when treating the Maxwell field). This proof establishes first the
existence in ultrastatic spacetimes and next it exploits a standard deformation argument [99].

We are in a position to state and prove our equivalence result.

Theorem 3.2.18. Consider the globally hyperbolic spacetime (M,g) and a quasifree state w :
Ay — C for the =-algebra of observables on (M, g) of the real Proca field. Let wy € T,(Vy X V)
be the two-point function of w. The following facts are true.

(a) If w is Hadamard according to Definition 3.2.13, then it is also Hadamard according to
Definition 3.2.4.

(b) If (M, g) admits a Proca quasifree Hadamard state according to Definition 3.2.13 and w
is Hadamard according to Definition 3.2.4, then w is Hadamard in the sense of Defini-
tion 3.2.13.

Proof. The following argument is identical to the one used in 3.2.6 to prove WF(Gp) = WF(Gy),
but we repeat it here to keep this section self-contained.

First of all notice that, since wa(f, g) = Wy(f, Qg), then viewing wp and W, as bidistributions, we
have w(z,y) = (Id, ® Qy) Wy(x,y) (where we have used the fact that @ is formally selfadjoint)
taking Remark 3.2.3 into account).

Now suppose that w is Hadamard according to Definition 3.2.13. Since W, satisfies the microlocal
spectrum condition and the differential operator I ® () is smooth, we have

WF(w2) € WF(Wy) = {(2, ka3 y, —ky) € T*MA\{0} | (2, ks) ~|| (y, ky). ko =0} .

Notice that, in particular, k, and k, cannot vanish (simultaneously or separately) if they take
part of WF(W,). Let us prove the converse inclusion to complete the proof of (a). Again from
known results, from wa(z,y) = (Id; ® Qy)Wy(x,y), we have

WEWgy) c Char(I® Q) v WF(ws) .
However, by direct inspection, one sees that

Char(I® Q) = {(z,kz;v,0) | (z,k) € T"M ,y € M} |

4 Essentially because convex normal neighbourhoods of points form a topological basis of any spacetime and in
view of [84, Proposition 9]
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so that
WF(wy) € WE(Wy) € WF(w2) U {(x, kz;9,0) | (x,ky) € T*"M ,y € M} . (3.2.27)

However WF(Wy) n {(z, kz;y,0) | (z,kz) € T*M,y € M} = & and thus we can re-write the chain
of inclusions (3.2.27) as

WEF(wp) € WEF(Wy) € WF(w2) so that WF(wy) = WF(Wy) .

This is the thesis of (a) because we have established that Definition 3.2.4 is satisfied by w.
To prove (b), let us assume that w satisfies Definition 3.2.4. By hypotheses the antisymmetric part
of wy is —iGp. Let 2 be another quasifree state of the Proca field which satisfies Definition 3.2.13.
Also the antisymmetric part of €y is —iGp.

Due to Proposition 3.2.5,

F(x7y) = WQ(xvy) - QQ(x>y) :

is a smooth function. Furthermore it is a symmetric bisolution of the Proca equation. In particular
it therefore satisfies'™ F(f, dh®) = 0, where h(© € QI(M), so that

F(7,Qa) = F(f.0) + —5 F(7,d(5,0)) = F(i.q).

Collecting everything together, we can assert that, for some distributional bisolution of the Klein-
Gordon equation W, which satisfies (3.2.25), (3.2.26), and is associated to the Hadamard state
Q, it holds

WZ(fag) = Wg(f, Qg) + F(fvg) = Wg(f, Qg) + F(fa Qg) .
If we re-absorb F' in the definition of W,

W, (f,Qa) = W,(f,Qg) + F(f,Qg) .

the new Wg’ is again a distributional bisolution of the Klein-Gordon equation which satisfies
(3.2.25), (3.2.26) and

wa(f,9) = Wy(f, Qo) -

In other words, the Hadamard state w according to Definition 3.2.4 is also Hadamard in the sense
of Definition 3.2.13 concluding the proof of (b). O

Remark 3.2.19. Regarding (b), the existence of Hadamard states in the sense of Definition 3.2.13
has been established in [44] for globally hyperbolic spacetimes whose Cauchy surfaces are compact:
in those types of spacetimes at least, the two definitions are completely equivalent. We expect
that actually the equivalence is complete, even dropping the compactness hypothesis (see the
conclusion section). This issue will be investigated elsewhere.

3.3 Conclusions

In this chapter a lot of non trivial results have been obtained: the Mgller operators construction
has exhibited the important feature of preserving the Hadamard condition and this property has
been exploited to construct Hadamard states in general spacetimes for Klein Gordon and Proca
fields. Moreover the CCR algebras defining the aforementioned theories have been shown to be
isomorphic for paracausally related spacetimes implying that a lot of structure is preserved in a
CCR quantum field theory under finite global variations of the background geometry. Moreover
Hadamard states have been constructed in general for the Proca field for the first time and the

5We are grateful to C. Fewster for this observation.
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Fewster-Pfenning and the standard definition of Hadamard state for the Proca fields have been
revealed to be (almost) equivalent.

However an issue we have faced for all the considered theories is the lack of control on the
action of the group of *-automorphism induced by the isometry group of the spacetime M on w.
Indeed, the type of factor can be inferred by analyzing which and how many states are invariant.
From a more physical perspective instead, invariant states can represent equilibrium states in
statistical mechanics e.g. KMS-states or ground states. The previous remark leads us to the
following open question:

Question 3.3.1. Under which conditions it is possible to perform an adiabatic limit, namely
when is 1im1 w1 well-defined?
X—)

A priori we expect that there is no positive answer in all possible scenarios, since it is known
that certain free-field theories, e.g., the massless and minimally coupled (scalar or Dirac) field on
four-dimensional de Sitter spacetime, do not possess a ground state, even though their massive
counterpart does. (Notice that this is not a no-go Theorem, but at least an indication that, in
these situations, the map w — w o R cannot be expected to preserve the ground state property.)

A partial investigation in this direction has been carried on in [27,36] for the case of a scalar
field theory on globally hyperbolic spacetimes with empty boundary. In this situation it has
been shown that, under suitable hypotheses the adiabatic limit can be performed preserving
the invariance property under time translation but spoiling in general the ground state or KMS
property.

Moreover, the results are valid also for off-shell algebras as well as for distribution of Hadamard
type. Therefore, it could be possible to extend the action of the Mgller operator also on the algebra
of extended observables in a perspective of deformation quantization (see for instance Section 2
of [35]), which include, e.g., the Wick polynomials of the underlying fields. Wick polynomials and
time-ordered products of Wick polynomial are the building blocks for perturbative renormaliza-
tion of quantum fields, both in Minkowski spacetime and in curved spacetime, where the metric
is considered as a given external classical field. Although of utmost physical relevance, these
formal operators as the stress energy operator do not belong to the algebra of observables gen-
erated by the smoothly smeared field operators (operator-valued distributions). This is because
they correspond to products of distributions at a given point and this notion is not well-defined
in general. The popular and perhaps most effective procedure to eliminate the short-distance
divergences consists of simply subtracting a suitable Hadamard distribution. This procedure
is systematically embodied in a product deformation quantization procedure which relies on a
suitable set of functionals with a specific wavefront set. The following observation leads to the
following conjecture:

Conjecture 3.3.2. Let Ay, Aj be the algebra of observables of the globally hyperbolic spacetimes
(M, g) and (M, ¢’') and Ry a Mgller #-isomorphism of them. If A, A’ are corresponding extended
algebras of observable (which include the Wick polynomials etc.) and g ~ ¢/, then R extends to
a (Mgller) #-isomorphism R : A — A’

A detailed study of the Mgller #-isomorphism in the case of the off-shell Proca algebra has
not been carried out yet.
However, regarding the Proca field, much more can be done, especially in the study of the
Hadamard state we explicitly constructed on ultrastatic spacetime M = R x ¥. Thereon the
one-parameter group of isometries given by time-translations has an associated action on A, in
terms of x-algebras isomorphisms «, completely induced by

ay(a(f)) = a(fu)

for every f € I'c.(M), where f,(t,p) := §f(t — u,p) for every t,u € R and p € ¥. It shall not be
difficult prove that the Hadamard state constructed is invariant under the action of

wulay(a)) =wy(a) YueR Vae Ay
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It should be also true that the map
R 3 u — wy(boy(a)) e C

is continuous for every a,b € A, which would assure (see, e.g. [85]) that a := {a},}rer is unitarily
implementable by a strongly continuous unitary representation of R in the GNS representation
of w, and that the vacuum vector of the Fock-GNS representation is left invariant under the
said unitary representation. We expect that the selfadjoint generator of that unitary group has
a positive spectrum where, necessarily, the vacuum state is an eigenvector with eigenvalue 0.
In other words w;, should be a ground state of a. We finally expect that w, is pure and it is
the unique quasifree algebraic state which is invariant under . We can summarize the previous
discussion in the following question.

Question 3.3.3. Is the Hadamard state defined on ultrastatic spacetimes a ground state for
the time-translation? More precisely, is it the unique, pure, quasifree algebraic state which is
invariant under the action of a?

Last, but not least, we have seen in Section 3.2.5 that if a globally hyperbolic manifold
admits a Proca quasifree Hadamard state according to the definition of Fewster-Pfenning, then
Definition 3.2.4 and 3.2.13 are equivalent. This is the case for example for globally hyperbolic
spacetimes whose Cauchy surfaces are compact. We do expect to extend this result for the whole
class of globally hyperbolic spacetime.

Conjecture 3.3.4. Definition 3.2.4 and 3.2.13 are equivalent on any globally hyperbolic space-
time.

As is evident from our quasi equivalence theorem, a complete equivalence would take place
if a Hadamard state according to [44] is proven to exist for every globally hyperbolic spacetime.
As a matter of fact, we expect that every globally hyperbolic spacetime (M, g) admits a quasifree
Proca Hadamard state w according to Fewster and Pfenning. This state should exist in every
paracausally related ultrastatic spacetime (R x 3, —dt? + h) with complete Cauchy surfaces of
bounded geometry. With the same argument used for our existence proof of Hadamard states
or the deformation argument exploited in [44], it should be possible to export this state to the
original space (M, g). We expect that the Hadamard Klein-Gordon bisolution for the real Proca
field on (R x ¥, —dt? + h) used to define w according to (3.2.24) in Definition 3.2.13 should have
this form.

Wy (5. ) = n(Gnf, GnT) + 5o (Guf, Guf') . 1. € To(R x ).

where N is the Klein-Gordon operator (2.2.4) associated to P and Gy its causal propagator. The
bilinear symmetric form 1 : ((Q2(2))? x (QL(2))?) x ((22(X))? x (2L(X))?) — R is defined as in
(3.2.12), but with the crucial difference that here its arguments are not restricted to Cy, x Cf.

Another problem which has not been tackled is the extension of this formalism to gauge
theories, as well as in the classical case, because we have not been able to prove that any claimed
form of Mgller operator for the Maxwell field can produce an isomorphism of the Maxwell algebras
on paracausally related spacetimes. However, in principle, nothing forbids the procedure to
be recast for gauge theories in a fruitful less trivial way, so this topic remains left to future
investigation.
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