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Abstract

In this thesis, we address several problems related to the bosonic classical and algebraic quantum
field theories in curved spacetime. In particular, the main question is: how do the theories
change under finite global variations of the spacetime metric tensor? To answer this question a
new deformation tool, the paracausal deformation, is developed and studied on its own as a new
approach to investigate the structure of the space of globally hyperbolic metric tensors associated
with a smooth manifold M. Then the classical Møller maps are constructed to compare solutions of
the hyperbolic PDEs defining the classical field theories and the quantum Møller ˚-isomorphisms
follow to compare the CCR quantum algebras associated to the propagation of the quantum fields
on the different background geometries. These maps possess the important property of preserving
Hadamard states, providing a new way to implement the deformation argument used to prove
the existence of such states in general globally hyperbolic spacetime. Moreover, the algebraic
quantization of the Proca field, i.e the massive spin 1 field, on a general globally hyperbolic
spacetime is for the first time studied in detail: by employing techniques coming from microlocal
analysis and spectral theory a Hadamard state is constructed on ultrastatic spacetimes and then
the Møller operator is used to prove the existence of such states in general globally hyperbolic
spacetimes. A discussion about the definition of Hadamard states for the massive vector fields
closes the work.

The thesis is based on two works on algebraic quantization of bosonic field theories and
Hadamard states: [87], [88]. The papers are co-authored by my supervisor Prof. Valter Moretti
(UniTN) and cosupervisor Simone Murro (UniGe). The first [90] has not been included since,
at the time it was written, the paracausal deformation, the construction of Møller operators,
the right approach to intertwine the causal propagators and all the other tools developed in the
subsequent works were still at a rough stage.
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Introduction

Algebraic quantum field theory [12, 18] (AQFT) is a mathematically rigorous framework where
quantum field theory on curved spacetime can be defined, according to the Haag-Kastler axioms,
assigning ˚-algebras or C˚-algebras of abstract operators to open regions of a spacetime manifold
in such a way that they satisfy physical properties such as locality, causality and the time slice
axiom. The choice of algebraic states leads through the GNS construction to representations
of the quantum algebras via unbounded operators defined on a common dense subspace of a
Hilbert space. Among all possible states these algebras admit, a prominent role is played by
the ones satisfying the Hadamard condition, since they finely generalize to curved spacetime the
Minkowski vacuum.

In this thesis we study how the behaviour of aforementioned classical and quantum field
theoretical structure one can build on a Lorentzian globally hyperbolic manifold changes under
variations of the background geometry, with special attention on Hadamard states.

The main novelties presented are:

• the introduction of the paracausal relation in order to investigate the structure of the space
of globally hyperbolic metrics;

• the construction of geometric Møller operators to compare quasi-free classical and quantum
field theories living on different, though paracausally related spacetimes;

• the use of the aforementioned construction to constructively prove the existence of Hadamard
states for the (generalized) Klein-Gordon field, rewriting a standard deformation argument
through explicit operators, [50, 51]:

• the application of such a technique to prove existence of Hadamard states for the Proca
field in general spacetime, concluding a discussion started in [44] where the existence had
been proved just in Cauchy compact spacetimes;

• the explicit construction of a Hadamard state for the Proca field on ultrastatic spacetimes
exploiting techniques coming from microlocal analysis and elliptic Hilbert complexes.

The thesis is organized as follows. Chapter 1 is totally devoted to Lorentzian geometry and
thought to be self-consistent: basic results of causality theory are introduced as tools to review
the geometry of globally hyperbolic spacetimes, then the paracausal relation is introduced and a
lot of results about it are proved. A brief discussion about the topology of the space of globally
hyperbolic metrics concludes.

In chapter 2 we introduce Green hyperbolic operators and compare the spaces of solutions of
partial differential equations describing classical fields propagating on curved spacetimes, under
the assumption that the spacetimes are paracausally related. Again this chapter discusses prob-
lems in linear Green hyperbolic differential operators and is self contained, despite dependent on
the geometric notions developed in chapter 1. Therefore Møller operators and Møller maps are
defined and their properties are investigated.

Chapter 3 deals with problems in quantum field theory in curved spacetimes: we briefly intro-
duce the algebraic approach to quantum field theory, focusing on CCR algebras and Hadamard
states. Then the geometric Møller operators are promoted to algebra isomorphisms preserving
the singularity structure of states and the construction is employed to prove the existence of
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Hadamard states for Klein-Gordon and Proca quantum fields on curved spacetime. Such a con-
struction, known in the literature as ”deformation argument”, is in this work implemented in a
new fashion through explicit operators. This approach allows to prove rigorously the existence
of Hadamard states for Green hyperbolic field theories on any globally hyperbolic spacetime.

Since the chapters are as independent as possible, each one has its own conclusive sections
summarizing the results and discussing possible future research lines.

General notation and conventions

- A Ă B permits the case A “ B, otherwise we write A Ĺ B.

- The symbol K denotes any element of tR,Cu.

- pM, gq denotes a pn ` 1q-dimensional spacetime (cf. Definition 1.1.5) and we adopt the
convention that g has the signature p´,` . . . ,`q. g7 denotes the associated dual metric on
the cotangent bundle.

- MM, TM ĂMM and GHM Ă TM denote respectively the sets of smooth Lorentzian metrics,
time-oriented Lorentzian metrics and globally hyperbolic metrics on M;

- J˘pAq and I˘pAq are respectively the causal and chronological future/past of the set A;

- V g˘
p are the the future/past lightcones w.r.t the metric g at the point p P M;

- g ĺ g1 denotes that g, g1 P MM and the open light cone V g
p of g is a subset of the open

lightcone V g1
p of g1 at every point p P M;

- g » g1 denotes that g and g1 are paracausally related (cf. Definition 1.3.1);

- We denote by E a general K-vector bundle over a manifold M with finite rank N ;

- We denote by ΓcpEq,ΓpcpEq,ΓfcpEq,ΓtcpEq,ΓscpEq resp. ΓpEq the spaces of compactly sup-
ported, past compactly supported, future compactly supported, timelike compactly sup-
ported, spacelike compactly supported resp. smooth sections of a vector bundle E.

- Tensor fields and sections of K-vector bundles on M are always supposed to be smooth.

- E b E1 denotes the tensor product of the two K-vector bundles over M. This K-vector
bundle has basis M Q p and fibers given by the pointwise tensor product Ep b E1p of the
fibers of the two bundles.

- E b E1 denotes the external tensor product of the two K-vector bundles over M. This
K-vector bundle has basis MˆM Q pp, qq and fibers given by the pointwise tensor product
Ep b E1q of the fibers of the two bundles.

- Referring to ΓpEbE1q, if f P E and f1 P E1, then fb f1 P ΓpEbE1q denotes the section defined
by pfb f1qpp, qq :“ fppq b f1pqq where the tensor product on the right-hand side is the one of
the fibers and pp, qq P MˆM.

- 7 : ΓpT˚Mq Ñ ΓpTMq and its inverse 5 : ΓpTMq Ñ ΓpT˚Mq denote the standard (fiberwise)
musical isomorphisms (cf. Section 1.2.1) referred to a given metric g on M.

- Let X be a topological vector space, we indicate by X 1 its topological dual. For example
Γ1cpEq represents the space of distributions acting on compactly supported test sections of
the bundle E, and shall not be confused with the space of compactly supported distributions.
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Chapter 1

Paracausal deformations of globally
hyperbolic spacetimes

The aim of this chapter is twofold. On the one hand we shall investigate the properties of convex
interpolation of Lorentzian metrics and, as a natural consequence, we introduce and discuss
paracausal deformations of globally hyperbolic metrics.
As we shall see, these mathematical tools rely on a non strict preorder relation on the set of
Lorentzian metrics on a given manifold, very similar to the strict preorder used by Geroch to
define the interval topology with respect to which the globally hyperbolic metrics are stable, [65].
The equivalence relation we define later is quite interesting in its own right and will be exploited in
the second part of this work to construct Møller operators and Møller ˚-isomorphisms of algebras
of quantum fields and, in the end, to construct Hadamard states for different theories on general
globally hyperbolic spacetimes. We refer to [4,9,92] for standard results in Lorentzian geometry.
To the authors’ knowledge this equivalence relation represents a complete novelty on the subject.
Though the effective definition of paracausal equivalence relation on the set of globally hyperbolic
metrics on M (Definition 1.3.1) is effective for the issues regarding Møller maps we will discuss
later, a complete characterization of it can be stated as follows in terms of elementary Lorentzian
geometry:

Theorem 1 (Theorem 1.3.7). The globally hyperbolic metric g on M is paracausally related to the
globally hyperbolic metric g1 on M if and only if there is a finite sequence g0 :“ g, g1, . . . , gN :“ g1

of globally hyperbolic metrics on M such that, at each step gk, gk`1, the future open light cones of

these metrics have non-empty intersection V
g`k
x X V

gk`1`
x ‰ H at every point x P M.

Despite the class of paracausally related metrics on a given manifold M is very large, for example
we will see that any class admits ultrastatic representatives, some elementary counterexamples
of topological nature can be constructed and some of them are not trivial. This fact suggests
that the paracausal classes may be related to topological properties of the Cauchy surfaces. Such
a problem, possible future research lines and other counterexamples of differential topological
nature will be sketched in section 1.4 concluding the chapter.

The chapter is organized as follows. Section 1.1 contains a recap on the relevant notions
of Lorentzian geometry we exploit throughout, in section 1.2 we introduce some results about
convex interpolations of globally hyperbolic metrics which are preparatory to section 1.3, where
we present the definition of paracausal deformation and we give all the results we obtained about
this equivalence relation. In section 1.4 some possible future research lines are discussed.

1.1 Lorentzian geometry

In this section we review the basic tools of Lorentzian geometry and causality theory, which are of
fundamental importance in the mathematical formulation of general relativity and, consequently,
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in the formulation of quantum field theory in curved spacetime, with focus on the geometry of
the so called globally hyperbolic spacetimes, i.e spacetimes where the hyperbolic PDEs describing
the propagation of classical fields have a well posed Cauchy problem. We will therefore fix all the
geometric setup of the thesis and then proceed in the rest of the chapter with the discussion of
the original contribution given to such a field.

1.1.1 Lorentzian manifolds and causality

Let M be a smooth connected paracompact Hausdorff manifold and assume that M is noncompact
or its Euler characteristic vanishes. Under these assumptions, M admits a Lorentzian metric and
we denote the space of Lorentzian metrics on M by MM (see e.g. [9]). Once that a Lorentzian
metric g is assigned to a smooth manifold M Q p, we can classify the vectors vp P TpM into three
different types:

• spacelike i.e. gpvp, vpq ą 0 or vp “ 0 ,

• timelike i.e. gpvp, vpq ă 0,

• lightlike (also called null) i.e. gpvp, vpq “ 0 and vp ‰ 0.

As usual, we denote as causal vectors any timelike or lightlike vector. Piecewise smooth
curves are classified analogously according to the nature of their tangent vectors.

Remark 1.1.1. Notice that, with our convention, the tangent vector 0 is spacelike to prevent
constant curves to fall in the class of causal curves.

Embedded codimension-1 submanifolds Σ Ă M of a Lorentzian manifold pM, gq, also called
hypersurfaces, are classified according to their normal covector n: They are spacelike, time-
like, null if respectively n is timelike, spacelike, null everywhere in Σ. Notice that an embedded
n ´ 1 submanifold Σ Ă M is spacelike if and only if its tangent vectors are spacelike in pM, gq.
The restriction of g to the tangent vectors to a spacelike hypersurface Σ defines a Riemannian
metric on it.

Remark 1.1.2. In the rest of this chapter we are going to deal with different metric tensors
associated to the same manifold M. We remark that the normal n is metric dependent, so it will
be better to define spacelike surfaces with respect to a metric tensor g PMM according to their
tangent space which is intrinsic and metric independent.

Keeping in mind this classification, the open lightcone of pM, gq at p P M is the set

V g
p :“ tvp P TpM | gpvp, vpq ă 0u .

It is not difficult to see that it is an open convex cone made of two disjoint open convex halves
defining the two connected components of V g

p .
The notion of time orientation is defined as in [4]: A smooth Lorentzian manifold pM, gq is

said to be time-orientable if there is a continuous timelike vector field X on M.
If pM, gq is time orientable and a preferred continuous timelike vector field X has been chosen

as above, the future lightcone V g`
p Ă V g

p at p P M is the connected component of V g
p containing

Xp. The other connected component V g´
p is the past lightcone at p. V g`

p and V g´
p respectively

include the future-directed and past-directed timelike vectors at p. The terminology extends
to the causal (lightlike) vectors which belong to the closures of the said halves. A classification
of (piecewise smooth) causal curves into past-directed and future-directed curves (see [4]) arises
according to their tangent vectors.

If pM, gq is time orientable, the continuous choice of one of the two halves of V g
p for all p P M

through a continuous timelike vector field as above defines a time orientation of pM, gq. pM, gq
with this choice of preferred halves of cones is said to be time oriented. If pM, gq is connected
and time orientable, then it admits exactly two time orientations.
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Notation 1.1.3. In the following, we denote with MM, the set of smooth Lorentzian metrics on
the smooth manifold M and with TM the set of time-oriented Lorentzian metrics on M.

We have an elementary fact whose proof is immediate if working in a g-orthonormal basis.

Proposition 1.1.4. Assume that g P TM, p P M, and Yp, Zp P V
g
p . Then

(i) Yp P V
g¯
p and Zp P V

g˘
p if and only if gpYp, Zpq ą 0,

(ii) Yp, Zp P V
g˘
p if and only if gpYp, Zpq ă 0.

If g PMM, the associated standard (fiberwise) musical isomorphism 7 : ΓpT˚Mq Ñ ΓpTMq
is pointwise defined by

gp7ωp, vpq “ ωppvpq for every v P ΓpTMq and ω P ΓpT˚Mq and p P M,

and we denote the (fiberwise) inverse musical isomorphism by 5 : ΓpTMq Ñ ΓpT˚Mq. The
notation g7 P ΓpTMb TMq indicates the Lorentzian metric induced on 1-forms from 7 as

g7pω1p, ω2pq “ gp7ω1p, 7ω2pq for every ω1, ω2 P ΓpT˚Mq and p P M.

Once that a Lorentzian metric is introduced on 1-forms, we can distinguish three different types
of co-vectors: ωp P T˚pM is spacelike, timelike, null and causal if, respectively, 7ωp P TpM
is spacelike, timelike, null or causal. With the definition, we can define the open lightcone of
1-forms at p P M analogously to the case of vectors

V g7

p :“ tωp P T
˚
pM | g7pωp, ωpq ă 0u .

Analogously, if g P TM, the future and past lightcones of 1-forms at p P M are defined as

V g7˘
p :“ tωp P T

˚
pM | 7ωp P V

g˘
p u .

1.1.2 Spacetimes and causality

We are ready to give the precise definition of spacetime we will use throughout this work.

Definition 1.1.5. A spacetime is a pn ` 1q-dimensional (n ě 1), connected, oriented, time-
oriented, smooth Lorentzian manifold pM, gq

Remark 1.1.6. Sometimes it not assumed that M is orientable and oriented, but we do adopt this
hypothesis here since later on we will need to integrate over the manifold, see chapter 16 of [80].
However none of the results discussed in this chapter depends on the choice of an orientation.
Conversely, the time orientation is crucial. So, when we write that pM, gq is a spacetime, we also
mean that a time-orientation of pM, gq as Lorentzian manifold has been chosen. In this case, with
a little misuse of language, we speak of the time-orientation of the metric g.

According to the amount of time-like symmetry, three important nested subclasses of space-
times can be defined:

• stationary if it admits a globally defined time-like smooth Killing vector field K;

• static if it is stationary and the Killing vector field is also irrotational;

• ultrastatic if it is static and gpK,Kq “ ´1.
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Let now A Ă M for a spacetime pM, gq. The causal sets J˘pAq and the chronological sets
I˘pAq are defined according to [4]: J˘pAq is made of the points of A itself and all p P M such
that there is a smooth future-directed/past-directed causal curve γ : ra, bs Ñ M with γpaq P A
and γpbq “ p. Notice that J˘pAq Ą A by definition, while I˘pAq is made of the points p PM such
that there is a smooth future-directed/past-directed timelike curve γ : ra, bs Ñ M with γpaq P A
and γpbq “ p. As usual we define JpAq :“ J`pAq Y J´pAq.

A closed set A Ă M, with pM, gq time-oriented, is past compact if J´ppq X A is compact
for every p P M. The definition of future compact is analogous, just replacing J´ for J`. A
closet set A Ă M is called space compact or spatially compact if there exists a compact set
K Ă M such that A Ă JpKq. Sections of a bundle are called past/future/space compact if
their support is, respectively, past, future or space compact.

Let us recall that, on a spacetime pM, gq, a smooth causal curve γ : I Ñ M with I Ă R
open interval is said to be future inextendible [92] if there is no continuous curve γ1 : J Ñ M,
defined on an open interval J Ă R, such that supJ ą sup I and γ1|I “ γ. A past inextendible
causal curve is defined analogously. A causal curve is said to be inextendible if it is both past
and future inextendible.

We eventually define the future Cauchy development D`pAq of A to be the set of points
p P M such that every past inextendible future-directed smooth causal curve passing through p
meets A in the past. Similarly, the past Cauchy development D´pAq is the set of points p P M
such that every future inextendible future-directed smooth causal curve passing through p meets
A in the future.

On a generic Lorentzian manifold, the Cauchy problem for the differential operators we will
deal with is in general ill-posed: This can be a consequence of the presence of closed timelike
curves or the presence of naked singularities. Therefore, it is convenient to restrict ourselves to
the class of globally hyperbolic spacetimes.

Definition 1.1.7. A globally hyperbolic spacetime is a spacetime pM, gq such that

(i) there are no closed causal curves;

(ii) for all points p, q P M, J`ppq X J´pqq is compact.

Notation 1.1.8. If M is a smooth connected pn ` 1q-manifold, GHM Ă TM denotes the class of
Lorentzian metrics g such that pM, gq is globally hyperbolic for a time-orientation. Any g P GHM

is called globally hyperbolic metric on M.

Remark 1.1.9. The first condition in 1.1.7 is also known as causality. We remind the reader
that this definition of global hyperbolicity is recent, see [17] for the proof of the equivalence of
the two. In the standard definition, see for example [9], the first condition is replaced by the so
called strong causality. It requires that at all points p P M and for all neighbourhoods Up Ă M
there exists a smaller neighbourhood U 1p Ă U which is causally convex, that is such that any
causal curve with endpoints in U 1p does not intersect the complement of U 1p in a disconnected set.

However globally hyperbolic spacetimes can be characterized by more physically intuitive and
practically useful conditions.
In his seminal paper [65], Geroch established the equivalence for a Lorentzian manifold being
globally hyperbolic and the existence of a Cauchy hypersurface.

Definition 1.1.10. A subset Σ Ă M of a spacetime pM, gq is called Cauchy hypersurface if it
intersects exactly once any inextendible future-directed smooth timelike curve.

In particular, a Cauchy hypersurface is achronal: it intersects at most once every future-
directed smooth timelike curve.

Theorem 1.1.11 ( [65, Theorem 11]). A spacetime pM, gq is globally hyperbolic if and only if it
contains a Cauchy hypersurface.

7



It turns out that Cauchy hypersurfaces of pM, gq are closed co-dimension 1 topological sub-
manifolds of M homeomorphic one to each other. As a byproduct of Geroch’s theorem, it follows
that the globally hyperbolic manifold pM, gq admits a continuous foliation with Cauchy hyper-
surfaces Σ as leaves, namely M is homeomorphic to Rˆ Σ. The proof of these facts was carried
out by finding a Cauchy time function, i.e., a continuous function t : M Ñ R which is strictly
increasing on any future-directed timelike curve and such that its level sets t´1pt0q, t0 P R, are
Cauchy hypersurfaces homeomorphic to Σ. Geroch’s splitting appears at a topological level, and
the possibility to smooth them remained as open folk questions for many years. Only recently,
in [15] Bernal and Sánchez “smoothened” the result of Geroch by introducing the notion of
Cauchy temporal function.

Theorem 1.1.12 ( [15, Theorems 1.1 and 1.2], [16, Theorem 1.2], ). For every globally hyperbolic
spacetime pM, gq there is an isometry ψ : MÑ RˆΣ, where the latter spacetime is equipped with
the smooth Lorentzian metric

´ β2dτ b dτ ‘ hτ , (1.1.1)

and the time-orientation induced from pM, gq through ψ. Above τ is the canonical projection

Rˆ Σ Q pt, pq ÞÑ t P R

and the following facts are valid:

(i) ∇τ :“ 7dτ is past-directed timelike,

(ii) β : Rˆ Σ Ñ p0,`8q (called lapse function) is a smooth function,

(iii) ht (called spatial metric) is a smooth Riemannian metric on each leaf ttu ˆ Σ, t P R,

(iv) every embedded co-dimension-1 submanifold tt0u ˆ Σ “ τ´1pt0q is a spacelike (smooth)
Cauchy hypersurface.

Finally, if S Ă M is a spacelike Cauchy hypersurface of pM, gq, then we can define an isometry
ψ : MÑ Rˆ S, and τ , β, h as above in order that S “ ψ´1pt0u ˆ Sq.

Remarks 1.1.13.

(1) As we will see later global hyperbolicity is a sufficient condition to guarantee such a smooth
orthogonal splitting, but not a necessary one.

(2) A globally hyperbolic ultrastatic spacetime is always diffeomorphic to RˆΣ and isometric
to a spacetime with metric of the form:

g “ ´dtb dt‘ h,

where h is a Riemannian metric on Σ and dt “ K5.

The characterization given by Bernal and Sánchez immediately allows us to give some relevant
definitions.

Definition 1.1.14. Given a spacetime pM, gq, a smooth surjective function t : M Ñ R with dt
past-directed timelike is

(a) a Cauchy temporal function if

(i) pM, gq is isometric, through some isometry ψ : MÑ Rˆ Σ, to a spacetime pRˆ Σ, hq
with the time-orientation induced from pM, gq,

(ii) t “ τ ˝ ψ (where τ : Rˆ Σ Q pt, pq ÞÑ t P R),

(iii) h has the form (1.1.1) as in Theorem 1.1.12 satisfying (i)-(iv);
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(b) a smooth Cauchy time function if

(i) pM, gq is isometric, through some isometry ψ : MÑ Rˆ Σ, to a spacetime pRˆ Σ, hq
with the time-orientation induced from pM, gq,

(ii) t “ τ ˝ ψ (where τ : Rˆ Σ Q pt, pq ÞÑ t P R),

(iii) every Σt0 :“ t´1pt0q “ ψ´1ptt0u ˆ Σq is a spacelike Cauchy hypersurface of pM, gq for
t0 P R.

Remarks 1.1.15.

(1) An intrinsic way to write (1.1.1) for a Cauchy temporal function t without making use to
the splitting diffeomorphism ψ is, for p P Σs “ t´1ppq

gppX,Y q “
dtb dtpX,Y q

g7pdt, dtq
` hspπt,gX,πt,gY q , X, Y P TpM “ Lp7gdtq ‘ Σs

where

TpM Q X ÞÑ πt,gX :“ X ´
xdt,Xy 7gdt

g7pdt, dtq
P TpΣs

defines the orthogonal projector onto TpΣs associated to t and g, using 7gdt as normal
(contravariant) vector to Σs.

(2) If an either smooth Cauchy time or temporal function t exists for pM, gq, the level sets
Σt0 :“ t´1pt0q are smooth spacelike Cauchy surfaces diffeomorphic to each other and pM, gq
is globally hyperbolic. Theorem 1.1.12 proves that Cauchy temporal functions – thus also
smooth Cauchy time functions – exist for every globally hyperbolic spacetime. Furthermore,
every smooth spacelike Cauchy hypersurface can be embedded in the foliation induced by
a suitable Cauchy temporal function.

(3) A Cauchy temporal function is always a Cauchy time function, but even a smooth time
function may not be a temporal one, since the manifold may be foliated in level sets of
such a function, which are spacelike and Cauchy, but the metric tensor could not be in the
orthogonal form.

(4) A Cauchy hypersurface may meet a causal curve in more than a point (say, a segment),
but this is not the case for the spacelike Cauchy hypersurfaces since they are acausal:
they intersect at most once every future-directed smooth causal curve, as easily arises from
Theorem 1.1.12.

On a globally hyperbolic spacetime the past/future/space compact sets can be characterized
in a very useful way by exploiting the notion of Cauchy surface. in fact:

Proposition 1.1.16. Let pM, gq be a globally hyperbolic spacetime. Then we have that:

• A is past compact if and only if it is closed and there exists a Cauchy surface Σ Ă M such
that A Ă J`pΣq;

• A is future compact if and only if it is closed and there exists a Cauchy surface Σ Ă M such
that A Ă J´pΣq.

• A is space compact if and only if it is closed and for any Cauchy surface Σ Ă M A X Σ is
compact.

Examples 1.1.17. We shall list a few globally hyperbolic spacetimes which appear commonly
in general relativity and quantum field theory over curved backgrounds. As one can infer per
direct inspection, they are all in the orthogonal form of Theorem 1.1.12:
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• the prototype example is Minkowski spacetime which isometric to Rn`1 with Cartesian
coordinates pt, x1, . . . , xnq and equipped with the Minkowski metric

´dtb dt`
n
ÿ

i“1

dxi b dxi ;

• de Sitter spacetime, that is the maximally symmetric solution of Einstein’s equations with
a positive cosmological constant Λ. As a manifold it is topologically Rˆ S3 and the metric
reads:

g “ ´dt2 `
3

Λ
cosh2

˜

c

Λ

3
t

¸

rdχ2 ` sin2 χpdθ2 ` sin2 θdϕ2qs

where t P R while pχ, θ, ϕq are the standard coordinates on S3;

• the Friedmann-Robertson-Walker (FRW) cosmological spacetimes, i.e., an isotropic and
homogeneous manifold which is topologically Rˆ Σ and

g “ ´dt2 ` aptq

„

dr2

1´ kr2
` r2pdθ2 ` sin2 θdϕ2q



where k can be either 0 or ˘1 and function aptq is smooth and positive valued;

• The external Schwarzschild spacetime, i.e., a stationary spherically symmetric solution of
vacuum Einstein’s equations which is topologically R2 ˆ S2 with metric

g “ ´

ˆ

1´
2M

r

˙

dt2 `

ˆ

1´
2M

r

˙´1

dr2 ` r2pdθ2 ` sin2 θdϕ2q .

Here M ą 0 is interpreted as the mass of the spherically symmetric source (a black hole,
a star,...) and the domain of definition of the coordinates is t P R, r P p2M,`8q and
pθ, ϕq P S2;

• finally, given any n-dimensional complete Riemannian manifold pΣ, hq, an open interval
I Ď R and a smooth function f : I Ñ p0,`8q, the Lorentzian warped product defined
topologically by I ˆΣ with metric g “ ´dt2` fptqh is a globally hyperbolic spacetime, [9].

• A static spacetime R ˆ Σ with metric tensor g “ ´βdt2 ` h where hzβ is a complete
Riemannian metric on the slice is globally hyperbolic, [96]. In particular any ultrastatic
spacetime with complete slices is globally hyperbolic.

A non-trivial result about global hyperbolicity of a spacetime is the following lemma, which
we will use a lot in the next sections. Essentially, it says that we can open-up or close-down the
cones of any globally hyperbolic metric, uniformly and smoothly all over the manifold, without
spoiling global hyperbolicity.

Lemma 1.1.18. Let pM, gq and a globally hyperbolic spacetime, t : M Ñ R a Cauchy temporal
function according to Definition 1.1.14, ψ : MÑ Rˆ Σ a diffeomorphism mapping isometrically
pM, gq to pRˆ Σ,´β2dτ b dτ ‘ hτ q and, moreover, let pM, g1q be a time oriented spacetime with
time orientation such that dt is past directed. If ψ maps pM, g1q isometrically to pRˆΣ, gαq with

gα“ ´ dτ b dτ ‘ α
2pτqβ´2hτ

and α P C8pR, p0,8qq, then pM, g1q is globally hyperbolic.
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Proof. We will henceforth omit to write the isometry ψ and consider, without loss of generality,
M “ R ˆ Σ, t “ τ , g “ ´β2dt b dt ‘ ht and gα “ ´dt b dt ‘ α2ptqβ´2ht. We proceed to prove
the global hyperbolicity of gα implying global hyperbolicity of g1.
We want to prove that Σ, viewed as the t “ 0 slice of the temporal function t, is a spacelike Cauchy
hypersurface for gα. Evidently Σ is a spacelike hypersurface for gα so that it suffices to prove that
it meets exactly once every inextendible future directed gα-timelike curve γ : I Q s ÞÑ γpsq P M.
Since dt

ds “ gαpBt, 9γq ă 0 by hypothesis, that γ can be re-parametrized by t itself as γ1 : J Q
t ÞÑ γ1ptq P M for some open interval J Ă R. There must exist a finite a ą 0 such that
p´a, aq X J ‰ H. Since γ1|p´a,aqXJ is inextendible in the spacetime p´a, aq ˆ Σ (otherwise it
would not be inextendible in the whole spacetime), to conclude it is sufficient to prove that
p´a, aq ˆ Σ equipped with the metric gα and the time-orientation induced by dt admits Σ as a
Cauchy hypersurface. Indeed, in that case, γ1 must meet Σ exactly once in p´a, aqˆΣ and thus Σ
would be a Cauchy hypersurface for pRˆΣ, gαq. Moreover, notice that it cannot meet Σ “ t´1p0q
again outside p´a, aqˆΣ because γ1 is parametrized by t. Global hyperbolicity of pp´a, aqˆΣ, gαq
can be proved as follows. If a ą 0, there exists a positive constant α0 such that αptq ě α0 ą 0 for
all t P r´a, as. We therefore have gα ĺ gα0 on p´a, aqˆΣ. In particular, with the time-orientation
declared in the hypothesis, every future-directed causal tangent vector for gα is a future-directed
causal vector for gα0 . Therefore, according to (2) in Lemma 1.2.3, it suffices to show that gα0

is globally hyperbolic on p´a, aq ˆ Σ and that Σ is a Cauchy hypersurface for gα0 . To this end,
consider an inextendible future-directed timelike curve γ “ pγ0, γ̂q in pp´a, aq ˆ Σ, gα0q. The
curve rγ :“ pα´1

0 γ0, γ̂q is future directed timelike w.r.t. g and still inextendible , therefore it meets
Σ “ t´1p0q exactly once, but rγ and γ intersect in γ0 “ t “ 0. Thus γ intersects Σ once. This
shows gα0 and therefore gα to be globally hyperbolic on p´a, aq ˆ Σ.

1.2 Convex interpolation of Lorentzian metrics

We are now interested in the structure of the set MM of Lorentzian metrics on a given manifold
M. In particular, we are interested in the following problem:

Are there some natural operations which can be used to produce (globally hyperbolic) Lorentzian
metrics starting from (globally hyperbolic) Lorentzian metrics?

Given two globally hyperbolic metrics g, g1, a linear combination of them is in general not a
Lorentzian metric and, when it is, it fails to be globally hyperbolic in general. However, as shown
in [19, Appendix B], if g and g1 coincide outside a compact set, then there exists a sequence of 5
globally hyperbolic metrics starting with g and ending with g1, such that for each neighbouring
pair all pointwise convex combinations are globally hyperbolic metrics. Therefore, this section
aims to provide sufficient conditions for some kind of linear combination of globally hyperbolic
metrics to be a globally hyperbolic Lorentzian metric. We shall see that convex combinations are
an interesting case of study under suitable conditions. We point out the recent work [97] where, in
addition to several related issues, the convex structure of the space of globally hyperbolic metrics
on a given manifold is addressed with a number of results. In particular we had claimed that the
set of globally hyperbolic metrics sharing a Cauchy temporal function was convex, while in that
paper a counterexample is found.
Even if such a problem is of mathematical interest on its own, it was posed because of the problem
of constructing Møller operators for symmetric hyperbolic systems [90], and normally hyperbolic
operators.

1.2.1 A preorder relation of Lorentzian metrics

Definition 1.2.1. Let g, g1 PMM and denote

g ĺ g1 iff V g
p Ă V g1

p for all p P M.
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We say that g, g1 PMM are ĺ-comparable if either g ĺ g1 or g1 ĺ g (see e.g. Figure 1.1).

Figure 1.1: Lorentzian metrics ĺ-comparable

Remarks 1.2.2.

(1) Let us remark that the definition above can be generalized by considering the so-called
causal diffeomorphisms, namely a time-orientation preserving diffeomorphism ϕ : M Ñ N

such that the open light cone V g
p of g is included in the open light cone V ϕ˚g1

p of ϕ˚g1 for
every p P M. For further details and properties we refer to [48,52,53].

(2) The preorder relation introduce in Definition 1.2.1 has a corresponding for the associated
metrics in the cotangent space: If g, g1 PMM,

g7 ĺ g17 iff V g7
p Ă V g17

p for all p P M.

We observe that if g ĺ g1 for g, g1 P TM and the two metrics share the same time-orientation –
i.e., there is a continuous vector field on M which is timelike for both metrics and defines the same

time-orientation for both of them – then V g`
p Ă V g1`

p and V g´
p Ă V g1´

p for every p P M. Similar
inclusions hold when considering the closures of the considered half cones. As a consequence, we
have both inclusions with obvious notations

Ig˘pAq Ă Ig
1

˘ pAq , Jg˘pAq Ă Jg
1

˘ pAq for every A Ă M.

The relation ĺ in MM has several consequences whose most elementary ones are established
in the following proposition.

Lemma 1.2.3. Let M be a smooth pn` 1q-dimensional manifold and g, g1 PMM. The following
facts are valid for the preordering relation ĺ in MM.

(1) For p P M and v P TpM, if g ĺ g1 then

(i) gpv, vq “ 0 implies g1pv, vq ď 0.

(ii) g1pv, vq ą 0 implies gpv, vq ą 0.

(iii) g1pv, vq “ 0 implies gpv, vq ě 0.

(2) If g ĺ g1 with g P TM and g1 P GHM, then pM, gq is globally hyperbolic as well when, e.g.,
equipped with the same orientation and time-orientation of pM, g1q and
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(i) a spacelike Cauchy hypersurface for pM, g1q is also a spacelike Cauchy hypersurface for
pM, gq;

(ii) a smooth Cauchy time function for pM, g1q is also a smooth Cauchy time function for
pM, gq;

(iii) a closed set A Ă M is past/future compact in pM, gq if it is respectively past/future
compact in pM, g1q.

(3) g ĺ g1 if and only if g17 ĺ g7.

(4) If g, g1 P TM, g ĺ g1 and p P M, then V g`
p Ă V g1`

p if and only if V g17`
p Ă V g7`

p .

Figure 1.2: Inclusion-of-cones relations

Proof. (1) is trivial. Let us pass to (2). Notice that if g ĺ g1, then a smooth g-timelike vector
of M is also a smooth g1-timelike vector of M, so pM, gq receives a time-orientation from a time-
orientation of pM, g1q. A spacelike Cauchy surface Σ of pM, g1q (it exists in view of Theorem 1.1.12)
is a smooth spacelike hypersurface of pM, gq since the tangent vectors to Σ are spacelike for g1

and thus for g because g ĺ g1. Every inextendible timelike curve γ for pM, gq is a inextendible
timelike curve for pM, g1q, since (a) g ĺ g1 and (b) the notion of inextendibility is just topological.
Hence γ meets Σ exactly once. Therefore Σ is a Cauchy surface of pM, gq as well, which is globally
hyperbolic for Theorem 1.1.11. (i) has been proved above. Let us prove (ii). If t : M Ñ R is a
smooth Cauchy time function for g1, then its level sets are smooth spacelike Cauchy surfaces for
pM, g1q and g17pdt, q is timelike (and past-directed). As seen above, the level sets of t are therefore
also spacelike Cauchy surfaces for pM, gq. Moreover, these submanifolds are spacelike also for g
in view of (1)(ii). This is equivalent to saying that their normal vector g7pdt, q is timelike (and
past-directed if choosing the same time-orientation as for g1). All that proves that t is also a
smooth Cauchy time function for pM, gq. The proof of (iii) easily arises from (i).
(3) We take advantage of the following elementary fact.

Lemma 1.2.4. Let g : V ˆV Ñ R, with dimV “ n`1 be a Lorentzian scalar product. ξ P V ˚zt0u
is timelike if and only if there is a set of n linearly-independent elements e1, . . . , en P V whose
span is made of spacelike vectors, such that ξpekq “ 0 for k “ 1, . . . , n.

Proof. If ξ P V ˚ is timelike, 7ξ P V is timelike as well. Completing e0 :“ 7ξ{
a

´gp7ξ, 7ξq to
a pseudo orthonormal basis e0, e1, . . . , en of V , the vectors e1, . . . , en satisfy trivially the thesis.
Suppose that ξ P V ˚zt0u admits a set of vectors e1, . . . , en P V whose span S is made of spacelike
vectors and such that ξpekq “ 0 for k “ 1, . . . , n. Extract an orthonormal basis f1, . . . , fn of S out
of e1, . . . , en, and complete it to a pseudo orthonormal basis f0, f1, . . . fn of V . It holds 7ξ “ ckfk
and gp7ξ, fkq “

řn
h“1 b

hehpξq “ 0 for k “ 1, 2, . . . , n, so that 7ξ “ c0f0 which is timelike. c0 “ 0
is not permitted since ξ ‰ 0. This concludes our claim. l

13



Evidently, by duality, v P V zt0u is timelike if and only if there is a set of n linearly-independent
forms ω1, . . . , ωn P V

˚ whose span is spacelike and such that ωkpvq “ 0 for k “ 1, . . . , n.

Let us pass to the proof of (3). If g ĺ g1, let ξ P V g17
p , then there is a set of n linearly-independent

vectors e1, . . . , en P TpM whose span is g1-spacelike and such that ξpekq “ 0 for k “ 1, . . . , n.
These vectors span a g-spacelike subspace because g ĺ g1 and (1)(ii) is valid. Therefore ξ P V g˚

p ,
i.e., g ĺ g1 implies g17 ĺ g7. The same argument stated for vectors instead of forms proves that
g17 ĺ g7 implies g ĺ g1.
(4) Fix a basis of TxM, denote by rX P Rn`1 the ordered set of components of X P TxM with
respect to that basis and by G (resp. G1) the invertible symmetric matrix representing g (resp.

g1) with respect to that basis. Let us assume V g`
x Ă V g1`

x and we prove that V g17`
x Ă V g7`

x . If

X P V g`
x Ă V g1`

x , then 5gX P V g7`
x and 5g1X P V g17`

x Ă V g7
x , where the last inclusion is due to

(3). From that we have that 5g1X P V g17`
x also satisfies 5g1X P V g7`

x if g7p5gX, 5g1Xq ă 0. This
condition is actually satisfied because

g7p5gX, 5g1Xq “ pG rXqtG´1G1 rX “ rXtGtG´1G1 rX “ rXtGG´1G1 rX “ rXtG1 rX “ g1pX,Xq ă 0

and Proposition 1.1.4 holds. We have so far established that V g17`
x XV g7`

x ‰ H. Since V g17`
x Ă V g7

x

may intersect only one of V g7`
x and V g7´

x (otherwise V g17
x would have more than two connected

components), it must be V g17`
x Ă V g7`

x . The fact that V g17`
x Ă V g7`

x implies V g`
x Ă V g1`

x can be
proved with an analogous argument.

Using the lemma above, we can immediately conclude that (pointwise) conformally equivalent
metric tensors are obviously in relation.

Proposition 1.2.5. If g PMM and µ : MÑ p0,`8q is smooth, then

(a) µg and µ´1g are Lorentzian,

(b) µg ĺ g ĺ µg,

(c) µ´1g ĺ g ĺ µ´1g.

(d) µg and µ´1g are globally hyperbolic if g is, and the spacelike Cauchy hypersurfaces of g are
also spacelike Cauchy hypersurfaces for µg and µ´1g.

Proof. Properties (a)-(c) follow easily from the definitions and (d) is a direct consequence of
(a),(b),(c) and Proposition 1.2.3 point (2).

Remark 1.2.6. Since any two metric tensors having identical lightcones are (pointwise) confor-
mally equivalent our preorder descends to an actual partial ordering on conformal classes.

1.2.2 Properties of convex combinations of Lorentzian metrics

A more interesting set of properties arises when focusing on smooth convex combinations of
Lorentzian metrics. This is the first main result of this section.

Theorem 1.2.7. Let M be a smooth pn ` 1q-dimensional manifold, g, g1 PMM, and consider a
smooth function χ : MÑ r0, 1s. If g ĺ g1, the following facts are valid

(1) p1´ χqg ` χg1 is a metric of Lorentzian type;

(2) g ĺ p1´ χqg ` χg1 ĺ g1;

(3) if g7χ :“ p1´ χqg7 ` χg17, then g7χ :“ pgχq
7 for a (unique) metric gχ of Lorentzian type;

(4) g ĺ gχ ĺ g1;

14



(5) If g1 is globally hyperbolic and g time-orientable, then p1 ´ χqg ` χg1 and gχ are globally
hyperbolic.

Proof. (1) It is sufficient to prove the thesis point by point. Let q, q1 be quadratic forms in a real
n` 1 dimensional linear space V of signature p´,`, . . . ,`q such that q1pxq ď 0 implies qpxq ď 0.
We prove that the strict convex combination q2 “ cq ` p1 ´ cqq1 for c P p0, 1q has signature
p´,`, . . . ,`q. Indeed, there is a 1-dimensional subspace L on which q1pxq ă 0 if x ‰ 0. So
qpxq ď 0 on L and hence q2pxq ă 0 on L for x ‰ 0. There is also a n-dimensional subspace H on
which qpxq ą 0 if x ‰ 0. Then q1pxq ą 0 on H for x ‰ 0 and hence q2pxq ą 0 on H if x ‰ 0. By
construction, L XH “ t0u necessarily, so that V “ L ‘H. The bilinear form Q2 : V ˆ V Ñ R
associated to q2, in a basis of V made of 0 ‰ e0 P L and tekuk“1,...,n P H with Q2pek, ehq “ δkh, is

represented by the pn`1qˆpn`1q matrix

„

q2pe0q ct

c I



. Since the determinant is q2pe0q´c
tc ă 0

and n eigenvalues are `1, its signature is p´,`, . . . ,`q.
(2) Suppose that gpv, vq ă 0, then g1pv, vq ă 0 because g ĺ g1 and thus p1 ´ χqgpv, vq `

χg1pv, vq ă 0 because χ, 1 ´ χ ě 0. We have obtained that g ĺ p1 ´ χqg ` χg1. Let us pass
to the remaining inequality. If p1 ´ χqgpv, vq ` χg1pv, vq ă 0 then g1pv, vq ă 0 or gpv, vq ă 0,
in this second case also g1pv, vq ă 0 because g ĺ g1. In both cases g1pv, vq ă 0. Summing up,
p1´ χqg ` χg1 ĺ g1, concluding the proof of (2).
(3) g7 and g17 are Lorentzian metric on T˚M and g17 ĺ g7 due to Lemma 1.2.3, we can recast the
same argument used to establish (1) with trivial re-arrangements, obtaining that g7χ is Lorentzian

and g17 ĺ g7χ “ p1´ χ1qg17 ` χ1g7 ĺ g7 with χ1 :“ 1´ χ. Notice that gχpv, vq :“ g7χp5v, 5vq defines
a Lorentzian metric as well, since it has the same signature of h by construction, and g7 “ h
trivially (and it is the unique metric with this property since 5 is an isomorphism).
(4) It immediately arises from Lemma 1.2.3 by using g17 ĺ g7χ “ p1 ´ χ1qg17 ` χ1g7 ĺ g7 with
χ1 :“ 1´ χ.
(5) A smooth timelike vector field of pM, gq is also timelike for p1´ χqg ` χg1 and gχ for (2) and
(4) respectively. Hence these metrics are time-orientable and the thesis follows from Lemma 1.2.3
point (2).

1.3 Paracausal deformation of Lorentzian metrics

The aim of this section is to provide a new definition that shall encode the idea to deform
a Lorentzian metric equipped with a time-orientation into another Lorentzian metric with a
corresponding time-orientation, taking advantage of a procedure consisting of a finite number of
steps. At each step, the light cones of the final metric gk are related to those of the initial one
gk´1 through an inclusion relation, either gk´1 ĺ gk or gk ĺ gk´1 preserving the time-orientation
at each step, i.e., the future cone of gk, respectively, includes or is included in the future cone of
gk´1.

1.3.1 Paracausal relation

Definition 1.3.1. Consider a pair of globally hyperbolic spacetimes on the same manifold M
with corresponding metrics g, g1 P GHM and corresponding time-orientations. We say that g is
paracausally related to g1 – and we denote it by g » g1 – or equivalently g1 is a paracausal
deformation of g, if there is a finite sequence, said paracausal chain, g0 “ g, g1, . . . , gN “ g1 P
GHM with corresponding time-orientations, such that either

V gk`
p Ă V

gk`1`
p for all p P M

or
V
gk`1`
p Ă V gk`

p for all p P M,

where the choice may depend on k “ 0, . . . , N ´ 1.
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Remarks 1.3.2.

(1) Let us remark that our notion of paracausally deformation implies in particular that gk and
gk`1 are always ĺ-comparable.

(2) Evidently, to be paracausally related is an equivalence relation in GHM.

(3) We stress that paracausal deformations explicitly consider the time-orientations of the used
sequences of globally hyperbolic spacetimes. So, even if we say that “metrics are para-
causally related”, the relation actually involves the metrics equipped with corresponding
time-orientations.

(3) We shall show below a characterization of the paracausal relationship which seems more
natural from a geometric and physical viewpoint. However, the definition above as it stands
is much more directly suitable for the applications to Møller operators we shall introduce
in the second part of this work.

Examples 1.3.3.

(1) There are two elementary cases of paracausally related (globally hyperbolic) metrics g0, g1

on M which are not directly ĺ-comparable:

1. There is a globally hyperbolic metric g on M such that, simultaneously g ĺ g0 and
g ĺ g1 and the future lightcones are correspondingly included.

2. There is a globally hyperbolic metric g on M such that, simultaneously g0 ĺ g and
g1 ĺ g and the future lightcones are correspondingly included.

In both cases, the existence of sequence g0, g, g1 proves that g0 » g1.

(2) Let us give an elementary concrete example of paracausally related metrics. Consider the
following smooth manifold Rn endowed with the Minkowski metrics

η0 “ ´dtb dt`
n
ÿ

i“1

dxi b dxi η1 “ ´dτ b dτ `
n
ÿ

i“1

dyi b dyi

where pt, x1, . . . , xnq and pτ, y1, . . . , ynq are two different systems of Cartesian coordinates on
Rn`1. Here t and τ are Cauchy temporal functions associated to the respective Lorentzian
metric and defining the time-orientation of the two metrics: dt and dτ are assumed to be
past directed for the respective metric. More precisely, we assume that the two coordinate
systems are related by means of a physically non-trivial permutation which interchanges
space and time, as in Figure 1.3, τ “ x1, y1 “ t, and yk “ xk for k ą 1. It is not difficult
to see that even if η0 ‰ η1 evidently, we have η0 » η1: they are paracausally related by the
sequence of metrics η0, g1, g2, η1 whose future cones are given as in Figure 1.4. It is evident
that by further implementing the procedure, it is possible to reverse the time-orientation
of pM,η0q through a sequence of paracausal deformations leaving the final metric identical
to the initial one.

16



Figure 1.3: Future light cones of different Minkowski metrics on Rn`1.

Figure 1.4: Auxiliary future light cones to prove η0 » η1

(3) We pass to present a case where a pair of globally hyperbolic metrics are not paracausally
related. Consider the 2D Minkowski cylinder M obtained by identifying x and x ` L
in R2 with coordinates x, y. The first globally hyperbolic spacetime is pM, η1q where η1 “

´dybdy`dxbdx, taking the identification into account, and with time-orientation defined
by assuming that By is future-directed. The second globally hyperbolic spacetime is pM, η2q

where again η2 “ ´dy b dy ` dxb dx, taking the identification into account, but with the
opposite time-orientation, i.e., defined by ´By. See also Figure 1.5.

Figure 1.5: 2-D Minkowski cylinder.

These two metrics are not paracausally related. Any attempt to use the procedure as in the
previous example to rotate the former into the latter faces the insurmountable obstruction
that one of the auxiliary metrics would have Cauchy hypersurfaces given by the x-constant
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lines. This Lorentzian manifold is not globally hyperbolic because it admits closed temporal
curves as in Figure 1.6.

Figure 1.6: Sequence of metrics where g4 is not globally hyperbolic

Notice that this obstruction does not take place without the identification x ” x` L.

1.3.2 Characterization of paracausal deformation in terms of future cones

There is a natural situation where two globally hyperbolic metrics g and g1 on M are paracausally
related. The generalization of the following result leads to a natural characterization of the
paracausal relationship.

Proposition 1.3.4. Let pM, gq and pM, g1q be globally hyperbolic spacetimes on the same manifold

M. If V g`
x X V g1`

x ‰ H for every x P M, then the metrics g and g1 are paracausally related.

Proof. To prove the assertion it is sufficient to prove the existence of a Lorentzian metric h P TM
such that h ĺ g and h ĺ g1. In this case, h would be globally hyperbolic according to (2) in
Lemma 1.2.3 and the same argument as in (1) Examples 1.3.3 would prove the thesis.

Let us start by proving that a smooth vector field X on M exists such that Xp P V
g`
p X V g1`

p

for all p P M. Let us define the smooth functions

G : TM Q pp, vq ÞÑ gppv, vq P R , GY : TM Q pp, vq ÞÑ gppv, Y q P R ,

where Y is a smooth timelike future oriented vector field for g. By construction (with obvious
notation) YpPMV

g`
p “ G´1p´8, 0qXG´1

Y p´8, 0q Ă TM is an open set. With the same argument,

we have that also YpPMV
g1`
p Ă TM is open. Finally, YpPMV

g`
p XYpPMV

g1`
p “ YpPMV

g`
p XV g1`

p is
therefore open, non-empty by hypothesis, and projects onto the whole M by construction. As a
consequence, given a local trivialization patch TU around p P U , where pU,ψq is a local chart on

M (with dimpMq “ n` 1), the set
´

YpPMV
g`
p X V g1`

p

¯

X TU is diffeomorphic to an open subset

A Ă V ˆ Rn`1 with V :“ ψpUq Ă Rn`1 and π1pAq “ V (π1 : Rn`1 ˆ Rn`1 Ñ Rn`1 being the
standard projection onto the first factor). Working in coordinates, it is then trivially possible

first to pick out a smooth local section XpUq of TU such that X
pUq
q P V g`

q X V g1`
q if q P U . To

conclude, consider a partition of the unity tχiuiPI of M subordinated to a locally finite covering

tUiuiPI of domains of local charts of M and let X
pUiq
p P V g`

p X V g1`
p be constructed as above

when p P Ui for every i P I. The smooth vector field constructed as a locally finite convex linear

combination X :“
ř

iPI χiX
pUiq satisfies Xp P V

g`
p XV g1`

p for every p P M because the cones V g`
q ,

V g1`
q are convex sets in a vector space and thus their intersection is also convex. X is the vector

field we were searching for.
As the second step we construct a Lorentzian metric h, whose future cones V

h`
p satisfy

Xp P V h`
p Ă V g`

p X V g1`
p for every p P M. Notice that it means h P TM since X is future
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directed for h (and also for the two metrics g and g1) and thus it defines a time-orientation for
pM, hq. Since h ĺ g, g1, this would conclude our proof.

Let us construct h taking advantage of the vector field X. Consider p P M and define a
g-pseudo orthonormal basis e0, . . . , en where e0 “

Xp?
´gpXp,Xpq

and the remaining vectors are

g-spacelike. If v, v1 P TpM,

gpv, v1q “ ´gpe0, vqgpe0, v
1q `

n
ÿ

k“1

gpek, vqgpek, v
1q .

If a P p0, 1q, the new Lorentzian scalar product in TpM Q v, v1

gapv, v1q :“ ´agpe0, vqgpe0, v
1q`

n
ÿ

k“1

gpek, vqgpek, v
1q “ gpv, v1q` pa´ 1q

gpXp, vqgpXp, v
1q

gpXp, Xpq
(1.3.1)

trivially satisfies (the closure being taken in TpMzt0u)

Xp P V
ga`
p Ĺ V ga`

p Ĺ V g`
p for a P p0, 1q.

The strong inclusions are due to the fact that the lightlike boundary of V ga`
p is made of timelike

vectors of g as it arises from the definition of ga. Now note that BV ga`
p becomes more and more

concentrated around the set tλXp |λ ą 0u as a approaches 0 from above. (In particular, the limit

and degenerate case ga“0
p pv, vq “ 0 implies v is parallel to Xp.) Since Xp P V

g1`
p which is also an

open convex cone as V ga`
p , there must exist ap P p0, 1q such that V gap`

p Ă V g1`
p . This property is

locally uniform in a as established in the following technical lemma:

Lemma.1 Within the hypotheses of the proposition, if x P M, there is a coordinate patch with
domain V Q x, an open set U Q x with compact closure U Ă V , and a constant aU P p0, 1q such

that V gaU`
p Ă V g1`

p for every p P U .

Proof. If x P M, there is a coordinate patch with domain V Q x and coordinates V Q p ÞÑ ϕppq “
px0ppq, . . . , xnppqq P Rn`1 such that U Q x for some open subset U Ă V such that U is compact.
We will henceforth deal with U and the coordinates px0, . . . , xnq restricted to thereon. We will
also take advantage of the compact set K :“ ϕpUq Ă Rn`1 and identify TU with KˆRn`1 using
the coordinates. Finally, we will equip both K and Rn`1 (representing TpM at each p P U ” K)
with the standard Euclidean metric of Rn`1 whose norm will be denoted by || ¨ ||.

Let us start the proof by proving that the family of cones V g1`
p of g1 has a minimal width

m ą 0 when p ranges in K. We henceforth view the above future-directed timelike vector field
X and g1 as geometric objects on K using the coordinate system. In particular, if p P K, let us
indicate by vp P Rn`1 the unique future-directed timelike vector parallel to Xp (now viewed as a
vector in Rn`1) such that ||vp|| “ 1. Consider the set made of future-directed elements of TM

C :“ tpp, uq P K ˆ Sn | g1ppu, vpq ď 0 , g1ppu, uq “ 0u

(above Sn :“ tz P Rn`1 | ||z|| “ 1u) and the continuous function

W : C Q pp, uq ÞÑ ||u´ vp|| ě 0 ,

which computes the width of BV g1`
p (that is of V g1`

p itself) around Xp along the direction u
by using the Euclidean distance induced by || ¨ ||. Observe that C is compact since it is the

1As noticed by the referee, a different strategy for proving this lemma would be showing that the function

M Q p ÞÑ appq “ supta P p0, 1q : V g
a

p

`
Ă V g

1

p

`

u is continuous. In that case, one can alternatively define
aU :“ minpPUappq. However the proof of continuity is not technically easy.
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intersection of preimages of a pair of closed sets along two corresponding continuous maps and
it is included in a compact set. Since this map is continuous and C is compact, there exists

m :“ min
C
W ą 0 .

In particular, m ą 0, otherwise u “ vq for some pq, uq P C and this is not possible since it
would imply g1pvq, vqq “ g1pu, uq “ 0, but vq is timelike (g1qpvq, vqq ă 0) since it does not vanish
(||vq|| “ 1) and it is proportional to the timelike vector Xq.

An analogous width-cone function can be defined for the cones of ga (including the degenerated
case a “ 0) on a set C 1 which also embodies the dependence on a:

C 1 :“ tpa, p, uq P r0, 1{2s ˆK ˆ Sn | gappu, vpq ď 0 , gappu, uq “ 0u .

We also define the continuous function

W 1 : C 1 Q pa, p, uq ÞÑ ||u´ vp|| ě 0 .

Observe that C 1 is again compact since it is the intersection of preimages of two closed sets along
a pair of corresponding continuous maps of pa, p, uq and C 1 is included in a compact set.

We want to prove that there exists am P r0, 1{2s such that W 1pam, p, uq ă m for all pp, uq P C.
If this were not the case, then for every an :“ 1{n there would be a pair ppn, unq P C such that
W 1pan, pn, unq ě m. Since C 1 is a compact metric space, we could extract a subsequence of triples
pank , pnk , unkq Ñ p0, p8, u8q P r0, 1{2s ˆ C for k Ñ `8 and some pp8, u8q P C. By continuity
0 “ ganpn pun, unq Ñ g0

p8pu8, u8q where ||u8|| “ 1. From (1.3.1), g0
p8pu8, u8q “ 0 would entail

that u8 is parallel to vp8 and thus W 1p0, p8, up8q “ ||u8 ´ vp8 || “ 0. That is in contradiction
with the requirement W 1pan, pn, unq ě m ą 0 for every n “ 1, 2, . . . in view of the continuity of
W 1.

We have therefore established that there exists am P r0, 1{2s such that W 1pam, p, uq ă m for

all pp, uq P C. From the definition of W and W 1, we have also obtained that V ga
m`

p Ă V g1`
p for

all p P K. It is enough to conclude that V gaU`
p Ă V g1`

p for all p P U as wanted simply by taking
aU :“ am. This concludes our claim. l

Let us go on with the main proof. For every U as in the previous lemma, define the constant
function appq “ aU for p P U . Since this can be done in a neighbourhood of every point p P M,
using a partition of the unity tχiuiPI subordinated to a locally finite covering of charts tUiuiPI ,
we can construct the metric h, where now every ai :“ aUi : Ui Ñ p0, 1q is a constant in U ; and
thus it is a smooth function therein.

hppv, v
1q “

ÿ

i

χippqg
aippq
p pv, v1q “

ÿ

i

χippq

ˆ

gppv, v
1q ` paippq ´ 1q

gppXp, vqgppXp, v
1q

gppXp, Xpq

˙

“ gppv, v
1q `

˜

ÿ

i

χippqaippq ´ 1

¸

gppXp, vqgppXp, v
1q

gppXp, Xpq

Since
ř

i χippqaippq P p0, 1q, this metric is still Lorentzian and of the form (1.3.1) point by point,
where now appq “

ř

i χippqaippq. By construction Xp P V h`
p Ă V g`

p for every p P M, just
because it happens point by point with the above choice of appq. In particular, we can endow
h with the time-orientation induced by X as it happens for g, g1 and all local metrics gai .

Finally, V h`
p Ă V g1`

p because, if hppv, vq ă 0, at least one of the values gai0 ppqpv, vq appearing in
ř

i χippqg
aippq
p pv, vq must be negative and thus, if v is future-directed, v P V gaippq`

` Ă V g1`
p . The

proof is over because h satisfies all requirements Xp P V
h`
p Ă V g`

p X V g1`
p for every p P M.

As an immediate by-product, it is easy to see that for any globally hyperbolic metric g, there
exists a paracausal deformation g1 of g which is ultrastatic.
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Corollary 1.3.5. Let pM, gq be a globally hyperbolic spacetime. Then there exists a paracausal
deformation g1 of g such that pM, g1q is an ultrastatic spacetime.

Proof. Let t be a Cauchy temporal function for the globally hyperbolic spacetime pM, gq so that
M is isometric to R ˆ Σ with metric ´β2dt2 ` ht. We indicate by Bt the tangent vector to the
submanifold R. Let h be a complete Riemannian metric on Σ. Then the ultrastatic metric
g1 :“ ´dt2`h is globally hyperbolic [96] and the vector Bt is contained in the intersection of V g`

p

and V g1`
p for any p P M. Proposition 1.3.4 ends the proof.

Remark 1.3.6. The complete Riemannian metric h on the slice can be chosen, in particular, of
bounded geometry since any paracompact manifold admits one, [67]. This important fact will be
exploited in the last chapter to construct a Hadamard state for the massive vector field.

The result established in Proposition 1.3.4 leads to a crucial characterization of paracausally
related metrics, which represent the second main result of this section.

Theorem 1.3.7. Let M be a smooth manifold. Two metrics g, g1 P GHM are paracausally related
if and only if there exists a finite sequence of globally hyperbolic metrics g1 “ g, g2 . . . , gn “ g1 on
M such that all pairs of consecutive metrics gk, gk`1 satisfy V gk`

x XV
gk`1`
x ‰ H for every x P M.

Proof. If g, g1 are paracausally related, then a sequence of metrics as in Definition 1.3.1 trivially
satisfies the condition in the thesis. If that condition is vice versa satisfied, then the metrics of
each pair gk, gk`1 of the sequence are paracausally related in view of Proposition 1.3.4. Since
paracausal relation is transitive, g and g1 are paracausally related.

We conclude this first analysis of the paracausal relation with a very important necessary con-
dition coming as a corollary of the equivalence of the very first definition and the characterization
above.

Corollary 1.3.8. Let M be a smooth manifold and g, g1 P GHpMq be such that g » g1. Then two
Cauchy surfaces Σ and Σ1, respectively for g and for g1, are diffeomorphic.

Proof. Let g “ g1, g2 . . . , gN “ g1 be the paracausal chain connecting the two metrics. We have
proved that it exists if and only if there exists another sequence of globally hyperbolic metrics
g “ rg1, . . . , rgM “ g1 such that their future cones intersect pairwise. But this means that for each
couple of consecutive metrics rgi and rgi`1 their intersection is non-empty and a paracausal chain
can be built by constructing a metric rgi,i`1 such that (1) rgi,i`1 ĺ rgi and (2) rgi,i`1 ĺ rgi`1.
But by 1.2.3, (1) implies that any Cauchy surface Σi of rgi is a Cauchy surface of rgi,i`1 and (2)
implies that any Cauchy surface Σi`1 of rgi`1 is a Cauchy surface of rgi,i`1, but since all Cauchy
surfaces associated to a globally hyperbolic metric are diffeomorphic we get that Σi and Σi`1 are
diffeomorphic. Iterating the procedure to the whole chain proves the claimed result.

1.3.3 Paracausal deformation and Cauchy temporal functions

We now study the interplay of the notion of Cauchy temporal function and the one of paracausal
deformation.
We first state and prove a result concerning Cauchy surfaces and the paracausal relation2.

Proposition 1.3.9. Let pM, gq and pM, g1q be globally hyperbolic spacetimes on M which share a
Cauchy temporal function t : MÑ R according to Definition 1.1.14. Then g » g1.

2The following proof is actually extracted by a result due to M. Sánchez who, with Theorem 3.4 of [97], improved
a similar statement in a previous version of this work where we also assumed that the Cauchy surfaces were compact.
We are grateful to M. Sánchez for providing this improved version of our result.
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Proof. As before, we will henceforth omit to write the isometries identifying the various space-
times. However we may have two different isometries from M to RˆΣ for g and g1. Proposition
1.2.5 yields g ĺ ĝ ĺ g, g1 ĺ ĝ1 ĺ g1 if

ĝ :“ β´2
0 g “ ´dtb dt` β´2

0 ht and ĝ1 :“ β´2
1 g1 “ ´dtb dt` β´2

1 h1t ,

where β2
0 , β

2
1 are the lapse function we choose in accordance with Theorem 1.1.12. The metrics ĝ

and ĝ1 are globally hyperbolic for Lemma 1.1.18 (with α “ 1). The proof ends by proving that ĝ
and ĝ1 are paracausally related. Referring to the splitting of M as RˆΣ induced by the Cauchy
temporal function t, define the globally hyperbolic metric ´dt b dt ` h, where h is a complete
Riemannian metric on Σ (see, e.g., [96]). For every λ P p0, 1q, direct inspection proves that,

gλ :“ λp´dtb dt` hq ` p1´ λqĝ “ ´dtb dt` λh` p1´ λqβ´2
0 ht ĺ ´dtb dt` λh

and

gλ “ λp´dtb dt` hq ` p1´ λqĝ “ ´dtb dt` λh` p1´ λqβ´2
0 ht ĺ ´dtb dt` p1´ λqβ´2

0 ht .

Since λh is complete, from the former line we conclude that the metric gλ is globally hyperbolic
due to (2) Lemma 1.2.3 and that it is paracausally related to dtb dt`λh. From the latter, since
´dtb dt` p1´ λqβ´2

0 ht is globally hyperbolic in view of Lemma 1.1.18, we have that this metric
and gλ are paracausally related. Since p1 ´ λq P p0, 1q, the cones of ´dt b dt ` p1 ´ λqβ´2

0 ht
include the cones of ´dtb dt` β´2

0 ht “ ĝ so that these metrics are paracausally related as well.
Transitivity implies that ´dtbdt`λh and ĝ are paracausally related. The same argument proves
that ´dtb dt` λh and ĝ1 are paracausally related so that ĝ » ĝ1 and the thesis holds.

Now we prove another non trivial result about paracausally related metrics for Cauchy com-
pact spacetimes and conclude the chapter.

Proposition 1.3.10. Let pM, gq and pM, g1q be spacetimes such that g, g1 P GHM. Suppose that g
admits a Cauchy temporal function t : MÑ R whose spacelike Cauchy hypersurfaces are compact
and are also g1-spacelike, then g » g1 up to a change of the temporal orientation of g1.

Figure 1.7: Over a point P P Σt0 which is g-Cauchy, we see a case in which the hypersurface is
spacelike also for the metric g1, nevertheless the lightcones do not intersect.

Proof. First of all, by defining the g-normal ng “
7gdt?

´g7pdt,dtq
, any vector field X can be written as

X “ Xnng ` πgpXq, where Xn “ gpng, Xq and πgpXq “ Id´ gpng, Xqng projects on the Cauchy
surface.
The metric tensor g “ ´ dt2

g7pdt,dtq
` hpπp¨q, πp¨qq, following 1.1.12, under the action of a diffeomor-

phism ψg gets recast in the orthogonal form gort “ ´βdt
2`ht. This metric is obviously, by 1.2.5,

22



paracausally related to the conformal metric gc “ ´dt
2 ` 1

βt
ht, which is, in turn, paracausally

related to a globally hyperbolic metric rg “ ´dt2 ` h with h a complete Riemannian metric on
the slice and if we choose coherently the time orientation, see corollary 1.3.5.
Then we look at the metric g1 after the action of the isometric diffeomorphism ψg and define
rg1 “ ψ˚g g

1. The proof ends if we are able to find a globally hyperbolic metric g2 such that
rg » g2 » rg1.
If we choose a function α P C8pR, p0,8qq, then, by lemma 1.1.18 the metric tensor gα “

´dt2`αptqh is globally hyperbolic and, by 1.3.4, paracausally related to rg. We want to tune the
function α in order to have that the cones of gα intersect the cones of rg1.
First we define pointwise n1 the smooth vector field g1-normal to the Cauchy hypersurfaces of g
of the foliation induced by the temporal function t and decompose it with respect to the splitting
of the tangent space induced by the metric gα through its normal nα. We get n1 “ Znα `W
where Z “ gαpnα, n

1q and W “ πgαpn
1q.

Since the Cauchy hypersurfaces of g and gα are spacelike also for g1, we have that Z ‰ 0. The
cones of the two metrics intersect if α is such that n1 is gα-timelike i.e. iff

||n1||gα “ ´|Z|
2 ` αptq||W ||2h ă 0 ðñ

1

αptq
ą
||W ||2h
|Z|2

.

The manifold RˆΣ can be covered by the time-strips T Sn “ tr´n, nsˆΣunPN which are obviously
compact since Σ is compact by hypothesis.

This means that for all n P N the smooth function f : M Ñ R` defined by f :“
||W ||2h
|Z|2

attains a

maximum Mn and a minimum mn when restricted to the strip T Sn. So we construct the required
function 1

αptq : RÑ R` such that

1

αptq
“Mn ` 1 t P r´n´ 1,´nq Y pn, n` 1s.

This function isn’t even continuous, but it piecewise constant. The maximum has been increased
by one to avoid the possibility that this function gets null: it could happen if the normal n1 and
nα get aligned in the first time-strip and then depart.
The last thing to do is to smoothen the function αptq, something which can of course be done by
standard gluing arguments.
Now that we know that the cones of gα and rg1 intersect, if the temporal orientation of g1 is such
that V `gα X V

`
rg1 ‰ H we define g2 :“ gα » rg1 and the proof is concluded.

If V `gα X V `
rg1 “ H the metric g2, and therefore the metric rg, is paracausally related to rg1 with

opposite time orientation.

1.4 Conclusions

A lot of problems remain open about the paracausal relation, which definitely deserves to be
studied separately from the problem of Møller operators. To conclude the chapter we list and
briefly discuss some of the possible research lines that should be followed in the future.

Two equivalent characterizations of such a relation have been proved to be equivalent and
some useful sufficient conditions and a necessary condition have been studied and are known. To
summarize, it has been proved that:

(1) paracausally related metrics have diffeomorphic Cauchy surfaces;

(2) if g, g1 P GHM satisfy the condition that supp pg ´ g1q is compact in M the two metrics are
paracausally related, [19];

(3) globally hyperbolic metrics sharing Cauchy slicings are paracausally related;
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(4) for Cauchy compact spacetimes if the Cauchy surfaces of g are spacelike for g1, then they
are paracausally related;

(5) all paracausal classes have a, of course non-unique, ultrastatic representative.

However in general almost nothing is known about the paracausal classes, i.e the quotient set
GHM{ »: the first thing to ask is if in 4 spacetime dimensions, in the case of R4, all globally
hyperbolic metrics are paracausally related or how the classes are related to the topology of the
spacetime manifold and of the (diffeomorphic) Cauchy surfaces associated to each metric in the
chain.

Since we know that paracausally related metrics necessarily have diffeomorphic Cauchy sur-
faces the following proposition, using the interesting results described in [91], holds. In fact it is
known that R4 admits infinite globally hyperbolic metrics whose Cauchy splittings are R4 – RˆΣ1

and R4 – Rˆ Σ2 with Σ1 fl Σ2:

Proposition 1.4.1. R4 endowed with the standard smooth differentiable structure admits at least
a paracausal class of globally hyperbolic metrics for each of the (uncountable) possible smooth 3-
manifolds Σ such that R4 –diff Rˆ Σ.

And such a result can be generalized for a general non compact smooth manifold as follows:

Proposition 1.4.2. A smooth non-compact d ą 1 dimensional manifold M, admitting Lorentzian
metrics, admits at least a paracausal class of globally hyperbolic metrics for each of the possible
smooth, non diffeomorphic d´ 1 dimensional manifolds Σ such that M –diff Rˆ Σ.

Outside of the real world 3 dimensional Cauchy surfaces more classes may arise whenever the
differentiable structures compatible with the topology of Σ are more than one, up to diffeomor-
phisms.

Fortunately Cauchy-compact globally hyperbolic spacetime 4-manifolds would not suffer such
pathologies, because if there exists a closed oriented smooth 3-manifold Σ such that M –diff RˆΣ,
then Σ is unique up to diffeomorphisms, [26].

However we still have no rigorous proofs regarding metrics that are not paracausally relates
when the Cauchy surfaces are diffeomorphic, even thought in 1.3.3 we have conjectured that
Cauchy compact metrics with equal cones, but opposite temporal orientation, should fall in
different paracausal classes.

Conjecture 1.4.3. Let pR ˆ Σ, gq and pR ˆ Σ, g1q spacetimes with g, g1 P GHM such that the
hypersurface Σ is compact and Cauchy for both metrics. If V ˘g1 “ V ¯g , then g and g1 are not
paracausally related.

The idea behind the conjecture is that g and g1 in part (3) of the Example 1.3.3 have somehow
‘different time-orientation’. Since the time-orientation depends on the metric on M, we have to
provide criteria to translate the requirement that g and g1 have in some sense a common ‘future-
direction’. Keeping in mind what said above, a conjecture which urges to be proved or disproved
is the following one, maybe adding further hypothesis, for example concerning the dimension of
the spacetime.

Conjecture 1.4.4. Let t and t1 be Cauchy temporal functions for globally hyperbolic spacetimes
pM, gq and pM, g1q. Denote with x¨, ¨y the natural paring between T˚M and TM. Then

g » g1 if and only if xBt, dt
1y ą 0 and xBt1 , dty ą 0 ,

where Bt (resp. Bt1) is the dual of dt (resp. dt1) with respect to g (resp. g1).

Remark 1.4.5. The requirement xBt, dt
1y ą 0 implies that the integral curve γ “ γptq of Bt on

pM, g1q satisfies t1pγpt2qq ą t1pγpt1qq if t2 ą t1. This requirement is weaker than assuming the Bt
is timelike and future-directed for g1. The reason why we also impose xBt1 , dty ą 0 is that being
paracausally related is an equivalence relation in GHM.
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Something interesting which has been observed (and is obvious to prove) is that paracausal chains
are in one to one correspondence with specific curves joining the metrics in GHM.

Proposition 1.4.6. Let g, g1 P GHM. Then g » g1 with a chain tgiui “ 1N made of N P N
metrics, if and only if there exists a piecewise convex curve γ : r0, N s Ñ GHpMq, γp0q “ g and
γp1q “ g1.

The following question immediately arises: is this piece-wise convex curve continuous w.r.t some
suitable topology? If that is the case one could prove that metrics such as the ones of the previous
conjecture lie in different connected components on the space GHM, then no paracausal chain
joining them can exist. But of much more interest would be if all paracausal chains were necessary
’samplings’ of a continuous curve joining the metrics in the space of globally hyperbolic metrics,
seen as a subset of the space of all Lorentzian metrics.

Conjecture 1.4.7. There is a one-to-one correspondence between paracausal classes and con-
nected components of GHM ĂMM with respect to some suitable topology.

In such a case the existence of the Møller operators, that will be largely discussed in the next
chapters, would depend on the topology of the space of globally hyperbolic metrics, whose struc-
ture is supposed to be related to the topology of the manifold M.
The possible topologies that may be considered are the Geroch interval topology, [65], which
does not seem suitable because of its coarseness preventing the convex segments to be continu-
ous, Whitney topologies and compact-open topology.
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Chapter 2

The Møller map for Green
hyperbolic operators

In this chapter we develop and apply to several examples a technique to compare solutions of
Green hyperbolic differential operators, describing the propagation of free classical fields on curved
spacetime, under finite global variations of the background metric tensor. Recently a great deal of
progress has been made in this directions as well as in the comparison of the associated quantum
field theories. More precisely, given a pair P and P1 of Green hyperbolic differential operators
on (possibly different) globally hyperbolic spacetimes pM, gq and pM, g1q, a natural issue concerns
the existence of a linear isomorphism S : SolP Ñ SolP1 between the linear spaces of the solutions
of the equations Pψ “ 0 and P1ψ1 “ 0. Such an isomorphism, if it exists, is called a Møller map.
These problems have been tackled in the past for special cases of metrics g, g1 and several types
of Green hyperbolic field operators which rule the dynamics of bosonic fields [27,35] or fermionic
fields [37,90]. In loc. cit., the pairs of Lorentzian metrics g, g1 had to satisfy one of the following
assumptions: they shared a common foliation of smooth spacelike Cauchy surfaces; they coincided
outside a compact set.
In this work we exploit the notion of paracausal relation, described in detail in the previous
chapter to show that, whenever g » g1 a geometric Møller operator can be constructed. The
procedure can be summarized as follows. The overall idea is inspired by the scattering theory in
the special case of a pair of globally hyperbolic metrics g0, g1 over M such that the light cones of g0

are included in the light cones of g1 (this is the most elementary case of paracausal relation). We
start with two “free theories”, described by the space of solutions of Green hyperbolic operators
P0 and P1 in corresponding spacetimes pM, g0q and pM, g1q, respectively, and we intend to connect
them through an “interaction spacetime” pM, gχq with a “temporally localized” interaction defined
by interpolating the two metrics by means of a smoothing function χ. Here we need two Møller
maps: Ω` connecting pM, g0q and pM, gχq – which reduces to the identity in the past when χ
is switched off – and a second Møller map connecting pM, gχq to pM, g1q – which reduces to
the identity in the future when χ constantly takes the value 1. The “S-matrix” given by the
composition S :“ Ω´Ω` will be the Møller map connecting P0 and P1.

The above construction generalizes to the case of a pair of globally hyperbolic metrics g, g1

on M which are paracausally related and this fact is denoted by g » g1.
The chapter is structured as follows. In the very beginning we recap the basic properties of

Green hyperbolic operators. In the first main section 2.1 a class of differential operators that we
will analyse is discussed: normally hyperbolic operators. They generalize the d’Alembert wave
operator, i.e the classical Klein-Gordon field, in a sense that will be immediately clarified; for sake
of generality this operator will act on smooth sections of hermitian vector bundles with bundle
metric that does not depend on the spacetime metric.

Later the problem of constructing the interpolating spacetime and the interpolating operator
through convex combinations of differential operators is tackled and its Cauchy problem is studied.

26



For this reason we introduced the problem of the convex combination of globally hyperbolic
metrics which led to the study of the paracausal relation, which was subject of the previous
chapter.
Finally the Møller operator is introduced for the first time and its properties are discussed in
detail, especially its adjoint and the feature that it intertwines the causal propagators of the
compared theories, which will be crucial in the next chapter in order to construct Hadamard
states. The definition of the adjoint operator R:gg1 , mapping objects related to a spacetime to
another spacetime, is completely new and all its useful properties are immediately investigated.

In the last main section 2.2 the Proca vector field is analyzed. Since it is a one form, the Proca
field is a section of the cotangent bundle equipped with the dual of the spacetime metric, so it is
not a hermitian bundle with a metric which does not depend on the spacetime. Moreover, in this
case, the interpolating differential operator is not a convex combination of two Proca operators
since the latter would fail to be Green hyperbolic in general. The Cauchy problem for this field
is discussed in detail as one of a constrained normally hyperbolic PDE and, finally, the Møller
operator an the definition of the adjoint are carefully modified to incorporate the change of the
bundle metric.
We then conclude describing possible future research lines in such a field.

2.1 The normally hyperbolic Klein Gordon field

The main purpose of this section is to realize a geometric map to compare the space of solutions of
normally hyperbolic operators defined on possibly different globally hyperbolic manifolds. Before
starting to introduce our theory, we remind some general definitions and we fix the notation
that will be used from now on. Let E be a vector bundle (always on K and of finite rank )
over a spacetime pM, gq, whose generic fiber (a K vector space isomorphic to a canonical fiber)
is denoted by Ep for p P M. ΓpEq is the K-space of smooth sections of E. ΓpEq has a number of
useful subspaces we list below.

(i) ΓcpEq Ă ΓpEq is the subspace of compactly supported smooth sections.

(ii) ΓpcpEq and ΓfcpEq denote the subspaces of ΓpEq whose elements have respectively past
compact support and future compact support.

(iii) If pM, gq is globally hyperbolic, ΓscpEq Ă ΓpEq is the subspace of spatially compact
sections: the smooth sections whose support intersects every spacelike Cauchy hypersurface
in a compact set.

These spaces are equipped with natural topologies as discussed in [4]. In case there are several
metrics on a common spacetime M basis of E, the used metric g will be indicated as well, for
instance ΓgpcpEq, if the nature of the space of sections depends on the chosen metric (this is not
the case for ΓcpEq).

A summary of the main results obtained in the case of normally hyperbolic operators is the
following where also the special notion of adjoint operator R:gg1 is used.

Theorem 2 (Theorems 2.1.20, 2.1.21, and 2.1.27). Let E be a K-vector bundle over the smooth
manifold M with a non-degenerate, real or Hermitian depending on K, fiber metric x¨ | ¨y. Consider
g, g1 P GHM with respectively associated normally hyperbolic formally-selfadjoint operators N, N1.
If the metrics are paracausally related g » g1, then it is possible to define a (non-unique) K-vector
space isomorphism R : ΓpEq Ñ ΓpEq, called Møller operator of g, g1 (with this order), such that
the following facts are true.

(1) The restrictions to the relevant subspaces of ΓpEq respectively define symplectic Møller maps
S0 (see Definition 2.1.22) which preserve the symplectic forms σNg , σN

1

g1 defined as in Equa-
tion (2.1.7), namely

σN
1

g1 pS
0Ψ, S0Φq “ σNg pΨ,Φq for every Ψ,Φ P KergscpNq.
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(2) The causal propagators GN1 and GN, respectively of N1 and N, satisfy RGNR
:gg1 “ GN1, where

R:gg1 is the adjoint of the Møller operator (see Definition 2.1.9).

(3) By denoting c1 the smooth function such that vol g1 “ c1 vol g, we have c1N1R “ N .

(4) It holds R:gg1N1|ΓcpEq “ N|ΓcpEq .

2.1.1 Green hyperbolic operators

The reason why we focused on globally hyperbolic spacetimes comes from their very first reason
of existence, [81]: linear partial differential operators defining linear field theory have a well posed
Cauchy problem thereon.
As a consequence of the well-posedness of the Cauchy problem with “finite propagation speed of
the solutions” stated in (2.1.2), one may establish the existence of Green operators. We review
now briefly what Green hyperbolic operators are and the most important results we will use
throughout the whole chapter.

Definition 2.1.1. Let E be a real or complex vector bundle over the spacetime pM, gq. A linear
differential operator P : ΓpEq Ñ ΓpEq is called Green hyperbolic if

(1) there exist linear maps, dubbed advanced Green operator G` : ΓpcpEq Ñ ΓpEq and
retarded Green operator G´ : ΓfcpEq Ñ ΓpEq, satisfying

(i.a) G` ˝ P f “ P ˝ G`f “ f for all f P ΓpcpEq ,

(ii.a) supp pG`fq Ă J`psupp fq for all f P ΓpcpEq;

(i.b) G´ ˝ P f “ P ˝ G´f “ f for all f P ΓfcpEq,

(ii.b) supp pG´fq Ă J´psupp fq for all f P ΓfcpEq;

(2) the formally dual operator P˚ admits advanced and retarded Green operators as well.

For sake of completeness, let us recall that the formally dual operator P˚ : ΓpE˚q Ñ ΓpE˚q
is the unique linear differential operator acting on the smooth sections of the dual bundle E˚

satisfying
ż

M
xf1,Pfy volg “

ż

M
xP˚f1, fy volg

for every f P ΓcpEq and f1 P ΓcpE
˚q (which is equivalent to saying f P ΓpEq and f1 P ΓpE˚q such

that supppfq X supppfq1 is compact), volg being the volume form induced by g on M.

Remarks 2.1.2.

(1) The Green operators we define below are the extensions to Γpc{fcpEq of the analogues defined

in [3] and indicated by G˘ therein.

(2) It is possible to prove that the Green operators are unique for a Green hyperbolic operator
(cf. [3, Corollary 3.12]). Furthermore as a consequence of [3, Lemma 3.21], it arises that if
f1 P ΓcpE

˚q and f P ΓpcpEq or f P ΓfcpEq respectively,

ż

M
xG´P˚f

1, fy volg “

ż

M
xf1,G`P fy volg ,

ż

M
xG`P˚f

1, fy volg “

ż

M
xf1,G´P fy volg , (2.1.1)

where G˘P indicate the Green operators of P and G˘P˚ indicate the Green operators of P˚.

Proposition 2.1.3. If P is a Green hyperbolic operator on a vector bundle E over the globally
hyperbolic spacetime pM, gq and ρ : M Ñ p0,`8q is smooth, then ρP is Green hyperbolic as well
and G˘ρP “ G˘Pρ

´1.
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Proof. The thesis immediately follows form the fact that G˘Pρ
´1 and ρ´1G˘P˚ satisfy the properties

of the Green operators for ρP and pρPq˚ “ P˚ρ respectively.

Given a Green hyperbolic operator with Green operators G˘, a relevant operator constructed
out of G˘ is the so-called causal propagator,

G :“ G`|ΓcpEq ´ G´|ΓcpEq : ΓcpEq Ñ ΓpEq .

It satisfies remarkable properties we are going to discuss (see e.g. [4, Theorem 3.6.21]).

Theorem 2.1.4. Let G be the causal propagator of a Green hyperbolic differential operator P :
ΓpEq Ñ ΓpEq on the vector bundle E over a globally hyperbolic spacetime pM, gq. The following
sequence is exact

t0u Ñ ΓcpEq
P
Ñ ΓcpEq

G
Ñ ΓscpEq

P
Ñ ΓscpEq Ñ t0u .

Proof. Injectivity of ΓcpEq
P
Ñ ΓcpEq easily arises from G˘P f “ f. Let us pass to the other parts of

the sequence. First of all notice that G˘pΓcpEqq Ă ΓscpEq since supppG˘pfqq Ă J˘psupppfqq and
the first assertion then follows form known facts of globally hyperbolic spacetimes. Let us prove

that ΓcpEq
G
Ñ ΓscpEq is surjective when the image is restricted to the kernel of ΓscpEq

P
Ñ ΓscpEq.

Suppose that PΨ “ 0 for Ψ P ΓscpEq. If t is a smooth Cauchy time function of pM, gq and
χ : MÑ r0, 1s is smooth, vanishes for t ă t0 and is constantly 1 for t ą t1, then

fΨ :“ PpχΨq P ΓcpEq

is such that Ψ “ GfΨ. Notice that supppfΨq is included between the Cauchy hypersurfaces t´1pt0q
and t´1pt1q. Indeed,

GfΨ “ G`PpχΨq ´ G´PpχΨq “ G`PpχΨq ` G´Ppp1´ χqΨq “ χΨ` p1´ χqΨ “ Ψ .

It is obvious that that fΨ can be changed by adding a section of the form Ph with h P ΓcpEq

preserving the property GfΨ “ Ψ. This exhaust the kernel of ΓcpEq
G
Ñ ΓscpEq as asserted in

the thesis. Indeed, if Gf “ 0, then G`f “ G´f. From the properties of the supports of G˘f, we
conclude that G˘f “ h˘ P ΓcpEq Ă ΓpcpEq X ΓfcpEq. Hence f “ PG˘f “ Ph˘. To conclude, we

prove that ΓscpEq
P
Ñ ΓscpEq is surjective. If f P ΓscpEq, with χ as above,

f “ χf` p1´ χqf “ PG`pχfq ` PG´pp1´ χqfq “ PrG`pχfq ` G´pp1´ χqfqs

and G`pχfq ` G´pp1´ χqfq P ΓscpEq.

2.1.2 Normally hyperbolic operators

Let g PMM and g7 be the induced metric on the cotangent bundle. If pM, gq is globally hyperbolic,
by fixing a Cauchy temporal function t : MÑ R such that g “ ´β2dtb dt` ht, we have

g7 “ ´β´2Bt b Bt ` h
7
t .

Definition 2.1.5. A linear second order differential operator N : ΓpEq Ñ ΓpEq is normally
hyperbolic if its principal symbol σN satisfies

σNpξq “ ´g
7pξ, ξq IdE

for all ξ P T˚M, where IdE is the identity automorphism of E.

29



Referring to a foliation of pM, gq as in Definition 1.1.14, in local coordinates pt, xq on M
adapted to the foliation so that x “ px1, . . . , xnq are local coordinates on Σt, and using a local
trivialization of E, any normally hyperbolic operator N in a point p P M reads as

N “
1

β2
B2
t ´

n
ÿ

i,j“1

h7t
ij
BxiBxj `A

0pt, xqBt `
ÿ

j“1

Ajpt, xqBxj `Bpt, xq

where A0, Aj and B are linear maps Ept,xq Ñ Ept,xq depending smoothly on pt, xq.

Examples 2.1.6. In the class of normally hyperbolic operators we can find many operators of
interest in quantum field theory:

• Let E be the trivial real bundle, i.e. E “ M ˆ R, so that the space of smooth sections of
E can be identified with the ring of smooth functions on M. The Klein-Gordon operator
N “ l`m2 is normally hyperbolic, where l is the d’Alembert operator and m is a mass-
term.

• Let now E “ ΛkT˚M be the bundle of k-forms and d (resp δ) the exterior derivative (resp.
the codifferential). The operator N :“ dδ ` δd `m2 is normally hyperbolic and it is used
to describe the dynamics of Proca fields, for further details we refer to [6, Example 2.17].

• Let SM be a spinor bundle over a globally hyperbolic spin manifold Mg and let ∇ be
a spin connection. By denoting with γ : TM Ñ EndpSMq the Clifford multiplication,
the classical Dirac operator reads as D “ γ ˝ ∇ : ΓpSMq Ñ ΓpSMq, see [37, 38, 68] for
further details. By Lichnerowicz-Weitzenböck formula we get the spinorial wave operator
N “ D2 “ ∇:∇` 1

4Scalg , where Scalg is the scalar curvature.

It is well-known that, once that the Cauchy data are suitably assigned, the Cauchy problem
for N turns out to be well-posed, see e.g. [4, 66].

Theorem 2.1.7. Let E be a vector bundle (of finite rank) over a globally hyperbolic manifold
pM, gq, let N be a normally hyperbolic operator with a N-compatible connection ∇ (see (2.1.3)
below) and Σ0 a (smooth) spacelike Cauchy hypersurface of pM, gq. Then the Cauchy problem for
N is well-posed, i.e. for any f P ΓcpEq, h1, h2 P ΓcpE|Σ0q there exists a unique solution Ψ P ΓscpEq
to the initial value problem

$

’

&

’

%

NΨ “ f

Ψ|Σ0 “ h1

p∇nΨq|Σ0 “ h2

being n the future directed timelike unit normal field along Σ0, and it depends continuously on
the data pf, h1, h2q w.r.to the standard topologies of smooth sections and satisfies

supppΨq Ă Jpsupppfqq Y Jpsuppph1qq Y Jpsuppph2qq . (2.1.2)

2.1.3 Formal selfadjointness and the symplectic form

Let E be a K-vector bundle on a globally hyperbolic spacetime pM, gq. As shown in [8, Lemma
1.5.5], for any normally hyperbolic operator N : ΓpEq Ñ ΓpEq there exists a unique covariant
derivative ∇ on E such that

N “ ´trgpr∇∇q ` c (2.1.3)

for some some zero-order differential operator c : ΓpEq Ñ ΓpEq. In the formula above the left r∇
is actually the connection induced on T˚MbE by the Levi-Civita connection associated to g and
the original connection ∇ given on E Adopting the terminology of [4], we shall refer to ∇ as the
N-compatible connection on E.
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We stress that, if we suppose that E is equipped with a smooth assignment of Hermitian fiber
metrics

x¨ | ¨yp : Ep ˆ Ep Ñ K .

then the above ∇ is g-metric but not necessarily metric with respect to x¨ | ¨y.
The physical relevance of the fiber metric is that it permits to equip KerscpNq with a symplectic

form with important properties in the formulation of QFT in curved spacetime. This symplectic
form can be derived using the Green identity for a normally hyperbolic operator N and its formal
adjoint. As anticipated, we have the following result:

Proposition 2.1.8 ( [4, Corollary 3.4.3]). A normally hyperbolic operator N on a vector bundle
E (of finite rank) on a globally hyperbolic manifold pM, gq is Green hyperbolic.

Definition 2.1.9. The formal adjoint of a differential operator P : ΓpEq Ñ ΓpEq is the unique
differential operator P: : ΓpEq Ñ ΓpEq satisfying

ż

M
xf1 |Pfy volg “

ż

M
xP:f1 | fy volg

for every f, f1 P ΓcpEq (which is equivalent to saying f, f1 P ΓpEq such that supppfq X supppfq1 is
compact). If P “ P: then N is said to be (formally) selfadjoint.

Remark 2.1.10. If P : ΓpEq Ñ ΓpEq is normally hyperbolic on the bundle E over pM, gq, equipped
with a non-degenerate, Hermitian fiber metric x¨ | ¨y, P is Green hyperbolic as said above. In this
case P: has the same principal symbol as P and thus it is Green hyperbolic as well. Taking
advantage of the natural (antilinear if K “ C) isomorphism ΓpEq Ñ ΓpE˚q induced by x¨ | ¨y and
(2.2.33), it is not difficult to prove that, if f1 P ΓcpEq and f P ΓpcpEq or f P ΓfcpEq respectively,

ż

M
xG´

P :
f1 | fy volg “

ż

M
xf1 |G`P fy volg ,

ż

M
xG`

P :
f1 | fy volg “

ż

M
xf1 |G´P fy volg . (2.1.4)

where G˘P indicate the Green operators of P and G˘
P :

indicate the Green operators of P:.

Let us pass to introduce a Green-like identity where we explicitly exploit the N-compatible
connection ∇.

Lemma 2.1.11 (Green identity). Let E be a non-degenerate, Hermitian K vector bundle over
a pn ` 1q-dimensional spacetime pM, gq and denote the fiber metric x¨ | ¨y. Moreover, let N :
ΓpEq Ñ ΓpEq be a normally hyperbolic operator with N-compatible connection ∇. Let M0 Ă M be
a submanifold with continuous piecewise smooth boundary. Then for every Φ,Ψ P ΓcpEqq

ż

M0

pxΨ |NΦy ´ xNΨ |Φyq vol g “

ż

BM0

ΞN
BM0
pΨ,Φq , (2.1.5)

where ΞN
BM0

is the n-form in BM0

ΞN
BM0
pΨ,Φq :“ ı˚BM0

”

7

´

xΨ |∇Φy ´ x∇Ψ |Φy
¯

vol g

ı

ıBM0 : BM0 Ñ M being the inclusion embedding. If the normal vectors to BM0 are either spacelike
or timelike (up to zero-measure sets), then

ΞN
BM0
pΨ,Φq “

´

xΨ |∇nΦy ´ x∇nΨ |Φy
¯

vol BM0 (2.1.6)

where n is the outward unit normal vector to BM0 and vol BM0 “ n vol g is the volume form of
BM0 induced by g.
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Proof. Consider the n-form in M

Z :“ 7
´

xΨ |∇Φy ´ x∇Ψ |Φy
¯

vol g .

If the normal vectors to BM0 are either spacelike or timelike, some computations with the exterior
differential of forms yields (2.1.6). In all cases it is easy to prove that

dZ “
´

xΨ | gij∇i∇jΦy ´ xg
ij∇i∇jΨ |Φy

¯

vol g “
´

xΨ |NΦy ´ xNΨ |Φy
¯

vol g .

At this juncture, Stokes’ theorem for pn` 1q-forms,

ż

BM0

Z “

ż

M0

dZ ,

produces (2.1.5).

We have the following crucial result when applying the previous lemma to the theory on
globally hyperbolic spacetimes.

Proposition 2.1.12. Let Σ Ă M be a smooth spacelike Cauchy hypersurface with its future-
oriented unit normal vector field n in the globally hyperbolic spacetime pM, gq and its induced
volume element vol Σ. Furthermore, let N be a formally self-adjoint normally hyperbolic operator.
Then

σNpM,gq : KerscpNq ˆ KerscpNq Ñ C such that σNpM,gqpΨ,Φq “ i

ż

Σ
ΞN

ΣpΨ,Φq (2.1.7)

where ΞN
Σ is defined in Equation (2.1.6), yields a non-degenerate symplectic form (Hermitian if

K “ C) which does not depend on the choice of Σ.

Proof. First note that, referring to a spacelike Cauchy hypersurface Σ, supppΨq X Σ is compact
since supppΨq is spacelike compact, so that the integral is well-defined. The fact that σN is not
degenerate can be proved as follows. If σN

pM,gqpΨ,Φq =0 for all Φ P ΓscpEq, from the definition of

σN and non-degenerateness of x¨ | ¨yp (passing to local trivializations referred to local coordinates
on Σ re-writing x¨ | ¨yp in terms of the pairing with E˚p), we have that the Cauchy data of Ψ
vanishes on every local chart on Σ and thus they vanish on Σ. According to Theorem 2.1.7,
Ψ “ 0. The other entry can be worked out similarly.
Let Ψ,Φ P KerscpNq and Σ1t and Σt2 be a pair of smooth spacelike Cauchy hypersurfaces associated
to a smooth time Cauchy function t with t2 ą t1. Let us focus on the submanifold with boundary
M0 “ t´1ppt1, t2qq. Its boundary is BM0 “ Σt1 Y Σt2 . The supports of Ψ and Φ between the two
Cauchy surfaces are included in the causal future of the compact supports of the Cauchy data on
Σt1 of Ψ and Φ respectively, and these portions of causal sets are compact as pM, gq is globally
hyperbolic (see e.g. [4, Proposition 1.2.56]). We end up with a pair of functions in ΓcpEq and we
can apply the Green identity (see Lemma 2.1.11) to M0. Using a smoothly vanishing function
as a factor, we can make smoothly vanishing Ψ and Φ before Σt1 and after Σt2 without touching
them between the two Cauchy surfaces. As a matter of fact the resulting sections constructed
out Ψ and Φ by this way are smooth, compactly supported and coincide with Ψ and Φ between
the two Cauchy surfaces. We can therefore apply Lemma 2.1.11, obtaining

ż

M0

pxΨ |NΦy ´ xNΨ |Φyqvol g “

ż

Σ1
ΞN

Σ1 ´

ż

Σ
ΞN

Σ .

Since N is assumed to be self-adjoint, xΨ |NΦy´xNΨ |Φy “ xΨ |NΦy´xΨ |N:Φy “ 0. Therefore we
can conclude that

ş

Σ1 Ξ
N
Σ1 “

ş

Σ ΞN
Σ. Finally consider the case of two spacelike Cauchy functions

Σ and Σ1 belonging to different foliations induced by different smooth Cauchy time functions
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(notice that a spacelike Cauchy hypersurface always belong to a foliation generated by a suitable
smooth Cauchy time (actually temporal) function for Theorem 1.1.12). We sketch a proof of the
identity

ż

Σ1
ΞN

Σ1 “

ż

Σ
ΞN

Σ .

Let K Ă Σ a compact set including the Cauchy data of Ψ and Φ. If t is the smooth Cauchy time
function such that Σt1 “ Σ1, let T “ maxK t. If t1 ă T we can always take t2 ą T and to consider
the symplectic form evaluated on Σt2 . In view of the previous part of our proof the symplectic
form on Σt1 and Σt2 coincide, so that our thesis can be re-written

ż

Σ2

ΞN
Σ1 “

ż

Σ
ΞN

Σ .

As t2 ą maxK t, we conclude that Σt2 does not intersect Σ in the set K. Therefore we can
define the solid set LK made of the portion of J`pKq between Σ and Σt2 . L is compact (see
e.g. [4, Proposition 1.2.56]) and is a “truncated cone” whose “lateral surface” is part of the
boundary of J`pKq and whose “non-parallel bases” are parts of Σ2 and Σ. We can include L
in the interior of a larger manifold with boundary M0 whose part of the boundary are portions
of Σ and Σt2 including the support of the Cauchy data of Ψ and Φ. Notice that M0 includes
the supports of Ψ and Φ between the two Cauchy surfaces according to Theorem 2.1.7 and these
supports do not touch the “lateral surface” of M0. We can now apply the Green identity 2.1.11
to M0 proving the thesis.

There is a nice interplay of the causal propagator G of N : ΓpEq Ñ ΓpEq as above and the
symplectic form σN

pM,gq.

Proposition 2.1.13. With the same hypotheses as of Proposition 2.1.12, if f, h P ΓcpEq and
Ψf :“ Gf, Ψh :“ Gh, it holds

σNpM,gqpΨf,Ψhq “

ż

M
xf |Ghy vol g .

Proof. If f, h P ΓcpEq, consider a smooth Cauchy time function t and fix t0 ă t1 such that the
supports of f and h are included in the interior of the submanifold with boundary M0 contained
between the spacelike Cauchy hypersurfaces Σt0 :“ t´1pt0q and Σt1 :“ t´1pt1q. It holds

ż

M
xΨf | hy vol g “

ż

M0

xΨf | hy vol g “

ż

M0

xΨf |NG
`hy vol g

Since NΨf “ 0, we have found that

ż

M
xf |Ψhy vol g “

ż

M0

`

xΨf |NG
`hy ´ xNΨf |G

`Ψhy
˘

vol g .

Applying Lemma 2.1.11, we find
ż

M
xf |Ψhy vol g “ ´

ż

BM0

ΞN
BM0
pΨf,G

`hq “

ż

Σt1

ΞN
BM0
pΨf,G

`hq ,

where we noticed that G`h vanishes on the remaining part of the boundary Σt0 . On the other
hand, we can replace G`h for G`h´G´h “ Gh in the last integral, since G´h gives no contribution
to the integral on Σt1 . In summary,

ż

M
xf |Ghy vol g “

ż

M
xf |Ψhy vol g “

ż

Σt1

ΞN
Σt1
pΨf,Ghq “ σNpM,gqpΨf,Ψhq .

and this is the thesis.
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2.1.4 Convex combinations of normally hyperbolic operators

Let now N0, N1 be normally hyperbolic operators with respect different Lorentzian metric g0 and
g1 (the former time-orientable and the latter globally hyperbolic) on the same manifold M and
assume that they are acting on the smooth sections of the same vector bundle E. It turns out, that
a positive (and convex) combination p1´χqN0`χN1 is also (a) normally hyperbolic with respect
to the naturally associated metric gχ – the unique Lorentzian metric in TM whose associated

metric in T˚M is p1 ´ χqg70 ` χg71 according to Theorem 1.2.7 – and (b) Green hyperbolic with
respect to g1, everything provided that g0 ĺ g1. This is the main result of this section.

Theorem 2.1.14. Let E be a K-vector bundle over a smooth manifold M, let be g0, g1 P GMM

with g0 ĺ g1, and let N0,N1 : ΓpEq Ñ ΓpEq be normally hyperbolic operator with respect to g0 and
g1 respectively. If χ P C8pM, r0, 1sq, define gχ as the unique Lorentzian metric whose associated

metric in T˚M is p1´χqg70`χg
7
1 according to Theorem 1.2.7. Then the second order differential

operator defined by
Nχ :“ p1´ χqN0 ` χN1 : ΓpEq Ñ ΓpEq (2.1.8)

satisfies the following properties:

(1) It is normally and Green hyperbolic over pM, gχq;

(2) It is Green hyperbolic over pM, g1q and, with obvious notation,

Γg1pcpEq Ă Γ
gχ
pc pEq , Γg1fcpEq Ă Γ

gχ
fcpEq ,

Gg1`Nχ
“ G

gχ`
Nχ
|Γ
g1
pc pEq

, Gg1´Nχ
“ G

gχ´
Nχ
|Γ
g1
fcpEq

.

In particular, (2) is true for N0 by choosing χ “ 0.

Proof. (1) Since N0 is a normally hyperbolic operator for pM, g0q and N1 is a normally hyperbolic
operator for pM, g1q, by linearity

σ2pNχ, ξq “ p1´ χqσ2pN0, ξq ` χσ2pN1, ξq.

In particular, we have that Nχ is normally hyperbolic with respect to gχ:

σ2pNχ, ξq “ ´p1´ χqg
7
0pξ, ξqIdE ´ χg

7
1pξ, ξqIdE “ ´g

7
χpξ, ξqIdE .

By Theorem 1.2.7, the metric gχ is globally hyperbolic and, on account of Proposition 2.1.8 Nχ
is Green-hyperbolic over pM, gχq.
Regarding (2), and referring to the existence of Green operators of Nχ in pM, g1q we can proceed
as follows. Observe that, since gχ ĺ g1, we have J

gχ
˘ pAq Ă Jg1˘ pAq and, with obvious notation,

Γg1pcpEq Ă Γ
gχ
pc pEq together with Γg1fcpEq Ă Γ

gχ
fcpEq, in view of (iii) (2) Lemma 1.2.3. As a conse-

quence, the Green operators of Nχ with respect to pM, gχq are also Green operators with respect
to pM, g1q. Finally we pass to the existence of the Green operators of N˚χ – where ˚ is here re-
ferred to the volume form of g1 and not gχ – in pM, g1q. Since N˚χ has the same principal symbol

g7χpξ, ξqIdE as Nχ it is normally hyperbolic in pM, gχq and hence Green hyperbolic thereon. With
the same argument used above, we see that the Green operators of N˚χ (with ˚ always referred to
g1) in pM, gχq are also Green operators in pM, g1q.

Remark 2.1.15. We stress that, when g0 ĺ g1 are globally hyperbolic, Nχ and N0 are therefore
Green-hyperbolic second-order differential operators on pM, g1q though they are not normally
hyperbolic thereon. These are examples of second-order linear differential operators which are
Green hyperbolic but not normally hyperbolic in a given globally hyperbolic spacetime.
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2.1.5 General approach to construct Møller maps when g0 ĺ g1

We are in the position to introduce the notion of so-called Møller operator, which we shall later
specialize to the case of a Møller map, namely the claimed (geometric) map which compares the
space of solutions of different normally hyperbolic operators. The novelty of this approach consists
in defining the notion of Møller map in a more general fashion. More in detail, in [27,37,39,90] the
Møller operator was constructed once that a foliation of M in Cauchy hypersurfaces was assigned
and referring to the family of the metrics which are decomposed as in (1.1.1) with respect to that
foliation. Here we shall see, that the construction of a Møller map still requires the choice of
a foliation (associated to some smooth Cauchy time function), but the involved metrics do not
have any particular relationship with the choice of the foliation. Instead they should enjoy some
interplay concerning their light-cone structures which generalizes g ĺ g1 in the sense of paracausal
deformations.

Let us consider a globally hyperbolic spacetime pM, gq equipped with a vector bundle EÑ M
as before. If P : ΓpEq Ñ ΓpEq is a linear differential operator, a family of physically relevant
solutions of the inhomogeneous equation Pf “ h is the linear vector space of spacelike compact
smooth solutions with compactly supported source:

Solgsc,cpPq :“ tf P ΓgscpEq | Pf P ΓcpEqu .

Its subspace corresponding to the solutions of the homogeneous equation Pf “ 0 is denoted by

KergscpPq :“ tf P ΓgscpEq | Pf “ 0u

and it will play a pivotal role in the formulation of linear QFT.
We now specialize the operators P to 2nd-order normally-hyperbolic linear operators N1,N0,Nχ

(2.1.8) over ΓpEq associated to globally hyperbolic metrics g0 ĺ g1 and gχ on the common space-
time manifold M. Our goal is to construct several families of Møller maps, namely linear operators
such that

(a) they are linear space isomorphisms between Solg0sc,cpN0q, Sol
g1
sc,cpN1q, Sol

gχ
sc,cpNχq;

(b) they restrict to isomorphisms to the subspaces Kerg0scpN0q, Ker
g1
scpN1q, Ker

gχ
sc pNχq.

For later convenience, we shall additionally require that the Møller maps preserve also the sym-
plectic forms, which are of interest in applications to linear QFT.

The overall idea is inspired by the scattering theory. We start with two “free theories”, de-
scribed by the space of solutions of normally hyperbolic operators N0 and N1 in corresponding
spacetimes pM, g0q and pM, g1q, respectively, and we intend to connect them through an “inter-
action spacetime” pM, gχq with a “temporally localized” interaction defined by interpolating the
two metrics by means of a smoothing function χ. Here we need two Møller maps: Ω` connecting
pM, g0q and pM, gχq – which reduces to the identity in the past when χ is switched off – and a
second Møller map connecting pM, gχq to pM, g1q – which reduces to the identity in the future
when χ constantly takes the value 1. The “S-matrix” given by the composition S :“ Ω´Ω` will
be the Møller map connecting N0 and N1.

The first step consists of comparing N0 and N1 with Nχ separately to construct the Møller
map. As usual, we denote with E the K-vector bundle over a spacetime pM, gq.

We first start with operators denoted by R˘ defined on the whole space of smooth sections
ΓpEq which is in common for the three metrics on M and next we will restrict these operators to
the special spaces of solutions with spatially compact support and compactly supported sources,
proving that these restrictions Ω˘ are still linear space isomorphisms.

Proposition 2.1.16. Let g0, g1 P GMM be such that g0 ĺ g1 and V g0`
x Ă V g1`

x for all x P M .
Let E be a vector bundle over M and N0,N1 : ΓpEq Ñ ΓpEq be normally hyperbolic operators
associated to g0 and g1 respectively. Choose
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(a) a smooth Cauchy time g1-function t : M Ñ R and χ P C8pM; r0, 1sq such that χppq “ 0 if
tppq ă t0 and χppq “ 1 if tppq ą t1 for given t0 ă t1;

(b) a pair of smooth functions ρ, ρ1 : M Ñ p0,`8q such that ρppq “ 1 for tppq ă t0 and
ρ1ppq “ ρppq “ 1 if tppq ą t1. (Notice that ρ “ ρ1 “ 1 constantly is allowed.)

The following facts are true.

(1) The operators

R` “ Id´ G`ρNχpρNχ ´ N0q : ΓpEq Ñ ΓpEq (2.1.9)

R´ “ Id´ G´ρ1N1
pρ1N1 ´ ρNχq : ΓpEq Ñ ΓpEq (2.1.10)

are linear space isomorphisms, whose inverses are given by

R´1
` “ Id` G`N0

pρNχ ´ N0q : ΓpEq Ñ ΓpEq (2.1.11)

R´1
´ “ Id` G´ρNχpρ

1N1 ´ ρNχq : ΓpEq Ñ ΓpEq . (2.1.12)

(2) It holds
ρNχR` “ N0 and ρ1N1R´ “ ρNχ . (2.1.13)

(3) If f P ΓpEq, then

pR`fqppq “ fppq for tppq ă t0, (2.1.14)

pR´fqppq “ fppq for tppq ą t1 . (2.1.15)

Proof. Observe that ρNχ and ρ1N1 are Green hyperbolic with respect to gχ (as in Theorem 2.1.14)
and g1 respectively according to Theorem 2.1.14 and 2.1.3, and thus they are with respect to g1.
Moreover G˘ρNχ “ G˘Nχρ

´1 and G˘ρ1N1
“ G˘N1

ρ1´1.

(1) If f P ΓpEq, in view of the hypotheses ppρNχ ´ N0qfqppq “ 0 and ppN1 ´ Nχqfqppq “ 0 is
respectively tppq ă t0 and tppq ą t1 where t´1pt0q and t´1pt1q are spacelike Cauchy hypersurfaces
in common for the metrics g0, gχ, g1. Therefore the operators R´ and R` are linear and well
defined on the domain ΓpEq because pρNχ ´ N0qf P Γg1pcpEq Ă Γ

gχ
pc pEq Ă DompG`ρNχq and pρ1N1 ´

ρNχqf P Γg1fcpEq Ă DompG´ρ1N1
q. A similar argument holds for R´1

˘ . To prove bijectivity of R˘ it

suffices to establish that R´1
´ in (2.1.12) is a two-sided inverse of R´ and that R´1

` in (2.1.11) is
a two-sided inverse of R` on ΓpEq:

R´ ˝ R
´1
´ “ R´1

´ ˝ R´ “ Id and R` ˝ R
´1
` “ R´1

` ˝ R` “ Id.

We prove that R´ defined as in (2.1.12) inverts R´ from the right by direct computation:

R´ ˝ R
´1
´ “ pId´ G´ρ1N1

pρ1N1 ´ ρNχqq ˝ pId` G´ρNχpρ
1N1 ´ ρNχqq “

“ Id´ G´ρ1N1
pρ1N1 ´ ρNχq ` G´ρNχpρ

1N1 ´ ρNχq ´ G´ρ1N1
pρ1N1 ´ ρNχqG

´
ρNχ
pρ1N1 ´ ρNχq.

Now, by exploiting the identity

G´ρ1N1
pρ1N1 ´ ρNχqG

´
ρNχ

“ G´ρNχ ´ G´ρ1N1
: Γ

gχ
fcpEq X Γg1fcpEq Ñ ΓpEq,

we can prove our claim

R´ ˝ R
´1
´ “ Id´ G´ρ1N1

pρ1N1 ´ ρNχq ` G´ρNχpρ
1N1 ´ ρNχq ´ pG

´
ρNχ

´ G´ρ1N1
qpρ1N1 ´ ρNχq “ Id .

The proof that R´1
´ is also a left inverse is the same with obvious changes and analogous calcu-

lations show that R´1
` is a left and right inverse of R`.
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(2) Taking advantage of (ia)-(iib) in Definition 2.1.1 and the definition of Nχ and the one of R˘,
a direct computation establishes (2.1.13).
(3) Let us prove (2.1.14). Consider a compactly supported smooth section h whose support is
included in the set t´1pp´8, t0qq. Taking advantage of the former in (2.2.33), we obtain

ż

M
xh,G`ρNχpρNχ ´ N0qfy volgχ “

ż

M
xG´
pρNχq˚

h, pρNχ ´ N0qfy volgχ “ 0

since supppG´
pρNχq˚

hq Ă J
gχ
´ psuppphqq from Definition 2.1.1 and thus that support does not meet

suppppρNχ ´ N0qfq because ppρNχ ´ N0qfqppq vanishes if tppq ă t0. As h is an arbitrary smooth
section compactly supported in t´1pp´8, t0qq,

ż

M
xh,G`ρNχpρNχ ´ N0qfy volgχ “ 0

entails that G`ρNχpρNχ´N0qf “ 0 on t´1pp´8, t0qq. Eventually, the very definition (2.1.9) of G`ρNχ
implies (2.1.14). The proof of (2.1.15) is strictly analogous, so we leave it to the reader.

We can now pass to the second step, namely we perform restrictions of R˘ to the relevant
subspaces of solutions.

Proposition 2.1.17. With the same hypotheses as in Proposition 2.1.16 (in particular χppq “ 0
if tppq ă t0 and χppq “ 1 if tppq ą t1 for given t0 ă t1), we have

R`pSol
g0
sc,cpN0qq “ Sol

gχ
sc,cpNχq and R´pSol

gχ
sc,cpNχqq “ Solg1sc,cpN1q (2.1.16)

and
R`pKer

g0
scpN0qq “ Ker

gχ
sc pNχq and R´pKer

gχ
sc pNχqq “ Kerg1scpN1q . (2.1.17)

As a consequence, the restrictions

Ω` :“ R`|Solg0sc,cpN0q
: Solg0sc,cpN0q Ñ Sol

gχ
sc,cpNχq , Ω0

` : R`|Kerg0sc pN0q
: Kerg0scpN0q Ñ Ker

gχ
sc pNχq ,

Ω´ :“ R´|Solgχsc,cpNχq : Sol
gχ
sc,cpNχq Ñ Solg1sc,cpN1q , Ω0

´ : R´|Kergχsc pNχq : Ker
gχ
sc pNχq Ñ Kerg1scpN1q ,

define linear space isomorphisms such that

ρNχΩ` “ N0 , ρ1N1Ω´ “ ρNχ (2.1.18)

and, for f in the respective domains,

pΩ`fqppq “ fppq , pΩ0
`fqppq “ fppq for tppq ă t0, (2.1.19)

pΩ´fqppq “ fppq , pΩ0
´fqppq “ fppq for tppq ą t1 . (2.1.20)

Before we prove our claim, we need a preparatory lemma.

Lemma 2.1.18. Let P : ΓpEq Ñ ΓpEq be a 2nd order normally hyperbolic differential operator on
the vector bundle E Ñ M on the globally hyperbolic spacetime pM, gq. Let Ψ P ΓpEq be such that
PΨ P ΓcpEq. Then the following facts are equivalent.

(a) Ψ P ΓgscpEq;

(b) there is a spacelike Cauchy hypersurface of pM, gq such that Ψ has compactly supported
Cauchy data thereon.
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Proof. If Ψ P ΓgscpEq then, by definition, (b) is true. Suppose that (b) is true for Σ0. According
to Theorem 2.1.7, Ψ is the unique solution of the Cauchy problem whose equation is PΨ “ f,
where f P ΓcpEq. As a consequence the support of Ψ completely lies in JpsupppfqqYJpsuppph0qqY

Jpsuppph1qq Ă JpKq where h0 and h1 are the Cauchy data of Ψ on Σ0 and K :“ supppfq Y
suppph0q Y Jpsuppph1q. In particular K is compact. In view of well known properties of globally
hyperbolic spacetimes (see e.g. [4, Proposition 1.2.56]), since K is compact JpKq XΣ is compact
for every Cauchy hypersurface Σ of pM, gq so that Ψ P ΓgscpEq.

Proof of Proposition 2.1.17. R˘ and R´1
˘ are bijective on ΓpEq. As a consequence (2.1.16) and

thesis for Ω˘, including (2.1.18) which is a specialization of (2.1.13), immediately arise when
proving that

R`pSol
g0
sc,cpN0qq Ă Sol

gχ
sc,cpNχq , R´1

` pSol
gχ
sc,cpNχqq Ă Solg0sc,cpN0q (2.1.21)

and
R´pSol

gχ
sc,cpNχqq Ă Solg1sc,cpN1q , R´1

´ pSol
g1
sc,cpN1qq Ă Sol

gχ
sc,cpNχq

The identities in (2.1.17) and the thesis for Ω0
˘ immediately arises by bijectivity of the linear

maps Ω˘ and (2.1.18) where we know that ρ, ρ1 ą 0. To conclude, let us establish the first
inclusion in (2.1.21), the remaining three inclusions have a strictly analogous proof. Suppose
that f P Solg0sc,cpN0q. Hence ρNχR`f “ N0f P ΓcpEq and NχR`f “ ρ´1N0f P ΓcpEq. Next pass to
consider the Cauchy hypersurfaces of t which are in common with the three considered metrics
g0, g1, gχ and choose t1 ă t0. (3) in Proposition 2.1.16 yields pR`fqpt

1, xq “ fpt1, xq where x P Σt1 .
The Cauchy data of f on Σt1 have compact support because f P Solg0sc,cpN0q. On the ground
of Lemma 2.1.18, noticing that Nχ is normally hyperbolic in pM, gχq, referring to the Cauchy
problem on Σt1 for the equation NχR`f “ ρ´1N0f P Γ

gχ
c pEq in the spacetime pM, gχq, we conclude

that R`f P Γ
gχ
sc,cpEq because its Cauchy data on Σt1 (now interpreted as a Cauchy hypersurface

for gχq have compact support as they coincide with the ones of f itself.

2.1.6 General Møller maps for paracausally related metrics

We are now in a position to state a result regarding the existence of Møller maps between two
normally hyperbolic operators N0 and N1 on respective globally hyperbolic spacetimes over the
same manifold (and vector bundle) whose metrics are ĺ comparable. The final goal is to extend
the results to pairs of paracausally related metrics.

Proposition 2.1.19. Let g0, g1 P GMM be such that either g0 ĺ g1 or g1 ĺ g0 with, respectively,
either V g0`

x Ă V g1`
x for all x P M or V g1`

x Ă V g0`
x for all x P M . Let E be a vector bundle over

M and N0,N1 : ΓpEq Ñ ΓpEq be normally hyperbolic operators associated to g0 and g1 respectively.
There exist (infinitely many) vector space isomorphisms,

S : Solg0sc,cpN0q Ñ Solg1sc,cpN1q

such that, for some smooth function µ : M Ñ p0,`8q depending on S (which can be chosen
µ “ 1),

(1) referring to the said domains,

µN1S “ N0 and µ´1N0S
´1 “ N1

(2) the restriction S0 :“ S|Kerg0sc pN0q
defines a vector space isomorphism

S0 : Kerg0scpN0q Ñ Kerg1scpN1q .
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Proof. First consider the case g0 ĺ g1. Referring to a smooth Cauchy time function t of pM, g1q

and a smoothing function χ, S :“ Ω´Ω` constructed as in Proposition 2.1.17 satisfies all the
requirements trivially for µ :“ ρ1. The previous result is also valid for g1 ĺ g0. It is sufficient
to construct Ω˘ as in Proposition 2.1.17, but using g1 as the initial metric and g0 as the final
one, and eventually defining µ :“ ρ´1, S :“ pΩ´Ω`q

´1 “ Ω´1
` Ω´1

´ , and S0 :“ pΩ0
´Ω0

`q
´1 “

pΩ0
`q
´1pΩ0

´q
´1.

We can pass to the generic case g » g1, obtaining the first main result of this work.

Theorem 2.1.20. Let pM, gq and pM, g1q be globally hyperbolic spacetimes, E a vector bundle over
M and N,N1 : ΓpEq Ñ ΓpEq normally hyperbolic operators associated to g and g1 respectively.
If g » g1, then there exist (infinitely many) vector space isomorphisms, called Møller maps of
g, g1 (with this order),

S : Solgsc,cpNq Ñ Solg
1

sc,cpN
1q

such that

(1) referring to the said domains,
µN1S “ N

for some smooth µ : MÑ p0,`8q (which can be always taken µ “ 1 constantly in particu-
lar),

(2) the restriction S0 :“ S|KergscpNq (also called Møller map of g1, g1) defines a vector space
isomorphism

S0 : KergscpNq Ñ Kerg
1

scpN
1q .

Proof. First of all we notice that there always exists a normally hyperbolic operator N on E
associated to every g P GMM : For instance the connection-d’Alembert operator in [4, Example
2.1.5] referred to a generic connection ∇ on E, which always exists, and the Levi-Civita connection
on pM, gq. Let us consider a sequence g0 “ g, g1, . . . , gN “ g1 of globally hyperbolic metrics
on M satisfying Definition 1.3.1 and a corresponding sequence of formally selfadjoint normally
hyperbolic operators Nk with N0 :“ N and NN :“ N1. We can apply Proposition 2.1.19 for each
pair gk, gk`1 for k “ 0, 1, . . . , N ´ 1. It turns immediately out that, with an obvious notation,

S :“ SN´1SN´2 ¨ ¨ ¨ S0 , µ :“ µ0 ¨ ¨ ¨µN´1 , where µkNk`1Sk “ Nk k “ 0, . . . N ´ 1 .

satisfies the thesis of the theorem, where either Sk :“ Ωk´Ωk`, µk :“ ρk or Sk :“ pΩk`q
´1pΩk´q

´1,
µk :“ ρ´1

k according to gk ĺ gk`1 or gk`1 ĺ gk respectively. With the same convention it results
that S0 “ S0

N´2S
0
N´1 ¨ ¨ ¨ S

0
0 where either S0

k “ Ω0
k´Ω0

k` or Sk “ pΩ
0
k`q

´1pΩ0
k´q

´1 according to the
discussed cases.

Moreover the Møller maps S0 as in Theorem 2.1.20 preserve the symplectic forms of the
normal operators they relate when these operators are formally selfadjoint.

Theorem 2.1.21. Consider g, g1 P GHM with respectively associated normally hyperbolic oper-
ators N, N1 on the K-vector bundle E over M. If g1 » g and N and N1 are formally selfadjoint
with respect to a non-degenerate, Hermitian fiber metric x¨ | ¨y, then there are Møller maps S0

satisfying the thesis of Theorem 2.1.20 such that

σN
1

g1 pS
0Ψ,S0Φq “ σNg pΨ,Φq for every Ψ,Φ P KergscpNq,

where we used the notation σNg in place of σN
pM,gq.
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Proof. It is sufficient to prove the thesis for the maps Ω0
˘ referred to two metrics g0 ĺ g1, which

immediately implies the thesis also for the inverse maps pΩ0
˘q
´1 they being isomorphisms. Indeed,

according the proof of Theorem 2.1.20, the isomorphisms S0 are compositions of various copies
of Ω0

˘ and their inverses. Let us consider Ω0
` : KerscpN0q Ñ KerscpNχq and we prove the thesis

for it, the other case being very similar. Consider a smooth Cauchy time function t for g1 and
the associated foliation made of spacelike Cauchy hypersurfaces Σt in common for g0, g1, and gχ.
If the smoothing function χ used to build up gχ and Nχ vanishes before t0 and we use Σt with
t ă t0 to compute the relevant symplectic forms, due to (2.2.31),

σ
Nχ
gχ pΩ

0
`Ψ,Ω0

`Φq “ σN0
g0 pΨ,Φq for every Ψ,Φ P Kerg0scpN0q.

Above, we have used the definition of the symplectic form, we have noticed that gχ “ g0 around Σt

and that the N0 and Nχ compatible connections must coincide there as they are locally defined
and uniquely determined by N0Ψ “ NχΨ “ p´trgp∇∇q ` cqΨ for every smooth Ψ compactly

supported around a point p with tppq ă t0. Thinking of σ
Nχ
gχ pΩ

0
`Ψ,Ω0

`Φq as defined in pM, gχq
and of σN0

g0 pΨ,Φq as defined in pM, g0q, though both computed on Σt with t ă t0, Proposition
2.1.12 concludes the proof.

Definition 2.1.22. We call symplectic Møller map any linear isomorphism defined in accor-
dance with Theorem 2.1.21.

2.1.7 Adjoint operators

We pass now to prove how it is possible to choose the functions ρ and ρ1 affecting the definitions
(2.1.9)-(2.1.10) of R˘ in order to satisfy a further requirement with some crucial implications in
QFT: the preservation of the causal propagator of two operators N and N1 when the associated
metrics are paracausally related. Essentially speaking, a Møller map satisfying this further re-
quirement will be named Møller operator.
To study the relation between Møller maps and the causal propagator of normally hyperbolic
operators defined on a vector bundle equipped with a non-degenerate (Hermitian) fiber metric,
we need a suitable notion of adjoint operator which generalizes the notion of formal adjoint of
differential operators.

Let E be a K-vector bundle on the oriented manifold M equipped with a non-degenerate,
symmetric if K “ R or Hermitian if K “ C, fiber metric x¨ | ¨y. Suppose that g and g1 (possibly
g ‰ g1) are Lorentzian metrics on M. Consider a K-linear operator

T : DompTq Ñ ΓpEq ,

where DompTq Ă ΓpEq is a K-linear subspace and DompTq Ą ΓcpEq.

Definition 2.1.23. An operator

T:gg1 : ΓcpEq Ñ ΓcpEq

is said to be the adjoint of T with respect to g, g1 (with the said order) if it satisfies

ż

M
xhpxq | pTfqpxqyvol g1pxq “

ż

M
x

´

T:gg1h
¯

pxq | fpxqyvol gpxq @f P DompTq , @h P ΓcpEq.

Notation 2.1.24. If g “ g1 then we shall denote the adjoint of T with respect to g simply as
T:g .

We prove below that T:gg1 is unique if it exists so that calling it “the” adjoint operator of T
is appropriate.
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Remark 2.1.25. If T : DompTq Ñ ΓpEq is defined as in Definition 2.1.23 and T:gg1 exists, then
ż

M
xh |Tfnyvol g1 Ñ 0 @h P ΓcpEq as ΓcpEq Q fn Ñ 0 for nÑ `8 in the topology of test sections [4].

Vice versa, this only condition is not sufficient to guarantee the existence of T:gg1 as a ΓcpEq-
valued operator. Using a straightforward extension of the Schwartz kernel theorem, the condition
above just implies the existence of a weaker version of T:gg1 which is distribution-valued.

From now on if T : DompTq Ñ ΓpEq and T1 : DompT1q Ñ ΓpEq, we define the standard
domains of their compositions as follows, where a P K.

(a) DompaTq :“ DompTq – or DompaTq :“ ΓpEq if a “ 0 – is the domain of aT defined pointwise;

(b) DompT` T1q :“ DompTq X DompT1q is the domain of T` T1 defined pointwise;

(c) DompT1 ˝ Tq :“ tf P DompTq | Tpfq P DompT1qu is the domain of T1 ˝ T.

Proposition 2.1.26. Referring to the notion of adjoint in Definition 2.1.23, the following facts
are valid.

(1) If the adjoint T:gg1 of T exists, then it is unique.

(2) If T : ΓpEq Ñ ΓpEq is a differential operator and g “ g1, then T:gg exists and is the
restriction of the formal adjoint to ΓcpEq. (In turn, the formal adjoint of T: is the unique
extension to ΓpEq of the differential operator T: as a differential operator)

(3) Consider a pair of K-linear operators T : DompTq Ñ ΓpEq, T1 : DompT1q Ñ ΓpEq and
a, b P K. Then

paT` bT1q:gg1 “ aT:gg1 ` bT1:gg1

provided T:gg1 and T1:gg1 exist.

(4) Consider a pair of K-linear operators T : DompTq Ñ ΓpEq and T1 : DompT1q Ñ ΓpEq such
that

(i) DompT1 ˝ Tq Ą ΓcpEq,

(ii) T:gg1 and T1:g1g2 exist,

then pT1 ˝ Tq:gg2 exists and

pT1 ˝ Tq:gg2 “ T:gg1 ˝ T1:g1g2 .

(5) If T:gg1 exists, then pT:gg1 q:g1g “ T|ΓcpEq.

(6) If T : DompT q “ ΓpEq Ñ ΓpEq is bijective, admits T:gg1 , and T´1 admits pT´1q
:g1g , then

T:gg1 is bijective and pT´1q
:g1g “ pT:gg1 q´1.

Proof. We write below : in place of :gg1 if it is not strictly necessary to specify the metrics.
To prove (1) let’s assume that, fixed an operator T : DompTq Ñ ΓpEq there exist two different
adjoints T:1,T

:
2 : ΓcpEq Ñ ΓcpEq both satisfying definition 2.1.23, i.e.

ż

M
xT:1h | fy vol g “

ż

M
xT:2h | fy vol g

for all f P DompTq and all h P ΓcpEq. Then by linearity of the integration and (anti) linearity of
the product, the former identity is equivalent to

ż

M
xT:1h´ T:2h | fy vol g “ 0.
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Since ΓcpEq Ă DompTq, the thesis follows by reducing to every fixed local trivialization over every
arbitrarily fixed coordinate patch U on M. Restricting to U , the equation above can be recast to

ż

U

N
ÿ

a“1

pT:1h´ T:2hq
appqfappq vol gppq “ 0.

where fappq is a fiber component of x¨ | fyp P E˚p with p P U . Since U Q p ÞÑ pT:1h ´ T:2hq
appq is

continuous and U Q p ÞÑ fappq is smooth, compactly supported (with support in U) and arbitrary
(because x¨ | ¨y is non-degenerate), the fundamental lemma of calculus of variations implies that
U Q p ÞÑ pT:1h ´ T:2hq

appq is the zero function for a “ 1, . . . , N . Since U can be fixed as a
neighbourhood of every point of M, (1) follows.

The proof of (2) and (3) is obvious: (2) follows by comparing definitions 2.1.23 and 2.1.9, while
(3) follows by direct computation checking that aT: ` bT1: satisfies the definition of paT` bT1q:

(notice that ΓcpEq Ă DompaT: ` bT1:q if T: and T1: exist).
To prove (4), since the composition is well defined on a suitable domain, we can just use twice

the definition 2.1.23

ż

M
xh |T1 ˝ Tfy vol g2 “

ż

M
xT1:g1g2h |Tfy vol g1 “

ż

M
xT:gg1 ˝ T1:g1g2h | fy vol g

for all f P DompT1 ˝ Tq and all h P ΓcpEq: notice that using the definition of the adjoint in
the second equality is possible because T1:g1g2 : ΓcpEq Ñ ΓcpEq. The found identity proves that
T:gg1 ˝ T1:g1g2 satisfies the definition of pT1 ˝ Tq:gg2 ending the proof of (4).

(5) is true because, if T:gg1 : ΓcpEq Ñ ΓcpEq exists, then T|ΓcpEq satisfies the definition of

pT:gg1 q:g1g .
Finally, (6) arises by taking the :gg adjoint of both sides of the identity T ˝ T´1 “ I and the

:g1g1 adjoint of both sides of the identity T´1 ˝ T “ I and taking (4) into account.

2.1.8 Møller operators and causal propagator

We are in a position to state one of the most important results of this work by specializing the
isomorphisms introduced in Theorem 2.1.20 by means of a suitable choice of the function µ. As
a matter of fact (1) and (3) have been already established in Theorem 2.1.20.

Theorem 2.1.27. Let E be K-vector bundle over the smooth manifold M with a non-degenerate,
real or Hermitian depending on K, fiber metric x¨ | ¨y. Consider g, g1 P GHM with respectively
associated normally hyperbolic formally-selfadjoint operators N, N1.
If g » g1, then it is possible to define (in infinite ways) a K-vector space isomorphism R : ΓpEq Ñ
ΓpEq, called Møller operator of g, g1 (with this order), such that the following facts are true.

(1) The restrictions to the relevant subspaces of ΓpEq respectively define Møller maps (hence
linear isomorphisms) as in Theorem 2.1.20.

R|Solgsc,cpNq “ S : Solgsc,cpNq Ñ Solg
1

sc,cpN
1q and R|KergscpNq “ S0 : KergscpNq Ñ Kerg

1

scpN
1q .

(2) The causal propagators GN1 and GN, respectively of N1 and N, satisfy

RGNR
:gg1 “ GN1 . (2.1.22)

(3) By denoting c1 the smooth function such that vol g1 “ c1 vol g, we have

c1N1R “ N . (2.1.23)

(4) It holds
R:gg1N1|ΓcpEq “ N|ΓcpEq .
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(5) The maps R:gg1 : ΓcpEq Ñ ΓcpEq and pR:gg1 q´1 “ pR´1q
:g1g : ΓcpEq Ñ ΓcpEq are continuous

with respect to the natural topologies of ΓcpEq in the domain and in the co-domain.

Remarks 2.1.28. Before we prove our claim we want to underline the following:

(1) Any Møller operator defines a symplectic Møller map (cf. Definition 2.1.22). Indeed, the
preservation of the causal propagator (cf. (2) in Theorem 2.1.27) implies that the symplectic
forms are preserved in view of Proposition 2.1.13. However, the converse is false since the
preservation of the causal propagator relies upon a suitable choice of the function ρ, whereas
this choice is immaterial for the preservation of the symplectic forms.

(2) Møller operators can be explicitly constructed as follows. If g1 » g, and referring to a
finite sequence of metrics g0 :“ g, g1, . . . , gN :“ g1 P GHM as in Definition 1.3.1, then there
exists a corresponding sequence of formally selfadjoint gk-normally hyperbolic operators
N0 :“ N,N1, . . . ,NN :“ N1 : ΓpEq Ñ ΓpEq such that

R “ RN´1 ¨ ¨ ¨R0 , (2.1.24)

is a Møller operator of g, g1 where

Rk :“ R
pkq
´ R

pkq
` if gk ĺ gk`1 or Rk :“ pR

pkq
` q

´1pR
pkq
´ q

´1 if gk`1 ĺ gk. (2.1.25)

Above, for every given k, R
pkq
˘ are defined as R˘ as in Equations (2.1.9) and (2.1.10) where

(i) N0 is replaced by Nk and N1 is replaced by Nk`1 if gk ĺ gk`1,

(ii) N0 is replaced by Nk`1 and N1 is replaced by Nk if gk`1 ĺ gk,

(iii) ρ :“ cχ0 , and ρ1 :“ c1
0 (assuming vol gχ “ cχ0 vol g0 and vol g1 “ c1

χvol gχ).

The smooth Cauchy time function χ in (2.1.9) and (2.1.10) can be chosen arbitrarily and
depending on k in general. The final Møller operator R of g, g1 also depends on all the made
choices.

Proof of Theorem 2.1.27. We divide the proof into several steps.
(1)-(3) Let us first prove the thesis for the special case of g “ g0 ĺ g1 “ g1, with V g0`

x Ă V g1`
x

for all x P M, and specialize the definition of the isomorphisms (2.1.9) and (2.1.10) to

R` “ Id´ G`
cχ0Nχ

pcχ0Nχ ´ N0q : ΓpEq Ñ ΓpEq (2.1.26)

R´ “ Id´ G´
c10N1

pc1
0N1 ´ c

χ
0Nχq : ΓpEq Ñ ΓpEq (2.1.27)

where
vol gχ “ cχ0 vol g0 and vol g1 “ c1

0vol g0

It is easy to see that
pcχ0Nχq

:g0 “ cχ0Nχ and pc1
0N1q

:g0 “ c1
0N1 . (2.1.28)

Our goal is to prove that the isomorphism R :“ R´R` : ΓpEq Ñ ΓpEq satisfies the thesis.
Per direct inspection, applying the definition of adjoint operator and taking advantage of (2.1.28),
Proposition 2.1.3, and (2.1.4), we almost immediately have that

R
:g0
` “ Id´ pcχ0Nχ ´ N0qG

´

cχ0Nχ
|ΓcpEq and R

:g0
´ “ Id´ pc1

0N1 ´ c
χ
0NχqG

`

c10N1
|ΓcpEq . (2.1.29)

Again per direct inspection we see that

cχ0NχR` “ N0 and c1
0N1R´ “ cχ0Nχ

and thus
c1

0N1R “ c1
0N1R´R` “ N0
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as wanted.
As we prove below, the following identities are valid

R`GN0R
:g0
` “ Gcχ0Nχ and R´Gcχ0NχR

:g0
´ “ Gc10N1

“ GN1pc
1
0q
´1 (2.1.30)

so that
R´R`GN0R

:g0
` R

:g0
´ “ GN1pc

1
0q
´1

which is equivalent to
R´R`GN0pR´R`q

:g0 c1
0 “ GN1 .

On the other hand, we have
A:g0 c1

0 “ A:g0g1

so that
RGN0R

:g0g1 “ R´R`GN0pR´R`q
:g0g1 “ GN1 .

To conclude the proof of (1)-(3) for the case g “ g0 ĺ g1 “ g1 we prove (2.1.30).
Since GN0 is defined as the difference of the advanced and retarded Green operators restricted to
compact sections, we perform the computation separately for the two operators.

We start from R`GN0 |ΓcpEqR
:g0
` : the adjoint of the Møller operator is defined over ΓcpEq and

gives back compactly supported sections, then the advanced Green operator maps a compactly
supported section f P ΓcpEq to a solution such that supp pG`N0

fq Ă J`0 psupp pfq Ă J`χ psupp pfqq,
where the last inclusion is due to the crucial hypothesis g0 ĺ gχ ĺ g1. Now since supp pfq is
compact the smooth Cauchy time function t attains a minimum t0 P R therein, so we choose a
common smooth Cauchy hypersurface Σt1 of the foliation induced by t such that t1 ă t0 and
deduce that supp pG`N0

fq Ă J`χ psupp pfqq Ă J`χ pΣt1q which implies by [4, Lemma 1.2.61] that

G`N0
f P ΓχpcpEq.

Omitting the restriction of the domain of the causal propagators from the notation for sake of
clarity, but having in mind that it is crucial for the validity of the argument, we obtain:

R`G
`
N0
“ G`N0

´G`
cχ0Nχ

cχ0NχG
`
N0
`G`

cχ0Nχ
N0G

`
N0
“ G`

cχ0Nχ
.

A similar reasoning proves that

G´N0
R
:g0
` “ G´

cχ0Nχ
.

where now the restriction of the domains of the causal propagators to compactly supported
sections is assumed from the definition of the adjoint. Collecting together the two identities
found, we have

R`GN0R
:g0
` “ pR`G

`
N0
´G´N0

R
:g0
` q `M “ Gcχ0Nχ `M ,

with, where both sides have to be computed on compactly supported sections,

M :“ pId´ R`qG
´
N0
R
:g0
` ´ R`G

`
N0
pId´ R

:g0
` q .

A direct evaluation of M using (2.1.26) and the former in (2.1.29) shows that M “ 0. All that
establishes the first identity in (2.1.30), while the latter follows by almost identical facts.
Let us pass to prove (1)-(3) for the case g1 ĺ g0, with V g1`

x Ă V g0`
x for all x P M. First of all we

observe that from the previously treated case (g0 ĺ g1) we have c0
1N0R

´1 “ N1 where c0
1 “ pc

0
1q
´1

and vol g0 “ c0
1vol g1 . Interchanging the names of g0 and g1, this result implies that (2.1.23) is

true for g1 ĺ g0 when using R´1 in place of R. An analogous procedure proves (2.1.22) for the
case g1 ĺ g0 from the same equation, already established, valid when g0 ĺ g1. Also in this case
the relevant Møller operator is R´1. To this end, we have only to prove that pR´1q:g1g0 exists and
coincides to pR:g0g1 q´1. Indeed, under these assumptions (2.1.22) implies

N1 “ R´1N0pR
:g0g1 q´1 “ R´1N0pR

´1q:g1g0
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which is our thesis when interchanging g0 and g1. This fact that pR´1q:g1g0 “ pR:g0g1 q´1 actually
can be established exploiting (6) in 2.1.26: R is bijective over ΓpEq, and admits the adjoint R:g0g1 ,
so if the inverse R´1 admits the adjoint pR´1q:g1g0 , then R:g0g1 is bijective and its inverse is such
that pR:g0g1 q´1 “ pR´1q:g1g0 . Let us prove that R´1 admits adjoint (with respect to any metric
among g0, gχ, g1 since the existence of the adjoint with respect one of them trivially implies the
existence of the adjoint with respect to the other metrics) to end the proof for the case g1 ĺ g0.
By recalling that R´1 “ R´1

` ˝R´1
´ it suffices to show that R´1

` and R´1
´ both admit adjoints. We

explicitly give the g0-adjoint of R´1
` the other case being analogous,

pR´1
` q

:g0 “ Id` pcχ0Nχ ´ N0qG
´
N0
|ΓcpMq .

Let us pass to the proof of (1)-(3) for the general case g » g1 also establishing the last part of
the thesis. In this case there is a sequence g0 “ g, g1, . . . , gN “ g1 of globally hyperbolic metrics
on M satisfying Definition 1.3.1 and a corresponding sequence of selfadjoint normally hyperbolic
operators Nk with N0 :“ N and NN :“ N1. (This sequence always exists because, for every globally
hyperbolic metric g, there is a normally hyperbolic operator N as proved in the proof of Theorem
2.1.20. The operator rN :“ 1

2pN`N:gq is simultaneously formally selfadjoint with respect to x¨ | ¨y
and normally hyperbolic.) Taking advantage of the validity of the thesis in the cases g ĺ g1 and
g1 ĺ g, using in particular (4) and (6) in Proposition 2.1.26, one immediately shows that we can
build a Møller map for a paracausal deformation of metrics just by defining R as the composition
of the various similar operators defined for each copy gk, gk`1 as in (2.1.24) and (2.1.25).

(4) If f P ΓcpEq,

R:gg1N1f “ R:gg1N1:g1 f “ pN1Rq:gg1 f “

ˆ

1

c1
N

˙:gg1

f “ N:g f “ Nf .

(5) It is sufficient to prove the thesis for the case g “ g0 ĺ g1 “ g1 and for R
:g0
` . The

case of R
:g0
´ is analogous. In the case g1 ĺ g0 one uses the inverses of the operators above,

and all remaining cases are proved just by observing that the considered Møller operators are

compositions of the elementary operators R
:g0
˘ and/or their inverses and smooth functions used

as multiplicative operators. We know that

R
:g0
` “ Id´ pcχ0Nχ ´ N0qG

´

cχ0Nχ
|ΓcpEq .

The identity operator has already the requested continuity property so that we have only to focus
on the second addend using the fact that a linear combination of continuous maps is continuous
as well. The map G´

cχ0Nχ
|ΓcpEq : ΓcpEq Ñ ΓpEq is continuous with respect to the natural topologies

of the domain and co-domain (see e.g. [4, Corollary 3.6.19 ]). Since pcχ0Nχ ´ N0q is a smooth
differential operator pcχ0Nχ ´ N0qG

´

cχ0Nχ
|ΓcpEq : ΓcpEq Ñ ΓpEq is still continuous. To conclude the

proof it is sufficient to prove that if ΓcpEq Q fn Ñ 0 in the topology of ΓcpEq and K Ą supppfnq for
all n P N is a compact set, then there is a compact setK 1 such thatK 1 Ą suppppcχ0Nχ´N0qG

´

cχ0Nχ
fnq

for all n P N. If t : M Ñ R is the Cauchy temporal function of g1 used to construct R` and R´,
whose level sets Στ :“ t´1pτq are Cauchy hypersurfaces for g0, gχ, g1 and gχ “ g0 in the past of

Σt0 , then the set J
pM,gχq
´ pKq X D

pM,gχq
` pΣt0q, which is compact for known properties of globally

hyperbolic spacetimes, includes all supports of pcχ0Nχ ´ N0qG
´

cχ0Nχ
fn from the very definition of

retarded Green operator also using the fact that pcχ0Nχ ´ N0q vanishes in the past of Σt0 .

As a by-product of Theorem 2.1.27 we get a technical, but important, corollary.

Corollary 2.1.29. Consider g, g1, g2 P GHM, corresponding formally selfadjoint and normally
hyperbolic operators N,N1,N2 on the K-vector bundle E on M equipped with a non-degenerate,
Hermitian, fiberwise metric. Assume that g » g1 and g1 » g2 and suppose that Rgg1 is a Møller
operator of g, g1 and Rg1g2 is a Møller operator of g1, g2 according to (2.1.24). The following facts
are true.
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(1) R´1
gg1 is a Møller operator of g1, g.

(2) Rgg1Rg1g2 is a Møller operator of g1, g2.

Proof. It is immediate form the construction of R described at the end of Theorem 2.1.27 relying
on (2.1.24).

Remark 2.1.30. Observe that the construction of the Møller operator R of g0, g1, for g0 ĺ g1, as
R “ R´R` we used several times in this work is nothing but an elementary case of (2). Indeed,
in that case, g0 ĺ gχ ĺ g1 and R`, R´ are, respectively, a Møller operator of g0, gχ and gχ, g1.

2.2 The Proca field

In this section we apply the same construction to the Proca operator. Below, G˘P denote the
retarded and advanced Green operators of the Proca equation (2.2.3), we shall discuss in 2.2.6.
The symbol κg1g denotes a linear fiber-preserving isometry from the spaces of smooth sections
ΓpVgq to ΓpVg1q constructed in 2.2.5. Here, Vg indicates the vector bundle of real 1-forms over
the spacetime pM, gq whose sections are the argument of the Proca operator P. The main result
can be summarized as follows.

Theorem 3 (Theorems 2.1.20 and 2.2.14). Let pM, gq and pM, g1q be globally hyperbolic space-
times, with associated real Proca bundles Vg and Vg1 and Proca operators P,P1.
If the metric are paracausally related g » g1, then there exists a R-vector space isomorphism
R : ΓpVgq Ñ ΓpVg1q, called Møller operator of g, g1 (with this order), such that the following
facts are true.

(1) The restriction, called Møller map

S0 :“ R|KerscpPq : KerscpPq Ñ KerscpP
1q

is well-defined vector space isomorphism with inverse given by

pS0q´1 :“ R´1|KerscpP1q : KerscpP
1q Ñ KerscpPq .

(2) It holds κgg1P
1R “ P.

(3) The causal propagators GP :“ G`P ´ G´P and GP1 :“ G`P1 ´ G´P1, respectively of P and P1,

satisfy RGPR
:gg1 “ GP1 .

(4) It holds R:gg1P1κg1g|ΓcpVgq “ P|ΓcpVgq, where the adjoint :gg1 is defined in Definition 2.1.23.

2.2.1 The Proca operator as a constrained Klein Gordon field

We will frequently deal with real smooth k-forms f, h P ΩkpMq, where k “ 0, . . . , n “ dimM (and
one usually adds Ωn`1pMq “ Ω´1pMq “ t0u). The Hodge real inner product can be computed
by integrating the fiberwise product with respect to the volume form induced by g:

pf|hqg,k :“

ż

M
f^ ˚h “

ż

M
g7
pkqpf, hq vol g ,

where at least one of the two forms has compact support and g7
pkq is the natural inner product of

k-forms induced by g. This symmetric real scalar product p¨|¨qg,k is always non-degenerate but it
is not positive when g is Lorentzian as in the considered case. It is positive when g is Riemannian.
If k “ 1, we simply write

pf|hqg “

ż

M
g7pf, hq vol g . (2.2.1)
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In this context, dpkq : ΩkpMq Ñ Ωk`1pMq is the exterior derivative and δ
pkq
g : ΩkpMq Ñ Ωk´1pMq is

the codifferential operator acting on the relevant spaces of smooth k-forms ΩkpMq on M depending

on the metric g on M. dpkq and δ
pk`1q
g are the formal adjoint of one another with respect to the

Hodge product (2.2.1) in the sense that

pdpkqf|hqg,k`1 “ pf|δ
pk`1q
g hqg,k , @f P ΩkpMq , @h P Ωk`1pMq if f or h is compactly supported.

We will often omit the indices g,k and pkq referring to the metric and the order of the used forms,
when the choice of the used metric and order will be obvious from the context.

If pM, gq is globally hyperbolic, we call Proca bundle the real vector bundle Vg :“ pT˚M, g7q
obtained by endowing the cotangent bundle with the fiber metric given by the dual metric g7

(also appearing in (2.2.1)) defined by

g7pωp, ω
1
pq :“ gp7ωp, 7ω

1
pq for every ω, ω1 P ΓpT˚Mq and p P M,

where 7 : ΓpT˚Mq Ñ ΓpTMq is the standard musical isomorphism.
By construction ΓpVgq “ Ω1pMq and ΓcpVgq “ Ω1

cpMq. Here and henceforth Ωk
c pMq Ă ΩkpMq

is the subspace of compactly supported real smooth k-forms on M.
The formally selfadjoint Proca operator P on pM, gq is defined by choosing a (mass) constant

m ą 0, the same for all globally hyperbolic metrics we will consider on M in this work,

P “ δd`m2 : ΓpVgq Ñ ΓpVgq, (2.2.2)

where d :“ dp1q, δ :“ δ
p2q
g . Actually P depends also on g, but we shall not indicate those

dependencies in the notation for the sake of shortness.
The Proca equation we shall consider reads

PA “ 0 for A P ΓscpVgq , (2.2.3)

where, as said above, ΓscpVgq is the space of real smooth 1-forms which have compact support
on the Cauchy surfaces of the globally hyperbolic spacetime pM, gq.

We pass to tackle the issue of normal hyperbolicity of P. As we shall see here, it is not really
necessary to construct the Møller maps, and the weaker requirement of Green hyperbolicity is
sufficient.

Let N be the Klein-Gordon operator associated to the Proca operator P (2.2.2) acting on
1-forms

N :“ δd` dδ `m2 : ΓpVgq Ñ ΓpVgq . (2.2.4)

Notice that this operator is normally hyperbolic: its principal symbol σN satisfies

σNpξq “ ´g
7pξ, ξq IdVg for all ξ P T˚M, where IdVg is the identity automorphism of Vg.

(2.2.5)
Therefore the Cauchy problem for N is well-posed [3, 6]. Both N and P are formally selfadjoint
with respect to the Hodge scalar product (2.2.1) on Ω1

cpMq “ ΓcpVgq.

Since m2 ą 0 and δ
p1q
g δ

p2q
g “ 0, it is easy to prove that the Proca equation (2.2.3) is equivalent

to the pair of equations

NA “ 0 , for A P ΓscpVgq , (2.2.6)

δA “ 0 . (2.2.7)

As already noticed, differently from N, the Proca operator is not normally hyperbolic. However,
it is Green hyperbolic [3, 6, 12] as N, i.e. there exist linear maps, dubbed advanced Green
operator G`P : ΓpcpVgq Ñ ΓpVgq and retarded Green operator G´P : ΓfcpVgq Ñ ΓpVgq uniquely
defined by the requirements
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(i.a) G`P ˝ P f “ P ˝ G`P f “ f for all f P ΓpcpVgq ,

(ii.a) supp pG`P fq Ă J`psupp fq for all f P ΓpcpVgq;

(i.b) G´P ˝ P f “ P ˝ G´P f “ f for all f P ΓfcpVgq,

(ii.b) supp pG´P fq Ă J´psupp fq for all f P ΓfcpVgq;

The causal propagator of P is defined as

GP :“ G`P ´ G´P : ΓcpVgq Ñ ΓscpVgq . (2.2.8)

All these maps are also continuous with respect to the natural topologies of the definition spaces
[12]. As a matter of fact (see [12, Proposition 3.19] and also [6]), the advanced and retarded
Green operator G˘P : Γpc{fcpVgq Ñ Γpc{fcpVgq can be written as

G˘P :“

ˆ

Id`
dδ

m2

˙

G˘N “ G˘N

ˆ

Id`
dδ

m2

˙

where G˘N are the analogous Green operators for the Klein-Gordon operator N. Therefore

GP :“

ˆ

Id`
dδ

m2

˙

GN “ GN

ˆ

Id`
dδ

m2

˙

. (2.2.9)

The fact that P is Green hyperbolic can be proved just by checking that the operators above
satisfy the requirements which define the Green operators as stated above, using the analogous
properties for G˘N .

Eq. (2.2.9) and the analogous properties for GN entail

GPpΓcpVgqq “ tA P ΓscpVgq | PA “ 0u . (2.2.10)

Indeed, if PA “ 0 then NA “ 0 and δA “ 0. If A P ΓscpVgq, [87, Theorem 3.8] implies A “ GNf
for some f P ΓcpVgq, so that A “

`

Id` dδ
m2

˘

A “ GPf as said.
Furthermore,

KerGP “ tPg | g P ΓcpVgqu . (2.2.11)

Indeed, if PA “ 0 then m2
`

Id` dδ
m2

˘

PA “ NA “ 0. If A P ΓscpVgq, again [87, Theorem 3.8]
implies that A “ Nf for some f P ΓcpVgq. Since we also know that δA “ 0, the form (2.2.5) of N
yields A “ Pf. On the other hand, if A “ Pf for some f P ΓcpVgq, then GPA “ G`P f´G

´
P f “ f´f “ 0.

On account of [87, Proposition 3.6], for any smooth function ρ : MÑ p0,`8q also ρP is Green
hyperbolic and G˘ρP “ G˘Pρ

´1.

2.2.2 The Cauchy problem in ultrastatic spacetimes

We study here the Cauchy problem for the Proca (real and complex) field in ultrastatic spacetimes
pM, gq “ pRˆΣ,´dtb dt` hq, where pΣ, hq is complete. A more general treatise appears in [98]
where the Cauchy problem is studied, also in the presence of a source of the Proca field, in
a generic globally hyperbolic spacetime and the continuity of the solutions with respect to the
initial data is focused.

Let us consider the Proca equation (2.2.3) (where m2 ą 0) on the above ultrastatic spacetime.
As observed in [44], every smooth 1-form A P Ω1pMq naturally uniquely decomposes as

Apt, pq “ Ap0qpt, pqdt`Ap1qpt, pq (2.2.12)
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where Apiqpt, ¨q P ΩipΣq for i “ 0, 1 and t P R. By direct inspection and taking the equivalence of
(2.2.3) and (2.2.6)-(2.2.7) into account, one sees that Eq. (2.2.3) is equivalent to the constrained
double Klein-Gordon system

B2
tA

p0q “ ´p∆
p0q
h `m2qAp0q , (2.2.13)

B2
tA

p1q “ ´p∆
p1q
h `m2qAp1q , (2.2.14)

BtA
p0q “ ´δ

p1q
h Ap1q . (2.2.15)

Above, ∆
pkq
h :“ δ

pk`1q
h dpkq ` dpk´1qδ

pkq
h is the Hodge Laplacian on pΣ, hq for k-forms and the last

condition (2.2.15) is nothing but the constraint δ
p1q
g A “ 0 arising from (2.2.3).

The theory for the fields Ap1q and Ap0q is a special case of the theory of normally hyperbolic
equations on corresponding vector bundles with positive inner product over a globally hyperbolic
spacetime [3, 6]. In our case,

(1) there is a real vector bundle V
p1q
g with basis M, canonical fiber isomorphic to T ˚q Σ, and

equipped with a fiberwise real symmetric scalar product induced by h7q. Ap1q P ΓpV
p1q
g q;

(2) there is another real vector bundle V
p0q
g with basis M, canonical fiber isomorphic to R,

and equipped with a positive fiberwise real symmetric scalar product given by the natural

product in R. Ap0q P ΓpV
p0q
g q.

Evidently
Vg “ Vp0qg ‘ Vp1qg . (2.2.16)

Equations (2.2.13) and (2.2.14) admit existence and uniqueness theorems for smooth compactly

supported Cauchy data and corresponding smooth spacelike compact solutions in ΓscpV
p0q
g q and

ΓscpV
p1q
g q respectively, as a consequence of very well-known results in the theory of normally

hyperbolic equations [3, 6, 66]. However, when viewing Ap0q and Ap1q as parts of the Proca field
A, we have also to deal with the additional constraint (2.2.15). Notice that (2.2.15) imposes two
constraints on the Cauchy data of Ap0q and Ap1q on Σ:

BtA
p0qp0, pq “ ´δ

p1q
h Ap1qp0, pq B2

tA
p0qp0, pq “ ´δ

p1q
h BtA

p1qp0, pq .

The second constraint is only apparently of the second order. Indeed, taking (2.2.13) into account,
it can be re-written as a condition of the Cauchy data

p∆
p0q
h `m2qAp0qp0, pq “ δ

p1q
h BtA

p1qp0, pq .

At this juncture we observe that, with some elementary computation (use ∆
p0q
h δ

p1q
h “ δ

p1q
h ∆

p1q
h ),

Equations (2.2.13) and (2.2.14) imply also the crucial condition

pB2
t `∆

p0q
h ´m2qpBtA

p0q ` δ
p1q
h Ap1qq “ 0

which, in turn, implies Equation (2.2.15) , if the initial condition of that scalar Klein-Gordon

equation for pBtA
p0q ` δ

p1q
h Ap1qq are the zero initial conditions. This exactly amounts to

BtA
p0qp0, pq “ ´δ

p1q
h Ap1qp0, pq and p∆

p0q
h `m2qAp0q “ δ

p1q
h BtA

p1qp0, pq .

In summary, we are naturally led to focus on this Cauchy problem

B2
tA

p0q ` p∆
p0q
h `m2qAp0q “ 0 , (2.2.17)

B2
tA

p1q ` p∆
p1q
h `m2qAp1q “ 0 , (2.2.18)

pB2
t `∆

p0q
h ´m2qpBtA

p0q ` δ
p1q
h Ap1qq “ 0 , (2.2.19)
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with initial data

Ap0qp0, ¨q “ ap0qp¨q, BtA
p0qp0, ¨q “ πp0qp¨q, Ap1qp0, ¨q “ ap1qp¨q, BtA

p1qp0, ¨q “ πp1qp¨q (2.2.20)

where ap0q, πp0q, ap1q, πp1q are pairs of smooth compactly supported, respectively 0 and 1, forms
on Σ, and the constraints are valid

πp0q “ ´δ
p1q
h ap1q , p∆

p0q
h `m2qap0q “ δ

p1q
h πp1q . (2.2.21)

If A is a spacelike compact solution of the Proca equation (2.2.3), then it satisfies (2.2.13)-
(2.2.15) and its Cauchy data (2.2.20) satisfy the constraints (2.2.21). On the other hand, if we
have smooth compactly supported Cauchy data (2.2.20), then the two Klein-Gordon equations
(2.2.13) and (2.2.14) admit unique spacelike compact smooth solutions which also satisfies (2.2.19)
as a consequence. If the said Cauchy data satisfy the constraint (2.2.21), then also (2.2.15) is
satisfied, because it is equivalent to the unique solution of (2.2.19) with zero Cauchy data. In
that case, the two solutions Ap0q and Ap1q define a unique solution of the Proca equation with
the said Cauchy data.

We have established the following result completely extracted from the theory of normally
hyperbolic equations.

Proposition 2.2.1. Let pM, gq “ pΣ,´dt b dt ` hq be a smooth globally hyperbolic ultrastatic
spacetime with dt past directed, where h is a smooth complete Riemannian metric on Σ. Consider
the Cauchy problem on pM, gq for the smooth 1-form A satisfying the Proca equation (2.2.3) for
m2 ą 0, with smooth compactly supported Cauchy data (2.2.20) on Σ viewed as the t “ 0 time
slice.
The Proca Cauchy problem for A with constraints (2.2.21) is equivalent, regarding existence and
uniqueness of spacelike compact smooth solutions , to the double normally hyperbolic Klein-Gordon

constrained Cauchy problem (2.2.13)-(2.2.15), for the fields Ap0q P ΓscpV
p0q
g q and Ap1q P ΓscpV

p1q
g q,

with the same initial data (2.2.20) and constraints (2.2.21). As a consequence,

(1) every smooth spacelike compact solution of the Proca equation A P ΓscpVgq (2.2.3) defines
compactly supported smooth Cauchy data on Σ which satisfy the constraints (2.2.21);

(2) if the Cauchy data are smooth, compactly supported and satisfy (2.2.21), then there is a
unique smooth spacelike compact solution of the Proca equation A P ΓscpVgq (2.2.3) associ-
ated to them;

(3) the support of a solution A P ΓscpVgq with smooth compactly supported initial data satis-
fies supppAq Ă J`pSqYJ´pSq, where S Ă Σ is the union of the supports of the Cauchy data.

Remark 2.2.2. (1) All the discussion above, and Proposition 2.2.1 in particular, extends to
the case of a complex Proca field and corresponding associated complex Klein Gordon fields.
The stated results can be extended easily to the case of the non-homogeneous Proca equation
and also considering continuity properties of the solutions with respect to the source and
the initial data referring to natural topologies. (See [98] for a general discussion.)

(2) A naive idea may be that we can freely fix smooth compactly supported Cauchy data for Ap1q

and then define associated Cauchy conditions for Ap0q by solving the constraints (2.2.21).
In this case the true degrees of freedom of the Proca field would be the vector part Ap1q,
whereas Ap0q would be a constrained degree of freedom. This viewpoint is incorrect, if we
decide to deal with spacelike compact solutions, because the second constraint in Equa-
tion (2.2.21) in general does not produce a compactly supported function ap0q when the

source δ
p1q
h πp1q is smooth compactly supported (the smoothness of ap0q is however guaran-

teed by elliptic regularity from the smoothness of δ
p1q
h πp1q). ap0q is compactly supported only
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for some smooth compactly supported initial conditions πp1q. Therefore the linear subspace
of initial data (2.2.20) compatible with the constraints (2.2.21) does not include all possible
compactly supported initial conditions πp1q which, therefore, cannot be freely chosen.

(3) However this space of constrained Cauchy data is non-trivial, i.e., it does not contain only
zero initial conditions and in particular there are couples pap0q, πp1qq such that both elements
do not vanish. This is because, for every smooth compactly supported 1-form f p1q (with
δp1qf p1q ‰ 0 in particular) and for every smooth compactly supported 2-form f p2q,

ap0q :“ δ
p1q
h f p1q πp1q :“

´

∆
p1q
h `m2

¯

f p1q ` δ
p2q
h f p2q

are smooth, and compactly supported, they solve the nontrivial constraint in (2.2.21)

δ
p1q
h πp1q “ p∆p0q ` m2qap0q and f p1q, f p2q can be chosen in order that neither of ap0q and

πp1q vanishes. The easier constraint πp0q “ ´δ
p1q
h ap1q is solved by every smooth compactly

supported 1-form ap1q by defining the smooth compactly supported 0-form πp0q correspond-
ingly.

2.2.3 The Proca symplectic form in ultrastatic spacetimes

Consider two solutions A,A1 P ΓscpVgqXKerP of the Proca equation in our ultrastatic spacetime,
choose t P R and consider the bilinear form

σ
pPq
t pA,A1q :“

ż

Σ
h7pa

p1q
t , π

p1q1

t ´ da
p0q1

t q ´ h7pa
p1q1

t , π
p1q
t ´ da

p0q
t q vol h , (2.2.22)

where we are referring to the Cauchy data on Σ of the smooth spacelike compact solutions of the
Proca equation. Σ is viewed as the time slice at time t. As is well known, it is possible to define
a natural symplectic form for the Proca field in general globally hyperbolic spacetimes [12] with
properties analogous to the ones we are going to discuss here. Here we stick to the ultrastatic
spacetime case which is enough for our ends.

According to [12] (with an argument very similar to the proof of Propositions 3.12 and 3.13
in [87]) we have immediately that

σ
pPq
t pA,A1q “ σ

pPq
t1 pA,A

1q @t, t1 P R ,

and, omitting the index t as the symplectic form is independent of it,

σpPqpA,A1q “

ż

M
g7
`

f,GPf
1
˘

vol g (2.2.23)

where A, f (resp. A, f 1) are related by A :“ GPf (resp. A1 :“ GPf
1).

Remark 2.2.3. The important identity (2.2.23) is also valid in a generic globally hyperbolic
spacetime when σpP q is interpreted as the general symplectic form of the Proca field according
to [12].

Let us suppose to deal with the Cauchy data of the real vector space CΣ Ă Ω0
cpΣq

2 ˆ

Ω1
cpΣq

2 of smooth compactly supported Cauchy data pa0, π0, a1, π1q subjected to the linear con-
straints (2.2.21),

CΣ :“
!

pap0q, πp0q, ap1q, πp1qq P Ω0
cpΣq

2 ˆ Ω1
cpΣq

2
ˇ

ˇ

ˇ
πp0q “ ´δ

p1q
h ap1q , p∆

p0q
h `m2qap0q “ δ

p1q
h πp1q

)

.

(2.2.24)
Not only the Cauchy problem is well behaved in that space as a consequence of Proposition 2.2.1,
but we also have the following result.
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Proposition 2.2.4. The bilinear antisymmetric map σpP q : CΣ ˆCΣ Ñ R defined in (2.2.22) is
non-degenerate and therefore it is a symplectic form on CΣ.

Proof. Taking (2.2.10) into account, suppose that ΓscpVgqXKerP Q A1 “ GPf whose Cauchy data
are pap0q

1

, πp0q
1

, ap1q
1

, πp1q
1

q P CΣ is such that σpPqpA,A1q “ 0 for allA “ GPf P ΓscpVgqXKerP ” CΣ,
we want to prove that A1 “ 0 namely, its initial conditions are p0, 0, 0, 0q. From (2.2.23), using
the fact that g7 is non-degenerate, we have that A1 “ GPf

1 “ 0 so that its Cauchy data are the
zero data in view of the well-posedness of the Cauchy problem Proposition 2.2.1.

To conclude we prove that, when using Cauchy data in CΣ, the expression of σpPq can be re-
arranged in order to make contact with the analogous symplectic forms of the two Klein-Gordon
fields Ap0q and Ap1q the solution A is made of, as discussed in 2.2.2. Indeed, remembering the

constraint πp0q “ ´δ
p1q
h ap1q, and using the duality of δ and d, part of the integral in the right-hand

side of (2.2.22) can be rearranged to
ż

Σ
h7pa

p1q
t , da

p0q1

t q ´ h7pa
p1q1

t , da
p0q
t q vol h “

ż

Σ
h7pδ

p1q
h a

p1q
t , a

p0q1

t q ´ h7pδ
p1q
h a

p1q1

t , a
p0q
t q vol h

“ ´

ż

Σ
h7pπ

p0q
t , a

p0q1

t q ´ h7pπ
p0q1

t , a
p0q
t q vol h .

As a consequence, if ηi “ 1 for i “ 1 and ηi “ ´1 for i “ 0 and h7
piq is h7 for i “ 1 and the

pointwise product for i “ 0,

σpPqpA,A1q “
1
ÿ

i“0

ηi

ż

Σt

h7
piqpa

piq
t , π

piq1

t q ´ h7
piqpa

piq1

t , π
piq
t q vol h . (2.2.25)

In other words, referring to the (Klein-Gordon) symplectic forms introduced in [87] for normally
hyperbolic equations (2.2.13) and (2.2.14)

σpPqpA,A1q “ σp1qpAp1q, Ap1q
1

q ´ σp0qpAp0q, Ap0q
1

q

where σpkq is the symplectic form for a normally hyperbolic field operator on a real vector bundle
defined, e.g., [87, Proposition 3.12].

A similar result is valid for the causal propagators. Decomposing f “ fp0qdt ` fp1q P ΓcpVgq

where fp0q P ΓcpV
p0q
g q and fp1q P ΓcpV

p1q
g q, (2.2.23), the analogues for scalar and vector Klein

Gordon fields [87] and (2.2.25) imply
ż

M
g7pf,GPf

1qvol g “

ż

M
h7pfp1q,Gp1qfp1q

1

qvol g ´

ż

M
fp0qGp0qfp0q

1

vol g

where Gpiq, i “ 0, 1 are the causal propagators for the normally hyperbolic operators

Npiq :“ B2
t `∆

piq
h `m2I : ΓscpV

piq
g q Ñ ΓscpV

piq
g q i “ 0, 1

according to the theory of [87]. Here ∆
p0q
h coincides with the standard Laplace-Beltrami operator

for scalar fields on Σ.

Remark 2.2.5. With the same argument, the found results immediately generalize to the case
of complex k-forms. More precisely, if the Cauchy data belong to CΣ ` iCΣ,

σpPqpA,A1q “ σp1qpAp1q, Ap1q
1

q ´ σp0qpAp0q, Ap0q
1

q ,

where the left-hand side is again (2.2.22) evaluated for complex Proca fields, i.e., complex Cauchy
data. Above, the bar denotes the complex conjugation and the Cauchy data of the considered
complex Proca fields satisfy the constraints (2.2.21). Furthermore

ż

M
g7pf,GPf

1qvol g “

ż

M
h7pfp1q,Gp1qfp1q

1

qvol g ´

ż

M
fp0qGp0qfp0q

1

vol g
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where the smooth compactly supported sections are complex. We have used the same symbols
as for the real case for the causal propagators since the associated operators commute with the
complex conjugation. As a consequence, a standard argument about the uniqueness of Green
operators implies that the causal propagators for the real case are nothing but the restriction of
the causal propagator of the complex case which, in turn, are the trivial complexification of the
real ones.

2.2.4 The Proca energy density in ultrastatic spacetimes

Starting from the Proca Lagrangian in every curved spacetime (see, e.g, [42])

L “ ´1

4
FµνF

µν ´
m2

2
AµA

µ with Fµν :“ BµAν ´ BνAµ

and referring to local coordinates px0, . . . , xn´1q adapted to the split M “ RˆΣ of our ultrastatic
spacetime, where x0 “ t runs along the whole R and x1, . . . , xn´1 are local coordinates on Σ, the
energy density reads in terms of initial conditions on Σ of the considered Proca field

T00 “
1

2
h7pπp1q ´ dap0q, πp1q ´ dap0qq `

1

2
h7
p2qpda

p1q, dap1qq

`
m2

2

´

h7pap1q, ap1qq ` ap0qap0q
¯

ě 0 .

(2.2.26)

Above h7
p2q is the natural scalar product for the 2-forms on Σ induced by the metric tensor. It is

evident that the energy density is non-negative since the metric h and its inverse h7 are positive
by hypothesis. The total energy at time t is the integral of T00 on Σ, using the natural volume
form, when replacing Ap0q and Ap1q for the respective Cauchy data. As Bt is a Killing vector and
the solution is spacelike compact, the total energy is finite and constant in time.

EpP q “
1

2

ż

Σ

´

h7pπp1q ´ dap0q, πp1q ´ dap0qq ` h7
p2qpda

p1q, dap1qq

`m2
`

h7pap1q, ap1qq ` ap0qap0q
˘

¯

vol h .

(2.2.27)

Using Hodge duality of d and δ and the definition of the Hodge Laplacian, the expression of the
total energy can be re-arranged to

EpP q “
1

2

ż

Σ

´

h7pπp1q, πp1qq ` h7pdap0q, dap0qq ´ 2h7pπp1q, dap0qq ´ δ
p1q
h ap1qδ

p1q
h ap1q

`h7
`

ap1q,∆
p1q
h ap1qq `m2pap0qap0q ` h7pap1q, ap1qq

˘

¯

vol h .

Using again the Hodge duality of d and δ the third term in the integral can be rearranged to

´

ż

Σ
h7pπp1q, dap0qqvol h “ ´

ż

Σ
ap0qδ

p1q
h πp1qvol h .

The term δp1qπp1q above and the term δ
p1q
h ap1qδ

p1q
h ap1q appearing in the expression for the total

energy can be worked out exploiting the constraints (2.2.21). Inserting the results in the found
formula for the total energy, we finally find, with the notation already used for the symplectic
form,

EpP q “
1
ÿ

i“0

ηi
1

2

ż

Σ
h7
piqpπ

piq, πpiqq ` h7
piqpa

piq, p∆
piq
h `m2Iqapiqq vol h , (2.2.28)

when the used Cauchy data belong to the constrained space CΣ. It is now clear that the total
energy of the Proca field is the difference between the total energies of the two Klein-Gordon
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fields composing it exactly as it happened for the symplectic form. This difference is however
positive when working on smooth compactly supported initial conditions satisfying the constraints
(2.2.21), because the found expression of the energy is the same as the one computed with the
density (2.2.26).

Remark 2.2.6. We notice that the negative energy component of the field can be interpreted as
a ghost, in this case however no issues arise since dynamical constraints covariantly remove such
a state. A different approach to the problem by generalizing to curved spacetime the Stuckelberg
Lagrangian, can be found in [10], where it is apparently argued the no Hadamard states exist for
the Proca field, contrarily to the results of [44] and of this work.

Remark 2.2.7. With the same argument, the found result immediately generalizes to the case
of complex k-forms and one finds

1
ÿ

i“0

ηi
1

2

ż

Σ
h7
piqpπ

piq, πpiqq ` h7
piqpa

piq, p∆
piq
h `m2Iqapiqqvol h “

“
1

2

ż

Σ

´

h7pπp1q ´ dap0q, πp1q ´ dap0qq ` h7
p2qpda

p1q, dap1qq

`m2
`

h7pap1q, ap1qq ` ap0qap0q
˘

vol h

¯

ě 0

(2.2.29)

where the bar over the forms denotes the complex conjugation and pap0q, πp0q, ap1q, πp1qq are com-
plex forms of CΣ ` iCΣ.

2.2.5 Linear fiber-preserving isometry

As said above, to construct Møller maps for the Proca field we should be able to compare different
fiberwise metrics on T˚M when we change the metric g on M. This will be done by defining
suitable fiber preserving isometries.

If g and g1 are globally hyperbolic on M and g » g1, it is possible to define a linear fiber-
preserving isometry from ΓpVgq to ΓpVg1q we denote with κg1g and we shall take advantage of it
very frequently in the rest of this work. In other words, if f P ΓpVgq, then κg1gf P ΓpVg1q, the map
κg1g : ΓpVgq Ñ ΓpVg1q is R linear, and

g17ppκg1gfqppq, pκg1ggqppqq “ g7pfppq, gppqq @p P M .

Let us describe the (highly non-unique) construction of κgg1 . If χ P C8pM; r0, 1sq and g0 ĺ g1,
then

gχ :“ p1´ χqg0 ` χg1 (2.2.30)

is a Lorentzian metric globally hyperbolic on M (see chapter 1 for details) and satisfies

g0 ĺ gχ ĺ g1 .

Now consider the product manifold N :“ RˆM, equipped with the indefinite non-degenerate
metric

h :“ ´dtb dt` gt ,

where gt “ p1 ´ fptqqg0 ` fptqgχ and f : R Ñ r0, 1s is smooth and fptq “ 0 for t ď 0, fptq “ 1
for t ě 1. Notice that gt is Lorentzian according to [87] because g0 ĺ gχ and h is indefinite non-
degenerate by construction. At this point rκχ0 : TMÑ TM is the fiber preserving diffeomorphism
such that rκχ0px, vq is the parallel transport form p0, xq to p1, xq of v P TxM Ă Tp0,xqN along
the complete h-geodesic R Q t ÞÑ pt, xq P N. Standard theorems on joint smoothness of the
flow of ODEs depending on parameters assure that rκχ0 : TM Ñ TM is smooth. Notice that
rκχ0|TxM : TxM Ñ TxM is also a h-isometry from known properties of the parallel transport and
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thus it is a g0, gχ-isometry by construction because hpt,xqpv, vq “ gtpv, vq if v P TxM Ă Tpt,xqN.
Taking advantage of the musical isomorphisms, rκχ0 induces a fiber-bundle map κχ0 : T ˚MÑ T ˚M
which can be seen as a map on the sections of ΓpVg0q and producing sections of ΓpVgχq, preserving

the metrics g70, g7χ. Then the required Proca bundle isomorphism κg1g “ κg1g0 is defined by
composition:

κ1,0 “ κ1χκχ0.

where κ1χ from ΓpVgχq to ΓpVg1q is defined analogously to κχ0. The general case g » g1 can be
defined by composing the fiber preserving linear isometries κgk`1gk or κgk,gk`1

.

2.2.6 Møller Maps and Møller Operators

We recall that a smooth Cauchy time function 1.1.14 in a globally hyperbolic spacetime pM, gq
relaxes the notion of temporal Cauchy function, it is a smooth map t : M Ñ R such that dt
is everywhere timelike and past directed, the level surfaces of t are smooth spacelike Cauchy
surfaces and pM, gq is isometric to pRˆΣ, hq. Here, t identifies with the natural coordinate on R
and the Cauchy surfaces of pM, gq identify with the sets ttu ˆ Σ.

From now on we indicate by N0, N1, Nχ the Klein-Gordon operators (2.2.4) on M constructed
out of g0, g1 and gχ respectively, where the globally hyperbolic metric gχ is defined as in (2.2.30)
(and thus g0 ĺ gχ ĺ g1 [87, Theorem 2.18]) and depends on the choice of a function χ P

C80 pM, r0, 1sq. Similarly, P0, P1, Pχ denote the Proca operators (2.2.2) on M constructed out of
g0, g1 and gχ respectively.

We can state the first technical result.

Proposition 2.2.8. Let g0, g1 be globally hyperbolic metrics satisfying g0 ĺ g1 and let be
χ P C8pM; r0, 1sq. Choose

(a) a smooth Cauchy time g1-function t : M Ñ R and χ P C8pM; r0, 1sq such that χppq “ 0 if
tppq ă t0 and χppq “ 1 if tppq ą t1 for given t0 ă t1;

(b) a pair of smooth functions ρ, ρ1 : M Ñ p0,`8q such that ρppq “ 1 for tppq ă t0 and
ρ1ppq “ ρppq “ 1 if tppq ą t1. (Notice that ρ “ ρ1 “ 1 constantly is allowed.)

Then the following facts are true where gχ is defined as in (2.2.30).

(1) The operators

R` : ΓpVg0q Ñ ΓpVgχq R` :“ κχ0 ´ G`ρPχ pρPχκχ0 ´ κχ0P0q ,

R´ : ΓpVgχq Ñ ΓpVg1q R´ :“ κ1χ ´ G´ρP1

`

ρ1P1κ1χ ´ ρκ1χPχ
˘

are linear space isomorphisms, whose inverses are given by

R´1
` : ΓpVgχq Ñ ΓpVg0q R´1

` “ κ0χ ` G`P0
pρκ0χPχ ´ P0ρκ0χq,

R´1
´ : ΓpVg1q Ñ ΓpVgχq R´1

´ :“ κχ1 ` G´ρPχ
`

ρ1κχ1P1 ´ ρκ1χPχ
˘

.

By composition we define the Møller operator:

R : ΓpVg0q Ñ ΓpVg1q R :“ R´ ˝ R`,

which is also a linear space isomorphism.

(2) It holds
ρκ0χPχR` “ P0 and ρ1κχ1P1R´ “ ρPχ .

and also
ρκ0χPχ “ P0R

´1
` and ρ1κχ1P1 “ PχR

´1
´ .
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(3) If f P ΓpVg0q or ΓpVgχq respectively, then

pR`fqppq “ fppq for tppq ă t0, (2.2.31)

pR´fqppq “ fppq for tppq ą t1 . (2.2.32)

Proof. First of all, we notice that the operator R` is well defined on the whole space ΓpVg0q since
for all sections f P ΓpVg0q we have that pPχ

κχ0
ρ ´

κχ0
ρ P0qf P ΓpcpVg1q: indeed by definition, there

exists a t0 P R such that on t´1p´8, t0q and we have that Pχ “ P0, κχ0 “ Id and t is a smooth g1-
Cauchy time function. Moreover, since gχ ĺ g1 it follows that ΓpcpVg1q Ă ΓpcpVgχq “ DompGPχq.

To prove (1), we can first notice that

R´1
` ˝ R` “

´

κ0χ ` G`P0
pρκ0χPχ ´ P0κ0χq

¯

˝

´

κχ0 ´ G`ρPχpρPχκχ0 ´ κχ0P0q

¯

“ Id´ κ0χG
`
ρPχ

pρPχκχ0 ´ κχ0P0q ` G`P0
pρκ0χPχ ´ P0κ0χqκχ0

´ G`P0
pρκ0χPχ ´ P0κ0χqG

`
ρPχ

pρPχκχ0 ´ κχ0P0q .

To conclude it is enough to show that everything cancels out except the identity operator, but
that just follows by using basic properties of Green operators and straightforward algebraic steps.
We easily see that the last addend can be recast as:

G`P0
pρκ0χPχ ´ P0κ0χqG

`
ρPχ

pρPχκχ0 ´ κχ0P0q

“ G`P0
ρκ0χPχG

`
ρPχ

pρPχκχ0 ´ κχ0P0q ´ G`P0
P0κ0χG

`
ρPχ
pρPχκχ0 ´ κχ0P0q

“ G`P0
κ0χ pρPχκχ0 ´ κχ0P0q ´ κ0χG

`
ρPχ
pρPχκχ0 ´ κχ0P0q,

which fulfils its purpose.
A specular computation proves that R´1

` is also a right inverse. Almost identical reasoning prove
that R´1

´ is a two sided inverse of R´ which is also well defined, then bijectivity of R is obvious.
(2) follows by the following direct computation

ρκ0χPχR` “ ρκ0χPχ

´

κχ0 ´ G`ρPχ pρPχκχ0 ´ κχ0P0q

¯

“ κ0χκχ0P0 “ P0.

(3) Let us prove (2.2.31). In the following P ˚ denotes the formal dual operator of P acting
on the sections of the dual bundle ΓcpV

˚
g q. It is known that it is Green hyperbolic if P is (e.g.,

see [3]) and, if f1 P ΓcpV
˚
g q and f P ΓpcpVgq or f P ΓfcpVgq respectively,

ż

M
xG´P˚f

1, fy volg “

ż

M
xf1,G`P fy volg ,

ż

M
xG`P˚f

1, fy volg “

ż

M
xf1,G´P fy volg , (2.2.33)

where G˘P indicate the Green operators of P and G˘P˚ indicate the Green operators of P˚. Consider
now a compactly supported smooth section h whose support is included in the set t´1pp´8, t0qq.
Taking advantage of the Equation (2.2.33), we obtain

ż

M
xh,G`ρPχpρPχ ´ P0qfy volgχ “

ż

M
xG´
pρPχq˚

h, pρPχ ´ P0qfy volgχ “ 0

since supppG´
pρPχq˚

hq Ă J
gχ
´ psuppphqq and thus that support does not meet suppppρPχ ´ P0qfq

because ppρPχ ´ P0qfqppq vanishes if tppq ă t0. As h is an arbitrary smooth section compactly
supported in t´1pp´8, t0qq,

ż

M
xh,G`ρPχpρPχ ´ P0qfy volgχ “ 0

entails that G`ρPχpρPχ ´P0qf “ 0 on t´1pp´8, t0qq. The proof of (2.1.15) is strictly analogous, so
we leave it to the reader.
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Using Proposition 2.2.8, we can pass to the generic case g » g1.

Theorem 2.2.9. Let pM, gq and pM, g1q be globally hyperbolic spacetimes, with associated Proca
bundles Vg and Vg1 and Proca operators P,P1.
If g » g1, then there exist (infinitely many) vector space isomorphisms,

R : ΓpVgq Ñ ΓpVg1q

such that

(1) referring to the said domains,
µκgg1P

1R “ P

for some smooth µ : M Ñ p0,`8q (which can always be chosen µ “ 1 constantly in
particular), and a smooth fiberwise isometry κgg1 : ΓpVg1q Ñ ΓpVgq.

(2) The restriction, called Møller map

S0 :“ R|KerscpPq : KerscpPq Ñ KerscpP
1q

is well-defined vector space isomorphism with inverse given by

pS0q´1 :“ R´1|KerscpP1q : KerscpP
1q Ñ KerscpPq .

Proof. Since g » g1, there exists a finite sequence of globally hyperbolic metrics g0 “ g, g1, .., gN “
g such that at each step gk ĺ gk`1 or gk`1 ĺ gk. For all k P t0, .., Nu we can associate to the
metric a Proca operator Pk.
At each step the hypotheses of Proposition 2.2.8 are verified, in fact we can choose functions
ρk and ρ1k and the Møller map is given by Rk “ Rk´ ˝ Rk`. The general map is then built
straightforwardly by composing the N maps constructed step by step:

R “ RN ˝ ... ˝ R1.

Regarding (1), by direct calculation we get that µ “
śN
k“1 ρ

1
k, while κgg1 “ κg0g1 ˝ ... ˝ κgN´1gN .

The proof of (2) is trivial.

2.2.7 Møller operators and the causal propagator

We now study the interplay between Møller maps and the causal propagator of Proca operators.
To this end, we use a natural extension of the notion of adjoint operator introduced in the previous
section.

Let g and g1 (possibly g ‰ g1) globally hyperbolic metric and let Vg and Vg1 be a Proca bundle
on the manifold M. Consider a R-linear operator

T : DompTq Ñ ΓpVg1q ,

where DompTq Ă ΓpVgq is a R-linear subspace and DompTq Ą ΓcpVgq.

Definition 2.2.10. An operator

T:gg1 : ΓcpVg1q Ñ ΓcpVgq

is said to be the adjoint of T with respect to g, g1 (with the said order) if it satisfies

ż

M
g17 ph,Tfq pxq vol g1pxq “

ż

M
g7
´

T:gg1h, f
¯

pxq vol gpxq @f P DompTq , @h P ΓcpEq.

When g “ g1, we use the simplified notation T: :“ T:gg .
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As in [87], the adjoint operator satisfies a lot of useful properties which we summarize in the
following proposition. Since the proof is analogous to the one of [87, Proposition 4.11], we leave it
to the reader. We will focus on the the real case only, but now we state the theorem encompassing
the case where the sections are complex and the fiber scalar product is made Hermitian by adding
a complex conjugation of the left entry in the usual fiberwise real g7 inner product, which becomes
g7pf, gq, where the bar denotes the complex conjugation. Definition 2.2.10 extends accordingly.
For this reason K will denote either R or C, and the complex conjugate c reduces to c itself when
K “ R. We keep the notation Vg for indicating either the real or complex vector bundle T˚M or
T˚M` iT˚M corresponding to two possible choices of K.

Proposition 2.2.11. Referring to the notion of adjoint in Definition 2.2.10, the following facts
are valid.

(1) If the adjoint T:gg1 of T exists, then it is unique.

(2) If T : ΓpVgq Ñ ΓpVg1q is a differential operator and g “ g1, then T:gg exists and is the
restriction of the formal adjoint to ΓcpEq. (In turn, the formal adjoint of T is the unique
extension to ΓpEq of the differential operator T: as a differential operator.)

(3) Consider a pair of K-linear operators T : DompTq Ñ ΓpVg1q, T1 : DompT1q Ñ ΓpVg1q with
DompTq,DompT1q Ă ΓpVgq and a, b P K. Then

paT` bT1q:gg1 “ aT:gg1 ` bT1:gg1

provided T:gg1 and T1:gg1 exist.

(4) Consider a pair of K-linear operators T : DompTq Ñ ΓpVg1q, T1 : DompT1q Ñ ΓpVg2q with
DompTq Ă ΓpVgq and DompT1q Ă ΓpVg1q such that

(i) DompT1 ˝ Tq Ą ΓcpVgq,

(ii) T:gg1 and T1:g1g2 exist,

then pT1 ˝ Tq:gg2 exists and

pT1 ˝ Tq:gg2 “ T:gg1 ˝ T1:g1g2 .

(5) If T:gg1 exists, then pT:gg1 q:g1g “ T|ΓcpVgq.

(6) If T : DompT q “ ΓpVgq Ñ ΓpVg1q is bijective, admits T:gg1 , and T´1 admits pT´1q
:g1g , then

T:gg1 is bijective and pT´1q
:g1g “ pT:gg1 q´1.

Now we are ready to prove that the operators R admit adjoints and we explicitly compute
them.

Proposition 2.2.12. Let g0, g1 be globally hyperbolic metrics satisfying g0 ĺ g1. Let R`, R´ and
R be the operators defined in Proposition 2.2.8 and fix, once and for all, ρ “ cχ0 and ρ1 “ c1

0 where
cχ0 , c1

0 are the unique smooth functions on M such that:

vol gχ “ cχ0 vol g0 vol g1 “ c1
0vol g0 . (2.2.34)

Then we have:

(1) R
:g0gχ
` : ΓcpVgχq Ñ ΓcpVg0q satisfies:

R
:g0gχ
` “

´

cχ0κ0χ ´ pc
χ
0κ0χPχ ´ P0κ0χqG

´
Pχ

¯

|ΓcpVχq

and can be recast in the form

R
:g0gχ
` “ P0κ0χG

´
Pχ
|ΓcpVχq.
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(2) R
:gχg1
´ : ΓcpVg1q Ñ ΓcpVgχq satisfies

R
:gχg1
´ “

´

cχ1κχ1 ´ pc
χ
1κχ1P1 ´ Pχκχ1qG

`
P1

¯

|ΓcpV1q,

and can be recast in the form

R
:gχg1
´ “ Pχκχ1G

`
P1
|ΓcpV1q.

(3) The map R:g0g1 : ΓcpVg1q Ñ ΓcpVg0q defined by R:g0g1 :“ R
:g0gχ
` ˝ R

:gχg1
´ is invertible and

pR:g0g1 q´1 “ pR´1q:g1g0 : ΓcpVg1q Ñ ΓcpVg0q .

We call it adjoint Møller operator.
Moreover R:g0g1 is a homeomorphism with respect to the natural (test section) topologies of
the domain and of the co-domain.

Proof. We start by proving points (1) and (2). For any f P DompR`q “ ΓpVg0q and h P ΓcpVgχq
we have

ż

M
g7χ ph,R`fq vol gχ “

ż

M
g7χ

´

h,
`

κχ0 ´ G`
cχ0Pχ

pcχ0Pχκχ0 ´ κχ0P0q
˘

f
¯

vol gχ “

ż

M
g7χ ph, κχ0fq vol gχ ´

ż

M
g7χ

´

h,
`

G`
cχ0Pχ

pcχ0Pχκχ0 ´ κχ0P0q
˘

f
¯

vol gχ .

We now split the problem and compute the adjoint of the two summands separately.
The adjoint of the first one follows immediately by exploiting the properties of the existing
isometry and Equations (2.2.34)

ż

M
g7χ ph, κχ0fq vol gχ “

ż

M
g70 pc

χ
0κ0χh, fq vol g0 .

For the second summand the situation is trickier and we cannot split the calculation in two
more summands since it is crucial that the whole difference pcχ0Pχκχ0 ´ κχ0P0q acts on a general
f P ΓpVgχq before we apply the Green operator whose domain is ΓpcpVgχq.
So we first rewrite G`

cχ0Pχ
“ G`Pχ

1
cχ0

and use the properties of standard adjoints of Green operators

for formally self-adjoint Green hyperbolic differential operators to get

ż

M
g7χ

´

h,
`

G`
cχ0Pχ

pcχ0Pχκχ0 ´ κχ0P0q
˘

f
¯

vol gχ “

ż

M
g7χ

ˆ

G´Pχh,
`

Pχκχ0 ´
κχ0

cχ0
P0

˘

f

˙

vol gχ .

Now we are tempted to exploit the linearity of the integral and of the fiber product, but first, to
ensure that the two integrals individually converge, we need to introduce a cutoff function:

• We notice again that there is a Cauchy surface of the foliation Σt0 such that for all leaves

with t ă t0 the operator
´

Pχκχ0 ´
κχ0
cχ0

P0

¯

“ 0;

• So take a t1 ă t0 and define a cutoff smooth function s : M Ñ r0, 1s such that s “ 0 on all
leaves with t ă t1 and s “ 1 for t ą t0.

In this way we are allowed to rewrite our last integral and split it in two convergent summands
without modifying its numerical value.
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ż

M
g7χ

´

G´Pχh,
`

Pχκχ0 ´
κχ0

cχ0
P0

˘

sf
¯

vol gχ “

“

ż

M
g7χ

´

G´Pχh,Pχκχ0sf
¯

vol gχ ´

ż

M
g7χ

ˆ

G´Pχh,
κχ0

cχ0
P0sf

˙

vol gχ

“

ż

M
g70

´

cχ0κ0χPχG
´
Pχ

h, sf
¯

vol g0 ´

ż

M
g70pP0κ0χG

´
Pχ

h, sfqvol g0

“

ż

M
g70

´

`

cχ0κ0χPχ ´ P0κ0χ

˘

G´Pχh, sf
¯

vol g0

“

ż

M
g70

´

`

cχ0κ0χPχ ´ P0κ0χ

˘

G´Pχh, f
¯

vol g0 .

where in the last identities we have used properties of the standard adjoints of the formally self-
adjoint operators, of the isometries and of the cutoff function.
Since the domain of the operator is just made up of compactly supported sections, we may exploit
the inverse property of the Green operators to immediately obtain that

cχ0κ0χ ´ pc
χ
0κ0χPχ ´ P0κ0χqG

´
Pχ
|ΓcpVχq “ P0κ0χG

´
Pχ
|ΓcpVχq.

To see that the image of the operators is indeed compactly supported we can focus on R:g0gχ ,
the rest follows straightforwardly. The first summand cχ0κ0χ does not modify the support of the
sections, whereas the second does. Let us fix f P ΓcpVgχq, then supp pG´Pχfq Ă J´gχpsupp fq which

means that G´Pχf P Γsfc, i.e it is space-like and future compact. The thesis follows by again

observing that there is a Cauchy surface such that in its past
´

Pχκχ0 ´
κχ0
cχ0

P0

¯

G´Pχf “ 0.

The computation of the adjoint of R´ is almost identical to the one just performed.
The first part of (3) is an immediate consequence of property (4) in Proposition 2.1.26, while

the invertibility of the adjoint can be proved by explicitly showing that the operator

pR
:g0gχ
` q´1 “

ˆ

κχ0

cχ0
`

ˆ

Pχκχ0 ´
κχ0

cχ0
G´P0

˙˙

ˇ

ˇ

ˇ

ΓcpVg0 q

serves as a left and right inverse of R
:g0gχ
` . An analogous argument can be used for R

:gχg1
´ .

The continuity of both the adjoint and its inverse comes by the same arguments used in the proof
of [87, Theorem 4.12] (with the only immaterial difference that this time the smooth isometry
κχ0 is included in the definition of the Møller operator.)

Remark 2.2.13. An interesting fact to remark is that having defined the adjoints over compactly
supported sections makes the dependence on the auxiliary volume fixing functions disappear.

We conclude by proving the second part of Theorem 3.

Theorem 2.2.14. Let pM, gq and pM, g1q be globally hyperbolic spacetimes, with associated Proca
bundles Vg and Vg1 and Proca operators P,P1.
If g » g1, it is possible to specialize the R-vector space isomorphism R : ΓpVgq Ñ ΓpVg1q of
Proposition 2.1.20 such that the following further facts are true.

(1) The causal propagators GP and GP1 (2.2.8), respectively of P and P1, satisfy

RGPR
:gg1 “ GP1 .

(2) It holds
R:gg1P1κg1g|ΓcpVgq “ P|ΓcpVgq .
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R as above is called Møller operator of g, g1 (with this order).

Proof. Since g » g1 and the Møller map is defined as the composition R “ RN ˝ ... ˝ R1, we can
use properties (4) in Proposition 2.1.26 and reduce to the case where g “ g0 ĺ g1 “ g1. With
this assumption, (2) can be obtained following the proof of Proposition 2.2.8. So we leave it to
the reader.

It remains to prove (1). Decomposing R as above, we define the maps R
g0gχ
˘ , R

gχg1
˘ by choosing

the various arbitrary functions as in Proposition 2.2.12. We first notice

R`G
`
P0
R
:g0gχ
` “

´

κχ0 ´ G`
cχ0Pχ

pcχ0Pχκχ0 ´ κχ0P0q

¯

G`P0

´

P0κ0χG
´
Pχ

¯

|ΓcpVχq

“ G`
cχ0Pχ

κχ0

´

P0κ0χG
´
Pχ

¯

|ΓcpVχq “ G`Pχ ´ G`Pχ

ˆ

Pχ ´
κχ0

cχ0
P0κ0χ

˙

G´Pχ .

where the first equality follows by definition, in the second one we have used the properties
of Green operators, while in the third one we have just equated the two expressions for the
adjoint operator according to (1) in Proposition 2.2.12 and performed some trivial algebraic
manipulations.
Another analogous computation can be performed for the retarded Green operator yielding

R`G
´
P0
R
:g0gχ
` “ G´Pχ ´ G`Pχ

ˆ

Pχ ´
κχ0

cχ0
P0κ0χ

˙

G´Pχ .

Therefore, subtracting the two terms we get

R`GP0R
:g0gχ
` “ R`pG

`
P0
´ G´P0

qR
:g0gχ
` “ GPχ .

Applying now R´ and its adjoint we get the claimed result.

2.3 Conclusions

In this chapter we have seen that an interesting family of (infinitely many) geometric isomorphisms
can be constructed to relate the solution spaces of three classes of Green hyperbolic operators
under variations of the background geometry, namely normally hyperbolic and Proca operators.
For the latter also the Cauchy problem has been studied in detail and the energy density has
been presented, ready to be used in the next chapter to construct Hadamard states.
For the two classes of operators the Møller maps depend on various elements: the paracusal chain
chosen, the interpolating spacetimes and the chosen interpolating operators.
The strategies only differ in some aspects related to the chosen interpolating operators:

• for normally hyperbolic operators, at each step, the interpolating operator was a convex
combination of the two starting operators, since it was proved to be Green hyperbolic on
an interpolating spacetime;

• for the Proca operator every strategy based on convex combinations is doomed to fail, so
we have developed one which is probably the most general and would work also for the
previous cases: to associate to the interpolating spacetime a Proca operator built out of its
geometry.

The last approach suggests that this strategy may work to study the solution space of any Green
hyperbolic operator under variations of the background geometry, even though the problem of
building interpolating operators preserving Green hyperbolicity by convex combinations is still
interesting on its own, since such a space of operators is not stable under linear combinations.
More specifically whenever we have smooth spacetime manifolds pM, gq and pM, g1q with g ĺ g1

and the associated interpolating spacetime pM, gχq, if there is a rule to map globally hyperbolic
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spacetime metrics to Green hyperbolic operators to g Ñ Pg in a way that Pgχ equals Pg in the
past of some Cauchy surface Σt and equals Pg1 in the future of another one Σt1 with t1 ą t, then a
Møller operator and a related Møller map are supposed to exist and the kernels of these operators
can be compared in the ways discussed throughout all this section.
Some possible operators whose solutions may be compared through Møller maps are Dirac type
operators, twisted Dirac operators, Buchdahl operators and the Rarita-Schwinger operator [6].

Another interesting problem comes from the possibility to extend such a procedure to non-
Green hyperbolic operators like the ones describing gauge theories: for example to the abelian
Maxwell field. The problem has not been tackled because it does not seem to be compatible with
the quantization of the Møller operators and in the quantum realm the studied procedure finds
its main applications. However a Møller map for the classical electromagnetic field is supposed
to exist and could be constructed in Lorentz gauge exploiting the Møller operator for normally
hyperbolic field theories.
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Chapter 3

The Møller *-isomorphism and
Hadamard states

Since the spaces of solutions compared in the previous chapter are the first step in the construc-
tion of corresponding (algebraic) free quantum field theories, a natural related issue concerns the
possibility to promote the Møller map R to a ˚-isomorphism between the associated abstract op-
erator algebras A and A1 constructed out of the Green hyperbolic operators P and P1 respectively
on pM, gq and pM, g1q, in terms of corresponding generators given by abstract field operators Φphq
and Φ1ph1q and the associated causal propagators GP, GP1 . Actually, off-shell linear QFT can be
used to build up a perturbative approach to interacting QFT, a final problem would concern the
possibility to extend the Møller isomorphism of algebras to an isomorphism of more physically
interesting algebras, for instance including Wick powers or time-ordered powers.
Therefore one of the aims of this chapter is to investigate the role of the Møller operator at the
quantum level. In order to achieve our goal, we will follow the so-called algebraic approach to
quantum field theory, see e.g. [6, 7, 12, 47, 76]. In loc. cit. the quantization of a free field theory
on a (curved) spacetime is interpreted as a two-step procedure:

1. The first consists of the assignment to a physical system of a ˚-algebra of observables
which encodes structural properties such as causality, dynamics and canonical commutation
relations.

2. The second step calls for the identification of an algebraic state, which is a positive, linear
and normalized functional on the algebra of observables.

Using this framework, in this chapter we shall lift the action of the Møller operators on the
algebras of the free quantum fields and then we will pull-back the action of the Møller operators
on quantum states, showing that the maps preserve the Hadamard condition, which will be
discussed precisely later, with quite weak hypotheses which, in principle, permit an extension
of the theory to a perturbative approach. Existence of Hadamard states in general globally
hyperbolic spacetimes is then a consequence of the fact that any spacetime is paracausally related
to an ultrastatic one, where Hadamard states are known to exist.
For a more detailed introduction to the algebraic approach to quantum field theory we refer
to [18,54] for textbook and to [11–13,20,23,24,27–33,35,56–63] for some recent applications.

The second aim of this chapter is to characterize Hadamard states for the Proca field. In
[44] Proca Hadamard states are defined and, just for Cauchy compact spacetimes, a state is
constructed in ultrastatic spacetimes and a standard deformation argument is employed to prove
their existence on general globally hyperbolic spacetimes. In this work we aim to prove that
the ad hoc definition given in that work is equivalent to the standard one in term of wavefront
sets, then we employ techniques coming from microlocal analysis and elliptic Hilbert complexes
to construct a state on a general ultrastatic globally hyperbolic spacetime without topological
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assumptions on its Cauchy surfaces and prove that it satisfies the Hadamard condition. By
properties of Møller operators we obtain the existence on general globally hyperbolic spacetimes.

The chapter is structured as follows. We begin section 3.1 by discussing the CCR algebraic
quantization of the normally hyperbolic Klein-Gordon field, reviewing in particular states and
Hadamard states and then perform the construction outlined above.
Secondly 3.2 for the Proca field we describe in detail its CCR quantization, the construction of
the Hadamard states first in ultrastatic, and then in general globally hyperbolic spacetime. In
the end we compare the standard definition of Hadamard states with the Fewster-Pfenning one.
We close the chapter and the whole work in 3.3 by discussing possible future research lines related
to the topic treated in this chapter.

3.1 The normally hyperbolic quantum field

In this section the on-shell and off-shell CCR ˚-algebras describing the quantization of the nor-
mally hyperbolic Klein Gordon field is introduced along with the procedure to promote the
Møller operators studied in the previous chapter to ˚-isomorphisms of ˚-algebras. Then states
and Hadamard states over these algebras are introduced in generality and their importance and
physical relevance is discussed. Finally the most important feature of the Møller operator is
revealed: the pullback of a Hadamard state of the spacetime pM, gq is a Hadamard state of the
spacetime pM, g1q, if g and d1 are paracausally related. In this sense Møller operators imple-
ment via explicit operators the standard deformation argument known to prove the existence of
Hadamard states in general globally hyperbolic spacetimes, [50,51].

In fact, Theorem 2 allows us to promote R to a ˚-isomorphism of the algebras of field operators
A, A1 respectively associated to the paracausally related metrics g and g1 (and the associated
N,N1) and generated by respective field operators Φpfq and Φ1pf1q with f, f1 compactly supported
smooth sections of E. These field operators satisfy respective CCRs

rΦpfq,Φphqs “ iGNpf, hqI , rΦ1pf1q,Φ1ph1qs “ iGN1pf
1, h1qI1

and the said unital ˚-algebra isomorphism R : A1 Ñ A is determined by the requirement (Propo-
sition 3.1.5)

RpΦ1pf1qq “ ΦpR:gg1 fq .

The final important result regards the properties of R for the algebras of a pair of paracausally
related metrics g, g1 when it acts on the states ω : A Ñ C, ω1 : A1 Ñ C of the algebras in terms
of pull-back.

ω1 “ ω ˝R .

As is known, the most relevant (quasifree) states in algebraic QFT are Hadamard states charac-
terized by a certain wavefront set of their two-point function. To this regard, we prove that the
pull-back through R of a Hadamard state ω : AÑ C is a Hadamard state of the off-shell algebra
A1, provided the metrics g, g1 be paracausally related. The result is extended to a generic bidis-
tribution ν (corresponding to the two-point function of ω, dropping the remaining requirements
included in the definition of state). The proof of the theorem below is both of geometrical and
microlocal analytic nature (see also Theorem 3.1.13).

Theorem 4 (Theorem 3.2.8). Let E be an R-vector bundle on a smooth manifold M equipped with
a non-degenerate, symmetric, fiberwise metric x¨ | ¨y. Let g, g1 P GHM, consider the corresponding
formally-selfadjoint normally hyperbolic operators N,N1 : ΓpEq Ñ ΓpEq and refer to the associated
CCR algebras A and A1.
Let ν P Γ1cpE b Eq be of Hadamard type and satisfy

νpx, yq ´ νpy, xq “ iGNpx, yq mod C8 ,
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GNpx, yq being the distributional Kernel of GN.
Assuming g » g1, let us define

ν 1 :“ ν ˝ R:gg1 b R:gg1 ,

for a Møller operator R : ΓpEq Ñ ΓpEq of g, g1. Then the following facts are true.

(i) ν and ν 1 are bisolutions mod C8 of the field equations defined by N and N1 respectively,

(ii) ν 1 P Γ1cpE b Eq,

(iii) ν 1px, yq ´ ν 1py, xq “ iGN1px, yq mod C8,

(iv) ν 1 is of Hadamard type.

As this crucial result concerns off-shell algebras, in principle, it could be exploited in pertur-
bative constructions of interacting theories. Indeed the preservation of the Hadamard singularity
structure plays a crucial role in the development of the perturbative theory [35].

3.1.1 The CCR algebra of observables and the Møller ˚-isomorphism

Given a formally-selfadjoint normally hyperbolic operator N : ΓpEq Ñ ΓpEq and its causal prop-
agator G, we first define the unital complex ˚-algebra Af as the free complex unital ˚-algebra
with abstract (distinct) generators φpfq for all f P ΓcpEq, identity 1, and involution ˚ as discussed
in [76]. (As a matter of fact Af is made of finite linear complex combinations of 1 and finite
products of generic elements φpfq and φphq˚). Then we define a refined complex unital ˚-algebra
by imposing the following relations by the quotient A “ Af{I where I is the two sided ˚-ideal
generated by the following elements of A:

• φpaf` bhq ´ aφpfq ´ bφphq , @a, b P R @f, h P ΓcpEq

• φpfq˚ ´ φpfq , @f P ΓcpEq

• φpfqφphq ´ φphqφpfq ´ iGN pf, hq1 , @f, h P ΓcpEq,

where we have used the notation

GNpf, hq :“

ż

M
xfpxq | pGNhqpxqyvol gpxq .

We have the further possibility to enrich the ideal with the generators:

• φpNfq , @f P ΓcpEq.

Notation 3.1.1. The equivalence classes rφpfqs will be denoted by Φpfq and they will be called
field operators (on-shell if the ideal is enlarged by including the generators φpNfq), and we use
the notation I for the identity r1s of Af{I.

Definition 3.1.2. Given a formally-selfadjoint normally hyperbolic operator N : ΓpEq Ñ ΓpEq
and its causal propagator G, we call CCR algebra of the quantum fields Φ, the unital ˚-algebra
defined by A :“ Af{I. The algebra is said to be on-shell in case the ideal is enlarged by including
the generators φpNfq. Furthermore, we call observables of A any Hermitian element of it.

With the above notation, the following properties are valid

• R-Linearity. Φpaf` bhq “ aΦpfq ` bΦphq , @a, b P R @f, h P ΓcpEq

• Hermiticity. Φpfq˚ “ Φpfq , @f P ΓcpEq

• CCR. ΦpfqΦphq ´ ΦphqΦpfq “ iGN pf, hqI , @f, h P ΓcpEq.
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The on-shell field operators also satisfy

• Equation of motion. ΦpNfq “ 0 , @f P ΓcpEq.

Remark 3.1.3. The idea behind the notation Φpfq is a formal smearing procedure which uses
the scalar product

Φpfq “

ż

M
xΦpxq | fpxqyvol gpxq .

From this perspective, since N is formally selfadjoint, the identity ΦpNfq “ 0 for all f P ΓcpEq has
the distributional meaning NΦ “ 0. Alternatively, as explained in [95], one may use a different
representation where Φ is viewed as a “generalized section” of the dual bundle E˚. In that case the
formal identity NΦ “ 0 corresponding to the equation of motion has to be replaced by N˚Φ “ 0.

Given different normally hyperbolic operators N,N1 all the information about causality and
dynamics is encoded in the ideal I, I 1. In that case we have two corresponding initial unital
˚-algebras Af and A1f with respective generators φpfq and φ1pfq. Though the freely generated
algebras are canonically isomorphic, under the unique unital ˚-isomorphism such that φpfq Ñ φ1pfq
for all f P ΓcpEq, the quotient algebras are intrinsically different because the CCR are different
depending on the choice of the causal propagator GN or GN1 . However there is an isomorphism
between them as soon as a Møller operator exists. Indeed, the existence of the Møller operator
discussed in the previous sections can be exploited to define first an isomorphism of the free
algebras Af and A1f since the operator R:gg1 : ΓcpEq Ñ ΓcpEq is an isomorphism.

Definition 3.1.4. Let N,N1 : ΓpEq Ñ ΓpEq be two formally-selfadjoint (with respect to a fiber
metric x¨ | ¨y) normally hyperbolic operators on globally hyperbolic spacetimes pM, gq and pM, g1q.
If g » g1, we define an isomorphism Rf : A1f Ñ Af as the unique unital ˚-algebra isomorphism

between the said free unital ˚-algebras such that Rf pφ
1pfqq “ φpR:gg1 fq @f P ΓcpEq. where R is a

Møller operator of g, g1 (in this order) satisfying Theorem 2.1.27 and Equation (2.1.24).

As we shall see in the next proposition, the isomorphism between freely generated algebras
induces an isomorphism of the quotient algebras.

Proposition 3.1.5. Let N and N1 be two formally-sefadjoint normally hyperbolic operators acting
on the sections of the R-vector bundle E over M, and referred to respective g, g1 P GMM.
If g » g1 and R is a Møller operator of g,g

1 in the sense of Theorem 2.1.27 and Equation (2.1.24),
then the CCR algebras A and A1 (possibly both on-shell) respectively associated to N and N1 are
isomorphic under the quotient isomorphism R : A1f{I 1 Ñ Af{I constructed out of Rf , the unique

unital ˚-algebra isomorphism satisfying RpΦ1pfqq “ ΦpR:gg1 fq @f P ΓcpEq.

Proof. To prove the statement it suffices to show that the operator Rf maps the ideal I 1 to
the ideal I. Each ideal I and I 1 is the intersection of three (four) ideals corresponding to the
requirements of linearity, Hermiticity, CCR (and equation of motion). The fact that Rf preserves
the ideals due to linearity and Hermiticity is an immediate consequence of the fact that Rf is
a ˚-algebra homomorphism of the involved freely generates algebras. The ideal arising from the
equation of motion condition is preserved due to the first statements of Theorem 2.1.27 and item
(4) therein.
The situation is more delicate regarding the ideal generated by the CCR. Preservation of that
ideal is actually an immediate consequence of Rf pI1q “ I (Rf is unital by hypothesis) and the
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structure of CCR together with (2.1.22):

GNpf
1, h1q “ GN0pR

:gg1 f,R:gg1hq

“

ż

M
xR:gg1 f |GNR

:gg1hyvol g

“

ż

M
xf |RGNR

:gg1hyvol g1

“

ż

M
xf |GN1hyvol g1

“ GN1pf, hq .

This concludes our proof.

Definition 3.1.6. A unital ˚-isomorphism R : A1 Ñ A defined in Proposition 3.1.5 out of the
Møller operator R of g, g1 as in Theorem 2.1.27 and (2.1.24) is called Møller ˚-isomorphism of
the CCR algebras A,A1 (in this order)

3.1.2 Pull-back of algebraic states through the Møller ˚-isomorphism

As explained in the beginning of this section, the subsequent step in the quantization of a field
theory consists in identifying a distinguished state on the ˚-algebra of the quantum fields. The
GNS construction then guarantees the existence of a representation of the quantum field algebra
through, in general unbounded, operators defined over a common dense subspace of some Hilbert
space. We will not care about the explicit representation and recall some definitions (see [40] for
a general discussion also pointing out several not completely solved standing issues).

Definition 3.1.7. We call an (algebraic) state over a unital ˚-algebra B a C-linear functional
ω : B Ñ C which is

(i) Positive ωpa˚aq ě 0 @a P B,

(ii) Normalized ωpIq “ 1

A generic element of the CCR algebras A of a quantum field Φ associated to the normally
hyperbolic operators discussed before can be written as a finite polynomial of the generators
Φpfq, where the zero grade term is proportional to I, to specify the action of a state it’s sufficient
to know its action on the monomials, i.e its n-point functions

ωnpf1, .., fnq :“ ωpΦpf1q...Φpfnqq (3.1.1)

The map ΓcpEq ˆ ¨ ¨ ¨ ˆ ΓcpEq Q pf1, . . . , fnq ÞÑ ωnpf1, .., fnq can be extended by linearity to the
space of finite linear combinations of sections f1 b ¨ ¨ ¨ b fn P ΓcpE

nbq, where Enb is n-times
exterior tensor product of the vector bundle E with itself. If we impose continuity with respect
to the usual topology on the space of compactly supported test sections, since the said linear
combinations are dense, we can uniquely extend the n-point functions to distributions in Γ1cpE

nbq

we shall hereafter indicate by the same symbol ωn. It has a formal integral kernel,

ωnpf1, .., fnq “

ż

Mn

rωnpx1, ..., xnqf1px1q...fnpxnqvol Mnpx1, . . . , xnq,

where
vol Mnpx1, . . . , xnq :“ vol gpx1q b ¨ ¨ ¨ (n times) ¨ ¨ ¨ b vol gpxnq

henceforth. Notice that if more strongly ωn P Γ1cpE
nbq, then

ωnphq “

ż

Mn

rωnpx1, ..., xnqhpx1, . . . , xnqvol Mnpx1, . . . , xnq
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is also defined for h P ΓcpE
nbq. The case n “ 2 is the easiest one. The Schwartz kernel theorem

implies ΓcpEq Q f ÞÑ ω2ph, fq is (sequentially) continuous at f “ 0 for every fixed h P ΓcpEq if
and only if ω2 continuously extends to a unique distribution we hereafter indicate with the same
symbol ω2 P Γ1cpE b Eq.

An important fact (see the comment after [95, Proposition 5.6]) is that, if the CCR algebra
A admits states, then the fiberwise metric x¨|¨y must be positive. In other words, x¨|¨y is a real
symmetric positive scalar product. We shall assume it henceforth.

Differently from a free quantum field theory on Minkowski spacetime, where the Poincaré
invariant state – known as Minkowski vacuum – might be a natural choice, on a general curved
spacetime there might be no choice of a natural state. However there is a class of states, known
as quasifree (or Gaussian) states, whose GNS representation mimics the Fock representation of
Minkowski vacuum (see e.g. [76]).

Definition 3.1.8. Let A be the CCR algebra. A state ω : A Ñ C is called quasifree, or
equivalently Gaussian, if the following properties for its n-point functions hold

(i) ωnpf1, ..., fnq “ 0, if n P N is odd,

(ii) ω2npf1, ..., f2nq “
ř

partitions ωpfi1 , fi2q ¨ ¨ ¨ωpfin´1 , finq, if n P N is even,

where “partitions” for even n refers to the class of all possible decompositions of the set t1, 2, . . . , nu
into n{2 pairwise disjoint subsets of 2 elements ti1, i2u, ti3, i4u, . . ., tin ´ 1, inu with i2k´1 ă i2k
for k “ 1, 2, . . . , n{2.

For these states all the information is encoded in the two-point distribution, as one can expect
in a free theory. It is not difficult to prove that, for a quasifree state in view of the definition
above, ω2 P Γ1cpEq entails that ωn continuously extends to ωn P Γ1cpE

nbq obtained, for n “ 2k, as
a linear combination of tensor products of distributions ω2 and trivial if n “ 2k ` 1.

Remark 3.1.9. If A is on-shell, then the n-point function satisfies trivially

ωnpf1, . . . ,Nfk, . . . , fnq “ 0 for every k “ 1, . . . , n and fk P ΓcpMq.

as a consequence of (3.1.1) and ΦpNfq “ 0. However it may happen that these identities are valid
(for some n) even if the algebra is not on-shell.

In the next proposition, we shall see that the action of the Møller isomorphism R between
CCR-algebras can be pull-backed on the quantum states. Furthermore, the pull-back of a
quasifree state is again a quasifree state.

Proposition 3.1.10. Let be g, g1 P GHM, consider the algebras A, A1 respectively associated to
formally-selfadjoint normally hyperbolic operators N,N1 : ΓpEq Ñ ΓpEq constructed out of g and
g1 and let ω : A Ñ C be a state. Assuming that g » g1, we define a functional ω1 : A1 Ñ C by
pull-back through a Møller ˚-isomorphism R : A1 Ñ A of A,A1 as in Definition 3.1.6, i.e.

ω1 “ ω ˝R.

Then the following statements hold true:

(1) ω1 is a state on A1;

(2) ω12 P Γ1cpE b Eq if and only if ω2 P Γ1cpE b Eq;

(3) ω1 is quasifree if and only if ω is.
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Proof. (1) Linearity is obvious since we are composing linear maps. Normalization follows from
1 in 3.1.5 and from the fact that ω is normalized. Positivity follows from positivity of ω and the
fact that R preserves the involutions, the products, and is surjective. (2) Since ω2 P Γ1cpE ˆ Eq,
then it is ΓcpEq-continuous in the right entry (taking values in Γ1cpEq and with respect to the
corresponding topology). As a consequence, by composition of continuous functions, if h P ΓcpEq
is given,

ΓcpEq Q f ÞÑ ω12ph, fq “ ω2pR
:gg1h,R:gg1 fq

is ΓcpEq-continuous as well because R:gg1 : ΓcpEq Ñ ΓcpEq is continuous in the ΓcpEq topology in
domain and co-domain for (5) of Theorem 2.1.27. In other words ΓcpEq Q f ÞÑ ω12p¨, fq P Γ1cpEq is
continuous. We conclude that ω12 P Γ1cpEbEq due to the Schwartz kernel theorem. The result can
be reversed swapping the role of the states and the metrics, noticing that ω “ ω1 ˝ R´1 where
R´1 is also a Møller ˚-isomorphism, the one constructed out of R´1 which is, in turn, a Møller
operator associated to the pair g1, g in this order in view of Corollary 2.1.29.
(3) The proof is immediate and follows by construction.

3.1.3 States and Hadamard states

It is widely accepted that, among all possible (quasifree) states, the physical ones are required
to satisfy the so-called the Hadamard condition. The reasons for this choice are manifold: For
example, it implies the finiteness of the quantum fluctuations of the expectation value of every
observable and it allows us to construct Wick polynomials [71, 75] and other observables, as
the stress energy tensor, relevant in semi-classical quantum gravity following a covariant scheme
[70, 82], encompassing a locally covariant ultraviolet renormalization [72] (see also [76] for a
recent pedagogical review). These states have been also employed, e.g. (the following list is far
from being exhaustive) in the study of the Black hole radiation [31, 55, 77, 89], in cosmological
models [28, 30] and other applications to spacetime models [45, 46, 83], and to study energy
quantum inequalities [43]. For later convenience, we decided to present the Hadamard condition
as a microlocal condition on the wave-front set of the two-point distribution [93,94] instead of the
equivalent geometric version based on the Hadamard parametrix [2, 78, 84]. Let’s briefly sketch
what they are and why they are useful.

From now on we adopt the definitions of wave-front set WF pψq of distribution ψ on R-vector
bundles equipped with a non-degenerate, symmetric, fiberwise metric1 as in [95].

We shall use some very known definitions and results of microlocal analysis applied to distri-
butions of Γ1cpFq where F is a K-vector bundle, F “ E b E for instance (see [95] for details). In
particular,

• ψ P Γ1cpFq is a smooth section of the dual bundle F˚, indicated with the same symbol
ψ P ΓpF˚q, if and only if WF pψq “ H.

• We say that ψ,ψ1 P Γ1cpFq are equal mod C8, if ψ ´ ψ1 P ΓpF˚q.

• Let us assume that F “ E b E where E is equipped with a non-degenerate, symmetric
(Hermitian if K “ C), fiberwise metric and let P : ΓcpEq Ñ ΓcpEq be a formally selfadjoint
smooth differential operator. We say that ν P Γ1cpEb Eq is a bi-solution Pf “ 0 mod C8,
if there exist ψ,ψ1 P ΓpF˚q such that

νpPfb hq “

ż

M
xψ, fb hy vol g b vol g , νpfbPhq “

ż

M
xψ1, fb hy vol g b vol g @f, h P ΓcpEq .

We are in a position to state the definition of micro local spectrum condition and Hadamard
state. Below, „‖ is the relation in T ˚M2zt0u such that px, kxq „‖ py, kyq if there is a null geodesic

1The authors of [95] more generally study the case of a complex Hermitian vector bundle endowed with an
antilinear involution (here the identity bundle map) there indicated by Γ.
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passing through x, y P M and the geodesic parallely transports the co-tangent vector to that
geodesic kx P T

˚
xM into the co-tangent vector to that geodesic ky P T

˚
yM. Finally, kx Ź 0 means

that the covector kx is future directed.

Definition 3.1.11. With A as in Definition 3.1.8, a state ω : A Ñ C is called a Hadamard
state if ω2 P Γ1cpE b Eq and the following microlocal spectrum condition is valid

WF pω2q “ tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, kx Ź 0u . (3.1.2)

More generally, a distribution ν P Γ1cpE b Eq is said to be of Hadamard type if its wave-front
set WF pνq is the right-hand side of (3.2.26).

Remark 3.1.12.

(1) Notice that px, kx;x,´kxq PWF pνq for every future directed lightlike covector kx P T
˚
xM if

ν P Γ1cpE b Eq is of Hadamard type.

(2) It is possible to prove that a fiberwise scalar product x¨|¨y must be necessarily positive if
A admits quasifree Hadamard states as proved in the comment after [95, Proposition 5.6].
We henceforth assume that x¨|¨y is positive.

3.1.4 Møller preservation of the microlocal spectrum condition for off-shell algebras

The theorem below shows that the Hadamard condition is preserved under the pull-back along
the Møller isomorphism.

Theorem 3.1.13. Let E be an R-vector bundle over the smooth manifold M and denote with x¨ | ¨y
positive, symmetric, fiberwise metric. Let be g, g1 P GHM, consider the corresponding formally-
selfadjoint normally hyperbolic operators N,N1 : ΓpEq Ñ ΓpEq and refer to the associated CCR
algebras A and A1 (off-shell in general). Finally, suppose that g » g1.
ω : AÑ C is a quasifree Hadamard state, if and only if

ω1 :“ ω ˝R : A1 Ñ C ,

constructed out of a Møller ˚-isomorphism R of A,A1, is a quasifree Hadamard state of A1.

Remark 3.1.14. We stress that it is not required that the algebras are on-shell nor that the
relevant two-point functions satisfy the equation of motion with respect to the corresponding
normally hyperbolic operators.

The rest of this section is devoted to prove Theorem 3.1.13, a refinement of it stated in the
last Theorem 3.2.8, and a proof of existence of Hadamard states based on our formalism.

Our first observation is the following.

Lemma 3.1.15. Let S : ΓpEq Ñ ΓpEq be any of the four operators R`, R´, R´1
` , R´1

´ , defined as
in (2.1.9), (2.1.10), (2.1.11), (2.1.12), and U Ă Rm an open set.
If tfzuzPU Ă ΓpEq is such that Mˆ U Q px, zq ÞÑ fzpxq is jointly smooth, then

Mˆ U Q px, zq ÞÑ pSfzqpxq

is jointly smooth as well.

Proof. We consider the case of R`, the remaining three instances having a similar proof. What

we have to prove is that M ˆ U Q px, zq ÞÑ
´

G`ρNχpρNχ ´ N0qfz

¯

pxq is smooth under the said

hypotheses. Let us first consider the case where there is compact K Ă M such that supppfzq Ă K
for all z P U . In this case, defining F px, zq :“ pρNχ ´ N0qfzpxq, the projection π : supppF q Q
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px, zq ÞÑ z P U is proper2 and this fact will be used shortly. Interpreting G`ρNχ : ΓcpEq Ñ

ΓcpEq and thus as a Schwartz kernel, we can compute the wavefront set of the map M ˆ U Q

px, zq ÞÑ
´

G`ρNχpρNχ ´ N0qfz

¯

pxq viewed as the distributional kernel of the composition of the

kernel G`ρNχpx, yq and the smooth kernel F py, zq. We know that (see, e.g. [76] for the scalar case,

the vector case being analogous)

WF pG`ρNχq “
 

px, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, x P J`pyq or kx “ ky , x “ y

(

whereas, since F is jointly smooth,
WF pF q “ H .

The known composition rules of wavefront sets of Schwartz kernels, which use in particular the
fact that the projection π above is proper (in [76, Theorem 5.3.14] which is valid also in the vector
field case), immediately yields

WF pG`ρNχ ˝ F q Ă H .

It being WF pG`ρNχ ˝ F q “ H, we conclude that M ˆ U Q px, zq ÞÑ
´

G`ρNχpρNχ ´ N0qfz

¯

pxq is a

smooth function as desired.
Let us pass to consider the generic jointly smooth family tfzuzPU Ă ΓpEq without restrictions
on the supports. First of all, we observe that f1zpxq :“ ppρNχ ´ N0qfqpxq is past compact by
construction for every z P U , because its support is contained in the future of Σt0 referring to the
construction of Nχ. According to the proof of [4, Theorem 3.6.7], if h is past compact, x0 P M,
and A Ą suppphq X J´px0q is an open relatively compact set, for every compactly supported
smooth function sA P C

8
c pM; r0, 1sq such that sApxq “ 1 if x P A, it holds

pG`ρNχhqpx0q “ pG
`
ρNχ

sAhqpx0q .

We want to apply this identity for h “ fz. Take t1 ă t0. Given x0 P M we can always define
A :“ I´prx0q X I`pΣt1q where rx0 P I`px0q

3. With this choice, A does not depend on z P U and
the same A can be used for x varying in an open neighbourhood A1 of x0, since I´prx0q is open.
We conclude that, if px, zq P A1 ˆ U , then

´

G`ρNχpρNχ ´ N0qfz

¯

pxq “ pG`ρNχ ˝ F qpx, zq where F px, zq “ sApxqpρNχ ´ N0qfzpxq . (3.1.3)

In this case K :“ supppsAq includes all the supports of the maps M Q x ÞÑ F px, zq for every
z P U . The first part of the proof is therefore valid for the map M ˆ U Q px, zq ÞÑ pG`ρNχ ˝ F q

which must be jointly smooth as a consequence. In particular, its restriction A1 ˆ U Q px, zq ÞÑ
´

G`ρNχpρNχ ´ N0qfz

¯

pxq is jointly smooth as well. Since A1 can be taken as a neighbourhood

of every point in M and z P U is arbitrary, from (3.1.3) the whole function M ˆ U Q px, zq ÞÑ
´

G`ρNχpρNχ ´ N0qfz

¯

pxq is jointly smooth.

Relying on Lemma 3.1.15, we can notice the following.

Lemma 3.1.16. Consider a pair of globally hyperbolic metrics g0 and gχ on M as in Proposition
2.1.16 and corresponding normally hyperbolic operators N0,Nχ : ΓpEq Ñ ΓpEq for the R-vector
bundle on M equipped with the positive symmetric fiberwise metric x¨ | ¨y.

Then, ν0 P Γ1cpEb Eq is a bisolution of N0f “ 0 mod C8 if and only if νχ :“ ν ˝R
:g0gχ
` bR

:g0gχ
` is

a bisolution of Nχf “ 0 mod C8, where R` is defined in (2.1.26).

2If C Ă U is compact and thus closed, then π´1
pCq is a closed set, π being continuous, contained in the compact

K ˆ C, so that π´1
pCq is compact as well.

3Notice that since the spacetime is globally hyperbolic, I˘pxq “ J˘pxq and I´prx0q X I`pΣt1q “ J´prx0qXJ
`
pΣt1q

which is compact because Σt1 is a smooth spacelike Cauchy surface.
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Proof. We start by stressing that, as already noticed, in view of the known continuity properties

of R
:g0gχ
` and its inverse and using Schwartz’ kernel theorem, ν0 P Γ1cpE b Eq if and only if

νχ P Γ1cpE b Eq.
We pass to prove that if ν0 is a bisolution mod C8, then νχ is a bisolution mod C8, referring to the
corresponding operators. Let us hence suppose that ν0pN0f, hq “ ψpfbhq and ν0pf,N0hq “ ψ1pfbhq
for some smooth sections ψ,ψ1 P ΓppE b Eq˚q and all f, h P ΓcpEq. The identity

R
:g0gχ
` Nχ|ΓcpEq “ N0|ΓcpEq ,

immediately implies that, if ϕpx, yq :“ cχ0 pxqc
χ
0 pyqψpx, yq, ϕ

1px, yq :“ cχ0 pxqc
χ
0 pyqψ

1px, yq,

νχpNχf, hq “

ż

MˆM
xϕpx, yq, pIdb R

:g0gχ
` pfb hqqpx, yqyvol gχpxq b vol gχpyq

and

νχpf,Nχhq “

ż

MˆM
xϕ1px, yq, pR

:g0gχ
` b Idpfb hqqpx, yqyvol gχpxq b vol gχpyq

The proof ends if proving that there are smooth sections ϕ1, ϕ
1
1 P ΓppE b Eq˚q, such that

ż

MˆM
xϕ, Idb R

:g0gχ
` pfb hqyvol gχ b vol gχ “

ż

MˆM
xϕ1px, yq, fpxqhpyqyvol gχpxq b vol gχpyq

and
ż

MˆM
xϕ,R

:g0gχ
` b Idpfb hqyvol gχ b vol gχ “

ż

MˆM
xϕ11px, yq, fpxqhpyqyvol gχpxq b vol gχpyq

for every pair f, h P ΓcpEq. We prove the former identity only, the second one having an identical
proof. To this end we pass to the index notation (also assuming Einstein’s summing convention),
the indices being referred to the fiber in the local trivialization,

ż

MˆM
xϕ,R

:g0gχ
` b Idpfb hqyvol gχ b vol gχ

“
ÿ

j,k

ż

MˆM
χjpxqχ

1
kpyqϕabpx, yqpR

:g0gχ
` fqapxqhbpyqvol gχpxq b vol gχpyq

Above tχjujPJ and tχ1kukPK are partitions of the unity of M subordinated to corresponding locally
finite coverings of M supporting local trivializations, whose fiber coordinates are labelled by a

and b. Moreover, only a finite number of indices pj, kq P J ˆK give a contribution to the sum,
uniformly in x, y, in view of the compactness of the supports of f and h and the local finiteness
of the used coverings. The right-hand side can be rearranged to

“
ÿ

kPK

ż

M
χ1kpyq

˜

ÿ

jPJ

ż

M
χjpxqϕabpx, yqpR

:g0gχ
` fqapxq

¸

hbpyqvol gχpyq

“
ÿ

kPK

ż

M
χ1kpyq

ˆ
ż

M
xϕ1ybpxq | pR

:g0gχ
` fqpxqyvol gχpxq

˙

hbpyqvol gχpyq

“

ż

M

ÿ

kPK

χ1kpyq

ˆ
ż

M
xpR`ϕ

1
ybqpxq | fpxqyvol g0pxq

˙

hbpyqvol gχpyq

“
ÿ

j,k

ż

MˆM
χjpxqχ

1
kpyqc

χ
0 pxqpR`ϕ

1
ybqapxqf

apxqhbpyqvol gχpxq b vol gχpyq

“

ż

MˆM
xϕ1px, yq, fb hpx, yqyvol gχpxq b vol gχpyq ,
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where we have locally defined ϕ1aybpxq :“ ξacpxqϕcbpx, yq, with ξabpxq being the inverse fiber metric
at x P M in any considered local trivialization. Above, ϕ1 abpx, yq :“ cχ0 pxqpR`ϕ

1
ybqapxq is the

candidate section of pE b Eq˚ we were looking for, represented in local coordinates of the atlas of
the said trivialization. That section is smooth, i.e., ϕ1 P ΓppEbEq˚q as desired. Indeed, the maps
M ˆ Uk Q px, yq ÞÑ ϕ1ybpxq define a family of sections of ΓpEq parametrized by y P Uk for every
given b P t1, . . . , Nu, where Uk Ă M is the projection onto M of the domain of the considered
local trivialization. This family is jointly smooth in x, y as established in Lemma 3.1.15.
The converse statement, that ν0 is a bisolution mod C8 if νχ is, can be proved with the same
procedure simply replacing R` with pR`q

´1 and using Lemma 3.1.15 again.

Before giving the proof of Theorem 3.1.13, we need a final lemma, which shows that any
Hadamard distribution whose antisymmetric part is given by the causal propagator of a normally
hyperbolic system N is actually a bisolution of N itself modulo smooth errors.

Lemma 3.1.17. Let N : ΓpEq Ñ ΓpEq be a formally selfadjoint normally hyperbolic operator and
suppose that ν P Γ1cpE b Eq is of Hadamard type and satisfies

νpx, yq ´ νpy, xq “ iGNpx, yq mod C8

where GNpx, yq is the distributional kernel of the causal propagator GN. In this case ν is a
bisolution of Nf “ 0 mod C8.

Proof. The proof is a straightforward re-adaptation of the proof appearing in the Note added in
proof of [93].

We are finally in a position to prove Theorem 3.1.13.

Proof of Theorem 3.1.13. We have only to prove that ω1 is Hadamard if and only if ω is, since the
other preservation property has been already proved in (4) of Proposition 3.1.10. If g0 » g1, there
is a sequence of globally hyperbolic metrics g10 “ g0, g

1
1, . . . , g

1
N “ g1 such that either g1k ĺ g1k`1 or

g1k`1 ĺ g1k and the future cones satisfy a corresponding inclusion. The Møller operator R of A,A1
is obtained as the composition of the Møller operators Rk of the formally-selfadjoint normally
hyperbolic operators N1k,N

1
k`1 associated to the pairs g1k, g

1
k`1:

R :“ R10R11 ¨ ¨ ¨R1N´1

as in the proof of Theorems 2.1.20, 2.1.27 and (2.1.24). The thesis is demonstrated if we prove
that, with obvious notation, ωk`1 is Hadamard if and only if ωk is. So in principle we have to
prove the thesis only for a pair of metrics g0, g1 with the two cases g0 ĺ g1 and g1 ĺ g0. Actually
the latter is a consequence of the former, using the fact that Møller ˚-isomorphisms are bijective
and that a Møller operator of the second case is the inverse operator of a Møller operator of the
first case in accordance to Corollary 2.1.29. In summary, the proof is over by establishing the
thesis for the case g “ g0 ĺ g1 “ g1 and we shall concentrate on that case only in the rest of the
proof.

Recalling by (2.1.27) and (2.1.26) that R:g0g1 “ R
:g0gχ
` R

:gχg1
´ , we write

ω1
2pf1, f2q “ ω0

2pR
:g0g1 f1,R

:g0g1 f2q “ ω0
2pR

:g0gχ
` R

:gχg1
´ f1,R

:g0gχ
` R

:gχg1
´ f2q.

To analyze the wave-front set of this bidistribution, we split again the operation in two steps.
First we define a pull-back state on the algebra Aχ of quantum fields defined for the formally-
selfadjoint normally hyperbolic operator Nχ, i.e a normally hyperbolic operator on pM, gχq. This
intermediate pull-back states reads

ωχ2 pf1, f2q “ ω0
2pR

:g0gχ
` f1,R

:g0gχ
` f2q. (3.1.4)
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We intend to prove that ωχ2 P Γ1cpEq is of Hadamard type if and only ω0
2 is. Notice that both

two-point functions have antisymmetric parts that coincide with iGNχ and iGN0 , respectively, in
view of the CCRs of the respective algebras. If ω0

2 P Γ1cpEq is of Hadamard type, then it is a
a bisolution of N0f “ 0 mod C8 in view of Lemma 3.1.17. The same argument proves that,
if ωχ2 P Γ1cpEq is of Hadamard type, then it is a bisolution of Nχf “ 0 mod C8 due to 3.1.17.
Applying Lemma 3.1.16 to both cases we have that,

(a) ω0
2 P Γ1cpEq of Hadamard type implies that ω0

2 is a bisolution N0f “ 0 mod C8 and ωχ2 is a
a bisolution of Nχf “ 0 mod C8;

(b) ωχ2 P Γ1cpEq of Hadamard type implies that ωχ2 is a bisolution Nχf “ 0 mod C8 and ω0
2 is a

a bisolution of N0f “ 0 mod C8.

We are now in a position to apply the Hadamard singularity propagation theorem. Consider
the smooth Cauchy time function t in common with g0 and gχ, such that χpxq “ 0 if tpxq ă t0.

As a preparatory remark we notice that R
:g0gχ
` f “ f from (2.1.29) when the support of f stays in

the past of the Cauchy surface Σt0 “ t´1pt0q. In that region g0 “ gχ by definition of gχ. Finally
due to (3.1.4),

ωχ2 pf, hq “ ω0
2pf, hq if tpsupppfqq ă t0, tpsuppphqq ă t0

Hence, in particular, ωχ2 is of Hadamard type when the supports of the test functions are taken in
that region if and only if ω0

2 is of Hadamard type when the supports of the test functions are taken
there. More precisely, it happens when the supports of the arguments f, h are taken in a (globally
hyperbolic) neighbourhood of a Cauchy surface (for both metrics!) Στ :“ t´1pτq with τ ă t0
between two similar slices. Since both distributions are bisolutions of the respective equation
of motion mod C8 and the operators are normally hyperbolic, the theorem of propagation of
Hadamard singularity (see, e.g., Theorem 5.3.17 in [76]4) implies that ωχ2 and ω0

2 are of Hadamard
type everywhere in pM, gχq and pM, g0q, respectively.
A similar reasoning shows that ω1

2 P Γ1cpE b Eq, with

ω1
2pf1, f2q “ ωχ2 pR

:gχg1
´ f1,R

:gχg1
´ f2q ,

is Hadamard on pM, g1q if and only if ωχ2 is on pM, gχq. Combining the two results we have that
ω1 “ ω1 is Hadamard on pM, g1 “ g1q if and only if ω “ ω0 is Hadamard on pM, g “ g0q concluding
the proof.

We are now in the position to prove our last result.

Theorem 3.1.18. Let E be an R-vector bundle on a smooth manifold M equipped with a pos-
itive, symmetric, fiberwise metric x¨ | ¨y. Let g, g1 P GHM, consider the corresponding formally-
selfadjoint normally hyperbolic operators N,N1 : ΓpEq Ñ ΓpEq and refer to the associated CCR
algebras A and A1.
Let ν P Γ1cpE b Eq be of Hadamard type and satisfy

νpx, yq ´ νpy, xq “ iGNpx, yq mod C8 ,

GNpx, yq being the distributional Kernel of GN.
Assuming g » g1, let us define

ν 1 :“ ν ˝ R:gg1 b R:gg1 ,

for a Møller operator R : ΓpEq Ñ ΓpEq of g, g1. Then the following facts are true.

4The proof which appears there is valid for the on-shell algebra of the scalar real Klein-Gordon field, but
the passage to normally hyperbolic operators also weakening the bisolution requirement to bisolution mod C8 is
immediate, since it is based on standard Hörmander theorems about singularity propagation which works mod C8.
See the comments in Remark 5.3.18 in [76]
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(i) ν and ν 1 are bisolutions mod C8 of the field equations defined by N and N1 respectively,

(ii) ν 1 P Γ1cpE b Eq,

(iii) ν 1px, yq ´ ν 1py, xq “ iGN1px, yq mod C8,

(iv) ν 1 is of Hadamard type.

Proof. Since we never exploited the fact that ω is positive, nor the fact that the antisymmetric
part of its two points function is exactly the causal propagator, nor the fact that the relevant
algebras of fields are on-shell (i.e., the equation of motion are satisfied by the two-point functions),
we can use the same arguments as in the proof of the previous theorem to conclude.

We conclude this section with the following straightforward result of existence of Hadamard
quasifree states which apparently does not use the Hadamard singularity propagation argument
(actually this argument was used in the proof of Theorem 3.1.13).

Corollary 3.1.19. Let pM, gq be a globally hyperbolic spacetime, N be a formally-selfadjoint
normally hyperbolic operator acting on the sections of the R-vector bundle E over M and refer to
the associated CCR algebras A. Then there exists an Hadamard state on A.

Proof. It is well-known [49] that, in a globally hyperbolic ultrastatic spacetime, the (unique) CCR
quasifree ground state which is invariant under the preferred Killing time is Hadamard. Hence,
combining Corollary 1.3.5 with Theorem 3.1.13 we can conclude.

3.2 The Proca quantum field

Most of the quantum theories are described by Green hyperbolic operators [3], as Klein-Gordon
operators N discussed above or the Proca operator [44, 98], studied in this section,

P “ δd`m2

acting on smooth 1-forms A P Ω1pMq and where m2 ą 0 is a constant. These operators are for-
mally self-adjoint w.r.t. a (Hermitian or real symmetric) scalar product induced by the analogue
γ on the fibers of the relevant vector bundle. In general γ is not positive definite. Very common
and physical examples are: the standard vector Klein-Gordon field, the Proca field, the Maxwell
field, more generally, the Yang-Mills field and also the linearized gravity. Referring to the Proca,
and in general all 1-form fields, we have that γ “ g7 is the inverse (indefinite!) Lorentzian metric
of the spacetime pM, gq.

Unfortunately, in those situations, the Hadamard condition is in conflict with the positivity of
states, respectively. It is known that for a vectorial Klein-Gordon operator that is formally self-
adjoint w.r.t. an indefinite Hermitian/real symmetric scalar product, the existence of quasifree
Hadamard states is forbidden (see the comment after [95, Proposition 5.6] and [59, Section 6.3]).

The case of a (real) Proca field seems to be even more complicated at first glance. In fact, on
the one hand differently from the Klein-Gordon operator, the Proca operator is not even normally
hyperbolic and this makes more difficult (but not impossible) the proof of the well-posedness of
the Cauchy problem, in particular. On the other hand, similarly to the case of the vectorial Klein-
Gordon theory, the Proca theory deals with an indefinite fiberwise scalar product. Actually, as
we shall see in the rest of the work, these two apparent drawbacks cooperate to permit the existence
of quasifree Hadamard states. Positivity of the two-point function ω2 is restored when dealing
with a constrained space of Cauchy conditions that make well-posed the Cauchy problem.

In the present section, we study the existence of quasifree Hadamard states for the real Proca
field on a general globally hyperbolic spacetime. A definition of Hadamard states for the Proca
field was introduced by Fewster and Pfenning in [44], to study quantum energy inequalities, with
a definition more involved than the one based on the microlocal spectrum condition. They also
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managed to prove that such states exist in globally hyperbolic spacetimes whose Cauchy surfaces
are compact.

Differently from Fewster-Pfenning’s definition, here we adopt a standard definition of Hadamard
state and we consider a generic globally hyperbolic spacetime. At the end of the work, we actually
prove that the two definitions of Hadamard states are substantially equivalent.

Before establishing that equivalence, using the technology of the Møller operators we intro-
duced in [87] for normally hyperbolic operators, and here extended to the Proca field, we prove
the existence of quasifree Hadamard states in every globally hyperbolic spacetime, also in the
case in which their Cauchy hypersurfaces are not compact.

As a matter of fact, it is enough to focus our attention on ultrastatic spacetimes of bounded
geometry. In this class of spacetimes, we directly work at the level of initial data for the Proca
equation and we establish the following, also by taking advantage of some technical results of
spectral theory applied to elliptic Hilbert complexes [21].

1. The initial data of the Proca equations are a subspace CΣ of the initial data of a pair
of Klein-Gordon equations, one scalar and the other vectorial, however both defined on
bundles with fiberwise positive real symmetric scalar product;

2. The difference of a pair of certain Hadamard two-point functions for two above-mentioned
Klein-Gordon fields becomes positive once that its arguments are restricted to CΣ. There,
it defines a two-point function ω2 for a quasifree state ω of the Proca field;

3. ω is also Hadamard since it is the difference of two two-point functions of Klein-Gordon
fields which are Hadamard. They are Hadamard in view of known results of microlocal
analysis of pseudodifferential operators on Cauchy surfaces of bounded geometry, for more
details the interested reader can refer to [54].

Every field theory defined on a globally hyperbolic spacetime pM, gq is connected to one defined
on an ultrastatic spacetime of bounded geometry pR ˆ Σ,´dt2 ` hq through a Møller operator:
the associated Møller ˚-isomorphism between the algebras of Proca observables preserves the
Hadamard condition. We therefore conclude that every globally hyperbolic spacetime pM, gq
admits a Hadamard state for the Proca field. This state is nothing but the Hadamard state on
pRˆ Σ,´dt2 ` hq pulled back to pM, gq by the Møller ˚-isomorphism.

One novelty of this work is in particular a direct control of the positivity of the two-point
functions, obtained by spectral calculus of elliptic Hilbert complexes. Some microlocal property
of the Møller operators then guarantees the validity of the Hadamard condition as in the case of
normally hyperbolic field theories.

3.2.1 The CCR algebra of observables of the Proca field

We now introduce the algebraic formalism to quantize the Proca field [44,98].
Let pM, gq be a globally hyperbolic spacetime, Vg be a Proca bundle and denote by P :

ΓpVgq Ñ ΓpVgq the Proca operator. Following [76], we call on-shell Proca CCR ˚-algebra,
the ˚-algebra defined as

Ag “ Ag{Ig

where:

- Ag is the free complex unital algebra generated by the set of abstract elements I (the
unit element), apfq and apfq˚ for all f P ΓcpVgq, and endowed with the unique (antilinear)
˚-involution which associates apfq to apfq˚and satisfies I˚ “ I and pabq˚ “ b˚a˚.

- Ig is the two-sided ˚-ideal generated by the following elements of Af :

1. apaf` bhq ´ aapfq ´ baphq , @a, b P R @f, h P ΓcpVgq;

76



2. apfq˚ ´ apfq , @f P ΓcpVgq;

3. apfqaphq ´ aphqapfq ´ iGPpf, hqI , @f, h P ΓcpVgq;

4. apPfq , @f P ΓcpVgq.

The four entries of the list respectively implement linearity, Hermiticity of the generators, canon-
ical commutation relations and the equations of motion for the quantum field.

Remark 3.2.1. As in [44], we adopt the interpretation of apfq as pa|fq, where the pairing is the
Hodge inner product of 1-forms (2.2.1).
An equivalence class in Ag is denoted by rapfqs “ âpfq, the equivalence class corresponding to the
identity is denoted by rIs “ Id. The hermitian elements of the algebra Ag are called observables.

Remark 3.2.2. Requirement 4, when we pass to the quotient algebra corresponds to the distri-
butional relation Pâ “ 0, when we take Remark 3.2.1 into account and the fact that P is formally
selfadjoint. Since every solution of the Proca equation is a co-closed solution of the Klein-Gordon
equation and vice versa, we conclude that δâ “ 0, i.e. âpdfq “ 0 for every f P ΓcpVgq, must be
valid.
If, moreover, we deprive the ideal Ig of the generators in 4, the quotient algebra is said to be
off-shell, however it would still be convenient to assume the closedness constraint when defining
the off-shell algebra. That is when defining the relevant ideal of the free off-shell algebra, we
should keep 1-3, we should drop 4, and we should replace it with the weaker condition

4’. âpdfq , @f P ΓcpVgq.

This work however deals with the on-shell algebra only, we shall indicate by Ag throughout. A
study of the off-shell algebra, which may result in some relevance in perturbative renormalization
procedure will be done elsewhere.

3.2.2 Pull-back of Proca algebraic states through the Møller ˚-isomorphism

Having built the CCR-algebra, the subsequent step in quantization consists in finding a way to
associate numbers to the abstract operators in Ag by identifying a distinguished state.

Regarding the notion of Hadamard state for the Proca field, which is a vector field, we adopt
the notions of microlocal analysis for vector-valued distributions introduced in [95].

Remark 3.2.3. The interpretation of the action of a distribution on test sections is formalized
in the sense of the Hodge product (2.2.1). This interpretation is necessary in order to agree with
the interpretation of the symbol âpfq stated in Remark 3.2.1, since some of the distributions we
shall consider arise from field operators, as the two-point functions ω2pf, gq :“ ωpâpfqâpgqq. If

ΓcpVgq Q g ÞÑ ω2p¨, gq P Γ1cpVgq

is well-defined and continuous, ω2 actually defines a distribution of Γ1cpVg b Vgq and vice versa,
as a consequence of the Schwartz kernel theorem as clarified below.
From now on, if F P Γ1cpVgq and f P ΓcpVgq, the action of the former on the latter is therefore
interpreted as the Hodge product (2.2.1)

F pfq “ pF |fq “ pf|F q “

ż

M
g7pF, fqvol g .

With a straightforward extension of the Definition 2.2.10, operators working on a generic space
of k test-forms T : Ωk

c pMq Ñ Ωk
c pMq can be extended to the topological duals, i.e the associated

distributions, in terms of the action T: on the argument of the distribution:

pTF qpfq :“ F pT:fq .
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For instance, if F P Ω21
cpMq and H P Ω01

cpMq,

pδF qpfq :“ F pdfq , pdHqpfq :“ Hpδfq , f P Ω1
cpMq .

If S : ΓcpVgq Ñ Γ1cpVgq is continuous (in particular if S : ΓcpVgq Ñ ΓcpVgq is continuous), the
standard Schwartz kernel theorem permits to introduce the distribution indicated with the same
symbol S P Γ1cpVg b Vgq, which is the unique distribution such that

Spfb gq :“ Spf, gq :“ pSgqpfq “ “ pf|Sgq2 .

Conversely, a distribution of Γ1cpVg b Vgq defines a unique map ΓcpVgq Ñ Γ1cpVgq that fulfils the
identity above. In the rest of the work we shall take advantage of these facts and notations above.
Furthermore, we adopt the notion of wavefront set of a distribution on test sections of a vector
bundle on M as defined in [95].

Definition 3.2.4. Consider the globally hyperbolic spacetime pM, gq and a state ω : Ag Ñ C
for the Proca algebra of observables on pM, gq. ω is called Hadamard if it is quasifree and its
two-point function ω2 P Γ1cpVg b Vgq satisfies the microlocal spectrum condition5, i.e.

WF pω2q “ H :“ tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, kx Ź 0u . (3.2.1)

Above, px, kxq „‖ py, kyq means that x and y are connected by a lightlike geodesic and ky is the
co-parallel transport of kx from x to y along said geodesic, whereas kxŹ0 means that the covector
kx is future pointing.

As for Klein-Gordon scalar field theory, Hadamard states for Proca fields have two important
properties which were also established in [44] for the notion of Hadamard state adopted there.
We present here independent proofs only based on Definition 3.2.4. Indeed, [44] uses a definition
of Hadamard states which is apparently different from our definition. A comparison of the two
definitions and an equivalence result appear in Section 3.2.5.
The first property of Hadamard states is the fact that the difference between the two-point
functions of a pair of Hadamard states is a smooth function. This fact plays a crucial role in
the point-splitting renormalization procedure (for instance of Wick polynomials and time-ordered
polynomials [71, 72, 74, 75] and of the stress-energy tensor [70, 82, 99]) and is, in fact, one of the
reasons for assuming that Hadamard states are the physically relevant ones.

Proposition 3.2.5. Let ω, ω1 P Γ1cpVg b Vgq be a pair of two-point functions of Hadamard states
on the algebra Ag of the Proca field according to Definition 3.2.4. Then, ω ´ ω1 P ΓpVg b Vgq,
i.e., ω ´ ω1 is smooth.
More generally, ω ´ ω1 is smooth if ω, ω1 are distributions satisfying (3.2.1) such that their anti-
symmetric parts coincide mod. C8.

Proof. Let us first prove the second statement. Let us define ω`2 pf, gq :“ ω2pf, gq and ω´2 pf, gq :“
ω2pg, fq,

N` :“ tpx, kq P T ˚Mzt0u | kak
a “ 0 , k Ź 0u , N´ :“ tpx, kq P T ˚Mzt0u | kak

a “ 0 , k Ÿ 0u ,

Γ1 :“ tpx, kx; y,´kyq P T
˚M2zt0u | px, kx; y, kyq P Γu . (3.2.2)

for every Γ Ă T˚M2zt0u. If both distributions satisfy (3.2.1), then

WF pω˘2 q
1 Ă N˘ ˆN˘ . (3.2.3)

5The notion of wavefront set refers to distributions acting on complex valued test sections in view of the pervasive
use of the Fourier transform. For this reason, when dealing with these notions we consider the natural complex
extension of the involved distributions, by imposing that they are also C-linear.

78



With the hypotheses of the proposition define R˘ :“ ω˘2 ´ ω
1˘
2 . Since ω`2 ´ ω

´
2 “ ω1`2 ´ ω1´2 ` F

where F is a smooth function, we have that R` “ R´ mod. C8. At this juncture, (3.2.3)
yields WF pR`q1 XWF pR´q1 “ H because N` XN´ “ H. Since WF pR`q “WF p´R´ ` F q “
WF p´R´q “ WF pR´q, we conclude that the wavefront set of the distributions R˘ is empty
and thus they are smooth functions. This is the thesis of the second statement. The latter
statement implies the former because, since both ω and ω1 are states on the Proca ˚-algebra,
their antisymmetric part must be identical and it amounts to iGP , furthermore ω and ω1 satisfy
(3.2.1) in view of Definition 3.2.4.

The second property regards the so called propagation property of the Hadamard singularity
or also the local-global feature of Hadamard states. It has a long history which can be traced
back to [51] passing through [78], [93, 94] and [95] (and the recent [84]) at least.

Proposition 3.2.6. Consider a globally hyperbolic spacetime pM, gq and a globally hyperbolic
neighbourhood N of a smooth spacelike Cauchy surface Σ of pM, gq. Finally, let ωN be a quasifree
state for the on-shell algebra of the Proca field in pN , g|N q. The following facts are valid.

(a) There exists a unique a quasifree state ω : Ag Ñ C for the Proca field on the whole pM, gq
which restricts to ωN on the Proca algebra on N .

(b) If ωN is Hadamard according to Definition 3.2.4, then ω is.

Proof. (a) According to (2.2.11), GPf “ 0 for f P ΓcpVgq if and only if f “ Pg for some g P ΓcpVgq.
We will use this fact to construct ω out of ωN . Consider two other smooth spacelike surfaces
(for both M and N ) Σ` in the future of Σ and Σ´ in the past of Σ. Let χ`, χ´ : MÑ r0, 1s be
smooth maps such that χ`ppq “ 0 if p stays in the past of Σ´ and χ`ppq “ 1 if p stays in the
future of Σ` and χ` ` χ´ “ 1. Then, defining

Tf :“ Pχ`GPf , f P ΓcpVgq (3.2.4)

we have that Tf P ΓcpVg|N q (more precisely supppTfq stays between Σ´ and Σ`), and

Tf´ f “ Pg for some g P ΓcpVgq , (3.2.5)

because by standard properties of Green operators:

GPTf “ G`PTf´ G´PTf “
`

G`PP
˘

χ`GPf´ G´PPp1´ χ
´qGPf “

χ`GPf´ G´P pPGPfq ` G´PPχ
´GPf “ χ`GPf` χ

´GPf “ GPf.

Therefore we can apply (2.2.11) obtaining (3.2.5).
With these results, let us define

ω2pf, gq :“ ωN2pTf,Tgq , f, g P ΓcpVgq . (3.2.6)

Taking the continuity properties of GP into account, we leave to the reader the elementary proof
of the fact that there is a unique distribution Γ1cpVg b Vgq such that its value on f b g coincides
with6 ω2pf, gq. (We will indicate that distribution by ω2 with the usual misuse of language.)
Furthermore, in view of the definition of T, it is obvious that ω2 is also a bisolution of the Proca
equation, since GPP “ PGP “ 0. To construct a candidate quasifree state ω on Ag out of its two-
point function ω2, it is clear that the positivity requirement is guaranteed because ωN satisfies
it. We conclude that there is a quasifree state ω on Ag, whose two point function is (3.2.6), and
this two point function is a distribution which is also bisolution of the Proca equation. Finally,
observe that ω extends to the whole Ag the state ωN since the states are quasifree and the
two-point function of the former extends the two point function of the latter. Indeed,

ω2pf, gq “ ωN2pTf,Tgq “ ωN2pf, gq if f, g P ΓcpVg|N q .

6If ω2 indicates the distribution associated to the two-point function: ω2 “ ωN2 ˝ Tb T.
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This is because, specializing (2.2.11) and (3.2.4)-(3.2.5) to the globally hyperbolic spacetime
pN , g|N q since f P ΓcpVg|N q, we have that Tf´ f “ Pg with g P ΓcpVg|N q and ωN2 vanishes when
one argument has the form Pg, because it is a bisolution of the Proca equation in N .
There is only one such quasifree state which is an extension of ωN to the whole algebra Ag,
and such that its two-point function is a bisolution of the Proca equation. In fact, another such
extension ω1 would satisfy

ω12pf, gq “ ω12pTf,Tgq “ ωN pTf,Tgq “ ω2pTf,Tgq “ ω2pf, gq , for all f, g P ΓcpVgq.

(b) We pass to the proof that ω is Hadamard if ωN is. We have to prove that (3.2.1) is valid if it
is valid for ωN in pN , g|N q. Interpreting the two-point functions as distributions of Γ1cpVg b Vgq,

ω2 “ ωN2 ˝ Pχ
`GP b Pχ`GP . (3.2.7)

The wavefront sets of GP and Pχ`GP can be computed as follows. First of all, let N be the
normally hyperbolic operator associated to P from (2.2.9),

GP “ QGN “ GNQ (3.2.8)

where Q “ I `m´2dδg. It is known that

WF pGNq “ tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyqu

Notice that, in particular kx ‰ 0 and ky ‰ 0 nor simultaneously by definition, nor separately
since they are connected by a coparallel transport.
So, since Q is a differential operator we immediately deduce by 3.2.8 that WF pGPq ĂWF pGN q.
Then we associate to the two operator their distributional kernels GPpx, yq and GNpx, yq and
recast equation 3.2.8 in the form:

GPpx, yq “ pIdx b QyqGNpx, yq,

which, by standard microlocal analysis results, implies that

WF pGNq Ă CharpIdx b Qyq YWF pGPq.

However explicit computations give that CharpIdx b Qyq “ tpx, kx; y, 0q|px, kxq P T˚M, y P Mu
which does not intersect WF pGNq at any point, implying

WF pGNq ĂWF pGPq ĂWF pGNq.

So GP and GN have the same wavefront set. Therefore, since Pχ` is a smooth differential operator,

WF pPχGNq Ă tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyqu

A this point, a standard estimate of composition of wavefront sets in (3.2.7) yields (see, e.g., [76])

WF pω2q Ă H

where the Hadamard wavefront set H is the one in (3.2.1). To conclude the proof, it is sufficient
to establish the converse inclusion. To this end, observe that, since the antisymmetric part of ω2

is ω`2 ´ ω
´
2 “ iGP,

WF pGPq ĂWF pω`2 q YWF pω´2 q ,

where we adopted the same notation as at the beginning of the proof of Proposition 3.2.5: ω`2 “
ω2, ω´2 pf, gq “ ω2pg, fq. If, according to that notation, the prime applied to wavefront sets is
defined as in (3.2.2), the above inclusion can be re-phrased to

tpx, kx; y, kyq P T
˚M2zt0u | px, kxq „‖ py, kyqu “WF pGPq

1 ĂWF pω`2 q
1 YWF pω´2 q

1 (3.2.9)
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Above
WF pω`2 q

1 Ă H1 “ tpx, kx; y, kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, kx Ź 0u

and, with a trivial computation,

WF pω´2 q
1 Ă tpx,´kx; y,´kyq P T

˚M2zt0u | px, kxq „‖ py, kyq, ky Ź 0u ,

Now suppose that px, kx; y, kyq P H1 does not belong toWF pω`2 q
1. According to (3.2.9), px, kx; y, kyq R

WF pGPq
1 (notice that H1 Q px, kx; y, kyq RWF pω´2 q

1 since the two sets are disjoint). This is impos-
sible because every px, kx; y, kyq P H1 belongs to WF pGPq

1 as it immediately arises by comparing
the explicit expressions of these two sets written above. In summary H1 Ă WF pω2q

1, that is
H ĂWF pω2q, concluding the proof.

We are finally ready to extend the Møller operator to the quantum algebras, proving that
they are indeed isomorphic. To this end, for any paracausally related metric g » g1, we define
an isomorphism of the free algebras Rgg1 : Ag1 Ñ Ag as the unique unital ˚-algebra isomorphism
between the said free unital ˚-algebras such that

Rgg1pa
1pfqq “ apR:gg1 fq @f P ΓcpVg1q ,

where R is a Møller operator of g, g1 and the adjoint R:gg1 is defined as in Proposition 2.2.12.
When we pass to the quotient algebras, the preservation of the causal propagators discussed

in the previous sections, immediately implies that the induced map on the quotient algebras is
an isomorphism, that we call Møller ˚-isomorphism.

Proposition 3.2.7. Let now Rgg1 : Ag1 “ Ag1{Ig1 Ñ Ag “ Ag{Ig be the quotient morphism
constructed out of Rgg1. Then Rgg1 is well defined and is indeed a ˚-algebra isomorphism.

Proof. The proof of this statement is identical to the one performed in [87, Proposition 5.6].
Indeed it just relies on the preservation of the causal propagators proved in Theorem 2.2.14,
which implies that the associated CCR-ideals are ˚-isomorphic.

The final step in our construction is to define a pullback of the Møller ˚-isomorphism to the
states and then to prove that the Hadamard condition is preserved, as done in [87, Theorem 5.14]
for normally hyperbolic field theories.

Theorem 3.2.8. Let Rgg1 be the Møller *-isomorphism and let ω : Ag Ñ C be a quasifree
Hadamard state, we define the pull-back state ω1 : Ag1 Ñ C by ω1 “ ω ˝Rgg1. The following facts
are true:

1 ω1 is a well-defined state;

2 ω1 is quasifree;

3 ω1 is a Hadamard state.

Proof. The proof of 1-2 is trivial and discussed in [87, Proposition 5.11]. The proof of 3 follows
from the Hadamard propagation property stated in Proposition 3.2.6. To prove the statement
we can just focus on the case in which the Møller operator is constructed out of two spacetimes
such that g ĺ g1, the reasoning can then be iterated at each step of the paracausal chain.
The two-point function of the pullback state can be written as

ω12pf, hq “ ω1pâ1pfqâ1phqq “ ωpRgg1pâ
1pfqâ1phqqq “ ωpâpR:gg1 fqâpR:gg1hqq “ ω2pR

:gg1 f,R:gg1hq.

We recall that the operator is the composition of two pieces R:gg1 “ R
:ggχ
` ˝ R

:gχg1

´ and split the
proof in two steps.

First we focus on the bidistribution ωχ2 pf, hq :“ ω2pR
:ggχ
` f,R

:ggχ
` hq on pM, gχq defining a quasifree
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state therein. By the property 2.1.14, in the region in which gχ “ g, there is, for some t0, there
is a Cauchy surface Σt0 in common for g and gχ, a common globally hyperbolic neighbourhood
N of that Cauchy surface such that ωχ2 pf, hq “ ω2pf, hq when the supports of f and g are chosen
in N and thus the corresponding state is Hadamard in pN , gχq. Now Proposition 3.2.15 implies
that ωχ2 is Hadamard in the whole pM, gχq. Secondly, the same argument can be used once again

for the operator R
:gχg1

´ on the Hadamard state ωχ on pM, gχq, proving that the state induced by

ω2pR
:gg1 ¨,R:gg1 ¨q “ ωχ2 pR

:gχg1

´ ¨,R
:gχg1

´ ¨q is Hadamard as well on pM, g1q. In other words the full
Møller operator preserves the Hadamard form.

3.2.3 Existence of Proca Hadamard states in globally hyperbolic spacetimes

The next subsections are devoted to the construction of Hadamard states for the real Proca
field in a generic globally hyperbolic spacetime. Actually, the technology of Møller operators, in
particular Theorem 3.2.8, allows us to reduce the construction of Hadamard states for the Proca
equation to the special case of an ultrastatic spacetime with Cauchy hypersurfaces of bounded
geometry. Indeed, as shown in the first chapter, for any globally hyperbolic spacetime pM, gq,
there exists a paracausally related globally hyperbolic spacetime pM, g0q which is ultrastatic. In
other words, first of all pM, g0q is isometric to R ˆ Σ where pΣ, h0q is a t-independent complete
Riemannian manifold and g0 “ ´dt b dt ` h0, where t is the natural coordinate on R and dt is
past directed. We also denote by Bt the tangent vector to the submanifold R of RˆΣ. In view of
the completeness of h, these spacetimes are globally hyperbolic (see e.g. [49]) and Σ is a Cauchy
surface of this spacetime. In turn, it is possible to change the metric on Σ in order that the final
metric, indicated by h is both complete and of bounded geometry [67]. By construction, the final
ultrastatic spacetime pM,´dtb dt`hq is paracausally related to pM, g0q because the intersection
of the corresponding open cones is non-empty as it always contains Bt. By transitivity pM, gq is
paracausally related with pRˆ Σ,´dtb dt` hq.

Hence, we assume without loss of generalities, that pM, gq “ pRˆΣ,´dtbdt`hq is a globally
hyperbolic ultrastatic spacetime, with dt past directed, whose spatial metric h is complete. When
dealing with the construction of Hadamard states we also assume that the spatial manifold pΣ, hq
is also of bounded geometry. In the final part of the section, we will come back to consider a
generic globally hyperbolic spacetime pM, gq

We can proceed to the construction of quasifree states. As we shall see shortly, this construc-
tion for the Proca field uses some consequences of the spectral theory applied to the theory of
elliptic Hilbert complexes [21] defined in terms of the closure of Hodge operators in natural L2

spaces of forms.
Some of the following ideas were inspired by [44]. However we now work in the space of Cauchy

data instead of in the space of smooth compactly supported forms and/or modes. Furthermore
we do not assume restrictions on the topology of the Cauchy surfaces used in [44] to impose a
pure point spectrum to the Hodge Laplacians.

To define quasifree states for the Proca field we observe that, as P is Green hyperbolic,

the CCR algebra Ag is isomorphic to the analogous unital ˚-algebra Apsympqg generated by the
solution-smeared field operators σpPqpâ, Aq, for A P KerscpP q, which are R-linear in A, Her-
mitian, and satisfy the commutation relations7

”

σpPqpâ, Aq, σpPqpâ, A1q
ı

“ iσpPqpA,A1qI . (3.2.10)

The said unital ˚-algebra isomorphism F : Ag Ñ Apsympqg is completely defined as the unique
homomorphism of unital ˚-algebras that satisfies

F : âpfq ÞÑ σpPq pâ,GPfq with A “ GPf, f P ΓcpVgq .

7Notice that, as σpPqpA,A1q is non degenerate, we have that σpPqpâ, Aq “ 0 only if A “ 0.
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The definition is well-posed in view of (2.2.23), (2.2.10), (2.2.11), and the definition of Ag. Within
this framework, the two point function ω2 is interpreted as the integral kernel of

ω
´

σpPqpâ, AqσpPqpâ, A1q
¯

.

In particular, its antisymmetric part is universally given by i
2σ
pP qpA,A1q due to (3.2.10). The

specific part of the two point function is therefore completely embodied in its symmetric part
µpA,A1q.

According to this observation, a general recipe for real (bosonic) CCR in generic globally
hyperbolic spacetimes to define a quasifree state on the ˚-algebra Ag (e.g., see [76,78,99] for the
scalar case and [54, Chapter 4, Proposition 4.9] for the generic case of real bosonic CCRs) is to
assign a real scalar product on the space of spacelike compact solutions

µ : KerscpPq ˆ KerscpPq Ñ R

satisfying

(a) the strict positivity requirement µpA,Aq ě 0 where µpA,Aq “ 0 implies A “ 0;

(b) the continuity requirement with respect to the relevant symplectic form σpP q (see, e.g., [54,
Proposition 4.9]),

σpPqpA,A1q2 ď 4µpA,AqµpA1, A1q . (3.2.11)

The continuity requirement directly arises from the fact that the quasifree state induced by µ on
the whole ˚-algebra Ag ” Asymp

g is a positive functional. The converse implication, though true,
is less trivial [54, 78]. The two mentioned requirements are nothing but the direct translation of
(2)’ and (3)’ stated in the introduction. (Regarding the latter, observe that σpP q corresponds to
the causal propagator at the level of solutions – Eq. (2.2.23) in our case – as discussed in Section
2.2.3.) At this point, it should be clear that the quasifree state defined by µ has two-point
function, viewed as bilinear map on ΓcpVgq ˆ ΓcpVgq,

ωµpapfqapf
1qq “ ωµ2pf, f

1q :“ µpGPf,GPf
1q `

i

2
σpP qpGPf,GPf

1q .

However, since the Cauchy problem is well posed on the time slices Σ of an ultrastatic space-
time pRˆΣ,´dtb dt` hq, as proved in Proposition 2.2.1, we can directly define µ (and σpPq) in
the space of Cauchy data CΣ on Σ, for smooth spacelike compact solutions, viewed as the time
slice at t “ 0,

µ : CΣ ˆ CΣ Ñ R .

In view of the peculiarity of the Cauchy problem for the Proca field as discussed in Section 2.2.2,
the real vector space of the Cauchy data CΣ is constrained. We underline that working at the
level of constrained initial data does not affect the construction of quasifree states. Indeed, it is
sufficient that the space of constrained initial conditions is a real (or complex) vector space and
that the constrained Cauchy problem is well posed. With this in mind, referring to the canonical
decomposition A “ Ap0qdt ` Ap1q of a real smooth spacelike compact solution A of the Proca
equation, we remember that

CΣ :“
!

pap0q, πp0q, ap1q, πp1qq P Ω0
cpΣq

2 ˆ Ω1
cpΣq

2
ˇ

ˇ

ˇ
πp0q “ ´δ

p1q
h ap1q , p∆

p0q
h `m2qap0q “ δ

p1q
h πp1q

)

.

Above pap0q, πp0qq :“ pAp0q, BtA
p0qq|t“0 and pap1q, πp1qq :“ pAp1q, BtA

p1qq|t“0.
With the said definitions and where A denotes both a solution of Proca equation and its Cauchy

data on Σ, we have the first result.
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Proposition 3.2.9. Consider the ˚-algebra Ag of the real Proca field on the ultrastatic spacetime
pM, gq “ pR ˆ Σ,´dt b dt ` hq, with dt past directed and pΣ, hq a smooth complete Riemannian
manifold. Let η0 :“ ´1, η1 :“ 1 and h7

pjq denote the standard inner product of j-forms on Σ

induced by h. The bilinear map on the space CΣ of real smooth compactly supported Cauchy data
(2.2.24)

µpA,A1q :“
1
ÿ

j“0

ηj
2

ż

Σ
h7
pjqpπ

pjq, p∆pjq `m2q´1{2πpjq
1

q`h7
pjqpa

pjq, p∆pjq `m2q1{2apjq
1

qvol h (3.2.12)

is a well defined symmetric positive inner product which satisfies (3.2.11) and thus it defines a
quasifree state ωµ on Ag completely defined by its two-point function

ωµ
`

apfqapf1q
˘

“ ωµ2pf, f
1q :“ µ

`

GPf,GPf
1
˘

`
i

2
σpP q

`

GPf,GPf
1
˘

(3.2.13)

where f, f1 P ΓcpVgq satisfy

σpP q
`

GPf,GPf
1
˘

“

ż

M
g7pf,GPf

1q vol g .

The bar over the operators in (3.2.12) denotes the closure in suitable Hilbert spaces of the
operators originally defined on domains of compactly supported smooth functions. To explain
this formalism, before starting with the proof we have to permit some technical facts about
the properties of the Hodge operators at the level of L2 spaces. Given the complete Riemannian
manifold pΣ, hq, with n :“ dimpΣq consider the Hilbert space Hh :“

Àn
k“0 L

2
kpΣ, vol hq, where the

sum is orthogonal and L2
kpΣ, vol hq is the complex Hilbert space of the square-integrable k-forms

with respect to the relevant Hermitian Hodge inner product:

pa|bqk :“

ż

Σ
h7
pkqpa, bq vol h , a, b P L2

kpΣ, vol hq ,

where a denotes the pointwise complex conjugation of the complex form a. The overall inner
product on Hh will be indicated by p¨|¨q and the Hilbert space adjoint of a densely-defined operator
A : DpAq Ñ Hh, with DpAq Ă Hh, will be denoted by A˚ : DpA˚q Ñ Hh. The closure of A will
be denoted by the bar: A : DpAq Ñ Hh.

If ΩcpΣqC :“
Àn

k“0 Ωk
c pΣqC denotes the dense subspace of complex compactly supported

smooth forms Ωk
c pΣqC :“ Ωk

c pΣq ` iΩk
c pΣq, define the two operators (we omit the index h for

shortness)

d :“ ‘nk“0d
pkq : ΩcpΣqC Ñ ΩcpΣqC , δ :“ ‘nk“0δ

pkq : ΩcpΣqC Ñ ΩcpΣqC

with dpnq :“ 0 and δp0q :“ 0. Finally, introduce the Hodge Laplacian as

∆ :“
n
ÿ

k“0

∆pkq : ΩcpΣqC Ñ ΩcpΣqC with ∆pkq :“ δpk`1qdpkq ` dpk´1qδpkq.

Since pΣ, hq is complete, ∆ can be proved to be essentially selfadjoint, for instance exploiting
the well-known argument by Chernoff [25] (or directly referring to [1]). Since ∆ is essentially
selfadjoint, if c P R, also ∆ ` cI is essentially selfadjoint. In particular, its unique selfadjoint
extension is its closure ∆` cI.

Referring to the theory of elliptic Hilbert complexes developed in [21, Section 3] and focusing in
particular on [21, Lemma 3.3] based on previous achievements established in [1], we can conclude
that the following couple of facts are true. (The compositions of operators are henceforth defined
with their natural domains: DpA ` Bq :“ DpAq X DpBq, DpABq “ tx P DpBq | Bx P DpAqu,
DpaAq :“ DpAq for a ‰ 0, Dp0Aq :“ Hh, and A Ă B means DpAq Ă DpBq with B|DpAq “ A.)
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(a) The identities hold
d
˚
“ δ , δ

˚
“ d (3.2.14)

where ˚ denotes the adjoint in the Hilbert space Hh.

(b) The unique selfadjoint extension ∆ of ∆ satisfies

∆ “ d δ ` δd “
n
ÿ

k“0

∆pkq with ∆pkq :“ δpk`1q dpkq ` dk´1 δpkq. (3.2.15)

A trivial generalization of the decomposition as in (3.2.15) holds for ∆` cI “ ∆` cI with
c P R.

We are now prompt to prove a preparatory technical lemma – necessary to establish Proposi-
tion 3.2.9 – that will be fundamental for showing that the bilinear map µ is positive on the space
CΣ.

Lemma 3.2.10. For every given k “ 0, 1, . . . , n, c ą 0, and α P R, the identities hold

p∆pk`1q ` cIqαdpkqx “ dpkqp∆pkq ` cIqαx , @x P Dpp∆pkq ` cIqαq XDpp∆pk`1q ` cIqαdpkqq

p∆pk´1q ` cIqαδpkqy “ δpk´1qp∆pkq ` cIqαy , @y P Dpp∆pkq ` cIqαq XDpp∆pk´1q ` cIqαδpkqq .

Proof. Since dd “ 0 and δδ “ 0, from (3.2.14), we also have d dx “ 0 if x P Dpdq and δ δy “ 0 if
y P Dpδq, and thus (3.2.15) yields8

d∆ Ą d δ d “ ∆ d .

However, if Dpd ∆q Ľ Dpd δ dq, we would have x P Dp∆q “ Dpδ dq X Dpd δq such that ∆x “
δdx`dδx P Dpdq, but x R Dpdδdq, namely δdx R Dpdq. This is impossible since δdx`dδx P Dpdq,
Dpdq is a subspace and d δx P Dpdq (and more precisely d d δx “ 0 as stated above). Therefore

d∆ “ d δ d “ ∆ d

and the same result is valid with δ in place of d. Evidently, in both cases ∆ can be replaced by
the selfadjoint operator ∆` cI = ∆` cI for every c P R:

d∆` cI “ ∆` cI d , δ ∆` cI “ ∆` cI δ . (3.2.16)

We henceforth assume c ą 0. In that case, as ∆ is already positive on its domain, the spectrum

of the selfadjoint operator ∆` cI is strictly positive and thus ∆` cI
´1

: Hh Ñ Dp∆` cIq is well
defined, selfadjoint and bounded. The former identity in (3.2.16) also implies that Dpd∆` cIq “
Dp∆` cI dq, so that

∆` cI
´1
d∆` cI|Dpd∆`cIqx “ d|Dpd∆`cIqx .

By construction, we can choose x “ ∆` cI
´1
y with y P Dpdq in view of the definition of the

natural domain of the composition d∆` cIq. In summary

∆` cI
´1
dy “ d∆` cI

´1
y , @y P Dpdq .

Since the argument is also valid for δ, we have established that

∆` cI
´1
d Ă d∆` cI

´1
, ∆` cI

´1
δ Ă δ ∆` cI

´1

Iterating the argument, for every n “ 0, 1, . . .,

p∆` cI
´1
qnd Ă d p∆` cI

´1
qn , p∆` cI

´1
qnδ Ă δ p∆` cI

´1
qn .

8It holds pB ` CqA “ BC `BA, but AB `AC Ă ApB ` Cq.
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This result extends to complex polynomials of ∆` cI
´1

in place of powers by linearity. Using the
spectral calculus (see e.g. [85]) where µxypEq “ px|PEyq and P is the projector-valued spectral

measure of ∆` cI
´1

, the found result for d can be written

ż

r0,bs
ppλqdµx,dypλq “

ż

r0,bs
ppλqdµδx,ypλq (3.2.17)

for every complex polynomial p, where r0, bs is a sufficiently large interval to include the (bounded

positive) spectrum of ∆` cI
´1

, x P Dpδq, y P Dpdq, and where we have used δ “ d
˚
. Since the

considered regular Borel complex measures are finite and supported on the compact r0, bs, we
can pass in (3.2.17) from polynomials p to generic continuous functions f in view of the Stone-
Weierstrass theorem. At this juncture, P ˚E “ PE and the uniqueness part of Riesz’ representation
theorem for regular complex Borel measures, implies that

pPEδy|xq “ pPEy|dxq for all x P Dpδq, y P Dpdq, and every Borel set E Ă R.

which means PEδ Ă d
˚
PE , namely PEδ Ă δPE . Analogously, we also have PEd Ă dPE .

If f : R Ñ C is measurable and bounded, the standard spectral calculus and (3.2.14), with
a procedure similar to the one used to prove PEδ Ă δPE and taking into account the fact that

Dpfp∆` cI
´1
qq “ Hh, yields

fp∆` cI
´1
qδ Ă δfp∆` cI

´1
q , fp∆` cI

´1
qd Ă dfp∆` cI

´1
q (3.2.18)

If f is unbounded, we can choose a sequence of bounded measurable functions fn such that fn Ñ f
pointwise. It is easy to prove that (see, e.g. [85]) x P Dp

ş

R fdP q entails
ş

R fndPx Ñ
ş

R fdPx.
This is the case for instance for fpλq “ λβ with β ă 0 restricted to r0, bs. Referring to this function
and the pointed out result for some sequence of bounded functions with fn Ñ f pointwise, the
latter of (3.2.18) implies that9 ,

p∆` cIqαdx “ dp∆` cIqαx if x P Dpp∆` cIqαq XDpdq and dx P Dpp∆` cIqαq,

where we used also the fact that d is closed. The case of δ can be worked out similarly. Summing
up, we have proved that, if α P R,

p∆` cIqαdx “ dp∆` cIqαx , @x P Dpp∆` cIqαq XDpp∆` cIqαdq

p∆` cIqαδy “ δp∆` cIqαy , @y P Dpp∆` cIqαq XDpp∆` cIqαδq .

Let us remark that for α ď 0 it is sufficient to choose x P Dpdq and y P Dpδq. For every given
k “ 0, 1, . . . , n, c ą 0, and α P R, taking the decomposition of Hh into account the above formulae
imply

p∆pk`1q ` cIqαdpkqx “ dpkqp∆pkq ` cIqαx , @x P Dpp∆pkq ` cIqαq XDpp∆pk`1q ` cIqαdpkqq

p∆pk´1q ` cIqαδpkqy “ δpk´1qp∆pkq ` cIqαy , @y P Dpp∆pkq ` cIqαq XDpp∆pk´1q ` cIqαδpkqq .

That is the thesis.

We are now prompted to prove that the bilinear map defined by Equation (3.2.12) defines
a quasifree state defined by the two-point function given by (3.2.13) establishing the thesis of
Proposition 3.2.9.

9Below, α ą 0 otherwise p∆` cIqα is bounded in view of its spectral properties and (3.2.18) is enough to
conclude the proof.
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Proof of Proposition 3.2.9. To continue with the proof of the proposition, we now demonstrate

that µ is well-defined and positive. That bilinear form is well-defined because Ω
pjq
c pΣq Ă Dp∆pjq `m2I

α
q

for α ď 1 as one immediately proves from spectral calculus. Furthermore, the integrand in the
right-hand side of Equation (3.2.12) is the linear combination of products of L2 functions (of
which one of the two has also compact support). Let us pass to the positivity issue. Our strategy
is to re-write µpA,Aq, where A “ pap0q, πp0q, ap1q, πp1qq P CΣ, as the quadratic form of the energy
µpA,Aq “ EpP qpAoq, where the right-hand side is defined in Equation (2.2.27), for a new set of
initial data Ao which are not necessarily smooth and compactly supported but such that EpP qpAoq
is well defined. If A P CΣ, define for j “ 0, 1

Ao “ pa
p0q
o , πp0qo , ap1qo , πp1qo q

apjqo :“ p∆pjq `m2Iq´1{4apjq

πpjqo :“ p∆pjq `m2Iq´1{4πpjq

(3.2.19)

Notice that the definition is well posed and the forms a
pjq
o and π

pjq
o belong to the respective Hilbert

spaces of j-forms, because Ω
pjq
c pΣq Ă Dp∆pjq `m2I

α
q for α ď 1 as said above. Furthermore the

new forms are real since the initial ones are real and ∆pjq `m2I
α

commutes with the complex
conjugation10. At this juncture, we have from (3.2.12)

µpA,Aq “
1
ÿ

j“0

ηj

ż

Σ
h7
pjqpπ

pjq
o , πpjqo q ` h

7

pjqpa
pjq
o , p∆pjq `m2Iqapjqo qvol h (3.2.20)

Furthermore, the new Cauchy data, though they stay outside CΣ in general, they however satisfy
the natural generalization of the constraints defining CΣ in view of Lemma 3.2.10:

πp0qo “ ´δ
p1q
h ap1qo , p∆

p0q
h `m2qap0qo “ δ

p1q
h πp1qo . (3.2.21)

These identities arise immediately from Definitions (3.2.19), the constraints (2.2.21), and by

applying Lemma 3.2.10 and paying attention to the fact that Ω
pjq
c pΣq Ă Dpp∆pj´1q ` cIqαδpjqq

for every α ď 1 and also using p∆pjq `m2Iqp∆pjq `m2Iq´1{4 “ p∆pjq `m2Iq´1{4∆pjq `m2I (for,
e.g., [85, (f) in Proposition 3.60 ]). Using (3.2.14) and (3.2.21) in the right-hand side of (3.2.20),
we can proceed backwardly as in the proof that (2.2.27) is equivalent to (2.2.28). Indeed, the
only ingredients we used in that proof were the constraint equations which are valid also for Ao
and the duality of δ and d with respect to the Hodge inner product, which extends to δ and d.
In summary,

µpA,Aq “
1

2

ż

Σ

´

h7
p1qpπ

p1q
o ´ dp0qap0qo , πp1qo ´ dp0qap0qo q ` h

7

p2qpd
p1qap1qo , dp1qap1qo q

`m2
`

h7
p1qpa

p1q
o , ap1qo q ` a

p0q
o ap0qo

˘

¯

vol h .

From that identity, it is clear that µpA,Aq ě 0 and µpA,Aq “ 0 implies Ao “ 0, which in

turn yields A “ 0 because the operators ∆pjq `m2I
1{4

are injective. We have established that
µ : CΣ ˆ CΣ Ñ R is a positive real symmetric inner product.

Let us pass to prove (3.2.11). First of all, we change the notation concerning the scalar
product µ making explicit the decomposition of A, and we work with complex valued forms. We
use

A “ pa, πq “ pap0q, πp0q, ap1q, πp1qq , a :“ pap0q, ap1qq , π :“ pπp0q, πp1qq

10It easily arises from spectral calculus using the fact that the complex conjugation is bijective from Hh to Hh,
continuous, and commutes with ∆pjq `m2I.
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so that, if pa, πq, pa1, π1q P pL2
0pΣ, vol hq‘L

2
1pΣ, vol hqqˆ pL

2
0pΣ, vol hq‘L

2
1pΣ, vol hqq are such that

the right-hand side below is defined, we can write

µppa, πq, pa1, π1qq :“
1
ÿ

j“0

ηj
2

ż

Σ
h7
pjqpπ

pjq, H´1
pjqπ

pjq1q ` h7
pjqpa

pjq, Hpjqa
pjq1qvol h

where Hpjq :“ ∆pjq `m2I
1{2

, and the bar on forms denotes the complex conjugation. Finally, for
α “ ˘1, we defined

Hαa :“ pHα
p0qa

p0q, Hα
p1qa

p1qq , Hαπ :“ pHα
p0qπ

p0q, Hα
p1qπ

p1qq .

By direct inspection one sees that, if pa, πq, pa1, π1q P CΣ ` iCΣ, then the right-hand side of the
first identity below is well-defined and

Λppa, πq, pa1, π1qq :“
1

2
µ
`

pπ ` iH´1a, a´ iHπq, pπ1 ´ iH´1a1, a1 ` iHπ1q
˘

“µppa, πq, pa1, π1qq `
i

2
σpPqppa, πq, pa1, π1qq

where σpP q is the right-hand side of (2.2.25), which however coincides with the original symplec-
tic form (2.2.22) evaluated on complex Cauchy data because pa, πq, pa1, π1q P CΣ ` iCΣ and Re-
mark 2.2.5 holds. Finally notice that if pa, πq P CΣ`iCΣ then ao :“ π´iHa and πo :“ a`iH´1π
satisfy the constraints (though they do not belong to CΣ ` iCΣ in general)

πp0qo “ ´δ
p1q
h ap1qo , Hp0qa

p0q
o “ δ

p1q
h πp1qo .

The proof is direct, using Lemma 3.2.10 once more. As a consequence, exploiting the same
argument to prove (2.2.29) and observing that Hα commutes with the complex conjugation – so
that it holds π ´ iH´1a “ π ` iH´1a for instance – we have that

2Λppa, πq, pa, πqq “ µ
`

pπ ` iH´1a, a´ iHπq, pπ ´ iH´1a, a` iHπq
˘

“ µ
´

pπ ´ iH´1a, a` iHπq, pπ ´ iH´1a, a` iHπq
¯

ě 0 .

The final inequality is due to the fact that µ is (the complexification of) a real positive bilinear
symmetric form. All that means in particular that the Hermitian form Λ on pCΣ ` iCΣq ˆ

pCΣ ` iCΣq is (semi)positively defined and thus it satisfies the Cauchy-Schwartz inequality. In
particular,

pImΛppa, πq, pa1, π1qqq2 ď |Λppa, πq, pa1, π1qq|2 ď Λppa, πq, pa, πqq Λppa1, π1q, pa1, π1qq .

If choosing pa, πq, pa1, π1q P CΣ (thus real forms), the above inequality specialises to

σpPqppa, πq, pa1, π1qq2 ď 4µppa, πq, pa, πqq µppa1, π1q, pa1, π1qq

which is the inequality (3.2.11) we wanted to prove.

3.2.4 Hadamard states in ultrastatic and generic globally hyperbolic spacetimes

With the next proposition, we show that the quasifree states defined in Proposition 3.2.9 is
a Hadamard state when pΣ, hq is of bounded geometry. To prove the assertion we will take
advantage of the general formalism developed in [54] and [57]. An alternative proof, which does
not assume that the manifold is of bounded geometry (however we here take advantage of [67]),
could be constructed along the procedure developed in [50] and extending it to the vectorial
Klein-Gordon field.
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Proposition 3.2.11. If the metric h on the time slice Σ is of bounded geometry, then the quasifree
state ωµ : Ag Ñ C defined in Proposition 3.2.9 is Hadamard according to Definition 3.2.4.

Proof. Consider a pair of complex Klein-Gordon fields Ap0q and Ap1q in the ultrastatic spacetime
pM, gq “ pRˆΣ,´dtb dt` hq, with pΣ, hq a smooth complete Riemannian manifold of bounded
geometry obeying the normally hyperbolic equations (2.2.13) and (2.2.14) in the respective vector
bundles on M, according to Section 2.2.2. We stress that we now assume that the two fields are
complex. Referring to [54, Chapter 4], we define the covariances, for j “ 0, 1

λ`
pjqpA

pjq, Apjq
1

q :“
1

2

ż

Σ
h7
pjqpπ

pjq, H´1
pjqπ

pjq1q ` h7
pjqpa

pjq, Hpjqa
pjq1q vol h `

i

2
σpjqpApjq, Apjq

1

q

(3.2.22)

λ´
pjqpA

pjq, Apjq
1

q :“
1

2

ż

Σ
h7
pjqpπ

pjq1 , H´1
pjqπ

pjqq ` h7
pjqpa

pjq1 , Hpjqapjqq vol h `
i

2
σpjqpApjq

1

, Apjqq

(3.2.23)

where Hpjq :“ ∆pjq `m2
1{2

, σpjq are the symplectic forms of the corresponding Klein-Gordon
fields taking place in the right-hand side of (2.2.25), now evaluated on complex fields. Above,
apjq, πpjq P Ωj

cpΣqC are the Cauchy data on Σ of Apjq respectively and apjq
1

, πpjq
1

P Ωj
cpΣqC are the

Cauchy data on Σ of Apjq
1

respectively. Notice that we are not imposing constraints on these
initial data since we are dealing with independent Klein-Gordon fields. λ˘

pjq are evidently positive

because, if all involved forms in the right-hand side are smooth and compactly supported, then
the right-hand side of the identity above is well-defined and

λ`
pjqpA

pjq, Apjq
1

q :“
1

2

ż

Σ
h7
pjqpH

1{2apjq ` iH´1{2πpjq, H
1{2
pjq a

pjq1 ` iH´1{2πpjq
1

q vol h .

The case of λ´
pjq is strictly analogous. Furthermore

λ`
pjqpA

pjq, Apjq
1

q ´ λ´
pjqpA

pjq, Apjq
1

q “ iσpjqpApjq, Apjq
1

q .

Therefore λ˘
pjq satisfy the hypotheses of [54, Proposition 4.14]11 so that they define a pair, for

j “ 0, 1, of quasifree states for the complex Klein-Gordon fields respectively associated to Equa-
tions (2.2.13) and (2.2.14). We pass to prove that both states are Hadamard exploiting the fact
that pΣ, hq is of bounded geometry. By rewriting the covariances λ˘

pjq as λ˘
pjq “ ˘qc

˘

pjq (q “ iσpjq)

a quick computation shows that

c˘
pjq “

1

2

«

I ˘H´1
pjq

˘Hpjq I

ff

.

We can immediately realize that the operator c˘
pjq is the same Hadamard projector obtained

in [57, Section 5.2]12 – see also [54, Section 11] for a more introductory explanation for the scalar
case. This operator belongs to the necessary class of pseudodifferential operators C8b pR; Ψ1

bpΣqq
because pΣ, hq is of bounded geometry. Therefore, on account of [57, Proposition 5.4], the two
quasifree states associated to λ`

pjq, for Apjq and j “ 0, 1, are Hadamard. In other words, the

Schwartz kernels provided by the two-point functions λ`
pjqpG

pjq¨,Gpjq¨q, viewed as distributions of

ΓpV
pjq
g b V

pjq
g q

1, satisfy
WF pλ`

pjqpG
pjq¨,Gpjq¨qq “ H ,

11The reader should pay attention to the fact that the Cauchy data used in [54], in the complex case, are defined
as pf0, f1q :“ pa,´iπq instead of our pa, πq! This is evident by comparing (2.4) and (2.20) in [54]. With the choice

of [54], ipf0, f1q
t
¨ qpf 10, f

1
1q “

ş

f0f
1
1 ` f1f

1
0vol h “ iσppa, πq, pa1, π1qq, where ¨q ” σ1 (the Pauli matrix) according

to [54].
12It follows immediately since b`ptq “ ´b´ptq “ H :“ ∆pjq `m2I

1{2
.
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where H is defined in (3.2.1) and Gpiq, i “ 0, 1 are the causal propagators for the normally
hyperbolic operators

Npiq :“ B2
t `∆

piq
h `m2I : ΓscpV

piq
g q Ñ ΓscpV

piq
g q i “ 0, 1 .

Above and from now on we use the same notation to indicate a bidistribution and the associated
Schwartz kernel. Notice that we have used the same symbol Gpjq of the causal propagator we
used for the real vector field case. This is because the causal propagators for the complex fields
are the direct complexification of the scalar case (see Remark 2.2.5). We pass now to focus on the
expression of ωµ2 provided in (3.2.13) taking the usual decomposition Ω1

cpMqC Q f “ fp0qdt ` fp1q

into account. It can be written

ωµ2pf, f
1q “ ω

p1q
µ2 pf

p1q, fp1q
1

q ´ ω
p0q
µ2 pf

p0q, fp0q
1

q

where, comparing (3.2.12) and (3.2.13) with (3.2.22) for real arguments f, f1 P ΓpVgq, we find

ω
pjq
µ2 pf

pjq, fpjq
1

q “ λ`
pjqpG

pjqfpjq,Gpjqfpjq
1

q .

We have

WF p˘ω
pjq
µ2 q “WF p˘λ`

pjqpG
pjq¨,Gpjq¨qq “WF pλ`

pjqpG
pjq¨,Gpjq¨qq “ H for j “ 0, 1.

Taking (2.2.16) into account, we now observe that ωµ2 P ΓpVg b Vgq
1 “ ΓppV

p0q
g ‘ V

p1q
g qb pV

p0q
g ‘

V
p1q
g qq1. As a matter of fact, however, ωµ2 does not have mixed components acting on sections

of V
p1q
g b V

p0q
g and V

p0q
g b V

p1q
g and the only components of that distribution are those which act

on sections of V
p0q
g b V

p0q
g and V

p1q
g b V

p1q
g . These are respectively represented by ´ω

p0q
µ2 and ω

p1q
µ2

whose wavefront set is H in both cases. The remaining two components have empty wavefront set
since they are the zero distributions. Applying the definition of wavefront set of a vector-valued
distribution [95], we conclude that

WF pωµ2q “WF p´ω
p0q
µ2 q YWF pω

p1q
µ2 q YHYH “ HYHYHYH “ H ,

concluding the proof.

Combining the results obtained so far, we get the main result of this section.

Theorem 3.2.12. Let pM, gq be a globally hyperbolic spacetime and refer to the CCR-algebra Ag

of the real Proca field. Then there exists a quasifree Hadamard state on Ag.

Proof. As already explained in the beginning of Section 3.2.3, for any globally hyperbolic space-
time pM, gq, there exists a paracausally related globally hyperbolic spacetime pM, g0q which is
ultrastatic and whose spatial metric is of bounded geometry. In particular, in this class of space-
times, the quasifree states defined in Proposition 3.2.9 satisfy the microlocal spectrum condition,
as proved in Proposition 3.2.11. Therefore, since the pull-back along a Møller ˚-isomorphism
preserves the Hadamard condition on account of Theorem 3.2.8, we can conclude.

3.2.5 Comparison with Fewster-Pfenning’s definition of Hadamard states

Though the paper [44] by Fewster and Pfenning concerns quantum energy inequalities, it also offers
a general theoretical discussion about the algebraic quantization of the Proca and the Maxwell
fields in curved spacetime. In particular, the authors propose a definition of a Hadamard state
which appears to be technically different from ours at first glance, even if it shares a number of
important features with ours.

The definition of Hadamard state stated in [44, Equation (35)] is formulated in terms of
causal normal neighbourhood of smooth spacelike Cauchy surfaces (see also below) and the global
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Hadamard parametrix for distributions which are bisolutions of the vectorial Klein-Gordon equa-
tion. Our final goal is to prove an equivalence theorem of our definition of Hadamard state
Definition 3.2.4 and the one adopted in [44].

As a first step, we translate the original Fewster-Pfenning’s definition of a Hadamard state
into an equivalent form which will turn out to be more useful for our comparison. The equivalence
of the version stated below of Fewster-Pfenning’s definition and the original one was established
in [44, Section III C] (see also the comments under Definition 3.2.13).

Definition 3.2.13. [Fewster-Pfenning’s definition of Proca Hadamard state] Consider
the globally hyperbolic spacetime pM, gq and a state ω : Ag Ñ C for the Proca algebra of
observables on pM, gq. ω is called Hadamard if it is quasifree and its two-point function has the
form

ωpâpfqâphqq “Wgpf, Qhq (3.2.24)

@f, h P ΓcpVgq, where Q : ΓpVgq Ñ ΓpVgq in the differential operator Q “ Id `m´2pdδgq. Above
Wg P Γ1cpVg b Vgq is a Klein-Gordon distributional bisolution such that

Wgpf, gq ´Wgpg, fq “ iGNpf, gq mod C8 , (3.2.25)

GN being the causal propagator of the Klein-Gordon operator (2.2.4) and which satisfies the
microlocal spectrum condition

WF pWgq “ tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, kx Ź 0u . (3.2.26)

Remark 3.2.14. The equivalence of Definition 3.2.13 and the original one stated in [44] relies
on Sahlmann -Verch’s [95] generalization to vector (and spinor) fields of some classic Radzikowski
results originally formulated for scalar fields. In practice, (a) if a distribution which is a bisolution
of the vectorial Klein-Gordon equation and it is of Hadamard form in a normal causal neighbour-
hoods of a smooth spacelike Cauchy surface, then it necessarily has the wavefront set of the form
(3.2.26) ((a) [95, Theorem 5.8]) and its antisymmetric part satisfies (3.2.25) directly from the
definition of parametrix; (b) if a distribution which is a bisolution of the vectorial Klein-Gordon
equation satisfies (3.2.26) and (3.2.25), then it is of Hadamard form in some normal causal neigh-
bourhoods of a smooth spacelike Cauchy surface (see [95, Remark 5.9. (i)]).

For the Proca field in [44] established the property of propagation of the Hadamard condition
stated in the next proposition. That result was already established for the Hadamard states of
scalar and vector (including spinor) fields in [51, 78, 95] (see [76, 86] for a general recap for the
KG scalar field). The pivotal tool is the already mentioned notion of causal normal neighbour-
hood N of a smooth spacelike Cauchy surface Σ in a globally hyperbolic spacetime pM; gq. The
notion introduced in [78] has been recently improved (closing a gap in the geometric definition
of Hadamard states) in [86]13. The propagation results established in [78, 95] and [44] are valid
with the improved notion of causal normal neighbourhoods and Hadamard states of [86].

Proposition 3.2.15. Let ω : Ag Ñ C be a quasifree state for the Proca field in the globally
hyperbolic spacetime pM, gq. Let N be a causal normal neighbourhood of a Cauchy surface Σ of
pM, gq. Suppose that the restriction of ω to pN , g|N q is Hadamard according to Definition 3.2.13.
Then ω is Hadamard in pM, gq according to the same definition.

Remark 3.2.16. In order to compare Proposition 3.2.6 and Proposition 3.2.15 we stress that
the requirement that the neighbourhood N of a Cauchy surface is causal normal can be relaxed
also in Proposition 3.2.15 to make contact with our Proposition 3.2.6. One may only assume that
pN , g|N q is globally hyperbolic also therein. That is a consequence of the following facts.

13Where these open sets are named normal neighbourhoods of smooth spacelike Cauchy surfaces, omitting
“causal”.
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(a) Every causal normal neighbourhood N Ă M of a Cauchy surface Σ of pM, gq is, by definition
[78,84], a globally hyperbolic spacetime with respect to the restriction of the metric and Σ
is also a Cauchy surface in pN , g|N q.

(b) Every smooth spacelike Cauchy surface admits a causal normal neighbourhood [78,84].

(c) According to the proof of [78, Lemma 2.2 ] whose validity extends to [84], every neighbour-
hood of a smooth spacelike Cauchy surface includes a causal normal neighbourhood of that
Cauchy surface14.

The smoothness property corresponding to our Proposition 3.2.5 also holds for Hadamard
bisolutions in the sense of Fewster-Pfenning. In [44], it is an immediate consequence of (3.2.24)
and the analogous feature of Klein-Gordon bisolutions (see the discussion on p. 4488 in [44]).

Proposition 3.2.17. Let ω, ω1 P Γ1cpVg b Vgq be a pair of bisolutions of the Proca equation
satisfying the Hadamard condition (3.2.24) for corresponding Klein-Gordon bisolutions which,
in turn, satisfy (3.2.25). Then, the differences between the two bisolutions is smooth: ω ´ ω1 P
ΓpVg b Vgq.

Finally, [44] also contains a proof of the existence of Hadamard states for the Proca (and
the Maxwell) field in globally hyperbolic spacetimes with compact Cauchy surfaces (whose first
homology group is trivial when treating the Maxwell field). This proof establishes first the
existence in ultrastatic spacetimes and next it exploits a standard deformation argument [99].

We are in a position to state and prove our equivalence result.

Theorem 3.2.18. Consider the globally hyperbolic spacetime pM, gq and a quasifree state ω :
Ag Ñ C for the ˚-algebra of observables on pM, gq of the real Proca field. Let ω2 P Γ1cpVg b Vgq
be the two-point function of ω. The following facts are true.

(a) If ω is Hadamard according to Definition 3.2.13, then it is also Hadamard according to
Definition 3.2.4.

(b) If pM, gq admits a Proca quasifree Hadamard state according to Definition 3.2.13 and ω
is Hadamard according to Definition 3.2.4, then ω is Hadamard in the sense of Defini-
tion 3.2.13.

Proof. The following argument is identical to the one used in 3.2.6 to prove WF pGPq “WF pGNq,
but we repeat it here to keep this section self-contained.
First of all notice that, since ω2pf, gq “Wgpf, Qgq, then viewing ω2 and Wg as bidistributions, we
have ωpx, yq “ pIdx bQyqWgpx, yq (where we have used the fact that Q is formally selfadjoint)
taking Remark 3.2.3 into account).
Now suppose that ω is Hadamard according to Definition 3.2.13. Since Wg satisfies the microlocal
spectrum condition and the differential operator I bQ is smooth, we have

WF pω2q ĂWF pWgq “ tpx, kx; y,´kyq P T
˚M2zt0u | px, kxq „‖ py, kyq, kx Ź 0u .

Notice that, in particular, kx and ky cannot vanish (simultaneously or separately) if they take
part of WF pWgq. Let us prove the converse inclusion to complete the proof of (a). Again from
known results, from ω2px, yq “ pIdx bQyqWgpx, yq, we have

WF pWgq Ă CharpI bQq YWF pω2q .

However, by direct inspection, one sees that

CharpI bQq “ tpx, kx; y, 0q | px, kxq P T
˚M , y P Mu ,

14Essentially because convex normal neighbourhoods of points form a topological basis of any spacetime and in
view of [84, Proposition 9]
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so that

WF pω2q ĂWF pWgq ĂWF pω2q Y tpx, kx; y, 0q | px, kxq P T
˚M , y P Mu . (3.2.27)

However WF pWgqX tpx, kx; y, 0q | px, kxq P T
˚M , y P Mu “ H and thus we can re-write the chain

of inclusions (3.2.27) as

WF pω2q ĂWF pWgq ĂWF pω2q so that WF pω2q “WF pWgq .

This is the thesis of (a) because we have established that Definition 3.2.4 is satisfied by ω.
To prove (b), let us assume that ω satisfies Definition 3.2.4. By hypotheses the antisymmetric part
of ω2 is ´iGP. Let Ω be another quasifree state of the Proca field which satisfies Definition 3.2.13.
Also the antisymmetric part of Ω2 is ´iGP.

Due to Proposition 3.2.5,

F px, yq :“ ω2px, yq ´ Ω2px, yq .

is a smooth function. Furthermore it is a symmetric bisolution of the Proca equation. In particular
it therefore satisfies15 F pf, dhp0qq “ 0, where hp0q P Ω0

cpMq, so that

F pf, Qgq “ F pf, gq `
1

m2
F pf, dpδggqq “ F pf, gq .

Collecting everything together, we can assert that, for some distributional bisolution of the Klein-
Gordon equation Wg which satisfies (3.2.25), (3.2.26), and is associated to the Hadamard state
Ω, it holds

ω2pf, gq “Wgpf, Qgq ` F pf, gq “Wgpf, Qgq ` F pf, Qgq .

If we re-absorb F in the definition of Wg,

W 1
gpf,Qgq “Wgpf, Qgq ` F pf, Qgq .

the new W 1
g is again a distributional bisolution of the Klein-Gordon equation which satisfies

(3.2.25), (3.2.26) and
ω2pf, gq “W 1

gpf, Qgq .

In other words, the Hadamard state ω according to Definition 3.2.4 is also Hadamard in the sense
of Definition 3.2.13 concluding the proof of (b).

Remark 3.2.19. Regarding (b), the existence of Hadamard states in the sense of Definition 3.2.13
has been established in [44] for globally hyperbolic spacetimes whose Cauchy surfaces are compact:
in those types of spacetimes at least, the two definitions are completely equivalent. We expect
that actually the equivalence is complete, even dropping the compactness hypothesis (see the
conclusion section). This issue will be investigated elsewhere.

3.3 Conclusions

In this chapter a lot of non trivial results have been obtained: the Møller operators construction
has exhibited the important feature of preserving the Hadamard condition and this property has
been exploited to construct Hadamard states in general spacetimes for Klein Gordon and Proca
fields. Moreover the CCR algebras defining the aforementioned theories have been shown to be
isomorphic for paracausally related spacetimes implying that a lot of structure is preserved in a
CCR quantum field theory under finite global variations of the background geometry. Moreover
Hadamard states have been constructed in general for the Proca field for the first time and the

15We are grateful to C. Fewster for this observation.
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Fewster-Pfenning and the standard definition of Hadamard state for the Proca fields have been
revealed to be (almost) equivalent.

However an issue we have faced for all the considered theories is the lack of control on the
action of the group of ˚-automorphism induced by the isometry group of the spacetime M on ω.
Indeed, the type of factor can be inferred by analyzing which and how many states are invariant.
From a more physical perspective instead, invariant states can represent equilibrium states in
statistical mechanics e.g. KMS-states or ground states. The previous remark leads us to the
following open question:

Question 3.3.1. Under which conditions it is possible to perform an adiabatic limit, namely
when is lim

χÑ1
ω1 well-defined?

A priori we expect that there is no positive answer in all possible scenarios, since it is known
that certain free-field theories, e.g., the massless and minimally coupled (scalar or Dirac) field on
four-dimensional de Sitter spacetime, do not possess a ground state, even though their massive
counterpart does. (Notice that this is not a no-go Theorem, but at least an indication that, in
these situations, the map ω Ñ ω ˝R cannot be expected to preserve the ground state property.)

A partial investigation in this direction has been carried on in [27,36] for the case of a scalar
field theory on globally hyperbolic spacetimes with empty boundary. In this situation it has
been shown that, under suitable hypotheses the adiabatic limit can be performed preserving
the invariance property under time translation but spoiling in general the ground state or KMS
property.

Moreover, the results are valid also for off-shell algebras as well as for distribution of Hadamard
type. Therefore, it could be possible to extend the action of the Møller operator also on the algebra
of extended observables in a perspective of deformation quantization (see for instance Section 2
of [35]), which include, e.g., the Wick polynomials of the underlying fields. Wick polynomials and
time-ordered products of Wick polynomial are the building blocks for perturbative renormaliza-
tion of quantum fields, both in Minkowski spacetime and in curved spacetime, where the metric
is considered as a given external classical field. Although of utmost physical relevance, these
formal operators as the stress energy operator do not belong to the algebra of observables gen-
erated by the smoothly smeared field operators (operator-valued distributions). This is because
they correspond to products of distributions at a given point and this notion is not well-defined
in general. The popular and perhaps most effective procedure to eliminate the short-distance
divergences consists of simply subtracting a suitable Hadamard distribution. This procedure
is systematically embodied in a product deformation quantization procedure which relies on a
suitable set of functionals with a specific wavefront set. The following observation leads to the
following conjecture:

Conjecture 3.3.2. Let A0,A10 be the algebra of observables of the globally hyperbolic spacetimes
pM, gq and pM, g1q and R0 a Møller ˚-isomorphism of them. If A,A1 are corresponding extended
algebras of observable (which include the Wick polynomials etc.) and g » g1, then R0 extends to
a (Møller) ˚-isomorphism R : AÑ A1.

A detailed study of the Møller ˚-isomorphism in the case of the off-shell Proca algebra has
not been carried out yet.
However, regarding the Proca field, much more can be done, especially in the study of the
Hadamard state we explicitly constructed on ultrastatic spacetime M “ R ˆ Σ. Thereon the
one-parameter group of isometries given by time-translations has an associated action on Ag in
terms of ˚-algebras isomorphisms αu completely induced by

αupâpfqq :“ âpfuq

for every f P ΓcpMq, where fupt, pq :“ fpt ´ u, pq for every t, u P R and p P Σ. It shall not be
difficult prove that the Hadamard state constructed is invariant under the action of αu

ωµpαupaqq “ ωµpaq @u P R @a P Ag
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It should be also true that the map

R Q u ÞÑ ωµpbαupaqq P C

is continuous for every a, b P Ag which would assure (see, e.g. [85]) that α :“ tαhuhPR is unitarily
implementable by a strongly continuous unitary representation of R in the GNS representation
of ωµ and that the vacuum vector of the Fock-GNS representation is left invariant under the
said unitary representation. We expect that the selfadjoint generator of that unitary group has
a positive spectrum where, necessarily, the vacuum state is an eigenvector with eigenvalue 0.
In other words ωµ should be a ground state of α. We finally expect that ωµ is pure and it is
the unique quasifree algebraic state which is invariant under α. We can summarize the previous
discussion in the following question.

Question 3.3.3. Is the Hadamard state defined on ultrastatic spacetimes a ground state for
the time-translation? More precisely, is it the unique, pure, quasifree algebraic state which is
invariant under the action of α?

Last, but not least, we have seen in Section 3.2.5 that if a globally hyperbolic manifold
admits a Proca quasifree Hadamard state according to the definition of Fewster-Pfenning, then
Definition 3.2.4 and 3.2.13 are equivalent. This is the case for example for globally hyperbolic
spacetimes whose Cauchy surfaces are compact. We do expect to extend this result for the whole
class of globally hyperbolic spacetime.

Conjecture 3.3.4. Definition 3.2.4 and 3.2.13 are equivalent on any globally hyperbolic space-
time.

As is evident from our quasi equivalence theorem, a complete equivalence would take place
if a Hadamard state according to [44] is proven to exist for every globally hyperbolic spacetime.
As a matter of fact, we expect that every globally hyperbolic spacetime pM, gq admits a quasifree
Proca Hadamard state ω according to Fewster and Pfenning. This state should exist in every
paracausally related ultrastatic spacetime pR ˆ Σ,´dt2 ` hq with complete Cauchy surfaces of
bounded geometry. With the same argument used for our existence proof of Hadamard states
or the deformation argument exploited in [44], it should be possible to export this state to the
original space pM, gq. We expect that the Hadamard Klein-Gordon bisolution for the real Proca
field on pRˆΣ,´dt2 ` hq used to define ω according to (3.2.24) in Definition 3.2.13 should have
this form.

Wgpf, f
1q :“ µpGNf,GNf

1q `
i

2
σpNqpGNf,GNf

1q , f, f1 P ΓcpRˆ Σq ,

where N is the Klein-Gordon operator (2.2.4) associated to P and GN its causal propagator. The
bilinear symmetric form µ :

`

pΩ0
cpΣqq

2 ˆ pΩ1
cpΣqq

2
˘

ˆ
`

pΩ0
cpΣqq

2 ˆ pΩ1
cpΣqq

2
˘

Ñ R is defined as in
(3.2.12), but with the crucial difference that here its arguments are not restricted to CΣ ˆ CΣ.

Another problem which has not been tackled is the extension of this formalism to gauge
theories, as well as in the classical case, because we have not been able to prove that any claimed
form of Møller operator for the Maxwell field can produce an isomorphism of the Maxwell algebras
on paracausally related spacetimes. However, in principle, nothing forbids the procedure to
be recast for gauge theories in a fruitful less trivial way, so this topic remains left to future
investigation.
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