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Abstract

Within the context of the European Horizon 2020 project
ACDC, we intend to develop a probabilistic chemical com-
piler, to aid the construction of three-dimensional agglom-
erations of artificial hierarchical cellular constructs. These
programmable discrete units offer a wide variety of techni-
cal innovations, like a portable biochemical laboratory that
e.g. produces macromolecular medicine on demand. For this
purpose, we have to investigate the agglomeration process of
droplets and vesicles under proposed constraints, like con-
finement. This paper focuses on the influence of the geometry
of the initialization and of the container on the agglomeration.

Introduction
Over the last decades, huge progress has been made in bio-
chemistry. A large amount of knowledge about the con-
stituents and the processes within a cell has been accumu-
lated (Alberts et al., 2014). Even a new research field of
synthetic biology has evolved (Gibson et al., 2017), in which
natural objects like the DNA in cells are purposely altered or
replaced in order to achieve some desired outcome, like pro-
ducing a specific drug.

In our approach within the European Horizon 2020
project ACDC – Artificial Cells with Distributed Cores
to Decipher Protein Function, we do not consider fully
equipped cells but simplified cell-like structures. In the ex-
periments in Cardiff, droplets comprised of some fluid, con-
taining some chemicals, and surrounded by another fluid are
considered (Li and Barrow, 2017), partially also being con-
tained within some outer hulls, playing the role membranes
have for cells. In Trento, mixtures of emulsion droplet
populations are considered in which aggregates were found
exclusively if the ssDNA oligonucleotides were of com-
plementary sequence (Hadorn et al., 2012), as exemplarily

shown in Fig. 1. Neighboring droplets, i.e., droplets whose
midpoints have a distance close to the sum of their radii,
can form connections, either by forming bilayers as in the
experiments in Cardiff or by getting glued to each other
by matching pairs of single-stranded DNA as in the exper-
iments in Trento. Chemicals contained within the droplets
can move to neighboring droplets through pores within these
bilayers. Thus, a complex bilayer network is created, with
the droplets being the nodes of this graph and the exist-
ing connections being represented by edges between the
corresponding droplets. In such bilayer networks, a con-
trolled successive biochemical reaction scheme can be ac-
complished to produce the intended macromolecules. The
main task of the theory and simulation group in Winterthur is
to simulate the various agglomeration processes occurring in
the experiments (Schneider et al., 2020b) and to investigate
the properties of the resulting bilayer networks (Schneider
et al., 2020a) in order to finally create a chemical compiler
designing an experiment for producing a desired outcome
with a specific agglomeration of droplets (Flumini et al.,
2020; Weyland et al., 2020).

Within the scope of this paper, we present computational
results for basic simulations of a simplified agglomeration
process of a polydisperse binary system of droplets, mim-
icking experiments performed in Trento. Here we want to
focus on the question which influence the shape of the con-
tainer and the initialization has on the agglomeration pro-
cess of the particles. In order to focus on these questions
and to exclude effects generated by other experimental prop-
erties, we simulate the droplets as hard spheres and ignore
details of the surface structures of the particles, attractive
forces as well as adhesion effects. As the extension of the
bilayers is very small and as the droplets keep their spher-
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Figure 1: Exemplary agglomeration of droplets at a bottom
of the well in an experiment (top) and clusters of droplets in
closeup view via confocal microscopy (bottom)

ical shape during the experiment, this simplified approach
is justified. Systems of hard disks and spheres are widely
used in computational physics as simple two- and three-
dimensional models for granular matter, colloidal systems,
fiber-reinforced composites, and molecular crystals (Reiss
et al., 1996; Russel et al., 1989; Metcalfe et al., 1995; Za-
llen, 1983). Usually, monodisperse and bidisperse sytems
are considered, i.e., either all disks and spheres exhibit the
same radius value or one of two different values. In recent
years, the focus of research has shifted to densest pack-
ings of items with shapes for which the determination of
overlappings between them is slightly more difficult, such
as ellipsoids and spherocylinders. It has, e.g., been found
that a random packing of ellipsoids with a specific aspect
ratio (M&M candies) is denser than a random packing of
spheres (Donev et al., 2004). Densest packings of multidis-
perse hard disks within some environment have been deter-
mined (Müller et al., 2009; Schneider et al., 2009). Usually,
these packing problems are considered in either two or three
dimensions. But also the packing of monodisperse hard
spheres in higher dimensions is of interest as this problem
can be mapped on finding efficient binary codes for digital

communications (Conway and Sloane, 1984; Sloane, 1984).

Simulation details

Figure 2: Random initializations of 2,000 spherical particles
with radii randomly chosen in the range 10-50 µm inside a
cylinder of height 4mm and radius 1mm: In the “narrow”
case on the left, all particles are initialized inside a virtual
inner cylinder with radius 0.5mm, whereas the full width of
the cylinder is used in the “wide” initialization on the right.

We consider a polydisperse binary system of N = 2000
oil droplets in water, which are modeled as hard spheres
as mentioned above. There are two types of particles, A-
particles and B-particles, painted with the colors red and
green in Figs. 2-4. The binary character of the system is re-
flected in the way that if an A-particle touches a B-particle
then a connection between them is created. Thus, there
are A↔B-connections between pairs of A- and B-particles,
but no A↔A-connections between pairs of A-particles and
no B↔B-connections between pairs of B-particles. Please
note that these A↔B-connections only exist virtually due
to an A-particle touching a B-particle. But this connection
has no further effect and is immediately destroyed if the in-
volved particles do not touch each other anymore. To each
particle, the color A or B is randomly assigned with equal
probability.

The radii of the particles are randomly chosen from a uni-
form distribution in the range 10-50 µm. Initially, they are
randomly placed in a cylinder of height 4 mm and radius 1
mm without overlaps among particles or between particles
and walls. In a second scenario, the initialization is per-
formed in the way that the particles are more closely ran-
domly placed within a virtual inner cylinder of radius 0.5
mm, again without overlap. These two initialization sce-
narios, which we will refer to later on as the “wide” and
the “narrow” scenario, are shown in Fig. 2. Furthermore,
we consider two types of scenarios, in which we either use
the already mentioned cylinder as container or in which we
attach a halfsphere to the bottom of the cylinder in order
to study the aggregation process both for flat and spherical
bottoms, such that we have all in all four scenarios which we
consider. The particles are initialized with zero velocity.

The simulation is divided in time steps of ∆t = 10−5s.
During each time step, the particles are subjected to vari-
ous forces: All particles are filled with oil of the density
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Figure 3: Intermediate configurations for a system with a “narrow” initialization in a cylinder after 1, 2, 3 (left), 5, 10, and 20
(right) seconds. The camera is directed at the bottom of the cylinder in order to observe the agglomeration process closely.
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Figure 4: Final configurations for systems with “narrow”
initialization for a flat bottom of the cylinder (top) and for a
halfsphere attached to the bottom of the cylinder (bottom)

% = 1.23kg/l, such that they sink in water due to gravity
reduced by the buoyant force. Furthermore, the three spa-
tial components of the velocity vectors ~vi are subject to ran-
dom velocity changes. Each component vx,y,zi is changed
independently by a value equal to its current value times a
random number uniformly chosen between −0.05 and 0.05.
The particles are also subjected to the Stokes friction force

~Fi,S = −6πηri~vi, (1)

with the radius ri of the particle, the current velocity ~vi, and
the viscosity η = 0.891mPas of water at 25◦C. The concept
of added mass is used (Stokes, 1851). This virtual mass is
the inertia added to the mass of the particle because an accel-
eration or deceleration of a body in water must move or de-
flect some volume of surrounding fluid as it moves through
it. It can be shown that the added mass for a spherical parti-
cle of radius ri is given by 2

3πr
3
i %fluid, i.e., it is half the mass

of the fluid displaced by the particle.
After the new velocities of the particles are determined

this way, their positions are updated according to

~xi(t) = ~xi(t−∆t) + ~vi(t)×∆t. (2)

Due to the stochastic nature of the process as imposed by the
random velocity changes, only this Euler scheme is suitable
for the determination of velocities and positions (Kloeden
and Platen, 2013).

After the determination of these new positions, some
checks are imposed: First, it is checked whether a particle
collides or even overlaps with a boundary of the cylinder or
of the cylinder with the halfsphere attached at its new po-
sition and whether the overlap will increase if the velocity
vector of the particle remains unchanged. If this is the case,
the collision normal is determined and the velocity vector
of the particle is updated according to the standard collision
rules with an elasticity factor of 0.9. If there is an overlap,
the position of the particle is updated in order to resolve the
overlap. Analogously, then checks for collisions and over-
laps between pairs of particles are performed and their ve-
locity vectors and positions are updated accordingly. The
overlaps have indeed to be resolved as otherwise they par-
tially remain and can even increase over time, especially in
the regime of slow velocities.

In total, 107 time steps are performed, which corresponds
to a total time of 100 seconds. Please note that this time scale
is sufficient as the smallest particles have a radius of at least
rsmallest = 10µm in our simulations. The time scale to fin-
ish the agglomeration process scales with ∼ r−2

smallest. Thus,
more time is needed for even smaller particle radii, as in the
experiments in Trento. The computing time for one simu-
lation took roughly 12 hours on a standard laptop. Figure
3 shows some intermediate configurations for the scenario
with “narrow” initialization and a cylinder with flat bottom
as container. Figure 4 exhibits final configurations after 100
seconds for two scenarios with “narrow” initialization, both
for a cylinder with flat bottom and for a cylinder with half-
sphere attached as container.

Computational results
We are mainly interested in the temporal development of
the network formed by the connections between the various
droplets. We consider a connection between two neighbor-
ing droplets i and j to be formed if

|~xi − ~xj | . ri + rj . (3)

Then we define an adjacency matrix η according to

η(i, j) =

{
1 if a connection between i and j exists
0 otherwise. (4)

This adjacency matrix contains all the information about the
network formed by the droplets. (Please note that η is sym-
metric in our case, but we can extend the approach to di-
rected connections and asymmetric η.)

In order to compare unary systems (all particles have
the same color) with binary systems (with the A- and B-
particles as explained above), we consider two different ad-
jacency matrices, namely
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Figure 5: Time evolution of the average degree of the particles in the four simulation scenarios considered both for a unary
system wih only one sort of particles (“1 color”) and a binary system with A↔B connections only (“2 colors”)

• a matrix η1 for the unary system, in which η1(i, j) = 1 if a
connection between two nodes can be created if condition
(3) is fulfilled, regardless the colors of i and j, and

• a matrix η2 for the binary system, in which η2(i, j) = 1
only if both condition (3) is fulfilled and droplets i and j
have different colors.

In the graphics, we will refer to the results obtained for η1

with the term “1 color” and for η2 with the term “2 colors”.
There are various ways to investigate networks. One can

focus on the local aspect and have a look at the neighbor-
hoods of the various particles. Another approach is to look at
the intermediate scenario, i.e., at groups of particles within
a network, e.g., pairs or triples or other very small groups
of particles. On the other hand, one can take the global
perspective and consider the network as a whole and deal
e.g. with questions as whether the network is percolating
(Stauffer and Aharony, 1994; Stauffer, 1986; Naftaly et al.,
1991). Last but not least, there is also the possibility to use
a local-global scenario and to investigate the importance of
specific nodes for the overall network or the role some cen-

tral nodes play in the network (see e.g. Schneider and Kirk-
patrick (2005)). In this paper, we exemplarily present results
for the local and the global perspective.

We want to start with the time evolution of the average
degree of nodes. The degree di of a node i is defined as
the number of nodes it is attached to via edges in the graph.
Thus, the degree of a particle i in network η is given by

di =
∑
j

η(i, j) (5)

and we can compute the mean value

〈d〉 =
1

N

∑
i

di. (6)

This mean value can also be considered as part of the global
perspective on a network, as the overall number e of edges
in the graph is given by

e =
∑
i<j

η(i, j), (7)
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Figure 6: Time evolution of the numbers of clusters in the four simulation scenarios considered both for a unary system wih
only one sort of particles (“1 color”) and a binary system with A↔B connections only (“2 colors”)

such that we get the relation

2e =
∑
i

di = N × 〈d〉 (8)

between the global parameter e and the local parameters di.
Nevertheless, this part of the investigation of a network is
usually seen as from a local perspective.

Figure 5 shows the mean value 〈d〉 of the degrees of the
various nodes, both for the unary and the binary system,
for the four simulation scenarios we consider. For all four
scenarios, we find a sigmoidal increase of 〈d〉 over time.
All four graphics can basically be divided into a short-time
regime up to roughly one second, in which hardly any or
rather few connections are created, and a long-time regime
between one and 100 seconds, in which the average degree
of the nodes increases sigmoidally till a final value. This
final value is significantly largest for the scenario with a
“narrow” initialization inside the cylinder to which the half-
sphere is attached, both for the unary and for the binary sys-
tem, which is not surprising, if we compare the final config-
urations depicted in Fig. 4. The half-spherical bottom allows

a closer packing of the droplets in z-direction. However, this
effect is more pronounced in the case of a “narrow” initial-
ization. Thus, we already find here that both the temporal
behavior of the increase of the average degree of nodes and
the final values strongly depend both on the shape of the
container and on the initialization process.

In the next step, we have a look at the number of clusters.
Studying clusters in networks belongs to the class of global
network analysis methods. An easy way to detect clusters is
to assign a flag fi to each node i and to derive a neighbor-
hood list for each node at the beginning. A node j belongs to
the neighborhood of node i if η(i, j) = 1. Initially, all flags
are initialized with fi = 0 and the number M of clusters is
set to zero. Then one performs an iteration over the nodes.
If the condition fi = 0 holds for node i, then this node is
not yet part of a cluster. Then the number M of clusters is
incremented by 1 and one sets fi = M in order to mark
that node i belongs to the new cluster with cluster number
M . Then one goes through all nodes j in the neighborhood
list of node i and sets fj = M as well. This inner loop is
recursively repeated, among neighbors, neighbors of neigh-
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bors, and so on, until no further neighbor with fj = 0 can
be found. Finally, all flags fi are non-zero and M equals the
number of clusters in the system. Please note that according
to this definition, a cluster can consist of one node only.

Figure 6 shows the temporal decrease of the number of
clusters for the various scenarios from a common initial
value of M = N . Again we can distinguish a short-time
phase till roughly one second and a long-time regime for
longer time durations in which the number of clusters de-
creasses strongly in a sigmoidal way. Please note that the
curves for the unary system and the binary system are rather
close to each other for times t ≤ 10s in case of the wide ini-
tialization and for times 2s ≤ t ≤ 20s in case of the narrow
initialization. Thus, a huge gap between the curves for the
average degree as shown in Fig. 5 does not lead to a huge
gap here for the number of clusters. Furthermore note that it
is very likely that only one large cluster containing all nodes
remains at the end for the unary system, especially in case of
the cylinder with a halfsphere attached to it. However, some
small isolated droplets can lie at the bottom of the cylinder,
without being connected to the large cluster, if only a cylin-
der is used as container, such that one does not necessarily
get M = 1 for the unary system at the end. For the binary
system, one finds not only the temporal behaviors but also
the final values for the numbers of clusters depend both on
the shape of the container and on the initialization process.
The largest number of clusters remains for the “narrow” ini-
tialization with a cylindrical container, whereas the smallest
number of clusters is achieved for the “narrow” initialization
with a container consisting of a cylinder and a halfsphere.

Finally, we wonder what the configurations look like if up
to 200 different clusters remain till the end of the simulation.
We are especially interested in the question whether there is
a dominating cluster also in the case of the binary system.
Thus, we protocol the sizes of the clusters during our cluster
detection and have a look at the size of the largest cluster.
Figure 7 shows the time evolution of the size of the largest
cluster. Again we see that the time evolution can be sepa-
rated into a short-time regime up to roughly 1 second and
a long-time sigmoidal increase and that the curves for the
unary systems and their binary counterparts are again rather
close to each other. However, the main result of this inves-
tigation is that we finally achieve a dominating cluster com-
prised of more than 90% of the particles in all scenarios for
the binary system.

Summary and outlook
In this paper, we presented results of simulaions for the ag-
glomeration of droplets. As we are interested in the effects
of the container shape and of the initialization process, we
study a very simplified system, in which the droplets are rep-
resented as hard spheres, subjected to gravity reduced by
buoyancy as well as the Stokes friction, the added mass ef-
fect, random velocity changes, and almost-elastic impacts.

Connections between these particles are virtually formed if
they touch or overlap. The particles gradually agglomerate
at the bottom of the container. The analysis of this agglom-
eration process from a local and a global point of view shows
that the temporal results strongly depend on the shape of the
container and on the initialization process, but generally, we
find a dominating cluster for a binary system.

We intend to extend our investigations on ternary systems,
in which only A↔B-connections can be formed between
pairs of particles, while the C-particles are unable to make
connections. Hereby we want to study the breakdown of
the size of the largest cluster with increasing density of C-
particles. Furthermore, we want to add gluing forces be-
tween particles to find out how they change the results.
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