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e cosı̀ si è impegnata con tutta sè stessa in questo lavoro, standomi vicina e in-

coraggiandomi, facendo sue tutte le difficoltà trovate in questo periodo. E allora,
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se è il migliore. . . ”

Eraclito

To Arianna

iii



Contents

Introduction 1

1 Noncoding RNAs 3

1.1 The fate of eukaryotic mRNAs . . . . . . . . . . . . . . . . . . . 3

1.2 Small silencing RNAs . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 miRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Biogenesis of miRNAs . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 miRNAs in action . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Target recognition rules . . . . . . . . . . . . . . . . . . 16

1.6 Biological functions of miRNAs . . . . . . . . . . . . . . . . . . 19

1.6.1 miRNAs and diseases . . . . . . . . . . . . . . . . . . . . 20

2 Computational tools and resources 21

2.1 miRGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 TarBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 MirBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 UCSC Genome Bioinformatics . . . . . . . . . . . . . . . . . . . 23

2.6 Ensembl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 UTRdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Mammalian target prediction algorithms 25

3.1 Shared features of target prediction algorithms . . . . . . . . . . . 25

3.2 Predicting miRNA targets . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 miRanda . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 DIANAmicroT . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 TargetScan 1.0 . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 TargetScan 2.0 . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 TargetScan 3.0 . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.6 TargetScan 3.1 . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.7 TargetScanS . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



3.2.8 TargetScan 4.0 . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.9 PicTar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.10 PITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Integration of miRNA target predictions 33

4.1 Combining target sets . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Selecting the best combination of algorithms . . . . . . . . . . . . 34

4.3 Functional characterization of miRNAs . . . . . . . . . . . . . . 38

4.4 Significant results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Discussion 44

Bibliography 46

v



List of Figures

1.1 Overview of four basic molecular genetic processes . . . . . . . . 5

1.2 Post-transcriptional regulation: interconnected steps and potential

coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Endogenous siRNA-generating loci . . . . . . . . . . . . . . . . 8

1.5 Model for Piwi-interacting RNA (piRNA) biogenesis . . . . . . . 10

1.6 Structures of primary miRNA transcripts (pri-miRNAs) . . . . . . 12

1.7 Convergence of the canonical and mirtronic miRNA biogenesis

pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Model for the biogenesis and post-transcriptional suppression of

miRNAs and siRNAs . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Two modes of base pairing for small RNAs to target mRNAs . . . 17

1.10 Possible mechanisms of miRNA-mediated repression of its target . 17

1.11 Complementarity of miRNAs and their targets . . . . . . . . . . . 19

3.1 Schematic representation of a bulge . . . . . . . . . . . . . . . . 28

3.2 Variability in target strength in PITA . . . . . . . . . . . . . . . . 32

4.1 Performance spectrum of target prediction programs . . . . . . . . 34

4.2 Distribution of −Log(p− value) of the target intersection sets . . 37

4.3 Number of targets in the intersection set PicTar ∩ TargetScan 3.1 . 38

4.4 An autoregulatory feedback loop composed of the transcription

factor Pitx3 and miR-133b . . . . . . . . . . . . . . . . . . . . . 42

4.5 Gene Ontology trees . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Tables

1.1 Classes of small RNA identified in eukaryotes . . . . . . . . . . . 9

1.2 Location of miRNAs in human genome . . . . . . . . . . . . . . 13

1.3 Location of miRNA precursors in the genes . . . . . . . . . . . . 13

1.4 Characteristics of the major protein components of the miRNA-

guided RNA silencing pathway . . . . . . . . . . . . . . . . . . . 14

2.1 Computational tools and resources . . . . . . . . . . . . . . . . . 24

3.1 Availability of softwares . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Human miRNAs and precursors in miRBase . . . . . . . . . . . . 35

4.2 Number of microRNAs which the softwares predict targets of . . . 36

4.3 Results of the pair-wise intersections of the prediction algorithms . 36

4.4 PicTar ∩ TargetScan 3.1: number of predicted miRNA targets . . . 38

4.5 GO functions of predicted miRNA target genes . . . . . . . . . . 42

vii



Introduction

In the last twenty years it has become clear that post-transcriptional regulation is

an elaborate pathway of equal, if not greater, complexity to the one controlling

mRNA transcription. Proteins that are involved in transcription, for example, rep-

resent as much as 10% of the coding sequence in the genome of metazoans. By

contrast, specificity for RNA-mediated silencing-based regulation is conferred by

small RNA guides (for example, micro RNAs (miRNAs), small interfering RNAs

(siRNAs) and PIWI-interacting RNAs (piRNAs)) that are generated through dis-

tinct biogenesis pathways and function in collaboration with specialized effector

proteins.

Here we shall consider the miRNA class of animal small silencing RNAs. MiRNAs

are an ancient innovation among animals: for example, both of the first two

miRNAs discovered, lin-4 and let-7, are conserved from nematodes to humans.

MiRNAs in general have captivated the scientific world, bringing new genetic

tools to model organisms, new explanations for regulatory interactions, new meth-

ods to pharmaceutical discovery (the commercial potential of miRNA and related

drugs is expected to exponentially increase within the next few years), and new

life to the biotechnology industry. The Nobel Prize in Physiology or Medicine

2006 was awarded to Andrew Fire and Craig Mello for their discovery of RNA

interference (RNAi)-gene silencing by double-stranded RNA. Even popular press

highlighted this field of research; the cover of the international business maga-

zine, the Economist [1], recently proclaimed small RNAs to be the “ Biology’s

Big Bang”.

Although the current evidence is limited and hundreds of miRNAs of unknown

function exist, it is known that miRNAs take on unique properties that allow them

to regulate diverse biological processes such as cellular differentiation, prolifera-

tion, and apoptosis; because of their role in gene regulation, miRNAs are linked

to several diseases due to defects in the regulation of mRNA translation which can

result in an abnormal production of a protein.

Microarrays containing all known human miRNAs allow to find a downregulation

of some miRNAs in various tumors, and also the lack of regulation of protein

components of the miRNA biosynthetic pathway seems to be involved in cancer
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Introduction

formation. Consistent with these studies, reports of altered miRNA expressions

in human cancers are beginning to emerge in the literature, suggesting the role of

miRNAs as a novel class of oncogenes or tumor suppressor genes.

Therefore, discovery of the role of miRNAs in various pathological processes has

opened up possible applications in molecular diagnostics and prognostics, partic-

ularly for cancer; recent studies are trying to combine a high-throughput target

analysis with genomics and proteomics in order to gain accurate predictions of

target genes so as to aid cancer research.

The aim of the first part of this work (Chapter 1) is to give a biological introduc-

tion to the current information about miRNAs, their biogenesis and the pathways

they are involved in; plus, functions of miRNAs and their involvement in diseases

will be underlined. At the end of this part, it will be clear that the prediction of the

miRNA target genes is a big challenge for bioinformatics and molecular biologists

because of the imperfect base-pairing of the duplex miRNA:mRNA; the result is

a blooming of target-prediction approaches and of several tools and resources that

provide updated informations useful to study miRNAs, a selection of which is re-

ported in Chapter 2 and in Chapter 3.

As we will see, there is not program for miRNA target prediction that can be con-

sidered consistently better than the others. For this reason in Chapter 4 we suggest

not to arbitrarily prefer one algorithm to the others, but to consider the prediction

quality of differently combined subsets of algorithms. In particular, in order to

identify the best combination, we decide to evaluate pair-wise intersections of

aforementioned programs and to describe the confidence of each combination by

evaluating the statistical significance of the overlap in predictions.

Once identified the best combination of prediction softwares, we provide a char-

acterization of miRNAs through the annotation of some significant targets testing

the enrichment of any Gene Ontology term; links between our results in miRNA

characterization and the available literature will be described in order to evaluate

the consistency of the method we are proposing.
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Chapter 1

Noncoding RNAs

The aim of this Chapter is to introduce the biological problem this work will talk

about and also to provide necessary biological notions and notations; an overview

on small RNAs will be presented, focusing on miRNAs and on the process they

are involved in (post-transcriptional regulation).

Biological functions of miRNAs and their involvement in diseases will be also

underlined, suggesting why it is so important to gain accurate predictions of their

target genes.

1.1 The fate of eukaryotic mRNAs

Messenger RNAs (mRNAs) could be described as carriers of the genetic informa-

tion from DNA to proteins; mRNAs synthesis takes place in the nucleus, where

also the following processing events are located: 5′-end capping, splicing, 3′-end

cleavage and polyadenylation. Once mature, mRNAs are exported to the cyto-

plasm, where they can reach ribosomes so as to be translated to produce proteins

(Figure 1.1).

In the description of this process, the regulation of each step has to be taken into

account; attention has traditionally been focused on trascriptional regulation, but

the wide variability in the degree to which mRNA and protein abundances corre-

late in vivo [2] suggests to give more importance to post-transcriptional regulatory

mechanisms in the control of eukaryotic gene expression.

It was initially believed that major post-transcriptional regulation involved only

selected mRNA populations or was limited to highly specialized cell types (germ

cells, neurons); nowadays, it is clear that the majority of mRNAs in multiple cell

types is subject to regulatory activities affecting essentially every aspect of their

lives [3].

Recent results show that an alternative fate for mRNAs exists: it can be either
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Chapter 1. Noncoding RNAs

translated or silenced, i.e. there is a post transcriptional regulation process capable

of inhibiting translation. The small RNAs are crucial elements of this pathway; in

addition to the associated factors (which always escort mRNAs), small RNAs can

bind mRNAs together with specific proteins (called RBPs) to form the messenger

ribonucleoprotein particle (mRNP). The majority of mRNA binding factors target

particular structures or specific recognition sequences that commonly occur in the

untranslated regions (UTRs) at the 5′ and 3′ ends of the mRNA.

Since containing binding sites for diverse mRNPs, mRNA can respond to many

inputs (that is to say, activation/repression of processes); the result is an elabo-

rate network of equal, if not grater, complexity to those controlling initial mRNAs

synthesis [3] (Figure 1.2).

Just to give an idea, proteins that are involved in transcription represent as much

as 10% of the coding sequence in the genomes of metazoans; by contrast, small

RNAs are generated through distinct biogenesis pathways and function with spe-

cialized effector proteins [4].

From their discovery 1, many research works were dedicated to miRNAs and

siRNAs (and small RNAs in general, Figure 1.3) because of their possible use

in new genetic tools to model organisms, in new explanations for regulatory in-

teractions, in new methods to pharmaceutical discovery, and in the biotechnology

industry [7]; the Nobel Prize in Physiology or Medicine 2006 was awarded to An-

drew Fire and Craig Mello [8] for their discovery of RNA interference (RNAi)-

gene silencing by double-stranded RNA.

The existence of miRNAs may also help to explain the complexity of biplogical

systems, which was something of a paradox until their discovery. Knowing that

DNA stores data and that the complexities of development must require much in-

formation, biologists naturally expected that the more complex an organism is, the

more genes it would have in its cells. It was surprising to find out that C. elegans

has about 20000 genes and that this seems to be a widespread number for animals.

But genes considered in this count are only the protein-coding ones: adding the

genes whose RNA has other functions can help to explain complexity.

In Section 1.2 the major aspects concerning noncoding RNAs involved in mRNA

silencing are presented, focusing on miRNAs (Section 1.3).

1MiRNAs were discovered by Victor Ambros in 1993 [5]; siRNAs were found just in 1999 by

Hamilton and Baulcombe [6].
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Chapter 1. Noncoding RNAs

Figure 1.1: During transcription of a protein-coding gene by RNA polymerase (see number 1 in

the Figure), the four-base DNA code specifying the amino acid sequence of a protein is copied

into a precursor messenger RNA (pre-mRNA). A sequence of events (see number 2 in the Figure),

known as RNA processing, produces a functional mRNA, which is transported to the cytoplasm.

During translation (see number 3 in the Figure), the four-base code of the mRNA is decoded into

the twenty-amino acid “language” of proteins. Ribosomes, which are composed of two subunits

made of ribosomal RNAs (rRNAs) and multiple proteins, translate the mRNA code; ribosomal

subunits associate with an mRNA and carry out protein synthesis with the help of transfer RNAs

(tRNAs) and various translation factors. In cells which are preparing to divide, also DNA replica-

tion (see number 4 in the Figure) occurs: deoxyribonucleoside triphosphate monomers (dNTPs)

are polymerized to produce two identical copies of each chromosomal DNA molecule. Each

daughter cell receives one of the identical copies.(from [9]).
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Chapter 1. Noncoding RNAs

Figure 1.2: In eukaryotic cells, mRNAs undergo several steps of regulation from transcription to

translation. RNA-binding proteins and small non-coding RNAs (miRNAs and siRNAs) regulate

at different levels the coordination of multiple mRNAs (from [10]).

Figure 1.3: Throughout the short time span in which miRNAs have been known, a rapidly in-

creasing amount of information about miRNAs has been accumulated. In this plot, the number

of published papers (all, reviews, computational) containing the PubMed keywords micro RNA,

microRNA or miRNA as a function of time (adapted from [11]).
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Chapter 1. Noncoding RNAs

1.2 Small silencing RNAs

The classical classification of the Ribonucleic Acid (RNA) in ribosomal (rRNA),

messenger (mRNA) and transfer (tRNA) has become not sufficient because of

the results of recent studies (as introduced in Section 1.1); new types of RNA

molecules has been in fact characterized, which are involved in regulation pro-

cesses of the cell, alone or as parts of ribonucleoproteic complexes.

The new family of small silencing RNAs has to be added to the three existing

categories, in order to consider those regulatory molecules of non coding RNA,

19 − 28 nucleotides long, which derive from a double stranded RNA and control

the expression levels of their target genes.

Small RNA-mediated gene silencing has been observed in a number of eukary-

otes for almost two decades but the mechanisms that yields to mRNA silencing is

becoming clear only in these years. Since the observed phenomena were thought

to be unrelated, several different terms refer to the same pathway, such as RNA

interference (RNAi), co-suppression, quelling or gene silencing. Nowadays, it is

extimated that the 40 − 50% of the mammalian genome is regulated at the trans-

lational level by the action of small RNAs.

In mammalian brain these small silencing molecules of RNA are involved in neu-

ronal differentiation as well as in learning and memory; they can be grouped in

small nucleolar RNAs, small cytoplasmic RNAs, and miRNAs, which appear to

be critical for dictating neuronal cell identity during development and to play an

important role in neurite growth, synaptic development and neuronal plasticity

[12].

In general, the three dominant classes of animal small silencing RNAs are micro

RNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI- interacting RNAs

(piRNA; Table 1.1). Since the active forms are sometimes biochemically or func-

tionally undistinguished, the classification is based on their origin 2 and on specific

biogenesis factors [13] [4].

SiRNAs arise from some loci that contain inverted repeats; transcripts from these

loci form foldback structures with near-perfect complementarity. Loci that gen-

erate bidirectional transcript pairs can produce siRNAs, such as natsiRNAs in

Arabidopsis thaliana, and small RNAs that are associated with genome rearrange-

ments in Tetrahymena thermophila. Specific mechanisms for small RNA biogen-

esis from these loci differ among lineages, but each is likely to involve processing

of double stranded RNA into siRNA by members of the Dicer family. TasiRNAs

are encoded at Trans-acting siRNAs (TAS) loci in plants and result from Dicer-like

4 (DCL4) processing of RNA-dependent RNA Polymerase 6 (RDR6)-dependent

2While miRNAs are generated from the dsRNA region of the hairpin-shaped precursors,

siRNAs are derived from long dsRNAs.
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Chapter 1. Noncoding RNAs

dsRNA; dsRNA synthesis is triggered by miRNA-guided cleavage of the primary

transcript, and is processed in a phased, 21-nt register from the miRNA-guided

cleavage site.

The proposed piRNA-biogenesis model involves the initial targeting of transcripts

from transposons and retroelements by a Piwi-like protein that is programmed

with a small RNA; the cleavage of the transcript generates the 5′ end of a new

piRNA. Further 3′-end processing might require a distinct Piwi-like protein, such

as Drosophila melanogaster Argonaute 3 (Ago3), which generates a new piRNA

with a 3′-end that is offset by 10 nucleotides from the initial small RNA [4].

We will focus our attention on miRNAs (Section 1.3), describing in particular their

biogenesis (Section 1.4) and action pathway (Section 1.5). We will also mention

biological functions of miRNAs and their role in various pathological processes

(Section 1.6).

Figure 1.4: (a) siRNAs arise from some loci containing inverted repeats. (b) Loci that generate

bidirectional transcript pairs can produce natsiRNAs in Arabidopsis thaliana and small RNAs that

are associated with genome rearrangement in Tetrahymena thermophila. (c) tasiRNA are encoded

at TAS loci in plants. In the figure: AGO, Argonaute protein (from [4]).

1.3 miRNAs

MiRNAs are small molecules of RNA involved in the regulation of gene expres-

sion, through a specific pairing with a target sequence in the 3′ UTR of the mRNA

8
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Table 1.1: Classes of small RNA identified in eukaryotes (from [4]).

Class Description Biogenesis and genomic origin Function

miRNA micro RNA Processing of foldback miRNA

gene transcripts by members of the

Dicer and RNaseIII-like families

Post-transcriptional regulation of

transcripts from a wide range of

genes

Primary siRNA Small interfering RNA Processing of dsRNA or foldback

RNA by members of the Dicer

family

Binding to complementary tar-

get RNA; guide for initiation

of RdRP-dependent secondary

siRNA synthesis

Secondary siRNA Small interfering RNA RdRP activity at silenced loci

(Caenorhabditis elegans); pro-

cessing of RdRP-derived long

dsRNA or long foldback RNA by

members of the Dicer family (Ara-

bidopsis thaliana)

Post-transcriptional regulation of

transcripts; formation and mainte-

nance of heterochromatin

tasiRNA Trans-acting siRNA miRNA-dependent cleavage and

RdRP-dependent conversion of

TAS gene transcripts to dsRNA,

followed by Dicer processing

Post-transcriptional regulation of

transcripts

natsiRNA Natural antisense transcript-

derived siRNA

Dicer processing of dsRNA aris-

ing from sense- and antisense-

transcript pairs

Post-transcriptional regulation of

genes involved in pathogen de-

fense and stress responses in plants

piRNA Piwi-interacting RNA A biogenesis mechanism is emerg-

ing, which is Argonaute-dependent

but Dicer-independent

Suppression of transposons and

retroelements in the germ lines of

flies and mammals

RdRP, RNA-dependent RNA polymerase.
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Chapter 1. Noncoding RNAs

Figure 1.5: Model for Piwi-interacting RNA (piRNA) biogenesis (from [4]).

that causes an inhibition of the translation process or the degradation of the mes-

senger. They are a family of 21-25 nucleotides (nt)-long RNAs expressed in a wide

variety of organisms ranging from plants to worms and humans 3. Many miRNAs

are highly conserved across species, and components of the miRNA machinery

have been found even in archaea and eubacteria, revealing their old ancestry [14].

The first known miRNA, the lin-4, was discovered in 1993 by Victor Ambros [5]

and his colleagues through the study of heterochronic gene lin-14 in worms. Act-

ing as a developmental repressor of the accumulation of lin-14 protein, lin-4 RNA

controls the timing of Caenorhabditis elegans larval development [15].

Two major strategies led to the identification of the verified mammalian miRNAs:

sequencing libraries of cloned small RNAs from various cell types and bioinfor-

matic analysis of genomic sequences. Recent studies have suggested that as many

as several hundreds of additional miRNAs are likely to exist. Even if the targets

and the roles of miRNAs in mammalians are not clear yet, it is supposed that they

are involved in deciding the fate of progenitor cells as in other orghanisms (C.

elegans, Drosophila); this is a crucial role especially in the nervous system, where

many varieties of cells can derive from a single type of cell.

Because of their role in gene regulation, miRNAs are linked to several diseases

3For example, both of the first two miRNAs discovered, lin-4 and let-7, are conserved from

nematodes to humans.
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Chapter 1. Noncoding RNAs

due to defects in the regulation of mRNA translation which can result in an abnor-

mal production of a protein. Downregulation of some miRNAs can be observed

in various tumors, and also the lack of regulation of protein components of the

miRNA biosynthetic pathway seems to be involved in cancer formation.

Recent studies on plants show that RNA silencing plays a role in the mechanism of

defense against viruses, and also suggest a similar role in humans (Section 1.6.1)

[16].

Many eukaryotic miRNAs have to be discovered and the prediction of their target

genes (Chapter 3) is a big challenge for bioinformatics and molecular biologists

because of their imperfect base-pairing with the target mRNAs (Section 1.5.1).

1.4 Biogenesis of miRNAs

The biogenesis of miRNAs is more deeply understood in animals. The miRGen

database (Section 2.1) contains 471 human miRNAs. MiRNAs are embedded in

either independent noncoding RNAs or introns of protein-coding genes; addition-

ally, to allow coordinated expression, some miRNAs are clustered in polycistronic

transcripts [14] (Figure 1.6). Information about the location of this collection of

miRNAs with respect to UCSC genome can be obtained from the genomics inter-

face of miRGen (Tables 1.2 and 1.3).

MiRNAs are transcribed (Figure 1.8) from different genomic locations as long

primary transcripts (pri-miRNAs) by RNA polymerase II; pri-miRNAs contain a

stem of 33 nt, a terminal loop and flanking single-stranded (ss)RNA sequences.

The RNA pol II, which guides the transcription of the coding RNAs (mRNAs),

is also the major transcriptional unit for the noncoding RNAs; the primary tran-

scripts contain a 5′-end cap structure and a poliA-tail sequence, which are proper

to the RNA pol II transcripts [17].

The pri-miRNA is then processed by the microprocessor (a complex composed of

the nuclear RNase III Drosha and the DGCR8 protein) into a 60−70 nt stem loop

miRNA precursor (pre-miRNA). Patients with genetic disorders regarding the in-

formation for the DGCR8 (Table 1.4) protein show congenital heart defects, char-

acteristic facial appearance, immunodeficiency, and behavioural problems [16].

The pre-miRNA is then bound by the Exportin-5 and exported in the cytoplasm

(a process that needs RanGTP) where it is cleaved at the base of the loop by a

second RNase III enzyme located in the cytoplasm, Dicer 4, to generate a duplex

of 21 − 24 nt. After a not completely understood process of separation and se-

lection, one of the two strands is cleaved while the other one, the mature miRNA,

4Localized mainly in the cytoplasm or in the endoplasmic reticulum, human Dicer is a large

protein composed of several domains essential for mammalian development, as Dicer-deficient

mice die at the embryonic stage [16].
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Chapter 1. Noncoding RNAs

binds to the RISC ribonucleoproteic complex 5 and guides this miRNP complex to

find the target mRNA; the fate of the target mRNA is either cleavage or silencing

depending on the perfect/imperfect Watson-Crick complementarity of the duplex

miRNA:mRNA (Figures 1.8 and 1.9).

A single miRNA species can bind to many different mRNA targets and, con-

versely, several different miRNAs can cooperatively control a single mRNA tar-

get.

We have to mention that, a work published in July 2007 [18] suggests an al-

ternative pathway for miRNA biogenesis, in which certain debranched introns

mimic the structural features of pre-miRNAs to enter the miRNA-processing path-

way without Drosha-mediated cleavage. These pre-miRNAs/introns are called

mirtrons; 14 mirtrons have been identified in Drosophila melanogaster and four

in Caenorhabditis elegans. In [18] it is also proposed that the mirtron pathway

(Figure 1.7) could have provided an early avenue for the emergence of miRNAs

before the advent of Drosha.

Figure 1.6: miRNA host transcripts may be unspliced, or miRNAs may be located within introns,

exons, or untranslated regions (UTRs) of spliced transcripts (from [19]).

5The human RISC is made at least of the three proteins Dicer, TRBP and Argonaute 2 (Ago2).
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Table 1.2: Location of miRNA precursors in

human genome (from miRGen database, last

update: January 1, 2007).

Location Number of miRNAs

In genes 213 a

58 a within 5000 nt

Out of genes

204 a beyond 5000 nt

a Out of 475.

Table 1.3: Location of the miRNA precursors in the genes (from miRGen

database, last update: January 1, 2007).

Location of the precursor Number of genes

On same strand overlapping start of exon 2
On same strand inside exon 2
On opposite strand inside exon 5
On same strand overlapping end of exon 6
On same strand inside intron 325
On opposite strand inside intron 48
On same strand in 5′ UTR 58
On opposite strand in 5′ UTR 4
On same strand in 3′ UTR 20
On opposite strand in 3′ UTR 11

13



Chapter 1. Noncoding RNAs

Table 1.4: Characteristics of the major protein components of the miRNA-guided RNA silencing

pathway.

Protein Role Localization

Drosha from pri-miRNA to pre-miRNA nucleus

DGCR8 microprocessor with Drosha nucleus

Exportin-5 pre-miRNA exporting from nucleus nuclear membrane

Dicer from pre-miRNA to miRNA cytoplasm - ER

TRBP processing complex with Dicer cytoplasm

Ago2 processing complex with Dicer cytoplasm

Figure 1.7: Model for the convergence of the canonical and mirtronic miRNA biogenesis path-

ways (from [18]).
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Figure 1.8: The current model for the biogenesis and post-transcriptional suppression of miRNAs

and small interfering RNAs. The pri-miRNA are initially cleaved by Drosha and DGCR8 to pro-

duce the pre-miRNA which is transported to the cytoplasm by Exportin-5. A second cleavage

event, performed by Dicer, generates an 18 − 24 nt RNA duplex. One strand of this duplex is

incorporated into RISC and guides the silencing of the target mRNA [19] (from [20]).
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1.5 miRNAs in action

When perfectly base-paired to their target, miRNAs direct cleavage of a single

phosphodiester bond in the mRNA causing its degradation; the human Ago2 pro-

tein of the RISC complex supports this event. An incomplete complementarity

with the target causes the inhibition of the translation of the messenger, avoiding

the accumulation of the protein for which it codes for.

MiRNAs act in particular as a guide for the proteins of the miRNP complex, so as

to stop the translation of the bound mRNA. It was proposed that translation may

be blocked after the initiation phase, for example by inducing proteolysis of the

polypeptides as soon as they exited the ribosome [14].

If the RNA cleavage mechanism by Ago2 is a well understood event, the transla-

tional repression mechanism by miRNAs is less clear. Recent studies show that

the target mRNAs binding to RISC through partial base pairing are accumulated

in cytoplasmic foci, named Processing bodies (P-bodies) [17].

The available evidence indicates that miRNAs can repress translation at both ini-

tiation and post-initiation levels (Figure 1.10). The two-step mechanism starts

with a block in translation of the m7G-capped mRNA at the initiation step; run-

off of ribosomes results in the second step, that is to say the aggregation of the

repressed ribosome-free mRNA into P-bodies for either storage or degradation.

The post-initiation mechanism is the repression of translation at the elongation or

termination step, or the promotion of ribosome drop-off; in this model, repressed

mRNAs remain largely associated with ribosomes and thus might not relocate to

P-bodies. As yet, there is no experimental support for a post-initiation mechanism

involving rapid proteolysis of nascent polypeptide chains. The mRNA decay ma-

chinery is enriched in P-bodies but it is not clear whether the degradation occurs

outside or inside them [14] [21].

1.5.1 Target recognition rules

While in plants miRNAs and target mRNAs often show perfect complementarity,

in animals many structures of functional duplexes are possible (short matching

sequence, with gaps and mismatches).

The seed region is defined in miRNA target sites as the consecutive stretch of 7
nucleotides starting from either the first or the second nucleotide at the 5′-end.

Experiments led to classify miRNA target sites into three categories, depending

on the type of base pairing with the seed region (Figure 1.11):
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Figure 1.9: Perfect complementarity between siRNAs (and many plant miRNAs) and their target

leads to an endonucleolytic cleavage, catalyzed by the human Ago2 in the RISC complex. Gener-

ally, animal miRNAs show only partial complementarity to their target mRNAs, which precludes

endonucleolytic cleavage but promotes translational repression and exonucleolytic degradation of

target mRNAs (from [21]).

Figure 1.10: (a) The two-step mechanism; the turquoise oval represents the translation initiation

complex protein eIF4G. (b) Post-initiation mechanism. (c) Post-initiation mechanism involving

rapid proteolysis of nascent polypeptide chains. As yet, there is no experimental support for this

model. (d) miRNA-mediated deadenylation and decay of target mRNAs (from [21]).
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1. 5′-dominant canonical: perfect base pairing to at least the seed portion of

the 5′-end of the miRNA and extensive base pairing to the 3′-end of the

miRNA;

2. 5′-dominant seed only: base pairing is perfect at least to the seed portion of

the 5′-end of the miRNA while it is limited to the 3′-end of the miRNA;

3. 3′-compensatory: extensive base pairing to the 3′-end of the miRNA to com-

pensate for an imperfect or a shorter stretch of base pairing to the seed por-

tion of the miRNA [22].

Experiments show that genome-wide 5′-dominant sites occur 2- to 3-fold more

often in conserved 3′ UTR sequences than it would be expected at random. More-

over, because of the increased stability of the duplex they form, canonical sites

seem to be more effective than other types, and may function in one copy. Con-

versely, due to their lower pairing energies, seed sites are expected to be more

effective when present in more than one copy [22].

It has also be shown that even if seed match can confer regulation by itself, ad-

ditional 3′ pairing increases miRNAs functionality; however, a high degree of

matching in 3′-end can not be functional without a minimal element of 5′ comple-

mentarity.

Moreover, matches between miRNAs and target mRNAs seem to follow some

experimentally deduced rules:

1. complementarity between nt 2 and 8 of miRNAs and their targets is critical

for target recognition by miRNAs 6 [23];

2. confirmed miRNA:mRNA duplexes can have mismatches in the 5′-end of

miRNA region [24];

3. G:U wobble base pairs are less common in the 5′-end of a miRNA:mRNA

duplex. Experiments show that a single G:U base-pair considerably reduces

the effectiveness of a seed site, while the presence of more than one G:U

base-pair compromises the activity of all the sites [22];

4. many miRNAs can bind to one gene (cooperativity of binding) [25] and

target sites may overlap to some degree [26];

5. bases surrounding the seed sequence are important for target recognition

[27];

6. A:T terminal match is often observed in miRNA target sites [27].

6This observation led to the definition of the seed sequence.
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These are the main rules which are taken into account in the development of target

prediction algorithms (Chapter 3).

Figure 1.11: Depending on the type of base pairing with the seed region, miRNA target sites

are classified in: (left) 5′-dominant canonical, if there is perfect base pairing to at least the seed

portion of the 5′-end of the miRNA and extensive base pairing to the 3′-end of the miRNA; (centre)

5′-dominant seed only, if base pairing is perfect at least to the seed portion of the 5′-end of the

miRNA while it is limited to the 3′-end of the miRNA and (right) 3′-compensatory, if there is

extensive base pairing to the 3′-end of the miRNA to compensate for an imperfect or a shorter

stretch of base pairing to the seed portion of the miRNA (adapted from [28]).

1.6 Biological functions of miRNAs

Although the functions of very few miRNAs have been worked out in detail, their

highly conservation and the developmental-stage-specific and/or tissue-specific

expression patterns suggest that miRNAs are critical regulators of physiologic pro-

cesses. The few characterized miRNAs allow the attribution to these molecules

of a significant role in regulating development and basic cellular pathways that

control differentiation, proliferation and death [19].

Since the silencing pathway plays a crucial role, it is believed that miRNAs (and

in general all the small RNAs) are important for the preservation and the manage-

ment of the genome; fore example some miRNAs seem to interact directly with

the DNA blocking the transcription of some genes.

A famous example of growth regulation by miRNAs is the bantam gene discov-

ered in Drosophila because of its effect on tissue growth: tissues are larger when

bantam is overexpressed and smaller, even without loss of proportions, when ban-

tam expression is suppressed. Now, it is known that the bantam gene does not

encode for a protein but for a miRNA that control the proapoptotic gene hid; thus,

bantam promotes proliferation while inhibiting apoptosis [16].

Recent works discovered many viral-encoded miRNAs, whose function is still not

documented; however, it is emerging that viral evolution has taken advantage of

the miRNA pathway to generate effectors that enhance the probability of success-

ful infection [15].
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1.6.1 miRNAs and diseases

Although the current evidence is limited and hundreds of miRNAs of unknown

functions exist, it is becoming clear that miRNAs regulate pathways such as cel-

lular differentiation, proliferation, and apoptosis that are known to be disregulated

in human malignancies. Consistent with these studies, reports of altered miRNA

expression in human cancers (brest and lung cancer, to give some examples) are

beginning to emerge in literature [19]. Recently, it has become possible to analyze

the entire miRNome by microarrays containing all known human miRNAs; it has

been shown that miRNAs are over-expressed in cancer, suggesting their role as a

novel class of oncogenes or tumor suppressor genes [15].

Important information about the role of a miRNA in a disease can be deduced

by mimicking or inhibiting its activity and examining its impact on the pheno-

type/behaviour of the cell or organism. If the modulation of the activity of a

miRNA leads to improvement in disease symptoms, this implies that the target

miRNA plays an important role in the disease.

Thanks to the discovery of the role of miRNAs in various pathological processes it

is possible to develop miRNA-based therapeutic products that can either increase

or decrease the levels of proteins in pathophysiological conditions such as cancer,

cardiovascular diseases, viral diseases, metabolic disorders and programmed cell

death [29]. To give an example, target oncogenes can be regulated by chromatin

modifying drugs, and this may lead to novel cancer therapies in the future; more-

over, miRNAs can complement other genomic and proteomic biomarkers of can-

cer diagnosis and prognosis [30]. Herein lies the therapeutic potential of miRNAs,

as it may now be possible to induce or inhibit RNA interfering in a given diseased

cell population by controlling the miRNA expression profile of the cells [31].

Since the benefit of understanding the role of miRNAs in cancer and other dis-

eases is potentially enormous, especially if it helps in providing new therapies

for patients, a combination of high-throughput target analysis with genomics and

proteomics in order to gain an accurate prediction of target genes could lead to

applications in clinical research.
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Computational tools and resources

The discovery of novel miRNAs, the characterization of their biogenesis and the

identification of their functions are subjects of many research projects and there

are several existing tools and resources that provide updated information regarding

each of these areas of research.

This Chapter contains a description of the main computational tools and resources

useful for the purpose of studying miRNAs (Table 2.1).

2.1 miRGen

The aim of the miRGen database is to integrate data about:

• positional relationships between animal miRNAs and genomic annotation

sets;

• animal miRNA targets according to combinations of widely used target pre-

diction programs.

The database consists of three integrated interfaces representing 11 genomes 1.

The genomics interface allows the user to explore where whole-genome collec-

tions of miRNAs are located with respect to UCSC genome browser (Section 2.5)

annotation sets. The targets interface allows to connect these miRNAs to their

experimentally supported target genes from TarBase (Section 2.2), as well as to

computationally predicted target genes from optimized intersections and unions

of several widely used mammalian target prediction programs (Chapter 3). Fi-

nally, the clusters interface provides predicted miRNA clusters at any given inter-

miRNA distance.

1Last genome data update : January 1, 2007.
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2.2 TarBase

Tarbase collects a comprehensive set of experimentally supported miRNA targets

in at least 8 organisms. For every target site that has experimental support, TarBase

describes the miRNA which binds to it, the binding (alignment) picture, the kind

of inhibition that it induces, its single site sufficiency status, its genomic location

and the types of experiments that were conducted to support it; moreover, the

papers from which all of these data were extracted can be found.

It is also possible to submit new targets in order to keep the resource updated;

nowadays, the database contains 128 miRNAs, 570 target genes and 763 target

sites.

2.3 MirBase

The miRBase Sequence Database is a searchable database of published miRNA

sequences and annotations, whose data were previously provided by the miRNA

Registry.

This resource contains three main sections:

• Sequences: a searchable database of published miRNA sequences and an-

notations. It contains all published miRNA sequences, genomic locations

and associated annotations;

• Targets: a database of predicted miRNA target genes;

• Registry: provides a confidential service assigning official names to novel

miRNA genes prior to the publication of their discovery.

2.4 Gene Ontology

Since the knowledge of gene and protein roles in cells is accumulating and chang-

ing, the goal of the Gene Ontology (GO) Consortium is to produce a dynamic,

controlled vocabulary for cell biology [32]. For this purpose, the GO project has

developed three ontologies that describe gene products in terms of their associ-

ated biological processes 2, cellular components and molecular functions 3 in a

species-independent manner. Queries to the controlled vocabularies can be done

2A biological process is defined as a series of events accomplished by one or more ordered

assemblies of molecular functions; for example, the pyrimidine metabolism.
3Molecular functions are activities, such as catalytic or binding activities, that occur at the

molecular level.
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at different levels: it is possible, for example, to find all the gene products in the

mouse genome that are involved in signal transduction.

The terms in an ontology are linked by two types of relationships:

• is a: it is a class-subclass relationship, where A is a B means that A is a

subclass of B; for example, nuclear chromosome is a chromosome;

• part of: C part of D means that whenever C is present, it is always a part of

D, but C does not always have to be present. An example could be nucleus

part of cell; nuclei are always part of a cell, but not all cells have nuclei.

The ontologies are structured as Directed Acyclic Graphs (DAGs), which are sim-

ilar to hierarchies but differ in that a child term can have many parent terms. For

example, the biological process term hexose biosynthesis has two parents: hexose

metabolism and monosaccharide biosynthesis.

2.5 UCSC Genome Bioinformatics

The UCSC Genome Bioinformatics tool shows any requested portion of the hu-

man genome at any scale and displays for example assembly contigs and gaps,

mRNA and expressed sequence tag alignments, multiple gene predictions, cross-

species homologies, single nucleotide polymorphisms and so on. Links to se-

quence details and supplementary off-site databases are also provided [33].

In particular, the following utilities are present:

• The Genome Browser: zooms and scrolls over chromosomes;

• The Gene Sorter: shows expression, homology and other information about

on groups of genes;

• Blat: quickly maps a sequence to the genome;

• The Table Browser: provides convenient access to the underlying database;

• VisiGene: lets the user browse through a large collection of in situ mouse

and frog images to examine expression patterns;

• Genome Graphs: allows to upload and display genome-wide data sets.
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Table 2.1: Computational tools and resources.

Resource Website References

http://www.diana.pcbi.upenn.edu/miRGen [36]

http://www.diana.pcbi.upenn.edu/tarbase.html [37]

http://microrna.sanger.ac.uk [38][39]

http://www.geneontology.org [32]

http://http://genome.ucsc.edu [33]

http://www.ensembl.org [34]

http://bighost.area.ba.cnr.it/BIG/UTRHome [35]

2.6 Ensembl

Ensembl is a project that wants to provide an accurate, automatic analysis of

genome data, whose annotation is currently maintained, concentrating on verte-

brate genomes; the result is a comprehensive and integrated source of annotation

of chordate genome sequences (33, nowadays). Some of the major features re-

cently added include the first complete gene sets for genomes with low-sequence

coverage, the introduction of new strain variation data and also of new ortholo-

gous/paralogous annotations based on gene trees [34].

2.7 UTRdb

UTRdb is a specialized database of 5′- and 3′-untranslated sequences of eukaryotic

mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized

information not present in the primary databases, including the presence of func-

tional patterns already demonstrated by experimental analysis to have some func-

tional role. A collection of such patterns is being collected in UTRsite database

which can also be used with appropriate computational tools to detect known func-

tional patterns contained in mRNA untranslated regions [35].
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Mammalian target prediction

algorithms

As reported in Chapter 1, miRNAs can mediate post-transcriptional regulation by

the RNA-interference pathway, which decides for translational inhibition or for

the cleavage of the target transcript. Hundreds of miRNAs are known in complex

eukaryotes and genome-wide statistical analysis showed that usually miRNAs

have hundreds of evolutionarly conserved target sites, indicating that miRNAs

regulate a large fraction of protein-coding genes [22].

Recent studies tend to a systematic bioinformatic identification of animal miRNA

targets; here we focus on mammalian target prediction.

3.1 Shared features of target prediction algorithms

To date, most studies on miRNA target interactions have focused primarily on the

characteristics of sequence complementarity between the miRNA and the putative

target sites in the mRNA. Although perfect Watson-Crick base pairing of seven or

eight consecutive bases in the 5′-ends of miRNAs is important for target regula-

tion, animal miRNAs are typically only partially complementary to their targets:

bulges and loops are in fact frequent. Therefore, due to the relatively short length

of miRNAs and the tolerance for mismatches, nearly all the predictive algorithms

(Table 3.1) are based on phylogenetic conservation of the predicted duplexes.

More recently, new studies incorporate site accessibility in the identification of

miRNA targets (Section 3.2.10). This approach might encompass more authentic

targets and identify species-specific targets.
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Table 3.1: The considered mammalian target prediction algorithms and their availability.

Program Website References

DIANAmicroT http://www.diana.pcbi.upenn.edu [40]

miRanda a http://www.microrna.org [25] [41]

PicTar a http://pictar.bio.nyu.edu [42]

PITA a http://genie.weizmann.ac.il/pubs/mir07 [43]

TargetScan bc http://www.targetscan.org [27] [23]

a Precompiled lists of predictions are also provided.
b All the versions are available.
c Precompiled lists of predictions are also provided for all the versions.

3.2 Predicting miRNA targets

3.2.1 miRanda

The software miRanda uses a modified dynamic programming approach that rec-

ognizes the importance of seed binding (but does not require perfect seed com-

plementarity), searching for maximal local complementarity corresponding to a

double-stranded antiparallel duplex.

The algorithm allows for G:U basepairs along with certain mismatches and/or

bulges in 5′ region in the context of dinamically weighted pairing [28]. A score of

+5 is assigned for G:C and A:T pairs, +2 for G:U wobble pairs, −3 for mis-

matches pairs, −8 and −2 for the gap-open and gap-elongation, respectively.

Complementarity scores at the first 11 positions, counting from the miRNA 5′-
end, are multiplied by a scaling factor of 2.0 trying to reflect the experimentally

observed 5′ − 3′ asymmetry. The total score S is defined as the sum of single-

residue-pair match scores over the alignment trace.

The RNA folding program described in [44] [45] is used to consider thermody-

namic properties calculating ∆G, the free energy of duplex formation from a com-

pletely disassociated state. The thresholds for candidate target sites are S > 90
and ∆G < −17 kcal/mol [41] [25].

Conservation is defined as an entire target site occurring at least 90% identity at

exactly corresponding positions in a cross species UTR alignment. The algorithm

looks for conservation of target site position and sequence in the 3′ UTRs of or-

thologous genes; conservation is in particular required only between human and

rodent [41] [25], providing the additional option of using extensive conservation

(more than two species).
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3.2.2 DIANAmicroT

As in miRanda, in DIANAmicroT a modified dynamic programming algorithm is

implemented to calculate free energies of both canonical (Watson-Crick) and G:U

wobble dinucleotide base pairs. An empirically determined set of binding rules is

required allowing mismatches, that is to say that strong base pairing to a miRNA

seed region is required, but perfect seed complementarity is not necessary.

The miRNA:mRNA duplex can show a single miRNA-recognition element or

miRNA central bulge or a loop; moreover the 5′ first nucleotides (and the last

nucleotides toward the 3′-end) of the miRNA may or may not base pair with their

targets. Binding energies are evaluated for every three consecutive nucleotide

pairs [40].

The definition of conservation is the same used in miRanda algorithm, and it is

required only between human and rodent.

3.2.3 TargetScan 1.0

Given a miRNA that is conserved in multiple organisms and a set of orthologous

3′ UTR sequences from these organisms, the algorithm:

1. searches for perfect seed matches to the UTRs in the first organism;

2. extends each seed match with additional base pairs to the miRNA as far as

possible in each direction, allowing G:U pairs, but stopping at mismatches;

3. optimizes base pairing of the remaining 3′ portion of the miRNA to the 35
bases of the UTR immediately 5′ of each seed match using the RNAfold

program 1. The seed match is therefore extended to a longer target site,

allowing the presence of bulges (Figure3.1);

4. assigns a folding free energy G (kcal/mol) to each miRNA:mRNA duplex

using the RNAeval function [47];

5. assigns a Z score to each UTR defined as Z =
∑n

k=1 e
−Gk

T where n is the

number of seed matches in the UTR and Gk is the free energy of the duplex

for the kth target site. The value of T parameter influences the relative

weighting of UTRs with fewer high-affinity target sites to those with larger

numbers of low-affinity sites;

1RNAfold program can be found in the Vienna RNA secondary structure server [44], which

provides a web interface to the most frequently used functions of the Vienna RNA software pack-

age for the analysis of RNA secondary structures. Requiring as input a single sequence, RNAfold

predicts the minimum free energy structure of a single sequence using a classic algorithm [46].
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6. sorts the UTRs in this organism by Z score and assigns a rank Ri to each;

7. repeats this process for the set of UTRs from each organism;

8. predicts as targets those genes for which both Zi > Zc and Ri 6 Rc for

an orthologous UTR sequence in each organism, where Zc and Rc are pre-

setted Z score and rank cutoffs.

The only free parameters in this algorithms are T , Zc and Rc [23]. Conservation

is required among human, chimp, rodent and dog.

Figure 3.1: Schematic representation of a bulge, one of the possible binding types between the

miRNA (blue) and its target (red) [40]. Because of the possible presence of this type of conforma-

tion, the target site can be longer than the miRNA; for this reason, some algorithms look for base

pairing of additional flanking nucleotides (adapted from [40]).

3.2.4 TargetScan 2.0

The algorithm requires target site conservation among human, mouse, rat, dog

and chicken; from the previous versions, the noise (estimated number of false-

positive predictions) is reduced, such that the TargetScan score and rank cutoffs

can be relaxed, or even eliminated. Moreover, the requirement of a 7-nt match

to the seed region of the miRNA (nucleotides 2-8) is relaxed to require a 6-nt

match to a reduced seed comprising nucleotides 2-7 of the miRNA while still

retaining modest specificity. As a result, a target is predicted simply by virtue of

the presence of at least one 6-nt seed match to the miRNA in orthologous UTRs

of each of the five mentioned genomes [27].
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3.2.5 TargetScan 3.0

This version of TargetScan displays predicted regulatory targets of mammalian

miRNAs, which are mostly the same as those predicted by the previous ones.

Changes include a user-friendly interface and the possibility to predict additional

miRNA families.

Nonconserved sites, which can often mediate repression when the miRNA and the

mRNA are both present in the same cell, are annotated.

Moreover, the program provides the depiction of the UTRs (showing the position

of each site), of the local alignment surrounding each site and of the predicted

pairing between each miRNA and each site.

3.2.6 TargetScan 3.1

In this release the following changes are introduced since version 3.0:

• target conservation is based on overlapping targets in the UTRs of four

species;

• the start and the end of each species no longer need to exactly match, re-

moving genome alignment artifacts.

3.2.7 TargetScanS

TargetScanS requires the conserved seed matches to be at conserved positions

within the UTRs, focusing only on an 8-nt segment of the UTR centered on the

seed match, without consideration of other criteria, such as predicted thermody-

namic stability of pairing, pairing outside the immediate vicinity of the seed, or

presence of multiple complementary sites per UTR.

The algorithm defines a seed as positions 2-7 of a mature miRNA; a miRNA fam-

ily is comprised of miRNAs with the same seed region (positions 2-8 of the ma-

ture miRNA, also called seed+m8). The algorithm predicts biological targets of

miRNAs by searching for the presence of conserved 8mer 2 and 7mer sites 3 that

match the seed region of each miRNA.

2Exact match to positions 2-8 of the mature miRNA (the seed + position 8) with a downstream

’A’ across from position 1 of the miRNA.
37mer sites can be divided in two classes. 7mer-m8: showing an exact match to positions 2-8

of the mature miRNA (the seed + position 8); 7mer-1A: showing an exact match to positions 2-7
of the mature miRNA (the seed) with a downstream ’A’ across from position 1 of the miRNA.
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3.2.8 TargetScan 4.0

Targets are predicted using the TargetScanS algorithm; a context score is also eval-

uated [48] in order to predict site performance taking into account the context in

which the target is inserted on the mRNA, which seems to influence significantly

the effectiveness of the site.

Sites within 15 nt of a stop codon are typically less effective than other sites in

the 3′ UTR; the algorithm flags this type of sites, analyzes the context around and

gives a score, considering the following four features [48]:

• site-type contribution: reflects the type of seed match (8mer, 7mer-m8, and

7mer-1A);

• 3′ pairing contribution: reflects consequential miRNA-target complemen-

tarity outside the seed region. One of the important context determinants

that influences efficacy of sites is in fact their proximity to sites for coex-

pressed miRNAs;

• local AU contribution: reflects transcript AU content 30 nt upstream and

downstream of predicted site, because effective sites seem to reside within

a locally AU-rich context;

• position contribution: reflects distance to nearest end of annotated UTR of

target. Experiments show that, to be more effective, sites in the 3′ UTR are

not too close to the stop codon. Moreover, sites near the two ends of long

UTRs are generally more effective than those near the centre and more sites

are selectively maintained near the ends than in the central region.

More negative is the score, more favorable is the associated site; the sum of the

scores gives the context score, and the context score percentile is the percentile

rank of each site compared to all sites for this miRNA family. An high value of

this percentile (between 50 and 100) means that the specific site is more favorable

than most other sites of this miRNA.

In a gene with multiple sites for one miRNA family, a total context score is eval-

uated as the sum of context scores for the most favorable (most negative) miRNA

in this family. The representative miRNA is the one in this set with the most fa-

vorable total context score.

MiRNA families have been updated to include recent additions to miRBase; also

the 3′ UTR dataset has been updated to include chicken and to be based on current

RefSeq annotation and genome coordinates.

Conservation is imposed as in [27] and includes three levels:

• highly conserved = conserved across human, mouse, rat, dog, and chicken;
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• conserved = conserved across human, mouse, rat, and dog;

• poorly conserved = not conserved across all four mammals.

3.2.9 PicTar

PicTar defines the perfect seed as a perfectly Watson-Crick-base-paired stretch of

7 nt starting at either the first or the second base of the miRNA (counted from the

5′-end). The sequence of a perfect seed can vary, but its free energy of binding

(determined by standard RNA secondary structure prediction software) can not

increase and it can not contain G:U basepairings; these mutated seeds are called

imperfect nuclei.

The algorithm also requires the free energy of the miRNA:mRNA duplex to lie be-

low a cutoff value. A probability p to be a binding site for the miRNA is evaluated

for the perfect seeds which pass the filtering steps; the probability for imperfect

nuclei is 1− p divided by the total number of imperfect nuclei [42].

Target genes containing several predicted binding sites are considered to be more

probably downregulated by miRNAs.

PicTar also requires target conservation across several species: human, chim-

panzee, mouse, rat, dog, chicken, and pufferfish.

3.2.10 PITA

This thermodynamic model scores miRNA:mRNA interactions by the difference

between the energy of the bond (∆Gduplex) 4 and the energy required to make the

target region accessible for miRNA binding (∆Gopen); this difference represents

an energy score and it is defined as ∆∆G.

The ∆Gduplex value is computed selecting the minimum free energy structure;

∆Gopen is defined as the difference between the free energy (computed using

RNAfold) of the ensemble of all secondary structures of the target region and

the free energy of all target-region structures in which the target nucleotides (and

70 additional nucleotides 5 upstream and downstream in the case of flanking) are

required to be unpaired (Figure 3.2). The total interaction score ∆∆G is equal to

the difference between ∆Gduplex and ∆Gopen.

4MiRNA and target are paired according to pairing constraints imposed by the seed, which is

a sequence of 6 − 8 bases, beginning at position 2 of the miRNA. No mismatches or loops are

allowed, but a single G:U wobble is allowed in 7- or 8-mers.
5The value of 70 nucleotides is based on the fact that there is a low probability of secondary

structure base-pairing interactions between nucleotides that are separated by more than 70 nu-

cleotides.

31



Chapter 3. Mammalian target prediction algorithms

An overall miRNA:UTR interaction score (T ) is also evaluated to consider mul-

tiple sites with ∆∆G scores s1, . . . , sn for one miRNA on the same UTR; T is

defined as the statistical weight of all configurations in which exactly one of the

sites is bound by the miRNA according to T = log
∑n

i=1 esi .

This simple method of integrating multiple sites over computing the actual prob-

ability of miRNA binding, and over computations that include configurations in

which two sites can be bound simultaneously, is chosen because such computa-

tions would require knowledge of an additional (unknown) miRNA free concen-

tration parameter [43].

Figure 3.2: PITA algorithm explains variability in target strength due to differences in accessibil-

ity. ∆∆G is computed as the free energy gained by transitioning from the state in which miRNA

and target are unbound (left) to the state in which the miRNA binds its target (right). The re-

gion of the target site that needs to be unpaired to let a miRNA-target interaction occur includes

the miRNA bound region (green) and likely additional flanking nucleotides (brown; adapted from

[43]).
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Integration of miRNA target

predictions

4.1 Combining target sets

Despite the blooming of target-prediction approaches (a selection of which is de-

scribed in Chapter 3), it is currently not possible to accurately assess the relative

rates of false negative predictions by each method compared with the rest. Eval-

uating sensitivity would in fact require systematic testing of targets not predicted

by each method, and such data are not yet available.

In [49] the authors evaluate specificity by comparing the output of several pro-

grams on experimentally supported miRNA target interactions. No program has

turned out to be consistently superior to the others.

Therefore it might be reasonable not to arbitrarily prefer one algorithm to the oth-

ers. Rather, it may be helpful to consider the prediction quality of differently

combined subsets of algorithms. In order to identify the optimized combination,

we decide to evaluate pair-wise combinations of aforementioned programs.

Predictions can be combined by:

• union, searching all targets predicted by any of the listed prediction pro-

grams (it is the most sensitive search type);

• intersection, searching targets which are predicted by all of the prediction

programs listed in the set (it can provide more specific searches).

Since we reason that unifying predictions would lead to a lower signal-to-noise

ratio and thus a greater chance of false positive predictions, we prefer to limit to

pair-wise intersections.

In [49] the authors adopt a similar approach. They focus on TargetScan, DIANA-

microT, miRanda, TargetScanS and PicTar methods, test their possible pair-wise
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combinations and evaluate the improvement achieved in each case by counting

the percentage of shared targets that are experimentally supported (Figure 4.1).

Putative miRNA target interactions are far from being extensively tested in vivo.

Therefore, we foresee in the current small rate of experimental validations a se-

vere limit of the approach in [49] to assess increased specificity of a combination

compared to the initial methods.

Here we describe the confidence of each pair-wise combination by evaluating the

statistical significance of overlap in predictions. Turned around, we select the

pair of methods that is characterized by the highest number of single miRNAs for

which it is unlikely to get a number of shared predictions equal or greater to the

observed one by pure chance effect.

Figure 4.1: Performance spectrum of target prediction programs. The sensitivity is plotted versus

the number of genes predicted as target. The blue symbols represent the individual programs:

TargetScan (TS), DIANA-microT (DT), miRanda (miR), TargetScanS (TSS) and PicTar (PT). The

red symbols represent the intersections, while the green ones the unions. The intersection between

PicTar and TargetScanS seems to provide a good trade-off between sensitivity and specificity for

human miRNA gene prediction programs (from [49]).

4.2 Selecting the best combination of algorithms

In order to identify which of the pair-wise intersections obtains the highest confi-

dence, the following steps are followed:
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Table 4.1: Human miRNAs and precursors in miR-

Base 9.2, which is the miRBase release we refer to

(Section 2.3).

Human miRNAs and precursors number

mature miRNA ids 471
miRNA precursors 475

1. for each miRNA (Table 4.1) the following combinations between target pre-

diction sets are evaluated, using miRGen resource (Section 2.1):

• miRBase 1
∩ PicTar;

• miRBase ∩ PITA;

• miRBase ∩ TargetScan 3.1;

• PicTar ∩ PITA;

• PicTar ∩ TargetScan 3.1;

• TargetScan 3.1 ∩ PITA.

2. For each pair-wise combination and each miRNA, the Fisher Test evaluates

the statistical significance of the number of shared targets (Tables 4.2 and

4.3); this statistical test gives the probability P of obtaining an equal or

greater number of genes predicted as target in a set made of the same num-

ber of genes but selected at random from the full list of predicted targets.

Let J and j be the overall and miRNA-specific numbers of target predic-

tion by one method, respectively. If K(m) is the number of target of m

predicted by the other method taken into account and k(m) the number of

targets shared by both the methods, then the probability P is given by the

right tail of the hypergeometric distribution:

P (J, K(m), j, k(m)) =

min(j,K(m))
∑

h=k(m)

F (J, K(m), j, h), (4.1)

where

F (J, K, j, k) =

(

K

h

)(

J−K

j−h

)

(

J

j

) . (4.2)

1Predictions obtained running miRanda algorithm.
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Table 4.2: Number of microRNAs which the soft-

wares (Chapter 3) predict targets of.

Software number of miRNAs

miRanda (miRBase) 470
PicTar 178
TargetScan 3.1 238
PITA 470

Table 4.3: Results of the pair-wise intersections of the prediction algorithms.

Intersection miRNAs a skew b mean b sd b c medianb

miRBase ∩ PicTar 178 1.07 23.67 16.14 20.38
miRBase ∩ PITA 470 0.86 98.63 26.78 96.07
miRBase ∩ TargetScan 3.1 235 1.29 19.60 14.47 14.94
PicTar ∩ PITA 178 0.44 84.56 54.54 77.00
PicTar ∩ TargetScan 3.1 172 −0.61 211.38 107.08 249.75
TargetScan 3.1 ∩ PITA 238 0.55 77.41 50.36 68.74
a Number of miRNAs shared by the two algorithms.
b Of the distribution of the p− values.
c Standard Deviation.

For each combination of algorithms, P is evaluated for the target intersec-

tion sets of all the miRNAs.

3. The combination showing the highest right skewness 2 of the distribution of

−Log(p− value) is selected as the best one (Figure 4.2).

Following this criterion, we find the combination of PicTar and TargetScan 3.1
(Figure 4.2e) let us be more confident than otherwise.

2Skewness is a measure of the asymmetry of the probability distribution of a real-valued ran-

dom variable.
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(f) TargetScan 3.1 ∩ PITA

Figure 4.2: Distribution of −Log(p− value) of the target intersection sets.
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Table 4.4: PicTar ∩ TargetScan 3.1: number of predicted miRNA targets.

miRNAs a minb medianb mean b max d sd b c

PicTar ∩ TargetScan 3.1 172 3.0 181.5 222.4 595.0 162.7
a Number of miRNAs shared by the two algorithms.
b Of the distribution of the number of predicted targets.
c Standard Deviation.
d Value corresponding to: miR-30a-5p, miR-30b, hsa-miR-30c, hsa-miR-30d, hsa-miR-30e-5p.
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Figure 4.3: Number of targets in the intersection set PicTar ∩ TargetScan 3.1; according to current

literature, a single miRNA is predicted to have up to hundreds of targets.

4.3 Functional characterization of miRNAs

Once identified the best combination of prediction softwares, we aim to func-

tionally characterize miRNAs by the annotation of their targets; for this purpose,

only the miRNAs whose p − value is lower than 10−3 are selected. Bonferroni
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correction 3 is then applied as follows:

cut-off on p− value =
10−3

number of miRNAs
=

10−3

172
= 5.81× 10−6 (4.3)

and

cut-off on− Log(p− value) = 5.24 (4.4)

and a set of 166 miRNAs fulfills the cut-off.

Since Gene Ontology (Section 2.4) is one of the most important standardized bio-

logical vocabulary in a sharable and computationally amenable form, it serves our

annotation task perfectly.

Given a set, the standard Fisher’s Test evaluates the existence of any functional

enrichment 4 of the set by separately testing it on all of the annotations that are

held within the GO ontological structure. A set is reported as GO annotated if

its corresponding p − value is lower than 10−4 (Bonferroni-corrected). A set of

144 miRNAs shows to have shared targets between PicTar and TargetScan that are

enriched in at least one GO term.

One of the main difficulties with this approach, although strictly rigorous under

a statistical point of view, is that it assumes that all of GO terms have the same

semantic value, which appears to be a not fully exact assumption.

Generally, we expect that the greater the distance from the root of the GO graph,

the more semantically meaningful and biologically specific the terms are. How-

ever, GO varies widely in the distance of nodes from the root; GO terms more

semantically precise can occur to lay less deep than less informative GO terms.

It would appear that the depth of GO reflects mostly the vagaries of biological

knowledge, rather than anything intrinsic about the terms.

Nonetheless, any critical interpretation of our annotation outcomes can not help

to identify the annotations that are the richest in information content.

For this purpose, attempting to define among all of the GO terms resulted over-

represented in a given set exclusively the deepest GO terms, does not seem to us

3The Bonferroni correction is a multiple-comparison correction used when several dependent

or independent statistical tests are being performed simultaneously (since while a given cut-off

may be appropriate for each individual comparison, it is not for the set of all comparisons). In

order to avoid a lot of spurious positives, the cut-off needs to be lowered to account for the number

of comparisons being performed; the simplest and most conservative approach is the Bonferroni

correction, which sets the cut-off for the entire set of comparisons equal to by taking the cut-off

for each comparison equal to cut-off/number of tests.
4Fisher’s Test (Section 4.2) is applied in order to evaluate functional enrichment. In this case, J

and j are the number of genes in the genome and the number of genes in the genome annotated in

the considered GO function, respectively; K(m) is the number of targets belonging to one of the

intersection sets, while k(m) represents the number of these targets annotated in the considered

GO function.
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an effective approach. Instead, we prefer to inspect all the is a links for each GO

term and keep the GO terms for which more than half of the parent GO terms

are over-represented as well. This approach should manage to identify the most

robust and biologically consistent annotation outcomes.

Let us stress that this choice does not aim at providing GO terms with additional

statistical value; rather, it let us assess the consistency of our outcomes within the

GO annotation structure. A set of 122 miRNAs fulfilled this last requirement.

4.4 Significant results

We can say that our functional characterization of miRNA targets mostly agrees

with the current available literature. In our analysis miRNAs are in fact shown to

control fundamental cellular processes, such as differentiation of cells and timing

of development of the organisms, being GO functions concerning binding, regu-

lation and development frequently targeted (Table 4.5); we have to precise that in

order to have a comparable number of genic associations, GO functions we refer

to are at quite at the same level of the ontological tree (Figure 4.5).

Since their discovery, the emerging characterization of miRNAs suggested that

their aberrations could be involved in various human diseases, including cancer;

afterward, more than half of the known miRNAs have been reported to be lo-

cated in cancer-associated genomic regions and to show copy number alterations

in cancer [50] [51], and deregulation of several miRNAs has been detected in

various cancers [52] [53]. Although targets of most miRNAs have not been iden-

tified, functional studies of individual miRNAs have shown that they can neg-

atively regulate well-known oncogenes [30]; according to [54] [55] [56] which

describe miR-15a and miR-16 as repressors of the antiapoptotic factor BCL2 in-

volved in the development of the ovarian cancer and implicated in chronic lym-

phocytic leukemia, BCL2 gene is predicted to be target of these two miRNAs in

our analysis, too. In [50] miR-15 and miR-16 are shown to be located at chro-

mosome the site 13q14, a region deleted in more than half of B-cell chronic lym-

phocytic leukemia (CLL); detailed deletion and expression analysis showed that

these miRNAs are located within a 30 kb region of loss in CLL, and that both

genes were deleted or downregulated in approximately 68% of CLL cases [57].

It is also interesting to point out that 24 miRNAs (out of 122) are predicted to

target genes annotated in GO binding related functions. One of the considered

function is sequence-specific DNA binding, i.e. miRNAs are predicted to target

genes which code for DNA binding proteins. In regard of this, a recent work [58]

has investigated the role of miRNAs in mammalian mid brain dopaminergic neu-

rons (DNs); miR-133b is shown to be specifically expressed in mid brain DNs and

deficient in mid brain tissues from patients with Parkinson’s disease. In particu-
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lar [58] suggests that miR-133b can regulate the maturation and function of mid

brain DNs within a negative feedback circuit that includes the transcription factor

Pitx3; a model is proposed, with miR-133b functioning within a negative feed-

back circuit that normally suppresses Pitx3 expression post-transcriptionally, and,

in turn, Pitx3 activates mid brain DN gene expression and induces transcription of

miR-133b (Figure 4.4).

The available studies on miR-17-5p and miR-20a are also confirmed in our study,

since they are predicted to target the E2F1 gene. In [59] the transcription factor

E2F1 is shown to be a target of c-Myc 5, a protein that promotes cell cycle progres-

sion. As reported in [59] expression of E2F1 is negatively regulated by miR-17-5p

and miR-20a. These findings reveal a mechanism through which c-Myc simulta-

neously activates E2F1 transcription and limits its translation, allowing a tightly

controlled proliferative signal.

Moreover, the transcription factor Hand2, that promotes ventricular cardiomy-

ocyte expansion, is predicted to be a target of miR-1 [60]; an excess of miR-1 in

the developing heart is shown to lead to a decreased pool of proliferating ventric-

ular cardiomyocytes. As suggested in this work, miR-1 genes titrate the effects of

critical cardiac regulatory proteins to control the balance between differentiation

and proliferation during cardiogenesis. According to [60], our analysis also leads

to predict Hand2 gene as a target of miR-1.

Simply analyzing some predicted targets (by consulting UCSC Genome Bioin-

formatics (Section 2.5)) and looking for literature about the current research on

them, we can say that our combination of predictions agrees with the reported

miRNA/target involvement in processes of growth, development, learning, mem-

ory establishment and so on. An imperfect working of miRNAs machinery in

regulating the expression of these genes could reasonably be the cause of dis-

eases.

To give an example, hsa-miR-206 is predicted to target the mRNA of SNAP-25,

which is a presynaptic plasma membrane protein involved in the regulation of neu-

rotransmitter release and playing an integral role in synaptic transmission. Recent

studies have suggested a possible involvement of SNAP-25 in learning and mem-

ory [61], both of which are key components of human intelligence.

The LHX8 and KLF11 genes are predicted to be targets of hsa-miR-30b .The first

of them codes for a transcriptional regulator that is preferentially expressed in

germ cells, it is critical for mammalian oogenesis and it is connected with pre-

mature ovarian failure [62]; the other gene (KLF11) is referred to be a tumor

suppressor inactivated in pancreatic cancer [63].

5The proto-oncogene c-Myc encodes a transcription factor that regulates cell proliferation,

growth and apoptosis; dysregulated expression or function of c-Myc is one of the most common

abnormalities in human malignancy [59].
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Figure 4.4: An autoregulatory feedback loop composed of the transcription factor Pitx3 and miR-

133b is implicated in dopaminergic neuron maturation and survival in the brain. miR-133b is

deficient in the mid brain of Parkinsons disease patients and in mouse models of dopamine neuron

deficiency (from [64]).

Table 4.5: GO functions of predicted miRNA

target genes.

GO function number of miRNAs a

Binding 24
Regulation 10
Development 5
a Number of miRNAs (out of 122) with

predicted target genes annotated in the

considered GO functions.
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(a) GO:0003729 (b) GO:0043565

Figure 4.5: GO functions at the same level of the ontologic tree show a comparable number

of genic associations. To give an example, the GO functions (4.5a) mRNA binding and (4.5b)

sequence-specific DNA binding have 431 and 486 annotated genes, respectively.
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As we have seen in this work, obtaining an accurate prediction of miRNA target

genes can answer to more than one challenge; besides of representing a challenge

for bioinformatics because of the lack of certain rules which the algorithms can

be based on, a good approximation of target sets can lead to the functional char-

acterization of miRNAs. Because and above all of that, this type of prediction can

lead to applications in clinical research.

We have also shown how the importance of the goal and the use of experimentally

deduced rules is resulting in a blooming of softwares; since any of them turns out

to be consistently superior to the others, we suggested to consider the predictions

of differently combined (by intersection) subsets of programs describing the con-

fidence of each pair-wise combination by evaluating the statistical significance of

overlap in the predictions.

Once identified the best combination of prediction softwares we suggested a func-

tional characterization of miRNAs by the annotation of their targets. In order to

realize the most solid and biologically consistent annotation we preferred to select

among all of the GO terms resulted over-represented in a given set only the terms

for which more than half of the GO terms that subsume it are over-represented as

well.

Our functional characterization of miRNA targets mostly agrees with the current

available literature; also in our analysis miRNAs are indeed shown to control fun-

damental cellular processes, such as differentiation of cells and timing of the or-

ganisms development, being GO functions concerning binding, regulation and

development frequently over-represented. Moreover, the selected intersection of

predictions keeps in the target set some significant genes which are known to be

involved in the progression of some diseases.

Even if we have focused on post-transcriptional regulation of mRNA by the action

of miRNAs, we have to mention that regulation by proteins is the classical mean

for this type of activity, while repression by miRNAs has been the topic of more
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recent studies. It is supposed that miRNAs and regulatory proteins can interact

to regulate certain mRNAs. We are convinced that integration can be the key to

gain prediction results as close as possible to the real biological scenario; in this

work we suggested to integrate prediction softwares, but we think that informa-

tions about binding proteins, sequence and so on have to be added.

We have also to mention that alternative prediction methods are candidates in

literature; to give an example, machine learning algorithms have been proposed

in order to create classifiers that capture the characteristics of verified examples

to determine whether genomic hairpins are similar to verified miRNA genes or

if message 3′ UTRs possess known target characteristics [65]. A support vector

machine (SVM) classifier (one of the most popular machine learning algorithms

which has good performance in classification problems) for miRNA target gene

prediction is proposed in [66]; the idea is to gather all of the known miRNA-target

associations, to determine a certain number of features describing these associa-

tions and to build a statistical model that would fit these features. The SVM

presented in [66] considers three types of features: structural, thermodynamic

and position-based. Although the first two categories correspond to properties al-

ready described, the position-based features attempt to describe more accurately

the mechanism of the seed pairing; the introduction of these position-based fea-

tures could potentially increase the specificity SVM predictions. Since requiring

a large negative training set, which is not currently available for miRNA targets,

SVMs are promising solutions which will increase their reliability and efficiency

with the availability of additional data.
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