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1 Introduction 

Buckling of steel members is one of the major concerns in the design 

of steel structures. Design solutions are usually adopted to avoid 

global buckling, but also local effects need to be carefully 

considered. Indeed, in steel sections composed of very slender 

plates, e.g., Class 4 sections according to EN 1993-1-1 [1], local 

buckling prevents from attaining the full sectional capacity. For this 

reason, EN 1993-1-1 [1] and EN 1993-1-5 [2] provide indications to 

account for the effect of local buckling of steel sections, e.g., H or I 

sections, based on simple considerations on the buckling of the 

single plates of which the sections are composed of, e.g., webs and 

flanges. This approach is extended to the design in fire situation, in 

which sections sensitive to local buckling are identified by 

accounting for the degradation of the mechanical properties of steel 

[3]. However, due to the non-linear behaviour, the properties 

degradation and the possible load redistributions that may appear 

at elevated temperature, the behaviour of steel members in fire may 

differ from the one at ambient temperature and local buckling 

phenomena should be investigated carefully. 

Detailed investigations on the buckling behaviour of steel elements 

are usually carried out by means of numerical simulation. The typical 

procedure employed in the numerical analyses implies the 
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introduction of initial geometrical imperfections in the numerical 

models, though procedures that do not require the definition of 

initial imperfections can be found in the literature [4],[5]. More 

imperfections with different shapes are sometimes combined, in 

particular when both local and global buckling are investigated, to 

maximise the unfavourable effects. The shape of the imperfections 

is usually based on a preliminary linear buckling analysis LBA, which 

provides the shape of the lowest buckling mode, while the amplitude 

of the imperfections is defined as fractions of the member or plate 

length, e.g., ℓ/1000, b/100 or h/100, or according to provisions from 

different standards [6]-[8]. 

The studies on which the EN 1993-1-2 [3] relies for the provisions 

on the global buckling of steel members in fire were available 

already in the late 90’s [9],[10], but only recently researchers 

focused on the numerical simulation of local buckling [11]-[18] or 

local-global buckling interaction [19]-[22] in steel members at 

elevated temperature. Aiming to provide conservative provisions 

applicable in the design process, mainly imperfections shapes that 

should provide the lowest failure loads were used, i.e., shapes from 

LBA, rather than shapes representative of actual imperfections in 

steel elements. Though several researchers focused on the 

consequences of the choice of the magnitude of the initial 

imperfection [15],[19],[22], only in few works the buckling 

resistance of steel elements at elevated temperature was 

investigated considering different shapes of imperfection 

[16],[19],[22]. Furthermore, extensive numerical studies comparing 

the resistance obtained with LBA-based shapes with the ones 
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obtained with other shapes of imperfections are not available, and 

only a brief discussion on the influence of the shape of imperfections 

on the resistance of compressed steel plates was presented in [16]. 

This paper presents an extensive parametric analysis of compressed 

steel plates composing commercial HE and IPE sections at elevated 

temperatures considering different shapes of imperfection. 

Indications on the shapes of imperfections entailing the lowest 

compressive loads are provided for S355 Class 4 sections at 

elevated temperatures, depending on the temperature, the length 

and the slenderness of the studied web and flange plates. 

2 Numerical simulation 

A parametric analysis was conducted on plates with a uniform 

temperature distribution, uniform compressive stress and S355 

steel grade representing webs and flanges composing commercial 

HE and IPE sections. Web and flange plates belonging to the 

sections listed in Table 1 were studied. All plates correspond to 

Class 4 sections only, in order to focus on sections particularly 

sensitive to local buckling. Sections were classified for a S355 steel 

grade according to the classification at elevated temperature 

𝜀𝜃 = 0.85√
235

fy
 (1) 

Where fy is the steel yield strength expressed in MPa.  

Table 1 Investigated steel webs and flanges 

Section 

r [mm] 

web flange 

h [mm] tw [mm] b [mm] tf [mm] 

HE 200 AA 
HE 220 AA 
HE 240 AA 
HE 260 AA 
HE 280 AA 
HE 300 AA 
HE 320 AA 
HE 340 AA 
HE 360 AA 
HE 400 AA 
HE 450 AA 
HE 450 A 
HE 500 AA 
HE 500 A 
HE 550 AA 
HE 550 A 
HE 550 B 
HE 600 AA 
HE 600 A 
HE 600 B 
HE 650 AA 
HE 650 A 
HE 650 B 
HE 700 AA 
HE 700 A 
HE 700 B 
HE 800 AA 
HE 800 A 
HE 800 B 
HE 800 M 
HE 900 AA 
HE 900 A 
HE 900 B 
HE 900 M 
HE 900 x 391 
HE 1000 AA 
HE 1000 x 249 
HE 1000 A 
HE 1000 B 

18 
18 
21 
24 
24 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

186 
205 
224 
244 
264 
283 
301 
320 
339 
378 
425 
440 
472 
490 
522 
540 
550 
571 
590 
600 
620 
640 
650 
670 
690 
700 
770 
790 
800 
814 
870 
890 
900 
910 
922 
970 
980 
990 

1000 

5.5 
6 

6.5 
6.5 

7 
7.5 

8 
8.5 

9 
9.5 
10 

11.5 
10.5 

12 
11.5 
12.5 

15 
12 
13 

15.5 
12.5 
13.5 

16 
13 

14.5 
17 
14 
15 

17.5 
21 
15 
16 

18.5 
21 
25 
16 

16.5 
16.5 

19 

200 
220 
240 
260 
280 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
303 
300 
300 
300 
302 
307 
300 
300 
300 
300 

8 
8.5 

9 
9.5 
10 

10.5 
11 

11.5 
12 
13 

13.5 
21 
14 
23 
15 
24 
29 

15.5 
25 
30 
16 
26 
31 
17 
27 
32 
18 
28 
33 
40 
20 
30 
35 
40 
46 
21 
26 
31 
36 

HE 1000 M 
HE 1000 x 393 
HE 1000 x 415 
HE 1000 x 438 
IPE AA 140 
IPE A 140 
IPE AA 160 
IPE A 160 
IPE AA 180 
IPE A 180 
IPE AA 200 
IPE A 200 
IPE AA 220 
IPE A 220 
IPE 220 
IPE AA 240 
IPE A 240 
IPE 240 
IPE A 270 
IPE 270 
IPE O 270 
IPE A 300 
IPE 300 
IPE O 300 
IPE A 330 
IPE 330 
IPE O 330 
IPE A 360 
IPE 360 
IPE O 360 
IPE A 400 
IPE 400 
IPE O 400 
IPE A 450 
IPE 450 
IPE O 450 
IPE A 500 
IPE 500 
IPE O 500 
IPE A 550 
IPE 550 
IPE O 550 
IPE A 600 
IPE 600 
IPE O 600 
IPE 750 x 134 
IPE 750 x 147 
IPE 750 x 173 
IPE 750 x 196 
IPE 750 x 220 

30 
30 
30 
30 
7 
7 
9 
9 
9 
9 

12 
12 
12 
12 
12 
15 
15 
15 
15 
15 
15 
15 
15 
15 
18 
18 
18 
18 
18 
18 
21 
21 
21 
21 
21 
21 
21 
21 
21 
24 
24 
24 
24 
24 
24 
17 
17 
17 
17 
17 

1008 
1016 
1020 
1026 
136.6 
137.4 
156.4 

157 
176.4 

177 
196.4 

197 
216.4 

217 
220 

236.4 
237 
240 
267 
270 
274 
297 
300 
304 
327 
330 
334 

357.6 
360 
364 
397 
400 
404 
447 
450 
456 
497 
500 
506 
547 
550 
556 
597 
600 
610 
750 
753 
762 
770 
779 

21 
24.4 

26 
26.9 
3.8 
3.8 

4 
4 

4.3 
4.3 
4.5 
4.5 
4.7 

5 
5.9 
4.8 
5.2 
6.2 
5.5 
6.6 
7.5 
6.1 
7.1 

8 
6.5 
7.5 
8.5 
6.6 

8 
9.2 

7 
8.6 
9.7 
7.6 
9.4 
11 
8.4 

10.2 
12 
9 

11.1 
12.7 
9.8 
12 
15 
12 

13.2 
14.4 
15.6 
16.5 

302 
303 
304 
305 
73 
73 
82 
82 
91 
91 

100 
100 
110 
110 
110 
120 
120 
120 
135 
135 
136 
150 
150 
152 
160 
160 
162 
170 
170 
172 
180 
180 
182 
190 
190 
192 
200 
200 
202 
210 
210 
212 
220 
220 
224 
264 
265 
267 
268 
266 

40 
43.9 

46 
49 
5.2 
5.6 
5.6 
5.9 
6.2 
6.5 
6.7 

7 
7.4 
7.7 
9.2 

8 
8.3 
9.8 
8.7 

10.2 
12.2 
9.2 

10.7 
12.7 

10 
11.5 
13.5 
11.5 
12.7 
14.7 

12 
13.5 
15.5 
13.1 
14.6 
17.6 
14.5 

16 
19 

15.7 
17.2 
20.2 
17.5 

19 
24 

15.5 
17 

21.6 
25.4 

30 

 

Plates that can be found in real columns, or in general, compressed 

steel members, were studied varying the plate aspect ratio in a 

relevant range, see Table 2. The smallest length (L1) was taken as 

three times the plate width c, as defined in EN 1993-1-1 [1]. 

c = h − 2r − 2tf               for webs (2) 

c = b/2 − r − tw/2          for flanges (3) 

The other lengths were obtained as multiples of c, with the 

maximum value (L6) equal to thirteen times such width. The 

analyses were carried out for five different temperature levels 

(Table 2) in the 400-800°C range, where the critical temperature of 

steel members typically lies [9],[13],[18]. The resistance to 

compression of the plates was studied considering 6 different 

imperfection shapes. The initial imperfection magnitude was 

defined according to EN 1090-2: 2008 + A1 [8] and then reduced to 

80% according to the Annex C of EN1993-1-5 [2]. In total 32040 

analyses were performed. 

Two different numerical models representative of the web and the 
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flange plates were defined. Provisions for local buckling and section 

classification in EN 1993-1-1 [1] and EN 1993-1-5 [2] are based on 

the assumption of simply supported (s.s.) plates, on four sides for 

webs and on three sides in the case of flanges. These boundary 

conditions were employed in the numerical models and were 

considered to define 5 out of 6 imperfection shapes. Indeed, the 

elastic theory provides closed-form equations for the buckling 

modes of plates at ambient temperature assuming the 

aforementioned boundary conditions [23]. 

w = w0𝑠𝑖𝑛 (
mπx

L
) 𝑠𝑖𝑛 (

πy

c
)          for webs (s.s. on 4 sides) (4) 

w = w0𝑠𝑖𝑛 (
mπx

L
) 𝑠𝑖𝑛 (

πy

2c
)          for flanges (s.s. on 3 sides) (5) 

in which m is the number of half waves in the length of the plate L 

and 𝑤0 is the amplitude. The number of halfwaves m is an integer 

number, and the value giving the critical buckling mode varies with 

the aspect ratio L/c. Though for flanges the critical value, i.e., the one 

minimising the associated buckling load, is always obtained for m=1, 

for webs the value of m that minimises the following equation 

should be found 

arg min
m

(m +
1

m

L2

c2
)

2

           (6) 

In the performed analyses, the shapes of initial geometrical 

imperfections were defined by considering the value m that 

minimises the buckling load according to the analytical solution and 

by increasing by 1 the number of halfwaves in 4 additional 

configurations, namely m+1, m+2, m+3, and m+4 (Table 2). The 

number of halfwaves was not decreased since preliminary analyses 

showed that higher resistance to compression were always found 

for shapes with a number of halfwaves smaller than m. A further 

imperfection shape was determined performing a linear buckling 

analysis LBA (Table 2). This procedure is usually employed in the 

practice to determine the buckling mode giving the lowest buckling 

load in a numerical model. It follows, that for the studied plates the 

obtained shape is essentially the same as the one determined with 

the analytical solution of Eq. (4) and (5). However, since the LBA 

method is numerical and not analytical, some small differences may 

be found in the initial position of the nodes, and the result may be 

slightly different. Nevertheless, the imperfections based on LBA 

were considered as the shape that would be employed in typical 

numerical analyses and was used as reference for the results 

obtained with the other shapes of imperfection. 

Table 2 Parameters range 

Parameter Investigated range 

Length L L1 to L6 = [3, 5, 7, 9, 11, 13] x c 

Temperature 𝜽 [°C] [400, 500, 600, 700, 800]  

Imperfection shape [LBA, m, m+1, m+2, m+3, m+4] 

 

Numerical analyses on compressed plates were carried out 

employing the triangular shell finite elements presented in [5]. 

Residual stresses were deemed negligible as it was shown that, 

owing to their relaxation with the steel temperature increase, they 

have no significant effects on the resistance of steel members in fire 

[12][17]. The temperature of the plates was kept constant at the 

chosen temperature level, while the compressive load was 

progressively increased until failure. Plates were loaded on one side 

with a master-slave condition that guaranteed a uniform axial 

displacement of the loaded side, while reaction forces were 

provided at the opposite side by axial restraints. Vertical restraints 

were applied to define the simply supported conditions on four 

(webs) and three sides (flanges). To prevent lateral buckling for very 

long plates, yet allowing for lateral expansion, additional lateral 

restraints were imposed at the nodes of the longitudinal midline for 

webs and on one side for flanges. The numerical model and the 

applied restraints are depicted in Figure 1. Mesh consisting of 

triangular grids with 8 subdivisions in the width were used, since for 

more subdivision it was found that the results did not significantly 

change. Instead, a varying number of subdivisions was chosen in the 

length of the plate to keep the shell aspect ratio close to 1, which is 

the aspect ratio allowing for the best performance and accuracy. 

 

Figure 1: Numerical models for plates and webs 

3 Discussion of the results 

The results of numerical simulation were collected in terms of the 

applied axial load at failure N together with the length L, the 

temperature of the plate 𝜃 and the plate slenderness at elevated 

temperature 𝜆𝑝,𝜃, calculated as follows 

𝜆𝑝,𝜃 =
c/t

28.4𝜀𝜃√𝑘𝜎
           (7) 

with t=tf and 𝑘𝜎 = 0.43 for flanges, t=tw and 𝑘𝜎 = 4 for webs, and 𝜀𝜃  

obtained from Eq. (1). Figure 2 shows the results for web and flange 

plates with a uniform temperature distribution of 400°C. The axial 

load at failure N is normalised with respect to the yielding load Nyield 

Nyield = Afy,θ = c · t · ky.θfy           (8) 

Where A is the transversal area of the plate and ky.θ is the retention 

factor that accounts for the reduction of the yield strength fy at 

elevated temperature. For webs, failure due to buckling was always 

attained because of the high plate slenderness, whilst for stocky 

flange plates almost the full yield capacity was reached at failure 

(N/Nyield  ≈ 100%). As expected from the elastic theory [23], 

significant resistance reductions were obtained due to buckling 
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when the plate slenderness increases, while very small failure load 

variations were obtained by increasing the plate length, in particular 

when the LBA and m imperfections were employed. In addition, it 

can be observed that regular surfaces are obtained for each 

imperfection shape for both webs and flanges, which means that the 

failure load N varies gradually with the length L and the slenderness 

𝜆𝑝,𝜃. 

a) 

b) 

Figure 2 Failure-yielding load ratio N/Nyield [%] at 400°C: a) webs; b) flanges 

Nevertheless, Figure 2 does not allow for a straightforward 

identification of the imperfection shapes that give the lowest failure 

loads N. Therefore, results are rearranged in Figure 3, Figure 4 and 

Figure 5 that report the variation of the failure load N for each 

imperfection shape with respect to the failure load obtained with 

the reference LBA imperfection NLBA. 

Figure 3 shows the variation of the resistance with temperature for 

webs (Figure 3a) and flanges (Figure 3b). Since a significant 

variability in the results is found at each temperature level, it 

appears clear that considerations based only on the temperature 

are not sufficient to describe the influence of the shape of 

imperfections on the resistance to compression. However, since the 

average resistance variation (N − NLBA)/NLBA, reported with 

discontinuous lines, is not varying significantly for any imperfection 

shape, the retention coefficients of the mechanical properties k 

given in EN 1993-1-2 [3] seem adequate to account for the effects 

of temperatures also in this context. 

a) 

b) 

Figure 3 Variation of the failure load with temperature T: a) webs; b) flanges 

More significative indications can be taken from Figure 4 and Figure 

5, in which the numerical outcomes are presented with respect to 

the plate slenderness at elevated temperature 𝜆𝑝,𝜃  and the length of 

the plate L, respectively. Figure 4a highlights that for all the 

imperfections in which the number of halfwaves was increased (m+1 

to m+4), the variation of the web resistance (N − NLBA)/NLBA 

always increases until a slenderness of 0.95 is reached. 

Interestingly, the LBA-based and m imperfections never give the 

lowest failure load, but it is not possible to identify a single 

imperfection shape that always provides the lowest failure load. In 

general, by increasing the number of additional halfwaves a higher 

dispersion of the variation of the resistance is obtained and thus, the 

m+4 imperfection results in being the most conservative or the most 

unconservative shape, depending on the case. The m+1 

imperfection instead, provides failure loads that are always lower 

than the ones obtained from the LBA imperfection, as also 

confirmed in [16], but rarely provide the absolute lowest failure 

load. Figure 4b shows that also for the flanges there is no shape of 

imperfection that always gives the lowest failure load. Moreover, all 

the imperfections with a number of halfwaves higher than m may 

entail failure loads higher than NLBA. More consistent variations are 

found compared to the web plates analyses for 𝜆𝑝,𝜃>0.5.  

417 |
 25097075, 2022, 4, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/cepa.1772 by U
niversita D

i T
rento A

c, W
iley O

nline L
ibrary on [28/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



a) 

b) 

Figure 4  Variation of the failure load with the plate slenderness 𝜆𝑝,𝜃: a) webs; b) 

flanges 

Figure 5 highlights that the variation of the failure load of a given 

imperfection shape with respect to NLBA depends on the length of 

the plate. The lowest average variations for webs, i.e., the minimum 

values assumed by the discontinuous lines in Figure 5a, are always 

between -3% and -4%, though they are associated to different 

imperfection shapes depending on the length L. For webs with a 

small aspect ratio L/c the lowest average failure loads are obtained 

with the m+1 imperfection, but increasing the length imperfections 

with a higher number of halfwaves become critical and for L5 and L6 

the lowest average failure load is attained with the m+4 

imperfection. Similar observations can be taken for flanges from 

Figure 5b. However, it should be noted that while imperfections 

with a number of halfwaves higher than m are always critical for 

webs, for very small aspect ratio L1, i.e., L/c =3, the lowest average 

failure load is obtained with the imperfection designed with m 

halfwaves. 

Two general considerations can be taken observing Figure 3 to 

Figure 5. The results obtained with the LBA-based and the m 

imperfections are essentially the same, since the difference 

between the two failure loads is almost constant and negligible in all 

the figures. This confirms that the numerical model is adequate to 

study simply supported plates as reported in the literature [23] and 

that the elastic buckling modes are correctly identified when LBA is 

used. In addition, it can be observed that the resistance varies in a 

small range for webs (about -5% to +11%), while the resistance of 

flanges varies in a larger range (about -8% to +34%).  

a) 

b) 

Figure 5 Variation of the failure load with length of the plate L: a) webs; b) flanges 

 

4 Conclusions 

In this paper the influence of different shapes of the initial 

imperfection on the resistance of compressed steel webs and 

flanges at elevated temperatures was studied. It was observed that 

the imperfection shapes suggested by the elastic theory of plates m, 

or by a linear buckling analysis LBA do not always provide the lowest 

failure load. Four additional sinusoidal shapes were defined 

increasing the number of halfwaves from m to m+4. It was shown 

that the imperfection shape giving the lowest failure load varies with 

both the length and the slenderness at elevated temperature of the 

web and flange plates. For very small aspect ratio L/c, increasing the 

number of halfwaves might be detrimental, especially for flange 

plates. Instead, when the plate length is increased, shapes with a 

number of halfwaves bigger than m allow for failure loads lower than 

the ones obtained with the LBA-based and the m imperfections. 

Nevertheless, when m+1 to m+4 imperfections were used a 10% 

reduction of the failure load was never attained, while significant 

overestimations of about 34% were obtained in some cases. Thus, 

the employment of LBA is still suggested since it allows for 

predictions that do not significantly overestimate the lowest failure 

load. However, for more conservative results, the m+1 imperfection 

can be employed for web analyses, as it always provided failure 

loads lower than NLBA and Nm. For flanges, the LBA-based or m 

imperfections should be used for 𝜆𝑝,𝜃<0.5 and L\c<7, while the 

number of halfwaves could be increased otherwise. In detail, for 

𝜆𝑝,𝜃≥0.5 the lowest failure load is usually found for m+1 and L\c=7, 

m+2 and L\c=9, m+3 and L\c=11 and m+4 and L\c=13.Further 
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studies are expected, in order to investigate different aspects, like 

the influence of the steel grade or the imperfection magnitude, and 

to understand if similar findings apply to full steel sections as well. 
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