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Quantum-simulator hardware promises new insights into problems from particle and nuclear physics.
A major challenge is to reproduce gauge invariance, as violations of this quintessential property of lattice
gauge theories can have dramatic consequences, e.g., the generation of a photon mass in quantum elec-
trodynamics. Here, we introduce an experimentally friendly method to protect gauge invariance in U(1)
lattice gauge theories against coherent errors in a controllable way. Our method employs only single-body
energy-penalty terms, thus enabling practical implementations. As we derive analytically, some sets of
penalty coefficients render undesired gauge sectors inaccessible by unitary dynamics for exponentially
long times. Further, for few-body error terms, we show numerically that this is achieved with resources
exhibiting little dependence on system size. These findings constitute an exponential improvement over
previously known results from energy-gap protection or perturbative treatments. In our method, the gauge-
invariant subspace is protected by an emergent global symmetry, meaning it can be immediately applied
to other symmetries. In our numerical benchmarks for continuous-time and digital quantum simulations,
gauge protection holds for all calculated evolution times (up to t > 1010/J for continuous time, with J the
relevant energy scale). Crucially, our gauge-protection technique is simpler to realize than the associated
ideal gauge theory, and can thus be readily implemented in current ultracold-atom analog simulators as
well as digital noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Quantum simulation promises to solve complex quan-
tum many-body systems using dedicated quantum hard-
ware. A particularly appealing target for quantum sim-
ulation is the solution of lattice gauge theories (LGTs)
[1–7]. Thanks to their fundamental importance in high-
energy and nuclear physics, gauge theories are currently
one of the main drivers of developments in scientific
high-performance computing [8,9], and they have deep
connections to topological phases of matter and topo-
logical quantum computing [10,11]. The goal of quan-
tum simulation is to advance into the regime of a true
quantum advantage [12], i.e., a regime that is no longer
accessible even for classical supercomputers, e.g., large
many-body systems far from equilibrium. As long as fully
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fault-tolerant quantum computers are still out of reach, it
is crucial to design feasible error-mitigation strategies that
ensure the reliable working of the current noisy quantum
simulators [13].

In the case of a gauge theory, this reliability is particu-
larly delicate: the associated gauge and matter fields neces-
sarily have to obey a precise local conservation law known
as a gauge symmetry—an example is Gauss’s law in quan-
tum electrodynamics (QED). Certain quantum-simulator
implementations exist that realize the gauge invariance by
promoting global conservation laws to local ones [14–19]
or by integrating out the gauge or matter fields [20–25].
However, an important class of realizations does not enjoy
a natural way for imposing gauge symmetry [19,26–28]
and will thus always suffer from microscopic terms that
coherently break gauge invariance. Violations of gauge
invariance can have dramatic consequences: for example,
they can generate a photon mass in QED, which would
reduce the infinite-range Coulomb law to a Yukawa poten-
tial. In equilibrium, a massless photon can still emerge in
a renormalized theory if the gauge-breaking terms are suf-
ficiently small [29,30]. Out of equilibrium, recent works
have found indications that gauge invariance presents a
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certain intrinsic robustness as gauge errors in intermediate-
scale quantum devices can build up slowly [31,32]. Yet, it
remains an outstanding challenge to devise schemes that
enable an active, controllable protection of gauge invari-
ance and which are implementable in realistic quantum
hardware.

Here, we present a scheme that uses simple single-
body terms to controllably protect nonequilibrium dynam-
ics against unitary breaking of gauge invariance, at least
up to exponentially long times and—for local error
terms—independent of system size. The scheme is based
on adding an energy penalty consisting of a linear sum
of the local generators of Gauss’s law, with weights cho-
sen according to an equation that we derive. As a result, a
global symmetry is enforced that within the target gauge-
invariant sector acts as the desired local gauge symmetry.
Leakage out of the gauge-invariant sector is suppressed to
a perturbatively controlled level over exponentially long
times, while the dynamics within the gauge-invariant sec-
tor is renormalized with a strength that is perturbative in
the protection—a fact that can also be exploited for gen-
erating a desired gauge-invariant dynamics [28,33–44].
We analytically prove the gauge protection by adapting
results from periodically driven systems [45], thus provid-
ing a firm theoretical framework for our protection scheme.
These results can immediately be extended to improve
analytical predictions for other scenarios, such as energy-
gap protection using stabilizer codes [46,47]. Moreover,
using results from the quantum Zeno effect in coherent
systems [48–51], we show that weaker (and potentially
experimentally even simpler) forms of penalties protect
gauge invariance at least to polynomially long times. As
a corollary, we prove the same type of protective strength
for the previously proposed, experimentally more chal-
lenging two-body protection terms. Further, using exact
numerics, we illustrate the scheme for an Abelian U(1)
gauge theory in one spatial dimension and demonstrate the
controllable protection for all simulated times. The pro-
posed single-body protection is considerably more experi-
mentally friendly than previous proposals, which rely on
engineered spatially correlated noise [15,52], on energy
penalties that require precisely tuned two-body interac-
tions [33–42,44,53], or multiqubit operations [47]. As
such, the protection scheme can be implemented in dig-
ital devices using single-qubit gates [12] as well as in
state-of-the-art analog realizations, e.g., in optical lattices
using a site-dependent chemical potential [19,28]. Thus,
our work opens a pathway for controlled gauge invari-
ance in large-scale LGT quantum simulators. Even more,
our results can be extended immediately to scenarios with
global symmetries.

Our paper is organized as follows: We start with some
background on the considered gauge theory and protec-
tion scheme in Sec. II. In Sec. III, we rigorously derive the
gauge protection theorem, which underlies the basis of our

work. Using this theorem, in Sec. IV we demonstrate the
gauge protection numerically through exact diagonaliza-
tion calculations of gauge-violation dynamics in the U(1)
gauge theory simulating an analog quantum simulator and
a digital quantum computer. In Sec. V, we outline the
connection of our findings to dynamical decoupling and
energy-gap protection as well as their application to ongo-
ing cold-atom experiments. We conclude in Sec. VI. Sev-
eral Appendices complement the results and discussions of
the main text.

II. BACKGROUND

Consider a quantum-simulation experiment aiming at
implementing a (d + 1)-dimensional lattice gauge theory
(i.e., d spatial dimensions). The theory is described by an
ideal Hamiltonian H0 that is invariant under gauge trans-
formations with the unitaries e−iαj Gj , generated by local
Gauss-law generators Gj , where j are matter sites of the
gauge theory. That is, [H0, Gj ] = 0, ∀j . In this study, we
focus on Abelian LGTs, where all symmetry generators
commute, [Gj , Gl] = 0, ∀j , l (i.e., we exclude non-Abelian
theories, where different Gauss-law operators at a given
site do not commute). Further, we denote the (integer)
spectrum of Gj as {gj } and define g as the vector of
gj . Without restriction of generality, we choose the tar-
get gauge-invariant subspace as consisting of those states
that fulfill Gj |ψ〉 = 0, ∀j , i.e., the sector g = 0 (also called
“physical subspace”).

Although our discussion holds more generally, we illus-
trate it numerically in Sec. IV using a quantum link model
(QLM) in 1+1 dimensions, given by the Hamiltonian
[1,28,37,40,54]

H0 =
L∑

j =1

[
J
(
σ−

j τ
+
j ,j +1σ

−
j +1 + H.c.

) + μ

2
σ z

j

]
. (1)

Here, the Pauli ladder operators σ±
j (τ±

j ,j +1) are the cre-
ation and annihilation (flipping) operators of the matter
(gauge) field at site j [link (j , j + 1)]. Accordingly, σ z

j (τ z
j )

is a mass-density (electric field) operator at site j [link
(j , j + 1)]. The matter-gauge coupling strength is given
by J , the matter rest mass is μ, and the number of matter
sites is L, where periodic boundary conditions are assumed,
meaning that there are also L links in the model. Although
we consider for concreteness hard-core bosons as the mat-
ter fields, all of our results apply equally to the fermionic
variant that is obtained by a Jordan-Wigner transforma-
tion on the matter fields, as the gauge protection introduced
below is independent of the particle statistics.

The local-symmetry generators of the U(1) QLM in
Eq. (1) are

Gj = (−1)j

2
(
σ z

j + τ z
j −1,j + τ z

j ,j +1 + 1
)
. (2)
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(See Appendix A for details on the eigenvalues of Gj in
this model.) For concreteness, it may be instructive to have
Eqs. (1) and (2) in mind, but the following considerations
hold for arbitrary LGTs that satisfy the commutation rela-
tions [Gj , Gl] = [H0, Gj ] = 0, ∀j , l. In an idealized quan-
tum simulation that would perfectly implement such a H0,
the Gj would be conserved quantities.

In realistic implementations without fine tuning (and not
using certain encoding strategies [20–22,24,25]), however,
there will be coherent terms that break gauge invariance,
which we subsume in the error term λH1, with [H1, Gj ] �=
0; λ controls the error strength, which in realizations such
as in Refs. [19,27,28] may be small but non-negligible.
These terms will drive the quantum simulator out of the
target gauge-invariant subspace.

Several proposals have been made regarding how to pro-
tect against such gauge-invariance breaking using energy-
penalty terms quadratic in the Gauss-law generators
[33–44,53],

VH̃G = V
∑

j

G2
j , (3)

with protection strength V > 0. Such a term shifts all states
not in the target sector g = 0 up in energy, such that the
desired physics can be reproduced in a controlled man-
ner. Indeed, such a scheme has been shown to give rise
to two distinct regimes in an out-of-equilibrium simula-
tion starting from a gauge-invariant initial state [53]: an
uncontrolled-violation regime when V/λ is small, and a
controlled-error regime in the case of large enough V/λ.
In the controlled regime, the system is shown in degen-
erate perturbation theory to be perturbatively close to a
renormalized ideal gauge theory. The implementation of a
penalty quadratic in the Gauss-law generators as in Eq. (3),
however, poses formidable experimental challenges, as it
requires the precise design of two-body interaction terms
involving the matter and gauge fields.

As the main result of our work, in the next section we
show analytically that a protection linear in the Gauss-
law generators—and thus comprised of only single-body
terms—suffices to ensure a controlled violation in the
gauge-theory dynamics:

VHG = V
∑

j

cj Gj , (4)

where the maximal absolute value of cj is unity, such that
V encodes the overall scale of the gauge-protection term.

The full Hamiltonian describing the envisioned
quantum-simulator experiment is then given by

H = H0 + λH1 + VHG. (5)

To achieve gauge-protected dynamics, it is important that
the system be prepared in an initial state that resides in

Energy

VD

VD

g = 0

g π 0

g π 0

FIG. 1. A lattice gauge theory can be decomposed into sym-
metry sectors characterized by an extensive number of local
conserved quantities, defined by the gauge-symmetry genera-
tors Gj with eigenvalues g = (. . . , gj , . . .). In realistic quantum-
simulator experiments, coherent error terms λH1 can break this
gauge symmetry. As we prove analytically, reliable gauge invari-
ance can nevertheless be dynamically achieved by introducing
the gauge protection VHG = V

∑
j cj Gj , which is composed of

single-body terms proportional to the gauge-symmetry genera-
tors, weighted by appropriate coefficients cj . When the coef-
ficients satisfy Eq. (7a), the protection term shifts undesired
sectors by an energy scale D = ming�=0 |cᵀ · g|. At sufficiently
large V, VHG induces an emergent global symmetry that in
the sector g = 0 coincides with the local gauge invariance. As
a consequence, these experimentally simple single-body terms
suppress gauge violations proportional to (λ/V)2 for exponen-
tially long times and—for local error terms—independently of
system size, thereby bringing the dynamics perturbatively close
to a renormalized ideal gauge theory.

the target sector g = 0. Even if there exist undesired gauge
sectors at higher and lower energy, the system remains
dynamically constrained to the target sector (see Fig. 1).
This is in contrast to Eq. (3), where the target sector g = 0
becomes lowest in energy, and which thus allows not only
for protected dynamics but also for a controlled cooling
into the ground state. However, the present scenario is in
line with ongoing cold-atom experiments, which currently
either consider quench dynamics [19,26,27] or adiabatic
transfer across phase transitions [28], in both cases starting
from simple states within the target sector g = 0.

In a worst-case scenario, the coefficients cj in Eq. (4)
have to comply with Eq. (7a) derived in the next section,
such that resonances between gauge violations at differ-
ent sites are avoided regardless of the form of gauge
invariance-breaking terms in H1. However, such a “com-
pliant” sequence is only necessary in the case of an extreme
error [such as H1 given in Eq. (16) below]. As we illus-
trate, in more benign situations, such as local errors (see
Fig. 4) or desired protection only up to times polyno-
mial in V (see Appendix B), modified sequences of cj
can suffice, meaning there is room for inaccuracies in the
implementation.
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Notably, the type of protection given in Eq. (4) can be
experimentally realized using single-body terms. As we
demonstrate in Secs. IV B and V B, these can be simple
single-qubit gates in digital circuits, respectively, single-
site chemical potentials in optical-lattice implementations.
The proposed realization is thus not only considerably less
challenging than the two-body terms of Eq. (3), it is also
advantageous with respect to other proposals based on
engineered noise. For example, according to the scheme of
Ref. [15] classical dephasing should be added that is corre-
lated between a matter site j and its neighboring links, such
that it couples to the Gauss-law generator Gj , but without
correlations across matter sites. Such a noise can suppress
coherent gauge breaking so it induces only a slow diffusion
out of the target subspace and gauge violations occur on
times polynomially large in the noise strength. In contrast,
as we demonstrate in the subsequent section, our coher-
ent scheme limits the leakage out of the gauge-invariant
subspace to a controlled and perturbatively small value, at
least up to times exponentially large in V.

The foremost aim of the proposed protection protocol is
to suppress this leakage. In addition, a deformed dynam-
ics within the gauge-invariant subspace is realized, which
is perturbatively controlled by the protection strength and
which may be used to engineer the dynamics of a tar-
get gauge theory—as has been shown experimentally in
Ref. [28].

III. GAUGE-PROTECTION THEOREM

To demonstrate the gauge protection, we adapt results
from Ref. [45] on slow heating in periodically driven sys-
tems. The aim is to transform the full Hamiltonian of
Eq. (5) into a theory perturbatively close to a renormalized
version of the original one that manifests as an approxi-
mate preservation of HG once the associated energy scale
V dominates. For convenience, we define ṼHpro = VHG,
where the spectrum of Hpro are integers, as explained lat-
ter. Define �n the projection operator onto eigenstates
of Hpro with eigenvalue n. Then, H can be decom-
posed into an Hpro-invariant part (HG-invariant part),
Hdiag + VHG with Hdiag := ∑

n�n(H0 + λH1)�n = H0 +
λ

∑
n�nH1�n, and the remainder, Hndiag = H − Hdiag −

VHG. By construction, [Hndiag, HG] �= 0 and [Hdiag, HG] =
0 (though in general [Hdiag, Gj ] �= 0; i.e., Hdiag obeys a
global symmetry generated by HG, but not the local gauge
symmetry generated by Gj ; we come back to this point
further below).

Before proceeding, it is convenient to introduce the alge-
bra and a family of norms as follows [45]. Being interested
in a lattice gauge theory on a cubic lattice in d spatial
dimensions, we define � as a finite subset of the lattice
Z

d. Define B� as the algebra of bounded operators acting
on the total Hilbert space H�, equipped with the standard
operator norm. We also define the subalgebra BS ⊂ B�

of operators of the form OS ⊗ 1�\S with S ⊂ �. Any
operator X can be decomposed (in a nonunique way) as
X = ∑

S∈Pc(�)
XS where XS ∈ BS and Pc(�) denotes the

set of finite, connected (by adjacency) subsets of �. The
collection XS is referred to as an (interaction) potential.
Define a family of norms on potentials, parametrized by
a rate κ > 0 that gives different weights to operators with
different spatial support,

||X ||κ := sup
x∈�

∑

S∈Pc(�):S�x

eκ|S|||XS||. (6)

The supremum in this definition chooses the lattice site x
with the largest sum of weighted norms of the operators XS
that have support on x.

Theorem (Gauge-Protection Theorem):
Let the symmetry protection Hamiltonian ṼHpro with

integer spectrum of Hpro be given as per Eq. (5). Assume
there exists a κ0 such that the relevant energy scale can
be defined as V0 := (54π/κ2

0 )(||Hdiag||κ0 + 2||Hndiag||κ0).
Assume further that the following three conditions are
fulfilled:

∑

j

cj gj = 0 iff g = 0, (7a)

Ṽ ≥ 9π ||Hndiag||κ0

κ0
, (7b)

n∗ :=
⌊

Ṽ/V0

(1 + ln Ṽ/V0)3

⌋
− 2 ≥ 1. (7c)

Then, for an arbitrary initial state |ψ0〉 in the target gauge
sector g = 0, the gauge violation remains bounded by a
perturbatively small value, | 〈U(t)†Gj U(t)〉 | ≤ K(Gj )/Ṽ,
up to exponentially long times t ∼ O[(1/V0)eṼ/V0 ].

The proof proceeds as follows. First, using Theorem
3.1 from Ref. [45], conditions (7b) and (7c) ensure the
following.

(1) There exists a unitary operator Y such that

YHY† = VHG + H ′

= VHG + H ′
diag + H ′

ndiag, (8)

with H ′ = YHY† − VHG, H ′
diag = ∑

n�nH ′�n, H ′
ndiag =

H ′ − H ′
diag, and

||H ′
diag − Hdiag||κn∗ ≤ C(V0/Ṽ), (9)

||H ′
ndiag||κn∗ ≤ (2/3)n∗ ||Hndiag||κ0 , (10)

where κn∗ := κ0[1 + log(1 + n∗)]−1 and C is a constant. In
other words, H ′

diag is perturbatively close (in V0/Ṽ) to Hdiag
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and the new contribution that fails to commute with HG,
H ′

ndiag, is exponentially small (in Ṽ/V0).
(2) Y is quasilocal and close to the identity in the sense

that for any local operator X ,

||YXY† − X ||κn∗ ≤ C(V0/Ṽ)||X ||κ0 . (11)

(3) For arbitrary local operator O and up to an exponen-
tially large time t on the scale ekn∗/V0, we have

||U(t)†OU(t)− eit(VHG+H ′
diag)Oe−it(VHG+H ′

diag)|| ≤ K(O)

Ṽ
,

(12)

where U(t) = e−iHt is the full time-evolution operator,
0 < k < (1/d + 1) ln (3/2), and K(O) is dependent on the
model parameters, but is Ṽ and volume independent.

We can quantify the leakage out of the target
gauge sector by substituting O = Gj in Eq. (12) and
using ||U(t)†Gj U(t)− eitH ′

diagGj e−itH ′
diag || ≤ K(Gj )/Ṽ to

estimate | 〈U(t)†Gj U(t)〉 − 〈eitH ′
diagGj e−itH ′

diag〉 | ≤ K(Gj )/

Ṽ. In general, [HG, Gj ] = [HG, H ′
diag] = 0, but [Gj , H ′

diag] �=
0. We can nevertheless achieve the protection of
| 〈U(t)†Gj U(t)〉 | if condition (7a) is satisfied. Then,
e−iH ′

diagt |ψ0〉 remains in the gauge sector g = 0, which
yields 〈eitH ′

diagGj e−itH ′
diag〉 = 0. Then, the gauge viola-

tion remains bounded by a perturbatively small value,
| 〈U(t)†Gj U(t)〉 | ≤ K(Gj )/Ṽ, up to exponentially long
times t ∼ O[(1/V0)eṼ/V0 ], and—for error terms with finite
bounded support—independent of system size. In this way,
we have designed a global symmetry operator HG such that
within the sector g = 0 it approximates the local gauge
invariance with certified error. This concludes the proof of
the above gauge-protection theorem. �

There is one subtlety here to note. The gauge-protection
theorem actually defines an emergent global symmetry
given by VHG, which the full Hamiltonian H preserves
up to exponentially long times for sufficiently large Ṽ. By
exploiting condition (7a), however, we obtain an effective
preservation of a local symmetry. Namely, this condition
lets the projector onto the zero eigenvalue of HG, �n=0,
project only onto the states with g = 0, so that for the
relevant target sector the global and local symmetry sec-
tors coincide. Conversely, by modifying condition (7a),
the protection scheme can be used to protect an arbitrary
global symmetry with integer spectrum [45].

In what follows, we refer to sequences that fulfil condi-
tion (7a) as compliant.

Using a compliant sequence ensures that resonances
between gauge violations at different sites are avoided
regardless of the form of gauge invariance-breaking terms.
Importantly, the resulting gauge protection can take place
even if the different symmetry sectors are not energeti-
cally well separated, as we illustrate now. The gauge sector

closest to the target sector g = 0 lies at an energy VD =
ming�=0 V|cᵀ · g| (see Fig. 1), where c is defined in anal-
ogy to g as the vector containing the coefficients cj . For
example, for the compliant sequence of Fig. 4(a) below,
we obtain D = 0.0068, i.e., the energy difference between
the target sector to the closest gauge-violating sector is on
the order of 0.0068V. This protection energy scale, which
separates the centers of gravity of the two sectors, has
to be compared to the energy spread of the Hamiltonian
eigenfunctions. In a generic many-body system, the energy
spread of a given symmetry sector is proportional to the
norm of �nH0�n (neglecting the small perturbative cor-
rection due to λH1), i.e., it is extensive in system size.
Thus, if the value of V is fixed, once the system reaches
a sufficiently large size the undesired gauge sectors will
have energetic overlap with the target sector g = 0. At this
point, as there is no true energy gap between sectors one
might assume H1 could induce uncontrolled transitions and
the gauge-symmetry protection would break down. In con-
trast, as is illustrated in Fig. 14, for errors consisting of
terms with bounded spatial support a gauge protection is
still assured for large but system-size-independent V.

We can intuitively understand the gauge protection by
going into an interaction picture with respect to VHG. The
full time-evolution operator then becomes

U(t) = e−iHt = e−iVHGtŨ(t), (13)

Ũ(t) = T
{
e−iH0t−i

∫ t
0 dτλH1(τ )

}
, (14)

with λH1(t) = eiVHGtλH1e−iVHGt. We can compare the form
of this time-dependent Hamiltonian with the projector onto
the g = 0 subspace, which for the U(1) LGT under consid-
eration here can be written as P0 ∝ ∏

j

∫
dαj e−iαj Gj , i.e.,

the projector integrates over all possible gauge transforma-
tions and thus averages all states away for which Gj does
not vanish [52]. Since in Eq. (14) above, the different Gj
all rotate at fast but different frequencies, averaging over
the slow timescales given by the system dynamics gener-
ates an effective projection onto the target gauge sector,
where Vcj t effectively assumes the role of the transforma-
tion angle αj . Said differently, the fast frequency V rotates
H1 away. If the rotation frequency was infinitely large (V
infinitely strong) the projection would be exact, while in
analogy to a rotating-wave approximation for finite fre-
quency the remaining effect of H1 is limited to a controlled
level. By choosing the cj in a suitable manner according
to a compliant sequence, it is ensured that each generator
rotates independently of the others.

As final remarks, if a protection is desired for another
target gauge sector g�, the above condition (7a) simply
needs to be adjusted to

∑
j cj (gj − g�j ) = 0 iff g = g�. In

Appendix B, we moreover use the “continuous” quantum
Zeno effect (QZE) [48,51] to demonstrate that the protec-
tion term can be simplified [i.e., need not fulfil Eq. (7a)] if
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the aim is just to protect gauge invariance to limited experi-
mentally accessible times that are polynomially rather than
exponentially large in V. Finally, H̃G as well as the gener-
ators of Z2 gauge theories (such as the stabilizers used for
energy-gap protection [46,47]) equally well fulfil the two
main ingredients of the theorem: their spectrum is integer
and �n=0 projects only onto the states with g = 0 (for Z2
gauge theories, one needs to include a constant, irrelevant
shift). Thus, we can immediately extend the theorem to the
two-body protection VH̃G = V

∑
j G2

j , see Eq. (3), as well
as the energy-gap protection discussed in Sec. V A. In this
way, these previously proposed protection schemes bene-
fit from the same protective power of the above theorem.
Further, the gauge-protection theorem does not distinguish
between the statistics of the involved particles, and is thus
equally applicable to bosonic and to fermionic matter.

IV. NUMERICAL RESULTS

To substantiate these analytical considerations, this
section presents numerical benchmarks for the gauge-
violation dynamics in potential analog quantum simulators
with continuous time evolution as well as digital cir-
cuits. The toolkits used for these results are QuTiP [55,56]
(analog) and Cirq (digital).

We illustrate our theorem using as model the U(1)
QLM defined by Eqs. (1) and (2). We prepare our ini-
tial state |ψ0〉 in the gauge-invariant sector Gj |ψ0〉 = 0,
∀j (i.e., the sector g = 0), and subsequently quench it at
t = 0 with the Hamiltonian H = H0 + λH1 + VHG as per
Eq. (5). Thus, the time-evolved wave function |ψ(t)〉 =
U(t) |ψ0〉 = exp[−i(H0 + λH1 + VHG)t] |ψ0〉 will in gen-
eral no longer reside only in the initial gauge-invariant
sector. The resulting violation in Gauss’s law can be
quantified by

ε(t) = 1
L

L∑

j =1

〈ψ(t)| G2
j |ψ(t)〉 . (15)

In what follows, we compare the gauge violation for
sequences that comply with Eq. (7a) and sequences that do
not, and we compare the results with a quench using H =
H0 + λH1 + VH̃G, with the two-body protection given by
Eq. (3).

A. Analog quantum simulator with continuous time
evolution

Typical errors in an analog quantum-simulator exper-
iment, such as with ultracold atoms in optical lattices,
would violate the so-called assisted matter tunneling or
gauge flipping of the first term in Eq. (1) [19]. How-
ever, some proposals also involve nonlocal gauge-breaking
terms [40]. Here, we consider as a worst-case scenario non-
local error terms that guarantee the system is driven into

all possible gauge-invariant sectors (we present results for
only local errors further below). Specifically, we choose
the gauge invariance-breaking term

H1 =
L∑

j =1

(
τ+

j ,j +1 + σ−
j σ

−
j +1 + H.c.

)

+
∑

ξ=±1

L∏

j =1

(
1j + ξσ x

j

)
(1j ,j +1 + ξτ x

j ,j +1

)
. (16)

We prepare our system in a staggered gauge-link config-
uration, with odd (even) links pointing down (up), and
with all matter sites empty (see Fig. 2, top), such that the
resulting initial state |ψ0〉 lies in the sector g = 0.

The running temporal average ε(t) = ∫ t
0 ds ε(s)/t of the

gauge violation in Eq. (15) is shown in Fig. 2, for gauge-
breaking strength λ = 0.05J and various values of the
protection strength V; see Appendix C for results on the
temporally nonaveraged violation of Eq. (15). The com-
pliant sequence employed in Fig. 2(a) ensures a controlled
suppression proportional to (λ/V)2 of the gauge violation
at sufficiently large V, bringing the dynamics to that of the
ideal gauge theory in the limit V → ∞. In other words,
the compliant sequence at sufficiently large V allows one
to extract from degenerate perturbation theory dynamics
perturbatively close to that of a renormalized version of
the ideal gauge theory. Therefore, the behavior is qualita-
tively identical to the case with two-body protection, i.e.,
when the energy penalty terms are quadratic in Gauss-law
operators [53], but with the crucial advantage that now the
protection term is linear in the Gj , i.e., requires only single-
body terms. Importantly, the violation remains controlled
over all simulated times, which go to values even beyond
the shown maximal time of t = 1010/J .

The picture drastically changes when the sequence does
not comply with Eq. (7a), as shown in Figs. 2(b) and
2(c), where no matter how large V is, the gauge violation
will not improve beyond a certain finite minimum value.
The dynamics is thus no longer perturbatively close to
the ideal gauge-invariant theory renormalized. Despite the
similarity of the compliant and noncompliant sequences
in Fig. 2, they generate a strongly different associated
dynamics. One may naively expect that this means the
compliant sequence requires high accuracy in its imple-
mentation in order to exactly satisfy Eq. (7a). However,
as we show below, for typical experimental errors that
are local, the compliant sequence is merely a sufficient
but not a necessary condition to achieve controlled gauge
violation.

In Fig. 3, we plot the infinite-time gauge violation
as a function of J/V (for fixed gauge-breaking strength
λ = 0.05J ), comparing the different protection schemes.
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Site index j 1 2 3 4 5 6 1

Initial state

(a)

(b)

(c)

Controlled violation

Uncontrolled violation

Uncontrolled violation

FIG. 2. Spatiotemporally averaged gauge-invariance violation
with the extreme nonlocal error H1 of Eq. (16) at gauge-breaking
strength λ = 0.05J , and under the single-body protection of
Eq. (4) for various values of the protection strengths V (see leg-
ends). The initial state is drawn on top. (a) With a compliant
sequence {cj }, the gauge violation is suppressed proportional to
(λ/V)2 for sufficiently large V, thereby bringing the dynamics
perturbatively close to that of a renormalized version of the ideal
gauge theory. (b) A noncompliant sequence provides only lim-
ited protection where the violation cannot be suppressed beyond
a certain value, despite this sequence being very similar to the
one in (a). (c) Similarly, the protection is also limited when the
staggering in the compliant sequence is removed. Even though
this might indicate a large sensitivity of the protection to details
of the sequence, we show in Fig. 4 that some noncompliant
sequences can still provide reliable protection for typical local
gauge-breaking errors occurring in experimental setups.

In congruence with the results of Fig. 2, the compliant-
sequence single-body protection offers the same two-
regime picture as its two-body counterpart, albeit the
gauge violation is unsurprisingly smaller with the two-
body protection. Nevertheless, in both cases at suffi-
ciently large V, the violation is suppressed proportional to
(λ/V)2, allowing a perturbative reconstruction of the ideal
gauge-theory dynamics through a controlled extrapolation

Uncontrolled-violation regime

Controlled-violation regime

FIG. 3. Infinite-time gauge violation in gauge-theory dynam-
ics at mass μ = 0.5J with inherent gauge-breaking errors
given by Eq. (16) at breaking strength λ = 0.05J , com-
paring the effect of the two-body energy penalty Eq. (3)
(green curve), a single-body energy penalty with the compliant
sequence cj ∈ {−115, 116, −118, 122, −130, 146}/146 (blue),
and a single-body penalty with the noncompliant sequence cj ∈
{−115, 116, −118, 130, −122, 145}/145 (red). The two-body
and compliant-sequence single-body penalties exhibit two dis-
tinct regimes: the first one is characterized by an uncontrolled
violation when V is too small, and the second regime exhibits a
controlled gauge violation at large enough V that scales propor-
tional to (λ/V)2. In contrast, the noncompliant energy penalty
displays only uncontrolled error behavior, which leads to a min-
imum violation that does not improve upon further increasing V.
See Appendix D for similar results at different values of λ and μ
(Fig. 10) and when starting in a different initial state (Fig. 11).

towards λ/V → 0. In the case of a noncompliant sequence,
the gauge violation is shown to be suppressed only down
to a finite minimum value regardless of how large V is.
“Infinite time” in Fig. 3 refers to t = 1010/J , but we have
checked that our conclusions remain qualitatively the same
for much larger evolution times.

The results of Figs. 2 and 3 may lead to the false impres-
sion that the compliant sequence must be engineered with
great accuracy in order to achieve controlled violation.
However, this is only true in the case of extreme gauge-
breaking terms where H1 takes a nonlocal form such as
in Eq. (16). In realistic settings, dominant gauge-breaking
terms are usually those stemming from unassisted mat-
ter coupling or gauge flipping [19,28,30]. Here, we model
these by

H1 =
∑

j

(
τ x

j ,j +1 + σ+
j σ

+
j +1 + σ−

j σ
−
j +1

)
. (17)

Results for the associated time evolution of the gauge vio-
lation are shown in Figs. 4(a) and 4(b) for the same com-
pliant and noncompliant sequences used in Figs. 2(a) and
2(b). The compliant sequence again performs remarkably
well, but, intriguingly, in the present case the sequence not
compliant with Eq. (7a) also works reliably, despite offer-
ing no control in the case of the extreme error of Eq. (17).
Even more, as shown in Fig. 4(c), another noncompli-
ant sequence that involves coefficients of equal magnitude
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(a) (c)

(b) (d)

FIG. 4. Similar to Fig. 2, but with the local gauge-breaking term H1 = ∑
j (τ

x
j ,j +1 + σ+

j σ
+
j +1 + σ−

j σ
−
j +1). (a) As expected, the compli-

ant sequence leads to excellent retention of gauge invariance. (b) Surprisingly, also the noncompliant sequence, which fails to protect
against the gauge-breaking term of Eq. (16), provides very reliable protection. (c) Even more, in the present case already a simple stag-
gered sequence of equal-magnitude coefficients can offer reliable gauge protection against gauge violations. (d) A simplistic sequence
of equal terms will nevertheless still fail.

but alternating sign also shows excellent control of the
gauge violation. Nevertheless, equal coefficients of the
same sign do not allow one to control the gauge violation,
as shown in Fig. 4(d). Appendix 4 contains scans similar
to Fig. 3 of the infinite-time gauge violation as a function
of J/V.

Let us now investigate in how far the linear gauge pro-
tection works for other local observables different from the
Gauss-law generator, such as the electric flux and matter
occupation

E = 1
L

L∑

j =1

(−1)j 〈ψ(t)| τ z
j ,j +1 |ψ(t)〉 , (18a)

n = 1
2

+ 1
2L

L∑

j =1

〈ψ(t)| σ z
j |ψ(t)〉 , (18b)

respectively. To illustrate the efficacy of gauge protec-
tion, we use the experimentally simplest noncompliant
sequence cj = (−1)j and compute the temporal averages
of E and n, compared to the dynamics under the ideal the-
ory H0 (see Fig. 5). The agreement with the ideal-theory
dynamics over large parts of the evolution is impres-
sive, with linear protection reliably reproducing the ideal
dynamics up to a timescale ∝ V/J 2. As shown in the insets,
the error with respect to the dynamics under the ideal
gauge theory is suppressed as 1/V and grows linearly in
time. This behavior nicely agrees with our analytic predic-
tions based on the quantum Zeno effect (see Appendix B).

Importantly, since they happen within an effective
protected gauge symmetry, the modifications to the
dynamics of H0 generated by the full theory can be used
to engineer a desired gauge theory dynamics, as has been
demonstrated experimentally in Ref. [28].

To illustrate the power of the linear gauge-protection
theorem, we give an estimate for the protection strength
based on Eqs. (7b) and (7c) for the local error term Eq. (17)
and the extreme error term Eq. (16). For convenience, we
still assume λ = 0.05J (though the gauge protection does
not depend on λ being perturbatively small compared to J ).
In such a parameter setting, Eq. (7c) has more restrictions
on the minimal protection strength Vmin. By finding the κ0
that minimizes V0, we find the value of Vmin above which
exponentially long gauge protection is guaranteed. First,
considering the local error, the energy scale V0 is domi-
nated by H0 in the chosen parameter setting, which gives
V0 ≈ 3000J and Vmin ≈ 2000J . As for the extreme error,
strictly speaking the interaction range is infinite, hence it
does not belong to the applicable range of the theorem
of Ref. [45] in the thermodynamic limit. However, this
is not an issue for lattices of finite size. For the system
we consider in this paper, L = 6 matter sites, the energy
scale for the extreme error is V0 ≈ 8000J , which leads to
Vmin ≈ 5000J . The above estimation is for unnormalized
cj and V [see discussion below Eq. (7a)]. As a compari-
son, Figs. 2 and 4 show that the unnormalized protection
strength starts to work at Vmin ≈ 0.1J and Vmin ≈ J for
both the local and extreme (nonlocal) errors, respectively,
at least for the finite system sizes considered here. As these
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(a)

(b)

FIG. 5. Temporally averaged (a) electric field and (b) mat-
ter occupation under the faulty gauge theory H = H0 + λH1 +
V

∑
j (−1)j Gj as compared to the dynamics under the ideal

gauge theory H0. In agreement with analytics, our protection
term reproduces the ideal dynamics up to a timescale ∝ 1/V.
Insets: the error with respect to ideal-theory dynamics is sup-
pressed by V and grows linearly in time, as predicted analytically
from the quantum Zeno effect (see Appendix B).

estimates for the protection strength show, the require-
ments on parameters in an actual quantum simulation are
much more feasible than what the theory predicts.

A further question is how well the protection works
in practice as the system is scaled up. In Appendix 5,
we compare the long-time scans for L = 2, 4, 6. Within
numerically accessible system sizes, we find very benign
finite-size effects, giving further confidence in the scala-
bility of the protection scheme. Indeed, in the experiment
of Ref. [28], a system size of L = 35 has been success-
fully reached using a linear protection against specific error
terms.

B. Digital circuit with discrete time evolution

In this section, we consider digital implementations of
lattice gauge theories. Although, there are digital schemes
where each Trotter step is manifestly gauge invariant
[57–61], there may be other systematic gauge-breaking
errors in a realistic device, not generated by Trotterization.
Our scheme can protect against these. Further, from expe-
rience with stabilizer codes (see discussion in Sec. VI), we
expect our method to protect also against the 1/f noise
that is ubiquitous in digital devices. Finally, one may want
to purposefully violate gauge invariance in a controlled
way, so as to study how well gauge-theory phenomena
can be reproduced by approximate gauge theories, which
becomes possible by the controlled energy protection.

To numerically benchmark the gauge protection under
H = H0 + λH1 + VHG of Eq. (5) in a digital circuit,
we assume a linear arrangement of qubits that alter-
nately represent matter and gauge fields, and we choose
the same initial state as in the previous section (see
top of Fig. 2). In the simulated digital quantum cir-
cuit, sketched in Fig. 6, the time evolution generated
by the different parts of the Hamiltonian H is imple-
mented in the separate layers exp(−iHJ δt), exp(−iλH1δt),
exp(−iVHGδt), and exp(−iHmδt) with δt the Trotter time
step. Here, it is beneficial to split the U(1) Hamilto-
nian in quantum link formalism H0 of Eq. (1) into the
kinetic energy term coupling matter and gauge fields HJ =
J

∑
j

(
σ−

j τ
+
j ,j +1σ

−
j +1 + H.c.

)
and the fermionic rest mass

term Hm = (μ/2)
∑

j σ
z
j . With this, both Hm and VHG

can be implemented by single-qubit z rotations Rz,j (φ) =
exp(−iσ z

j φ/2) for qubits representing matter sites and
Rz,(j ,j +1)(φ) = exp(−iτ z

j ,j +1φ/2) for qubits representing
gauge links, where the angle φ is defined by the rel-
ative weight in the Hamiltonian, e.g., exp(−iHmδt) =⊗

j exp(−iσ z
j μδt/2) = ⊗

j Rz,j (μδt). As Hm and VHG
commute, the single-body gauge-protection Hamiltonian
VHG can be implemented in combination with the single-
qubit rotations of the Hm layer without increasing gate
depth. Since we are specifically interested in a con-
trolled study of gauge violation, we assume an exact
implementation of HJ and add a gauge-breaking term
λH1 by hand, which mimics imperfectly calibrated gates
and other systematic gauge violations that may occur in
a realistic implementation. We choose the local gauge-
breaking Hamiltonian λH1 of Eq. (17) that is split into
single-qubit x rotations Rx,(j ,j +1)(2λδt) = exp(−iτ x

j ,j +1λδt)
realizing the gauge-flipping term and the two-qubit gate
exp[−i(σ+

j σ
+
j +1 + H.c.)λδt] realizing the matter coupling.

In what follows, we choose a sequence of cj that complies
with Eq. (7a), though—as in the continuous-time calcu-
lations of Figs. 4 and 12—a simple sequence of constant
magnitude and alternating sign already yields controlled
protection for the used local error term.

As Fig. 7(a) shows, the gauge violation ε can be effi-
ciently suppressed by choosing V > 0. For V/λ large
enough, we observe the controlled-error regime where the
gauge violation is suppressed proportional to (λ/V)2, see
Fig. 7(b). Moreover, there is a scale of optimal gauge pro-
tection, Videal. For V sufficiently smaller than Videal, the dig-
ital error suppression coincides with the continuous-time
simulations of the preceding section (up to Trotter errors),
whereas above it the digital suppression of gauge violation
begins to deteriorate. We find this ideal gauge-protection
strength to be given by

Videal ≈ π

2c
δt−1 − ξ , (19)
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FIG. 6. Elementary unit for one Trotter step of the quantum
circuit. σj (τj ,j +1) denotes a qubit representing a matter (gauge)
field at matter site j [gauge link (j , j + 1)]. Single-qubit rota-
tions around qubit axis α are labeled by Rα = exp(−iσαφ/2)
for qubits representing matter sites and Rα = exp(−iταφ/2) for
qubits representing gauge links, where the angle φ is defined by
the relative weight of the corresponding term in the Hamilto-
nian. “+” denotes the unitary gate exp[−i(σ+

j σ
+
j +1 + H.c.)λδt]

with Trotter time step δt. The implementation of VHG and Hm
can be combined in one layer of single-qubit z rotations.

where c is the spatial average of the absolute values of
the coefficients cj , which due to the normalization dis-
cussed following Eq. (7a) is smaller than but on the order
of unity. Intuitively, the first term is the protection strength
above which the z-rotation angle of the qubits on the Bloch
sphere exceeds the order of π , i.e., the protection per
Trotter step starts to actually become weaker. This value
acquires a small correction ξ that depends on μ and the
microscopic details of the gauge-breaking term λH1. As
shown in Appendix E, when rescaling based on Eq. (19)
the results for various δt collapse onto each other. More-
over, as seen in Fig. 7(b), the achievable ε attains a broad
minimum over V centered around Videal, meaning no exper-
imental fine tuning is needed to reach the optimal gauge
protection.

It is remarkable that the gauge protection works so reli-
ably also in the digital implementation, as the theorem in
Sec. III is derived for continuous time evolution. Never-
theless, as we discuss in detail in Appendix B, in the case
of Trotterized time evolution the QZE for coherent dynam-
ics ensures VHG protects gauge invariance against unitary
errors at least up to polynomially long times. Even more,
as we have seen in the numerics, already for moderately
large V we find an approximately constant level of gauge
suppression up to the simulated times of 20/J .

V. DISCUSSION

In this section, we put our protection framework in
the context of previous results. In particular, we formally
relate the proposed method with the frameworks of dynam-
ical decoupling and energy-gap protection by introducing
an auxiliary, fictitious Higgs field. Moreover, we discuss
how a recent cold-atom experiment can be reinterpreted as

(a)

(b)

FIG. 7. (a) Numerical benchmarks of gauge violation dynam-
ics in a digital circuit, for a Trotter time step δt = 0.2/J at
various values of gauge-protection strength V, with μ/J = 0.5,
λ/J = 0.05, and L = 6 matter sites. The corresponding numeri-
cal data for the analog quantum simulator are shown in dotted
lines of the same color. (b) The gauge violation at final time
tf = 20/J in the analog quantum simulator and in the digital
circuit for various Trotter time steps (see legend). The gauge
violation reaches a broad minimum around the ideal protection
strength of Videal ≈ π/(2cδt)− ξ , see Eq. (19).

implementing a simplified noncompliant gauge-protection
sequence.

A. Relation to dynamical decoupling and energy-gap
protection

It is instructive to put our protection scheme into rela-
tion to the known techniques of energy-gap protection
(EGP), which uses time-independent suppression terms,
and dynamical decoupling (DD), which relies on time-
dependent sequences. Both techniques have been proposed
to provide error mitigation, e.g., by encoding logical qubits
into stabilizer codes in the context of adiabatic quan-
tum computing [47,62,63]. Such error-detecting or error-
correcting codes can be understood as Z2 gauge theories
where the stabilizers assume the role of the generators of a
Z2 Gauss’s law.

In the frameworks of DD and EGP, one is concerned
with suppressing errors that occur through the interac-
tion of a target system, typically the qubit register of a
quantum computer, with the environment. The correspond-
ing Hilbert spaces are Hsys and HE , respectively, and
the Hilbert space of the composite system is given by
the direct product H = Hsys ⊗ HE . The full dynamics is
governed by Hamiltonian H = Hsys ⊗ 1E + 1sys ⊗ HE +
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λ
∑

q O(q)
sys ⊗ O(q)

E . Here, Hsys and HE govern the dynam-
ics of the target system, respectively, environment alone,
which become coupled by the operators O(q)

sys and O(q)
E with

overall strength λ.
The aim of DD and EGP is to suppress this cou-

pling. To this end, one adds a control pulse Hc(t)⊗ 1E ,
assuming that (only) the target system can be actively
manipulated, such that the full time-evolution operator
becomes UDD(t) = T e−i

∫ t
0 dτ [H+Hc(τ )⊗1E)+]. In the context

of error-correcting codes, Hc typically consist of stabilizer
operators [47]. In the framework of EGP, one takes Hc
to be constant, while DD employs suitably chosen, time-
dependent control pulses Hc(t)⊗ 1E , typically assuming
the control pulse to be cyclic with period Tc, i.e., Uc(t) ≡
e−i

∫ t
0 dτHc(τ )⊗1E = Uc(t + Tc) (since the stabilizers all com-

mute with each other, we can omit the time-ordering
prescription here). In a rotating frame generated by Uc(t),
one obtains UDD(t) = Uc(t)ŨDD(t), with

ŨDD(t) = T
{
e−i

∫ t
0 dτ H̃(τ )}, (20)

and H̃(t) = U†
c(t)HUc(t).

To estimate the resulting dynamics, one may perform
a Magnus expansion [64] of ŨDD(NTc) = e−i

∑
� H̄ (�)NTc

[65], yielding a series of effective Hamiltonians H̄ (�) that
describe the stroboscopic dynamics at each cycle. For
example, the leading order is simply the time average
H̄ (1) = (1/Tc)

∫ Tc
0 dtH̃(t). Essentially the same reasoning

can be applied to EGP when taking Hc(t) to be time inde-
pendent. The temporal periodicity of the control pulse
is then simply given by a sine-wave function generated
by e−iHct. In such an effective description, H̄sys may get
renormalized. More importantly in the present context, the
coupling is modified to λ

∑
q Ō(q)

sys ⊗ O(q)
E . For a suitably

chosen Hc, Ō(q)
sys is averaged to zero, so to leading order

the coupling between target system and environment is
cancelled.

It may be tempting to try and reformulate our protec-
tion scheme in this framework, with target space Hg=0 and
undesired space Hg�=0. However, the full Hilbert space of
the gauge theory takes the form of a direct sum HGT =
Hg=0 ⊕ Hg�=0 rather than the direct product H = Hsys ⊗
HE . We can nevertheless put the gauge theory in this
framework by introducing auxiliary bosonic Higgs fields
φ that assume the role of the environment, H = HGT ⊗
HHiggs. The gauge-breaking terms λH1 are then formally
reinterpreted as the coupling between matter or gauge
fields to the (fictitious) Higgs field. For example, the term
λ

∑L
j =1

(
τ+

j ,j +1 + h.c.
)

appearing in Eqs. (16) and (17) is

then rewritten as λ
∑L

j =1

(
τ+

j ,j +1 ⊗ φ
†
j φj +1 + h.c.

)
[30,66].

Since HG has an integer spectrum by construction, it ful-
fils the cyclic property, and thus VHG ⊗ 1Higgs assumes the
role of the periodic control pulse Hc ⊗ 1E . Note that this is

just a formal reinterpretation, the Higgs field is not actually
being quantum simulated or added as an additional degree
of freedom. Moreover, the Higgs field does not represent a
dissipative, Markovian bath but rather generates a coupling
between different gauge sectors.

Using this formulation, we can reinterpret our protection
framework as a dynamical decoupling of the gauge theory
from an auxiliary Higgs field—but with some important
differences in terms of experimental requirements. For
example, previous proposals in the context of stabilizer
gauge theories suffer from the necessity to add high-weight
many-body terms [47], while our framework requires only
inexpensive single-body operators. Moreover, DD propos-
als have discussed two ways to discard couplings that
appear in higher orders of the Magnus expansion and
which might deteriorate the target dynamics at polyno-
mial timescales. First, when increasing the strength of the
decoupling pulse with simulated time and system size,
the Magnus expansion can always be shown to converge,
enabling a controlled truncation of the series [64]. Sec-
ond, Hc can be constructed through increasingly complex
many-body terms that cancel H̄ (�) order by order [65].
In our work, we show that such drastic requirements on
the control Hamiltonian are unnecessary: decoupling of
few-body error terms can be achieved for exponentially
long times with a protection strength that remains constant
in time and system size. Even more, for the U(1) gauge
theory considered here, this can be achieved with simple
single-qubit terms.

B. Cold-atom implementations

The proposed protection scheme is directly relevant to
ongoing cold-atom quantum simulations. For example,
in a recent experiment [28], an optical superlattice has
been designed in such a way as to impose energy penal-
ties on the most salient gauge violations. The experiment
distinguishes bosons on matter sites and on gauge links,
described by bosonic operators bj and bj ,j +1, with asso-
ciated number operators nj and nj ,j +1. Thanks to on-site
interactions, an alternating chemical potential δ due to the
superlattice, and a lattice tilt � due to gravity, the bosons
are subject to the energy penalty Hpenalty = ∑

j {U[nj (nj +
1)+ nj ,j +1(nj ,j +1 + 1)]/2 + δnj ,j +1 +�[jnj + (j + 1/2)
nj ,j +1]}. With the generators of the target Gauss law, Gj =
(−1)j [(nj −1,j + nj ,j +1)/2 + nj − 1], the penalties can be
rewritten as Hpenalty = ∑

j {U[nj (nj + 1)+ nj ,j +1(nj ,j +1 +
1)− nj ,j +1/2]/2 − μnj + cj Gj }. For a large on-site inter-
action U, the first term ∝ U restricts the matter sites to
occupations 0 and 1 and the gauge sites to occupations 0
and 2, enabling a mapping to the QLM given in Eq. (1).
The second term ∝ μ is mapped to the rest mass. Finally,
within our framework, the third term is reinterpreted as
a gauge protection consisting of a linear and a staggered
term, cj = (−1)j [�j + (U − δ +�/2)].
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Although the coefficients do not satisfy the full con-
dition of a compliant sequence as per the theorem of
Sec. III, the dynamics can still be protected by the
QZE discussed in Appendix B. The closest gauge sec-
tor g degenerate with 0 (i.e., the sector with the min-
imal ||g||2 > 0 such that

∑
j cj gj = 0) takes the form

g = (0, . . . , 1, −1, 1, −1, 0, . . . , 0). Only a gauge-breaking
term H1 that acts on at least three matter and gauge field
sites has the possibility to access this sector, for instance,
H1 = ∑

j (σ
−
j −1τ

+
j ,j +1σ

−
j +2 + H.c.). Hence, even in this case

the gauge invariance is protected up to a linear timescale
when the perturbation term is sufficiently local. In a cold-
atom experiment, � can be realized by gravity, a magnetic
gradient, or a light shift. For an experiment of the type of
Ref. [28] the maximal protection strength is restricted to
� ≈ 10 kHz before errors due to higher bands become sig-
nificant [67], and could thus be orders of magnitude larger
than the most salient gauge violation that was suppressed
to a level of � 70 Hz. A similar protection term could also
be engineered in other cold-atom platforms, e.g., through
ac Stark shifts in the experiment of Ref. [19].

In the experiment of Ref. [28], the penalty coefficients
have been chosen ad hoc to suppress the most salient errors
of nearest-neighbor and next-nearest neighbor tunneling.
As we see, they find an elegant reinterpretation in our
framework, which thus also highlights a clear way forward
to improve gauge protection in future experiments, e.g.,
by identifying the next subleading gauge-breaking terms
along with sequences that protect against them.

VI. CONCLUSION

In summary, we have introduced the gauge-protection
theorem: it combined with numerics proves reliable gauge
invariance against coherent errors with bounded support
up to exponentially long times and independent of system
size, by using simple single-body terms proportional to the
Gauss-law generators. Each of these operators is weighted
according to a compliant sequence of coefficients such that
their sum can be zero if and only if the quantum state
resides in the target gauge sector, while other gauge sec-
tors incur an energy penalty that serves as a single-body
gauge protection. As a consequence, the protection term
generates an emergent global symmetry that within the tar-
get gauge sector acts in the same way as the local gauge
symmetry.

Using numerical benchmark calculations, we have
demonstrated the power of our method for near-future
analog and digital quantum simulations of a U(1) gauge
theory. Even in the presence of extreme nonlocal gauge-
breaking terms, the single-body protection offers con-
trolled gauge violation down to a perturbatively small
level. Indeed, even though the theorem stipulates protec-
tion up to exponentially long times, we see that in our finite
systems the gauge violation is suppressed up to essentially

infinite times—we have tried various extremely large val-
ues of the evolution time using our exponentiation routine
for time evolution and have found that the gauge viola-
tion remains in a steady state indefinitely. Even though
for extreme errors the compliant sequence of coefficients
has to be computed with high precision, we have illus-
trated how experimentally relevant local gauge breaking
due to unassisted matter tunneling or gauge flipping can
be robustly protected against even when the sequence of
coefficients nontrivially departs from a perfectly compliant
sequence.

Moreover, we have demonstrated the protection in a
digital circuit implemented in Cirq. Also in this case, we
have found excellent gauge-invariance protection up to
the largest simulated evolution times of 20/J , and we
have established the optimal protection strength for given
Trotter step size.

Our results lend for a number of immediate extensions.
They can be applied to any Abelian lattice gauge theory
and to higher powers of the gauge-symmetry generators.
Thus, the same protective power holds for the convention-
ally proposed, but experimentally much more challenging,
two-body protection scheme that is quadratic in the gen-
erators of Gauss’s law, as well as for Z2 gauge theories.
The method can also be immediately generalized to protect
global symmetries. Moreover, we have related our results
to DD and EGP, showing that these can enjoy a stronger
protective power against coherent errors than previously
known. Conversely, DD and EGP for stabilizer codes have
been shown to protect well against 1/f noise [47,68],
which is ubiquitous in solid-state systems [69]. Since the
spectrum density of 1/f noise is mostly concentrated in
the low-frequency range, the DD sequence does not need
to be ultrafast [70]; similarly, the energy gap needed to
suppress 1/f is moderate. It has been demonstrated exper-
imentally that DD can be used to improve gate fidelity
[71–73]. Since our scheme can be interpreted as DD in
the time-dependent case, we anticipate it can be used in
a similar manner to suppress the 1/f noise. Finally, we
have discussed how controlled gauge violation in a recent
cold-atom experiment [28] can be reinterpreted in the light
of our method, yielding an elegant interpretation of gauge
protection in that experiment as well as clear guidelines
on how to improve it in future works. With its experi-
mental simplicity and high flexibility, and having a firm
theoretical framework behind it, the proposed single-body
gauge protection thus shows a clear way forward to achiev-
ing controlled gauge invariance in modern gauge quantum
simulators. As part of an ongoing study [74], we expect
the protection discussed here to present a localization tran-
sition, similar to many-body localization [75] and energy
localization [76,77].

In the current era of noisy intermediate-scale quantum
devices, where fully scalable, universal, and fault-tolerant
quantum computers are still out of reach, further progress
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hinges crucially on the design of error-mitigation strate-
gies that can be implemented in existing hardware. In our
work, we have designed such a strategy, which may enable
quantum computers to study such complicated issues as
the out-of-equilibrium dynamics of strongly coupled gauge
theories or the emergence of gauge invariance in nature.
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APPENDIX A: MORE ABOUT U(1) GAUGE
THEORY IN QUANTUM LINK FORMALISM

Possible eigenvalues of the Gauss-law generators of the
U(1) QLM given in Eq. (2) are 2, 1, 0, −1 for every matter
site j up to a factor of (−1)j . However, not all eigen-
value combinations are physically allowed. Up to a factor
of (−1)j , a local constraint at matter site j with gauge-
generator eigenvalue 2 requires the matter site j and field
links j − 1, j and j , j + 1 to be spin up, which forbids
the gauge-generator eigenvalue −1 for its two neighbors.
Hence, up to a factor of (−1)j there are no “2, −1” or
“−1, 2” combinations in any of the allowed gauge sectors.

APPENDIX B: QUANTUM ZENO EFFECT

In this Appendix, we discuss how weaker but still well-
controlled protection can be achieved even when relaxing
the stringent requirement in Eq. (7a) of the theorem dis-
cussed in Sec. III of the main text. In particular, we present
a formal framework based on the quantum Zeno effect for
coherent systems, evolved in continuous time as well as
Trotterized schemes.

A sufficiently large V restricts the system dynamics
to the decoherence-free subspace of HG, a phenomenon
known as a continuous formulation of the QZE [48,51].
More precisely, considering the Hamiltonian in Eq. (5), we
obtain

lim
V→∞

e−itH = e−it[VHG+∑
n �n(H0+λH1)�n], (B1)

with a residual additive term of O(J 2L2t/V). Here, HG
need not necessarily have an integer spectrum as is
required in Sec. III, and it can encode any desired global
symmetry. When the initial state is prepared in the target
sector, the QZE Hamiltonian restricts the dynamics in the
kernel of HG, which might contain the other sectors. Now,
we specialize to the protection of a target subspace of a
local gauge symmetry.

There are two situations where the QZE can promise
protected dynamics up to a timescale t ∝ V/(JL)2, with a
controlled violation of O(J 2L2/V). In the first situation,
the spectrum of HG = ∑

j cj Gj is nondegenerate, ther-
erfore the kernel of HG contains only the target sector.
Specifically, for a general H1, the dynamics is protected
when the cj are sufficiently incommensurate, i.e., for arbi-
trary g1 �= g2, cᵀ · (g1 − g2) �= 0 (here, we define c as the
vector of cj , as in the main text). This condition can be
easily satisfied when cj are random numbers or irrational
numbers, or even fine-tuned integers.

In the second situation, H1 cannot split up the
degeneracy of the spectrum of HG at first-order per-
turbation theory. In this case, one has �nH1�n =∑

g,g′∈{g,g′|cᵀ ·g=n,cᵀ ·g′=n} PgH1Pg′ = ∑
g∈{g|cᵀ ·g=n} PgH1Pg,

where we use the operators �n = ∑
g∈{g|cᵀ ·g=n} Pg that

project on the subspaces of fixed eigenvalues n of HG,
with Pg the projector on gauge sector g. When the above
condition is satisfied, U(t) ∼ exp{−i

∑
g[nVPg + Pg(H0 +

λH1)Pg]t} with n = cᵀ · g. In this situation, though the
kernel of HG contains the other sectors, the dynamics gen-
erated by the above evolution operator still keeps the state
in the target sector if the initial state is prepared in the tar-
get sector. The advantage of the second situation of QZE
protection is that the sequences of cj are much simpler
for the physical error terms H1. Physically, the local error
term H1 causes only the gauge violation locally, which
renders a lot of flexibilities on the choice of cj since the
energy spectrum of HG with a huge degeneracy is allowed.
For instance, the physical error term Eq. (17) in the U(1)
gauge theory considered in Eq. (1) conserves the parity
and causes only the gauge violation {+1, −1} or {−1, +1}
in pairs of nearest-neighbor sites. It is straightforward to
verify that the coupling due to H1 at leading order cannot
split the degeneracy for HG when choosing all cj = (−1)j .
Although the kernel of HG includes a huge number of the
other nontarget sectors such as g = (1, −1, −1, 1, 0, 0, . . .),
g = (−1, −1, 0, 0, 1, 1, . . .), etc., the gauge violation is still
protected by QZE. The protective effect in such a situation
can be clearly seen in, e.g., Fig. 4(c) of the main text.

We can extend these considerations to digital quantum
simulators. Digital quantum simulation with a protection
term can be regarded as a quantum system undergoing
“kicks” according to the evolution operator

Um(t) = [UkickU0(t/m)]m, (B2)

where U0(t/m) = e−i(H0+λH1)t/m, Ukick = e−iVHGt/m, and
t/m = δt is the Trotter time step. The spectrum decompo-
sition of Ukick can be expressed as Ukick = ∑

n e−inVt/m�n,
where a nondegeneracy condition nVt/m �= n′Vt/m mod
2π , ∀n �= n′, is assumed. The unitary kicks version
of the QZE states that in the large m limit and
for V ∼ O(m/t), Um(t) ∼ exp{−i

∑
n[nV�n +�n(H0 +

λH1)�n]t} [49,50]. The evolution operator thus becomes
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FIG. 8. Temporally nonaveraged gauge violations, whose tem-
poral averages (marked here in dotted green lines) are shown in
Fig. 2(a). The qualitative picture is the same, especially since
the finite-size fluctuations are rather small and suppressed with V
(note that our y axis is on a log scale).

identical to the evolution operator for the above “contin-
uous” QZE. Hence, the protection sequences for analog
quantum simulation also work for digital quantum simu-
lation. In our numerics, we find that already a strong V that
is constant, i.e., not increasing with m, provides controlled
protection over the simulated times.

Notably, this protection due to the QZE effect is different
from the slow rise of gauge invariance for the case when λ
is perturbatively small as compared to H0 [31,32]. Indeed,
λ can be much stronger than the scales of H0, as long as
it is dominated by V. In this sense, the present case is an
instance of strong perturbation theory.

APPENDIX C: NUMERICS SPECIFICS

For benchmarking a potential analog quantum simula-
tor, we have used the QuTiP [55,56] exact diagonalization
toolkit in order to construct the model and initial state,
but for the time evolution we have opted for our own
exponentiation routine that is better suited for handling
the very large evolution times we access. Even though in
the main text we show mostly results for the temporally
averaged violation ε(t) = ∫ t

0 ds ε(s)/t, with ε(s) given in
Eq. (15), the temporally nonaveraged violation exhibits the
same behavior as shown in Fig. 8, albeit in the presence
of finite-size fluctuations, which are, however, suppressed
with V.

In the case of the digital circuit, we make use of the
quantum circuit library Cirq [78]. We construct the cir-
cuit sketched in Fig. 6 and simulate its full wave function
with readout of the gauge violation ε occurring after each
Trotter step.

APPENDIX D: FURTHER RESULTS ON ANALOG
DYNAMICS

In this Appendix, we corroborate the generality of our
qualitative conclusions in the main text by showing results
for different initial states and parameter values.

(a)

(b)

(c)

FIG. 9. Same as Fig. 2 in the main text, but for (a) another
compliant sequence, (b) another noncompliant sequence, and (c)
a noncompliant sequence that is the nonstaggered version of the
compliant sequence in (a). The results are qualitatively identi-
cal to those of Fig. 2, with control over gauge invariance being
achieved only for the compliant sequence in (a).

1. Violation dynamics for different sequences of
coefficients

Here, we provide results for different compliant and non-
compliant sequences than those used in the main text in the
case of the “extreme” gauge-breaking error of Eq. (16).
The corresponding results are shown in Fig. 9. Similarly
to Fig. 2(a), the gauge violation is controlled propor-
tional to (λ/V)2 at large protection strength V only when
the sequence is compliant, i.e., it satisfies the condition∑

j cj gj = 0 iff gj = 0, ∀j , given in Eq. (7a), as shown
in Fig. 9(a). Minor variations to this sequence will com-
pletely compromise this control of the violation, as shown
in Fig. 9(b). Again, if the staggering is removed from
the compliant sequence the associated violation is not
controlled; see Fig. 9(c).

2. Violation scan for different values of λ and μ

In the main text, we have set λ = 0.05J and
μ = 0.5J . In Fig. 3 we have shown the “infinite-time”
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(a) (c)

(b) (d)

FIG. 10. Same as Fig. 3 in the main text, but for (a) λ/J = 0.5 and μ/J = 0.5, (b) λ/J = 0.005 and μ/J = 0.5, (c) λ/J = 0.05 and
μ/J = 0, and (d) λ/J = 0.05 and μ/J = 1.2. Comparing these results to those of Fig. 3, the qualitative picture remains unchanged
regardless of the values of λ and μ.

violation ε∞ as a function of inverse protection strength
J/V in the presence of “extreme” gauge breaking given in
Eq. (16), under two-body and single-body gauge protec-
tion. Our conclusions hold for other values of the micro-
scopic parameters λ and μ, as shown in Fig. 10, where
we use the same compliant and noncompliant sequences
cj ∈ {−115, 116, −118, 122, −130, 146}/146 and cj ∈
{−115, 116, −118, 130, −122, 145}/145, respectively, in
the single-body protection. For sufficiently large V, the
gauge violation is controlled proportional to (λ/V)2 in the
case of two-body as well as compliant-sequence single-
body gauge protection. The single-body protection with
the noncompliant sequence cannot bring the dynamics per-
turbatively close to the ideal gauge theory, but rather seems
to bring about a lower bound in ε∞ regardless of how
large V is.

3. Violation scan for a different initial state

In the main text, we have focused on the initial state
shown on top of Fig. 2, which comprises empty matter sites
with the gauge links pointing along the positive or neg-
ative z direction in a staggered fashion. Here, we repeat
the results of Fig. 3 for a different initial state containing
particles on matter sites j = 1, 4, with the links between
these two sites carrying the configuration ↓↑↓ (as through-
out the paper, periodic boundary conditions are assumed);
see top of Fig. 11. The corresponding “infinite-time” vio-
lations as a function of J/V for the extreme error of
Eq. (16) are shown in Fig. 11. The two-body protection and
its single-body counterpart with the compliant sequence

cj ∈ {−115, 116, −118, 122, −130, 146}/146 give rise to a
controlled-violation regime for sufficiently large V, where
ε∞ ∼ (λ/V)2, bringing the model perturbatively close to a
renormalized version of the ideal gauge theory described
by H0 of Eq. (1). Single-body protection with the noncom-
pliant sequence does not provide control over the violation
regardless of how large V is.

4. Violation scan for experimentally relevant local
errors

In the main text and Appendix 2, we have shown results
for the “infinite-time” gauge violation as a function of J/V
in the case of an extreme nonlocal gauge-breaking term

Site index j 1 2 3 4 5 6 1

Initial state

FIG. 11. Same as Fig. 3 but for the initial state drawn on top.
The qualitative conclusion is identical to that of Fig. 3, showing
that our findings are independent of the gauge-invariant initial
state.
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FIG. 12. Same as Fig. 3 but for the experimentally rele-
vant local gauge-breaking term H1 = ∑

j (τ
x
j ,j +1 + σ+

j σ
+
j +1 +

σ−
j σ

−
j +1). Even though the noncompliant sequence fails to

achieve a controlled gauge violation in the case of the nonlocal
gauge-breaking term of Eq. (16) (see Fig. 3), here it performs
as well as the compliant sequence. As another marked differ-
ence from Fig. 3, the linear protection performs as well as the
full protection in the case of the local gauge-breaking term in
Eq. (17).

given in Eq. (16) protected against by using either the
two-body or single-body energy penalty given in Eqs. (3)
and (4), respectively. However, as discussed in the main
text, experimentally relevant errors are usually milder than
Eq. (16) and are dominated by local terms, such as those
of Eq. (17). It is expected that the two-body energy penalty
VH̃G = V

∑
j G2

j and the single-body protection term
VHG = V

∑
j cj Gj with a compliant sequence {cj }—i.e.,∑

j cj Gj |ψ〉 = 0, iff Gj |ψ〉 = 0, ∀j —will still lead to a
controlled-violation regime for sufficiently large protection
strength V, given that the gauge-breaking error in Eq. (17)
is much more forgiving than its counterpart in Eq. (16).
This is indeed the case, as shown in Fig. 12.

Nevertheless, a fundamental difference arises in the case
of the experimentally relevant local error of Eq. (17) with
respect to the extreme gauge breaking of Eq. (16): now
even the noncompliant sequence can offer controlled vio-
lation for sufficiently large V. This is a promising finding
for experimental purposes, as it means that there is room
for imprecision in implementing the coefficients cj , and
that the condition

∑
j cj Gj |ψ〉 = 0, iff Gj |ψ〉 = 0, ∀j is

only a sufficient but not necessary condition in the case of
experimentally relevant local errors.

5. System-size dependence of violation scan

An important question is the system-size dependence
of the violation, in order to predict the efficacy of
single-body protection schemes as the quantum simula-
tor is scaled up. Although the gauge-protection theorem
mathematically rigorously shows the size-independence
of Ṽ for errors with bounded support, it is illustrative
to study V size dependence numerically for the consid-
ered model system. We use the compliant sequence cj ∈
{−115, 116, −118, 122, −130, 146}/146 employed in the

(a)

(b)

FIG. 13. (a) Ideal protection strength Videal that provides the
minimal temporally averaged gauge violation ε. Blue diamonds
are numerically extracted data points for the gauge-violation
Hamiltonian of Eq. (17) and λ = 0.05J , μ = 0.5J . The red line
is given by Eq. (19), Videal ≈ π/(2cδt)− ξ , where the offset
depending on microscopic parameters, ξ , has been determined
by a fit as proportional to 0.58J . (b) Rescaled mean gauge vio-
lation depending on protection strength for various Trotter time
steps δt. The results collapse around their minimum.

violation scans shown in Figs. 3 and 12. As “infinite” time,
we set t = 1010/J , which lies far above any experimentally
relevant timescales, and we have checked that our conclu-
sions are the same for other long times. In Fig. 14(a), we
show the corresponding result for fixed error strength λ =
0.05J withμ = 0.5J in the case of the nonlocal error given
in Eq. (16). We see that even in the case of such an extreme
error, the “infinite” time violation appears to quickly con-
verge with system size, as the controlled-error regime is
roughly identical from L = 4 to L = 6 matter sites. The
difference between L = 2 and L = 4 can be attributed to
the fact that in the case of L = 2 the error term employed
here is not really a nonlocal many-body error, and thus acts
much more benign for L = 2 than in the larger systems. In
the case of the local error of Eq. (17), shown in Fig. 14(b),
the infinite-time violation is roughly the same for all sys-
tem sizes considered. These results give further numerical
confidence that single-body protection works reliably as
the quantum simulator is scaled up.

APPENDIX E: IDEAL PROTECTION STRENGTH
FOR DIGITAL CIRCUIT

As described in Sec. IV B on the digital circuit imple-
mentation, the periodic degeneracy of gates with respect
to their angle gives rise to a finite ideal protection strength
Videal. We find Videal to be given by Eq. (19), which consists
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(a)

(b)

FIG. 14. System-size dependence of the gauge violation in
Eq. (15) at “infinite” time (we use t = 1010/J in our numerical
simulations, although other values do not alter the conclusion) as
a function of J/V. Data is for λ = 0.05J and μ = 0.5J , using for
system size L the first L coefficients of the compliant sequence
cj ∈ {−115, 116, −118, 122, −130, 146}/146. (a) For the many-
body error of Eq. (16), there is a large finite-size effect from
L = 2 matter sites to L = 4, as the nonlocal nature of the error
term does not appear yet for L = 2. In contrast, the difference
between L = 4 and L = 6 matter sites is insignificant. This indi-
cates that even with an extreme (and experimentally unlikely)
error such as Eq. (16), the single-body protection with a compli-
ant sequence works reliably for large systems. (b) When the error
term is the experimentally relevant one in Eq. (17), the weak
system-size dependence indicates that single-body protection can
be scaled up reliably. This behavior is similar to what appears for
“full” protection using quadratic energy penalties [53].

of a term ∝ δt−1 and a nonuniversal offset ξ that depends
on μ and the microscopic details of the gauge-breaking
term H1.

As displayed in Fig. 13(a), Eq. (19) accurately repro-
duces the numerically extracted Videal for a wide range of
Trotter time steps δt. Here, we use the exact same Hamil-
tonian and parameters as in Sec. IV B, and we determine
ξ , the single open parameter of Eq. (19), by a fit. (The
resulting ξ is close to μ.)

The results depicted in Fig. 7(b) display a universal
behavior when rescaling the mean gauge violation as ε →
ε/(J δt)2 and the protection strength as V → Vδt. Under
this rescaling, one observes a collapse of the gauge vio-
lation for all δt around their minimum at Videalδt; see
Fig. 13(b). The universal behavior comes about due to
the dominance of the first term of Eq. (19) (together
with the rescaling of the gauge violation as ε ∼ λ2/V2),
while the nonuniversal additive constant ξ provides only a
comparativley small offset.
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