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Abstract: This contribution deals with multi-objective model-predictive control (MPC) of a
wave energy converter (WEC) device concept, which can harvest energy from sea waves using a
dielectric elastomer generator (DEG) power take-off system. We aim to maximise the extracted
energy through control while minimising the accumulated damage to the DEG. With reference
to system operation in stochastic waves, we first generate ground truth solutions by solving an
optimal control problem, comparing it to the performance of MPC to determine a prediction
horizon that trades off accuracy and efficiency for computation. Fixed weights in the MPC
scheme can produce unpredictable costs for variable sea conditions, meaning the average rate
of cost accumulation can vary vastly. To steer this cost growth, we propose a heuristic to adapt
the algorithm by changing the weighting of the cost functions for fulfilling the long-time goal
of accumulating a small enough damage in a fixed time. A simulated case-study is presented in
order to evaluate the performance of the proposed MPC framework and the weight-adaptation
algorithm. The proposed heuristic proves to be able to limit the amount of accumulated damage
while improving the energy yield obtained with a comparable fixed-weight MPC.

Keywords: Optimal Control, Multi-objective Model-predictive Control, Energy Harvesting,
Non-Linear Optimization, Dielectric Elastomer Generators

1. INTRODUCTION

Ocean wave energy is a highly abundant and dense form
of renewable energy. Although many different concepts
of wave energy converters (WECs) were studied in the
past, their high technological complexity and deployment
costs have hindered these technologies from being used
in the field (Pecher and Kofoed (2017)). One promising
approach to overcome these barriers is the use of dielectric
elastomer generators (DEGs), i.e. lightweight polymeric
generators based on low-cost raw materials, which allow
direct conversion of mechanical into electrical energy based
on a variable-capacitance principle (Moretti et al. (2020)).
In a previous publication, we derived a model-based opti-
mal control for a DEG-WEC subject to sinusoidal regular
waves (see Hoffmann et al. (2022)). We showed that multi-
objective optimal control can, under consideration of a
non-linear model, disclose technically relevant trade-offs
between the electrical damage accumulated by the DEG
over time and the extracted energy, allowing for a reduc-
tion of damage by more than 50 % while only losing 1 %
of energy compared to a control that aims at maximising
the extracted energy.
However, these results assumed the wave motion is peri-
odic and predictable far into the future. In reality, ocean
waves are irregular and therefore unpredictable for long

time-horizons (Coe et al. (2018)). This makes the use of
open-loop optimal control difficult, as errors in the pre-
diction of the wave excitation result in suboptimal control
signals. Under the assumption that a correct prediction
shortly into the future is possible, model-predictive control
(MPC) can be used to generate a suitable control signal
during operation, having better adaptability to environ-
mental changes than optimal control, while preserving the
same cost functions and constraints (Faedo et al. (2017)).
The MPC algorithm computes control inputs by solving an
optimal control problem (OCP) with a shorter prediction
horizon and updating the input estimation on-line, while
controls are executed.
In this work, we apply for the first time MPC to DEG-
WECs under the influence of stochastic waves. Moreover,
we evaluate the deviation of the MPC solution with respect
to a ground truth OCP input signal to find that reasonable
prediction horizon lengths have to include multiple wave
peaks. Additionally, if long-time goals are to be achieved,
it is needed that the controller explicitly accounts for the
high variability in the system operating conditions. In real-
world applications, tracking DEGs damage accumulation
enables failure time prediction. This might, among others,
allow actively adjusting the controller parameters as the
system approaches breakdown, similar to ideas presented
by Requate et al. (2022). With this objective in mind,
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1. INTRODUCTION

Ocean wave energy is a highly abundant and dense form
of renewable energy. Although many different concepts
of wave energy converters (WECs) were studied in the
past, their high technological complexity and deployment
costs have hindered these technologies from being used
in the field (Pecher and Kofoed (2017)). One promising
approach to overcome these barriers is the use of dielectric
elastomer generators (DEGs), i.e. lightweight polymeric
generators based on low-cost raw materials, which allow
direct conversion of mechanical into electrical energy based
on a variable-capacitance principle (Moretti et al. (2020)).
In a previous publication, we derived a model-based opti-
mal control for a DEG-WEC subject to sinusoidal regular
waves (see Hoffmann et al. (2022)). We showed that multi-
objective optimal control can, under consideration of a
non-linear model, disclose technically relevant trade-offs
between the electrical damage accumulated by the DEG
over time and the extracted energy, allowing for a reduc-
tion of damage by more than 50 % while only losing 1 %
of energy compared to a control that aims at maximising
the extracted energy.
However, these results assumed the wave motion is peri-
odic and predictable far into the future. In reality, ocean
waves are irregular and therefore unpredictable for long

time-horizons (Coe et al. (2018)). This makes the use of
open-loop optimal control difficult, as errors in the pre-
diction of the wave excitation result in suboptimal control
signals. Under the assumption that a correct prediction
shortly into the future is possible, model-predictive control
(MPC) can be used to generate a suitable control signal
during operation, having better adaptability to environ-
mental changes than optimal control, while preserving the
same cost functions and constraints (Faedo et al. (2017)).
The MPC algorithm computes control inputs by solving an
optimal control problem (OCP) with a shorter prediction
horizon and updating the input estimation on-line, while
controls are executed.
In this work, we apply for the first time MPC to DEG-
WECs under the influence of stochastic waves. Moreover,
we evaluate the deviation of the MPC solution with respect
to a ground truth OCP input signal to find that reasonable
prediction horizon lengths have to include multiple wave
peaks. Additionally, if long-time goals are to be achieved,
it is needed that the controller explicitly accounts for the
high variability in the system operating conditions. In real-
world applications, tracking DEGs damage accumulation
enables failure time prediction. This might, among others,
allow actively adjusting the controller parameters as the
system approaches breakdown, similar to ideas presented
by Requate et al. (2022). With this objective in mind,
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objective optimal control can, under consideration of a
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of energy compared to a control that aims at maximising
the extracted energy.
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open-loop optimal control difficult, as errors in the pre-
diction of the wave excitation result in suboptimal control
signals. Under the assumption that a correct prediction
shortly into the future is possible, model-predictive control
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during operation, having better adaptability to environ-
mental changes than optimal control, while preserving the
same cost functions and constraints (Faedo et al. (2017)).
The MPC algorithm computes control inputs by solving an
optimal control problem (OCP) with a shorter prediction
horizon and updating the input estimation on-line, while
controls are executed.
In this work, we apply for the first time MPC to DEG-
WECs under the influence of stochastic waves. Moreover,
we evaluate the deviation of the MPC solution with respect
to a ground truth OCP input signal to find that reasonable
prediction horizon lengths have to include multiple wave
peaks. Additionally, if long-time goals are to be achieved,
it is needed that the controller explicitly accounts for the
high variability in the system operating conditions. In real-
world applications, tracking DEGs damage accumulation
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allow actively adjusting the controller parameters as the
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costs have hindered these technologies from being used
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elastomer generators (DEGs), i.e. lightweight polymeric
generators based on low-cost raw materials, which allow
direct conversion of mechanical into electrical energy based
on a variable-capacitance principle (Moretti et al. (2020)).
In a previous publication, we derived a model-based opti-
mal control for a DEG-WEC subject to sinusoidal regular
waves (see Hoffmann et al. (2022)). We showed that multi-
objective optimal control can, under consideration of a
non-linear model, disclose technically relevant trade-offs
between the electrical damage accumulated by the DEG
over time and the extracted energy, allowing for a reduc-
tion of damage by more than 50 % while only losing 1 %
of energy compared to a control that aims at maximising
the extracted energy.
However, these results assumed the wave motion is peri-
odic and predictable far into the future. In reality, ocean
waves are irregular and therefore unpredictable for long

time-horizons (Coe et al. (2018)). This makes the use of
open-loop optimal control difficult, as errors in the pre-
diction of the wave excitation result in suboptimal control
signals. Under the assumption that a correct prediction
shortly into the future is possible, model-predictive control
(MPC) can be used to generate a suitable control signal
during operation, having better adaptability to environ-
mental changes than optimal control, while preserving the
same cost functions and constraints (Faedo et al. (2017)).
The MPC algorithm computes control inputs by solving an
optimal control problem (OCP) with a shorter prediction
horizon and updating the input estimation on-line, while
controls are executed.
In this work, we apply for the first time MPC to DEG-
WECs under the influence of stochastic waves. Moreover,
we evaluate the deviation of the MPC solution with respect
to a ground truth OCP input signal to find that reasonable
prediction horizon lengths have to include multiple wave
peaks. Additionally, if long-time goals are to be achieved,
it is needed that the controller explicitly accounts for the
high variability in the system operating conditions. In real-
world applications, tracking DEGs damage accumulation
enables failure time prediction. This might, among others,
allow actively adjusting the controller parameters as the
system approaches breakdown, similar to ideas presented
by Requate et al. (2022). With this objective in mind,

we designed a simple heuristic switching scheme that can
adapt the weights in a multi-objective MPC. We show
that even a rudimentary switching scheme is effective
in limiting the damage accumulation below an arbitrary
threshold.

2. MODEL AND PROBLEM STATEMENT

Flap

Links DEG

θ

Hinges

Fig. 1. Wave surge converter: a flap hinged on the sea
floor is tilted by the wave motion. It is displayed in
a generic (left) and the vertical equilibrium position
(right).

2.1 System description

In this work, we design an MPC scheme for the wave
surge converter (see, e.g. Whittaker and Folley (2012)),
displayed in Fig. 1. The device, hinged to the sea bed, ex-
periences pitch motion due to incoming waves, deforming
a DEG composed of electrode-covered polymeric dielectric
membranes rigidly connected to a parallelogram mecha-
nism (Moretti et al. (2014)). When no voltage is applied,
the DEG generates an elastic torque that pushes the flap
towards the vertical equilibrium position θ = 0. Applying
a voltage to the DEG adds an electrostatically-induced
torque in the same direction as the elastic torque, making
the system stiffer. The elastic torque can be considered
negligible compared to the electrostatic torque (Moretti
et al. (2014)).

The DEG functions as a variable capacitor, which can
be controlled so as to generate electrical energy at the
expense of the input mechanical work generated by the sea
wave moving the flap. Applying low or no voltage during
phases where the capacitance increases (θθ̇ < 0) and a high

voltage when the capacitance decreases (θθ̇ > 0) causes
current to flow out of the DEG and electrical power to
be delivered to the power electronics. As we showed in our
previous work Hoffmann et al. (2022), controlling the input
voltage to maximise the energy extracted from the system
results in large electric fields, damaging the DEG-material
over time and leading to system failure after damage
reaches a certain threshold (Chen et al. (2019)). For that
reason, we also took the damage into consideration as a
second optimization objective and, in turn, consistently
limit the electric field in the DEG.

2.2 Model

For small oscillation angles, the dynamics of the wave surge
take the following form (Hoffmann et al. (2022)):


θ̇(t)

δ̇(t)
ż(t)


 =




0 1 01×n

−I−1
h Kh −I−1

h Bh −I−1
h Cr

0n×1 Br Ar




θ(t)
δ(t)
z(t)


+

+




0
I−1
h

0n×1


 (d(t)− C0θ(t)u(t))

θ(0) = θ0, δ(0) = δ0, z(0) = z0.

(1)

where θ(t) and δ(t) = θ̇(t) from R describe the flap’s an-
gular position and velocity; z(t) ∈ Rn is an n-dimensional
state vector describing the dynamics of the radiated waves’
force (Yu and Falnes (1995)); Kh and Bh represent the
hydrodynamic stiffness (due to buoyancy) and damping
of the flap; C0 is the capacity of the undeformed DEG;
Ar, Br, Cr are matrices modelling the radiated waves
dynamics; d is a time-varying torque the waves exert
on the flap; input u physically represents the voltage v
applied on the DEG squared. In the following, the system’s
state is denoted by x(t) = [θ(t), δ(t), z(t)⊺]⊺. In operating
conditions, the input u(t) should meet the following hard
constraints:

0 ≤ u(t) ≤ (Ebdhl)
2, (2)

where the first inequality of 0 ≤ u owes to the definition of
u (u(t) = v(t)2), whereas the second constraint demands
that the electric field is lower than a threshold breakdown
value, Ebd times the DEG’s thickness hl, that would cause
static failure of the DEG.

2.3 Cost functions

We aim to simultaneously minimise accumulated damage
and maximise extracted energy within a multi-objective
optimal control problem (MOOCP) setting. The energy
cost function is defined as the energy generated over a
time tf with a negative sign:

J1(x, u, tf) = Ψ(x(tf), u(tf), tf)−Ψ(x(0), u(0), 0)

+

 tf

0


Bhδ(t)

2 + z(t)⊺Srz(t) +
u(t)

R0
− dδ(t)


dt

with Ψ(x(τ), u(τ), τ) =
1

2
Ihδ(τ)

2 +
1

2
Khθ(τ)

2

+
1

2
z(τ)⊺Qrz(τ) +

1

2
C0

�
1− θ(τ)2


u(τ), (3)

with the storage function Ψ including kinematic, electro-
static, and hydrostatic energy contributions. R0 represents
the leakage resistance. Qr and Sr are symmetric matrices
satisfying

Sr = −0.5(A⊺
rQr +QrAr) ≻ 0

Qr ≻ 0, QrBr = C⊺
r ,

(4)

where ≻ 0 denotes positive definiteness. Duan and Yu
(2013) showed that their guaranteed existence due to the
passivity of the system (Ar, Br, Cr).

Dissipation due to viscous, hydrodynamic and electrical
losses, and the power input by the incident wave are con-
sidered via the integral term in (3). Under the assumptions
that the electric field is the main source of damage for
the DEG and that damage only starts accumulating if
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the electric field exceeds a threshold value Eth (Dissado
and Fothergill (1992)), the damage cost function can be
formulated as

J2(x, u, tf) =

α

∫ tf

0

(
max{u(t)− E2

thhl
2, 0}

)
dt, (5)

with a normalisation factor α rendering J2 dimensionless.

Equations (1), (2), (3), and (5) define the MOOCP

Problem 1.

minimise
u

(J1, J2)

subject to dynamics (1),

0 ≤ u(t) ≤ (Ebdhl)
2 ∀ t ∈ [0, tf ] . (6)

that is solved inside the MPC framework. In the following,
the dependence on time t is omitted for brevity.

3. METHODS

3.1 Background on MPC

MPC arose from optimal control as an answer on how to
“close the loop” in model-based open-loop optimal control
(Rawlings et al. (2017)). In optimal control, a system’s
behaviour is predicted for a time called the prediction
horizon tf into the future, while optimising the inputs to
the system in such a way that a cost function is minimised.
The workflow of MPC consists in repeatedly measuring the
system’s state (or estimating it with an observer), solving
an OCP, and feeding the first portion of the calculated
inputs to the plant. Fig. 2 qualitatively shows the flap
angle, input history, and the predicted state and input
that will partially be applied to the system.

Past Future

Prediction Horizon

Past Flap Angle
Predicted Flap Angle
Past Control Input
Predicted Control Input

timets 2ts 3ts N∆

Fig. 2. The MPC working principle on the example of the
DEG-WEC. The solid line shows the state and input
history, while the dashed line displays the prediction
that will be applied to the system partially.

3.2 Discretisation and simplification of the OCP

In order to solve Problem 1, we employ direct methods
for optimal control, i.e. the OCP is transcribed into a
non-linear program which is then solved by appropriate

methods (see Gerdts (2011)). Using gradient-based meth-
ods, the discretised optimal control signal is computed.
The integral terms inside the cost functions have to be
discretised as well. We do so by adding the integrand to
the dynamics

Υ̇1 = Bhδ
2 + z⊺Srz +

u

R0
− dδ

Υ̇2 = max{u− E2
thh

2
l , 0},

with

Υ1(0) = Υ2(0) = 0.

The extended state reads ξ = [θ δ z⊺ Υ1 Υ2]
⊺
, with the

initial value ξ0 = [θ0 δ0 z0
⊺ 0 0]

⊺
.

For a time step denoted by ∆ and some final time tf =
N∆, we now introduce a time discretization {k∆}Nk=0 =
{0,∆, 2∆, . . . , N∆}. In the following, the discretised val-
ues corresponding to their continuous counterparts are
marked by square brackets, e.g. ξ[k] denotes the extended
state k time steps into the future. The current state of
the system is advanced by one step into the future using
the classical Runge-Kutta-Method of 4th order (RK4),
denoted by FRK4(ξ[k], u[k], u[k + 1], d[k], d[k + 1]). Con-
secutive values for the input and wave excitation are used
to model first-order hold (FOH) behaviour. The dynamics
can then be expressed with the equality constraints

ξ[k + 1] = FRK4(ξ[k], u[k], u[k + 1], d[k], d[k + 1])

∀k ∈ [0, N − 2]]

ξ[0] = ξ0.

The cost functions are then J̃1 = Υ1[N − 1] and J̃2 =
Υ2[N − 1], so that the MOOCP is

Problem 2.

minimise
u[1],...,u[N ]

w1J̃1 + w2J̃2

subject to ξ[k + 1] = FRK4(ξ[k], u[k], u[k + 1], . . .

d[k], d[k + 1])∀ k ∈ [0, N − 2],

0 ≤ u[k] ≤ (Ebdhl)
2, ∀ k ∈ [0, N − 1]

ξ[0] = ξ0
u[0] = u0. (7)

Within the MPC, Problem 7 is solved repeatedly on shifted
time intervals and updated initial states. As depicted in
Fig. 2, N∆ becomes the prediction horizon and, let us
assume, for the sampling time we have ts = r∆, r ∈
N>0. The resulting control signal is denoted by uMPC.
The values of Ψ are omitted in the formulation. Since
Ψ(0) is a constant in the FOH formulation, it does not
change the optimization problem. Regarding Ψ(tf ), since
Ih,Kh are orders of magnitude larger than C0, their terms
dominate the value of Ψ. The quadratic cost terms push
the solution to the equilibrium position θ = 0 at the end of
the prediction horizon, an effect unwanted in continuous
operation, so it is omitted from the energy cost function.

3.3 Generation of the wave excitation profiles

The stochastic wave is modelled as a superposition of a
number of nf sine waves. The amplitude of the different
harmonic components has a distribution which for example
can be described by the so-called Bretschneider spectrum.
The Bretschneider spectrum
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the electric field exceeds a threshold value Eth (Dissado
and Fothergill (1992)), the damage cost function can be
formulated as

J2(x, u, tf) =

α

∫ tf

0

(
max{u(t)− E2

thhl
2, 0}

)
dt, (5)

with a normalisation factor α rendering J2 dimensionless.

Equations (1), (2), (3), and (5) define the MOOCP

Problem 1.

minimise
u

(J1, J2)

subject to dynamics (1),

0 ≤ u(t) ≤ (Ebdhl)
2 ∀ t ∈ [0, tf ] . (6)

that is solved inside the MPC framework. In the following,
the dependence on time t is omitted for brevity.

3. METHODS

3.1 Background on MPC

MPC arose from optimal control as an answer on how to
“close the loop” in model-based open-loop optimal control
(Rawlings et al. (2017)). In optimal control, a system’s
behaviour is predicted for a time called the prediction
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the system in such a way that a cost function is minimised.
The workflow of MPC consists in repeatedly measuring the
system’s state (or estimating it with an observer), solving
an OCP, and feeding the first portion of the calculated
inputs to the plant. Fig. 2 qualitatively shows the flap
angle, input history, and the predicted state and input
that will partially be applied to the system.

Past Future

Prediction Horizon

Past Flap Angle
Predicted Flap Angle
Past Control Input
Predicted Control Input

timets 2ts 3ts N∆

Fig. 2. The MPC working principle on the example of the
DEG-WEC. The solid line shows the state and input
history, while the dashed line displays the prediction
that will be applied to the system partially.
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Υ̇1 = Bhδ
2 + z⊺Srz +

u

R0
− dδ

Υ̇2 = max{u− E2
thh

2
l , 0},

with

Υ1(0) = Υ2(0) = 0.

The extended state reads ξ = [θ δ z⊺ Υ1 Υ2]
⊺
, with the

initial value ξ0 = [θ0 δ0 z0
⊺ 0 0]

⊺
.
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to model first-order hold (FOH) behaviour. The dynamics
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ξ[k + 1] = FRK4(ξ[k], u[k], u[k + 1], d[k], d[k + 1])
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u[0] = u0. (7)

Within the MPC, Problem 7 is solved repeatedly on shifted
time intervals and updated initial states. As depicted in
Fig. 2, N∆ becomes the prediction horizon and, let us
assume, for the sampling time we have ts = r∆, r ∈
N>0. The resulting control signal is denoted by uMPC.
The values of Ψ are omitted in the formulation. Since
Ψ(0) is a constant in the FOH formulation, it does not
change the optimization problem. Regarding Ψ(tf ), since
Ih,Kh are orders of magnitude larger than C0, their terms
dominate the value of Ψ. The quadratic cost terms push
the solution to the equilibrium position θ = 0 at the end of
the prediction horizon, an effect unwanted in continuous
operation, so it is omitted from the energy cost function.

3.3 Generation of the wave excitation profiles

The stochastic wave is modelled as a superposition of a
number of nf sine waves. The amplitude of the different
harmonic components has a distribution which for example
can be described by the so-called Bretschneider spectrum.
The Bretschneider spectrum

SB(ω) = ABω
−5 exp

(
−BBω

−4
)

describes an average sea state when wave elevation profile
measurements are not available, where ω represents an
angular frequency. The wave excitation torque

d(t) =

nf∑
i=1

ΓF(ωi)Ai(ωi) sin (ωit+ ϕi(t)) .

can be calculated from the spectrum, where ΓF(ω) is
a frequency-dependent excitation coefficient (depending
on the hydrodynamics). The coefficients Ai represent the
amplitudes of the different harmonic components in the
wave profile, given by:

Ai =
√
2SB(ωi)∆ωi,

where ∆ωi are frequency increments, ϕi(t) are random
phase-shifts, and the wave frequencies ωi = ω0+i∆ω ∀ i ∈
[0, nf ] are linearly increasing. With that, let

ωf =

{
ωi : i = argmax

i
Ai, i ∈ [0, nf ]

}

be the dominant frequency of the wave. The parameters
AB and BB can be modified to yield a wave with the
desired overall significant wave height, ωf and frequency
profile. For this paper, no specific sea state is emulated.
Here, ϕi(t) are set to change slowly over time so as to
prevent the onset of any periodicity in the generated
excitation. For the purpose of exemplification, in this
paper spectral parameters AB and BB are simply chosen in
such a way as to keep the resulting trajectories of θ within
the model validity bounds, rather than with the aim of
representing location-specific sea states.

3.4 Adaptive weight selection

When applying MPC, we do not know exactly how the con-
trolled system will perform cost-wise. Partially responsible
for that is the change of what a set of weights means for
different sea states. Fig. 3 shows two Pareto fronts (relative
to two realisations of the same wave spectrum) for a
prediction horizon of 60 s for 15 evenly distributed weights
between 0.05 and 0.95. Negative energy corresponds to
extracted energy.
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Fig. 3. Pareto fronts relative to two different realisations
of a sea state (with same wave spectrum).

In the case of the WEC-DEG, when driving the system
with a fixed weighting, different sea states will result

in different damage accumulation over time. When the
accumulated damage surpasses a certain threshold, the
DEG breaks down and needs to be replaced. In a wave
farm with multiple DEGs, it might be desirable to render
the average expected lifetime of a certain device as close
as possible to that of the rest of the farm, in a way that
multiple units can be replaced together at once, hence
minimising the operational costs. A strategy to extend
the (average) expected lifetime of a unit up to a target
time tbd is by changing the weighting of the damage cost
function in a way that the accumulated damage cost at
time tbd does not exceed a fixed value Jd (corresponding
to a rupture threshold). Let us consider a fixed set W =
{(wi

1, w
i
2)}

nw
i=1 of nw weight combinations with increasing

values of wi
2 (the weight of damage cost J2), decreasing

values of wi
1, and an initial weight index iw ∈ [1, nw]. A

way of estimating if the damage goal is achievable with the
current weighting is by evaluating the MPC performance
over Np time steps into the past. The average rate of
damage accumulation Jps is estimated and the damage
at the break-down time is predicted by assuming that the
average damage accumulation trend continues as in the
past Np steps. If the predicted damage exceeds Jd, iw is
decreased by 1, effectively decreasing w1. Otherwise, if the
predicted damage falls below cdJ

d with cd ∈ [0, 1], iw is
increased by 1. This is done every Np steps (provided that
the DEG was actuated with non-zero input during that
time). We hereby show that this very simple heuristic is
effective in providing margins to extend the DEG lifetime,
motivating further research on more elaborate adaptation
algorithms.

DEG-WEC

d(t) J1, J2

ξ J2

MPC
weight

controlw1, w2

u

Fig. 4. Schematic of the weight controlled MPC. The
weight controller keeps a history of past damage
values, projects the estimated damage trend into the
future and selects a weighting to be used in the MPC
accordingly.

4. NUMERICAL RESULTS

We present numerical implementations of the proposed
MPC framework in MATLAB. The numerical data used
for the analysis are the same as in Hoffmann et al. (2022).
The optimisation problems were formulated and solved
using the CasADi package by Andersson et al. (2019)
and the IPOPT solver by Wächter and Biegler (2006).
The stochastic waves were generated using a superposition
of equally-spaced 50 harmonics with a base frequency of
0.1Hz with AB = 0.0032 and BB = 0.1054. The nominal
MPC case is assumed.
Examples of MATLAB implementations for the reference
DEG-WEC system are available in our Github reposi-
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tory, with examples for fixed-weight and weight-controlled
MPC 1 .

4.1 Accuracy of model-predictive control

Applying MPC will, in general, generate different control
trajectories every time the prediction horizon is shifted,
due to the new information available. Fig. 5 shows the
mean absolute error (MAE), expressed as the L2 norm
of the difference between the ground truth OCP solution
over a prediction horizon of 320 s and the control signal
obtained from MPC uMPC; uMPC was calculated using
different horizon lengths from 10 to 77 s. As expected, the
error decreases for longer prediction horizons.

In Fig. 6, we show the control inputs and states for
example solutions from different prediction horizons. The
ground truth optimal solution is approximated poorly for
a prediction horizon of 12 s (left) compared to an accurate
tracking for 60 s (right). In all cases, the control has a
bang-bang-like behaviour, with voltage being applied on
the DEG only during certain time intervals. Short-horizon
MPC solutions differ from the ground truth solution in
terms of the turn-on and turn-off timings, which are
correctly estimated when longer prediction horizons are
used. These trends are consistent with heuristic controllers
proposed by Moretti et al. (2014), in which a (piecewise

constant) input is applied when θθ̇ ≥ 0. Compared to such
a heuristic, the MPC leads to complex (non-piecewise-
constant) voltage input waveforms. The similarity of the
60 s-MPC solution to the ground truth is also reflected by
the extracted energy, which differs from the ground truth
value by only 0.5 %. In the following analyses, we will refer
to an MPC horizon of 60 s.
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Fig. 5. Deviation of uMPC from ground truth for different
prediction horizon lengths. We take the mean error
of simulations over a time window of 320 s. Ground
truth is an OCP solution over the whole horizon.

4.2 Weight selection algorithm

In this section, we evaluate the performance of the simple
heuristic weight selection algorithm presented in section
3.4 by simulating the system’s behaviour for different sea
states. We used a set of nw = 15 predetermined weights
wi

2, evenly distributed between 0.05 and 0.95, and chose
wi

1 such that wi
1 + wi

2 = 1 ∀i ∈ [1, nw].

1 https://github.com/MKHoffmann/IFAC_WC_2022_
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Fig. 6. Comparison of the MPC solutions for prediction
horizons of 12 s and 60 s with the ground truth OCP
solution.
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Fig. 7. Evaluation of the MPC with weight controller for
an exemplary sea state and two target damage values.
For clarity, only every 100th value is displayed. Top:
Accumulated damage over time. Bottom: The selected
weight index iw over time. A lower index corresponds
to a higher weighting for the damage cost.

We compare the performance of the MPC with weight
controller for two target damage values Jd = {0.3, 0.5}.
These threshold values (together with target time tbd =
3000 s) are used here for the sole purpose of exemplification
and do not reflect real failure thresholds. The performance
of a weighting is evaluated every 25 s. An increase in the
damage weighting is allowed after each evaluation, whereas
a decrease is every two evaluations.

Fig. 7 shows the performance of the heuristic weight con-
trol by displaying the accumulated damage in the top and
the selected weighting index in the bottom plot. Certain
sea states might be characterised by phases during which
the excitation d has a small amplitude. In these cases,
selecting high values for w1 might lead to steep damage
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tory, with examples for fixed-weight and weight-controlled
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4.1 Accuracy of model-predictive control

Applying MPC will, in general, generate different control
trajectories every time the prediction horizon is shifted,
due to the new information available. Fig. 5 shows the
mean absolute error (MAE), expressed as the L2 norm
of the difference between the ground truth OCP solution
over a prediction horizon of 320 s and the control signal
obtained from MPC uMPC; uMPC was calculated using
different horizon lengths from 10 to 77 s. As expected, the
error decreases for longer prediction horizons.

In Fig. 6, we show the control inputs and states for
example solutions from different prediction horizons. The
ground truth optimal solution is approximated poorly for
a prediction horizon of 12 s (left) compared to an accurate
tracking for 60 s (right). In all cases, the control has a
bang-bang-like behaviour, with voltage being applied on
the DEG only during certain time intervals. Short-horizon
MPC solutions differ from the ground truth solution in
terms of the turn-on and turn-off timings, which are
correctly estimated when longer prediction horizons are
used. These trends are consistent with heuristic controllers
proposed by Moretti et al. (2014), in which a (piecewise

constant) input is applied when θθ̇ ≥ 0. Compared to such
a heuristic, the MPC leads to complex (non-piecewise-
constant) voltage input waveforms. The similarity of the
60 s-MPC solution to the ground truth is also reflected by
the extracted energy, which differs from the ground truth
value by only 0.5 %. In the following analyses, we will refer
to an MPC horizon of 60 s.
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3.4 by simulating the system’s behaviour for different sea
states. We used a set of nw = 15 predetermined weights
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wi

1 such that wi
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We compare the performance of the MPC with weight
controller for two target damage values Jd = {0.3, 0.5}.
These threshold values (together with target time tbd =
3000 s) are used here for the sole purpose of exemplification
and do not reflect real failure thresholds. The performance
of a weighting is evaluated every 25 s. An increase in the
damage weighting is allowed after each evaluation, whereas
a decrease is every two evaluations.

Fig. 7 shows the performance of the heuristic weight con-
trol by displaying the accumulated damage in the top and
the selected weighting index in the bottom plot. Certain
sea states might be characterised by phases during which
the excitation d has a small amplitude. In these cases,
selecting high values for w1 might lead to steep damage
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Fig. 8. The accumulated costs for the fixed weight MPC
with the valid weights for the weight-controller and
the extreme point approximations for the left case
from Fig. 7. The costs resulting from the weight
controller with a threshold of 0.5 dominate all of the
fixed weights costs that follow the damage threshold.

increases when the excitation amplitude suddenly rises.
This is shown in Fig. 7, where a sudden increase in damage
is recorded at t = 1800. At this point, the heuristic con-
troller continually decreases iw, which allows the damage
accumulation to stay below the target threshold.
Remarkably, the difference in extracted energy with the
two threshold values for Jd is very small, 0.32 %. To moti-
vate this, we compare the weight-controlled MPC with the
fixed-weight MPC. In addition to the 15 weights used in
the weight-controller, we also use w2 = 0.99 and w2 = 0.01
to approximate the extreme points that minimise one of
the cost functions.

Fig. 8 shows that the difference in extractable energy
for fixed weights is less than 6%. The weight-controlled
MPC yields more harvested energy than all fixed-weight
MPCs that accumulate damage J2 ≤ Jd over a time-frame
of 3000 s. This is possible thanks to the fact that fixed-
weight MPC solutions are not Pareto-optimal and they
show deviations from the ground truth OCP solution as
shown in section 4.1.

5. CONCLUSION

This work analyses the performance of model-predictive
control (MPC) for dielectric elastomer generator-based
wave energy converters under stochastic waves excitation.
Compared to previous work, an MPC approach is consid-
ered for control, as it allows accounting for wave-by-wave
changes in the excitation, while still accounting for ener-
getic and damage cost functions. The MPC considerably
deviates from ground truth solutions obtained by solving
an optimum control problem (OCP) over an extremely
long time frame, unless the prediction horizon covers a
sufficiently large number of wave periods. As the sea state
changes over time, the shape of the OCP Pareto front
changes. As this makes achieving long-term objectives dif-
ficult, we propose a heuristic controller for selecting weight
combinations that allow shifting the expected failure of the
generator towards a target time in the future.
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