
Doctoral Programme in
Information Engineering and Computer Science

SMT-based Verification of
Parameterized Systems

Gianluca Redondi

Advisor
Alessandro Cimatti
Fondazione Bruno Kessler

Co-Advisor
Alberto Griggio
Fondazione Bruno Kessler

April 2024

Abstract

SMT-based verification analyzes reachability for transition systems represented by SMT
formulae. Depending on the theories and the kinds of systems considered, various
approaches have been proposed. Together, they form the Verification Modulo Theory
(VMT) framework.

This thesis delves into SMT-based verification of parameterized systems, emphasiz-
ing the challenges and novel solutions in verifying systems with an unbounded number
of components. In this thesis, we first introduce a general framework to model such
systems. Then, we introduce two novel algorithms that leverage the strengths of SMT
for the verification of parameterized systems, focusing on the automation and reduction
of computational complexity inherent in such tasks.

These algorithms are designed to improve upon existing verification methods by of-
fering enhanced scalability and automation, making them particularly suited for the
analysis of distributed systems, network protocols, and concurrent programming models
where traditional approaches may fail.

Moreover, we introduce an algorithm for compositional verification that advances
the capability to modularly verify complex systems by decomposing the verification task
into smaller, more manageable sub-tasks.

Additionally, we discuss the potential and ongoing application of these algorithms
in an industrial project focusing on the design of interlocking logic. This particular
application demonstrates the practical utility of our algorithms in a real-world setting,
highlighting their effectiveness in improving the safety and reliability of critical infras-
tructure.

The theoretical advancements proposed in this thesis are complemented by a rig-
orous experimental evaluation, demonstrating the applicability and effectiveness of our
methods across a range of verification scenarios. Our work is implemented within an ex-
tended framework of the MathSAT SMT solver, facilitating its integration into existing
verification workflows.

Overall, this research contributes to the theoretical underpinnings of Verification
Modulo Theories (VMT) and offers tools and methodologies for the verification com-
munity, enhancing the capability to verify complex parameterized systems with greater
efficiency and reliability.

i

Keywords
Parameterized Verification, SMT, Inductive Invariant, Quantifiers

ii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3

I Background 5

2 Background notions 7
2.1 Satisfiability Modulo Theory . 7

2.1.1 Theories of interest . 8
2.1.2 Interpolants . 10
2.1.3 Handling Quantifiers in SMT Solving 11

2.2 Verification Modulo Theory . 13
2.2.1 Symbolic model checking . 14
2.2.2 Abstraction and Refinement . 17
2.2.3 Asynchronous Composition of Systems 21

2.3 Problem statement . 24
2.3.1 Array-based transition systems 24
2.3.2 Ground instances . 27

II Algorithms 31

3 Algorithms for the Invariant Problem of Parameterized Systems 33
3.1 Introduction . 33
3.2 UPDR with implicit abstraction . 35

3.2.1 Overview of UPDR . 35
3.2.2 Implicit Indexed Predicate Abstraction 35
3.2.3 Algorithm description and pseudocode 37
3.2.4 Concretizing counterexamples and refinement 40
3.2.5 Properties . 42
3.2.6 Proof of main results . 43

3.3 Lambda: Learning lemmas from ground instances 46
3.3.1 High level algorithm . 46
3.3.2 Generalization . 47
3.3.3 Candidate Checking via Parameter Abstraction 49

iii

Contents

3.3.4 Candidate Checking via SMT solving 51
3.3.5 Properties . 54
3.3.6 Proofs of main results . 54

3.4 Related Work . 58

4 Compositional Verification of Parameterized Systems 61
4.1 An algorithm for the Verification of Asynchronous Composition of Sym-

bolic Transition Systems . 62
4.2 Verification of concurrent parameterized systems 64

4.2.1 Refinement . 67
4.3 Related Work on compositional verification 68

III Case Studies and Experimental Evaluation 71

5 Application of parameterized model checking to the verification of
interlocking logics 73
5.1 Current framework for developing interlocking logics 74
5.2 Dafny Encoding . 76
5.3 Invariant Inference with a Parameterized Model Checker 84
5.4 Summary and Ongoing Work . 85

6 Experimental Evaluation 89
6.1 Implementation . 89
6.2 Application to parameterized protocols 90

6.2.1 Benchmarks . 90
6.2.2 Comparison of Updria and Lambda 91
6.2.3 Comparison with other tools . 93

6.3 Application to array systems . 96
6.4 Application to asynchronous composition of systems 99

7 Conclusions and Future Work 101
7.1 Conclusions . 101
7.2 Future Work . 102

Bibliography 103

iv

Chapter 1

Introduction

In today’s society, where computer and software systems are integral to safety-critical
tasks in domains such as transportation, healthcare, and avionics, the reliability of
these systems is not just preferable but essential. Failures in such systems can lead
to severe consequences, including loss of life and substantial economic repercussions.
Given the widespread impact of these technologies, even non-safety-critical systems can
have profound global effects if compromised. Hence, it becomes crucial to integrate
various methods early in the development lifecycle to minimize potential failures.

Among these methods, testing is the most commonly used. Testing involves running
a system under specific conditions and observing its outputs to detect any anomalies or
failures. However, while testing is invaluable for identifying existing defects, it does not
guarantee the absence of errors. This limitation is particularly critical in safety-sensitive
systems where even a minor undetected flaw could lead to catastrophic outcomes. In
such scenarios, stakeholders require not just evidence of system robustness but formal
assurances that errors will not occur. This demand for higher reliability is where formal
verification methods, particularly automated ones, become indispensable.

Model checking is a formal verification technique that involves the exhaustive ex-
ploration of the possible states of a system to ensure it behaves correctly according to
its specifications. Historically, explicit-state exploration of systems has evolved from
Binary Decision Diagrams-based approaches to other symbolic approaches based on the
Boolean satisfiability problem (SAT). Model checking algorithms can automatically ver-
ify whether a formal model of a system adheres to specified properties, often represented
in logical formulas. By exploring all potential states, model checking can conclusively
identify violations of specifications or affirm their correctness, thereby providing insights
into system reliability.

Model checking has been instrumental in various high-stakes applications, such as
verifying the correctness of aerospace software where a single error could result in loss
of life. It has also proven effective in the automotive industry, where it is used to ensure
that control software for vehicles adheres to critical safety standards.

However, the binary nature of SAT limited its applications in verifying systems with
complex data types and conditions. The advent of Satisfiability Modulo Theories (SMT)
marked a crucial evolution, extending verification capabilities to encompass theories

1

1.1. Contributions

like arithmetic, arrays, and bit-vectors. This development was not just incremental
but represented a paradigm shift, offering a more expressive framework suitable for
complex systems. Over the past decade, significant progress in SMT solvers’ handling
of quantified expressions has made SMT-based verification a frontrunner, particularly
for parameterized systems with inherently unbounded characteristics due to variable
components.

Parameterized systems are models that characterize a class of systems with a poten-
tially infinite number of configurations, typically defined by the number of components
or processes they encompass. These systems cannot be exhaustively explored using tra-
ditional finite-state methods due to their scalability issues, as each component might
interact with others in a myriad of ways depending on system size and configuration.

An important example for parameterized systems are railway interlocking systems.
These are safety-critical applications where the configuration can vary based on the
number of tracks and junctions involved. Each configuration requires precise control to
ensure safe and efficient train movement, which is ideal for SMT-based verification due
to the complex interdependencies and the critical need for error-proof operation.

Traditional verification methods, while effective for finite-state or quantifier-free sys-
tems, often falter with the complexity presented by parameterized systems. This thesis,
therefore, focuses on developing SMT-based verification methodologies that enhance
scalability, efficiency, and automation. By introducing novel algorithms and adapting
SMT approaches to tackle the unique challenges of parameterized systems, this work
aims to deliver robust solutions that ensure the safety and reliability of critical software
and hardware systems, thereby safeguarding societal welfare.

1.1 Contributions

The contributions of this thesis are manifold:

1. Theoretical Exploration: A formalism for modeling parameterized systems
within an SMT framework is described, offering a foundation for subsequent al-
gorithmic development.

2. Algorithm Development: The introduction of novel SMT-based verification al-
gorithms designed to automatically verify properties of systems. We first present
two algorithms for proving (or disproving) safety properties of parameterized sys-
tems:

• Updria: An algorithm that extends the UPDR [81] algorithm with predi-
cate abstraction to handle a general SMT theory representing the data of the
parameterized system. This approach leverages several theoretical proper-
ties of the original algorithm but necessitates frequent (and costly) quantified
queries to an external solver.

• Lambda: A procedure that first constrains the cardinality of the parame-
ter, allowing for quantifier-free system verification via existing methods, and

2

Chapter 1. Introduction

then attempts to generalize the resulting inductive invariant to a quantified
candidate for the original system. This algorithm explores two avenues for
validating the generalized invariant: an extension of Parameter Abstraction
[88] for constructing a quantifier-free system and property verification, and a
resource-bounded approach to quantified SMT reasoning, aiming to mitigate
the risk of divergence in validity checks.

Additionally, a third algorithm applicable to asynchronous systems is proposed,
further extending the versatility of our approach.

3. Application: The description of ongoing project applying the latter algorithms
to an industrial setting related to the design of interlocking logics for railways is
detailed, showcasing the practical applicability of our methods.

4. Experimental Validation: An exhaustive experimental assessment underscores
the effectiveness and practical utility of the proposed algorithms. This includes
case studies and a comparative analysis with related techniques.

1.2 Thesis Structure

This thesis is organized as follows:

• Chapter 2 lays the groundwork by providing the necessary background on Sat-
isfiability Modulo Theories (SMT) and Verification Modulo Theories (VMT). It
introduces the formalism used for describing parameterized systems and formally
defines the problem addressed in the thesis.

• Chapter 3 details the novel SMT-based verification algorithms for parameterized
systems developed in this study. It covers their theoretical foundations, design
rationale, and the specific verification challenges they address.

• Chapter 4 explores compositional verification strategies with a focus on an al-
gorithm tailored for asynchronously composed symbolic transition systems. Al-
though the algorithm is discussed in a general context, emphasis is placed on its
application to parameterized systems.

• Chapter 5 describes the application of the algorithms introduced in the previ-
ous chapters to a project concerning the design of railway interlocking logic.
This chapter illustrates the practical implications and benefits of the developed
methodologies.

• Chapter 6 presents an exhaustive experimental evaluation of the algorithms, em-
ploying diverse benchmarks to assess their efficacy, efficiency, and practical utility.
The evaluation includes a comparative analysis with existing techniques to un-
derscore the novel contributions of this research.

3

1.2. Thesis Structure

• Chapter 7 concludes the thesis, summarizing the contributions and considering
the broader implications of this research. It also outlines potential future research
directions, indicating areas for further investigation or application.

4

Part I

Background

5

Chapter 2

Background notions

2.1 Satisfiability Modulo Theory

Satisfiability Modulo Theories (SMT) addresses the problem of determining the satisfi-
ability of first-order formulas with respect to various underlying theories or their com-
binations. At its core, SMT extends the concept of propositional satisfiability (SAT)
by incorporating the ability to handle rich theories like linear and nonlinear arithmetic,
bit-vectors, arrays, and uninterpreted functions, among others. This inclusion allows
for a more expressive framework, enabling the analysis and verification of more complex
and detailed system properties.

In this section, we introduce basic definitions and notation that will be used through-
out all chapters. For a more detailed introduction to SAT and SMT, see [12, 87, 126].

In this thesis, we work in a multi-sorted setting: we outline here the main differences
with the standard case. A sorted signature Σ is given by a set of sorts and a set of
sorted functions, such that the domain and range sorts of every function in Σ is also
in Σ. A multi-sorted structure is a map that takes every sort symbol to a set called
its universe (disjoint from other universes) and every function symbol to a function
between the universes of the corresponding sorts. Predicates are seen as functions to
the sort bool, while constants are 0-ary functions.

A term is a variable or an n-ary function symbol applied to n arguments of the
appropriate sort. An atom is an n-ary predicate applied to n arguments of the appro-
priate sort, and a literal is an atom or the negation of an atom. A disjunction of literals
is called a clause. A conjunction of clauses is a formula in conjunctive normal form
(CNF). A formula is an atom, the negation of a formula, the conjunction or disjunction
of two formulas, or the application of a universal quantifier to a formula; the other
logical connectives can be expressed in terms of the other logical symbols.

A term, atom, or formula is ground if it does not contain variables. A formula is
closed if all variables are bound by a quantifier. Variables that are not bound by a
quantifier are called free. A substitution is a (partial) mapping from variables to terms.
A formula that is obtained by substituting the variables in the body of a universally
quantified formula with ground terms is called an instance of the quantified formula.
If F denotes a set of formulae, with a slight abuse of notation, we may use again the

7

2.1. Satisfiability Modulo Theory

symbol F to denote instead the formula given by the conjunction of all the elements
in F . If a formula has free variables in it, the universal (resp. existential) closure of
the formula is the formula obtained by application of a universal (resp. existential)
quantification to all the free variables.

In this thesis, a theory T is a pair T = (Σ, C), where Σ is a first-order signature and
C is a class of structures over Σ (called the models of the theory). Given a structure
M over Σ, the restriction of M over a sorted vocabulary Σ′ ⊂ Σ is given by the
universe restriction of M to Σ′. Given two theories T = (Σ, C) and T ′ = (Σ′, C ′), the
combination of the two theories is a theory whose signature is Σ ∪ Σ′, and a model for
it is a structure such that its restriction onto Σ is in C and its restriction onto Σ′ is in
C ′. A structure is finite iff all its universes are finite sets.

If Σ is a signature, and X is a set of symbols not contained in Σ, we write ϕ(X)
to denote a formula in the new signature expanded with such symbols (denoted with
Σ(X)). Symbols in Σ are usually referred to as interpreted since their values are fixed
by the models in C. Thus, with ϕ(X) we mean that the only non-interpreted symbols
that occur in ϕ are in X. If ϕ is a formula, t is a term and x is a symbol that occurs in
ϕ, we write ϕ[x/t] for the substitution of every occurrence of x with t. If T and X are
vectors of the same length, we write ϕ[X/T] for the simultaneous substitution of each
xi with the corresponding term ti.

A ground formula ϕ is satisfiable with respect to T , or T -satisfiable, if there exists
a T -model for it, i.e., a structure M in the class C, such that M |= ϕ. A formula is
T -valid if it holds in each model of the theory. Note that a formula is T -valid if and
only if its negation is not T -satisfiable.

Given a structure M of the theory, a valuation s for a formula ϕ(X) maps the
function symbols in the formula to functions and relations over the universes of M
specified by the symbols’ sorts. A valuation under which a formula evaluates to true is
called a model for ϕ(X), written s,M |= ϕ(X). We say that a formula is satisfiable if
there exists a structure M and a valuation s such that s,M |= ϕ(X). Otherwise, the
formula is unsatisfiable.

The satisfiability modulo theories (SMT) problem refers to the question of whether
a given formula is T -satisfiable. A decision procedure for (a fragment of) a theory T is
an algorithm that determines whether a given formula in T is satisfiable. If a decision
procedure exists, (the fragment of) the theory is decidable.

2.1.1 Theories of interest

We now introduce the main theories that we will use in this thesis.
The Theory of Equality and Uninterpreted Functions (EUF), represented as TEUF,

serves as a foundational theory in the field of verification. Its signature contains the
equality symbol and a set of function symbols, while the models are all possible sets of
functions. The primary utility of TEUF lies in its capacity to abstract the functionalities
of complex functions, facilitating a more manageable approach to verification tasks.
Moreover, other important theories are reduced to EUF. Although the full theory is
undecidable, since it subsumes first-order logic, its quantifier-free fragment is decidable.

8

Chapter 2. Background notions

The standard method to address the decidability of the quantifier-free EUF involves
the computation of congruence closures. Additional details on satisfiability procedure
and complexity can be found in [105].

Another important theory, originating from McCarthy’s seminal work, [97], is the
theory of arrays often used in modeling and reasoning about complex data structures
such as arrays in programming languages.

Denoted as TA, this theory has uninterpreted sorts for indices (τI) and elements
(τE). The signature ΣA of the theory contains, alongside the index and element sort,
and array sort denoted by (τI ⇒ τE). Moreover, two function symbols are defined. The
read function, denoted as rd : (τI ⇒ τE)× τI → τE, is used for accessing an element at
a given index within an array; the write function, wr : (τI ⇒ τE)×τI ×τE → (τI ⇒ τE),
defines the result of updating an array at a specific index with a new element. The
class of models for the theory is given by interpreting the array sorts as functions from a
universe of the index theory to a universe of the element theory. Moreover, the following
axioms should hold:

∀a : (τI ⇒ τE), i : τI , v : τE. rd(wr(a, i, v), i) = v,

∀a : (τI ⇒ τE), i : τI , j : τI , v : τE. i ̸= j → rd(wr(a, i, v), j) = rd(a, j).

Additionally, the signature of the theory can have the const : τE ⇒ (τI ⇒ τE)
function symbol, enabling the definition of constant arrays where every index maps to
the same element. This is axiomatized as follows:

∀i : τI , v : τE. rd(const(v), i) = v.

While the full theory, inclusive of quantifiers, is undecidable, its quantifier-free frag-
ment and certain quantified fragments, such as the array property fragment, main-
tain decidability, offering practical avenues for automated reasoning in this domain
[80, 122, 22].

Another important theory in the realm of formal verification is the Theory of Linear
Integer Arithmetic (TLIA) for integer domains, and similarly, the Theory of Linear Real
Arithmetic (TLRA) for real numbers. These theories deal with variables that can assume
integer or real values, respectively, and are constrained by linear equations and inequal-
ities. The signature of TLIA and TLRA includes the usual arithmetic operators: addition
(+), subtraction (−), and multiplication by a constant, alongside relational operators
(=, ̸=, <,≤, >,≥). The class of models of those theories is a singleton containing only
the standard set of integers or real numbers, with the obvious interpretation of the
symbols.

Linear arithmetic is fundamental in verifying properties that involve numerical cal-
culations, constraints, and optimizations. For instance, TLIA is essential in verifying
array bounds, loop counters, and arithmetic properties in algorithms, whereas TLRA is
often applied in the verification of hybrid systems, involving continuous changes.

The decidability of both TLIA and TLRA in their quantifier-free fragments provides a
solid foundation for their application in SMT solving. Techniques such as the Simplex
algorithm are employed for TLRA, while extensions or variations are used for TLIA,

9

2.1. Satisfiability Modulo Theory

ensuring efficient satisfiability checks. References detailing these procedures include
[15, 2, 20].

In practical verification tasks, it is often necessary to reason about systems that
utilize multiple theories, necessitating a combined approach. The Nelson-Oppen frame-
work [104, 17] provides a methodology for combining decision procedures of different
theories, assuming they are stably infinite. If this does not hold, other approaches for
theory combination are possible [16, 28]. An example of a combined theory is the The-
ory of Arrays with Integer Indices and Real Elements, which allows for reasoning about
arrays indexed by integers with real-numbered elements, showcasing the versatility of
combined theories in modeling and verifying diverse systems.

The SMT-LIB standard [9] describes all standard and combined theories in the
context of SMT.

2.1.2 Interpolants

Craig interpolants are a tool from mathematical logic, with significant implications for
SMT and model checking. An interpolant can be seen as a logical bridge, showing
shared logical structure between two contradictory formulae, aiding in isolating and
understanding inconsistencies within the two.

Definition 1. Given a pair of formulae (ϕ, ψ), with ϕ ∧ ψ is unsatisfiable, a Craig
interpolant for (ϕ, ψ) is a formula ι satisfying:

(i) ϕ |= ι;

(ii) ι ∧ ψ is unsatisfiable;

(iii) the only uninterpreted symbols occurring in ι occurs both ϕ and ψ.

The concept extends also to sequences of formulae as follows:

Definition 2. For an ordered sequence of formulae {ϕ0, . . . , ϕn}, such that their con-
junction in unsatisfiable, an interpolant sequence {ι1, . . . , ιn} is a sequence of formulae
such that:

(i)
∧

0≤k<i ϕk |= ιi;

(ii)
∧

i≤k≤n ϕk ∧ ιi is unsatisfiable;

(iii) ιi ∧ ϕi+1 |= ιi+1 for all 1 ≤ i < n;

(iv) all the uninterpreted symbols occurring in ιi occur in both
∧

0≤k<i ϕk and
∧

i≤k≤n ϕk.

The computation of interpolants and sequence interpolants has been effectively
streamlined across various theories, playing a pivotal role in decomposing and ana-
lyzing complex logical structures and system behaviors, with notable techniques and
implementations documented, for instance, in [38, 98, 103].

10

Chapter 2. Background notions

Although Craig interpolants always exist in first-order logic, their applicability is
not uniform across all logical theories. Specifically, the existence and computation of
quantifier-free interpolants pose significant challenges in certain contexts. The ability
to generate such interpolants depends on the specific properties and structure of the
theory under consideration. For instance, while theories like Linear Real Arithmetic
and EUF support the construction of quantifier-free interpolants, more complex theo-
ries involving non-linear arithmetic or specific data structures may not guarantee this
property [64]. This limitation can significantly impact the effectiveness of interpolation-
based techniques in certain verification tasks, particularly where the preservation of a
quantifier-free context is crucial for subsequent analysis or processing[33, 24].

The computation of interpolants becomes notably more complex when the involved
theories or formulae include quantifiers. The presence of quantifiers introduces addi-
tional logical layers that must be accounted for, complicating the interpolation process.
Although there are methods for generating interpolants in the presence of quantifiers,
such as using quantifier elimination techniques or specialized decision procedures, these
approaches often come with a high computational cost and may not always be feasible
or efficient in practice [30, 101].

2.1.3 Handling Quantifiers in SMT Solving

Quantified formulas pose significant challenges in Satisfiability Modulo Theories (SMT)
solving due to their inherent complexity and the infinite nature of their domains.
A predominant method for managing quantified formulas in SMT solvers is through
instantiation-based approaches. First, each quantified formula is transformed into an
equisatisfiable one, that only contains universal quantifiers, thanks to the process of
Skolemization [106]. Then, these approaches involve generating instances of quanti-
fied formulas by substituting the universally quantified variables with concrete terms,
aiming to reduce the problem to a quantifier-free one that is more tractable for SMT
solvers. If the SMT solver is capable of proving that an instance of a quantified formula
is unsatisfiable, then also the original formula must be.

The instantiation-based method primarily relies on selectively generating instances
of the quantified formulas that are relevant to the current solving context. This rele-
vance is determined through a combination of heuristic and systematic strategies, such
as E-matching [116, 49], which identifies potential instantiations by matching patterns
in the quantified formula with terms present in the current formula being solved. E-
matching plays a critical role in identifying effective instances by ensuring that only
those terms that could potentially lead to a conflict or aid in further propagation are
considered for instantiation. This selective approach helps in mitigating the combina-
torial explosion of possible instances, thereby enhancing the efficiency and scalability
of the solver. However, other instantiation-based approaches are possible [62, 117].

In summary, the instantiation-based approach to handling quantifiers in SMT solv-
ing represents the main tactic toward addressing the challenges posed by quantified
formulas. Through strategic instance generation and integration with existing solving
frameworks, SMT solvers can achieve greater efficiency and effectiveness in proving

11

2.1. Satisfiability Modulo Theory

unsatisfiability of quantified formulae.
The dual method of finite model finding in SMT solving is instead a technique

aimed at verifying the satisfiability of quantified formulas through the construction of
explicit models. Traditionally tackled by MACE-style model finding [41], which con-
verts first-order logic into propositional logic for resolution, recent advancements have
been directed towards enhancing efficiency, scalability, and tight integration with SMT
solvers. These advancements include the introduction of term definitions and incremen-
tal SAT solving, which simplify clauses by introducing fresh constants for deep ground
terms and optimize the search process through the reuse of search information across
consecutive model sizes. Furthermore, static symmetry reduction, applied by adding
extra constraints to the SAT problem, curtails the search space by circumventing iso-
morphic models. Sort inference, which automatically deduces sort information for un-
sorted problems, enables more detailed symmetry reduction and potentially diminishes
the complexity of the model search problem. Moreover, the integration of solvers for
sort cardinality constraints, coupled with the application of quantifier instantiation over
finite domains, circumvents the need for the explicit introduction of domain constants,
thereby facilitating a more streamlined handling of quantified formulas [117, 118].

12

Chapter 2. Background notions

2.2 Verification Modulo Theory

Symbolic model checking offers a significant advancement over traditional explicit-state
model checking by symbolically representing and manipulating state spaces, thereby
enabling the analysis of systems that are impractical to verify explicitly.

By leveraging SMT techniques, symbolic model checking continues to evolve, offering
enhanced scalability, precision, and the ability to handle an ever-widening scope of
verification challenges. The Verification Modulo Theories [32, 39] framework describes
this synergy.

In the following, we consider a fixed theory T = (Σ, C). For a set of variables X, the
notation X ′ represents {x′|x ∈ X}, indicating successor state variables, and X i denotes
{xi|x ∈ X} for i ∈ N, signifying states at different time steps. When we have a formula
F (X), F ′ and F i are the results of the substitution of the variables X replaced by those
in X ′ and X i, respectively.

Definition 3. A (symbolic) transition system C is a triple C = (X, I(X), T (X,X ′))
where:

• X are a set of state variables;

• I(X) is the initial formula;

• T (X,X ′) is the transition formula.

Given a model M for T , a state is a valuation s of the state variables X in the
universe of M. A state is initial iff it is a model of I(X), i.e. M, s |= I(X). A couple
of states (M, s), (M, s′) denote a transition iff M, s, s′ |= T (X,X ′), also denoted as
T (s, s′). When clear from the context, we may omit the model M from the notation,
and consider it fixed. A variable x is a frozen variable iff its value is fixed during every
evolution of the system, i.e. if the constraint x′ = x is implied by T . A path is a
sequence of states s0, s1, . . . such that s0 is initial and T (si, s′i+1) for all i. If π is a path,
we denote with π[j] the j-th element of π. A state s is reachable iff there exists a path
π such that π[i] = s for some i.

A formula ϕ(X) is an invariant of the transition system C = (X, I(X), T (X,X ′))
iff it holds in all the reachable states. Following the standard model checking notation,
we denote this with C |= ϕ(X).1

A formula ϕ(X) is an inductive invariant for C iff I(X) |= ϕ(X) and ϕ(X) ∧
T (X,X ′) |= ϕ(X ′). Given a formula ψ(X), we say that a formula ϕ is an inductive
invariant for ψ and C if ϕ is an inductive invariant and ϕ |= ψ.

It is easy to see that every inductive invariant for a transition system is also an
invariant for it, whereas the vice-versa is not true. Moreover, checking that a formula
is an inductive invariant for a system can be reduced to the problem of T -satisfiability.

1Note that we use the symbol |= with three different denotations: if ϕ, ψ are formulae, ϕ |= ψ
denotes that ψ is a logical consequence of ϕ; if µ is an interpretation, and ψ is a formula, µ |= ψ
denotes that µ is a model of ψ; if C is a transition system, C |= ψ denotes that ψ is an invariant of
C.The different meanings will be clear from the context.

13

2.2. Verification Modulo Theory

However, only trivial invariants are inductive themselves, and many symbolic algorithms
were developed to synthesize inductive invariants for symbolic transition systems and
generic formulae.

2.2.1 Symbolic model checking

In this section, we summarize the main basic techniques in the context of checking that
a formula is an invariant for a symbolic transition system.

Bounded Model Checking

Bounded Model Checking (BMC) is a verification technique pioneered in [10] for finite-
state systems, with subsequent extensions to infinite-state systems leveraging SMT
solvers. BMC operates by translating the problem of finding violations of a property
over a system into the problem of checking the satisfiability of a specific formula up to
a certain depth.

The core of BMC for a symbolic transition system C, involves checking whether a
property ϕ can be violated within k steps. The BMC formula for a given bound k is
constructed as follows:

BMC(C, ϕ, k) = I(X0) ∧

(
k−1∧
i=0

T (Xi, Xi+1)

)
∧ ¬ϕ(Xk) (2.1)

The formula is satisfiable if and only if there exists an initial state s0 that satisfies
I, and there exists a sequence of states s1, . . . , sk following the transition relation T ,
leading to a state sk where the property ϕ is violated.

BMC’s approach to incrementally increasing the bound k allows for an effective
exploration of the system’s state space, with the potential to detect errors at minimal
depths. For infinite-state systems, the transition formula T and property ϕ are expressed
using theories compatible with SMT solvers, enabling the handling of complex data
types and operations. BMC techniques can be adapted also for searching for lasso-
shaped falsification of LTL properties [11].

Despite its computational efficiency for early error detection, the effectiveness of
BMC is contingent upon the power of the underlying SAT or SMT solver. The tech-
nique, however, does not guarantee in general the absence of errors beyond the explored
bound k, necessitating complementary verification methods for complete coverage [43].
The diameter [43] of a system is a bound k that represents the shortest path length,
beyond which extending the bound does not yield additional counterexamples to the
property being verified. Diameters do not exist in general for infinite-state systems,
and even for finite-state ones, their computation is very expensive.

K-induction

K-induction is an extension of the classical mathematical induction principle, tailored
for the verification of properties in both finite and infinite-state systems. Used together

14

Chapter 2. Background notions

with, Bounded Model Checking (BMC), K-induction aims to prove properties for all
possible execution paths. The technique consists of two main steps: the base case and
the inductive step.

The base case of K-induction is a call to BMC(C, ϕ, k) to check that a property ϕ
holds up to depth k. Then, the inductive step assumes that the property ϕ holds for
any sequence of k states and proves that it continues to hold for the (k + 1)-th state.
This is represented by:

Inductive(C, ϕ, k) =

(
k∧

i=0

ϕ(Xi) ∧ T (Xk, Xk+1)

)
∧ ¬ϕ(Xk+1) (2.2)

If the formula is unsatisfiable, then the formula ϕ is an invariant of the system: assuming
that ϕ holds for a sequence of k + 1 consecutive states, if no model is satisfying its
negation after the next transition, then the property’s invariance over the system is
demonstrated.

The selection of k is critical, as too small a value may not capture the system’s
behavior adequately, while too large a value can lead to computational inefficiency.
The standard algorithm starts with a value of k equal to zero, and increments such
value until either a counterexample is encountered (BMC(C, ϕ, k) is satisfiable) or the
property is proved (Inductive(c, ϕ, k) is unsatisfiable).

One notable strength of K-induction is its ability to prove properties that are beyond
the reach of BMC, especially when BMC fails to find a counterexample within the
bounded depth. However, K-induction may require additional invariants or lemmas to
bridge the induction gap, which are properties that hold at every step and are used to
strengthen the induction hypothesis.

Despite its power, K-induction’s effectiveness is highly dependent on the underlying
SMT or SAT solver’s ability to handle the complexities introduced by the inductive step.
Advanced techniques, such as incremental and property-directed K-induction [78], have
been developed to enhance its applicability and efficiency in practical verification tasks.
However, for infinite-state systems, differently from the finite-state case, K-induction is
not a complete procedure, meaning that the bound k may grow indefinitely.

Interpolation-based model checking

Interpolation-based model checking [99, 98] and its variants emerges as a fusion of
BMC and interpolation techniques, providing a complete technique for symbolic model
checking in the finite-state case.

Given a transition system C and a property ϕ to be verified, the method involves
first checking that the unrolling BMC(C, ϕ, k) is unsatisfiable (again, initially k is
equal to zero). If a counterexample is not found, the resulting formula is divided into
two parts, A and B, such that A ∧ B is unsatisfiable. Here, A represents the initial
state and the transitions up to a certain point, while B represents the remainder of the
transitions up to depth k and the negation of the property ϕ. Formally, this can be
expressed as follows:

15

2.2. Verification Modulo Theory

A = I(X0) ∧
j−1∧
i=0

T (Xi, Xi+1)

B =

(
k−1∧
i=j

T (Xi, Xi+1)

)
∧ ¬ϕ(Xk)

The unsatisfiability of A ∧ B indicates that the property ϕ cannot be violated
within k steps. The interpolant between the two formulae effectively serves as an over-
approximation of the states reachable within j steps that cannot lead to a violation of
ϕ within k steps. By iteratively computing such interpolants (or interpolant sequences)
for increasing values of j (and thus k), the method and its variants construct a sequence
of over-approximations that, in the case of finite-state systems, converge towards an in-
ductive invariant sufficient to prove ϕ. In the original method, j was set to be 1, and
a single interpolant was computed as a candidate inductive invariant. In variations of
the method, the value of j can vary, and interpolant sequences are used.

As the depth k increases, if an interpolant is found that is also an inductive invariant,
the property is verified. If, however, a counterexample is discovered at any depth
k, the property is refuted. The iterative nature of this process, combined with the
strategic use of interpolants, enables interpolation-based model checking to efficiently
verify properties or identify counterexamples in finite-state systems. When adapted to
infinite-state systems using SMT solvers, the principle remains the same, though the
specifics of interpolant generation and the handling of theories become more complex,
and completeness is lost.

IC3

More recently, IC3 [21], which stands for "Incremental Construction of Inductive Clauses"
(referred to also as PDR, "Property Directed Reachability"), emerged as an efficient
algorithm for verification of finite-state systems. The algorithm distinguishes itself by
not computing unrollings associated with the transition relation. Instead, it opts for a
methodical construction of state space over-approximations.

We introduce here some foundational concepts to simplify the exposition of one of
the algorithms we will discuss in this thesis, which is based on IC3. The algorithm
maintains a trace, i.e. an ordered sequence F0, . . . , FN of formulae, called frames, where
the formula Fi over-approximate the set of states reachable in up to i transitions. More
formally, the trace of IC3 is an approximate reachability sequence:

Definition 4. Let C = (X, I(X), T (X,X ′)) be a symbolic transition system and ϕ(X)
a formula. A sequence of formulas F0(X), . . . , FN(X) is an approximate reachability
sequence for C and ϕ if:

• I(X) |= F0(X);

• Fi(X) |= Fi+1(X) for all 0 ≤ i < N ;

16

Chapter 2. Background notions

• Fi(X) ∧ T (X,X ′) |= Fi+1(X
′) for all 0 ≤ i < N ;

• Fi(X) |= ϕ(X) for all 0 ≤ i < N .

An approximate reachability sequence can be used to prove that a formula ϕ is an
invariant for a system, thanks to the following:

Proposition 1 ([21]). Let C = (X, I(X), T (X,X ′)) be a transition system and ϕ a
formula. Let F0, . . . , FN be an approximate reachability sequence for C and ϕ. If for
some 0 ≤ i < N, Fi+1 |= Fi, then C |= ϕ. Moreover, Fi is an inductive invariant for ϕ
and C.

IC3 operates through a series of refinement steps, each aimed at either extending
the trace with a new frame that preserves the safety property or refining an existing
frame to exclude states that could lead to a safety violation. This is achieved through
a process of propagation and blocking. During propagation IC3 attempts to propagate
facts known about earlier frames to later frames in the trace, thereby extending the safe
over-approximation forward through the state space. When a potential counterexample
to the safety property is instead identified, IC3 blocks this counterexample by generating
a blocking clause—a formula that excludes the counterexample and all similar unsafe
states—and adding it to the appropriate frame in the trace.

The algorithm employs SAT solvers or SMT solvers for finite and infinite-state sys-
tems, respectively, to efficiently handle the logical operations involved in propagation
and blocking. The SMT variants [33, 13, 31] of IC3 extend its applicability to a broader
range of systems. One of the principal challenges in adapting IC3 for use with various
theories lies in the representation of blocking clauses. As detailed in [33], devising a
generalized procedure for this task could theoretically be accomplished through quan-
tifier elimination. However, this approach proves to be computationally expensive and
is not universally applicable across all theories, limiting its practical utility. Predicate
abstraction presents a viable alternative, offering a means to efficiently integrate with
IC3 by abstracting system states into a finite set of predicates that describe their prop-
erties. Despite its potential for efficiency, the effectiveness of predicate abstraction in
conjunction with IC3 heavily depends on the judicious selection of predicates.

Moreover, the process of refining these approximations to exclude spurious coun-
terexamples and strengthen the verification results necessitates efficient interpolation
techniques, which do not always exist, as we have mentioned, for example for array
theories.

2.2.2 Abstraction and Refinement

Abstraction and refinement are fundamental concepts in the field of formal verification
[47]. These concepts are often essential in making the verification process more efficient
and manageable, especially for complex systems.

Generally speaking, abstraction in verification refers to the process of simplifying a
system by changing its state space or by omitting certain details that are not relevant to
the verification goal. The main aim is to create a more manageable model that retains

17

2.2. Verification Modulo Theory

the essential properties of the system, making it easier to analyze and verify. In SMT-
based verification, abstraction might involve creating a higher-level representation of the
system where certain operations or data are simplified. For example, a variable might
be abstracted to represent a range of values rather than a specific value, or complex
data structures might be represented in a simplified manner.

The use of abstraction helps in tackling the state explosion problem, which is a
significant challenge also in the verification of parameterized systems. By working with
a simplified model, the computational resources and time required for verification can
be substantially reduced. However, the abstraction process must be carefully designed
to ensure that the abstract model is sound, meaning that if the abstract model satisfies
the property being verified, then the original, concrete model also satisfies that property.

However, a verification algorithm may find some counterexample in the abstract
system, that does not correspond to a concrete counterexample. This happens if the
abstraction is too coarse, and thus it needs to be refined.

Refinement is the complementary process to abstraction. It involves incrementally
adding detail or specificity back into the abstract model based on the results of the verifi-
cation attempt. This is typically achieved through counterexample-guided abstraction
refinement [42](CEGAR), a popular technique in formal verification. In CEGAR, a
counterexample produced by the verification attempt on the abstract model is ana-
lyzed to determine if it is also a counterexample for the concrete model. If not, the
abstraction is refined to eliminate the spurious counterexample, and the verification
process is repeated.

More formally, an abstraction between two systems is represented by a simulation,
which is a specific relation among the states of the systems. Let C = (X, I(X), T (X,X ′))
and C̃ = (X̃, Ĩ(X̃), T̃ (X̃, X̃ ′)) be two symbolic transition systems. Let S be the set of
states of C, and S̃ the set of states of C̃. Let α be a relation between S and S̃; we write
α(s, s̃) to denote that two states s and s̃ are in relation.

Definition 5. We say that C̃ α-simulates C (written C →α C̃) if the following two
conditions hold:

i. For each initial state s of C, there exists an initial state s̃ of C̃ such that α(s, s̃).

ii. For each couple (s, s̃) such that α(s, s̃), and for each s′ ∈ S such that s, s′ |=
T (X,X ′), there exists a state s̃′ such that α(s′, s̃′) and s̃, s̃′ |= T̃ (X̃, X̃ ′).

If α is clear in the context, we might say that C̃ simulates (or abstracts) C. We refer
to C as the concrete system, while C̃ is the abstract system. The following proposition
captures the fact that paths in the concrete system can be mirrored in the abstract.

Proposition 2. Let C →α C̃ be an α-simulation between two transition systems. Then,
given any run π = s0, . . . , sn of C, there exists a run π̃ = s̃0, . . . , s̃n of C̃ such that, for
all 0 ≤ i ≤ n, α(si, s̃i).

Proof. Follows immediately by induction on n and Definition 5.

A weaker notion of simulation that still preserves paths (even if with different
lengths) is the following:

18

Chapter 2. Background notions

Definition 6 (Stuttering Simulation). We say that C̃ stutter α-simulates C (written
C →α C̃) if the following two conditions hold:

i. For each initial state s of C, there exists an initial state s̃ of C̃ such that α(s, s̃).

ii. For each couple (s, s̃) such that α(s, s̃), and for each s′ ∈ S such that s, s′ |=
T (X,X ′), either there exists a state s̃′ such that α(s′, s̃′) and s̃, s̃′ |= T̃ (X̃, X̃ ′),
or there exists two states s̃′, s̃′′ such that α(s′, s̃′′) and s̃, s̃′ |= T̃ (X̃, X̃ ′). s̃′, s̃′′ |=
T̃ (X̃, X̃ ′) .

Similarly to the non-stuttering case, we have:

Proposition 3. Let C →α C̃ be a stutter α-simulation between two transition systems.
Then, given any run π = s0, . . . , sn of C, there exists a run π̃ = s̃0, . . . , s̃m of C̃ such
that α(s0, s̃0) and, , for all 1 ≤ i ≤ n, there exists a ki < m such that α(si, s̃ki).

Usually, simulation relations can be defined inside the theory: we say that a relation
α is T -definable if there exists a Σ(X, X̃)-formula H(X, X̃) such that α(s, s̃) ⇔ s, s̃ |=
H(X, X̃). In such cases, it is always possible to find a transition system that simulates
C, called the existential abstraction. This abstraction is given by a transition system
defined with the initial formula Ĩ(X̃) = ∃X.I(X)∧H(X, X̃) and the transition formula
T̃ (X̃, X̃ ′) = ∃X,X ′.T (X,X ′) ∧ H(X, X̃) ∧ H(X ′, X̃ ′). The existential abstraction is
the ‘most precise’ abstraction possible (with respect to α), but it is in general hard to
compute.

Example 1. One of the most used abstraction paradigms in model checking of infinite-
state systems is Predicate Abstraction. This technique is usually used to reduce to the
Boolean case: given a symbolic transition system C and a set of Σ(X)-predicates P ,
the predicate abstraction of C is a new system C̃, defined only over boolean variables
X̃ (one for each element of P). Formally, the simulation relation is given by

α(s, s̃) ↔ s, s̃ |=
(∧
p(X)∈P

x̃p(X) ↔ p(X)
)
,

where x̃p is the boolean variable in X̃ corresponding to the predicate p. Note that
the simulation relation is T -definable, thus one way to compute C̃ is the existential
abstraction. In general, the explicit computation of the system Ĉ can be very expensive,
requiring typically ALLSAT techniques [92]. However, more efficient implicit encoding
were proposed in the literature [127, 90].

In many cases, the abstract variables X̃ of the system C̃ will be completely different
from the original variables X, as seen in the example above. However, in some cases
the abstract variables can be a subset of the original one. We start by analyzing this
simpler case. Let V ⊆ X ∩ X̃ be a set of variables, and F (V) a formula. Let α be a
relation between states.

Definition 7. We say that the relation α preserves the formula F if, for all states s
such that s |= ¬F , then, for all s̃ such that α(s, s̃), we have that s̃ |= ¬F .

19

2.2. Verification Modulo Theory

Proposition 4. Given a simulation C →α C̃ that preserves F ,

C̃ |= F ⇒ C |= F.

Proof. Suppose by contradiction that C̃ |= F but there exists a finite path π in C
such that π[n] |= ¬F . By Proposition 2, there exists a finite path π̃ in C̃ such that
α(π[n], π̃[n]). Since α preserves F , we have that π̃[n] is reachable in C and π̃[n] |= ¬F ,
a contradiction.

Similarly, we can prove the following:

Corollary 5. Given a stutter simulation C →α C̃ that preserves F ,

C̃ |= F ⇒ C |= F.

We also have:

Proposition 6. Given a (sutter) simulation C →α C̃ that preserves F , if F is inductive
for C̃, then F is inductive for C.

Let’s now consider the more general case where X̃ and X might be unrelated.
Usually, in these cases, one defines some rewriting operator R from formulas defined
over X to formulas defined over X̃. Therefore, we need a more detailed definition of
preservation:

Definition 8. We say that the relation α preserves the formula F modulo the rewriting
R if, for all states s such that s |= ¬F , then, for all s̃ such that α(s, s̃), we have that
s̃ |= ¬R(F).

Thus a similar result yields:

Proposition 7. Given a (stutter) simulation C →α C̃ that preserves F modulo the
rewriting R,

C̃ |= R(F) ⇒ C |= F.

Example 2. In predicate abstraction, given a set of predicates P and corresponding
abstract boolean variables X̃, let R be a rewriting operator that computes the sub-
stitution between abstract variables in X̃ and corresponding atoms in P . Then, the
simulation preserves each formula whose atoms are contained in P .

If a counterexample is found in C̃, in general this does not implies the existence of a
counterexample in C. We say that a counterexample π in C̃ is spurious if there exists no
path s0, . . . , sk in C such that sn |= ¬F and, for all 0 ≤ i ≤ k, α(si, π[i]). In such cases,
the abstraction yields no helpful information, and need to be refined. Given a simulation
C →α C̃, and a spurious counterexample π, we say that the simulation C →α′ C̃ ′ refines
C →α C̃ iff: (i) each reachable state of C̃ ′ is a reachable state of C̃; (ii) π is not a valid
path for C̃ ′. Refinements are a way to ensure that CEGAR methods make progress, by
eliminating newer and newer counterexamples. For finite-state systems, this is enough
for ensuring termination of the procedure (in the infinite-state case, termination is
not ensured). As an example of refinement, in predicate abstraction, interpolants are
usually used to discover new predicates and eliminate counterexamples [33, 13, 100].

20

Chapter 2. Background notions

2.2.3 Asynchronous Composition of Systems

The notion of composing systems to function concurrently yet independently represents
a important part of software architectures. This section delves into the concept of
asynchronous composition of systems, in the setting of Verification Modulo Theories.

In particular, we will investigate the relations between asynchronous composition
and abstractions.

Let C1 = (X1, I1(X1), T (X1, X
′
1)) and C2 = (X2, I(X2), T (X2, X

′
2)) be two symbolic

transition systems. If V is a set of variables, we denote with Inertia(V) the formula∧
v∈V v = v′.

Definition 9. The asynchronous product between C1 and C2, is the transition system
C1 ∥ C2 =

(
X1 ∪X2, IC1∥C2(X1, X2), TC1∥C2(X1, X2, X

′
1, X

′
2)
)
, where:

• IC1∥C2(X1, X2) is the formula I1(X1) ∧ I2(X2);

• TC1∥C2 is the formula (T1(X1, X
′
1)∧Inertia(X2\X1))∨(T2(X2, X

′
2)∧Inertia(X1\

X2)).

The asynchronous product is generally considered with components that have some
shared variables.

Example 3. As sketched example of asynchronous composition, consider a web ap-
plication composed of two main components: a User Interface (UI) Manager, C1, and
a Database Update Manager, C2. These components interact with each other in an
asynchronous manner to handle user requests and update the database, respectively.
In the system C1 = (X1, I1(X1), T (X1, X

′
1)), X1 represents the state variables associ-

ated with user interactions (e.g., input fields, request status), I1(X1) specifies the initial
conditions of the UI (e.g., all fields are clear, no pending requests), and T (X1, X

′
1) de-

fines the transition relation that captures the changes in the UI state based on user
actions (e.g., submitting a form). Similarly, C2 = (X2, I2(X2), T (X2, X

′
2)) represents

the Database Update Manager, with X2 including variables related to the database
state (e.g., pending updates, connection status), I2(X2) indicating the initial state of
the database connection, and T (X2, X

′
2) describing how database updates are processed

and applied. The intersection among X1 and X2 consists of variables representing tasks
common to both the UI and the database, such as the user session information. The
asynchronous product of C1 and C2, denoted as C1 ∥ C2, models the web application
as a whole, allowing the UI Manager and the Database Update Manager to operate
concurrently.

Since Inertia(V ∪ V ′) = Inertia(V)∧ Inertia(V ′), and by distributing conjunction
over disjunction, we observe that the composition (C1 ∥ C2) ∥ C3 is defined with
equivalent formulae to C1 ∥ (C2 ∥ C3). Given a set of variables V ⊆ X1 ∪ X2 and a
formula F (V), asynchronous verification aims to prove or disprove if (C1 ∥ C2) |= F (V).

A method to address this verification problem is to search for an inductive invariant
for the system (C1 ∥ C2). This approach, known as the monolithic approach, involves
finding a single, global inductive invariant that is strong enough to prove the property

21

2.2. Verification Modulo Theory

F (V) for the entire system composed of C1 and C2. The main challenge of this approach
is the complexity of discovering a suitable inductive invariant that encompasses the
behaviors of all components in the composition.

Another approach leverages the compositional nature of the system, exploiting the
fact that each component might already have its invariants. This strategy, known as
the compositional approach, seeks to combine invariants from individual components
into a single global invariant for the entire system. The advantage of this approach is
that it can potentially reduce the complexity of finding a suitable invariant by building
upon the properties already proven for individual components. However, ensuring that
combined invariants provide sufficient coverage for the composite system’s behavior,
especially regarding interactions through shared variables, can be challenging.

Both approaches aim to establish a form of inductive reasoning that guarantees the
system’s behavior aligns with the specified properties F (V). The choice between a
monolithic or compositional approach often depends on the specific characteristics of
the system being verified, including the complexity of its components, the nature of
their interactions, and the properties to be verified.

We now state a proposition that will be useful in our compositional approach. In
general, if V ̸⊆ Xi, we may write Ci |= F (V) with the meaning that we add to the Xi

the remaining V \ Xi variables, and we modify Ti by adding inertia on V \ Xi. This
technicality is necessary to state propositions like the following:

Proposition 8. If a formula F is not inductive for C1 ∥ C2, then there exists an
i ∈ {1, 2} such that F is not inductive for Ci.

Proof. If Ψ is not inductive for C1 ∥ C2, then either IC1∥C2 ∧ ¬F is satisfiable, or
F ∧ TC1∥C2 ∧ ¬F ′ is satisfiable. If IC1∥C2 ∧ F = I1 ∧ I2 ∧ ¬F , is satisfiable, then by
restricting the model over X1 or X2 we get the F is not inductive for both the systems.
Otherwise, suppose we have a model for

F ∧
(
(T1(X1, X

′
1) ∧ Inertia(X2 \X1)) ∨ (T2(X2, X

′
2) ∧ Inertia(X1 \X2))

)
∧ ¬F ′

which, distributing the conjunction, is logically equivalent to

(F ∧(T1(X1, X
′
1)∧Inertia(X2\X1)∧¬F ′)∨(F ∧(T2(X2, X

′
2)∧Inertia(X1\X2)∧¬F ′).

Therefore, it must exists an i such that (F ∧ (Ti(Xi, X
′
i)∧ Inertia(X3−i \Xi)∧¬F ′) is

satisfiable, meaning that F is not inductive for Ci.

If we have a family of simulation relation, and we consider the asynchronous com-
position of the ‘concrete’ transition systems, then it is possible (under some hypothesis
on the abstract initial formula) to build a simulation relation with the asynchronous
composition of the abstract systems. We say that two transition system C1 and C2 are
compatible if each assignment to the shared variables is part of an initial state of C1 if
and only if it is an initial state of C2. In practice, this means that the shared variables
are initialized in the same way in the two systems.

22

Chapter 2. Background notions

Proposition 9. Consider C1 →α1 C̃1 and C2 →α2 C̃2 two simulation relation. Suppose
that C̃1 and C̃2 are compatible. Consider α1 ∥ α2 (called the product simulation) defined
as

α1 ∥ α2(s, s̃) iff α1(s|X1
, s̃|X1

) and α2(s|X2
, s̃|X2

).

Then, C1 ∥ C2 →α1∥α2 C̃1 ∥ C̃2.

Proof. Let s be an initial state of C1 ∥ C2, i.e. s |= IC1∥C2 . Therefore, there exist
states s̃1 |= Ĩ1 and s̃2 |= Ĩ2 such that α1(s̃1, s|X1

) and α2(s̃2, s|X2
). Since C̃1 and C̃2 are

compatible, then we have that the assignment (s̃1, s̃2) |= Ĩ1 ∧ Ĩ2, and the first condition
of Definition 5 is satisfied.
Suppose now that there is a couple of state s, s̃ such that α(s, s̃), and suppose that
s, s′ |= TC1∥C2 . Therefore, there exists an i ∈ {1, 2} such that s|Xi

, s′|Xi
|= Ti(Xi, X

′
i)

and s|Xi
, s′|Xi

|= Inertia(X3−i \ Xi). Thus, it exists a state s̃′i such that αi(s
′|Xi

, s̃′i)

and s̃|Xi
, s̃′i |= T̃i. Let s̃′ defined as s̃′i on Xi and as s̃ on X3−i \ Xi. We have that

s̃, s̃′ |= T̃i ∧ Inertia(X̃3−i \ X̃i), and α1(s̃
′
1, s

′|X1
) and α2(s̃

′
2, s

′|X2
).

By Definition of product simulation, we have the following corollary:

Corollary 10. Consider C1 →α1 C̃1 and C2 →α2 C̃2 two simulation relation such that
they both preserve a formula F . Assume that C̃1 and C̃2 are compatible. Then, α1 ∥ α2

also preserves F .

23

2.3. Problem statement

2.3 Problem statement

The main problem discussed in this thesis is the problem of invariant checking over a
class of symbolic transition systems. Such a class is a generalization of the formalism
used in [67, 112], especially suited for the verification of parameterized systems. We
call this class array-based transition systems, following [67], even if our formalism is
more general, allowing general transition formulae. Note that this is also different from
standard symbolic transition systems over the extensional theory of arrays.

Parameterized systems are systems composed of an arbitrary number of components
or processes, which can be identical or exhibit variations based on certain parameters.
These systems are particularly prevalent in distributed computing, where numerous
nodes or agents operate concurrently, potentially with varying roles or states, but are
designed to achieve a collective goal or maintain a global property. The verification of
parameterized systems thus revolves around ensuring that for any number of compo-
nents, the system adheres to its specified correctness properties.

The challenge in verifying parameterized systems arises from their inherent infin-
ity: because the system can comprise an arbitrary number of components, traditional
finite-state verification techniques are not directly applicable. This necessitates the de-
velopment of verification techniques that can reason about an infinite state space in
a efficient manner. Array-based transition systems provide a framework for modeling
such systems by abstracting the state of an arbitrary number of components into func-
tions, where each value of the function represents the state of one component. The
transitions of the system, then, are described by transition formulae that specify how
such functions (and thus the states of the components) can change from one state to
the next.

This formalism is more general than standard symbolic transition systems over the
theory of arrays in several ways. In particular, the transition formulae can encompass
a broader range of operations on the arrays, including non-deterministic updates and
operations that affect an arbitrary number of components simultaneously. This flexi-
bility makes the array-based transition system formalism especially suited for modeling
and verifying parameterized systems, as it can more naturally express the behaviors
and interactions of an arbitrary number of components.

2.3.1 Array-based transition systems

We start by considering a theory TI = (ΣI , CI), called the index theory, whose class of
models does not contain infinite universes. In practice, this is often the theory of an
uninterpreted sort with equality, whose class of models includes all possible finite (but
unbounded) structures. In addition, we consider a quantifier-free theory of elements
TE = (ΣE, CE), used to model the data of the system. Relevant examples consider
as TE the theory of an enumerated datatype, linear arithmetic (integer or real), or
a combination of those. In addition, we consider a third theory (that we refer as
the array theory), whose signature only contains the function symbol {·[·]}, which is
interpreted as the function application. Finally, with AE

I we denote the combination

24

Chapter 2. Background notions

of the index, the element, and the function theory. Therefore, the signature of AE
I

is Σ = ΣI ∪ ΣE ∪ {·[·]}, and a model for it is given by a set of total functions from
the universe of a model of the index sort, to a universe of the element sort, and ·[·] is
interpreted as the function application. Therefore, AE

I satisfiability can be reduced to
satisfiability in the combination of TEUF , TI and TE. In the following, we will denote
with letters I, J variables of index sort, while we use the letter X to denote array
symbols. We restrict ourselves to one index theory and one element theory for the sake
of simplicity, but typically applications include a combination of several index theories
and several element theories.

Definition 10. An array-based transition systems is a symbolic transition system

S = (X, I(X), T (X,X ′))

where:

(i.) X is a set of symbols of array sorts;

(ii.) I(X), T (X,X ′) are Σ(X,X ′)-formulae (possibly containing quantified variables
only of sort TI).

Note that arrays can be also 0-ary or constant functions, thus allowing to have state
variables of index or element sort.

Example 4. We show how to model a simplified version of the Bakery algorithm in
our formalism. The Bakery Algorithm is a ticket-based algorithm designed for ensuring
mutual exclusion in distributed environments, where multiple processes need to access
a shared resource without conflicts. It was named after the numbered ticket system
used in bakeries to serve customers in order. The algorithm assigns a unique number to
each process that wants to enter the critical section. This number determines the order
in which processes are granted access. A process receives a number higher than any
other process currently waiting, ensuring that each process enters the critical section in
the correct order.

To model the algorithm, we use as TI the theory of equality over a simple sort.
Each element of a universe of TI can be thought as a process entering the algorithm.
As for TE, we need a combination of two theories: an enumerated datatype with values
{idle, wait, crit}, and QF_LIA (quantifier-free linear integer arithmetic). We define
four state variables: one array state with values in {idle, wait, crit}, one array ticket
with values in Z, and two integer variables next_ticket and to_serve. The initial
formula of the system is:

∀i.state[i] = idle ∧ ticket[i] = 0 ∧ next_ticket = 1 ∧ to_serve = 1

The transition formula is the disjunction of the three formulae; the first one models a

25

2.3. Problem statement

process that goes from idle to wait and takes a ticket:

∃i.
(
state[i] = idle ∧ state′[i] = wait ∧ ticket′[i] = next_ticket ∧

next_ticket′ = next_ticket+ 1 ∧ to_serve′ = to_serve
∧ ∀j.(j ̸= i→ state′[j] = state[j] ∧ ticket′[j] = ticket[j])

)
.

In the second disjunct, a process enters the critical section if its ticket is selected:

∃i.
(
state[i] = wait ∧ state′[i] = crit ∧ ticket[i] = to_serve

∧ next_ticket′ = next_ticket ∧ to_serve′ = to_serve∧
∀j.(j ̸= i→ state′[i] = state[i]) ∧ (∀j.ticket′[j] = ticket[j])

)
.

Finally, a process exits from the critical state and reset its ticket:

∃i.
(
state[i] = crit ∧ state′[i] = idle ∧ ticket′[i] = 0∧

next_ticket′ = next_ticket ∧ to_serve′ = to_serve+ 1∧
∀j.(j ̸= i→ state′[j] = state[j] ∧ ticket′[j] = ticket[j])

)
.

Given a model M of AE
I , a state of an array-based transition system is a valuation

of the elements in X in M, i.e. an assignment of the state variables to functions from
a finite universe of the index sort, to an universe of an element sort. In modeling
parameterized systems, the number of components is given by the cardinality of the
universe of the index sort.

The presence of quantifiers in the theory TI make the general problem of satisfi-
ability of AE

I formulae to be undecidable (even in the case where the element sort is
boolean). However, a fragment of first-order logic used to describe parameterized prob-
lems is EPR [107, 108, 111] (Effective Propositional Logic), which is decidable. Effective
Propositional Logic (EPR), also known as the Bernays-Schönfinkel class, is a fragment
of classical first-order logic characterized by formulae that start with a sequence of ex-
istential quantifiers followed by a universally quantified formula, that does not contains
any function symbols of ariety greater than zero (i.e., it contains only constants).

The decidability of EPR stems from the fact that, after Skolemization, the satisfia-
bilty of the formula can be reduced to the satisfiabilty of a finite set of ground instances
of the formula. Moreover, formulae in EPR enjoys the finite model property, which
asserts that formulae have finite models whose universe is a finite set.

In our SMT setting, we have the following decidability result, which combines clas-
sical EPR with ground SMT theories:

Proposition 11. [67] If ΣI does not contain any function symbol with ariety greater
than zero, and the quantifier-free fragment of the theories TI and TE are decidable, then
the AE

I -satisfiability of formulae of the form

∃I.∀J.ϕ(I, J,X) (2.3)

26

Chapter 2. Background notions

is decidable. Moreover, a formula of type 2.3 is satisfiable if and only if it is satisfiable
in a finite index model.

To decide the satisfiability of formulae of kind 2.3, one can follow a procedure similar
to the EPR case. In fact, the fact that ΣI is relational implies that there are only
finitely many terms (even after Skolemization) to instantiate the universal quantifiers
with. Therefore, one can reduce the problem to the satisfiability of a finite set of ground
formulae of the combination of TI , TE and TEUF .

Although in our context we do not require that an array-based transition system
has initial and transition formulae that falls into the decidable fragment 2.3, many of
the systems considered actually falls into this category.

The invariant problem for array-based transition systems

We can now formally introduce the main problem that will be discussed in this thesis.
Let S be an array-based transition system, and ϕ(X) a Σ(X)-formula, possibly

containing quantified variables of sort TI . The Invariant Problem we consider is the
problem of deciding whether S |= ϕ(X). The problem is in general undecidable since it
subsumes undecidable problems such as safety of parameterized systems or infinite-state
systems [67, 14, 110].

Example 5. Following the last example, the property we want to prove is mutual
exclusion:

∀i, j.(i ̸= j → ¬(state[i] = crit ∧ state[j] = crit)).

The latter example of mutual represents a typical aspect of safety within parame-
terized systems. Safety properties, such as mutual exclusion, assert that "bad things"
never happen during the execution of the system, regardless of the number of compo-
nents or the specific states those components may be in. In the context of array-based
transition systems, proving such a property involves demonstrating that it is impossible
for two distinct components to simultaneously be in a critical state. Note that the prop-
erty is not inductive itself. The undecidability of the invariant problem underscores the
challenges and significance of the research in advancing the methods and tools available
for tackling these verification problems in parameterized and infinite-state systems.

2.3.2 Ground instances

One of the key challenges in parameterized verification is managing the complexity that
arises from the system’s potential to grow indefinitely in terms of its components. To
facilitate the verification of such systems, the concept of ground instances can be used
as a way to facilitate things. This concept essentially involves considering a specific
instantiation of the parameterized system, where the number of components is fixed to
a finite number n.

More formally, suppose that we fix a finite cardinality n for the TI-models. Then,
one can construct a quantifier-free under-approximation of S by considering another
symbolic transition system, called ground n-instance, by considering as states functions

27

2.3. Problem statement

with, as domains, sets of only that size. In this section, we define how to construct such
a system.

First, we consider C = {c1, . . . , cn} a set of fresh constants of index sort. These will
be frozen variables of the ground instance; moreover, they will be also considered all
implicitly different. In the following, if ϕ(X) is a formula with quantifiers of only sort TI ,
we denote ϕn(C,X) the quantifier-free formula obtained by grounding the quantifiers
in C, i.e. by recursively applying the rewriting rules:

∀i.ϕ′(i,X) 7→
n∧

k=1

ϕ′(i,X)[i/ck] (2.4)

∃i.ϕ′(i,X) 7→
n∨

k=1

ϕ′(i,X)[i/ck] (2.5)

Finally, we also need to restrict function symbols with values in TI . To do so, for
each function symbol a in Σ whose codomain type is TI , we define the formula

α(a) := ∀i1, . . . , im∃j.a(i1, . . . , im) = j,

where m is the ariety of a, and i1, . . . , im, j are fresh variables of index sort.

Definition 11 (Ground n−instance). Let S = (X, I(X), T (X,X ′)) be an array-based
transition system, and n an integer. Let Ī(X) := I(X) ∧

∧
a α(a)n, and T̄ (X,X ′) :=

T (X,X ′) ∧
∧

a α(a)n, where a ranges over each function symbol in Σ whose codomain
type is TI . The ground n-instance of the system S is a symbolic transition system Sn

defined by:
Sn =

(
C ∪X, Īn(C,X), T̄n(C,X,X

′) ∧ C ′ = C
)
.

To simplify the use of notation, we will denote with In and Tn the initial and
transition formula of the n-instance Sn. Observe that a state of Sn is given by: (i) a
valuation of the symbols C in a finite index universe, and (ii) an interpretation of the
state variables X as functions from that universe to an element sort. Note that even if
the models of TI are all finite, the set of states of Sn can be infinite, since TE could have
an infinite model, e.g. if integer or real variables are in the system. Nevertheless, the
system can be model-checked efficiently by modern symbolic SMT techniques like [33].

We finally state the following result, linking the invariant problem for array-based
transition systems to the invariant problem for ground instances:

Proposition 12. Let S be an array-based transition system, and ϕ a formula. Then,
S |= ϕ if and only if Sn |= ϕn for all possible n.

Proof. Recall that S |= ϕ does not hold if there exists a model M of AE
I and a sequence

of state s such that s is reachable in S and s |= ϕ. Suppose that the restriction of M
over the index sort has a universe with cardinality n (recall that we assumed that the
index sort has only finite models). Thus, s is also a reachable state of Sn such that
s |= ϕn.

28

Chapter 2. Background notions

Symmetries of ground instances

As already observed in previous works [88, 70, 34], transition systems obtained by
instantiating quantified formulae have a certain degree of symmetry. We report here
the notion that will be useful to our description. Let σ be a permutation of 1, ..., n (also
called n-permutation), and ϕ a formula in which c1, . . . , cn occur free. We denote with
σϕ the formula obtained by substituting every ci with cσ(i). The following proposition
follows directly from the fact that In and Tn are obtained by instantiating a quantified
formula with a set of fresh constants C[88]:

Lemma 13. For every permutation σ, we have that: (i) the formula σIn is logically
equivalent to In; (ii) the formula σTn is logically equivalent to Tn.

From this lemma and an induction proof, the following holds:

Proposition 14 (Invariance for permutation). Let s be a state of Sn, reachable in k
steps. Then s |= ϕ(C,X), if and only if, for every n-permutation σ, there exists a state
s′ reachable in k steps such that s′ |= σϕ(C,X)

We will exploit this property both for the verification of ground instances and in
the generalization process. In fact, from the last proposition, we can simplify every
invariant problem Sn |=

∧
σ σϕ(C,X) – where σ ranges over all possible substitutions

– to Sn |= ϕ(C,X). This simplification is of great help when checking properties which
are the result of instantiating a formula with only universal quantifiers.

29

2.3. Problem statement

30

Part II

Algorithms

31

Chapter 3

Algorithms for the Invariant Problem
of Parameterized Systems

3.1 Introduction

In this section, we describe algorithms designed to solve the problem stated in Section
2.3. This chapter is based on the works [35, 34, 115].

In Section 2.2.1, we have delineated the principal algorithms deployed for address-
ing symbolic model checking challenges. Predominantly, these algorithms have been
tailored for finite-state systems, characterized through Boolean formulas and analyzed
using SAT solvers. A query emerges regarding the feasibility of substituting SAT solvers
with SMT solvers equipped to handle quantifiers. While theoretically conceivable for
methodologies like bounded model checking (BMC) and k-induction, practical imple-
mentation encounters significant hurdles.

Although BMC keeps its utility for finding counterexamples, the likelihood of k-
induction converging to an inductive invariant diminishes. In fact, for infinite-state
systems, the method is no longer complete. Furthermore, as the bound k escalates,
the complexity of the formulas increases proportionally due to an augmented count
of quantifiers, imposing a substantial computational burden on solvers. Consequently,
a direct transposition of BMC and k-induction methodologies to contexts requiring
quantifier handling proves impracticable.

Interpolation-based techniques encounter analogous obstacles. Besides the chal-
lenges shared with BMC, the task of generating interpolants for formulas with quan-
tifiers is scarcely supported by current SMT solvers, as previously noted. Conversely,
IC3 presents a more viable pathway since it does not rely on explicit unrolling and does
not inherently lead to an increase in quantifier complexity within satisfiability checks.
To formulate representations of counterexamples, two primary strategies emerge. One
involves quantifier elimination, a solution not universally applicable across theories,
particularly where function variables occur. A solution to this problem is imposing
stringent syntactic restrictions on the system-defining formulas to facilitate an effec-
tive quantifier elimination approach—a tactic akin to the one employed in [65] through
functional assignments in transition formulas. However, this thesis aspires to devise

33

3.1. Introduction

algorithms devoid of such restrictive prerequisites, aiming for a more general applica-
bility. A second solution is to use forms of abstraction to produce approximations of
counterexamples. In this direction, the UPDR [81] algorithm, extending IC3 to systems
with quantifiers, was recently proposed, albeit limited to pure first-order logic absent
of any theories. In the subsequent section, we introduce the first main contribution of
this thesis: elaborating on how to adapt and apply this algorithm within our formalism,
thereby extending its utility to a broader spectrum of systems.

Thus, the first algorithm we described is based on UPDR. Such procedure combines
UPDR with implicit abstraction [127], to deal with a general SMT theories of elements.
In the past, implicit abstraction was used in [33] to extend IC3 to deal with quantifier-
free infinite-state systems. In the section, we show how to modify that technique to
handle quantified systems as well. We also lift several properties of the original al-
gorithm to our setting. However, the resulting algorithm heavily relies on quantified
queries to an external solver: in practice, this is still an expensive subroutine.

The second algorithm consists of a simple yet general procedure based on the in-
teraction of two key ingredients. First, we restrict the cardinality of the uninterpreted
sort to a fixed natural number. This results in a quantifier-free system that can be
model-checked with existing techniques: upon termination, we either get a counterex-
ample, in which case the system is unsafe, or a proof for the property in the form of a
quantifier-free inductive invariant. Second, the invariant is generalized to a quantified
candidate invariant for the original system, and its validity is checked using either a
form of abstraction, or quantified SMT reasoning. If the candidate invariant is valid,
then the system is safe. Otherwise, further reasoning is required, e.g. by increasing the
cardinality of the domain, and iterating the first step. The first option to check that a
candidate invariant holds is based on an extension of the works on Parameter Abstrac-
tion of [29, 88] to our formalism. This technique computes a quantifier-free system and
a quantifier-free property that, in case it holds, ensures that the original property is
an invariant of the system. As a second option, we could use instead any off-the-shelf
solver supporting SMT and quantifiers (e.g. Z3[50]) to discharge validity checks. How-
ever, a black-box approach to checking the validity of quantified formulae may cause the
procedure to diverge in practice. Therefore, we also propose a more careful, resource-
bounded approach to instantiation, that can be used to discharge quantified queries in
a more controlled way.

It is important to note that these algorithms represent the first efforts to synthesize
universal invariants for such a general class of systems. The effectiveness and efficiency
of these algorithms are empirically validated in a subsequent section, where their exper-
imental evaluation demonstrates advancements over existing methods. This empirical
evidence not only underscores the practicality of our approaches but also establishes a
solid foundation for future research in the field.

34

Algorithms

3.2 UPDR with implicit abstraction

3.2.1 Overview of UPDR

The paper [81] proposes a variant of the PDR/IC3 [21] algorithm to solve the problem
stated in 2.3.1, but only in the case of TE equal to the theory of Boolean. The algorithm,
called UPDR (Universal Property Directed Reachability), represents first-order models
by formulae with the notion of diagrams. When extending UPDR to our general setting,
a main challenge is how to extend the computation of diagrams, to handle a general
SMT theory TE. In this section, we combine UPDR with a form of predicate abstraction,
to keep the computation of diagrams similar to the original case. We first introduce
the necessary notions for the predicate abstraction and describe how to use them in our
context. Then, we illustrate the general algorithm, and we discuss some approaches
that we used for its implementation. Finally, we study its theoretical properties, most
of which are a direct lifting of the ones given in [81]. In the last section, we give the
proof of the main results.

As we already mentioned, this algorithm is based on the notion of diagrams. Dia-
grams are a method to represent a set of finite first-order models with an existentially
quantified formula. We report the notion from [81]:

Definition 12. Given a finite model M, let xmi
be a fresh variable for each element

mi in the universe of the model. The diagram of M over Σ is the existential closure of
the conjunction of the following literals:

(i). inequalities of the form xmi
̸= xmj

for every pair of distinct elements mi,mj in
the model;

(ii). equalities of the form c = xm for every constant symbol c in Σ such that M |=
c = m;

(iii). the atomic formula f(xmi1
, . . . , xmin

) = xm for every function symbol f of ariety
n if M |= f(mi1 , . . . ,min) = m.

3.2.2 Implicit Indexed Predicate Abstraction

Predicate abstraction has been commonly considered for quantifier-free systems, but
indexed predicates were introduced to abstract some restricted classes of systems with
quantifiers [91]. In general, building the abstract version of a system can be expensive;
however, various techniques that encode the abstract transition relation with logical
formulas, such as [127, 90], have proven to be successful in the quantifier-free and
Boolean case. In this section, we introduce a form of abstraction suitable for our
purposes: instead of Boolean variables, we consider a set of first-order predicates, where
free variables may occur.

In the following, we fix a set I = {i1, · · · , ik} of variables of index sort, and a finite set
P(I) = {p1(I,X), . . . , pn(I,X)} of Σ(I) atoms (i.e. predicates over Σ possibly contain-
ing free variables I of sort TI). We can write P instead of P(I) for the sake of simplicity.

35

3.2. UPDR with implicit abstraction

Example 6. Continuing the bakery example of the previous chapter, we can consider
as a set of index predicates:

P(i1) = {state[i1] = idle, ticket[i1] = 0, next_ticket = 1, to_serve = 1, state[i1] = crit},

where i1 is a free variable of index sort.

We now introduce and generalize the main concepts of implicit abstraction for the
quantified case.

Definition 13. Given P(I) a set of index predicates, we define:

• XP(I) is a set of fresh TI predicates, one for each element p ∈ P(I), and with
ariety the number of free variables in p:

XP(I) := {xp(I,X)(I) | p(I,X) ∈ P(I)};

• the formula

HP(XP , X) := ∀I.
(∧
p(I,X)∈P

xp(I,X)(I) ↔ p(I,X)
)

• the formula
EQP(X,X

′) := ∀I.
(∧
p(I,X)∈P

p(I,X) ↔ p(I,X ′))

In the above definition, the new predicates XP will act as new state variables of
the abstract system. The formula HP is used to define the simulation relation between
an abstract and a concrete state. Finally, the formula EQP is used to compute the
abstraction implicitly.

Example 7. Considering again the bakery algorithm, given the set of predicates of the
previous example, we have a set of abstract variables

XP(i1) = {xstate[i1]=idle(i1), xticket[i1]=0(i1), xnext_ticket=1, xto_serve=1,

xstate[i1]=crit(i1)}

Moreover, we have that HP(XP , X) is equal to:

∀i1.(xstate[i1]=idle(i1) ↔ state[i1] = idle) ∧ ∀i1.(xticket[i1]=0(i1) ↔ ticket[i1] = 0)

∧ xnext_ticket=1 ↔ next_ticket = 1 ∧ xto_serve=1 ↔ to_serve = 1∧
∀i1.(xstate[i1]=critical(i1) ↔ state[i1] = critical)

Given a formula ϕ, the predicate abstraction of ϕ with respect to P , denoted ϕ̂P , is
obtained by adding the abstraction relation to it and then existentially quantifying the
variables X, i.e., ϕ̂P(XP) := ∃X.(ϕ(X) ∧HP(XP , X)), and similarly for a (transition)

36

Algorithms

formula over X and X ′ we have ϕ̂P(XP , X
′
P) := ∃X,X ′.(ϕ(X,X ′) ∧ HP(XP , X) ∧

HP(X
′
P , X

′)). Moreover, given ϕ, we denote with ϕ̄ the formula obtained by replacing
the atoms in P with the corresponding predicates. Dually, if ϕ is a formula containing
the XP predicates, with ϕ[XP/P] we denote the formula obtained by restoring the
original predicates in place of the abstract ones. We remark that these are not direct
substitutions, since the index variables may have been renamed, and thus some form of
substitution could be needed. It is easy to see that, for any formula ψ, if all atoms of ψ
occur in P , then ψ̂ and ψ̄ are logically equivalent under the assumption HP . The indexed
predicate abstraction of a system S = (X, ι(X), τ(X,X ′)) is obtained by abstracting
the initial and the transition conditions, i.e. ŜP = (XP , ι̂P(XP), τ̂P(XP , X

′
P)). When

clear from context, we will omit the subscript P . We have:

Proposition 15. Let S = (X, ι(X), τ(X,X ′)) an array-based transition system, and
ϕ(X) a formula. Let P a set of index predicates which contains all the atoms occurring
in ϕ. If ŜP |= ϕ̂ then S |= ϕ.

In our algorithm, we start with a system S and use a combination of UPDR, implicit
abstraction, and indexed predicates to check if the property holds in an abstract system
Ŝ. However, the abstraction may be too coarse, and spurious counterexamples can
occur. Notably, such counterexamples are actually a proof that no universal invariant
exists over the set of predicates P : this result is a direct consequence of the fact that
our algorithm is a lifting of the original UPDR[81].

In the following, when working in the abstract space of S, the critical step for the
algorithm is repeatedly checking whether a formula representing a model ψ is inductive
relative to the frame F . Frames will be defined as a set of negation of diagrams (except
for the initial frame F0 which is ῑ). The insight underlying implicit abstraction is to
perform the check without actually computing the abstract version of τ , but by encoding
the simulation relation with a logical formula. This is done by checking the formula:

AbsRelInd(F, τ, ψ,P) = F (XP) ∧ ψ(XP) ∧HP(XP , X)

∧ EQP(X, X̄) ∧ τ(X̄, X̄ ′) ∧ EQP(X̄
′, X ′) ∧ ¬ψ(X ′

P) ∧HP(X
′
P , X

′)

Where the variables X̄ and X̄ ′ are just a copy of the variables of X and X ′ that are
used to describe the abstraction. We have:

Proposition 16. Let S = (X, ι(X), τ(X,X ′)) and let ŜP be its indexed predicate
abstraction. Given any formulae F, ψ, then the formulae AbsRelInd(F, τ, ψ,P) and
F (XP) ∧ τ̂(XP , X

′
P) ∧ ψ(XP) ∧ ¬ψ(X ′

P) are equisatisfiable.

3.2.3 Algorithm description and pseudocode

We can now describe the whole procedure, depicted in the Algorithm 1.
As inputs, we have the array-based transition system S = (X, ι(X), τ(X,X ′)) and a

candidate invariant property ϕ. At line 2, we set our initial set of predicates to be the
set of Σ(I)-atoms occurring in the initial formula of the system, and in the property ϕ.

37

3.2. UPDR with implicit abstraction

Algorithm 1: UPDR + IA
1 Input: S = (X, ι(X), τ(X,X ′)), ϕ(X)
2 P(I) = {set of atoms occuring in ι, ϕ}
3 if not ῑ ∧HP |= ϕ̄:
4 return cex # cex in initial state
5 F0 = {ῑ}
6 k = 1, Fk = ∅
7 while True:
8 while Fk ∧HP ∧ ¬ϕ̄ is sat:
9 # let σ be an AE

I model, and σI its restriction on the index sort;
10 ψ = diag(σI)
11 if not RecBlock(ψ, k):
12 # an abstract counterexample π is provided
13 if not Concretize(π):
14 P = P ∪Refine(π)
15 else:
16 return unsafe
17 # if no models, add new frame:
18 k = k + 1, Fk = ∅
19 # propagation phase
20 for i = 1, . . . , k − 1:
21 for each lemma ψ ∈ F :
22 if AbsRelInd(Fi, τ, ψ,P) is unsat:
23 add ψ to Fi+1

24 if Fi = Fi+1:
25 Return safe

This choice simplifies the description of the algorithm, but it is also possible to start
with a different set of predicates, as long as all the atoms in ϕ are contained in P .

Then, at line 3, the algorithm checks whether there is a violation of the property
in the initial formula. If a counterexample is not encountered, the algorithm is ini-
tialized and the main PDR/IC3 loop starts. The algorithm maintains a set of frames
F0, . . . , FN , which are an approximate reachability sequence of ŜP , as defined in Def-
inition 4. Initially, we set F0 = {ῑ}, F1 to be empty, and we set N , the counter of
the length of the frame, to be equal to 1. Then (line 8), we loop over models in the
intersection between the last frame FN and ¬ϕ̂. For each of those models, we consider
its restriction on the index sort as defined in the preliminaries.

Then, the function diag computes the diagram of the (finite) model over the signa-
ture ΣI ∪XP (Definition 12). It is important to note here that we compute the diagram
only using the universe of the index sort, but we extend the index signature with the
new abstract (index) predicates.

Afterward, the procedure RecBlock (Algorithm 2) tries to either block such a dia-
gram, showing that the corresponding models are unreachable from the previous frame

38

Algorithms

Algorithm 2: RecBlock(ψ,N)

1 if N = 0
2 return False
3 While AbsRelInd(Fi−1, τ,¬ψ,P) is sat:
4 # let σ′ be an AE

I model, and σ′
I its restriction on the index sort;

5 ψ′ = diag(σ′
I)

6 if not RecBlock(ψ′, N − 1):
7 return cex
8 g = Generalize(¬ψ,N)
9 add g to F1, . . . , FN

10 Return True

with an abstract transition, or computes a diagram from the set of backward reachable
(abstract) states, and recursively calls itself. If eventually a diagram is blocked, then
the corresponding frames are strengthened by adding a (generalization of) the diagrams
to them. If the procedure finds a diagram in the first frame, then we are in the presence
of an abstract counterexample of ŜP :

Definition 14. (Abstract Counterexample) Let F0, . . . , FN be an approximate reach-
ability sequence for ŜP and ϕ̂. An abstract counterexample is a sequence of models
π := σ0, . . . , σN such that:

• σi |= Fi, ∀i.0 ≤ i < N ;

• diag(σi) ∧ τ̂ ∧ diag′(σi+1) is satisfiable;

• σN |= ¬ϕ̂.

Note the fact that we compute diagrams only over index model and over the signa-
ture ΣI ∪XP . This is enough to capture abstract counterexamples for ŜP ; we have:

Proposition 17. Given a set of predicates P, if the procedure RecBlock (Algorithm 2)
returns false, then there exists an abstract counterexample for ŜP .

In line 12, the abstract counterexample is analyzed: if the counterexample is spuri-
ous, then we try to refine the set of predicates, and the loop continues. Our refinement
procedure is described in the next section. Else, if a concrete counterexample is found,
the algorithm terminates with an unsafe result. Finally, the propagation phase of the
algorithm tries to push diagrams in Fi to Fi+1. If two frames are equal during this phase,
then an inductive invariant is found by the algorithm. Otherwise, the loop restarts with
a larger trace.

Example 8. We give an overview of some steps of the procedure over the bakery
algorithm. Given P(i1) and XP of the previous examples, we have that

ῑ = ∀i1.
(
xstate[i1]=idle(i1) ∧ xt[i1]=0(i1) ∧ xnext_ticket=1 ∧ xto_serve=1

)
39

3.2. UPDR with implicit abstraction

and
ϕ̄ = ∀i, j.

(
i ̸= j → ¬(xstate[i1]=crit(i) ∧ xstate[i1]=crit(j)

)
.

HP(XP , X) was also shown in the previous example. It is easy to see that ῑ∧HP ∧¬ϕ̄
is unsatisfiable. Therefore, we have F0 = ι̂ and F1 = ⊤. We enter the main loop, and
consider models of HP ∧ ¬ϕ̄; this formula is satisfiable, and we consider the restriction
of a model over the index sort. Suppose that this restriction is given by:

• A finite index universe {a, b} with a ̸= b

• xnext_ticket=1 is true in the model, xto_serve=1 is false;

• the predicate xstate[i1]=idle does not hold for a, b but xstate[i1]=crit does.

So, the corresponding diagram over XP is

ψ = ∃i1, i2.
(
i1 ̸= i2 ∧ xnext_ticket=1 ∧ ¬xto_serve=1 ∧ ¬xstate[i1]=idle(i1)

∧ ¬xstate[i1]=idle(i2) ∧ xstate[i1]=crit(i1) ∧ xstate[i1]=crit(i2)
)
.

We now call RecBlock(ψ, 1), and therefore consider AbsRelInd(F0, τ,¬ψ,P). This is
unsatisfiable, so we can add (a generalization of) ¬ψ to F1. Eventually, F1 ∧HP ∧ ¬ϕ̂
will be no longer satisfiable, so we introduce a new frame F2. (For simplicity, we skip the
propagation phase). At this point, F2∧HP ∧¬ϕ̂ is satisfiable, and it is possible to have
a sequence of models and corresponding diagrams ψ, ψ′, ψ′′ such that RecBlock(ψ, 2)
recursively calls RecBlock(ψ′, 1) which again calls RecBlock(ψ′′, 0). This corresponds
to an abstract counterexample.

The generalization phase, at line 7 of Algorithm 2, is not relevant to the soundness
of the algorithm, but it is a crucial part for its efficiency. During this phase, the diagram
¬ψ is weakened to a more general formula g, which implies the negation of the diagram
but blocks more models. In our implementation, we used a technique based on unsat
core extraction, used also in other PDR/IC3 variants [81, 33].

3.2.4 Concretizing counterexamples and refinement

Given an abstract counterexample, we can try to associate it with a concrete coun-
terexample, thus concluding the algorithm with a negative result, or we could discover
that no concrete counterexample corresponds to the abstract one. More formally, to-
gether with an abstract counterexample π, the algorithm finds a sequence of diagrams
ψ0(XP), . . . , ψk(XP). However, differently from the Boolean and quantifier-free case,
the abstract unrolling

ψ0(X
0
P) ∧

∧
i=1,...,k

τ̂(X i−1
P , X i

P) ∧ ψi(X
i
P) (3.1)

can still be unsatisfiable. That is, we may have two models σ1, σ2 such that diag(σ1)∧
τ̂ ∧ diag′(σ2) is satisfiable, but there is no abstract transition between σ1 and σ2. A

40

Algorithms

possible reason for this is that σ1 and σ2 may have different universes, and the diagrams
abstract σ1 and σ2 by upward-closing them w.r.t. the submodel relation (see section 5 of
[81] for examples and more details). This is also a proof that, to eliminate the abstract
counterexample, a universal invariant over P is not enough. The automatic discovery
of invariants with quantifier alternation is an active area of research [129, 113, 71];
however, in this thesis, we focus only on universal invariants (note that the frames are
the conjunction of negations of diagrams, therefore they are universally quantified in
prenex normal form). Therefore, when we encounter an abstract counterexample, we
try to expand our predicate set P and search for a new universal invariant on a larger
language. In practice, in order to check whether a sequence of diagrams corresponds to
a concrete counterexample, we could check the satisfiability of the concrete unrolling of
the system, by replacing atoms in the diagram with their non-abstracted version, i.e.
checking if the formula

ψ0[XP/P](X0) ∧
∧

i=1,...,k

τ(X i−1, X i) ∧ ψi[XP/P](X i). (3.2)

is satisfiable. If such a query is satisfiable, then we are given a sequence of models which
leads to a violation of the property. In case of unsatisfiability of the (3.2), a typical
approach would be to consider the sequence of formulae ι0 = ψ0(X

0)[XP/P], and ιi =
τ(X i−1, X i)∧ψi[XP/P](X i) (for all 1 ≤ i ≤ n−1), and extract an interpolant sequence
(2.1.2) from it. However, there are two main practical issues in using directly this
encoding: (i) since the formula (4.3) contains quantifiers, proving its (un)satisfiability
is very challenging, and (ii) extracting interpolants from quantified queries is scarcely
supported by existing solvers.

We propose instead to consider an under-approximation of (4.3), i.e. to consider a
finite model encoding of it in a certain size. That is to say, instead of trying to unroll
the counterexample in all the instances of the system, we try to block it in a ground
instance Sn. To choose an appropriate size, recall that a diagram ψi is an existentially
closed formula that is built from an index model with cardinality ni, where ni is the
number of existentially quantified variables in ψi. Thus, we need to choose a size able
to represent at least all the diagrams in the abstract counterexample. Therefore, we
take n = max{ni|i = 1, . . . , k}, which is the least integer such that each diagram is
satisfiable (we take the least for tractability reasons). Then, we consider

(ψ0[XP/P])n(C
0, X0) ∧

∧
i=1,...,k

τn(C
i, X i−1, X i) ∧ (ψi[XP/P])n(C

i, X i). (3.3)

where C and τn are defined in 2.3.2. If such under-approximated unrolling is satisfiable,
we have a counterexample in Sn, and we can terminate the algorithm with an unsafe
result. Otherwise, we can compute an interpolant sequence, and add all the atoms of
the interpolants (after replacing the symbols in C with free variables) to the predicate
set P . Note however that such a refinement will rule out (3.3), but in general not
guaranteed to rule out (4.3): that is, the counterexample can occur again in a greater
size. If this happens, we will consider larger and larger finite encodings, and repeat the

41

3.2. UPDR with implicit abstraction

process. In this way, such a refinement will diverge when an invariant with not only
universal quantification is needed, as the formula 4.3 remains sat, and larger and larger
ground instances will be explored, always yielding the same predicates.

Example 9. Continuing the latter example, suppose we are given a sequence of dia-
grams ψ′′, ψ′, ψ, each with two existentially-quantified variables. Therefore, we consider
the unrolling of (3.3) in S2, by introducing two fresh index constants c1, c2. Such a
formula is unsatisfiable, yielding and a possible interpolant t[c1] = to_serve. Therefore,
we restart the loop with P = P ∪ {t[i1] = to_serve}.

We finally remark that, since we are working with infinite-state systems, the choice
of the correct predicates make a huge impact in the overall convergence of the problem.
Even if our procedure synthesize the predicates that are able to rule out the counterex-
ample given by the formula 4.3, we may diverge in the overall procedure. Predicates
that are too specific may fail to generalize across the state space, leading to a need for
an ever-increasing number of predicates and risking divergence. On the other hand,
predicates that are overly general might not refine the state space sufficiently, failing to
eliminate spurious paths effectively. Moreover, navigating the vast space of potential
predicates to find a set that is both minimal and sufficient for convergence is a signif-
icant challenge in itself. Efficiently selecting and synthesizing such predicates is still a
challenge for research in verification problems. highlighting the intricate relationship
between predicate selection and the success of interpolant-based methods in handling
infinite-state systems [33].

3.2.5 Properties

We have the following properties of the algorithm:

Proposition 18. (Soundness) If the algorithm terminates with safe, then S |= ϕ. If
the algorithm terminates with unsafe, then S ̸|= ϕ.

Moreover, given propositions 16 and 17, we can establish the following fact about
Algorithm 1: once a set of indexed predicates P is fixed, our procedure simulates
the standard UPDR [81] algorithm over the system ŜP . As already anticipated, the
algorithm has a result of partial completeness over a certain set of universally quantified
formulae. To be more precise, let L be the set of formulae of the form ∀i.ψ(i), with
ψ(i) a Boolean combination of ΣI(i)-atoms and elements of P(i). We have the following
proposition (by lifting Proposition 5.6 in [81]):

Proposition 19. (Partial Completeness) If the algorithm 1 finds an abstract counterex-
ample, then no inductive invariant in L exists for S and ϕ.

We already mentioned that the problem we are addressing in this paper is undecid-
able, and there are indeed many possible causes of non-termination of this algorithm.
First, we rely continuously on first-order reasoning, which is in general undecidable.
However, a nice property of our procedure is the following, which follows from simple
logical manipulation after noticing that the formulae defining the implicit abstraction
contain only universal quantification:

42

Algorithms

Proposition 20. If the input system S = (X, ι(X), τ(X,X ′)) is defined by formulae
falling in the decidable fragment of Proposition 11, then each satisfiability check of
Algorithm 1 falls again in the decidable fragment.

Proposition 20 ensures that, if the initial and the transition formulae are described
in a decidable setting, then we are not stuck in first-order reasoning. However, the whole
procedure may still be non-terminating: the sources of divergence may be an infinite
series of refinements, or the unbounded exploration of an infinite-search space (in fact,
even after fixing a set of predicates P , the abstract system ŜP is still infinite-state:
every model is finite, but there is no bound on the cardinalities of their universes). For
the latter problem, it is a common paradigm in the literature to use well-quasi-orders
(wqo) [1] to prove the termination of reachability procedures for infinite-state systems.
In [81], it is shown that UPDR terminates as well if the state of the system forms a
wqo. In our context, we can state the following proposition:

Proposition 21. Given a set of predicates P, if the states of ŜP form a well-quasi-
order, then the algorithm either finds an inductive invariant or a proof of the non-
existence of an inductive invariant over ΣI ∪ P.

As a use case of the latter result, in [110] it is shown that the theory of linear order
in a signature containing arbitrary uninterpreted constants and unary predicates has
the wqo property. Therefore, we have:

Corollary 22. Suppose TI is the theory of a linear order. Suppose also that, at any
point of the procedure, the index predicates P contains only unary or constant predicates.
Then, if there exists a universal invariant over ΣI ∪ P, algorithm 1 is guaranteed to
find it.

3.2.6 Proof of main results

In the following, we will refer for the sake of simplicity to a system with a single array
state variable S = (x, ι(x), τ(x, x′)). All the results here can be extended without loss
of generality to any finite number of array variables X = {x1, . . . , xn}.

Proofs of subsection 3.2.2

In this section, we start by proving Proposition 15. We consider fixed a set of index
predicates P(I) = {p1(I, x), . . . , pn(I, x)}. Given a system S = (x, ι(x), τ(x, x,′)),
we denote with ŜP = (XP , ι̂P(XP), τ̂P(XP , X

′
P)) its indexed predicate abstraction, as

defined in 3.2.2.
We start by defining the simulation relation between the abstract and the concrete

system. Note that S is defined over the theory AE
I , whereas Ŝ is defined only over the

theory TI . Therefore, a state of S is given by a model M of AE
I , and a valuation s of

the array symbol x as a function. Instead, a state of ŜP is given by an index model M′

and a valuation ŝ of the index predicates XP as a subset of (a Cartesian product of)
the universe of M′. Given a model M of AE

I , we denote with M|I its restriction on the
index sort.

43

3.2. UPDR with implicit abstraction

Definition 15. Let (M, s) be a state of S, and (M′, ŝ) a state of Ŝ. The two states
are in the relation αP if and only if M|I = M′ and s, ŝ |= HP(XP , x).

Recall that, for a formula ϕ(X) whose atoms are all contained in P , we write ϕ̄
to denote the formula obtained by substituting the P-atoms with the corresponding
predicates in XP . We have that (see Definition 8):

Proposition 23. The relation αP preserves all the formulae whose set of atoms is
contained in P, modulo the rewriting operator −.

We also define the restriction of a state to its abstract counterpart:

Definition 16. Let s,M be a state of S. We define a state of ŜP by considering M|I ,
and ŝP a valuation of the predicates XP into M|I given by:

ŝP(xp(I,x)) = {M ∈ U(M|I)× ...× U(M|I) |M, s |= p(M,x)}.

i.e. the predicate xp(I,x) is interpreted as the set of all elements of the universes of the
index models such that they satisfy the predicate p(I, x) (under the valuation induced by
s).

The following proposition follows directly from this definition:

Proposition 24. Let M a model of AE
I , and s a valuation into M. Let ŝP as in

Definition 16. Then, we have that s, ŝP ∈ αP .

It is now easy to prove that the index predicate abstraction simulates the original
system:

Lemma 25. Given (M, s) a state of S such that M, s |= ι(x), then there exists a state
(M′, ŝ) of ŜP such that M′, ŝ |= ι̂P(XP), and s, ŝ ∈ αP .

Proof. Recall that ι̂P(XP) := ∃x.(ι(x) ∧ HP(XP , x)). Let M′ = M|I , and ŝ = ŝP as
defined in the previous definition. From 24, we have that s, ŝ ∈ αP , and the lemma
follows.

Similarly, we can prove that:

Lemma 26. Let M a model of AE
I , and let s, ŝ a couple of states such that s, ŝ ∈ αP .

Then, for every s′ such that M, s, s′ |= τ(x, x′), there exists an ŝ′ such that M|I , ŝ, ŝ
′ |=

τ̂P(XP , X
′
P).

We already mentioned that the index predicates abstraction preserves the validity
of all the formulas whose atoms are contained in P . Therefore, we have the following
(stated as Proposition 15 in Section 3.2):

Proposition 27. Let S = (X, ι(X), τ(X,X ′)) an array-based transition system, and
ϕ(X) a formula. Let P a set of index predicates which contains all the atoms occurring
in ϕ. If ŜP |= ϕ̂ then S |= ϕ.

44

Algorithms

Proof. By Lemmas 25, 26, we have that the relation αP is a simulation relation, and
therefore it preserves reachability (2). Suppose that S |= ¬ϕ: then, there exists a finite
path to a state s such that s |= ¬ϕ. By using definition 16, it follows that there exists
a reachable state ŝ of Ŝ such that s, ŝ ∈ αP . Since P contains all the atoms of ϕ, we
have that ŝ |= ¬ϕ̂, a contradiction.

Moreover, can now establish the following fact. Recall that

AbsRelInd(F, τ, ψ,P) = F (XP) ∧ ψ(XP) ∧HP(XP , X)

∧ EQP(X, X̄) ∧ τ(X̄, X̄ ′) ∧ EQP(X̄
′, X ′) ∧ ¬ψ(X ′

P) ∧HP(X
′
P , X

′)

We have:

Proposition 28. Given a system S = (X, ι(X), τ(X,X ′)) and its abstraction ŜP =
(XP , ι̂P(XP), τ̂P(XP , X

′
P)), given any formulae F, ψ, then the formulae AbsRelInd(F, τ, ψ,P)

and F (XP) ∧ τ̂(XP , X
′
P) ∧ψ(XP)∧ ¬ψ(X ′

P) are equisatisfiable. Moreover, if s, s′ |=
AbsRelInd(F, τ, ψ,P), then ŝP , ŝ′P |= F (XP) ∧ τ̂(XP , X

′
P) ∧ ψ(XP) ∧ ¬ψ(X ′

P).

Proof. (sketch) The proof is similar to Theorem 1 in [33], by using Definition 16 instead
of the projection on Boolean values.

Proposition 17 is an immediate consequence of the latter, once noticing that we
compute diagrams from the restriction of models over the signature ΣI ∪ XP : every
step of the algorithm is equivalent to performing UPDR [81] on ŜP .

Proofs of subsection 3.2.3

We give here the proof of the Proposition 18. First, we have

Proposition 29. The frames F0(XP), . . . , Fn(XP) are an approximate reachability se-
quence for ŜP .

Proof. (sketch) The proof follows the same steps as the one in [33], Lemma 1.

Proposition 30. If algorithm 1 terminates with Safe, then S |= ϕ. If algorithm 1
terminates with Unsafe, then S ̸|= ϕ

Proof. The algorithm terminates with Safe when there exists an approximate reacha-
bility sequence F0(XP), . . . , Fn(XP) such that, for some i, Fi+1 |= Fi. From Proposition
1, we have that S̃P |= ϕ̂. From Proposition 27, this implies that S |= ϕ. If the al-
gorithm terminates with Unsafe, then the unrolling 4.3 is satisfiable, and we have a
counterexample.

45

3.3. Lambda: Learning lemmas from ground instances

3.3 Lambda: Learning lemmas from ground instances
In the preceding section, we introduced UPDR with implicit abstraction as a technique
for the automatic discovery of universally quantified inductive invariants for array-based
transition systems. The method entails the execution of satisfiability checks that ne-
cessitate quantification for both deriving models of quantified formulae and computing
diagrams, or for proving unsatisfiability to incorporate clauses into frames. Despite its
theoretical prowess, this approach incurs a significant computational overhead.

This section introduces an alternative strategy that, while potentially less com-
prehensive, lacking any definitive assurance of invariant discovery, it exhibits better
practical performance. The method is based on the investigation of concrete instances,
that has long been acknowledged as a valuable heuristic in the verification of parame-
terized systems [114, 46, 70]. The intuition is that in most cases if a counterexample to
a property exists, it can be detected for small values of the parameter. Moreover, if a
property holds, the reason for that should be the same for all values of the parameter
(at least after a certain threshold value).

In this section, we present a second algorithm for solving the invariant problem for
array-based transition systems, inspired by the ideas above: we try to generalize an
invariant for the system by exploring small ground instances. In contrast to the algo-
rithm of the previous section, this algorithm tries to guess an invariant, rather than
constructing one incrementally. Even if we do not provide any theoretical guarantees
that this guess will eventually be correct, this approach relies less on quantified rea-
soning, which turns out to be better from a practical standpoint. We start by giving a
high-level overview of our method, depicted also in Fig. 3.1. Then, we will go into the
details of the algorithm, discussing our generalization technique 3.3.2, and presenting
two different approaches to check whether our generalization is correct (the Candidate
Checking box) 3.3.3, 3.3.4. We finish the section by discussing the properties of the
algorithm 3.3.5.

3.3.1 High level algorithm

S, ϕ

Ψ

Sn Ground
instance

Sn |= ϕn ∧ Ψn? Does π |= ¬ϕn?

Generalization

Candidate
CheckingSafe

Unsafe

Remove ψi such
that π |= ¬ψi

No, π cex Yes

NoYes,
Inv invariant

Yes

No,
n = n+ 1

Figure 3.1: An overview of the algorithm.

We consider as inputs for the algorithm an array-based transition system S and a

46

Algorithms

candidate invariant ϕ. We also maintain a set of formulae Ψ = {ψ1, . . . , }, initially
empty, that contains universally quantified candidate lemmas. We also initialize n, a
counter for the size of the ground instance we explore, equal to 1. We perform the
following steps:

• we consider Sn, as defined in 2.3.2, and then use a model checker to check whether
ϕn ∧ Ψn is an invariant for the ground instance. If we get a counterexample,
we check if the property itself is falsified (thus terminating the algorithm with
Unsafe result), or we remove the lemmas that are proved to be false in size n.
In the latter case, we repeat the ground model checking query, until either a true
counterexample is obtained, or the property holds.

• If the model checker proves the property, we consider an inductive invariant Inv
of Sn. From such a formula, we synthesize a set of new lemmas, that we add to
Ψ (Generalization).

• In the Candidate Checking box, we check if the property ϕ (together with the
lemmas Ψ) is an inductive invariant for the original system S. We propose two
methods for performing this check, described in 3.3.3, 3.3.4.

• In case of success, the property is proved and we have found an inductive invariant.
In case of a failure, we need a better candidate invariant: we restart the loop with
a new exploration from size n+ 1.

Note there are many possible causes of non-termination of the algorithm (again, since
we are dealing with undecidable problems, this is not avoidable): the main problems
are the candidate checking box, which involves quantified reasoning, and the existence
of an integer n such that the generalized formula obtained after model checking a
ground instance of size n is inductive also for all other instances. The pseudocode of
the procedure is reported in Algorithm 3. In the next sections, we describe all the
sub-procedures in detail.

3.3.2 Generalization

A key step of this algorithm is the one of producing candidate invariants by generalizing
proofs from a ground instance. In this section, we show our approach. We suppose to
have a model checker capable of proving or disproving that Sn |= ϕn (e.g. [33]). If a
counterexample is not found, we also suppose that the model checker returns a formula
Inv which witnesses the proof, i.e. an inductive invariant of Sn and ϕn. From this
witness, we generalize a set of quantified lemmas.

Definition 17 (Generalization). Let S be an array-based transition system, ϕ a candi-
date invariant, and suppose Sn |= ϕn. A n-generalization is a (quantified) formula Ψ
such that Ψn is an inductive invariant for Sn and Ψn |= ϕn.

In practice, we exploit the technique that we used in [34], inspired by [114], which
works as follows. Suppose that Inv is in CNF. Then, Inv = C1∧· · ·∧Cm is a conjunction

47

3.3. Lambda: Learning lemmas from ground instances

Algorithm 3: Learning lemmas from ground instances
1 Input: S = (X, ι(X), τ(X,X ′)), ϕ(X)
2 n = 1
3 while True:
4 Sn = grounding(S, n)
5 while not Sn |= ϕn ∧Ψn:
6 # model checker returns a cex π from size n
7 if π |= ¬ϕn:
8 return Unsafe, π
9 else:

10 Ψ = Ψ \ {ψi|π |= ¬ψi}
11 # model checker returns an inductive invariant Inv from size n
12 Ψ = Ψ ∪ generalization(Inv)
13 if InvariantChecking(S, ϕ,Ψ):
14 return Safe, ϕ ∧Ψ
15 else:
16 n = n+ 1

of clauses. From every one of such clauses, we will obtain a universally quantified
formula. Let AllDiff (I) be the formula that states that all variables in I are different
from each other. For all j ∈ {1, . . . ,m}, let ψj = ∀I.AllDiff (I) → Cj[C/I] - where C
are the variables introduced in 2.3.2. Let Ψ =

∧m
j=1 ψj. It follows from Proposition (14)

that such a Ψ is a n-generalization.
It should be clear that our technique can infer lemmas with only universal quan-

tifiers, but more generalizations are possible [70, 52]. For example, if a clause of the
inductive invariant were l(c1)∨ ...∨ l(cn), a possible generalization of that clause would
be ∃x.l(x).

Minimizing modulo symmetries

Our next step will be to try to prove that the generalized lemmas from size n also
hold for all other ground instances. Therefore, it is intuitive to try to weaken as much
as possible the generalization Ψ, to increase the chances that its inductiveness will be
preserved in other instances. So, before generalization, we exploit the invariant mini-
mization techniques described in [77] to weaken the inductive invariant Inv by removing
unnecessary clauses. However, note that, with our generalization technique, two sym-
metric clauses produce the same quantified formula: if σ is a substitution of the C’s,
the formulae obtained by generalizing a clause C(C) or σC(C) are logically equivalent.
So, we apply the following strategy: given a clause C(C) in Inv, we add to the invariant
all the ‘symmetric’ versions σC, where σ ranges over all possible substitutions of the
C’s. By Proposition (14), we can safely add those clauses to Inv and it will remain in-
ductive. Then, during the minimization process, a clause is removed from the invariant
only if all its ‘symmetric’ versions are.

48

Algorithms

Example 10. Following the bakery example, by using the model checker described [33]
on a 2-instance of the protocol we obtain an inductive invariant which is made of 27
inductive clauses. After minimizing the invariant modulo the symmetries of the finite
isntance, we are left with the following eight clauses (c1, c2 are considered implicitly
different):

(¬(to_serve = ticket[c1]) ∨ ¬(state[c2] = crit))(
¬(to_serve = ticket[c1]) ∨ ¬(state[c1] = idle)

)
,(

ticket[c1] = ticket[c2] ∨ (¬(state[c1] = idle) ∧ ¬(state[c2] = idle))
)
,

(1 ≤ next_ticket− ticket[c2]),

¬(next_ticket = ticket[c1]),(
ticket[c2] = 0 ∨ ¬(state[c2] = idle)

)
,

(1 ≤ to_serve),(
to_serve = ticket[c1] ∨ ¬(state[c1] = crit)

)
,

Once generalized, we obtain the following set of lemmas, which is indeed an inductive
strengthening for the property:

∀j∀i.(i ̸= j → (¬(to_serve = ticket[i]) ∨ ¬(state[j] = crit))),

∀i.
(
¬(to_serve = ticket[i]) ∨ ¬(state[i] = idle)

)
,

∀j∀i.
(
i ̸= j → (ticket[i] = ticket[j] ∨ (¬(state[i] = idle) ∧ ¬(state[j] = idle)))

)
,

∀j.(1 ≤ next_ticket− ticket[j]),

∀i.¬(next_ticket = ticket[i]),

∀j.
(
ticket[j] = 0 ∨ ¬(state[j] = idle)

)
,

(1 ≤ to_serve),
∀i.
(
to_serve = ticket[i] ∨ ¬(state[i] = crit)

)
.

3.3.3 Candidate Checking via Parameter Abstraction

In this section, we discuss how we can check that a formula ϕ is an invariant of S,
by using only a quantifier-free model checker instead of a theorem prover. We do
this by constructing a new system S̃, called the parameter abstraction of S, which is
quantifier-free and simulates S. The first version of this approach was introduced in
[88]; in the following, we describe a novel version of the abstraction, and how it can
be applied to array-based transition systems. The main novelty is that, instead of
using a special abstract index “∗” that over-approximates the behavior of the system

49

3.3. Lambda: Learning lemmas from ground instances

in the array locations that are not explicitly tracked, we use n environmental (index)
variables which are allowed to change non-deterministically in some transitions. This
can be achieved by the usage of an additional stuttering transition: this rule allows the
environmental variables to change value arbitrarily, while not changing the values of
the array in all other indexes.

Hypothesis: In the remaining of this section, we suppose additional hypothesis
on the shape of the system S. These hypothesis are needed for the construction of
the abstraction system S̃, and they turn out not to be particularly restrictive: for
instance, large classes of parameterized systems can still be described in this setting. In
particular, we suppose that the candidate property ϕ(X) and the initial formula ι(X)
are universal formulae. Moreover, we suppose that the transition formula τ(X,X ′) is
a disjunction of formulae of the form ∃I∀J.ψ(I, J,X,X ′), with ψ quantifier-free.The
formulae defined in this way are close to the one in 11, altough we do not require the
absence of functions with, as codomain, the index sort.

Preprocessing steps

Before starting constructing the abstract system, we apply some preprocessing steps
to S, justified by the following two propositions. The first proposition is basically an
induction principle:

Proposition 31 (Guard strengthening [88]). Let C = (X, ι(X), τ(X,X ′)) be a symbolic
transition system and let ϕ(X) be a formula. Let Cϕ:= (X, ι(X), τ(X,X ′) ∧ ϕ(X))
(called the guard-strengthening of C with respect to ϕ(X)). If ϕ is an invariant of Cϕ,
then it is also an invariant of C.

The second proposition is used to remove quantified variables in candidate proper-
ties:

Proposition 32 (Removing quantifiers[102]). Let C = (X, ι(X), τ(X,X ′)) be a sym-
bolic transition system. Then, ∀X.ϕ(X) is an invariant for C iff the formula ϕ[X/P]
is an invariant for CP = (X ∪ P, ι(X), τ(X,X ′) ∧ P ′ = P), where P is a set of fresh
frozen variables, called prophecy variables.

In order to build the parameter abstraction of the system S, we first apply Proposi-
tion 31, and add the candidate property itself in conjunction with the transition formula.
Then, by applying Proposition 32, we remove the universal quantifiers in the formula
ϕ and introduce accordingly a set of prophecy variables P . In this way, we reduce the
problem of checking S |= ∀I.ϕ′(I,X) to S |= ϕ′(P,X).

Abstraction Computation

We continue the computation of the abstract system by defining a set of fresh vari-
ables, called the environmental variables E, in a number determined by the greatest
existential quantification depth in the disjuncts of the transition formula of S. While
the prophecies are frozen variables, the interpretation of the environmental variables is
not fixed. Moreover, we assume that the values taken by P and E are different. We
now define the formulae for S̃, the parameter abstraction of S.

50

Algorithms

Initial formula

Let ι(X) be the initial formula of S, which by hypothesis contains only universal quan-
tifiers. The initial formula of the abstract system is a formula ι̃(P,X), obtained by
expanding all the universal quantifiers in ι over the set of prophecy variables P .

Transition formula

For simplicity, we can assume that we have only one disjunct in τ(X,X ′). First, we
compute the set of all substitutions of the existentially quantified variables I over P ∪
E, and we consider the set of formulae {τ̃j(P, P ′, E,X,X ′)}, where j ranges over the
substitutions, and τ̃j is the result of applying the substitution to τ .

Then, for each formula in the set {τ̃j}, we instantiate the universal quantifiers in it
over the set P ∪E, obtaining a quantifier-free formula over prophecy and environmental
variables.

Moreover, we consider an additional transition formula, called the stuttering tran-
sition, defined by:

τ̃S :=
∧
x∈X

∧
p∈P

x′[p] = x[p] ∧ p′ = p

The disjunction of all the abstracted transition formulae is the transition formula
τ̃ . So, we can now define the transition system

S̃ := ({X,P,E}, ι̃(P,X), τ̃(P, P ′, E,X,X ′)).

Stuttering Simulation

We state here the property of our version of the Parameter Abstraction, the proof of
which can be found in the last section. Formally, the abstraction induces a stuttering
simulation, where the stuttering is given by τ̃S: this is a weaker version than the
simulation induced by [88], yet it is sufficient for preserving invariants. Intuitively, in
our abstraction, we require that every abstract array is equal to its concrete counterparts
only on the locations referred to by the prophecy variables. We then have the following:

Proposition 33. There exists a stuttering simulation between S and S̃. Moreover, the
simulation preserves Φ(P,X). Therefore, if S̃ |= Φ(P,X), then S |= Φ(P,X).

Unfortunately, if S̃ ̸|= Φ(P,X), we cannot conclude anything, since the counterex-
ample may be spurious, due to a too coarse abstraction. If that is the case, we restart
the loop of the algorithm by increasing the size of ground instance n, and either find a
counterexample in a larger size or consider again the abstraction with a new candidate
invariant.

3.3.4 Candidate Checking via SMT solving

An alternative – and more standard – approach for performing the Candidate Checking
procedure, which does not require particular syntactical restrictions, is to check directly
if the formula Ψ is an invariant strengthening for ϕ.

51

3.3. Lambda: Learning lemmas from ground instances

Definition 18. Let S = (X, ι(X), τ(X,X ′)) be an array-based transitions transition
system, and ϕ a candidate invariant. An invariant strengthening Ψ is a formula such
that the following formulae are AE

I -unsatisfiable:

ι(X) ∧ ¬(ϕ(X) ∧Ψ(X))

τ(X,X ′) ∧ ϕ(X) ∧Ψ(X) ∧ ¬(ϕ(X ′) ∧Ψ(X ′)).
(3.4)

Since a formula is valid iff its negation is unsatisfiable, it follows from the definition
that if Ψ is an invariant strengthening for ϕ iff ϕ ∧Ψ is an inductive invariant for S.

Checking the unsatisfiability of the formulae (3.4) could be implemented with the
usage of any prover supporting SMT reasoning and quantifiers, e.g. [50, 8]. How-
ever, especially for satisfiable instances, such solvers can diverge easily. Thus, since
many queries can be SAT, a naive usage of such tools will cause the procedure to get
stuck in quantified reasoning with no progress obtained. Therefore, we propose in this
section a ‘bounded’ sub-procedure of Candidate Checking, in which instead of relying
on an off-the-shelf SMT solver supporting quantifiers, we ‘manually’ apply standard
instantiation-based techniques for quantified SMT reasoning [51], in which however we
carefully manage the set of terms used to instantiate the quantifiers, in order to prevent
divergence.

Given a candidate inductive invariant, we perform Skolemization on the inductive
query (3.4), obtaining a universal formula. Then, we look for a set of terms G such that
the ground formula obtained by instantiating the universals with G is unsatisfiable.
This is the standard approach used in SMT solvers for detecting unsatisfiability of
quantified formulae [51, 62]; the main difference is that instead of relying on heuristics
to perform the instantiation lazily during the SMT search (e.g [51, 62]), we carefully
control the quantifier instantiation procedure, and expand the quantifiers eagerly so
that we can use only quantifier-free SMT reasoning.

Let ϕS = ∀I.ϕ′
S(I,X) be the result of the Skolemization process, where ϕ′

S is a
quantifier-free formula over a signature Σ′, obtained by expanding Σ with new Skolem
symbols. Initially, we simply let G be the set of 0-ary symbols of the index sort in
the formula. Note that apart from constants in the original signature, new (Skolem)
constants arise by eliminating existential quantifiers. Since we use only universal quan-
tification for the generalized invariant strengthening, Ψ is a conjunction of universal
formulae, and we can swap the conjunction and the universal quantification to obtain a
formula with only n universal quantified variables, where n is the size of the last ground
instance visited. Notice that, since the candidate inductive strengthening occurs also
negated in the quantified formula, this will produce n new Skolem constants.

Finally, we can add to the inductive query an additional constraint. By induction on
the structure of our algorithm, if Ψ is generalized from size n, we have proven already
that the property ϕ holds in S for all the ground instances of size equal to or less than
n. Thus, we impose that in our universe G there are at least n different terms.

To sum up, let ϕS = ∀I.ϕ′
S(I,X) be the universal formula obtained after Skolemizing

the formulae in (3.4), and let m be the length of I. Let n be the cardinality of the
last visited ground instance. Let G be the set of constants of index sort in ϕ′

S (by the

52

Algorithms

previous discussion, |G| ≥ n). Let c1, . . . , cn be a set of fresh variables of index sort.
We test with an SMT solver the satisfiability of the following formula

∧
g∈Gm

ϕ′
S[I/g] ∧ AllDiff (C) ∧

n∧
j=1

(
∨
g∈G

cj = g) (3.5)

We have that:

Proposition 34. For any set of ΣI-terms G, if (3.5) is unsatisfiable, then ψ is an
inductive strengthening for ϕ.

Refinement

If the former formula is SAT, there are two possibilities. Either we have a real coun-
terexample to induction, and we need a better candidate, or our instantiation set G
was too small to detect unsatisfiability. In general, if G covers all possible ΣI-terms,
then we can deduce that the counterexample is not spurious.

Definition 19. Given an index theory TI with signature ΣI , we say that a set of ΣI-
terms G is saturated if, for all terms ΣI-term t, there exists a g ∈ G such that TI |=
t = g.

So, if G is saturated, any model of (3.5) corresponds to a counterexample to in-
duction, and we need a better strengthening. However, in case (3.5) is satisfiable, but
G is not saturated, we use the following heuristic to decide whether we need a better
candidate or a larger G. We consider the inductive query in Sn+1,using as a candidate
inductive invariant (Ψ ∧ ϕ)n+1. If the candidate invariant is still good (the query is
UNSAT), we try to increase G to get the unsatisfiability of the unbounded case. Our
choice is to add to G terms of the form f(x) where f is a function symbol of index
type, and x are constants already in G. Note that if no function symbols are available,
i.e. if ΣI is a relational signature, then saturation of G follows already by considering
0-ary terms. Therefore, in case G is initially not saturated, the existence of at least one
function symbol is guaranteed.

If the query (3.5) is now UNSAT, we have succeeded. Otherwise, we continue to
add terms to G, until either all function symbols have been used, or an UNSAT result
is encountered. If the candidate invariant strengthening is not inductive for size n + 1
(the query is SAT), then we remove the bad lemmas, and we fail to prove the property.

An important remark is necessary to put more insight on the reasons why our in-
stantiation procedure is effective, especially for the protocols we considered. As already
mentioned, in many systems descriptions, especially the ones arising from parameter-
ized verification, the formulae describing array-based systems fall into the decidable
fragment of Proposition 11. In this case, no function symbols are introduced during
Skolemization: therefore, the set G of 0-ary terms already is saturated. Even in the
case of ∀∃ alternation (but in a multi-sorted setting), saturation can be achieved after
a few refinement steps (as long as the Skolem functions introduced in the signature do
not combine in cycles). More details about the completeness of instantiation methods,

53

3.3. Lambda: Learning lemmas from ground instances

especially for the verification of parameterized systems, can be found in [67, 60, 125].
Since we limit ourselves to terms of depth one, our method can fail to prove invari-
ants requiring some more complex instantiations. Note that in that case, it is always
possible to change the choice and the refinement of the set G with more sophisticated
methods [116, 62].

3.3.5 Properties

In this section, we state the general properties of the algorithm, that hold regardless of
the strategies used during the procedure.

Proposition 35. (Soundness) If Algorithm 3 returns Safe, then S |= ϕ. If the algo-
rithm returns Unsafe, then S ̸|= ϕ.

Proof. The first claim follows directly from propositions 33 or 34. For the second claim,
the algorithm terminates with unsafe only when Sn ̸|= ϕ, meaning that there exists a
model M of AE

I of cardinality n, and a sequence of states s0, . . . , sk, such that M, s0 |= ι
and M, si, si+1 |= τ for all 0 ≤ i < k. This also means that S ̸|= ϕ.

In general, we do not have any theoretical guarantees that our algorithm will ter-
minate. In fact, even the ground Candidate Checking Sn |= ϕn ∧ Ψn can be non-
terminating. However, our algorithm guarantees (it follows from how we do the gener-
alization, i.e. Definition 17) that every lemma in Ψ can be removed only after checking
an n′ instance, with n′ > n. Therefore, the algorithm always makes progress in the
following sense.

Proposition 36. (Progress) During every execution of the loop of Algorithm 3, the
same pair (n,Ψ) never occurs twice.

Finally, by checking instances of bigger and bigger size, we semi-decide the problem
of falsifying invariant problems:

Proposition 37. (Semi-completeness for counterexamples) Suppose S ̸|= ϕ, and the
minimal counterexample with respect to the sizes of index models is n. If all the model
checking problems Sn′ |= ϕn′, with n′ < n, terminate, then algorithm 3 eventually finds
the counterexample.

3.3.6 Proofs of main results

We report here the technical results for the proof of Proposition 33. We consider an
array-based transition system S = (x, ι(x), τ(x, x′)), a candidate property ϕ(x), and
its parameter abstraction S̃ = ({x̃, P, E}, ι̃(P, x̃), τ̃(P, P ′, E, x̃, x̃′)), as defined in 3.3.3,
where the x̃ are a renaming of the x. Note that a state s̃ of S̃ consists of both an
assignment of the array variable x and of the index variables P ∪E. With a small abuse
of notation, we do not distinguish the two cases. The simulation of the abstraction is
given by the formula:

54

Algorithms

Definition 20. Let S an array based transition system and S̃ its parameter abstraction.
Let P = {p1, . . . , pn} be the set of prophecy variables. We define

H̃(x, x̃) :=
∧

i=1,...,n

x̃[pi] = x[pi]

Let M be a model of AE
I . If s is a state of S, and s̃ of S̃, we define a relation α among

states in this way:
s, s̃ ∈ α ⇔ M, s, s̃ |= H̃(x, x̃).

First, we prove the following Proposition.

Proposition 38. Let M a model of AE
I . Let s̃ be a state of S̃. Let µ be an interpretation

of P such that µ(P) = s̃(P). Let ϕ(P, x) be a quantifier free formula which contains
only prophecies as free index variables. Then, for any state s of S such that α(s, s̃),

s̃ |= ϕ(P, x) ⇔ s, µ |= ϕ(P, x)

Proof. Note that a model for a function is uniquely determined by the values on its
domain. So, if M is a model for the total functions from MI to ME, then

µ, s |= ϕ(P, x)

where s is a valuation to into M, is equivalent to

µ, s′ |= ϕ(P, x), (3.6)

where s′ is a valuation to N , which obtained from M by restricting all the interpretation
of the index variables to the substructure of MI generated by the elements in µ(P).
Similarly, for any model M′ and valuation s̃ into it,

s̃ |= ϕ(P, x)

is equivalent to
s̃′ |= ϕ(P, x), (3.7)

where N ′ defined similarly as above. Since µ(P) = s̃(P), we have N = N ′. Moreover,
from the definition of α, s′ and s̃′ assign x to the same function, so (3.6) and (3.7) are
equivalent.

As a corollary, we have We have (see Definition 7)

Proposition 39. The relation α preserves all the formulae of AE
I of the form ϕ(P, x[p1], . . . , x[pn]).

Lemma 40. Let M be a model of AE
I . If s |= ι(x), then there exists some s̃ such that

α(s, s̃) and s̃ |= ι̃(P, x).

55

3.3. Lambda: Learning lemmas from ground instances

Proof. Let s be an assignment into a model M, with index domain MI , and let m be
the length of I. Then,

ι̃(P, x) =
∧

pi1 ,...,pim⊆Pm

ϕ(pi1 , . . . , pim , x[pi1 , . . . , pim]).

Let µ̃ an (injective) assignment of the prophecy variables P into MI . Let s̃ defined as
the restriction of s over µ̃(P) and such that s̃(P) = µ̃(P). By definition, (s, s̃) ∈ α.
Then, by Proposition 38, we have

s̃ |= ι̃(P, x) ⇔ s, µ̃ |= ι̃(P, x).

Since the formula ι(x) → ι̃(P, x) is valid, and s |= ι(a) by hypothesis, the claim
follows.

Lemma 41. Let M be a model of AE
I . If s, s′ |= τ(x, x′), then for every s̃ such that

(s, s̃) ∈ α, either:

• there exists a rule τ̃ and some s̃′, such that s̃, s̃′ |= τ̃ and (s′, s̃′) ∈ α; or

• there exist a rule τ̃ and some s̃′, s̃′′, such that s̃, s̃′ |= τ̃S, s̃′, s̃′′ |= τ̃ , and (s′, s̃′′) ∈
α.

Proof. We first consider the simpler case of one prophecy variable p and one environ-
mental variable e. By hypothesis,

s, s′ |= ∃i∀J.ψ(i, J, a, a[J], a′, a′[J]).

Hence, there exists an interpretation µ of i in an element of MI such that

s, s′, µ |= ∀J.ψ(i, J, a, x[J], x′, x′[J]). (3.8)

Let’s also fix a state s̃ of S̃, such that α(s, s̃). There are now three cases:

• Suppose µ(i) = s̃(p). Then, the transition of S̃ labeled by the substitution i 7→ p
is:

τ̃σ:i 7→p =
∧
j∈p,x

ψ(p, J, x, x[J], x′, x′[J]).

Let s̃′ defined as s̃′(p) := µ(i) and s̃′(x)[s̃′(p)] := s′(x)[µ(i)]. Note that α(s′, s̃′)
by definition. Since (3.8) is universal and µ(i) = s̃(p), with an argument similar
to lem 40, we have that s̃, s̃′ |= τ̃σ:i 7→p.

• Suppose µ(i) ̸= s̃(p) but µ(i) = s̃(e) and s̃(x)[s̃(e)] = s(x)[µ(i)]. Then, consider
the transition labeled by the substitution i 7→ e. Similarly to the first case, we can
define s̃′ to be the restriction of s′ over p and e, and we have that s̃, s̃′ |= τ̃σ:i 7→e.
Moreover, α(s′, s̃′) by definition.

56

Algorithms

• If instead µ(i) ̸= s̃(x) or s̃(x)[s̃(e)] ̸= s(x)[µ(i)], we can reduce to the previous
case with a stuttering transition. Let s̃′ defined as s̃ on p, but s̃′(e) := µ(i) and
s̃′(x)[s̃(e)] := s(x)[µ(i)]. Note that we also have (s, s̃′) ∈ α. Then s̃, s̃′ |= τ̃S,
and we have reduced to the previous case. So, there exists an s̃′′ such that
s̃′, s̃′′ |= τ̃σ:i 7→e and α(s′, s̃′′).

In general, suppose P = (p1, . . . , pn). By hypothesis,

s, s′ |= ∃I∀J.ψ(i, J, x, x[J], x′, x′[J]).

Since the length of E is the maximum length of the existentially quantified index vari-
ables in the rules of S, we can assume without loss of generality that I = (i1, . . . , im)
and E = (e1, . . . , em). By hypothesis there exists an interpretation µ of I such that

s, s′, µ |= ∀J.ψ(I, J, x, x[J], x′, x′[J]).

Let’s also fix a state s̃ of S̃, such that α(s, s̃). There are again three cases; we omit the
details since they are a generalization of the previous ones.

• if µ(I) ⊆ s̃(P), then there exist PJ = (pj1 , . . . , pjm) such that µ(I) = s̃(PJ). We
can define s̃′ to be the restriction of s over, P and we have again s̃, s̃′ |= τ̃σ:I 7→PJ

.

• Suppose now there exists a 0 ≤ h < m such that µ(i1, . . . , ih) = s̃(pj1 , . . . , pjh),
and moreover µ(ih+1, . . . , im) = s̃(e1, . . . , em−h), and also s̃(a)[s̃(e1, . . . , em−h)] =
s(a)[µ(ih+1, . . . , im)]. Then, if we define s̃′ to be the restriction of s′ over P ∪ E,
we have that s̃, s̃′ |= τ̃σ where σ : I 7→ {pj1 , . . . , pjh , e1, . . . , em−h}.

• If instead µ(ih+1, . . . , im) ̸= s̃(e1, . . . , em−h) or
s̃(a)[s̃(e1, . . . , em−h)] ̸= s(a)[µ(ih+1, . . . , im−h)], we can reduce to the previous case
with a stuttering transition. Let s̃′ defined as s̃ on P , but s̃′(e1, . . . , em−h) :=
µ(ih+1, . . . , im) and s̃′(a)[s̃(e1, . . . , em−h)] := s(a)[µ(ih+1, . . . , im−h)]. Note that
α(s, s̃′) by definition. Moreover, s̃, s̃′ |= τS. We have now reduced to the previous
case, and the claim follows.

Theorem 42. The relation α is a stuttering simulation between S and S̃.

Proof. Follows directly from Lemmas 40 and 41.

Theorem 43. Let S be an array-based transition system, S̃ its parameter abstraction.
Let ∀I.Φ(I, a) a candidate invariant, and P a set of frozen variables with same length
as I. If S̃ |= Φ(P, a), then S |= Φ(P, a)

Proof. The statement follows from the fact that stutter simulations preserve reachability
(6), and from Proposition 38.

57

3.4. Related Work

3.4 Related Work

This section aims to provide an overview of the state-of-the-art in parameterized sys-
tem verification, highlighting the advancements and limitations of existing techniques.
Verification of systems with quantifiers ranging over finite but unbounded domains has
always received a lot of attention from the literature, particularly in the applications in
the field of parameterized verification.

Various techniques have been developed based on cut-off results, where a cut-off
is the size of a ground instance that already contains all possible behaviors. Cut-off
values exist for large varieties of classes of systems but depend strongly on assumptions
such as topology and data [14]. Once a cut-off is obtained for a particular class, one
can reduce parameterized model checking to model checking only a finite number of
ground instances. However, such results are obtained only on specific systems, for
example, token-passing systems in ring structures or broadcast in rendezvous protocols
[7, 79, 54, 55]. Nonetheless, such results are quite useful, since they can also be used
for the verification of liveness properties. Our methodology aims to be more general
and deductive, contrasting with these approaches primarily reliant on specific systems
and properties for cut-off determination.

The technique of invisible invariants, proposed in [114, 56, 130], uses ground explo-
ration to generate candidate universally quantified invariants, marking the first instance
of such an approach for Boolean systems. Such an invariant is obtained with the formula
of reachable states computed from a ground instance. In the original paper, the method
was proved also complete for a subclass of systems (effectively providing a cut-off re-
sult). Despite the advancements it introduced, its applicability is limited to a subclass
of the systems we consider. Nonetheless, the concept of generalizing invariants from
ground instances is foundational also to our more general algorithms, demonstrating
the significance of cut-off results and invisible invariants in our work indirectly.

Abstraction methods, such as those on Parameter Abstraction [88, 29], or Envi-
ronmental Abstraction [44, 120], have shown success also in verifying some industrial
protocols [124]. The general idea is to replace the verification of the parameterized
system with an abstract one that encapsulates all the possible behaviors of the compo-
nents. However, these methods often require significant manual effort and expertise to
achieve desired outcomes. Our abstraction algorithm in Section 3.3.3 draws inspiration
from [102] and [88], seeking to enhance automation and reduce the need for expert
intervention.

Tools like Mcmt [67] and Cubicle [45] are model checkers designed to solve the
invariant problem of array-based transition systems. The formalism used by the frame-
work [65] is a subclass of the one we consider. Both tools implement fully symbolic
backward reachability algorithms but they need strong syntactic restrictions on the
shape of the formulae defining systems. Such restriction allows for their procedure to
produce satisfiability checks that always falls into the decidable fragment 2.3. If this is
not possible, the procedure introduces approximations that may lead to spurious coun-
terexamples. The approaches that we propose do not rely on backward computation
of pre-images, aiming for direct and potentially more accurate verification methods.

58

Algorithms

The tool Safari [3] is based on the Mcmt formalism and is used to prove proper-
ties of systems defined over the theory of arrays, by leveraging an ad-hoc interpolation
procedure.

Ivy [112, 60] is a tool for the verification and design of parameterized systems. It
aims to be a bridge between automated theorem proving and verification. The tool itself
is not capable of inferring inductive invariants, but it guides the use of writing correct
ones by showing counterexamples to induction. The formalism used by Ivy can be
embedded in the one of this thesis, simply by considering as TE the theory of booleans.
A related tool is MyPyvy [83], which is a model checker based on the Ivy formalism,
that implements algorithms for the automatic discovery of inductive invariants like
UPDR [81]. Such algorithms represent important ground for the work described in this
thesis. In particular, our work extends these methodologies to accommodate a general
theory TE, showcasing the breadth of our approach in handling more complex system
models.

Other tools and methods that leverage finite instance exploration for invariant gen-
eralization are [70, 95, 129, 76, 93], often domain-specific and relying on external provers
for quantified queries. Our algorithm in Section 3.3 shares similarities with Ic3po [70]
but aims for broader applicability beyond pure first-order logic contexts.

The SMT-based approach for parametric verification in [74] presents a reduction
to non-linear Constrained Horn Clauses (CHCs) but is more restrictive in its input
language and syntactic structure of invariants. Our methodology contrasts by offering
a more flexible input language and a broader approach to invariant structuring.

Moving outside the realm of parameterized verification, there are other verification
techniques capable of synthesizing invariants with universally quantified variables. For
example, the use of prophecy variables in [96, 128] introduces a technique to infer uni-
versally quantified invariants for quantifier-free transition systems over the theory of
arrays. The algorithm [75] introduces an IC3 variant for the same kind of systems, ca-
pable of inferring invariants with quantifiers, thanks to the techniques of approximated
quantifier elimination of [84].

59

3.4. Related Work

60

Chapter 4

Compositional Verification of
Parameterized Systems

In this chapter, we present a novel algorithmic approach that represents a departure
from the methods discussed in earlier chapters. Our focus shifts to the invariant verifica-
tion of parameterized systems through the lens of asynchronous composition of diverse
subsystems. Actually, the algorithm we discuss is not limited to array-based symbolic
transition systems but is applicable to a broader range of system types. Initially, in
Section 4, we introduce the algorithm in a general context, not targeting only param-
eterized systems. Subsequently, we will refine our discussion to specifically address its
application to array-based transition systems.

The context for our algorithm involves systems composed of multiple components,
each designed independently yet interconnected through shared variables. These com-
ponents operate asynchronously, with each capable of altering the shared variables
through transitions. Our aim is to devise a method for automatically verifying in-
variant properties across the entire system, focusing on reducing the computational
overhead typically associated with model checking the entire system monolithically.

Understanding that direct application of model checking to such a comprehensive
system description can be computationally prohibitive, we propose an alternative strat-
egy. This strategy is predicated on the insight that, in many cases, an inductive in-
variant for the entire system can be discerned by examining a smaller composition of
components. Crucially, this examination only needs to account for information deemed
’relevant’ to the invariant being verified. The primary challenge, therefore, is to identify
which components are relevant and how they should be abstracted for analysis.

Our proposed solution seeks to identify specific subsets of components for which,
by conducting model checking on an abstracted composition, we might uncover an
inductive invariant. We hope this invariant will also hold true for the complete system
composition. This crucial verification step can be facilitated through a single automated
call to a theorem prover. Although this step remains computationally demanding, it is
significantly less so than the full model checking process.

This approach can produce spurious counterexamples or even false proofs due to the
abstraction process. To mitigate this, we employ a CEGAR framework. Through this

61

4.1. An algorithm for the Verification of Asynchronous Composition of Symbolic
Transition Systems

iterative process, the abstraction can be refined to either enhance the existing model
or to incorporate new components for abstraction, thereby gradually converging on a
more accurate verification outcome.

Building on the foundational principles outlined, Section 4.2 delves deeper into the
application of our algorithm within the context of a specific family of parameterized
systems, notably those capable of modelling railway interlocking logic. This domain, as
referenced with [26], is inherently complex, characterized by the asynchronous interac-
tion of myriad components and a substantial variable set. Such systems are emblematic
of the challenges faced when ensuring safety in highly dynamic and distributed envi-
ronments.

In this vein, our algorithm is not only designed to address these challenges but also
structured to incorporate, as subprocedures, the algorithms discussed in the preced-
ing chapter. By leveraging these subprocedures, we aim to enhance the algorithm’s
efficiency and efficacy in abstracting non-essential variables and focusing on key com-
ponents. This methodology underscores our commitment to advancing verification
practices for complex, parameterized systems, built as a composition of several (pa-
rameterized) sub-systems.

4.1 An algorithm for the Verification of Asynchronous
Composition of Symbolic Transition Systems

In this section, we outline a procedural framework that remains parametric, considering
a generic family of transition systems, a generic abstraction procedure, and a property
to prove denoted as F . In the next section, we delve into a case study where we provide
a more concrete setting.

Formally, suppose that we have a finite family of transition systems {Ci}i∈I . Let
C =∥i∈I Ci be the asynchronous composition of the systems, and consider a formula
F (V) with V ⊆

⋃
i∈I Xi. The problem that we face is to prove of disprove whether

C |= F .
Recall that the problem is solved if either we find a counterexample, i.e. a path π

of finite length n, such that π[n] |= F , or if we find an inductive invariant Ψ for F . If
F is not inductive itself, then by Proposition 8 that there exists a subset J of I such
that F is not inductive for ∥j∈J Cj. To describe the whole algorithm, we suppose to
have some sub-procedures, namely:

• a model checker, capable of automatically proving if an invariant holds in a tran-
sition system. If so, the model checker provides an inductive invariant for it.
Otherwise, the model checker find a counterexample;

• a theorem prover, capable of checking whether a formula is inductive for a tran-
sition system, or if a counterexample can be simulated (e.g by bounded model
checking).

Moreover, let C̃ be a transition system such that there exists a simulation ∥j∈J Cj →

62

Chapter 4. Compositional Verification of Parameterized Systems

C̃ |= F?

Induction Check Spurious CheckRefine J Refine ∼

Proof found! Cex found!

Invariant Found Cex Found
Failed Spurious

Result

Reasoning Phase

Model Checking Phase

Figure 4.1: The procedure

C̃. Such a simulation should be such that it preserves all inductive invariants found by
the model checker.

We consider the following procedure, depicted in Figure 4.1:

• we start by asking a model checker if C̃ |= F . The model checker can either find
an inductive invariant, Ψ, or a counterexample, π;

• If an invariant is found, we ask the prover to check if Ψ is also inductive for the
whole asynchronous composition C. Note that, since the simulation preserves Ψ,
we already know that it is inductive for the components {Cj}j∈J by Proposition
6.

• If the prover proves the induction, then we are done. Otherwise, there must exists
a new set of components J ′ ⊆ I \ J for which the induction check fails. We thus
update the set J to be equal to J ∪ J ′, and we restart the loop by updating the
abstraction C̃.

• Suppose instead that the model checker finds a counterexample in C̃. Then, we
ask the prover if the counterexample can be simulated by C. If so, the algorithm
terminates with a counterexample. Otherwise, we refine the abstraction to remove
the abstract counterexample.

The key differences of our approach from conventional CEGAR methods in compo-
sitional verification lies in the fact that the system C̃ doesn’t abstract the entire compo-
sition C =∥i∈I Ci → C̃; instead, it abstracts only the ’sub’-composition ∥j∈J Cj → C̃.
We could eventually abstract all components, when J = I, and C → C̃ is a simulation.
However, this scenario isn’t the primary use-case for our procedure. Ideally, our method
is best suited for situations where we aim to verify a property relevant only to a specific
subset of components.

Even when C̃ doesn’t represent the entire system, the algorithm’s soundness should
be clear. This is because we conduct an additional induction check to verify whether the

63

4.2. Verification of concurrent parameterized systems

invariant identified during model checking is also inductive for the broader composition
C.

Addressing termination, various challenges may arise; in fact, model checking itself
might be non-terminating in case of infinite-state systems. Moreover, the refinement
process may be incomplete; finally, in case of undecidable theories, also the induc-
tion check can be undecidable. However, there are various approaches that, although
incomplete, are proved to be practical efficient for this problems.

4.2 Verification of concurrent parameterized systems

In this section, we illustrate the application of the procedure outlined in Section 4
through a specific use case.

As already mentioned, this algorithm was conceived to facilitate the verification
of interlocking logic within railway stations, as part of a larger initiative to integrate
various formal methods into railway design [26], described also in Chapter 5. In this
scenario, the system’s components are each represented by transition systems. These
components interact by sharing multiple variables, allowing them to transmit commands
among themselves. Our objective is to ascertain the general safety of the composition
of the systems. Despite the presence of a vast number of components, only a subset is
critical for ensuring safety. This distinction underscores the potential utility of the algo-
rithm described in the preceding section. Furthermore, while the systems may involve
a large number of variables, we recognize that only a limited number are pertinent to
safety concerns. Consequently, our approach to abstraction focuses on minimizing the
complexity by narrowing down to these essential variables.

The symbolic transition systems that we consider are a subclass of the array-based
transition systems. In particular, we ask that the formulae defining those systems
have a precise syntactic shape; we will use these constraints to better describe how to
compute the abstraction algorithm that we will use. We want to remark that these
syntactic conditions do not impose a particular burden in modeling; rather, they are a
natural way to encode parameterized transition systems, especially those arising from
the description of interlocking logic.

Definition 21. A functional array-based transition system S = (X, I(X), T (X,X ′)) is
an array-based transition system such that:

• X are a set of array symbols;

• I(X) is a Σ(X) formula of the form ∀j.
∧

x∈Y x(j) = valx - where valx is a
constant of the appropriate signature, and Y ⊆ X;

• T (X,X ′) is a Σ(X,X ′) formula that is a disjunction of formulae of the form
(called transition rules)

∃i.(ϕG(i,X) ∧ ϕU(i,X,X
′)) (4.1)

64

Chapter 4. Compositional Verification of Parameterized Systems

where ϕG(i,X) is called the guard, and ϕU(i,X,X
′) is the functional update, i.e.

a formula of the form

∀j.
∧
x∈X

x′(j) = Fx(i, j,X,X
′)

with {Fx}x∈X a family of case-defined function.

In the remainder of this section, when we refer to an array-based transition system,
we will always implicitly consider only functional ones.

Example 11 (Interlocking Logic). As an example, we consider two transition systems
(modelling two classes of the interlocking logics). The first represents the class of tracks,
while the second represents the class of routes. Therefore, for C1 the index theory is
an uninterpreted sort named track, while for C2 will be named route. For the element
theories, we use a combination of an enumerative datatype with values {locked, free},
another enumerative datatype with values {idle, wait, active}, and the booleans. The
state variables for C1 are the array symbols state_t : track 7→ {locked, free} and
unlock_command : track 7→ Bool. The initial formula is

I1 ≡ ∀j : track
(
state_t[j] = free ∧ unlock_command[j] = false

)
.

As an example for a transition rule of the first class, we have the following formula,
modelling the unlocking of a track segment

T1 ≡ ∃i : track
(
(state_t[i] = locked ∧ unlock_command[i] = true)︸ ︷︷ ︸

guard

∧

(∀j.state_t′[j] = F1 ∧ lock_command′[j] = F2)︸ ︷︷ ︸
update

)
,

where F1 is given by
(
(i = j), free

)
,
(
(i ̸= j), state_t[j]); F2 is given by

(
(i = j), false

)
,(

(i ̸= j), lock_command[j]).
The state variables for C2 are an array state_r : route 7→ {idle, wait, active}, a

frozen array predicate tracks_used : track × routes 7→ Bool, and the shared variables
unlock_command and state_t. The initial formula is

I2 ≡ ∀j0 : route, j1 : track.
(
unlock_command[j1] = false∧
state_t[j0] = idle∧
state_i[j0] = Idle

)
.

and, as an example for a transition rule for C2, we have the following formula, modelling
the activation of a route

65

4.2. Verification of concurrent parameterized systems

T2 ≡ ∃i : route
(
state_r[i] = wait ∧

(∀t : track (tracks_used(t, i) → (state_t[t] = free ∧ unlock_command[t] = false)))∧
(∀j0: route, j1: track (state_r′[j0] = F1∧
state_t′[j1] = F2 ∧ unlock_command′[j1] = F3)

)
where F1 is given by (i = j0, active), (i ̸= j0, state_r[j0]), F2 is given by

(tracks_used(i, j1), locked), (¬tracks_used(i, j1), state_t[j1]), and F3 is given by
(true, lock_command[j1]).

A property of interest is that routes that share a track are never active in the same
moment. Let NotCompatible(i : route, j : route) be a predicate which holds if and only
if (

i ̸= j ∧ ∃t : track (tracks_used(i, t) ∧ tracks_used(j, t))
)
,

and let

F = ∀r0 : route, r1 : route
(
NotCompatible(r0, r1) →
¬(state_r[r0] = active ∧ state_r[r1] = active)

)
.

We are interested to prove that C1 ∥ C2 |= F .

We start by defining the simulation relation that we will use.

Definition 22. Let V ⊆ X a set of variables. Given M a model of AE
I , we define a

relation α between an assignment s, s̃ of X and V into elements of the domain of M
by

α(s, s̃) ⇔ s|V ≡ s̃|V ,

i.e. we ask that the two states are in relation iff they assign the same value to the
variables in V .

Given a (sub)set of variables V and a transition system C defined as in Definition 21,
we now define a new transition system C̃V such that there exists a simulation between
the two system. The new variables will be V ∪ B ∪ E, with B a set of new boolean
variables and E a set of new element variables. The abstract initial formula of the
system, denoted Ĩ(V), is simply obtained from I by dropping the conjuncts that are
not assigning variables in V ; that is, we have that

Ĩ(V) =
∧
v∈V

∀j.v(j) = valv.

For the abstract transition formula, denoted as T̃ (V,B,E, V ′), we need more steps.
We will work on the single transition rules of the concrete transition, that are of the form
(4.1). The abstract transition will be a disjunction of formulae of the form ∃i.(ϕ̃G(i, V)∧
ϕ̃U(i, V, B,E, V

′)) where

66

Chapter 4. Compositional Verification of Parameterized Systems

• ϕ̃G(i, V) is obtained by ϕG by replacing each atom that contains variables in X \V
with the constant true, if it occurred positively in the formula, or false otherwise;

• ϕ̃U(i, V, B,E, V
′) is the formula

∧
v∈V ∀j.v′(j) = F̃v(i, j, V, B,E, V

′) where F̃v is a
case-define function with a sequence of ˜casei(V,B) statements and a sequence of
corresponding terms ˜vali(V,B,E) such that:

– ˜casei(V,B) is either equal to casei(V) if the original case predicate is defined
only over the V variables, or is a fresh boolean constant b ∈ B otherwise;

– ˜vali(V,B,E) is either equal to vali(V) if the original term is defined only
over V , or is a fresh element constant e ∈ E otherwise.

Finally, let C̃V = ({V,B,E}, Ĩ(V), T̃ (V,B,E, V ′)). We have:

Proposition 44. C̃V simulates C.

Proof. (sketch) From |= I(X) → Ĩ(V), since the consequent only contains fewer con-
straints, it follows that condition i. of Definition 5 holds. For condition ii., suppose that
s, s′ |= T , and let s̃ such that α(s, s̃). Note that, since s̃ |= ϕ̃G - the abstract guard,
by definition of the simulation relation and by construction of the rewriting process.
We need to find an abstract state s̃′ such that α(s′, s̃′) and s̃, s̃′ |= T̃ . Such a state is
defined according to which values are assigned to the variables V in the update ϕU . If
only cases and values with variables in V are used, then s̃ = s|V suffices. Otherwise, s̃
assigns to the variables in B and E values according to s, and the claim follows.

Moreover, since the simulation relation is the equality on V , then counter-models of
formulae defined only over V are preserved. Thus (see Definition 7), we have that:

Proposition 45. The simulation preserves each formula F (V) defined only over the
set of variables V .

Thus, from Corollary 10, we have:

Corollary 46. ∥ Ci →∥ C̃i via the product simulation. Moreover, the product simula-
tion preserves all the formulas defined over V .

4.2.1 Refinement

Suppose that, during the model checking phase, we found an abstract counterexample
π leading to a violation of the property. Such a counterexample can be viewed as a
model for the formula

Ĩ0 ∧ T̃ 0 ∧ ... ∧ T̃ n ∧ ¬F n+1. (4.2)

To check for spuriousness, the standard approach would require to check the satisfia-
bility of the concrete unrolling

I0 ∧ T 0 ∧ ... ∧ T n ∧ ¬F n+1. (4.3)

67

4.3. Related Work on compositional verification

In case of satisfiability, we are in the presence of a real counterexample, and we can
exit from the procedure. In case of unsatisfiability, we need to refine the abstraction to
eliminate the counterexample. We describe here our procedure for refinement. We start
by computing an unsat core of the latter formula. Then, let V ′ be the set of variables
that occur in at least one literal of the core. We update V to be V ∪ V ′. We have the
following result, that ensures that V ′ ∩ V is never empty:

Proposition 47. In case (4.2) is satisfiabile and (4.3) is not, then there exists a literal
in the unsat core of (4.3) that contains a variable not occurring in V .

Proof. (sketch) Since the Ci are compatible and the simulation relation is the identity
on α, if (4.2) is satisfiable but (4.3) is not, this means that there is no way of extending
an assignment on the V variables to an assignment on the X variables that satisfies
(4.3).

This result allows us to have a notion of progress since at each spurious counterex-
ample we decrease the number of variables not abstracted. Moreover, note that by
adding new variables, the abstraction process will introduce more constraints to the
abstract system. Thanks to this, we can see that C̃V ∪V ′ refines C̃V .

In practice, checking unsatisfiability and extracting unsat cores from formulae such
as (4.3) can be done by tools such as Z3 [50]. However, such queries can become very
hard to reason about if the length of the unrolling becomes very large. This may also be
because of the presence of quantifiers in the transition formula. Actually, it is possible
to reduce the check to a quantifier-free one. Suppose that the counterexample π is given
by an assignment of (4.2) in an index model MI of finite cardinality. Then, we can
check the unsatisfiability of the formula (4.3) with the additional assumption that all
quantifiers ranges only over that finite set, and Proposition 47 still holds.

4.3 Related Work on compositional verification
The results we use by mixing abstraction and asynchrnous composition are inspired
by Sifakis et al.’s seminal paper [94], which explores the theoretical aspects of compo-
sitional verification. It introduces concepts such as simulations, parallel composition,
and the computation of an abstraction for a composition of systems through the com-
position of abstraction on singular components. In this section, we build on these ideas
but within an SMT and infinite-state framework. The papers [42] and [27] introduce
Counterexample-Guided Abstraction Refinement (CEGAR) and a form of localization
reduction, similar to the abstraction we use (although adapted in a parameterized set-
ting) for our case study.

Alternative approaches to compositional verification are automated assumption guar-
antee methods, such as those found in [73], [63], and [121]. In these works, components
of the system make assumptions about their environment and provide guarantees about
their behavior. Subsequently, some associated verification conditions are checked to
verify global properties by ensuring compatibility between assumptions and guaran-
tees. Additionally, the paper [58] introduces an approach to mixing invariants from

68

Chapter 4. Compositional Verification of Parameterized Systems

both data flow graphs and control, specifically applied to parameterized concurrent
programs such as Linux device drivers. Furthermore, the chapter [68] provides a com-
prehensive overview of general ideas surrounding compositional reasoning.

A different symbolic approach is presented in the work [19], which leverages WSkS
logic to reason about parameterized component-based systems, and [18], where a de-
scription logic is employed to reason about systems with a re-configurable network.

The distinctive feature of this algorithm is that our abstraction procedure over-
approximates only a subset of the components. The result is that the abstraction
simulates only part of the whole system; however, we check with an automated prover
whether the property found by analyzing such an incomplete abstraction is correct for
the whole system. If the procedure terminates by abstracting only a subset of the
components, then we can determine, a posteriori, a split invariant [68] between the
abstracted and non-abstracted components.

69

4.3. Related Work on compositional verification

70

Part III

Case Studies and Experimental
Evaluation

71

Chapter 5

Application of parameterized model
checking to the verification of
interlocking logics

This section draws upon the work [36] and describes some parts of a large project aimed
at applying the algorithms developed in this thesis. Currently, the project is still in
progress.

Interlocking systems are complex, safety-critical systems controlling the operation
of the devices in a railway station. The main function is the creation of safe routes for
trains from different points in the station. This requires for example that the devices
insisting upon a given route (e.g. semaphores, switches, level crossing) must be properly
operated and that mutual exclusion between interfering routes is ensured. At a high
level of abstraction, an interlocking system can be thought of as implementing a very
articulated protocol, that we refer to as interlocking logic.

In this section, we describe how we intend to use a formal approach to ensure the
reliability and integrity of their operations, as a complement to the standard validation
and certification techniques. The context is an ongoing activity between our research
group and RFI (the company managing the Italian railways network), aiming to develop
an in-house, framework to design interlocking logics and support the development of
interlocking systems [6, 26].

Starting from a high-level controlled natural language to describe the interlocking
logic, a model-based Integrated Development Environment supports the railways signal-
ing engineers in specifying the interlocking logic in a well-structured and semantically
unambiguous way. Interestingly, the interlocking logic is generic in that it describes
the procedures without specific reference to a single, given station; rather, it applies
to any station in a given class. Therefore, at this level each component of the logic
can be seen as a parameterized system. The resulting specification is then translated
into a SysML model, and from there compiled into executable code (C and Python).
Then, the user can define a specific station configuration (e.g. the station of the city
of Trento), detailing the exact number of components and their interactions. Upon
configuration, the code can be tested in a closed loop integration with a simulator mod-

73

5.1. Current framework for developing interlocking logics

eling the behavior of trains and physical devices. Formally verifying the interlocking
logic is a very important goal, and several attempts have been made in this direction
[57, 61]. In our context, attempts were made to apply (non-parameterized) software
model checking techniques on the code configured with respect to a specific station.
This approach hit a scalability barrier, due to the sheer size of the resulting, instanti-
ated model. Even more importantly, the results of the verification would be applicable
to a specific station only. Given these challenges, our research pivots towards apply-
ing parameterized verification to interlocking logic. This approach aims to overcome
the limitations of station-specific verification by generalizing the verification process to
accommodate any possible station within a defined category. Furthermore, we believe
that adopting a parameterized verification strategy may offer enhanced manageability
compared to the complexity encountered in models instantiated with a multitude of
components.

In this context, the starting point is the integration of Dafny [82] alongside C and
Python during the code generation phase. Dafny, an object-oriented programming
language with formal verification capabilities, enriches our framework by providing
a high-level, intuitive platform for the verification of generic interlocking logics. Its
object-oriented nature simplifies the modeling of complex systems and enhances the
verification process’s comprehensiveness and accuracy.

However, a notable limitation within Dafny’s ecosystem is its current inability to
autonomously generate inductive invariants, which are crucial for establishing the cor-
rectness of complex systems through formal verification.

To address this gap, we intend to leverage the algorithms discussed in the previous
chapter. These algorithms are designed to generate the necessary inductive invariants,
thereby furnishing Dafny with the tools to complete the proofs effectively and in an
autonomous way. The integration of these algorithms into our verification process
represents a novel approach to enhancing the capability of formal verification tools,
ensuring that our framework can not only handle the complexity of parameterized
systems but also maintain the rigor required for safety-critical applications like railway
interlocking systems.

In the subsequent sections, we will outline the framework of this research project for
incorporating these inductive invariants into the verification process. This exploration
is part of an ongoing research effort, aiming to bridge the gap between theoretical
algorithms and practical applications in formal verification. Through this endeavor,
we seek to demonstrate the feasibility and effectiveness of our approach in real-world
settings.

5.1 Current framework for developing interlocking log-
ics

We start with an overview of the approach for the development of a generic interlocking
logic [6, 26, 5]. The development of the interlocking logic is model-based and starts from
a domain-specific controlled natural language (CNL), supported by the tool AIDA [26].

74

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

The interlocking logic is designed through the creation of sheets, each defining a logical
entity, also referred to as a class. Examples of entities include shunting routes, i.e. the
high-level process devoted to creating a safe path for a train within the station, and
lower level entities such as track segments, switches, level crossing, axal counters, and
semaphores. Each sheet is divided into two parts. The first one defines the structure
of the class, i.e. variables, parameters, and notably lists of other components that are
connected to the class. For example, a shunting route will have lists of the entities of
track segments it insists upon, e.g. the track segments that must be locked before the
green light is signaled.

The second part of the sheet describes the behavior of a single component (an
instance of the class), which can be thought of as an extended Finite State Machine.
A distinguished state variable, taking values from an enumerative set, is used to define
the current location in the FSM. Each state transition is characterized by the following
elements:

• Source and Destination;

• Guards, i.e. the conditions that must be satisfied to enable a particular transition.
Determinism is ensured by explicitly prioritizing guards;

• Effects: when a transition is executed, effects are applied that alter the internal
state of the component, and possibly the state of components that are connected
to it.

Guards and effects of a transition may read and or write the value of variables of the
objects in the list of the connected components connected to the class.

The structured natural language used in the sheets has been designed to be compre-
hensible even to those not trained in formal languages and incorporates grammatical
structures drawn from domain-specific jargon. Phrases are structured to ensure trace-
ability to pertinent provisions and regulations. For instance, an engineer might specify
a transition guard as follows: "Check that all the track segments of the routes are in a
free state."

In AIDA, the sheets written in controlled natural language are associated with a
number of syntactic and semantic checks and are translated into a SysML model. From
the SysML model, it is possible to extract graphical views of the FSM for each class.

Within this comprehensive IDE, preliminary experiments in applying formal veri-
fication have been attempted, aiming at proving safety properties of the generated C
code. The tool leverages symbolic model-checking techniques for software verification,
with integration into the Kratos2 model checker [72]. This approach, however, did not
yield the expected results. On the one hand, even if the generation of C code is generic
to all configurations, its subsequent verification can only take place once the configura-
tion of a specific station has been provided. This is necessary to meet the limitations
of Kratos2, that is unable to find invariants for objects of unspecified size. As a result,
our current capability allows us to assess the safety of individual stations with regard
to specific properties. Furthermore, the verification of the C implementation of the

75

5.2. Dafny Encoding

interlocking logic configured for a given station incurs scalability problems, due to the
large number of components and their complex connections.

For this goal, we could use the generic generated code as an input for Kratos2,
but the invariant generation engine of the model checker is not able to synthesize the
correct parameterized invariants. Hence, in the rest of this section, we discuss the
parameterized verification of the generic interlocking logic, without assuming that a
specific station configuration is given.

5.2 Dafny Encoding
In this subsection, we delve into the encoding process using Dafny [82], a state-of-the-
art programming language renowned for its formal verification capabilities. Dafny’s
object-oriented nature is particularly suited to the complex structure of interlocking
systems, offering a robust framework for ensuring their integrity and reliability. At the
core of Dafny’s verification strategy is the use of verification conditions, grounded in
the principles of Hoare logic.

Moreover, Dafny equips developers with a comprehensive toolbox for formal verifi-
cation, inherently supporting compositional verification methodologies. Compositional
verification in Dafny allows developers to verify parts of a program in isolation and
then combine these verifications to ascertain the correctness of the entire system. This
approach is particularly beneficial for managing the complexity of large systems by
breaking them into smaller, more manageable components, each verified separately but
within the context of the whole system.

These verification conditions are critical logical assertions that must be valid for a
program to be deemed correct in relation to its defined preconditions and postcondi-
tions. Dafny automates the generation of these conditions and employs theorem provers
for their verification. A notable challenge within Dafny’s framework is its reliance on
manually defined invariants for loops and recursive methods; the fact that Dafny cannot
generate auxiliary invariants is a recognized limitation. Therefore, failure to prove a
verification condition often signifies the need for stronger invariants, rather than direct
evidence of a counterexample in the code. This aspect underscores the potential bene-
fits of integrating algorithms for automatic invariant inference, such as those developed
in this thesis, to enhance Dafny’s verification capabilities.

Through the combination of Dafny and a parameterized model checker, we aim
to bring a high level of rigor and precision to the verification of interlocking systems,
ensuring their safety and reliability in operational scenarios. This section will provide
insights into how Dafny’s unique features facilitate a natural and effective encoding
of interlocking logics, highlighting the language’s modular verification approach. This
modularity is key to managing the complexity of verifying individual components within
a system, making Dafny an invaluable tool in our formal verification toolkit.

During the course of the project, we studied how to automatically generate Dafny
code from SysML diagrams (and thus from the AIDA sheets). While this thesis does
not explore the intricacies of translating SysML into Dafny, this section provides illus-
trative examples of the Dafny encoding process and discusses how parameterized model

76

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

checking techniques can be integrated with it.
We take as an example a simple station with only two components: routes and

tracks. Each component in the Dafny model is equipped with an ‘initialize‘ method,
which sets it to an initial state, and an ‘execute‘ method, which mirrors the firing of an
appropriate transition. This modeling approach reflects the operational semantics of
the interlocking logic, where each component’s state transition is critical for the safety
and efficiency of the railway system.

The track file in Dafny, shown in Figure 5.1, defines the track component of our
simple railway system model. This module encapsulates the properties and behaviors
associated with a single track segment, such as its occupancy status and the ability
to lock or unlock the track for train movement. Each track is modeled as an object
with states indicating whether it is free or occupied. The module includes methods
to change these states in response to the train’s movements, ensuring that the track’s
current state is accurately reflected.

The route Dafny file can be seen in Figures 5.2 and 5.3, and it is designed to
model the route components within the railway interlocking system. Routes are entities
composed of multiple track segments and other infrastructure elements like switches and
signals. In this simple example, we only consider a set of associated tracks. This file
specifies the logic for activating and deactivating routes, incorporating checks to ensure
that all components of a route are in the correct state before a route can be activated,
such as verifying that all track segments are free.

By generating these files, the verification checks performed by Dafny are focused
on ensuring that the body of the methods actually satisfies the specified requirements.
The invariants required for this verification are primarily found in the while loop of the
‘activate Route‘ method. We assume that these invariants can be generated automati-
cally, via some schemata, without the need for an external tool, as they closely reflect
the structure of the generated code, which is under our control.

Formally proving that the generated code satisfies the specifications set forth by
railway engineers constitutes an initial goal of our project. However, this objective does
not mark the culmination of our efforts nor does it necessitate the use of parameterized
model checking.

To achieve the verification of generic properties of the logic, we present the conclud-
ing segment of the Dafny code, as depicted in Figures 5.4 and 5.5. Within this last
code segment, we introduce the concept of a station, which is portrayed as a collection
of routes and tracks. Subsequently, we define the station’s initializer and the scheduler.
The initializer set all the elements of the station to their initial state. The scheduler
nondeterministically selects a method that can be executed and proceeds with its ex-
ecution. Additionally, we define the property that we seek to validate, named "Secure
Station," which corresponds in this example to the property ‘two incompatible routes
cannot be active together’. The loop of the scheduler tries to establish that the prop-
erty is preserved by each method. Notably, this preservation is not true for the initial
property itself, "Secure Station." However, the verification succeeds when we provide a
stronger inductive invariant that implies the original property - called "Secure Inductive
Station".

77

5.2. Dafny Encoding

datatype TrackState = locked | free
class Track
{

var state : TrackState
var unlock_command : bool

method stayFree()
modifies this
requires this.state =free
ensures this.state =free
ensures this.unlock_command =old(this.unlock_command)

{
this.state :=free;

}

method goFree()
modifies this
requires this.state =locked
requires this.unlock_command =true
ensures this.state =free
ensures this.unlock_command =false

{
this.state :=free;
this.unlock_command :=false;

}

method initialize()
modifies this
ensures this.state =free
ensures this.unlock_command =false

{
this.state :=free;
this.unlock_command :=false;

}

method execute()
modifies this

ensures (old(state =free)) =⇒(state =free ∧unlock_command =old(unlock_command))

ensures (old(state =locked) ∧old(unlock_command)) =⇒(state =free ∧¬unlock_command)

ensures (old(state =locked) ∧¬old(unlock_command)) =⇒(state =old(state) ∧unlock_command =
old(unlock_command))

{
match state {

case free ⇒
{

stay_free();
}

case locked ⇒
if unlock_command
{

go_free();
}

}
}

}

Figure 5.1: Dafny encoding of the track component

78

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

include "track.dfy"

datatype RouteState = idle | wait | active

class Route
{

const usedtracks : seq<Track>
var state : RouteState

method go_wait()
modifies this
requires state =idle
ensures this.state =wait
{

this.state :=wait;
}

predicate precondiation_activate()
reads this, usedtracks
{

(∀ t •t in usedtracks =⇒(t.state =free ∧t.unlock_command =false))
}

method activateRoute()
modifies this
modifies this.usedtracks‘state
requires this.state =wait
requires precondiation_activate()
ensures this.state =active
ensures ∀t •(t in this.usedtracks =⇒t.state =locked)
{

var i :=0;

while i < |this.usedtracks|
invariant 0 ≤i ≤|this.usedtracks|
invariant ∀t •t in this.usedtracks[..i] =⇒t.state =locked

{
this.usedtracks[i].state :=locked;
i :=i + 1;

}

this.state :=active;
}

method deactivateRoute()
modifies this, this.usedtracks‘unlock_command
requires this.state =active
ensures this.state =idle
ensures ∀t •t in this.usedtracks =⇒t.unlock_command =true
{

var i :=0;

while i < |this.usedtracks|
invariant 0 ≤i ≤|this.usedtracks|
invariant ∀t •t in this.usedtracks[..i] =⇒t.unlock_command

{
this.usedtracks[i].unlock_command :=true;
i :=i + 1;

}

this.state :=idle;
}

Figure 5.2: Dafny encoding of the Route (Part 1)

79

5.2. Dafny Encoding

method initialize()
modifies this
ensures this.state =idle

{
this.state :=idle;

}

method execute()
modifies this, this.usedtracks

ensures old(state) =idle =⇒(state =wait
∧(∀ t •(t in this.usedtracks =⇒t.state =old(t.state)))
∧(∀ t •(t in this.usedtracks =⇒t.unlock_command =old(t.unlock_command))))

ensures (old(state) =wait ∧old(precondiation_activate())) =⇒(state =active
∧(∀ t •(t in this.usedtracks =⇒t.state =locked))
∧(∀ t •(t in this.usedtracks =⇒t.unlock_command =old(t.unlock_command))))

ensures (old(state) =active) =⇒(state =idle
∧(∀ t •(t in this.usedtracks =⇒t.unlock_command))
∧(∀ t •(t in this.usedtracks =⇒t.state =old(t.state))))

ensures (old(state) =wait ∧¬old(precondiation_activate()) =⇒(state =old(state)
∧(∀ t •(t in this.usedtracks =⇒t.state =old(t.state)))
∧(∀ t •(t in this.usedtracks =⇒t.unlock_command =old(t.unlock_command)))))

{
match state
{

case idle ⇒
go_wait();

case wait ⇒
if precondiation_activate()
{

activateroute();
}

case active ⇒
deactivateroute();

}

}

}

Figure 5.3: Dafny encoding of the Route (Part 2)

80

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

Our plan involves employing a parameterized model checker to automate the dis-
covery of these inductive invariants, thereby streamlining and completely automatizing
the verification process for generic safety properties within the railway logic.

81

5.2. Dafny Encoding

include "route.dfy"

class Station

{
const tracks : set<Track>
const routes : set<Route>

ghost predicate ValidStation()
reads routes

{
∧routes ̸={}
∧tracks ̸={}
∧(∀ i, t •i in routes ∧t in i.usedtracks =⇒t in tracks)

}

ghost predicate NotCompatibleRoutes(a : Route, b : Route)
reads a, b

{
(∃ i •(i in a.usedtracks) ∧(i in b.usedtracks)) ∧a ̸=b

}

ghost predicate SecureStation ()
requires ValidStation()
reads this, this.routes

{
∀i,j •(i in this.routes) ∧(j in this.routes) ∧(NotCompatibleRoutes(i,j))

=⇒¬(i.state =active ∧j.state =active)
}

ghost predicate SecureInductiveStation ()
requires ValidStation()
reads this, this.routes, this.tracks

{
∧SecureStation()
∧(∀ i, j •((i in this.routes) ∧(j in this.tracks) ∧(j in i.usedtracks) ∧(i.state =active)) =⇒j.state =locked)
∧(∀ i, j •((i in this.routes) ∧(j in this.tracks) ∧(j in i.usedtracks) ∧(i.state =active)) =⇒j.unlock_command =

false)

}

method StationInitializer()
modifies this, this.routes, this.tracks
requires ValidStation()
ensures SecureInductiveStation()
{

var a :=routes;
var b :=tracks;
while (a ̸={})

invariant (∀ i •i in routes ∧i ̸∈a =⇒i.state =idle)
{

var i : | i in a;
i.initialize();
a :=a − {i};

}

while (b ̸={})
invariant ∀i •i in routes =⇒i.state =idle
invariant (∀ i •i in tracks ∧i ̸∈b =⇒i.state =free ∧i.unlock_command =false)
{

var i : | i in b;
i.initialize();
b :=b − {i};

}
}

Figure 5.4: Dafny encoding of the Station (Part 1)
82

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

method StationScheduler()
modifies this, this.routes, this.tracks
requires ValidStation()
requires SecureInductiveStation()
ensures ValidStation()
ensures SecureInductiveStation()
{

if ∗
{

var i : | i in routes;
i.execute();

}
else
{

var i : | i in tracks;
i.execute();

}
}

}

Figure 5.5: Dafny encoding of the Station (Part 2)

83

5.3. Invariant Inference with a Parameterized Model Checker

5.3 Invariant Inference with a Parameterized Model
Checker

Alongside the Dafny encoding, our methodology includes encoding each component of
the interlocking logic as a functional array-based transition system (Definition 21). More
precisely, the transition system models an unbounded family of system components of
the same type, facilitating scalable and modular verification.

The reader may have noticed that the behaviors exemplified in the Dafny code of
the previous section, and discussed in Example 11 depict identical underlying systems.
To further illustrate this connection, we highlight specific transition formulae that cor-
respond to operations within the Dafny encoding.

The unlocking of a track segment, implemented in the Dafny method ‘goFree‘, is
captured by the following transition formula:

T1 ≡ ∃i : track
(
(state_t[i] = locked ∧ unlock_command[i] = true)∧(
∀j. state_t′[j] =

{
free if i = j

state_t[j] otherwise
,

unlock_command′[j] = false)
)
,

which mirrors the postconditions of the associated ‘execute‘ method in the Dafny code,
illustrating the process for unlocking track segments.

Similarly, the activation of a route, encapsulated in the method ‘activateRoute‘, is
formalized as:

T2 ≡ ∃i : route
(
(state_r[i] = wait∧

(∀t : track (tracks_used(t, i) → (state_t[t] = free ∧ unlock_command[t] = false)))∧

(∀j0 : route, j1 : track (state_r′[j0] =

{
active if i = j0

state_r[j0] otherwise
,

state_t′[j1] =

{
locked if tracks_used(j1, i)
state_t[j1] otherwise

,

unlock_command′[j1] = false))
)
,

indicating the logical sequence for activating routes based on system state and available
track usage.

These formulae demonstrate the close alignment between the logical representation
of system behaviors and their implementation in Dafny, underscoring our methodolog-
ical approach to generate logical encodings alongside Dafny.

Continuing the example, the property that we desire to prove is the following, en-

84

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

suring that routes sharing a track cannot be active simultaneously:

F = ∀r0 : route, r1 : route
(
NotCompatible(r0, r1) →
¬(state_r[r0] = active ∧ state_r[r1] = active)

)
.

where NotCompatible(i : route, j : route) was defined as(
i ̸= j ∧ ∃t : track (tracks_used(i, t) ∧ tracks_used(j, t))

)
.

This property, can be automatically verified with respect to the system C1 ∥ C2, as
delineated in Section 4, where C1 is the transition system representing routes, and C2

is the one for tracks.
Initial experiments have suggested that modeling the full complexity of the sys-

tem’s components results in excessively large system representations. As such, ongoing
efforts are directed towards refining the encoding to manage system size more effec-
tively. Successful verification with parameterized model checking will then necessitate
the translation of inferred inductive invariants back into Dafny, enabling the verification
of the railway logic’s security beyond abstract models. In this example, the inductive
property ‘Secure Inductive Station’ can be obtained also by running the algorithm of
Chapter 3 on C1 ∥ C2.

5.4 Summary and Ongoing Work

We discussed the problem of formally verifying an interlocking logic expressed in a
domain specific language. The interesting point is that the logic is parameterized,
in the sense that it is intended to control any station with an arbitrary number of
components. We analyzed a case study, with two main insights. First, we confirm that
it is possible to directly encode the main features of the interlocking logic in Dafny
in a very natural way. Second, we investigate verification and the relation to simple
invariants (from predefined schemata) and to more complex invariants (resulting from
the application of parameterized model checker algorithms).

Currently, we are working on extending the IDE for the Interlocking logic to support
parameterized verification. The first step will be to devise an encoder to automatically
generate Dafny code automatically from SysML. We expect this step to be relatively
simple, given that the interlocking logic constructs have a direct correspondence to
Dafny ones, and back-and-forth traceability can be achieved.

The Dafny code will incorporate both the method bodies, mirroring the C and
Python code, and the preconditions and postconditions, echoing the engineers’ natural
language specifications. Second, we will integrate a way to express the properties to
be proved, likely leveraging the language for specifying the abstract scenarios in the
TOSCA environment [6].

Third, we will integrate the generation of invariants required to show that the in-
terlocking logic satisfies the expected properties. On the one side, we will instrument
the encoding to automatically generate "simple" invariants via templates, to check the

85

5.4. Summary and Ongoing Work

compliance of the generated code to specification. On the other, we will integrate a pa-
rameterized model checker (and possibly other invariant generators) to infer invariants
for general safety properties of the interlocking logic.

In this direction, we aim to apply the algorithm of compositional verification to the
array-based transition systems modelling dafny components. We will present prelimi-
nary results in this direction in Section (6.4). One of the main challenges we currently
face lies in the manual translation process required to convert Dafny code into SMT
formulae, and then inversely translating the derived invariants back into Dafny for fur-
ther verification steps. The aspiration to streamline this process through automation
has led to preliminary investigations, which suggest that achieving a seamless transla-
tion is non-trivial. The complexity of accurately mapping Dafny’s rich, type-structured
code into the logical expressions required by SMT solvers involves parsing and semantic
interpretation challenges.

Given these complexities, it becomes apparent that a collaborative approach, in-
corporating more abstract modeling techniques and leveraging the domain expertise of
railway engineers, might be necessary. Such collaboration could facilitate the identifica-
tion of critical safety properties and the development of a more intuitive understanding
of the system’s behavior, potentially simplifying the invariant generation process. This
strategy aligns with our broader objective to not only automate the verification pro-
cess but also to ensure that it remains closely aligned with the real-world operational
requirements and safety standards of railway systems.

A figure representing a summary our intended workflow is depicted in 5.6.
Finally, we do not dismiss the idea of a semi-automated approach, where railway

engineers can contribute lemmas or provide guidance in the abstraction process, poten-
tially in controlled natural language, to help the verification process.

86

Chapter 5. Application of parameterized model checking to the verification of
interlocking logics

AIDA

C Python Dafny PMC

station.c station.py

Specs x

Properties x

Abstraction

Invariants

Configuration Level

Abstract Level

Figure 5.6: Illustration of the integrated development environment (IDE) designed for
crafting interlocking logic systems. This environment enables engineers to specify the
logic of a generic (parameterized) railway station using controlled natural language
within the AIDA tool. Subsequently, AIDA facilitates the automated generation of
corresponding C, Python, and Dafny code. The Dafny code is then subjected to an in-
teraction with parameterized model checking algorithms aimed at identifying inductive
invariants or uncovering potential counterexamples based on predefined safety proper-
ties. For specific station configurations, the IDE can further compile this verified logic
into executable code, ensuring the reliable operation of the station’s interlocking sys-
tem.

87

5.4. Summary and Ongoing Work

88

Chapter 6

Experimental Evaluation

This section presents the empirical evaluation of the algorithms developed in Chapters
3 and 4. Our objective is to assess the efficiency and effectiveness of these algorithms
across a range of benchmarks. These benchmarks are selected to represent various
scenarios in the verification mainly of parameterized systems, emphasizing the practical
applicability of our approach.

6.1 Implementation

We have implemented the algorithms described in chapter 3 using Python3. In this
section, we test the algorithms on various benchmarks, by considering different options
and back-end engines.

For the first algorithm, described in section 3.2, which we will denote in the following
as Updria, we used the SMT solver Z3 [50] for satisfiability queries (using the approach
[84] for quantifiers). We also implemented a simple loop to ensure that every index
model found by the solver would be of minimal (finite) size: in theory, when working
outside the decidable fragment 11, there is no guarantee that such a finite model exists.
However, this was never an issue in our experiments. We used instead Mathsat [37]
to extract interpolants from ground unrollings, as explained in Section 3.2.4.

For the second algorithm, described in section 3.3, denoted as Lambda, we used
Ic3Ia [33] as a quantifier-free model checker. Finally, the sub-procedure of invariant
checking with SMT solving explained in 3.3.4, has been implemented on top of Math-
sat.

Upon termination, both algorithms return either a counterexample trace in a ground
instance, or an inductive invariant which can also be checked externally with automatic
provers such as Z3, Vampire or CVC5 [50, 86, 8].

For the algorithm of compositional verification, described in section 3.3, we lever-
aged both Z3 and Mathsat. Given that Mathsat lacks support for quantified formu-
lae, we exclusively utilized Z3 for the ’Induction Check’ sub-procedure. For ’Spurious
Check’ and ’Refinement’ sub-procedures, both Mathsat (with quantifiers instantiated
as described in 4.2.1) and Z3 were employed.

We tested the algorithms over different benchmarks. In Section 6.2, we will discuss

89

6.2. Application to parameterized protocols

the results of applying the algorithm to parameterized protocols. Then, in Section 6.3
we will show how it is possible to use Lambda and Updria for invariant checking
of transition systems over the theory of arrays. Finally, we will show some results on
asynchronous composition of families of array-based transition systems.

6.2 Application to parameterized protocols

For this family of experiments, we organized the experimental evaluation as follows:
first, we compare the two algorithms and discuss different options in Section 6.2.2; then,
we compare the algorithms to other tools in Section 6.2.3. The tools we considered are
the model checkers Mcmt, Cubicle, Ic3po, and MyPyvy, all previously mentioned in
Section 3.4. All benchmarks and our implementations are available at the following link:
https://drive.google.com/file/d/1_lIUa_Y-yKAhj5bXnX1hLEovFmP3Jos9/view?usp=
sharing.

We have run our experiments on a cluster of machines with a 2.90GHz Intel Xeon
Gold 6226R CPU running Ubuntu Linux 20.04.1, using a time limit of 1 hour and a
memory limit of 4GB for each instance.

6.2.1 Benchmarks

The first family of this benchmarks consists of 238 array-based systems in Mcmt format,
modelling parameterized protocols, timed systems, programs manipulating arrays, and
more, taken from [40, 25, 23] and from the standard Mcmt distribution. Often, in
those systems, the index theory is pure equality or the theory of a linear order; instead,
the theory of element is usually QF_LIA, QF_LRA, or the theory of an enumerated
datatype. On this set of benchmarks, we could run all the versions of the algorithms
presented in this paper, as well as Mcmt. In principle, such benchmarks are supported
also by Cubicle; in practice, however, Cubicle and Mcmt use two (quite) different
input languages, so we could only run the former on the 42 instances of this family for
which the Cubicle translation is available.

The second family of benchmarks considered are 52 array-based systems in VMT
[39] and MyPyvy format, taken from [70, 113]. This family does not use theories for
array elements (i.e. TE is simply the theory of Booleans), but is more liberal than
the previous one in the shape of the formulae used in the transitions. Therefore, we
could not run Mcmt (nor Cubicle) on this family, nor we could use the parameter
abstraction technique of Section 3.3.3 on them. This family of systems can be used as
inputs to the model checkers Ic3po and MyPyvy.

Finally, the third family consists of a set of 25 array-based transition systems mod-
eling simple train verification problems [6], on which only the two algorithms presented
in this paper can be applied, due to the presence of various SMT theories and non-
restricted transition formulae.

90

https://drive.google.com/file/d/1_lIUa_Y-yKAhj5bXnX1hLEovFmP3Jos9/view?usp=sharing
https://drive.google.com/file/d/1_lIUa_Y-yKAhj5bXnX1hLEovFmP3Jos9/view?usp=sharing

Chapter 6. Experimental Evaluation

6.2.2 Comparison of Updria and Lambda

We compare now the first two algorithms described in this chapter 3, Updria and
Lambda. In addition to the basic versions described in Sections 3.2 and 3.3, for Updria
we also implemented a variant of the algorithm (denoted with option –size-n) which
combines some of the ideas of Section 3.3. With this option, the algorithm starts by
considering a ground instance of size n, and extracts a set of lemmas from it (as in 3.3.2)
which can help the algorithm to converge faster or can be discarded if falsified later.
For the majority of the benchmarks considered, this strategy (with n = 3) improved the
performances of Updria. For Lambda, we consider various options; with the flag –no-
symm, we do not use the results of Section 2.3.2 to help the model checking of ground
instances. With the flag –no-invgen, we do not apply the invariant minimization
technique explained in 3.3.2. Moreover, we distinguish three options for implementing
the invariant checking sub-procedure of Algorithm 3: the option –param consists of
the implementation of the parameter abstraction technique of Section 3.3.3; the option
–ind applies the procedure of Section 3.3.4. Finally, the option –z3 simply calls Z3 on
inductive queries.

We tested all such options on the first family of benchmarks, where it was possible to
compare them all. A summary of the results is reported in Table 6.1, where we show the
number of solved benchmarks and the total time taken by the tool; we also report plots
comparing different Lambda options in Figure 6.1, and different Updria options in
Figure 6.2. Those plots show, for each point in time, the number of solved instances up
to that time. We consider as solved instances the ones where the algorithms terminate
with Safe or Unsafe.

Table 6.1: Summary of experimental results on MCMT benchmarks.
Tot solved Tot time

Lambda–ind 216 2773s
Lambda–nosymm–ind 216 8740s
Lambda–z3 214 11615s
Lambda–nosymm–z3 214 14615s
Updria–size-3 208 24038s
Lambda–param 206 1055s
Lambda–noinvgen–ind 204 4073s
Lambda–nosymm–param 203 17313s
Lambda–noinvgen–param 202 1914s
Lambda–noinvgen–nosymm–param 202 10158s
Lambda–noinvgen–z3 191 8897s
Lambda–noinvgen–nosymm–ind 180 7986s
Updria–size-2 197 17488s
Updria–size-4 197 20943s
Lambda–noinvgen–nosymm–z3 166 3025s
Updria 162 27649s

In the case of Updria, most of the time used by the algorithm is consumed by Z3
for proving the (un)satisfiability of quantified queries. In this case, when the procedure
diverges, it usually does so by extending the frame sequence without converging to
an inductive invariant. In general, the algorithm can also diverge with a sequence of
refinement failures: as explained in Section 3.2.4, this can also happen when and all the
predicates of the interpolants extracted by Mathsat are already in the predicate set P .

91

6.2. Application to parameterized protocols

 50

 100

 150

 200

 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

lambda comparison

lambda-ind
lambda-nosymm-ind
lambda-nosymm-z3

lambda-z3
lambda-param

lambda-noinvgen-ind
lambda-nosymm-param

lambda-noinvgen-param
lambda-noinvgen-nosymm-param

lambda-noinvgen-z3
lambda-noinvgen-nosymm-ind
lambda-noinvgen-nosymm-z3

Figure 6.1: Plot comparing different options of Lambda

 50

 100

 150

 200

 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

updria comparison

updria
updria-size-2
updria-size-3
updria-size-4

Figure 6.2: Plot comparing different options of Updria

However, the latter possibility is rarer in our experiments: in the Mcmt benchmarks,
this happened only once. Interestingly, we discovered that for that model, no universal
inductive invariant exists.

The performance profile of Lambda, instead, is very different from the above. The
procedure relies less on quantified reasoning, and most of its time is spent in the model
checking of ground instances. When the tool diverges, it is usually during this phase:

92

Chapter 6. Experimental Evaluation

if an invariant is not found, larger and larger (ground) instances are analyzed.
From the experiments, it was clear that the results about symmetries of Section 2.3.2

reduced drastically the time of model checking of ground instances, thus improving the
overall performances. The technique of invariant reduction of Section 3.3.2 was also
helpful, in particular, to obtain better lemmas from finite instances (meaning that they
generalized better to other instances). In this experimental evaluation, the usage of the
parameter abstraction technique does not show particular benefits in contrast to the
usage of SMT-solving techniques on inductive queries. Although for some instances the
computation and model checking of the abstract system was quicker, it is possible to see
the prophecy variables of the parameter abstraction as an a priori fixed instantiation
strategy, thus reducing the generality of the approach. Finally, we can also see how
our simple instantiation technique was more efficient than a naive usage of Z3: this is
because, in the case of non-inductive lemmas, the solver takes a lot of time in building
models for counterexamples to induction. Instead, our approach discards lemmas with
an additional ground instance exploration, as explained in Section 3.3.4.

Finally, we remark on the difference in time consumed by the two algorithms, Up-
dria and Lambda. As already mentioned, this is due to the fact that most of the
Updria queries are quantified, whereas Lambda tries to avoid that as much as possi-
ble. To better illustrate the difference, in Figure 6.3, we report a scatter plot comparing
the two tools with their respective best options.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

u
p
d
ri
a

lambda

timeout
unsafe

safe

Figure 6.3: Scatter plot comparing Updria and Lambda

6.2.3 Comparison with other tools

We report in Table 6.3 a summary of the comparison of the algorithms described in this
paper and the other available model checkers. The table shows, for each tool/configura-

93

6.2. Application to parameterized protocols

tion, the number of solved instances for each of the family of benchmarks we considered.
In the second column, we show the number of benchmarks solved in the subset of the
first family available also for Cubicle. When a tool is not applicable to a family, we
use the symbol ‘-’. For Updria and Lambda, we used the best options according
to the previous section. For Mcmt, we used standard settings: the tool has however
different strategies, but we did not investigate the best ones for each benchmark. For
Cubicle, we used the –brab 2 option. For MyPyvy, we used the implementation and
the best options given in the artifact of [83]. For Ic3po, we used the option –finv=2
to discharge unbounded checks with Z3. The properties of the tools we consider are
summarized in Table 6.2.

Table 6.2: Summary of the characteristics of the tools considered
TE only Boolean TE generic T (X,X′) generic ∀∃ invariants

Updria -
Lambda -
Mcmt - -
Cubicle - -
Ic3po -
MyPyvy -

Table 6.3: Summary of experiments on all benchmarks.
Mcmt (238 tot) Cubicle (42 tot) VMT (52 tot) Trains (25 tot)

Updria 208 30 29 24
Lambda 214 35 29 25
Mcmt 172 24 - -
Cubicle - 31 - -
Ic3po - - 36 -
MyPyvy - - 27 -
VBS 220 36 37 25

We also show, in Figures 6.4, 6.5, 6.6, plots comparing Lambda and Updria with
the other tools on single benchmarks families. We can see from the table and the plots
the generality of our approach, and the fact that both Updria and Lambda compare
well with the state of the art.

In particular, Lambda is outperformed only by Ic3po in the second family of
benchmarks, solving 7 more instances. In these cases, Ic3po finds an inductive invariant
that contains an existential quantifier, while Lambda (and Updria) only search for
universally quantified inductive invariants. In particular, Updria diverges on those
instances by discovering always the same predicates from a finite instance, as explained
in Section 3.2.4.

94

 50

 100

 150

 200

 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e

s

time

mcmt

mcmt
lambda
updria

Figure 6.4: Plot for Mcmt family

 5

 10

 15

 20

 25

 30

 35

 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e

s

time

lambda
mcmt

updria
cubicle

cubicle

Figure 6.5: Plot for Cubicle family

 5

 10

 15

 20

 25

 30

 35

 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e

s

time

lambda
updria
ic3po

mypyvy

vmt

Figure 6.6: Plot for VMT family

6.3. Application to array systems

6.3 Application to array systems

In this section, we elaborate on how the algorithms discussed in the previous chapter
can be applied to symbolic transition systems defined over the quantifier-free theory of
arrays (with constant arrays), as outlined in Section 2.1.1. These symbolic transition
systems are pivotal in modeling programs that manipulate arrays or, more broadly, the
heap.

A significant aspect of these systems is that the properties intended for verification
are often expressed through universally quantified formulae. However, we always reduce
to the quantifier-free cases by applying Proposition 32.

We therefore consider systems denoted with symbolic transition systems
S = (X, I(X), T (X,X ′)), over the theory TA of arrays, and a formula ϕ(X), where
I, T, ϕ are quantifier-free formulae. It is well known [12] that the satisfiability problem
of array formulae can be reduced to the theory of equality with uninterpreted functions
TEUF ; by mirroring such transformations, we can reduce the verification of array systems
to our formalism as well. In case that the index sort of the array theory is uninterpreted,
then the transformation is straightforward. However, in case of integers, we need to
address certain nuances. Therefore, in the following, we fix the index sort of the array
theory to be the integers (allowing the element sort to be arbitrary). Recall that in
our definition of array-based transition system (definition 10), we necessitate that the
index sort’s universes are finite. The key insight here is the fact that satisfiability of
quantifier-free array formulae is equivalent to EUF satisfiability over a finite integer
subset, and thus the conversion is still sound.

Despite the system being defined through quantifier-free formulae, it is common
for the inductive invariants to necessitate quantifiers over the index sort. This arises
because the operations of writing to and reading from arrays implicitly encapsulate
quantification within such systems.

The integration of transition systems over arrays into our formalism entails con-
structing an equivalent array-based transition system, S̃, which maintains a bisimula-
tion relationship with the original system. A bisimulation relation is a relation between
states that preserves reachability in both directions. Therefore, a safe result for S̃ is a
safe result for S, and the same applies to counterexamples.

We only discuss this transformation informally, not focusing on all the details. The
main question we are facing is to understand if the algorithms in the previous sections
can be applied successfully to these systems as well.

To define S̃, we introduce a theory TI for an interpreted index sort. Moreover, we
define an injective mapping µ that maps this index sort to integers.

Then, for every array variable x ∈ X, a corresponding uninterpreted function x̃ is
defined from the uninterpreted index sort to the element sort. To define the initial and
transition formula for S̃, we apply transformation rules on the formulae in I and T .
First, we can assume that all atoms occurring in formulas in I and T are flat, i.e., the
only array atoms occurring in the formulae are equalities among arrays or equalities
of the form wr(a, k, e) = b, where a and b are array constant symbols and k, e are
constants of index and element type, respectively. Then, we remove the array theory

96

Chapter 6. Experimental Evaluation

by using the following rewriting rules:

i Array equalities a = b for arrays a and b are transformed into ∀i.ã(i) = b̃(i).

ii Array updates wr(a, k, e) = b morph into
∀i.(µ(i) = k → ã(i) = e) ∧ (µ(i) ̸= k → ã(i) = b̃(i)).

iii Access operations of the form rd(a, k) convert into ã(i), introducing a fresh vari-
able i for the index sort and incorporating the condition µ(i) = k within the
formula.

The reformulated system S̃ bisimulates the original system while ensuring that every
function x̃ is defined over an index set U , with µ mapping U to a finite set of integers.
The correspondence with the original array x is defined via x[i] := x̃(µ−1(i)) for all the
integers i within the image of U under µ; otherwise, the array value can be set as a
default deducible constant. If there are no constant arrays in the formula, such constant
can be any element value. Otherwise, additional reasoning is required.

These transformations adeptly prepare the system for the application of Updria
and Lambda algorithms.

We amassed a dataset consisting of 309 benchmarks on array-based transition sys-
tems, derived from the paper [59] and the array category of the CHC-COMP 2020
[119]. Our analysis involved a comparison of two algorithms against Prophic3, a tool
specifically tailored for verifying array systems. Other notable tools capable of handling
these systems and synthesizing universally quantified invariants include FreqHorn [59],
QUIC3 [75], and gSpacer [85]. However, these tools necessitate systems described as
CHCs, whereas both Prophic3 and our algorithms are compatible with the same in-
put format (VMT files). As documented in [96], Prophic3 performs comparably—and
often better—than these alternatives in solving instances.

We have run our experiments on a cluster of machines with a 2.90GHz Intel Xeon
Gold 6226R CPU running Ubuntu Linux 20.04.1, using a time limit of 1 hour and a
memory limit of 4GB for each instance.

The summary of the results from our experimental evaluation are presented in the
following table:

Tool Solved Safe Solved Unsafe
Prophic3 158 34
Lambda 105 33
Updria 115 32

Table 6.4: Experimental results on transition systems over TA

These results demonstrate that, while the algorithms may not outperform specialized
tools in verifying properties of arrays, they exhibit competitive performance, particu-
larly in generating counterexamples. Notably, the optimal performance for Lambda
was achieved using the –no-symm flag, differing from previous cases. This suggests
that the inclusion of integer constants possibly complicates the application of index

97

 50

 100

 150

 200

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e

s

time

prophic3
lambda-symm

lambda
updria

updria--size--2

array

Figure 6.7: Comparison of Lambda, Updria and Prophic3 on array benchamrks.

domain symmetries in finite instance model checking. Moreover, Lambda’s perfor-
mance was outpaced by Updria, aligning with expectations since Lambda’s strat-
egy—generalizing proofs from finite instances to protocols—may not extend effectively
to array programs. The most effective setting for Updria was –initial-concretization
2, though the difference from the default configuration was minimal, unlike in prior sce-
narios. A cactus plot comparing different option can be seen in Figure 6.7.

Although these experiments are preliminary, they affirm the applicability of the
described algorithms to array systems. Further investigation is warranted to match
or surpass state-of-the-art solutions, yet we remain optimistic about the potential ad-
vancements.

Chapter 6. Experimental Evaluation

6.4 Application to asynchronous composition of sys-
tems

We discuss in this last section of experimental evaluation the application of the algo-
rithm presented in 4.2.

As we already mentioned, this algorithm is intended for application in a project
focused on the verification of interlocking logic; in that project, we aim to automatically
generate symbolic transition systems that encapsulate all components of interlocking
logic, directly from the specification or railway engineers in the tool discussed in Chapter
5. The current design of the logic encompasses approximately 100 components, each
featuring between 2 to 10 variables. As this is still work in progress, we report here our
results on a simplified case study on interlocking logic, modeling only 5 parameterized
components: routes, tracks, level crossings, switches, and signals. It’s important to note
that these components represent significantly simplified versions compared to their real-
world counterparts.

In this case study, we evaluated the algorithm against two properties. The first, a
true assertion, states that two routes sharing a track cannot be active simultaneously.
The results are in 6.5. The discrepancies observed during refinement between Mathsat
and Z3 are due to the fact that the solvers find different variables in the unsat cores.
Generally, Z3, which processes quantified formulae during the ’Spurious Check’, tends
to be slower but, in this specific instance, it finds the ’correct’ variables (i.e. the ones
needed for the inductive invariant) before then Mathsat. We also test the algorithm
on a second property, a false assertion whose counterexample involves most of the
components and variables of the system. This is a situation that demonstrate the
limitations of our procedure compared to a monolithic approach, where it is applied on
a context where ’most’ of the behaviours of the various components is needed. Results
are detailed in Table 6.6.

Table 6.5: Interlocking: Safe Property
Method Solver Time(s) #Refinement_steps #var #components

Monolithic - 9.28 - 15 5
Compositional z3 4.20 3 5 2
Compositional msat 4.63 4 7 2

Table 6.6: Interlocking: Unsafe Property
Method Solver Time(s) #Refinement_steps #var #components

Monolithic - 0.88 - 15 5
Compositional z3 7.56 4 12 3
Compositional msat 4.64 4 12 3

A second source of benchmarks derives from two parameterized protocols, which we

99

6.4. Application to asynchronous composition of systems

have adapted by integrating N components capable of altering certain shared variables.
These protocols are a basic mutual exclusion protocol and a variant of the bakery
protocol. We test the algorithm on properties that are true and are independent of the
modifications enacted by these additional components. This scenario ideally showcases
the strengths of our algorithm, as the inductive invariant for the properties can be
determined by examining only a fraction of the system, ignoring the rest. The results
are depicted in Figure 6.8. The x-axis represents the number of components, while the
y-axis measures the time taken by the procedures in seconds (presented on a logarithmic
scale). Compared to the monolithic approach, our algorithm’s verification process is
significantly less time-consuming and remains relatively constant and similarly, the
number of refinements required by the algorithm stays steady.

Figure 6.8: Protocols with additional components

100

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we tackled the problem of SMT-based verification of parameterized sys-
tems. The formalism we use to describe such systems is based on the ones already
present in the literature, which we have extended to suit a more general setting. This is
motivated by the need for automated verification tools capable of handling the intricate
nature of parameterized systems, which are not only infinite-state but also encapsulate
quantifiers within their system descriptions, thereby complicating the verification pro-
cess.

We proposed two novel algorithms designed to automate the verification of safety
properties in such systems. These algorithms are grounded in existing techniques but
incorporate innovative strategies to overcome the challenges posed by parameterized
verification.

The first algorithm, known as Updria, is an enhancement of the UPDR algorithm
with the addition of predicate abstraction to effectively manage a general SMT the-
ory representing the data of the parameterized system. This approach builds on the
strengths of the original UPDR method but introduces the need for frequent, computa-
tionally intensive quantified queries to an external solver. This aspect poses a significant
challenge for its practical deployment, as these queries can considerably decelerate the
verification process. Despite these hurdles, Updria presents a powerful solution for
discovering safety invariants within complex parameterized systems.

The second algorithm is called Lambda, which embarks on a different path by ini-
tially limiting the parameter’s cardinality. This restriction permits the verification of
the system without quantifiers, utilizing existing methodologies. Lambda then seeks
to generalize the found inductive invariant into a quantified candidate applicable to
the original system. To validate this generalized invariant, Lambda explores two main
strategies: leveraging Parameter Abstraction for creating a quantifier-free system and
its property verification, and employing a bounded approach to quantified SMT rea-
soning. These approach aims to curtail the potential for validity check divergences,
positioning Lambda as an efficient method for parameterized system verification.

Moreover, our exploration into the verification of asynchronous composition of sys-

101

7.2. Future Work

tems, with a particular focus on industrial applications in interlocking logic design,
yielded promising initial results. The potential for integrating the invariants identi-
fied by our algorithms into Dafny code could significantly bolster the robustness and
reliability of system designs in an industrial setting.

The experimental evaluations of our algorithms underscored their efficacy and effi-
ciency in verifying the safety properties of parameterized systems.

7.2 Future Work
The research presented in this thesis opens several avenues for future exploration.

An immediate direction is the generation of invariants that include not only universal
quantifiers but also existential ones. We plan to leverage a generalization approach
that introduces existential quantifiers, as discussed in [70]. Additionally, interpolation
techniques could be employed within our framework to infer quantifier alternation, as
suggested by [53].

Extending our verification algorithms to encompass liveness properties, in addition
to safety, presents another promising research trajectory. Techniques for proving live-
ness properties can vary from reductions to safety, which are often not automated, as
outlined in [109], to more direct approaches like [56], which could offer insights into
generalizing proofs of liveness from finite domains. This concept aligns with the spirit
of the Lambda algorithm and could use a liveness model checker for ground instances
such as [48].

A notable limitation of our current methodology is its inability to explicitly reason
about cardinality constraints. We aim to address this limitation by integrating special-
ized approaches, like those found in [89, 69, 66, 123, 4], with our proposed verification
procedures, in order to create a more comprehensive framework that accommodates a
broader spectrum of properties and systems.

In conclusion, this thesis lays the groundwork for further advancements in the SMT-
based verification of parameterized systems. The algorithms and methodologies we have
developed contribute to the academic discourse and could also offer practical solutions
to real-world verification challenges.

102

Bibliography

[1] Abdulla, P. A., Čerāns, K., Jonsson, B., and Tsay, Y.-K. Algorithmic
analysis of programs with well quasi-ordered domains. Information and Compu-
tation 160, 1 (2000), 109–127.

[2] Achterberg, T. Scip: Solving constraint integer programs. Mathematical
Programming Computation 1 (07 2009), 1–41.

[3] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., and Sharygina,
N. Safari: Smt-based abstraction for arrays with interpolants. In Computer Aided
Verification (Berlin, Heidelberg, 2012), P. Madhusudan and S. A. Seshia, Eds.,
Springer Berlin Heidelberg, pp. 679–685.

[4] Alberti, F., Ghilardi, S., and Pagani, E. Counting constraints in flat array
fragments. In Proceedings of the 8th International Joint Conference on Automated
Reasoning - Volume 9706 (Berlin, Heidelberg, 2016), Springer-Verlag, p. 65–81.

[5] Amendola, A., Becchi, A., Cavada, R., Cimatti, A., Ferrando, A., Pi-
lati, L., Scaglione, G., Tacchella, A., and Zamboni, M. Norma: a tool
for the analysis of relay-based railway interlocking systems. In Tools and Algo-
rithms for the Construction and Analysis of Systems (Cham, 2022), D. Fisman
and G. Rosu, Eds., Springer International Publishing, pp. 125–142.

[6] Amendola, A., Becchi, A., Cavada, R., Cimatti, A., Griggio, A.,
Scaglione, G., Susi, A., Tacchella, A., and Tessi, M. A model-based
approach to the design, verification and deployment of railway interlocking sys-
tem. In Leveraging Applications of Formal Methods, Verification and Validation:
Applications (Cham, 2020), T. Margaria and B. Steffen, Eds., Springer Interna-
tional Publishing, pp. 240–254.

[7] Aminof, B., Kotek, T., Rubin, S., Spegni, F., and Veith, H. Parameter-
ized model checking of rendezvous systems. Distrib. Comput. 31, 3 (jun 2018),
187–222.

[8] Barbosa, H., Barrett, C. W., Brain, M., Kremer, G., Lachnitt, H.,
Mann, M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A.,
Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., and
Zohar, Y. cvc5: A versatile and industrial-strength SMT solver. In Tools and

103

Bibliography

Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022 (2022), vol. 13243 of Lecture Notes in Computer Sci-
ence, Springer, pp. 415–442.

[9] Barrett, C. W., Stump, A., and Tinelli, C. The smt-lib standard version
2.0.

[10] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. Symbolic model check-
ing without bdds. In Tools and Algorithms for the Construction and Analysis
of Systems (Berlin, Heidelberg, 1999), W. R. Cleaveland, Ed., Springer Berlin
Heidelberg, pp. 193–207.

[11] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y.
Bounded model checking. Adv. Comput. 58 (2003), 117–148.

[12] Biere, A., Heule, M., van Maaren, H., and Walsh, T., Eds. Handbook of
Satisfiability, vol. 185. IOS Press, 2009.

[13] Birgmeier, J., Bradley, A. R., and Weissenbacher, G. Counterexample
to induction-guided abstraction-refinement (CTIGAR). In Computer Aided Ver-
ification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings
(2014), A. Biere and R. Bloem, Eds., vol. 8559 of Lecture Notes in Computer
Science, Springer, pp. 831–848.

[14] Bloem, R., Jacobs, S., and Khalimov, A. Decidability of Parameterized
Verification. Morgan & Claypool Publishers, 2015.

[15] Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi,
A., Mebsout, A., and Melquiond, G. A simplex-based extension of fourier-
motzkin for solving linear integer arithmetic. In Automated Reasoning (Berlin,
Heidelberg, 2012), B. Gramlich, D. Miller, and U. Sattler, Eds., Springer Berlin
Heidelberg, pp. 67–81.

[16] Bonacina, M. P., Fontaine, P., Ringeissen, C., and Tinelli, C. Theory
combination: Beyond equality sharing. In Description Logic, Theory Combina-
tion, and All That - Essays Dedicated to Franz Baader on the Occasion of His
60th Birthday (2019), C. Lutz, U. Sattler, C. Tinelli, A. Turhan, and F. Wolter,
Eds., vol. 11560 of Lecture Notes in Computer Science, Springer, pp. 57–89.

[17] Bonacina, M. P., Ghilardi, S., Nicolini, E., Ranise, S., and Zucchelli,
D. Decidability and undecidability results for nelson-oppen and rewrite-based
decision procedures. In Automated Reasoning, Third International Joint Confer-
ence, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (2006),
U. Furbach and N. Shankar, Eds., vol. 4130 of Lecture Notes in Computer Science,
Springer, pp. 513–527.

104

Bibliography

[18] Bozga, M., Bueri, L., and Iosif, R. On an invariance problem for parameter-
ized concurrent systems. In 33rd International Conference on Concurrency The-
ory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland (2022), B. Klin,
S. Lasota, and A. Muscholl, Eds., vol. 243 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 24:1–24:16.

[19] Bozga, M., Iosif, R., and Sifakis, J. Verification of component-based systems
with recursive architectures. Theor. Comput. Sci. 940, Part (2023), 146–175.

[20] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T. A., van
Rossum, P., Schulz, S., and Sebastiani, R. An incremental and layered
procedure for the satisfiability of linear arithmetic logic. In Tools and Algorithms
for the Construction and Analysis of Systems, 11th International Conference,
TACAS 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceed-
ings (2005), N. Halbwachs and L. D. Zuck, Eds., vol. 3440 of Lecture Notes in
Computer Science, Springer, pp. 317–333.

[21] Bradley, A. R. Sat-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation (Berlin, Heidelberg, 2011), R. Jhala
and D. Schmidt, Eds., Springer Berlin Heidelberg, pp. 70–87.

[22] Bradley, A. R., Manna, Z., and Sipma, H. B. What’s decidable about
arrays? In Verification, Model Checking, and Abstract Interpretation (Berlin,
Heidelberg, 2006), E. A. Emerson and K. S. Namjoshi, Eds., Springer Berlin
Heidelberg, pp. 427–442.

[23] Bruschi, D., Pasquale, A. D., Ghilardi, S., Lanzi, A., and Pagani, E.
A formal verification of arpon - A tool for avoiding man-in-the-middle attacks
in ethernet networks. IEEE Trans. Dependable Secur. Comput. 19, 6 (2022),
4082–4098.

[24] Bruttomesso, R., Ghilardi, S., and Ranise, S. Rewriting-based quantifier-
free interpolation for a theory of arrays. In Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011, May 30 - June
1, 2011, Novi Sad, Serbia (2011), M. Schmidt-Schauß, Ed., vol. 10 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 171–186.

[25] Carioni, A., Ghilardi, S., and Ranise, S. Mcmt in the land of parametrized
timed automata. In VERIFY-2010. 6th International Verification Workshop
(2012), M. Aderhold, S. Autexier, and H. Mantel, Eds., vol. 3 of EPiC Series
in Computing, EasyChair, pp. 47–64.

[26] Cavada, R., Cimatti, A., Griggio, A., and Susi, A. A formal ide for rail-
ways: Research challenges. In Software Engineering and Formal Methods. SEFM
2022 Collocated Workshops (Cham, 2023), P. Masci, C. Bernardeschi, P. Graziani,

105

Bibliography

M. Koddenbrock, and M. Palmieri, Eds., Springer International Publishing,
pp. 107–115.

[27] Chaki, S., Ouaknine, J., Yorav, K., and Clarke, E. Automated compo-
sitional abstraction refinement for concurrent c programs: A two-level approach.
Electronic Notes in Theoretical Computer Science 89, 3 (2003), 417–432. SoftMC
2003, Workshop on Software Model Checking (Satellite Workshop of CAV ’03).

[28] Chocron, P. D., Fontaine, P., and Ringeissen, C. Politeness and com-
bination methods for theories with bridging functions. J. Autom. Reason. 64, 1
(2020), 97–134.

[29] Chou, C.-T., Mannava, P. K., and Park, S. A simple method for pa-
rameterized verification of cache coherence protocols. In Formal Methods in
Computer-Aided Design (Berlin, Heidelberg, 2004), A. J. Hu and A. K. Martin,
Eds., Springer Berlin Heidelberg, pp. 382–398.

[30] Christ, J., Hoenicke, J., and Nutz, A. Smtinterpol: An interpolating smt
solver. In Model Checking Software (Berlin, Heidelberg, 2012), A. Donaldson and
D. Parker, Eds., Springer Berlin Heidelberg, pp. 248–254.

[31] Cimatti, A., and Griggio, A. Software model checking via ic3. In Computer
Aided Verification (Berlin, Heidelberg, 2012), P. Madhusudan and S. A. Seshia,
Eds., Springer Berlin Heidelberg, pp. 277–293.

[32] Cimatti, A., Griggio, A., Mover, S., Roveri, M., and Tonetta, S.
Verification modulo theories. Formal Methods Syst. Des. 60, 3 (2022), 452–481.

[33] Cimatti, A., Griggio, A., Mover, S., and Tonetta, S. Infinite-state in-
variant checking with IC3 and predicate abstraction. Formal Methods Syst. Des.
49, 3 (2016), 190–218.

[34] Cimatti, A., Griggio, A., and Redondi, G. Universal invariant checking of
parametric systems with quantifier-free smt reasoning. In Automated Deduction –
CADE 28 (Cham, 2021), A. Platzer and G. Sutcliffe, Eds., Springer International
Publishing, pp. 131–147.

[35] Cimatti, A., Griggio, A., and Redondi, G. Verification of SMT systems
with quantifiers. In Automated Technology for Verification and Analysis - 20th
International Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Pro-
ceedings (2022), A. Bouajjani, L. Holík, and Z. Wu, Eds., vol. 13505 of Lecture
Notes in Computer Science, Springer, pp. 154–170.

[36] Cimatti, A., Griggio, A., and Redondi, G. Towards the verification of a
generic interlocking logic: Dafny meets parameterized model checking, 2024.

[37] Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R. The
mathsat5 smt solver. In TACAS’13 (Berlin, Heidelberg, 2013), TACAS’13,
Springer-Verlag.

106

Bibliography

[38] Cimatti, A., Griggio, A., and Sebastiani, R. Efficient generation of craig
interpolants in satisfiability modulo theories. ACM Trans. Comput. Logic 12, 1
(nov 2010).

[39] Cimatti, A., Griggio, A., and Tonetta, S. The VMT-LIB language and
tools. CoRR abs/2109.12821 (2021).

[40] Cimatti, A., Stojic, I., and Tonetta, S. Formal specification and verifica-
tion of dynamic parametrized architectures. In FM 2018 (2018).

[41] Claessen, K. New techniques that improve mace-style finite model finding.

[42] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
Counterexample-guided abstraction refinement. In Computer Aided Verification
(Berlin, Heidelberg, 2000), E. A. Emerson and A. P. Sistla, Eds., Springer Berlin
Heidelberg, pp. 154–169.

[43] Clarke, E., Kroening, D., Ouaknine, J., and Strichman, O. Complete-
ness and complexity of bounded model checking. In Verification, Model Checking,
and Abstract Interpretation (Berlin, Heidelberg, 2004), B. Steffen and G. Levi,
Eds., Springer Berlin Heidelberg, pp. 85–96.

[44] Clarke, E., Talupur, M., and Veith, H. Environment abstraction for pa-
rameterized verification. vol. 3855, pp. 126–141.

[45] Conchon, S., Goel, A., Krstic, S., Mebsout, A., and Zaïdi, F. Cubicle:
A Parallel SMT-based Model Checker for Parameterized Systems. In CAV 2012
(2012).

[46] Conchon, S., Goel, A., Krstic, S., Mebsout, A., and Zaïdi, F. Invariants
for finite instances and beyond. In Formal Methods in Computer-Aided Design,
FMCAD 2013 (2013).

[47] Dams, D., and Grumberg, O. Abstraction and abstraction refinement. In
Handbook of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith, and
R. Bloem, Eds. Springer, 2018, pp. 385–419.

[48] Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., and Mover, S.
Infinite-state liveness-to-safety via implicit abstraction and well-founded relations.
In Computer Aided Verification (Cham, 2016), S. Chaudhuri and A. Farzan, Eds.,
Springer International Publishing, pp. 271–291.

[49] de Moura, L., and Bjørner, N. Efficient e-matching for smt solvers. In
Automated Deduction – CADE-21 (Berlin, Heidelberg, 2007), F. Pfenning, Ed.,
Springer Berlin Heidelberg, pp. 183–198.

[50] de Moura, L. M., and Bjørner, N. Z3: an efficient SMT solver. In TACAS
(2008).

107

Bibliography

[51] Detlefs, D., Nelson, G., and Saxe, J. B. Simplify: a theorem prover for
program checking. J. ACM 52, 3 (2005), 365–473.

[52] Dooley, M., and Somenzi, F. Proving parameterized systems safe by gener-
alizing clausal proofs of small instances. In CAV 2016 (2016).

[53] Drews, S., and Albarghouthi, A. Effectively propositional interpolants. In
Computer Aided Verification (Cham, 2016), S. Chaudhuri and A. Farzan, Eds.,
Springer International Publishing, pp. 210–229.

[54] Emerson, E. A., and Kahlon, V. Reducing model checking of the many
to the few. In Automated Deduction - CADE-17 (Berlin, Heidelberg, 2000),
D. McAllester, Ed., Springer Berlin Heidelberg, pp. 236–254.

[55] Esparza, J., Finkel, A., and Mayr, R. On the verification of broadcast pro-
tocols. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento,
Italy, July 2-5, 1999 (1999), IEEE Computer Society, pp. 352–359.

[56] Fang, Y., Piterman, N., Pnueli, A., and Zuck, L. Liveness with invisible
ranking. International Journal on Software Tools for Technology Transfer 8 (06
2006), 261–279.

[57] Fantechi, A., Gori, G., Haxthausen, A. E., and Limbrée, C. Com-
positional verification of railway interlockings: Comparison of two methods. In
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verifi-
cation, and Certification (Cham, 2022), S. Collart-Dutilleul, A. E. Haxthausen,
and T. Lecomte, Eds., Springer International Publishing, pp. 3–19.

[58] Farzan, A., and Kincaid, Z. Verification of parameterized concurrent pro-
grams by modular reasoning about data and control. SIGPLAN Not. 47, 1 (jan
2012), 297–308.

[59] Fedyukovich, G., Prabhu, S., Madhukar, K., and Gupta, A. Quantified
invariants via syntax-guided synthesis. In Computer Aided Verification (Cham,
2019), I. Dillig and S. Tasiran, Eds., Springer International Publishing, pp. 259–
277.

[60] Feldman, Y. M. Y., Padon, O., Immerman, N., Sagiv, M., and Shoham,
S. Bounded quantifier instantiation for checking inductive invariants. Log. Meth-
ods Comput. Sci. (2019).

[61] Ferrari, A., and Beek, M. H. T. Formal methods in railways: A systematic
mapping study. ACM Comput. Surv. 55, 4 (nov 2022).

[62] Ge, Y., Barrett, C., and Tinelli, C. Solving quantified verification condi-
tions using satisfiability modulo theories. Annals of Mathematics and Artificial
Intelligence (feb 2009), 101–122.

108

Bibliography

[63] Gheorghiu Bobaru, M., Păsăreanu, C. S., and Giannakopoulou, D.
Automated assume-guarantee reasoning by abstraction refinement. In Computer
Aided Verification (Berlin, Heidelberg, 2008), A. Gupta and S. Malik, Eds.,
Springer Berlin Heidelberg, pp. 135–148.

[64] Ghilardi, S., Gianola, A., Kapur, D., and Naso, C. Interpolation results
for arrays with length and maxdiff. ACM Trans. Comput. Log. 24, 4 (2023),
28:1–28:33.

[65] Ghilardi, S., Nicolini, E., Ranise, S., and Zucchelli, D. Towards smt
model checking of array-based systems. In Automated Reasoning (Berlin, Heidel-
berg, 2008), A. Armando, P. Baumgartner, and G. Dowek, Eds., Springer Berlin
Heidelberg, pp. 67–82.

[66] Ghilardi, S., and Pagani, E. Higher-order quantifier elimination, counter
simulations and fault-tolerant systems. J. Autom. Reason. 65, 3 (mar 2021),
425–460.

[67] Ghilardi, S., and Ranise, S. Mcmt: A model checker modulo theories. In
Automated Reasoning (Berlin, Heidelberg, 2010), J. Giesl and R. Hähnle, Eds.,
Springer Berlin Heidelberg, pp. 22–29.

[68] Giannakopoulou, D., Namjoshi, K. S., and Pasareanu, C. S. Composi-
tional reasoning. In Handbook of Model Checking, E. M. Clarke, T. A. Henzinger,
H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 345–383.

[69] Gleissenthall, K. v., Bjørner, N., and Rybalchenko, A. Cardinalities
and universal quantifiers for verifying parameterized systems. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (New York, NY, USA, 2016), PLDI ’16, Association for Computing
Machinery, p. 599–613.

[70] Goel, A., and Sakallah, K. A. On symmetry and quantification: A new
approach to verify distributed protocols. In NFM 2021 (2021).

[71] Goel, A., and Sakallah, K. A. Towards an automatic proof of lamport’s
paxos. In FMCAD 2021 (2021), IEEE, pp. 112–122.

[72] Griggio, A., and Jonáš, M. Kratos2: An smt-based model checker for im-
perative programs. In Computer Aided Verification (Cham, 2023), C. Enea and
A. Lal, Eds., Springer Nature Switzerland, pp. 423–436.

[73] Gupta, A., McMillan, K. L., and Fu, Z. Automated assumption genera-
tion for compositional verification. In Computer Aided Verification (Berlin, Hei-
delberg, 2007), W. Damm and H. Hermanns, Eds., Springer Berlin Heidelberg,
pp. 420–432.

109

Bibliography

[74] Gurfinkel, A., Shoham, S., and Meshman, Y. Smt-based verification of
parameterized systems. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (New York, NY, USA,
2016), FSE 2016, Association for Computing Machinery, p. 338–348.

[75] Gurfinkel, A., Shoham, S., and Vizel, Y. Quantifiers on demand. In
Automated Technology for Verification and Analysis - 16th International Sym-
posium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings
(2018), S. K. Lahiri and C. Wang, Eds., vol. 11138 of Lecture Notes in Computer
Science, Springer, pp. 248–266.

[76] Hance, T., Heule, M., Martins, R., and Parno, B. Finding invariants of
distributed systems: It’s a small (enough) world after all. In NSDI 2021 (2021),
USENIX Association, pp. 115–131.

[77] Ivrii, A., Gurfinkel, A., and Belov, A. Small inductive safe invariants. In
Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzer-
land, October 21-24, 2014 (2014), IEEE, pp. 115–122.

[78] Jovanović, D., and Dutertre, B. Property-directed k-induction. In 2016
Formal Methods in Computer-Aided Design (FMCAD) (2016), pp. 85–92.

[79] Kaiser, A., Kroening, D., and Wahl, T. Dynamic cutoff detection in pa-
rameterized concurrent programs. In Computer Aided Verification (Berlin, Heidel-
berg, 2010), T. Touili, B. Cook, and P. Jackson, Eds., Springer Berlin Heidelberg,
pp. 645–659.

[80] Kapur, D., Majumdar, R., and Zarba, C. G. Interpolation for data struc-
tures. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (New York, NY, USA, 2006), SIGSOFT
’06/FSE-14, Association for Computing Machinery, p. 105–116.

[81] Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., and Shoham,
S. Property-directed inference of universal invariants or proving their absence. In
Computer Aided Verification (2015), D. Kroening and C. S. Păsăreanu, Eds.

[82] Koenig, J., and Leino, R. Getting started with dafny: A guide.

[83] Koenig, J. R., Padon, O., Immerman, N., and Aiken, A. First-order
quantified separators. In PLDI (2020).

[84] Komuravelli, A., Bjørner, N. S., Gurfinkel, A., and McMillan, K. L.
Compositional verification of procedural programs using horn clauses over integers
and arrays. In Formal Methods in Computer-Aided Design, FMCAD 2015, Austin,
Texas, USA, September 27-30, 2015 (2015), R. Kaivola and T. Wahl, Eds., IEEE,
pp. 89–96.

110

Bibliography

[85] Komuravelli, A., Gurfinkel, A., and Chaki, S. Smt-based model checking
for recursive programs. In Computer Aided Verification (Cham, 2014), A. Biere
and R. Bloem, Eds., Springer International Publishing, pp. 17–34.

[86] Kovács, L., and Voronkov, A. First-order theorem proving and vampire. In
CAV 2013, (2013).

[87] Kroening, D., and Strichman, O. Decision Procedures: An Algorithmic
Point of View. Springer, 2016.

[88] Krstic, S. Parametrized system verification with guard strengthening and pa-
rameter abstraction.

[89] Kuncak, V., Nguyen, H. H., and Rinard, M. An algorithm for deciding
bapa: Boolean algebra with presburger arithmetic. In Automated Deduction –
CADE-20 (Berlin, Heidelberg, 2005), R. Nieuwenhuis, Ed., Springer Berlin Hei-
delberg, pp. 260–277.

[90] Lahiri, S. K., Ball, T., and Cook, B. Predicate abstraction via symbolic
decision procedures. In Computer Aided Verification, 17th International Confer-
ence, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings (2005),
K. Etessami and S. K. Rajamani, Eds., vol. 3576 of Lecture Notes in Computer
Science, Springer, pp. 24–38.

[91] Lahiri, S. K., and Bryant, R. E. Predicate abstraction with indexed predi-
cates. ACM Trans. Comput. Logic 9, 1 (dec 2007), 4–es.

[92] Lahiri, S. K., Nieuwenhuis, R., and Oliveras, A. Smt techniques for fast
predicate abstraction. In Computer Aided Verification (Berlin, Heidelberg, 2006),
T. Ball and R. B. Jones, Eds., Springer Berlin Heidelberg, pp. 424–437.

[93] Li, Y., Duan, K., Jansen, D. N., Pang, J., Zhang, L., Lv, Y., and Cai,
S. An automatic proving approach to parameterized verification. ACM Trans.
Comput. Logic (Nov. 2018).

[94] Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., and Bensalem, S.
Property preserving abstractions for the verification of concurrent systems. Form.
Methods Syst. Des. 6, 1 (jan 1995), 11–44.

[95] Ma, H., Goel, A., Jeannin, J.-B., Kapritsos, M., Kasikci, B., and
Sakallah, K. A. I4: Incremental inference of inductive invariants for verifi-
cation of distributed protocols. In SOSP ’19 (2019).

[96] Mann, M., Irfan, A., Griggio, A., Padon, O., and Barrett, C. W.
Counterexample-guided prophecy for model checking modulo the theory of arrays.
CoRR abs/2101.06825 (2021).

[97] McCarthy, J. Towards a Mathematical Science of Computation. Springer
Netherlands, Dordrecht, 1993, pp. 35–56.

111

Bibliography

[98] McMillan, K. L. Interpolation and sat-based model checking. In Computer
Aided Verification (Berlin, Heidelberg, 2003), W. A. Hunt and F. Somenzi, Eds.,
Springer Berlin Heidelberg, pp. 1–13.

[99] McMillan, K. L. Applications of craig interpolants in model checking. In Tools
and Algorithms for the Construction and Analysis of Systems (Berlin, Heidelberg,
2005), N. Halbwachs and L. D. Zuck, Eds., Springer Berlin Heidelberg, pp. 1–12.

[100] McMillan, K. L. Lazy abstraction with interpolants. In Computer Aided
Verification (Berlin, Heidelberg, 2006), T. Ball and R. B. Jones, Eds., Springer
Berlin Heidelberg, pp. 123–136.

[101] McMillan, K. L. Interpolants from Z3 proofs. In International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, Oc-
tober 30 - November 02, 2011 (2011), P. Bjesse and A. Slobodová, Eds., FMCAD
Inc., pp. 19–27.

[102] McMillan, K. L. Eager abstraction for symbolic model checking. In Com-
puter Aided Verification (Cham, 2018), H. Chockler and G. Weissenbacher, Eds.,
Springer International Publishing, pp. 191–208.

[103] McMillan, K. L. Interpolation and Model Checking. Springer International
Publishing, Cham, 2018, pp. 421–446.

[104] Nelson, G., and Oppen, D. C. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst. 1, 2 (oct 1979), 245–257.

[105] Nelson, G., and Oppen, D. C. Fast decision procedures based on congruence
closure. J. ACM 27 (1980), 356–364.

[106] Nonnengart, A., and Weidenbach, C. Computing small clause normal
forms. In Handbook of Automated Reasoning (2001).

[107] Padon, O. Deductive verification of distributed protocols in first-order logic. In
2018 Formal Methods in Computer Aided Design (FMCAD) (2018), pp. 1–1.

[108] Padon, O. Invited talk: Deductive verification of distributed protocols in de-
cidable logics. In Proceedings of the 21st International Workshop on Satisfiability
Modulo Theories (SMT 2023) co-located with the 29th International Conference
on Automated Deduction (CADE 2023), Rome, Italy, July, 5-6, 2023 (2023),
S. Graham-Lengrand and M. Preiner, Eds., vol. 3429 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, p. 1.

[109] Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., and
Shoham, S. Reducing liveness to safety in first-order logic. Proc. ACM Pro-
gram. Lang. 2, POPL (dec 2017).

112

Bibliography

[110] Padon, O., Immerman, N., Shoham, S., Karbyshev, A., and Sagiv, M.
Decidability of inferring inductive invariants. SIGPLAN Not. 51, 1 (jan 2016),
217–231.

[111] Padon, O., Losa, G., Sagiv, M., and Shoham, S. Paxos made EPR: de-
cidable reasoning about distributed protocols. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 108:1–108:31.

[112] Padon, O., McMillan, K. L., Panda, A., Sagiv, M., and Shoham, S.
Ivy: Safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June
2016), 614–630.

[113] Padon, O., Wilcox, J. R., Koenig, J. R., McMillan, K. L., and Aiken,
A. Induction duality: Primal-dual search for invariants. POPL 6, POPL (2022).

[114] Pnueli, A., Ruah, S., and Zuck, L. D. Automatic deductive verification with
invisible invariants. In TACAS (2001).

[115] Redondi, G., Cimatti, A., Griggio, A., and McMillan, K. Invariant
checking for smt-based systems with quantifiers, 2024.

[116] Reynolds, A. Quantifier instantiation beyond e-matching. In (CAV 2017)
(2017), M. Brain and L. Hadarean, Eds.

[117] Reynolds, A., Tinelli, C., and de Moura, L. Finding conflicting instances
of quantified formulas in smt. In Proceedings of the 14th Conference on Formal
Methods in Computer-Aided Design (Austin, Texas, 2014), FMCAD ’14, FMCAD
Inc, p. 195–202.

[118] Reynolds, A., Tinelli, C., Goel, A., and Krstić, S. Finite model finding
in smt. In Computer Aided Verification (Berlin, Heidelberg, 2013), N. Sharygina
and H. Veith, Eds., Springer Berlin Heidelberg, pp. 640–655.

[119] Rümmer, P. Competition report: Chc-comp-20. Electronic Proceedings in The-
oretical Computer Science 320 (Aug. 2020), 197–219.

[120] Sanchez, A., Sankaranarayanan, S., Sanchez, C., and Chang, B.-Y.
Invariant generation for parametrized systems using self-reflection. vol. 7460,
pp. 146–163.

[121] Shoham, S., and Grumberg, O. Compositional verification and 3-valued
abstractions join forces. Information and Computation 208, 2 (2010), 178–202.

[122] Stump, A., Barrett, C. W., Dill, D. L., and Levitt, J. A decision proce-
dure for an extensional theory of arrays. In Proceedings of the IEEE Symposium
on Logic in Computer Science (LICS ’01) (June 2001), IEEE Computer Society,
pp. 29–37. Boston, Massachusetts.

113

Bibliography

[123] Suter, P., Steiger, R., and Kuncak, V. Sets with cardinality constraints
in satisfiability modulo theories. In Verification, Model Checking, and Abstract
Interpretation (Berlin, Heidelberg, 2011), R. Jhala and D. Schmidt, Eds., Springer
Berlin Heidelberg, pp. 403–418.

[124] Talupur, M., and Tuttle, M. R. Going with the flow: Parameterized verifi-
cation using message flows. In 2008 Formal Methods in Computer-Aided Design
(2008), pp. 1–8.

[125] Tamir, O., Taube, M., McMillan, K. L., Shoham, S., Howell, J.,
Gueta, G., and Sagiv, M. Counterexample driven quantifier instantiations
with applications to distributed protocols. Proc. ACM Program. Lang. 7, OOP-
SLA2 (2023), 1878–1904.

[126] Tinelli, C., and Barrett, C. Satisfiability modulo theories: Introduction
and applications. Communications of the ACM 54, 9 (2011), 69–77.

[127] Tonetta, S. Abstract model checking without computing the abstraction. In
FM 2009: Formal Methods (Berlin, Heidelberg, 2009), A. Cavalcanti and D. R.
Dams, Eds., Springer Berlin Heidelberg, pp. 89–105.

[128] Vick, C., and McMillan, K. L. Synthesizing history and prophecy variables
for symbolic model checking. In Verification, Model Checking, and Abstract In-
terpretation - 24th International Conference, VMCAI 2023, Boston, MA, USA,
January 16-17, 2023, Proceedings (2023), C. Dragoi, M. Emmi, and J. Wang,
Eds., vol. 13881 of Lecture Notes in Computer Science, Springer, pp. 320–340.

[129] Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., and Ryan, G. DistAI: Data-
Driven automated invariant learning for distributed protocols. In (OSDI 21) (July
2021).

[130] Zuck, L. D., and McMillan, K. L. Invisible invariants are neither. In From
Reactive Systems to Cyber-Physical Systems (2019).

114

	Introduction
	Contributions
	Thesis Structure

	I Background
	Background notions
	Satisfiability Modulo Theory
	Theories of interest
	Interpolants
	Handling Quantifiers in SMT Solving

	Verification Modulo Theory
	Symbolic model checking
	Abstraction and Refinement
	Asynchronous Composition of Systems

	Problem statement
	Array-based transition systems
	Ground instances

	II Algorithms
	Algorithms for the Invariant Problem of Parameterized Systems
	Introduction
	UPDR with implicit abstraction
	Overview of UPDR
	Implicit Indexed Predicate Abstraction
	Algorithm description and pseudocode
	Concretizing counterexamples and refinement
	Properties
	Proof of main results

	Lambda: Learning lemmas from ground instances
	High level algorithm
	Generalization
	Candidate Checking via Parameter Abstraction
	Candidate Checking via SMT solving
	Properties
	Proofs of main results

	Related Work

	Compositional Verification of Parameterized Systems
	An algorithm for the Verification of Asynchronous Composition of Symbolic Transition Systems
	Verification of concurrent parameterized systems
	Refinement

	Related Work on compositional verification

	III Case Studies and Experimental Evaluation
	Application of parameterized model checking to the verification of interlocking logics
	Current framework for developing interlocking logics
	Dafny Encoding
	Invariant Inference with a Parameterized Model Checker
	Summary and Ongoing Work

	Experimental Evaluation
	Implementation
	Application to parameterized protocols
	Benchmarks
	Comparison of Updria and Lambda
	Comparison with other tools

	Application to array systems
	Application to asynchronous composition of systems

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

