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“A stento immaginiamo le cose della terra, scopriamo con fat-
ica quelle a portata di mano; ma chi ha investigato le cose del
cielo? Chi avrebbe conosciuto il tuo volere, se tu non gli avessi
dato la sapienza e dall’alto non gli avessi inviato il tuo santo
spirito? Così vennero raddrizzati i sentieri di chi è sulla terra;
gli uomini furono istruiti in ciò che ti è gradito [...].”

Sapienza 9, 16-18
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Introduction

This thesis collects a set of research articles and working papers produced
during my doctoral program. Overall, they refer to:

(i) the general problem of collecting measures for the dynamic processes
underlying human rating tasks (section Models, methods, instruments)

(ii) the proposal of new statistical methods to analyse data structures aris-
ing from the dynamic rating measurements (section Statistical tech-
niques).

The section Models, methods, instruments contains three chapters on models
and methods designed to represent the dynamics of rating evaluations to-
gether with some relevant applications. In particular, the latter refer to two
different contexts, namely Likert-type questionnaires (Chapters 1 and 2)
and two-choice decision making (Chapter 3). Finally, the section also de-
scribes two new measurement instruments for dynamic ratings, DYFRAT
(Chapter 1) and DYFRAS (Chapter 2). In a similar way, the section Statis-
tical techniques contains three works on novel statistical methodologies to
run data analysis in the context of “structured data”, namely fuzzy num-
bers (Chapters 4 and 5) and interval-valued data (Chapter 6). The justifica-
tion for structured-data comes directly from the treatment of the dynamic
rating components in the sense that such a kind of data can offer a simple
and flexible formal representation to model the information related to the
rating properties.

Traditionally, rating objects like attitudes, opinions, and subjective eval-
uations have been investigated by means of Likert-type questionnaires
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and/or similar methodologies (e.g., see: Aiken, 1996). In this context, the
extracted information have been usually codified in terms of simple and
discrete numerical representations (i.e., final discrete responses and even-
tually their associated response times). The standard assumption here is
that these standard observable measures are “end products” of the entire
process of rating and, as such, can be used as indicators of the raters’ over-
all performance. In this way, the dynamics underlying final rating mea-
sures are clearly not detected with the consequence of loss of information.
Although this issue is not completely new in the psychological tradition
(e.g., see: Anderson, 1981; Tourangeau and Rasinski, 1988; Smith and De-
Coster, 2000; Link, Townsend, and Ashby, 1985), over the recent years it
is becoming popular again (e.g., see: Rosenbaum, 2005; Dale, Hindy, and
Spivey, 2006). This can be also noticed in other scientific traditions (e.g.,
see the recent methods employed in neuroscientific investigations such as
the GPFA method or the so-called trial-by-trial analysis - Byron et al., 2009;
Delorme and Makeig, 2004). In this respect, studying the dynamics at the
base of the rating mechanisms could give us a pragmatical but still useful
window on how human evaluations, opinion, and attitude may arise.

It should be noted that several models and methods might be used in
studying underlying rating processes. For instance, one could use prob-
abilistic modelisations such as dynamic factor analysis, hidden Markov
models, multinomial trees modeling, and IRT based models. However, for
the sake of simplicity and convenience, we preferred to approach this rel-
evant topic from a descriptive “metrological perspective”. More precisely,
here we refer to the study of empirical data as they appear in their low
level representation, to the choice of the basic model to represent them and
the related measurement systems. Put in other terms, we would prefer to
address the main question - how empirical rating data can be modeled in
order to extract from them as much information as possible - before any
further statistical manipulation. This would focus on the basic and impor-
tant problem of the “first data representation”. However, in doing so, we
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do not want to embed our questions within the historical debate between
psychometrics and mathematical psychology about the nature of the psy-
chological measurement (e.g., see: Luce, 1996; Sijtsma, 2012; Ratcliff, 1998;
Michell, 1999). Although we know that theoretical and methodological
problems could arise in this context, we discuss our findings by adopt-
ing an “exploratory attitude”, considering our proposal as first attempts
to light up some issues that are related with the modelisation of real-time
rating processes.





Models, methods, instruments





Chapter 1

Dynamic Fuzzy Rating Tracker
(DYFRAT): a novel methodology for
modeling real time dynamic cognitive
processes in rating scales

The content of the chapter has been previously published as: Calcagnì, A., & Lombardi,
L. (2014). Dynamic Fuzzy Rating Tracker (DYFRAT): a novel methodology for modeling
real-time dynamic cognitive processes in rating scales. Applied soft computing, 24, 948-961.

1.1 Introduction

In many empirical research areas such as, for instance, psychology, soci-
ology, organizational and management sciences, marketing, and epidemi-
ology, rating scales represent a widely used, simple and flexible tool for
measuring attitudes, opinions, and subjective preferences (Göb, McCollin,
and Ramalhoto, 2007; Miller and Salkind, 2002; Aiken, 1996; Pettit, 2002).
Let us assume that we are interested in measuring a person’s degree of
happiness. We could do this in a number of different ways, but one direct
and efficient approach would be simply to ask the person, ’How happy
are you?’ and require them evaluate themselves on a Likert-type rating
scale, ranging from ’very unhappy’ to ’very happy’. Rating scales typi-
cally consists of a variable to be measured (e.g., ’happiness’) and a set of
anchor points from which the rater selects the most appropriate descrip-
tion (e.g., very unhappy, moderately unhappy, neither, moderately happy,
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8 Chapter 1. Dynamic Fuzzy Rating Tracker (DYFRAT)

very happy). One widely used type of rating scale is the so-called numeri-
cal scale, where the anchor points either explicitly or implicitly are defined
numerically (e.g., 1: low, 2: average, 3: high). Like checklists, rating scales
are used for a wide variety of assessment purposes. For example, rating
scales can be used to have one individual evaluate another, for example,
when a physician might asses a patient as to degree of obesity, but the rat-
ing scales can also be applied as self-report measures. Unlike other types
of ratings, self-report scales require the person provide a direct and ex-
plicit rating of their own behavior/opinion/preference, etc. Of course,
the main assumption behind self-report measures is that individuals are
in the best position to report their own opinion in a direct and transpar-
ent way. The great diffusion and success of rating scales are mainly due
to the following major reasons that are all well documented in the litera-
ture: (1) rating scales can be administered to large groups of respondents
at one single setting; (2) they can be administered under conditions that
guarantee anonymity; (3) they allow the rater to proceed at their own
pace; (4) they present uniformity of procedure; (5) they allow for great
flexibility - for example, take-home questionnaires; and (6) the results are
more amenable to statistical analyses (in particular for numerical scales)
(Domino and Domino, 2006).
However, over the years several criticisms have been arisen against the
empirical validity of rating scales. For example, because of the discrete
and crisp nature of rating scales, some raters tend to avoid extreme cate-
gories in the anchor points (central tendency or restriction of range prob-
lem) (Saal, Downey, and Lahey, 1980). In general, we may think of hu-
man opinions and subjective preferences as being characterized by more
vague and imprecise information than the ones actually described by stan-
dard rating scales. Moreover, in some circumstances, the honesty assump-
tion implicitly assumed in self-report rating administrations appears to be
simply unrealistic. So, for example, in personnel selection surveys some
candidates might not be so candid in admitting their imperfections and,
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therefore, the associated self-report evaluations could be definitively bi-
ased (e.g., Furnham, 1986). Finally, another important limitation pertains
the idea that what is being reported using rating evaluations is something
that allows us to objectively explain and describe a person’s behavior.
However, several psychologists argue that such assumption is, in prin-
ciple, ill-posed and that what we really need, instead, is to directly focus
on the observable behavior involved in the process of rating (e.g., Golfried
and Kent, 1972).
In order to overcome the limitations of standard rating scales, some re-
searchers have applied fuzzy set theory (FST) to directly modeling impre-
cise features of human rating evaluations (Sáa et al., 2013; Li, 2012). In
particular, in the rating scale problem, FST has been mainly used in two
different contexts: i) for modeling data obtained by means of standard
rating scales (fuzzy conversion scales) or ii) for directly quantifying empir-
ical evaluations using fuzzy rating scales. In the first case, FST is applied
a-posteriori as a procedure for converting standard rating data into fuzzy
data (i.e., raters express their judgements using a traditional rating scale
which is subsequently converted into a fuzzy structure). By contrast, in
the second case, FST is applied a-priori as a general interface for directly
capturing fuzzy rating data (i.e. raters give their evaluations by means of
computerized tools that allow to directly use fuzzy sets in place of crisp
numbers).
In line with these approaches, in the present contribution we propose a
novel methodology, called DYFRAT (Dynamic Fuzzy Rating Tracker), to
measure some relevant behavioral dynamics involved in the rating pro-
cess. Likewise fuzzy rating scales and fuzzy conversion scales, also our
tool represents human rating evaluations in terms of fuzzy sets. However,
unlike fuzzy conversion and fuzzy rating scales, DYFRAT captures (in ad-
dition) some physical and biometric characteristics underlying observable
behaviors involved in the process of rating and considers fuzziness as a
natural property that spontaneously arises from the observed data. In this
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respect, DYFRAT is a formal procedure that explicitly focuses on the be-
havioral dynamics of rating and provides a continuous on-line measure of
the cognitive aspects involved in this process.
The remainder of this chapter is organized as follows. In the second sec-
tion we describe a comprehensive survey of the state-of-the-art of FST
applications in human rating problems. In the third and fourth sections
we present our new methodology. In the fifth section we describe a first
computerized implementation of DYFRAT system. In the sixth section we
show some empirical applications of DYFRAT to real data, whereas in the
seventh section we conclude this chapter by providing some final com-
ments.

1.2 Currently used methods for fuzzy ratings

1.2.1 Fuzzy conversion scales

Fuzzy conversion scales (FCS) are computational procedures based on a
fuzzy system which convert standard crisp rating data into a set of fuzzy
data. Figure 1.1a shows a graphical representation of the rationale under-
lying the FCS approach. In general, two perspectives can be adopted to
derive the conversion scale procedure from crisp rating data: i) an expert-
based approach and ii) an empirically-based approach. In the first per-
spective, a researcher (a-priori) sets the main features of the fuzzy vari-
ables (the number and shape of fuzzy sets, their overlapping degrees, etc.)
as well as some properties of the fuzzy system used in the conversion
process (input and output space definition, implication rules, implication
surface, etc). In the second approach, the fuzzy variables, are obtained us-
ing suitable statistical or data-mining procedures applied on the original
crisp data (e.g., fuzzy clustering, histogram based methods, probability-
possibility transformations).
FCS has found wide application in different empirical contexts. For in-
stance, Chang and Chung used FCS to study service quality of domestic
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airline companies (Chang and Yeh, 2002), Chan and Kao analysed cus-
tomers’satisfaction (Chan, Kao, and Wu, 1999), Benítez et al. proposed a
FST based method to measure hotels quality (Benítez, Martín, and Román,
2007), Lalla et al. developed a system for teaching activity evaluations
(Lalla, Facchinetti, and Mastroleo, 2005), Costa et al. proposed an appli-
cation for perception of disability evaluation (Costa et al., 2004), Li devel-
oped a novel type of fuzzy Likert scale (Li, 2012), Moon et al. described
a system for ranking candidates in military organizations (Moon, Lee,
and Lim, 2010), and Chen et al. proposed a fuzzy approach for selecting
environment-watershed plans (Chen et al., 2011).
However, fuzzy conversion scales are also characterized by some limita-
tions which are related to their general definition of fuzzy variables. For
example, aspects such as the number or type of fuzzy sets and the amount
of overlap between consecutive fuzzy sets in the scale, represent all sensi-
tive steps in the scale construction process. Moreover, the realization of the
conversion procedure, usually implemented by means of specific fuzzy
systems, is generally not a trivial task as it requires several delicate phases
(e.g., evaluation of the uniqueness of the final fuzzy representation, mea-
surement of the overall goodness-of-fit). In general, although the adoption
of the empirically-based methodology may overcome some of the draw-
backs of the expert-based approach (Ciavolino, Salvatore, and Calcagnì,
2013; Medasani, Kim, and Krishnapuram, 1998), FSC still inherits some of
the limitations of standard rating scales, such as for example, the problem
of selecting extreme categories in the scale and, more importantly, the fact
that this methodology cannot provide any information about the underly-
ing dynamics of rating.

1.2.2 Fuzzy rating scales

A Fuzzy rating scale (FRS) is a graphical tool which allows to collect hu-
man rating data by means of a computerized procedure entirely based on
the FST rationale. Generally, the FRS procedure permits to directly draw,
on a continuous scale with a movable cursor (or mouse pointer), a fuzzy
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FIGURE 1.1: Graphical comparison between FCS and FRS

set which would then represent the subjective judgement or evaluation of
the rater. A two-step paradigm is usually assumed in FRS applications.
First, the respondent chooses a point on a continuous scale as h(er/is) pre-
ferred position (Fig. 1.1b-i). Next, to express how fuzzy the rater feels
about the original preference, s(he) draws a line to the right (Fig. 1.1b-ii)
and another one to the left (Fig. 1.1b-iii). In an alternative version of the
FRS procedure, a triangular or trapezoidal fuzzy set lying on a continuous
line can be directly used, as a movable cursor, by the rater who subse-
quently can modify it by expanding or contracting its sides in order to ex-
press the response uncertainty. Also FRS has been successfully applied in
many real contexts. For instance, Hesketh and Hesketh proposed, for the
first time, a measurement tool for subjective attitudes called computerized
fuzzy rating scale (Hesketh et al., 1988; Hesketh, Pryor, and Hesketh, 1988;
Hesketh and Hesketh, 1994). Costas et al. applied fuzzy rating scales for
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the evaluation of psychological constructs (Costas, Maranon, and Cabr-
era, 1994), finally, Gil et al. described a free fuzzy-numbered response for-
mat questionnaire and compared it with standard rating scales (Gil and
González-Rodríguez, 2012).
However, the application of fuzzy scaling methods can also be problem-
atic. In particular, FRS can lack some ecological validity as subjects must
follow specific training periods for learning how the instrument exactly
works, what the concept of fuzziness is and, above all, how it can be used
to directly express their judgements or evaluations. Moreover, FRS can
also be criticized because this technique asks respondents to provide in-
formation that may seem difficult or even tricky to them. For this reason,
the basic assumption underpinning FRS, namely that human raters are
able to explicitly express the fuzziness of their judgements or evaluations
by means of fuzzy sets, could be questionable. Therefore, due to the high
complexity of the rating procedure, we cannot exclude that in some situ-
ations data collected using the FRS framework could be distorted or even
meaningless (Howard and Dailey, 1979; Furnham and Henderson, 1982;
Windschitl and Wells, 1996).

1.3 Dynamic Fuzzy Rating Tracker: theory

The traditional rating scale paradigm often regards human rating as a
discrete-stage process in which the final response represents its final stage.
Unfortunately, the observed final response captures only the outcome of
the rating process while the real-time cognitive dynamics that occur dur-
ing this process are lost. To overcome this relevant limitation, we pro-
pose a new methodology (DYFRAT) which is designed to track real-time
mental processes by using the so-called Mouse Tracking Methodology
(MTM). This methodology allows to record peculiar cognitive information
derived from the motor control of the computer-mouse (or other pointer
devices such as, for example, trackball, joystick, light pen, wii system,
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laser pen, etc.). Just as saccadic eye movements, brain waves, pupil di-
ameters, reaction-times, also computer-mouse movements can provide a
continuous on-line measure of the cognitive processes involved in hu-
man ratings (Cacioppo and Tassinary, 1990; Franco-Watkins and Johnson,
2011). Moreover, several studies have shown as the computer-mouse can
be considered as a reliable, cheap, non intrusive and accurate data acqui-
sition device that can successfully be used in cognitive as well as behav-
ioral research (Jansen, Blackwell, and Marriott, 2003; Hwang et al., 2005;
Chen, Anderson, and Sohn, 2001; Mueller and Lockerd, 2001; Freeman
and Ambady, 2010; O’Reilly and Plamondon, 2011). In the DYFRAT ap-
proach, the process of human rating is described as a temporal and dy-
namic changing course of data information (Morein-Zamir et al., 2006;
Johnson et al., 2012). More precisely, because subjective judgements or
evaluations can be conceived as the output of peculiar underlying cognitive
processes (Morein-Zamir et al., 2006; Magnuson, 2005; Freeman, Dale, and
Farmer, 2011), DYFRAT uses some biometric physical measures (which
are associated with the rating) for modeling human judgements or opin-
ions. In particular, such physical measures are assumed to be observable in-
dicators of the dynamic process of rating which constitute the antecedents
of the final rating outcome. In the DYFRAT approach these physical com-
ponents are represented by: a) the motor activation involved in the process
of rating and b) the overall time spent by the rater to provide h(er/is) final
rating outcome. The first component is measured by means of tracking
computer-mouse movements whereas the second component is measured
in terms of response time - RT (recorded in ms). Finally, in our approach
both the components are integrated into a common and comprehensive
fuzzy model which allows to express the overall fuzziness of the com-
bined temporal and motor dimensions of rating.
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1.4 Dynamic Fuzzy Rating Tracker: methodology

DYFRAT consists of a data-capturing procedure which implements a MTM
based computerized interface for collecting the motor and temporal com-
ponents in the process of rating and a data-modeling procedure which pro-
vides a fuzzy model for the recorded information.

1.4.1 Data-capturing procedure

Consider a questionnaire with J items. Each item is composed by its de-
scription (usually a question about a topic) and a rating scale with K dis-
tinct levels (e.g., K = 5 for a five-point Likert scale). In the DYFRAT ap-
proach, a questionnaire is represented according to a customized graphi-
cal interface. In particular, for each item j in the questionnaire, DYFRAT
data-capturing interface is based on two consecutive frames (see figures
1.2a and 1.2b). After a participant clicks a start button, a window with
the item description appears on the screen (first frame). A calibrated pause
separates this first frame from the second frame. At the end of the pause,
a pseudo-circular scale with K levels appears while the mouse cursor is
allocated to the center of the screen (second frame). A participant can give
h(er/is) response by mouse-clicking the chosen level of the scale (the se-
lected anchor point). Meanwhile, the DYFRAT system records the stream-
ing of the x-y coordinates of the computer mouse (at a given sampling
rate) as well as the total response time as the difference between the time
at the mouse-clicking on the selected anchor point and the onset time of
the presentation of the pseudo-circular scale on the screen. Note that the
two frame-phases allow to separate information about the reading process
(involved during the presentation of the item description) and the response
process (involved during the presentation of the rating scale). This distinc-
tion ensures that mouse movements and response times can be related to
distinct cognitive components. The idea behind the usage of a pseudo-
circular scale in place of a traditional linear-type scale or arc-type scale
(Freeman and Ambady, 2010) is justified by the fact that a pseudo-circular
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configuration yields the largest degrees of freedom for mouse-movement
recordings (Johnson et al., 2012). However, unlike genuine circular scales,
a pseudo-circular representation still preserves the ordinal property be-
tween consecutive anchor points in the scale as it shows a visible break-
point between the first level and the last level of the rating scale. The pro-
posed configuration can be considered as a standard linear scale which
has been bent in order to take into account the properties of both standard
linear scales as well as circular ones.
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FIGURE 1.2: DYFRAT: graphical schematization of the interface for data-capturing
procedure

1.4.2 Data representation

The collected data are represented by an I × J array D, that is to say, I
observations (raters) containing J structured measures (rater’s measures).
The entry dij of D denotes a generalized rating measure defined as:

dij = 〈zij, tij,pij〉, i = 1, . . . , I; j = 1, . . . , J

with zij ∈ N, tij ∈ R+, and pij = (xij,yij) ∈ RNij×2 with Nij ∈ N. In
particular, zij represents the final ordinal response provided by rater i to
item j, tij indicates the corresponding response time, whereas xij and yij
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are Nij × 1 vectors of Cartesian coordinates associated to the streaming of
the x-y coordinates of the computer mouse movements (movements path
of length Nij) .
The main idea is to construct a new I × J array D̃, called the fuzzy data
array of D, by transforming each generalized rating measure dij into a cor-
responding fuzzy set d̃ij that expresses the overall fuzziness of the rating
score associated with the (i, j) response. Therefore, according to our ratio-
nale, we consider mouse-movements and response times as two particular
sources of uncertainty, namely spatial uncertainty and temporal uncertainty.
By contrast, the ordinal crisp response is understood as the final output of
the dynamic decision process. A two-step procedure is used to derive the
final fuzzy representation d̃ij from dij. In the first step, we model (in an in-
dependent fashion) the spatial uncertainty and the temporal uncertainty.
In the second step, we provide the final fuzzy model representation, d̃ij, by
integrating these two sources of uncertainty. In particular, the rater’s final
response is captured by the core core(d̃ij) of the fuzzy set d̃ij, the spatial
uncertainty is described by the support supp(d̃ij), whereas the temporal
uncertainty is modelled by the membership function µd̃ij .

1

1.4.3 Data modeling

In what follows we describe the two-step procedure to derive the final
fuzzy set d̃ij according to the DYFRAT framework.

First step. In the first stage of the fuzzy modeling procedure, a fuzzy set p̃ij
representing the spatial uncertainty is constructed from the generalized
rating measure dij. In particular, to derive p̃ij we first remove eventual
imprecision due to hand motor controls and/or computer mouse adjust-
ments. To this end, the x-y coordinates in pij that are located near to the
starting point (the center of the scale), the points that are recorded in the

1We recall that, given a collection X of elements, the support of the fuzzy set d̃ on X is the collection supp(d̃) = {x ∈
X | µd̃(x) > 0}whereas the core is the subset core(d̃) = {x ∈ X | µd̃(x) = maxz∈X µd̃(z)}.
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breakpoint area, and those ones that are beyond the border of the pseudo-
circular scale, are all removed by applying a predefined filter which de-
fines the area for acceptable x-y coordinates. The refined pij is next trans-
formed into a vector mc

ij of angles (expressed in radians) by using the well-
known atan2 function, namely mc

ij = atan2(pij).2 The fuzzy set p̃ij is con-
structed from the histogram of the radian measures collected in mc

ij. We
call p̃ij the spatial fuzzy set of dij. There are several procedures that can be
adopted to derive fuzzy sets from data histograms (Medasani, Kim, and
Krishnapuram, 1998). In the DYFRAT approach we adopted a heuristic
procedure based on the particle swarm optimization (PSO) algorithm (Poli,
Kennedy, and Blackwell, 2007). The PSO algorithm looks for the best
fuzzy set that maximizes the total entropy with respect to the data his-
togram (Nieradka and Butkiewicz, 2007; Cheng and Chen, 1997; Li and
Li, 2008). In particular, for the maximization algorithm we used the well
known total fuzzy entropy measure proposed by De Luca and Termini
(De Luca and Termini, 1972). Several convex as well as non-convex fuzzy
sets can be used for representing a histogram (e.g., triangular, trapezoidal,
gaussian. See: Ross, 2009; Calcagnì, Lombardi, and Pascali, 2013). How-
ever, for the sake of simplicity, in this contribution we opted for the sim-
plest triangular format which is associated to the well-known LR repre-
sentation (Dubois et al., 1988). In this respect, the triangular membership
function may also be useful when one wants to analyze these variables
on the basis of some widely used fuzzy statistical techniques (e.g., Taheri,
2003; Coppi, Gil, and Kiers, 2006). Some examples of fuzzy sets derived
from the radian histograms are shown in figure 1.3. In particular, figure
1.3a shows a pattern of movements characterized by a modest spatial un-
certainty which corresponds to a fuzzy set with a narrow support. By
contrast, figure 1.3b shows a pattern of movements in which the spatial

2The atan2(y, x) function is the arc tangent of the two variables x and y and uses the signs of both arguments in
order to compute the quadrant of the result which lies in (−π, π).
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uncertainty is related to the rater’s choice between two possible alterna-
tives. Note that in this second configuration the associated fuzzy set has
now a wider support and its core has shifted toward the right side. Finally,
figure 1.3c presents an interesting pattern in which the spatial uncertainty
is related to the choice among three distinct options. This last configura-
tion shows the largest support for the derived fuzzy set.
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(A) Spatial uncertainty related to a simple direct response (final response = 1)
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FIGURE 1.3: Three types of empirical mouse movements with the correspondent
histograms and fuzzy sets. Note that, the continuous black circle represents the
original scale, the dashed red ones represents the filters whereas the blue points
indicate the recorded mouse movements. The ordinal numbers codify the anchor
points of the scale (e.g., Strongly Disagree = 1, Disagree = 2, Neither = 3, Agree = 4,
Strongly Agree = 5) that are simply juxtaposed on the scale of radians for the sake
of exposition.

Second step. In the second modeling step, the final fuzzy representation, is
obtained by transforming the spatial fuzzy set p̃ij into a new fuzzy set d̃ij
which integrates the spatial component with the temporal information of
the rating process. In particular, the membership function of d̃ij is defined
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according to the following conditional equations:

µd̃ij (x) =


0.5− (22γij − 1) · [0.5− µp̃ij (x)]2γij , F̂ (tij) > F̂ (t̄j) and 0 ≤ µp̃ij (x) ≤ 0.5

1− (20.5ωij ) · [1− µp̃ij (x)]0.5ωij , F̂ (tij) > F̂ (t̄j) and 0.5 < µp̃ij (x) ≤ 1[
µp̃ij (x)

]νij , F̂ (tij) < F̂ (t̄j) and 0 ≤ µp̃ij (x) ≤ 1

µp̃ij (x), F̂ (tij) = F̂ (t̄j) and 0 ≤ µp̃ij (x) ≤ 1

(1.1)

with
γij = λijF̂ (tij), ωij =

1

γij
, and νij =

1

2F̂ (tij)

and where F̂ denotes the empirical cumulative distribution function of the
response times sample tj = (t1j, t2j, . . . , tIj) associated to item j whereas
t̄j indicates the sample mean of tj. The first and the second lines of for-
mula 1.1 act as an expansion modifier which increases the overall uncer-
tainty represented in the original spatial fuzzy set p̃ij. In particular, if the
recorded time tij for rater i to item j is larger than the corresponding aver-
age time tj, then p̃ij is nonlinearly expanded according to a model param-
eter γij which, in turn, depends on the cumulative density value of tij and
the shape parameter λij3. By contrast, the third line of formula 1.1 acts as a
concentration modifier which decreases the overall uncertainty represented
in p̃ij. In particular, if the recorded time tij for rater i to item j is smaller
than the corresponding average sample time tj, then p̃ij is nonlinearly con-
centrated according to a shape parameter νij which is inversely related to
the cumulative density value of tij. Finally, the fourth line of formula 1.1
represents the fuzzy set when the observed response time tij is perfectly
equivalent to the average response time for item j. In this last case the new
fuzzy set d̃ij simply boils down to the original spatial fuzzy set p̃ij. Note
that, that the third line of formula 1.1 corresponds to the well-known lin-
guistic hedge called concentration which allows to reduce the fuzziness of
the set. Similarly, the first and second lines of formula 1.1 is inspired by the

3λij is a coefficient which maximizes the overall fuzziness of the set. Given the fuzzy set of movements p̃ij , the
best value for λij is obtained by adopting an iterative optimization algorithm which maximizes the Kaufmann index
(Kaufmann and Swanson, 1975). Because the objective function is bounded above, the algorithm is always able to yield
the maximum of the function. However, for basic triangular representations λij can be simply chosen to be ≥ 4.
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Zadeh’s linguist hedge called intensification (Huynh, Ho, and Nakamori,
2002) which allows to intensify (to expand) the fuzziness of the set. In
our approach the expansion was created ad-hoc in order to obtain an in-
creasing level of fuzziness for the set. More precisely, if µp̃ij(x) ≤ 0.5 we
expanded the base of the set, otherwise we reduced the peak of the set.
Figure 1.4 shows a graphical summary of this expansion/concentration
transformation.
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FIGURE 1.4: Graphical schematization for the integration process

However, in the DYFRAT context we stress that the equations used for the
integration between movement patterns and response times are only used
according to a descriptive fashion and, therefore, they cannot be conceived
as linguistic hedges in a strict fuzzy logic sense. Moreover, we preferred
to develop a novel fuzzy modifier according to a statistically oriented per-
spective (e.g., using the cumulative distribution function for the response
times and the observed average response time for the item) because we
were interested in providing a rational procedure to transform a fuzzy set
according to observed distributional data (empirical distribution of times
and empirical distribution of movements).
In sum, the overall idea underlying the definition of the novel modifier
was based on current theories about decision making (e.g., Greene and
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Haidt, 2002). In particular, according to these theories intuitive judge-
ments or evaluations occur quickly, effortlessly, and almost automatically,
such that the final responses (but not necessarily the underlying processes)
are accessible to consciousness. By contrast, more elaborated or conflict-
ing reasonings occur more slowly, require some additional efforts, and
presumably involve some more steps that are directly accessible to con-
sciousness. The latter type of responses are usually characterized by a
much larger level of uncertainty. With our model we tried to capture this
psychological intuition according to a purely descriptive representation.

1.4.4 Summary measures

Fuzzy summary measures can play a relevant role in highlighting impor-
tant properties of the final fuzzy set d̃ij. In the DYFRAT framework we
implemented the following basic and well known fuzzy set measures:

• Kaufmann index (Kaufmann and Swanson, 1975):

K(d̃ij) =
2

card(d̃ij)
·
∑
x

| µd̃ij(x)− δ(x) | (1.2)

with δ(x) =

1, if µd̃ij(x) ≥ 0.5

0, if µd̃ij(x) < 0.5

and where card(.) is the cardinality of the final fuzzy set d̃ij.

• Fuzzy entropy De Luca and Termini, 1972:

H(d̃ij) = −
∑
x

[µd̃ij(x) log(µd̃ij(x))]−[(1−µd̃ij(x)) log(1−µd̃ij(x))] (1.3)

• COG based Fuzzy centroid Ross, 2009:

CR(d̃ij) =

(∑
x

x · µd̃ij(x)

)
·
(∑

x

µd̃ij(x)

)−1

(1.4)
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• Total spread (or length of the fuzzy set support):

TS(d̃ij) = max(supp(d̃ij))−min(supp(d̃ij)) (1.5)

In addition, we also considered a new simple fuzzy measure, called the
intensification index, derived from the fuzzy entropy measure. In particular,
the intensification index is defined as follows:

HR(d̃ij, p̃ij) =
H(d̃ij)−H(p̃ij)

H(p̃ij)
(1.6)

where H(p̃ij) and H(d̃ij) indicate the entropies associated to the spatial
and final fuzzy sets, respectively. Values of HR(d̃ij, p̃ij) < 0 indicate the
quantity of information which is subtracted by concentration from the spa-
tial fuzzy set p̃ij, whereas values of HR(d̃ij, p̃ij) > 0 indicate the quantity
of information which is added by expansion on p̃ij.
One important comment is in order concerning the defuzzification mea-
sures adopted for the final fuzzy set. In general, several measures can be
selected to perform the defuzzification of a fuzzy set (Roychowdhury and
Pedrycz, 2001). In this first implementation of the DYFRAT system we
opted for a COG based index because of its simplicity and high flexibil-
ity. In particular, the COG centroid is a measure which fully takes into
account the integration between movements and times. More specifically,
unlike other defuzzification measures (e.g., first of maximum FoM, last of
maximum LoM, mean of maxima MEoM, etc.), the COG index also con-
siders the weighted information provided by the membership function of
the final fuzzy set.
In sum, these measures can be used, among other things, for quantifying
some peculiar information stored in the final fuzzy sets (e.g., the amount
of ambiguity, fuzziness, uncertainty, average information), for detecting
eventual outliers in the data (i.e., subjects that show anomalous spatial
temporal information), as well as for running further statistical analysis.
In particular, the total spread can be used for detecting those individuals
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who use the computer-mouse in an improper way (outliers for mouse-
movements). Similarly, the intensification index can be used for detecting
anomalous subjects with lower or greater response times (outliers for re-
sponse times). We will provide some examples of indices applications in
the sixth section of the manuscript.

1.5 Dynamic Fuzzy Rating Tracker: implementation

Data-capturing procedure. The first application consists in an executable
stand-alone package available for Windows, OSX and Unix systems de-
veloped in Processing 2.0 (http://processing.org). All the main features
of the DYFRAT graphical interface can be modified by the user (e.g., tem-
poral delay between-items or within-items, labels positions, font type and
text size, scale diameter, scale stroke, breakpoint width, mouse-movements
sample-rate). In particular, label positions can be set to either a fixed or
random configuration. In the latter case, the position of the first label is
located at random on the circular scale and all the other labels are recon-
figured accordingly to reconstruct the linear order. Moreover, the user
can also modify the questionnaire by choosing the number of items and
the levels of the scale as well as the textual information describing the
scale levels. The user can manage the application by modifying specific
textual files (placed in the application main folder) that contain all the ap-
plication parameters. When the application is launched, the files are au-
tomatically loaded. Figure 1.5-a shows an example of the final DYFRAT
graphical interface. For each combination of rater i and item j, the ap-
plication provides two output files (textual format). The first output con-
tains information related to the rater’s responses (mouse movements in
cartesian coordinates, degrees, ordinal crisp values for the final response,
response time, on-set and off-set values). The second output is instead a
pre-formatted textual file containing information that is used as input for
the data-modeling application.
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Data-modeling procedure. The second application consists of a GUI-based
system developed in Matlab for Windows, OSX and Unix systems that im-
plements the modeling steps of the DYFRAT methodology (see Figure 1.5-
b). All the features involved in the analysis (e.g., type of filters, histogram
of movements, PSO parameters) can be set by the user. Moreover, differ-
ent types of analysis (e.g., subject-by-subject, item-by-item, global) with
different characteristics (temporized or static analysis) can be selected.
Finally, the application provides a single output containing the main re-
sults of the analysis. These are organized by means of two-way (two-
dimensional matrices) as well as three-way array structures (three dimen-
sional matrices).

1.6 Illustrative examples

By way of illustration we consider three simple applications using the
DYFRAT methodology. The first example is about the evaluation of a well
known cognitive problem in decision making. The second application
considers data about rash driving behaviors among young people aged
18-26. Finally, the third application illustrates how one can perform an
outlier detection analysis using the DYFRAT framework.

1.6.1 Rating responses and moral dilemma

General context and motivation. In cognitive decision making (Greene and
Haidt, 2002; Haidt, 2001), moral judgements and dilemmas are relevant
phenomena characterized by high levels of uncertainty in individuals re-
sponses. In this application, we used a moral dilemma based on the well-
known trolley scenario (Greene and Haidt, 2002; Haidt, 2001; McGuire et
al., 2009):

A trolley is running out of control down a track. In its path are five people who
have been tied to the track by a madman. Fortunately, you can flip a switch
that will lead the trolley down a different track to safety. Unfortunately, there
is a single person tied to that track. Do you agree to flip the switch?
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(A) Interface for data-capturing developed in Processing

(B) Interface for data-modeling developed in Matlab

FIGURE 1.5: Screen-shots from DYFRAT implementation

In general, individuals react to the dilemma by using their personal moral
beliefs. The trolley scenario is an example of a setting engaging some
levels of emotional processing which, in turn, might affect people’s judg-
ments to such an extent that some individuals may hesitate in providing
the final response. Researchers working in decision making (e.g., Haidt,
2001; Bruner and Bruner, 2009) stress the fact that moral evaluations can be
distinguished in two components: moral intuition and moral reasoning.
Moral intuition occurs quickly, effortlessly, and automatically, such that



Chapter 1. Dynamic Fuzzy Rating Tracker (DYFRAT) 27

the final judgment (but not the underlying process) is accessible to con-
sciousness, whereas moral reasoning occurs more slowly, requires some
effort, and involves at least some steps that are accessible to conscious-
ness. In this first example, we studied the relationship between response
uncertainty, as measured by the Kaufmann index of the final fuzzy set, and
moral judgement as represented by the centroid of the same fuzzy set. We
expect that the individuals who show a very strong disagreement with
the action described in the trolley scenario (moral intuition raters) will be
characterized by very fast responses with low levels of uncertainty. By
contrast, those who are characterized by a more moral thinking attitude
(moral reasoning raters) will show less extreme responses with larger val-
ues of uncertainty. Because the trolley scenario may activate not necessar-
ily conscious underlying processes in the rater, we believe that DYFRAT
can represent an ideal methodology for testing this hypothesis.

Data-analysis and results. The trolley dilemma was administered to a group
of students (I = 103, 47 males, age 18-23 : 70.87%, age 24-27 : 19.42%,
age 28-36 : 2.91%, age ≥ 37 : 3.88%) from the University of Trento (Italy)
and the responses were collected using the DYFRAT graphical interface.
In particular, participants used a pseudo-circular scale with five response
levels (strongly disag.=1, disag.=2, neither=3, agree=4, strongly agree=5).
Figure 1.6 shows two empirical patterns of mouse movements with the
final fuzzy sets. In particular, Figure 1.6a represents an empirical pattern
with a low uncertainty/fuzziness, by contrast Figure 1.6b shows a pattern
with a higher level of uncertainty. Table 1.1 reports some results for the
two selected subjects.

Subj. z CR t K H HR TS
21 1 0.9 2.62 (4.72) 0.06 3.34 -0.15 1.03
80 2 2.44 6.25 (4.72) 0.30 11.53 0.21 3.61

TABLE 1.1: Example 1: DYFRAT results (z=discrete response, CR=fuzzy centroid,
t=subject response time with sample time in parenthesis, K=Kaufmann index,
H=entropy, HR=intensification index, TS=total spread)
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(A) Subject 21
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(B) Subject 80

FIGURE 1.6: Example 1: Empirical patterns of mouse movements with the associ-
ated final fuzzy sets. Note that, the dotted grey circle represents the filters whereas
the ordinal numbers on the circles and those ones on the radians scale represent the
anchor points (Strongly Disagree = 1, Disagree = 2, Neither = 3, Agree = 4, Strongly
Agree = 5)

The scatterplot between response uncertainty and moral judgement evalu-
ation is presented in Figure 1.7. The result of the graphical analysis shows
that the raters with fuzzy centroid values closer to the extreme anchor
point “strongly disagree” are characterized by very low levels of response
uncertainty (for these individuals the Kaufmann index is very low). By
contrast, raters with fuzzy centroid values closer to less extreme or inter-
mediate anchor points (disagree or neither) showed much larger levels of
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uncertainty in the rating process. In particular, it is interesting to note a
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FIGURE 1.7: Example 1: Scatter plot between Kaufmann index and fuzzy centroid

positive linear trend between these two variables (the higher the value of
the rating judgement, the larger the level of the observed response uncer-
tainty). The linear model fitted on data showed a good fit (R2 = 0.6) and
a statistically significant relation between the two variables (βCR = 0.39,
p < .01). This result is in line with the theoretical expectation that moral in-
tuition raters are characterized by more extreme, quick, effortless, and au-
tomatic final responses. In sum, this application shows how DYFRAT can
be considered as an efficient and elegant procedure to represent the un-
derlying mechanisms involved in the cognitive process of rating in moral
dilemmas.

1.6.2 Self-report behaviors in reckless driving

General context and motivation. In this second application we studied the
effects of gender and driving experience on self-report measures about
reckless driving in a group of young adults. High rates of traffic fatali-
ties among young people continue to be a very serious, worldwide prob-
lem (e.g., Arnett, Offer, and Fine, 1997). Nowadays, there are several evi-
dences that show how young drivers are generally more likely to perform
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risky behaviors or neglect precautions while driving than more experi-
enced drivers (Arnett, Offer, and Fine, 1997; Jonah, 1986). In particular,
several studies have shown that unexperienced young drivers ability to
perceive risk accurately is generally low (Finn and Bragg, 1986; Glendon
et al., 1996). Moreover, young men seem to consider reckless driving less
serious than do young women (DeJoy, 1992) and, to some extent, this ten-
dency seems not to be necessarily rationally (or consciously) based (Deery,
2000). Because in this sensitive context, self-report ratings can be influ-
enced by implicit aspects, we used the DYFRAT interface to track and col-
lect real-time behavioral data occurring during the rating process.

Data analysis and results. A six-item questionnaire was adapted from a
previous reckless driving scale (Taubman-Ben-Ari, Mikulincer, and Iram,
2004) and administered to a group of young drivers (I = 60, 38 males,
age 18-23 : 43.33%, age 24-28 : 28.33%, age ≥ 29 : 28.33%) from the
Trentino region (North-East Italy). The only criteria for inclusion in the
study were possession of a driving license and at least six months of driv-
ing experience. Table 1.2 reports the item descriptions. Participants were
asked to read each item carefully and report how often they used to drive
according to the described way. Data were collected using the DYFRAT
graphical interface and ratings were made on a 5-point scale, ranging from
1 (never) to 5 (very often). In Figures 1.8 and 1.9 we illustrate four empirical
patterns (two females and two males) on the second item only. Table 1.3
shows the DYFRAT results for these selected cases.

Item Description
1 Parking in a non-parking zone
2 Not stopping in a stop sign
3 Overtaking another vehicle on a continuous white line (no pass zone)
4 Not keeping the right distance from the vehicle in front of me
5 Driving under the influence of alcohol
6 Turning in high speed

TABLE 1.2: Example 2: Reckless driving questionnaire

The dependent variables of the study were the fuzzy summary measures
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(A) Subject 5

-300 -100 0 100 300

-3
0

0
-1

0
0

0
1

0
0

3
0

0

x

y

1
2

3

4

5

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Radians

F
u

z
z
y
 m

e
m

b
e

rs
h

ip
 v

a
lu

e

1 2 3 4 5

(B) Subject 37

FIGURE 1.8: Example 2: Empirical patterns of mouse movements with the associ-
ated final fuzzy sets on the second variable (female only). Note that, the dotted grey
circle represents the filters whereas the ordinal numbers on the circles and those
ones on the radians scale represent the anchor points (Strongly Disagree = 1, Dis-
agree = 2, Neither = 3, Agree = 4, Strongly Agree = 5)

Subj. z CR t K H HR TS
5 (F) 2 1.31 6.07 (3.82) 0.21 8.42 0.19 3.25
37 (F) 1 0.8 3.26 (3.82) 0 1.82 0 0.60
41 (M) 3 3.16 3.26 (3.82) 0.08 4.56 0 1.16
46 (M) 1 1.20 4.06 (3.82) 0.25 10.25 0.20 2.15

TABLE 1.3: Example 2: DYFRAT results for the second variable only (M=male,
F=female, z=discrete response, CR=fuzzy centroid, t=subject response time with
sample time in parenthesis, K=Kaufmann index, H=entropy, HR=intensification in-
dex, TS=total spread
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(A) Subject 41
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(B) Subject 46

FIGURE 1.9: Example 2: Empirical patterns of mouse movements with the associ-
ated final fuzzy sets on the second variable (male only). Note that, the dotted grey
circle represents the filters whereas the ordinal numbers on the circles and those
ones on the radians scale represent the anchor points (Strongly Disagree = 1, Dis-
agree = 2, Neither = 3, Agree = 4, Strongly Agree = 5)

(fuzzy centroid, total spread, fuzzy entropy, Kaufmann index, intensifica-
tion index) and the crisp rating response, whereas the independent vari-
ables were the factors gender and driving experience (at two levels: < 3;
≥ 3 years). A t-test for independent samples was separately performed
for each item in the questionnaire. The results of the analysis are reported
in Table 1.4.
As expected, the observed differences were in line with what documented
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in the reckless driving literature with male drivers reporting more fre-
quently risky behaviors than female drivers. However, more interesting
differences between the two groups emerged when the analysis was re-
peated using the fuzzy summary statistics as dependent variables. In par-
ticular, sensation seeking and more aggressive driving styles (items 3 and
6) were found to be more characteristic of young male drivers and less of
young female drivers. In addition, the male group reported on a higher
appraisal of driving as a challenge than the female group (item 5). In gen-
eral, it seemed that young male drivers tended to disregard more potential
negative outcomes in comparison to women. By contrast, young female
drivers tended to perceive driving as more threatening in comparison to
male. Finally, an illuminating difference was observed between not ex-
pert drivers (with less than 3 years of driving experience) and more expert
drivers (with at least 3 years of driving experience). In particular, not ex-
pert drivers considered alcohol consumption (item 6) less serious and less
likely to result in a dangerous source for potential harm than the more
expert-drivers reported.

1.6.3 Outlier detection analysis

General context and motivation. In this last example we illustrate how the
DYFRAT methodology can be used to perform outlier detection analysis in
a dynamic rating setting. In general, in a data sample an outlier can be de-
fined as a data point or data observation that appears to deviate markedly
from other observations in the sample (Grubbs, 1969; Barnett and Lewis,
1994). Of course, this definition implicitly entails a sort of distance metric
to measure single data-point deviation from the data sample. An alter-
native and more general definition for outliers is a subset of observations
which appears to be inconsistent with the remainder of observations in the
sample (Barnett and Lewis, 1994). In our context, outliers refer to anoma-
lous measure values describing the temporal and spatial dynamics under-
lying the mechanism involved in the cognitive process of rating. In this
respect, two particular fuzzy summary measures, the total spread and the
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intensification index, seem to be appropriate statistics to detect eventual
anomalies in the spatial and temporal components of the rating process
as measured by computer-mouse movements and relative response time,
respectively.

Data analysis and results. For the sake of simplicity, here we illustrate the
outlier detection procedure using only the data associated to the fifth item
of the reckless questionnaire described in the former application. We recall
that this item described a situation where an individual drives under the
influence of alcohol (see Table 1.2).

FIGURE 1.10: Example 3: Scatter plots for total spread and intensification index for
outlier detection. Note that, red circles indicate outliers.

Figure 1.10A shows the total spread measure as a function of the sub-
ject identification number (ID) in the questionnaire. Note that there are
three data points (outliers) which are clearly isolated and inconsistent with
the main cluster of points. These outliers correspond to raters that have
shown patterns of mouse movements that markedly deviate from the other
spatial patterns in the sample. Figure 1.11 shows the corresponding em-
pirical patterns of mouse movements. Figure 1.10B shows the intensifica-
tion index HR as a function of subject ID. In this graphical representation
there is only one rater (i = 47) who is characterized by a very fast response
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FIGURE 1.11: Example 3: Anomalous empirical patterns of mouse movements.

time relative to the response times variance for the group of raters. Finally,
we remark that in some situations it can be useful to produce a scatter plot
between the total spread statistic and the intensification index. This com-
bined representation would be used to jointly detect eventual anomalies
in the spatial and temporal components of the rating process.

1.7 Final remarks

In this paper we proposed a novel methodology (DYFRAT) for measur-
ing the fuzziness of human rating situations from an original perspective.
By considering human rating as a temporal and dynamic changing course
of information in which the final rater’s response is only the outcome of
peculiar latent cognitive processes, we modelled fuzziness as the result of
the integration between two important physical/biometric measures. We
adopted the mouse tracking methodology for capturing the motor and
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temporal components of the rating process. Such components were com-
puted by the streaming of x-y computer-mouse coordinates and the over-
all response times, respectively. In order to provide a final model rep-
resentation for the rating data, we integrated such information using a
fuzzy modeling paradigm. In particular, the motor component was repre-
sented by an appropriate fuzzy set whereas the temporal component was
included by modifying the shape of the spatial fuzzy set. The final fuzzy
representation included all the information available from the response
process (i.e., the final response, the temporal and spatial information, the
fuzziness of the response, etc). To better illustrate the DYFRAT features,
we also described two real applications from decision making and risk
assessment contexts. The results suggested how DYFRAT can measure
important features of dynamic decision process. We further showed as
DYFRAT could be used to perform an outlier detection analysis.

1.7.1 Limitations

As with other fuzzy rating approaches (e.g., FCS or FRS), also DYFRAT
involves simplifying assumptions that may result in some concerns about
the specific procedure adopted for the fuzzy variables’ construction. For
example, the choice to represent the shape of the spatial fuzzy set p̃ij ac-
cording to a triangular membership function may appear unjustified for
some empirical applications. However, a straightforward but more flex-
ible generalization could be obtained by using, for example, multimodal
representations for the spatial fuzzy set (e.g., Calcagnì, Lombardi, and Pas-
cali, 2013). Nonetheless, it is not difficult to see that also this more sophis-
ticated representation would still require an analyst to set up some ad-hoc
options in the construction of the membership functions. A future venue
of research should be dedicated to the exploration and analysis of alter-
native representations for the spatial fuzzy set to minimize the need for
ad-hoc representational assumptions. Another possible extension of the
DYFRAT approach would also consider alternative perspectives for the
approximation of the dynamics of rating on the basis of more qualitative
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representations (Chung and Schwartz, 1995). Finally, at a more method-
ological level a better validation of the advantages of our proposal com-
pared with other existing methods for fuzzy ratings (e.g., FCS and FRS)
should be tested in future works.

1.7.2 Conclusions

In sum, unlike other fuzzy scales, DYFRAT allows to express the fuzzi-
ness of the human rating process by integrating two important physical
measures. In this respect, DYFRAT always guarantees an ecological set-
ting for cognitive measurements (e.g., it does not ask respondents to learn
what fuzziness is and it works to express judgements/evaluations fuzzi-
ness). Moreover, DYFRAT allows to model fuzziness as a natural prop-
erty which spontaneously arises from some biometric measures (mouse-
movements and response times) while respondents use a simple and user-
friendly computer device to express their evaluations.
The proposed methodology can be applied in several research fields. For
instance, decision making contexts as well as risk assessment situations
may require reliable instruments for measuring human uncertainty. Clin-
ical psychologists as well as organizational psychologists may use this in-
strument for personnel selection problems. However, several other gen-
eral contexts, such as for instance formative and teaching evaluation, vo-
cational training assessment, decision support systems, quality control
and assessment, medical decision making, prevention and treatment as-
sessment, political and social interviews, performance appraisal, military
promotion screening, ranking systems, etc., may all require sophisticated
tools for adequately measuring the natural uncertainty which arises from
these complex situations. We think that DYFRAT can be a reliable, simple
and cheap methodology for appropriately addressing such measurement
problems.



Chapter 2

Representing the dynamics of rating
responses: An activation function
approach

An extended version of the chapter has been submitted as a research article to Frontiers
in Psychology.

2.1 Introduction

Rating scales are probably the most commonly used measurement tools
adopted in education, psychology, social science, and health research be-
cause they are flexible scaling procedures for measuring attitudes, opin-
ions, and subjective preferences (Göb, McCollin, and Ramalhoto, 2007;
Miller and Salkind, 2002; Aiken, 1996; Pettit, 2002). A rating scale typi-
cally consists of a variable to be measured and a set of anchor points from
which the rater selects the most appropriate description. Among the rat-
ing scales, the Likert-type scales are the most widely used scaling methods
in education and social science. The main assumption for a Likert-scale is
that the strength/intensity of the evaluation is linear, i.e. on a continuum
from strongly agree to strongly disagree, with the neutral point being nei-
ther agree nor disagree.

Although rating scales are generally as reliable and valid as more com-
plex types of scaling methods (Nunnally, 1978), over the years several
criticisms have been arisen against some well-known limitations with this

39
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simple measurement approach. For example, because of the discrete and
crisp nature of their format, some individuals tend to avoid extreme cat-
egories in the scale (central tendency or restriction range problem) while
selecting the final response (Domino and Domino, 2006). Moreover, in
some empirical situations (i.e., personality inventories and attitude ) the
honesty assumption, tacitly accepted in the administration of self-report
rating scale, appears to be simply unrealistic and, therefore the measure-
ments may result in biased observations (e.g., Furnham, 1986). Finally, the
standard rating scale paradigm often regards human rating as a discrete-
stage based process in which the final response represents its final stage
only. Unfortunately, the observed final response simply captures the out-
come of the rating process while the real-time cognitive dynamics that oc-
cur during this process are usually lost. In particular, the standard observ-
able measures generated during a rating task, the final discrete response
and its associated response time, are simply end products of the underly-
ing process of rating, not online measurements of it. In other words, they
are indicators of the raters’ overall performance, but what really happens
during a rating trial is clearly beyond their scope. However, understand-
ing how mental representations unfold in time during the performance
of a rating task could be of relevant interest for many researchers work-
ing in different empirical domains. Moreover, parsing a rating task into
a sequence of subcomponents can help in constructing more sensible in-
dices to detect effects which would otherwise be missed using the stan-
dard overall performance measures.

In order to overcome these limitations, here we propose a new family of
measures which are designed to track some real-time mental processes
unfolding during a rating evaluation. These measures are based on the
so-called mouse tracking methodology (MTM) and allow to record some rele-
vant cognitive information inferred from the motor control of the computer-
mouse during online rating thus capturing temporal and dynamic chang-
ing course of data information (Morein-Zamir et al., 2006; Johnson et al.,
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2012; Magnuson, 2005; Freeman, Dale, and Farmer, 2011; Jansen, Black-
well, and Marriott, 2003; Hwang et al., 2005; Chen, Anderson, and Sohn,
2001; Mueller and Lockerd, 2001; Freeman and Ambady, 2010; O’Reilly
and Plamondon, 2011).

The new measures are assumed to be observable indicators of the dynamic
process of rating which constitute the antecedents of the final rating out-
come and they will allow a) to decompose the observed total rating time
into a sequence of temporal subcomponents such as, for example, initi-
ation time, pause time, verification time, and submovement time b) to
represent the final response in terms of an activation value which mea-
sures the level of intensity/strength for that response. Finally, in our
approach both the components are integrated into a common functional
model which allows to express the combined temporal and intensity lev-
els of rating.

The remainder of this chapter is organized as follows. In the second sec-
tion we present the overall idea underlying our approach and provide
motivations to use it in human rating problems. In the third section we
present our new methodology. In the fourth section we show two empiri-
cal applications to real data, whereas in the fifth section we conclude this
chapter by providing some final comments.

2.2 Rating evaluations as dynamic activation processes

The basic assumption is that identification and exploration of movement
phases can provide illuminating features about some cognitive processes
involved in the online rating behavior. To introduce the overall scheme
of a dynamic rating trial, consider as follows. Let us suppose that a rater
is presented with a pseudo-circular scale with K levels (e.g., K = 5 for
a five anchor-points Likert scale about an item description or question)
which appears on a computer screen while the mouse cursor is allocated
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to the center of the screen. The rater is asked to provide a response by
mouse-clicking the chosen level of the scale (the selected anchor point).
Meanwhile, the streaming of the x-y coordinates of the computer mouse
(at a given sampling rate) as well as the time sequence of the movements
are recorded and stored in the computer memory. The main idea of the
dynamic rating framework is to represent each anchor point in the rat-
ing scale by a dynamic activation state, which indicates (at each recorded
time) the level of activation of that anchor point for the current mouse po-
sition in the movement path. In general a level of activation at a given
instant in time can be understood as a measure of the intensity/strength
for the potential final response. The underlying assumption is as follows:
the more the mouse pointer approaches the position of a selected anchor
point in the pseudo-circular scale, the more the state of the corresponding
rating response will be activated. This framework entails a competing ac-
tivation system where each anchor point competes with the others for the
final response. When the mouse pointer is located at the starting position
(center of the screen), all the K distinct anchor points will be equally acti-
vated at a certain baseline level. However, once the rater starts to use the
mouse pointer and moves it in the two-dimensional space of the pseudo-
circular scale, the anchor points with a shorter (Euclidean) distance from
the current mouse position will start to show larger activation values. By
contrast, the anchor points with a larger distance from the current mouse
position will decrease their activation states. The proposed framework
aims to represent for each potential final response its dynamic activation
as a function of the temporal pattern of movements and the distance from
the target anchor point position. Figure 2.1 shows a general diagram of
mouse-movements with the associated activation functions.

2.2.1 Temporal and activation state measures

One important aspect in analyzing movement control is the identification
and exploration of several distinct phases of movements (e.g., Pew and
Rosenbaum, 1988). Some examples of dynamic activation functions are
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FIGURE 2.1: Hypothetical movement path with activation distributions and corre-
sponding components of positioning time movements. Final response: anchor point
2.

shown in 2.1. In particular, it shows a pattern of movements in which the
spatio-temporal uncertainty is related to the rater’s choice between two
possible alternatives. Note that the associated activation function for the
final response has a more irregular shape characterized by two main peaks
and one valley indicating the maximal activations for the options 3 and 2
and the change of direction from 3 to 2, respectively.

We can derive a number of quantitative measures about the spatially con-
strained movements involved in the process of rating of the final selected
response. In particular, we can distinguish three different features that
play a relevant role in describing the underlying dynamic processes. The
first feature is represented by the static components of an activation func-
tion. These correspond to the portions of the function that are charac-
terized by a flat behavior (see β = 0 in Figure 2.2-B). The static compo-
nents are associated with motor pauses in the rating behavior and can
reflect the presence of cognitive processes involved in the preparation of
the response selection (goal formation) or even in the preparation of a sec-
ondary submovement (goal reformulation) for a new selected response
option. The second feature refers to the positive components of the acti-
vation function. Unlike the static portions of the curve, the positive ones
are characterized by a positive slope in the activation function (increas-
ing activation function, see β > 0 in Figure 2.2-B). Positive components
denote active movements in the direction of the final selected target and
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usually correspond to fast movement executions. Finally, the third feature
describes the negative components, that is to say, the portions of the func-
tion that are characterized by a negative slope (decreasing function, see
β < 0 in Figure 2.2-B). Negative components denote active movements
in the opposite direction of the final selected target. These usually reflect
temporary deviations from the final response and are also characterized
by fast movement executions. In particular, we assume that for execut-
ing such submovements further information is taken into account by the
rater (e.g., goal reformulation) and that in some circumstances feedfor-
ward information may be processed on the fly during the same movement
production.
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FIGURE 2.2: Hypothetical movement path, activation distributions and correspond-
ing dynamic components.

It is important to note that we can consider each of these functional fea-
tures as events that are associated with a specific value of the time argu-
ment of the function (see Figure 2.3). That is to say, the three features are
characterized also by a temporal location.
So, the static components correspond to pause times of the positioning
mouse movements reflecting temporal phases associated to either goal
formation or goal reformulation or response selection (e.g., Kerr, 1978). In
particular, the first pause time is associated with the initiation time, which
represents the time from the stimulus onset and the first recorded move-
ment (overt motion begins). By contrast, the last pause time is connected
with the verification time which represents the amount of time that a rater
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FIGURE 2.3: Quantitative time indices for summarizing the dynamics of the rating
process: response time decomposition.

takes to check the location of the cursor and release the mouse button af-
ter the last movement has ended. Finally, the positive components (resp.
negative components) are associated with positive submovement times (resp.
negative submovement times) in the rating process. These subcomponents al-
low us to additively decompose the total time of the rating process into dif-
ferent parts, each part denoting a different duration for a specific process
involved in the dynamic rating behavior. The following decomposition
rule for the response time (RT) holds:

RT = IT + IPT + VT︸ ︷︷ ︸
pause time

+ DT+ + DT−︸ ︷︷ ︸
dynamic time

(2.1)

where:

• IT is the initiation time (from scale onset to first movement)

• IPT is the intermediate pause time

• VT is the verification time (from last movement to final clicking)

• DT+ is the positive dynamic time (time spent toward the target)

• DT− is the negative dynamic time (time spent away from the target)

In general, a high number of pauses in each trial and/or long pause dura-
tions will increase the total rating time and can be indicators of some level
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of uncertainty in the rating process. Moreover, a high number of sub-
movements (positive or negative) may reflect selection or choice related
difficulties for the final rating response option.

In a similar way, we can also decompose the area under the dynamic acti-
vation function into subareas according to the temporal phases described
earlier (see 2.4).
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FIGURE 2.4: Quantitative time indices for summarizing the dynamics of the rating
process: total activation decomposition.

In general, the area under the activation function indicates the level of in-
tensity or strength for the final selected response. However, like for the
times, also for the activation values the different subareas represent sepa-
rate aspects of the rating process. So, for example, to measure the overall
strength for the final response we must consider the sum of the activa-
tion integrals associated with the positive submovements and eventually
the time spent near the location of the final response (e.g., verification
time). By contrast, the subareas associated with the negative submove-
ments should indicate the amount of residual processes linked to tempo-
rary deviations from the final response. The total activation (TA) decom-
position is as follows:

TA = IA + ISA + VA︸ ︷︷ ︸
static activation

+ DA+ + DA−︸ ︷︷ ︸
dynamic activation

(2.2)

where:
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• IA is the initiation activation

• ISA is the intermediate static activation

• VA is the verification activation

• DA+ is the positive dynamic activation

• DA− is the negative dynamic activation

Note that quantitative time indices and quantitative activation indices span
different information for the rating process. So, for example, we may have
two distinct movement pauses (e.g., initiation time and verification time)
both characterized by the same interval length but with different overall
activation values.

In sum, by using this simple functional framework, we can derive a num-
ber of quantitative indices to provide predictions concerning various as-
pects of the processes involved in the decision mechanism of a rating be-
havior.

2.3 Methodology

Our proposal consists of a data-capturing procedure which implements a
MTM based computerized interface for collecting the motor and temporal
components in the process of rating and a data-modeling procedure which
provides a functional model for the recorded information. Note that the
interface for the data-capturing has been extensively described in the Chap-
ter 1 (sections 1.4.1 and 1.5).

2.3.1 Data representation

Spatio-temporal data

Let p = (x,y) be the movement path with length H + 1 associated to the
streaming of x-y Cartesian coordinates of the computer mouse movements
recorded during the rating process (with H denoting the total number
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of recorded movements1). We assume that in p the first position p0 =

(x0, y0) corresponds to the origin (0, 0) (called starting position) of the two-
dimensional Cartesian plane R2, whereas ph = (xh, yh) denotes the hth el-
ement (with h = 1, . . . , H) in the sequence of positions recorded in p. In
particular, pH = (xH , yH) represents the final position in the path and usu-
ally corresponds to the position in the two-dimensional plane of the final
selected anchor point. Moreover, each position ph in the path is also as-
sociated to a positive integer value th ∈ N denoting the time passed from
the onset time of the pseudo-circular scale on the screen and the hth move-
ment recorded in p. By definition we set t0 = 0 (initial time). Finally, the
total response time (or final time) t∗ is defined as the difference between
the time at the mouse-clicking on the selected anchor point (final response)
and the onset time of the pseudo-circular scale on the screen. In sum, the
spatio-temporal sequence ((p0, t0), (p1, t1), . . . , (pH , tH)) constitutes the en-
tire information collected during a single rating trial and the array (p, t) is
the corresponding spatio-temporal data structure.

From spatio-temporal data to functional data

The main assumption of our approach is to represent each anchor point
in the rating scale by an activation state, which indicates (at each recorded
time th) the level of activation of that anchor point for the current mouse
position ph in the movement path. To model the activations we used a de-
scriptive perspective based on the simple analogy with bivariate normal
densities. In this context, the bivariate normal densities act as sensors to
detect mouse movement positions. In particular, let fk(·|µk,Σ) be a bivari-
ate normal density with µk and Σ denoting the location parameter and
the scale parameter of the distribution, respectively. The location param-
eter µk indicates the position in R2 of the kth anchor point in the pseudo-
circular scale, whereas Σ is a diagonal covariance matrix with a single

1The value of H can vary trial by trial depending on the dynamic of the recorded rating process.
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parameter σ1 = σ2 = σ (the parameter sigma is called the anchor point
sensitivity). Each spatio-temporal observation (ph, th) in the movements
path is associated to a positive real value akh ∈ R+ denoting the activation
of the kth anchor point (with k = 1, . . . , K) for the position ph recorded
at time th. More precisely, the activation value is given by the following
equation:

akh = fk(ph|µk, σ), h = 0, . . . , H; k = 1, . . . , K. (2.3)

Finally, the sequence (t, ak) = ((t0, a
k
0), (t1, a

k
1), . . . , (tH , a

k
H)) is the activation

data structure for the kth anchor point derived from the original spatio-
temporal data (p, t). The basic idea is to think of the observed activation
data as a single function instead of a simple sequence of individual obser-
vations. Consequently, the activation data can be understood as functional
data. More precisely, the term functional refers to the intrinsic structure of
the data rather than to their explicit form (Ramsay and Silverman, 2005).
Note that the activation functions are characterized by the following fea-
tures: (a) because of the bivariate normal representation, the activation
value is nonlinearly related with the distance between the current mouse
position and the target anchor point position in the scale (b) the activation
functions share all the same sensitivity value σ (c) the distance from an an-
chor point position µk and the starting position (0, 0) is held constant for all
the K anchor points in the scale (d) the distance between two consecutive
anchor point positions, µk and µk+1 (k = 1, . . . , K−1) is also held constant.
Note that condition (a) reflects the idea that the activation system is gen-
erally less sensitive to movements located far away from the core spots
represented by the anchor points’ positions. Moreover, conditions (c-d)
entail that the positions of the K anchor points lie on a pseudo-circular
structure centered on the origin (0, 0).
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2.3.2 Data modeling and parsing

In our approach we assume that the curve being estimated is continuous
and smooth. There are several methods that can be considered for ap-
proximating discrete data by a function (for a review see Ramsay, 2006).
In this contribution we adopted the roughness penalty or regularization ap-
proach which is a powerful and flexible option for modeling functional
data based on cubic B-spline basis functions (for more details the reader
may refer to Ramsay and Silverman, 2002). Figure 2.5 shows the approxi-
mation of the observed movement data represented in the panel A with a
smooth activation function (panel B).
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FIGURE 2.5: Hypothetical movement path (A) with the associated smooth activation
function (B).

One of the main advantages of modeling discrete data by a functional data
analysis approach is that we can easily derive smooth approximations of
the original activation data which may instead be characterized by not so
regular representations due to the limitations of the empirical sampling
rate.

Once the activation function and its first derivative have been modelled
using the functional data approach, we need a procedure for parsing the
activation function into its basic components. In particular, we extract the
dynamic components and static components in order to derive the quan-
titative indices for the rating process described earlier. We used a simple
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parsing algorithm adapted from previous analytical techniques to detect
corrective submovements. Our approach entails a systematic evaluation
of the first derivative (velocity) of the activation function. In this evalua-
tion, submovements as well as pauses are defined on the basis of certain
criterion events (e.g., crossing of well-defined velocity thresholds). These
criteria are chosen to take account of differences between the dynamics
of voluntary movements (Meyer et al., 1988), physiological tremors and
passive residual activity due to springlike characteristics of muscles. In
particular, a static component of the activation function representing a
movement pause was defined to be a continuous portion of the function
such that the absolute value of its first derivative did not exceeded a given
small positive threshold δ and the duration of the corresponding pause
exceeded 20 ms.
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FIGURE 2.6: Hypothetical smooth activation function (A) with the corresponding
first-order derivative function (B). Note that dotted lines refers to a parsing grid.

The conjunction of these two conditions defined the criterion to extract
aimed pauses from the dynamic rating process to detect temporal phases
associated to either goal formation or goal reformulation or response se-
lection. Accordingly, a dynamic component (either positive or negative)
of the activation function representing an aimed submovement was de-
fined to be that portion of the function in between two consecutive pauses.
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The latter means that a positive submovement (resp. negative submove-
ment) must show activation values with positive first derivatives exceed-
ing δ (resp. with negative first derivatives not exceeding−δ) and remained
above (resp. below) that level continuously for at least 20 ms. These crite-
ria helped ensure that the putative submovements stemmed from volun-
tary activity rather than physiological tremor or passive damped oscilla-
tions between two submovements. Figure 2.6 shows the adopted parsing
rationale.

2.4 Illustrative examples

By way of illustration, in this section we describe two simple empirical
applications using our methodology. The first example considers a well
known cognitive problem in decision making called the trolley scenario.
The second application presents data about the simulation of faking re-
sponses in binary categories. We stress that the examples reported here
have only illustrative purposes and are presented in order to highlight
some important aspects of modeling the temporal and activation state
measures described earlier.

2.4.1 Rating responses and moral dilemma

General context and motivation. Moral judgements and dilemmas are im-
portant puzzles studied in cognitive decision making Greene and Haidt,
2002; Haidt, 2001. Because of their complex nature and representation,
moral dilemmas are usually characterized by some level of uncertainty in
individuals responses. One important example of moral dilemma is the
so called trolley scenario Greene and Haidt, 2002; Haidt, 2001; McGuire et
al., 2009; Nichols and Mallon, 2006. In general, individuals react to this
dilemma by using their personal moral beliefs. More precisely, the trol-
ley scenario engages some levels of emotional processing which, in turn,
might affect people’s judgments to such an extent that some individuals
may definitively hesitate in evaluating the scenario. Some authors (e.g.,
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Haidt, 2001; Bruner and Bruner, 2009) claim that moral evaluations can
be distinguished in two distinct categories: moral intuition and moral rea-
soning. Generally, moral intuition occurs quickly, effortlessly, and auto-
matically, such that the final judgment (but not necessarily the underlying
process) is accessible to consciousness. By contrast, moral reasoning oc-
curs more slowly, requires some effort, and involves at least some steps
that are accessible to consciousness. In this first example, we assessed the
extend to which each temporal measure is affected by the type of moral
evaluation as codified by the rater’s response2. Moreover, we also stud-
ied the effect of gender on these temporal measures. We expect that the
individuals who show a very strong disagreement with the action de-
scribed in the trolley scenario (moral intuition raters) will be character-
ized by faster responses (according to one of the temporal indices) with
low levels of uncertainty. By contrast, those who are characterized by a
more moral thinking attitude (moral reasoning raters) will show less ex-
treme responses with larger values of uncertainty as measured by slower
response and more complex movement patterns. Because the trolley sce-
nario may activate not necessarily conscious underlying mechanisms in
the rater, we believe that our methodology can represent an ideal tool for
studying the subcomponents of the online rating process.

Participants. One hundred and tree volunteers from the university of Trento
(males = 47, age 18-23 : 70.87%, age 24-27 : 19.42%, age 28-36 : 2.91%,
age ≥ 37 : 3.88%) were tested after providing written informed consent.
All participants had normal or corrected-to-normal vision. The study was
approved by the local ethics committee.

Moral dilemma. In this application, we used a moral dilemma based on the
well-known trolley scenario Greene and Haidt, 2002; Haidt, 2001; McGuire

2For the sake of clarity, in this first application we limit our analysis to the temporal indices only.
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et al., 2009; Nichols and Mallon, 2006 as described in Chapter 1, section
1.6.1.

Procedure. See Chapter 1, section 1.6.1.

Movement parsing. At the end of the data collection, the records of the par-
ticipants’ positioning movements and movement times were first mod-
elled (separately for each participant) using the functional approach de-
scribed earlier and subsequently parsed to isolate component submove-
ments and pauses (see Section 2.3.2). In particular, in modeling the func-
tional data we adopted a smoothing parameter λ = 1.5 for all the 103
participants. After submovements were isolated, the total rating time on
each participant was separated into the initiation time, verification time,
total positive dynamic time, total negative dynamic time, and total pause
time.

Data-analysis. Because the temporal measures considered in this applica-
tion showed a nonzero level of skewness and kurtosis, we preferred to
analyze our data by using robust data analysis procedures. In particu-
lar, we performed robust two-way between-subjects analyses of variance
on each of the dependent variables mentioned previously, with moral type
(M: moral intuition rater vs moral reasoning rater) and gender (G: male vs
female) as independent factors at two levels each. Note that in order to
define the moral type factor we dichotomized the observed discrete rat-
ing responses into two distinct levels: 1 vs > 1. The idea behind this di-
chotomization was that moral intuition raters would be characterized by
the most extreme response: strongly disagree whereas the moral reasoning
raters would prefer less extreme responses (e.g., > 1). The robust analyses
of variances were performed using the robust package available in the R
environment.

Results. Figure 2.7 shows the results of this first application. About the
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temporal measures, mean RT increased in the male group (p < 0.05).
However, the main effect of factor M and the interaction M by G were
not significant. In order to interpret these results the durations of the dis-
tinct movement phases must be examined. Mean PT for moral intuition
raters was significantly shorter than the corresponding mean PT for the
moral reasoning raters (p < 0.05). A similar effect was observed also for
the gender factor with the female group showing shorter PT than that ob-
served for the male group (p < 0.01). We did not observe any significant
interaction between the two factors. However, looking at the decomposi-
tion of the total pause time reveals some interesting differences between
the two factors M and G. In particular, mean IT for moral intuition raters
was significantly shorter than the corresponding mean IT for the moral
reasoning raters (p < 0.01). By contrast, the mean V T for the female group
resulted shorted than that of the male group (p < 0.05), whereas all the
other effects were not significant for this variable. Finally, no other sta-
tistically significant differences were observed for the remaining temporal
measures (DT+ and DT−).

Discussion. The results of this first application suggest two complementary
conclusions. First, to provide a substantive interpretation of dynamics of
a rating task, it is not sufficient simply to examine the total rating time in
order to characterize how positioning movements and absence of move-
ments (pauses) are produced. Rather, an analysis of the component phases
that contribute to these times, including the durations of movement initi-
ation, execution, and verification, must be made. Second, initiation times
and verification times are affected somewhat differently by the same in-
dependent variables. In particular, mean IT for moral intuition raters was
shorter than the mean IT for the moral reasoning raters. Because IT rep-
resents the time from the stimulus onset and the first recorded movement
(overt motion begins), we may consider this temporal measure as directly
correlated with the time spent by an individual in choosing among the K
distinct options. In general, a long IT duration can reflect some level of
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FIGURE 2.7: Application 1: Robust Anova for the RT decomposition. Note that in
the panel A the acronyms IR means initiation rate, RR rationality rate, M stands for
male group, and F for female group. Instead in the panel B the acronyms refers to the
interactions among the factors (e.g., MIR means interaction between M and IR).

uncertainty in selecting the preferred option among the alternatives. In
this respect, moral reasoning raters seem to show a relative larger level
of uncertainty as compared to moral intuition raters. This result is in line
with the theoretical expectation that moral intuition raters are character-
ized by more extreme, quick, effortless, and automatic final responses. By
contrast, because V T measures the amount of time that a rater takes to
check the location of the cursor and release the mouse button after the last
movement has ended, we may understand this temporal measure as cor-
related with the time spent by an individual to provide a final check for
the selected response. In general, a longer V T duration can indicate some
level of uncertainty in confirming the final response. Interestingly, in this
respect the female group seemed to show less uncertainty in confirming
the final response as compared to the male one.
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2.4.2 The dynamic structure of faking

General context and motivation. In real life contexts, some individuals tend
to distort their behaviors or actions in order to reach specific goals. Nowa-
days there is a broad consensus that faking/deception is an intentional re-
sponse distortion aimed at achieving a personal gain (Ziegler, MacCann,
and Roberts, 2011; Vrij and Verschuere, 2013). For example, in personnel
selection some job applicants may misrepresent themselves on a person-
ality test hoping to increase the likelihood of being offered a job (Ander-
son, Warner, and Spencer, 1984). Similarly, in the administration of di-
agnostic tests individuals often attempt to malinger post traumatic stress
disorder in order to secure financial gain and/or treatment or to avoid be-
ing charged with a crime (Hall, Thompson, and Poirier, 2007). There are
several studies that show how lying is cognitively more demanding than
truth telling. According to this approach the additional cognitive load is
caused by fakers having to being involved in extra tasks such as, for ex-
ample, inferring what others are thinking or monitoring their behaviour
so that they may still look natural to the other people’s eyes. Indeed, re-
search shows that compared with truth tellers, liars are slower and make
more errors when responding to questions as it seems that truth is au-
tomatically activated in the cognitive system of a person (Walczyk et al.,
2005). In sum, faking behaviors seem to require inhibition of prepotent
truth responses.

In this second application, we evaluated the performances of the temporal
and activation state measures in an empirical test based on simulated fak-
ing. We used a questionnaire about episodic memory administered in a
laboratory-type situation in which two different experimental conditions
(honest motivating condition vs faking motivating condition) were ma-
nipulated for the responders. Specifically, we analyzed the mouse tracker
patterns that occurred while participants had to perform a binary (yes-no)
response task to items of a questionnaire about episodic memory under
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honest or faking conditions. By measuring the moment-by-moment tem-
poral and spatial dependencies that reside in mouse-movement patterns
of hand motion we are potentially able to provide a dynamical account of
fakers’ online classification in a pseudo-naturalistic scenario. Moreover,
because in this context simple response time may reflect a combination of
different subprocesses that potentially differ in sensitivity to the effect of
faking, we expect that the decomposition of the temporal and activation
state measures can enhance the discrimination between simulated true
and fake responses. Finally, in this application we show how the pro-
posed approach can be used to evaluate the dynamics of responses based
on binary ratings.

Participants. Fifty two participants from the university of Padua (males =
34, age 18-23 : 4, age 24-27 : 17, age 28-36 : 13) were tested after providing
written informed consent. All participants had normal or corrected-to-
normal vision. The study was approved by the local ethics committee.

Materials, apparatus and procedure. The questionnaire was composed by
100 true/false statements referring to episodic memory items. The 100
statements were divided into four experimental conditions: a) true-yes
responses b) fake-yes responses c) true-no responses and d) fake-no re-
sponses. Each of the four conditions comprised 25 distinct sentences.
Some examples of item statements were: the experimenter welcomed me (true-
yes response); I am at a rock concert (fake-yes response); I am in Paris (true-
no response); I am using the mouse (fake-no response). The questionnaire
included a male and a female version for the 100 statements.
We used the same apparatus described in the first application. However,
the experimental procedure was adapted for fitting specific requirements
of this second study. In particular, unlike the fist application, in this new
study the participants responded to all the 100 items of the questionnaire.
The same randomized item order was presented to all participants and the
100 experimental items were first preceded by five initial control items. To
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modulate the experimental factor instruction type (honest vs. fake), the
colour of the pseudo-circular scale was appositely manipulated to instruct
the participants on whether to respond honestly (grey scale) or lying (red
scale). The available anchor points in the pseudo-circular scale were S (for
Yes, positive response), ? and N (for No, negative response) (see Figure
2.8). Participants were told to answer spontaneously, with no time pres-
sure, and to ignore the question mark (?) option, which acted only as the
neutral reference in the scale configuration.
Like for the previous example, also for the analysis of the faking question-
naire the functional approach was used to model the participants’ posi-
tioning movements and movement times (separately for each participant)
with smoothing parameter λ = 1.5. After the submovements were iso-
lated using the parsing algorithm, all the main temporal and activation
state measures were computed for each participant and each item in the
questionnaire.

FIGURE 2.8: Application 2: Example of scale used with experimental factor
“colour”.

Data-analysis. The experimental procedure yielded data that could be or-
ganized according to a two-way within-subjects factorial design: response
type (Y vs. N) × instruction type (honest vs. faking). For each participant
and each dependent measure (temporal and activation state measures) we
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derived four summary statistics based on the median values of the origi-
nal measures collected at the item level. In particular, the four summary
statistics were associated at the four distinct combinations of the two-way
factorial design. For the sake of simplicity, in this second study we will
analyze the data for the two levels of the response type factor (Y vs. N
responses) separately.

Results. About the temporal measures, we analyzed the following indices:
total response time, overall dynamic time, overall pause time, initiation
time, and verification time. For the summary statistics computed on the
positive items (Yes-type responses), all the temporal indices showed more
or less the same homogeneous pattern (see Figure 2.9). As expected, fake
responses were in general characterized by longer response times (p <

0.001). In particular, the fakers showed longer dynamic times (p < 0.05)
and longer pause times (p < 0.05) compared to honest respondents. How-
ever, we observed subtle differences between the subcomponents of pause
time. More specifically, for the fake responses the initiation time was sig-
nificantly longer than the corresponding time for honest responses, that
is to say, fakers spent more time before starting the first movement. By
contrast, the two typologies of responses did not show any significant dif-
ference for the verification time as they required approximately the same
amount of time to check the final response and release the mouse button
after that the last movement has ended. However, for the summary statis-
tics computed on the negative items (No-type responses) the behavior of
the temporal measures was clearly different (see Figure 2.10). In particu-
lar, for no-type responses the overall response time was not significantly
different between fakers and honest respondents. Apparently, the bigger
cognitive loads associated with faking behaviors disappeared when neg-
ative items were considered. Similarly, also the overall dynamic time was
substantially similar between the two categories of responses. By contrast,
the pause sub-components showed significant differences between fake
responses and honest responses. However, this time the observed patterns
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were reversed: honest responses had longer initiation times (p < 0.05),
whereas fake responses were characterized by longer verification times
(p < 0.05).
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FIGURE 2.9: Application 2: Box-plots for the honest and fake condition in the YES-
type responses (RT decomposition).

About the activation state measures, we analyzed the following indices:
total dynamic activation, positive dynamic activation, negative dynamic
activation, static activation, initiation activation, and verification activa-
tion. For the positive items (Yes-type responses), the observed results
were very similar to those reported for the temporal measures (see Fig-
ure 2.11). All the activation measures but verification activation were
significantly different between honest responses and fake responses (all
ps < 0.05). Likewise for the temporal indices, also the activation indices
showed an inverse pattern when negative responses were considered (see
Figure 2.12). In particular, in the no-type response condition only initia-
tion activation and verification activation resulted significantly different
in the two instruction modalities with initiation activation being larger for
honest responses (p = 0.056) and verification activation being smaller for
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FIGURE 2.10: Application 2: Box-plots for the honest and fake condition in the NO-
type responses (RT decomposition).

fake responses (p < 0.05). Overall, the activation indices mirrored the re-
sults observed for the temporal indices.

Discussion. Generally, faking requires more cognitive efforts relative to
truth-telling, including truth suppression and consistent fabrications. This
means liars constantly deal with a considerable amount of strategies they
have to manage in order to get away with their lies. The results of this sec-
ond application suggests that additional cognitive loads play a relevant
role in characterizing the faking pattern for positive responses only. In
general, a true yes response requires less time and less effort to be pro-
duced compared to a fake yes response. Things are different for negative-
type responses, however. Fake no responses and true no responses are
substantially indistinguishable according to standard performance mea-
sures such as, for example, response time. By the way more subtle mea-
sures as verification time (resp. verification activation) or initiation time
(resp. initiation activation) may help in discriminating between honest
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FIGURE 2.11: Application 2: Box-plots for the honest and fake condition in the YES-
type responses (TA decomposition).

and fake responses. We speculate that for negative responses the ad-
ditional cognitive load observed for fake yes responses is somehow ab-
sorbed or masked by the additional effort which is normally required to
elaborate and produce negative information. In general, negative informa-
tion seems to require greater information processing resources and activity
than does positive information (e.g., Taylor, 1991) and this additional pro-
cessing leads to differences between positive and negative information in
attention, learning, memory, and apparently also in faking.
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FIGURE 2.12: Application 2: Box-plots for the honest and fake condition in the NO-
type responses (TA decomposition).

2.5 Conclusions

In the present contribution an innovative approach for measuring the pro-
cess underlying rating evaluations was presented. The simple final value
recorded in a rating task does not provide any insight into how a per-
son makes a decision: did the rater react immediately and quickly or did
he/she show some doubts and maybe change his/her mind a couple of
times? Here we tried to overcome this fundamental limitation by creating
a tool able to capture some hidden components of the response process.
By recording of mouse trajectories and inherent response times while sub-
jects express their ratings on selected anchor points of a pseudo-circular
scale; we were able to derive biometric physical measures thought to act
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as observable indicators of the underlying cognitive processes (Magnuson,
2005). These measures can be used to construct more sensible indices to
detect effects which would otherwise be missed using the standard overall
performance measures. In two distinct empirical applications we showed
the validity of our new framework in cognitive settings.





Chapter 3

A simple information theoretic approach
for modeling spatial data from mouse
tracker methodology

The content of the chapter partially reproduces a research paper which will be considered
for publication.

3.1 Introduction

Human movement is an integral part of perceptual-motor system. Most
people constantly use their arms, hands, and fingers in simple and com-
plex activities, for example, in reaching objects, pointing at visual targets,
typing on a computer keyboard or moving a computer mouse. In all these
activities, movements can be very complex and their study, in terms of
kinematics and/or simple trajectories, can provide a simple and valid ba-
sis to uncover cognitive and behavioral processes underlying the observ-
able structure of the data. To this aim, many research groups have focused
their attention on the analysis of hand movements and their trajectories,
which are very often collected by means of a computer mouse. It has been
shown that such device is a simple, reliable, and accurate real-time data
acquisition device that can be reasonably adopted for experimental pur-
poses (O’Reilly and Plamondon, 2011; Morein-Zamir et al., 2006). As a
consequence, mouse tracking based experiments are becoming very pop-
ular in cognitive studies over the recent years (Friedman, Brown, and
Finkbeiner, 2013; Hehman, Stolier, and Freeman, 2014). In general, the
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main idea of the mouse tracking methodology is to consider the collected
movement trajectories as a continuous source of real-time information on
the internal cognitive processes activated during a particular experimen-
tal task. For instance, in a dichotomous categorization task where two
alternative choices are presented on a computer display (e.g., target vs.
distractor), the features of the computer mouse trajectories can reveal, ac-
cording to the experimental manipulation, the eventual competitive at-
traction that one of the two choices (e.g., distractor) acts on the correct cat-
egory (target) (Spivey and Dale, 2006). This simple idea has been recently
applied in several research, including social categorization (Dale, Kehoe,
and Spivey, 2007), moral decision making (Koop, 2013), language com-
prehension (Morett and Macwhinney, 2013), and numbers representation
(Faulkenberry, 2014).
By and large, different strategies can be adopted by researchers in deal-
ing with mouse movement trajectories. Without claiming to be complete
we can enumerate four strategies, as follows. The first strategy adopts a
statistical-probabilistic framework (e.g., see Friedman, Brown, and Finkbeiner,
2013; Selen, Shadlen, and Wolpert, 2012) where, in particular, the move-
ment paths are evaluated by fitting dynamic models on the collected data
(e.g., Wiener’s Diffusion models, dynamic Markov Chains) and by evalu-
ating their results from a predictive viewpoint. Although this strategy can
be very powerful in discovering important features present in the empiri-
cal path of movements (e.g., movement initiation process, decision phases,
changes of direction), it requires to make several assumptions on the na-
ture of the data, in particular on how the movements are generated. In
addition, often such methods can also show some pragmatic difficulties
in estimating the models’ parameters with the consequence that richness
and heterogeneity of empirical movement paths cannot be accurately rep-
resented (e.g., see Voss and Voss, 2008; White et al., 2010). The second
strategy adopts a mathematical framework through which the motor move-
ment is represented in terms of physical models (like the Rayleigh-Duffing
model) and kinematic principles (e.g., minimum jerk, minimum energy)
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(Plamondon, 1995; Flash and Henis, 1991; Engelbrecht, 2001). Unlike data-
driven approaches, here the harm movement is described using a top-
down perspective where its main characteristics, such as speed, acceler-
ation, stability, and friction, are formally deducted by the general model’s
equations. Generally, this makes the approach more precise and accu-
rate in modeling and predicting the motor components of the movement.
However, despite that fact, in some circumstances these approaches might
be not flexible enough to model structured and noisy movement paths
that are usually encountered in real situations (Shadmehr, 2005). The third
strategy uses a computational framework to decompose the recorded move-
ment path in different sub-components (Walker, Meyer, and Smelcer, 1993;
Meyer et al., 1988). The main idea here is that parsing a goal-directed
movement into a sequence of informative subcomponents (e.g., initiation
time, pause time, verification time, number of sub-movements, task com-
pletion time) can help in constructing more sensible indices to detect ef-
fects which would otherwise be missed using standard performance mea-
sures, such as simple reaction-times (RT). Overall, this strategy carries out
considerable information although it might fail in providing global move-
ment information, especially in contexts where, for example, researchers
are interested in evaluating the dynamic attraction toward competitive
cues (Thompson et al., 2007; Smits-Engelsman, Van Galen, and Duysens,
2002; Hwang et al., 2005). Finally, the last strategy naively makes use of a
descriptive geometric framework that simply considers the Cartesian coordi-
nates of the movement trajectories as input of further analyses. As a conse-
quence of this choice, simple statistics such as, local means, distances, area
under the curves, point-by-point t-tests, are used as typical and basic mea-
sures to globally evaluate the recorded movement path (e.g., see Hehman,
Stolier, and Freeman, 2014; Freeman et al., 2008; Freeman and Ambady,
2010). Although such approach is simple and cheap to run, very often
it can incur considerable shortcomings with a significant loss of informa-
tion. For instance, its derived measures might not be sufficiently flexible
and accurate to capture more complex structures (e.g., quasi-sinusoidal,
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multi-peaks, irregular paths) as well as the presence of motor pauses in
the movement paths (Wel et al., 2009; Fischer and Hartmann, 2014).

In this paper, we exclusively focus on the descriptive geometric approach
and its formal characteristics. The reason of this is that, despite its limits,
this strategy of data analysis results to be simple, cheap, and easy to carry
out on a large scale of research contexts. Although very often this ap-
proach can yield improper results, a considerable number of papers mak-
ing use of its rationale have appeared over the recent years. Bearing this in
mind, in this paper we propose a new mathematical approach based on an
information-theoretic paradigm which is able to overcome some of the main
limitations of the aforementioned approach. In particular, in our approach
the empirical movement path is firstly statistically modeled by using an
adaptive cumulative function that is able to capture the direction, ampli-
tude, and eventual frictions that are naturally present in the movement.
Next, a set of entropy-based measures, which include a movement-pause
entropy decomposition, provides an analytic way to quantify the most rel-
evant spatial information that are present in the empirical data trajectories.
These new measures are provided to be more sensitive, robust, and stable
than the descriptive geometric measures. These results are especially sup-
ported by means of specific simulations studies. It should be noted how,
unlike the descriptive geometric approach, our approach would also pro-
vide an appropriate framework to compare and evaluate different move-
ment patterns by means of suitable distributional distances.

The reminder of this chapter is organized as follows. In the second sec-
tion we describe a comprehensive survey on the rationale underlying the
descriptive geometric approach and the derived measures and indices. In
the third section we present our proposal together with its main charac-
teristics. The fourth section illustrates some simulation studies carried out
on our methodology whereas the fifth section concludes this chapter by
providing some final comments and suggestions for future extensions of
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our approach.

3.2 Descriptive geometric approach: a brief overview

3.2.1 General context and motivation

The descriptive geometric approach (DGA) has been widely used to dis-
cover the cognitive features associated to the observable motor behaviors
of the hand. In particular, some of the earliest research used DGA as
strategy to analyze mouse tracking data from choice, categorization, and
decision-making experimental tasks (Song and Nakayama, 2009). To give
an example, consider a two-choices categorization task where a subject is
asked to select, by means of a computer mouse, the appropriate category
of a stimulus against a competitive alternative (Figure 3.1). Figure 3.1-A
shows the conceptual categorization schema through which a given stim-
ulus presented on the display (e.g., picture of a dolphin) has to be assigned
to the right target category C1 (e.g., mammal) against the competitive al-
ternative category C2 (e.g., fish). The underlying hypothesis here is that
the movement of the hand, which is registered with a computer mouse
(in green color in the Figure 3.1-A) together with the associated continu-
ous streams of motor information, might reveal important aspects of the
ongoing cognitive competitive dynamics involved during the task (e.g.,
the more the similarity between the categories mammal and fish, the more
the difficult in the categorization task, the more the curvature toward the
incorrect category fish).
Figure 3.1-B/C shows the geometric information in the two-dimensional
Cartesian plane which is associated to the motor movement path and, in
particular, the panel (C) shows two basic and important descriptive mea-
sures used in this approach, namely the maximum deviation (MD) and
the area under the curve (AUC).

Generally, DGA basically implements a two-steps strategy of data anal-
ysis. In particular, to obtain a set of consistent x-y trajectories, the raw
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FIGURE 3.1: Conceptual diagram of DGA in a two-choices categorization task. (A)
Categorization schema with target C1, competitive category C2, and an hypothet-
ical mouse path in green color. (B) Cartesian mouse trajectories in 2-dimensional
plane (the bisector of the I quadrant indicates the ideal movement). (C) Example
of two descriptive measures of the movement path: gray color indicates the area
under the curve (AUC) whereas the red straight line indicates the maximum devia-
tion/distance (MD).

computer-mouse trajectories that are recorded during a cognitive task are
firstly roughly pre-processed by space rescaling, time-normalization, and
averaging. Lastly, the ensuing movement paths are carved up by using
various measures (e.g., MD, AUC, x-y flips, sample entropy, bimodal coef-
ficient) that are supposed to be good indicators of the ongoing dynamics
involved in the cognitive tasks. These final measures are finally used in
running post-hoc specific analyses, such as the so-called spatial attraction
analysis.

3.2.2 Procedures and data analysis

For the sake of description, all the data analysis procedures involved by
DGA can be grouped into four main categories, namely spatial attrac-
tion analysis, velocity-acceleration analysis, distributional and complex-
ity analyses (Hehman, Stolier, and Freeman, 2014; Freeman and Ambady,
2010). In particular, spatial attraction analysis is mainly performed by means
of AUC and MD measures. These indices are computed after space rescal-
ing, time normalizing, and averaging the raw coordinates by means of
participant’s mean profiles and grand mean profiles. Technically, partic-
ipant’s mean profiles are obtained by averaging the raw x-y trajectories
over the trials for each individual present in the dataset whereas the grand



Chapter 3. Information theoretic mouse tracker (InTMT) 73

mean profile is carried out by averaging together all the data from par-
ticipants and trials. Finally, MD can be computed over such profiles as
the largest perpendicular distance between the averaged trajectory and
the ideal movement path linking the starting point position to the cor-
rect cue (see Figure 3.1B-C). Similarly, AUC is defined as the area be-
tween the mouse trajectory and the ideal straight movement and can be
computed through any numerical integration method (e.g., trapezoidal
method). Note that, both MD and AUC measures would assess to what
extent the magnitude of activation of the competitive cue changes un-
der varying movement trajectories. Particularly, “AUC is a better index
of the overall attraction toward the unselected alternative whereas MC
is a better index of maximum attraction” (Freeman and Ambady, 2010,
p.230). The velocity-acceleration analysis is conducted after rescaling raw
trajectories with an user-defined number of pre-fixed time bins. As for
the previous analysis, also velocity and acceleration profiles can be ob-
tained for each participant’s trajectories and/or for each group of par-
ticipants/experimental condition. In particular, velocity is roughly com-
puted by taking the distance between couples of x-y coordinates at dif-
ferent times whereas acceleration is obtained by measuring the relative
changes in velocity across time points. Unlike the previous analysis that
are conducted on the raw trajectories collected over the experimental tasks,
the distributional analysis applies on the final spatial measures (e.g., AUC).
Technically, all the computed AUCs over the participants and conditions
are firstly z-normalized and lastly represented as a discrete (binned) dis-
tribution. The rationale is to analyse whether the distribution is unimodal
or bimodal (bimodality is usually assessed by means of Sarle’s b-test). Un-
like unimodal distributions, a bimodal distribution would always indi-
cate the presence of two sub-populations showing two different type of
movement responses and, therefore, can be used in assessing whether at-
tractions toward competitive cues occurred. Finally, the so-called spatial
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disorder analysis can be employed to assess the “complexity” of mouse tra-
jectories that would reveal how much irregular, unpredictable, and disor-
ganized, the mouse movements appear over the experimental conditions.
Particularly, such an analysis is performed by computing (i) the number
of reversal of directions along the horizontal and vertical axes (x/y flips)
and (ii) the sample entropy (SamEn) measure of the x-axis only (Richman
and Moorman, 2000). Note that, in this context, the eventual “complexity
in response trajectories may be taken as evidence for a formal dynamical
process at work” (Hehman, Stolier, and Freeman, 2014, p.9).

3.2.3 Some critical issues

DGA is a simple, fast, and practical tool to extract information from mouse-
tracking based experiments. However, despite of this, it can suffer from
serious limitations both technically and theoretically. In what follows, we
outline some of the most important critical issues that could significantly
affect the sensitivity and strength of DGA-based studies.
The first critical aspect concerns the process of time-normalization which is
applied on the raw mouse trajectories. Although such a procedure would
guarantee averaging and comparisons across multiple trials, it could re-
sult in a distortion of the original movement profiles with the consequence
of a significant loss of information. This problem is widely known in
the signal processing literature where researchers have dealt with prob-
lems referring to signals alignment, data stretching, data normalization
and wrapping, and have proposed several techniques, more sophisticated
than the simple linear time-normalization, that try to model the empirical
noisy time-based profile by respecting its relevant characteristics (e.g., see
Lucero and Koenig, 2000; Ramsay, 2006; Tang and Müller, 2008). A second
relevant issue concerns the averaging procedure. Although it would sim-
plify the subsequent DGA analyses, it could possibly lead to inappropri-
ate results especially when empirical profiles of movement show different
amplitudes, phase variations, and curvatures (Ramsay, 2006). Moreover,
even when profiles would show same directions and curvatures, in some
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cases averaging could distort the original profile information (Omar et al.,
1999; Matthews et al., 1990). Therefore, the choice of methods to use for
averaging (e.g., arithmetic, geometric, block-based) becomes important in
order to preserve the original profile information and avoid distortions
(e.g., see Brown and Heathcote, 2003). Further, also the so-called spatial at-
traction analysis might be seriously biased. In particular, the MD measure
can potentially suffer from the problem of “multiple maxima” in the raw
movement curve. Indeed, due to noise that usually affects reaching move-
ments, in several situations mouse trajectories may not completely show
clear parabolic patterns with just one inflection point. Moreover, MD can
be excessively sensitive to traditional noisy patterns and meaningless for
complex sinusoidal, quasi-cyclic, and/or quasi-random movements. In
this context, also AUC is not immune from drawbacks. For instance, it can
suffer from “compensatory phenomena” depending on the shape of the
movement trajectories and can be worthless when movements are com-
plex and/or located in the opposite direction of the distractor (e.g., move-
ments allocated on the right-side of the ideal strength line represented in
Fig. 3.1-B/C produce negative area under the curve) (Fekedulegn et al.,
2007). Finally, considering the velocity-acceleration analysis, the free-model
approach used in computing velocity and acceleration yields noisy esti-
mation of the derivatives with the consequence that noise becomes more
prominent with increasing of the derivatives (Liu, 2002; Wu et al., 2006).
By and large, as DGA directly handle with the raw trajectories collected
over participants and trials, all the aforementioned limitations can be re-
lated to the “lack of curve modeling” that affects this approach. Although
in some circumstances such an approach can provide modest results (e.g.,
when analyses deal with few trajectory points), it should be noticed how it
completely ignores the “topological data structure” underlying the empir-
ical movement trajectories (Everitt and Pickles, 2004). As a consequence,
noise, imperfections, and natural movement fluctuations (e.g., turbulence
effects), can deteriorate the quality of the analyses and measures used to
summing up the empirical mouse movements (Guo, 2004; Kumaresan,
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Tufts, and Scharf, 1984).

3.3 Information theoretic approach to spatial information

In this section we describe our approach, named InTMT, in modeling and
analysing mouse trajectories from mouse-tracking experiments.

3.3.1 General context and motivation

InTMT is an information-theoretic based model that focuses on the spa-
tial information of mouse trajectories recorded by means of mouse-tracker
methodology.1 In our approach, the movement paths are firstly modeled
by means of an adaptive cumulative function whereas the main features of
the movement are subsequently extracted adopting a dedicated entropy
decomposition. Basically, InTMT extends the main findings of DGA in
some respects, although it provides a new formal framework to model
the motor pauses usually presented in movement patterns. Indeed, un-
like DGA, our approach highlights the important role played by pauses
in revealing information about underlying cognitive processes (e.g., de-
cisional conflicts in categorization, decision making under uncertainty)
(Plamondon, 1995; Plamondon and Alimi, 1997). Although motor pauses
can reflect the mechanical dynamics of the neuromuscular system (Elliott,
Helsen, and Chua, 2001), they usually arise from discontinuities in veloc-
ity and acceleration of intermittent movement profiles (Meyer et al., 1988;
Hwang et al., 2005; Wel et al., 2009). Moreover, as for eye-tracking based
paradigms, motor pauses might also reveal important aspects of dynamic
attentional processes related to decision and choice making (Johnson et

1Over the years, several scholars have tried to apply information theory in psychology. Although such an applica-
tion has found criticisms (for a review, see Shannon, 1956; Luce, 2003; Laming, 2010; Corning and Kline, 1998), there
have been numerous attempts to use its concepts and ideas both theoretically and technically. Recently, for instance,
information theory has been applied in modeling the cognitive load in sentence comprehension (Frank, 2013), in mea-
suring how the cognitive system creates new representational structures (Stephen, Dixon, and Isenhower, 2009) and
how it solves goals conflicts (Hirsh, Mar, and Peterson, 2012), in quantifying behavioral and neural processes (Rosso,
2007; Besserve et al., 2010), in modeling reaction times (Prado Martín, 2011). Not least, it has been also applied in
quantifying some relevant physical as well as distributional characteristics of aiming and reaching movements (e.g.,
see Seow, 2005; Hoffmann, 2013; Lai, Mayer-Kress, and Newell, 2006; Lai et al., 2005).
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al., 2012; Glaholt and Reingold, 2011). Note that, InTMT does not pro-
vide a cognitive modelisation of the processes underlying mouse-tracking
experiments. On the contrary, it defines a general procedure to extract in-
formation from movement trajectories according to a specific model. As a
consequence, information theory together with its measures are only used
in a descriptive fashion (Baird, 1984).

3.3.2 InTMT approach

Data modeling

Let pij = (xij,yij) ∈ Rnij×2 be a nij× 2 array of Cartesian coordinates asso-
ciated to the streaming of the x-y data of the computer mouse movements
with nij being the recorded number of movement points varying across
subjects (i = 1...I) and trials (j = 1...J). The ITA-MT adopts the following
two-step procedure in modeling the spatial movement data (see Fig. 3.2).
First modeling step. It represents the raw movement points pij by means of
a simple and flexible model mij which is able to capture the main move-
ment features such as direction, amplitude (i.e., attraction toward the com-
petitive target), and frictions (pauses). To do this, we first remove eventual
imprecision due to hand motor controls and/or computer mouse adjust-
ments. In particular, the x-y coordinates in pij that are located near to the
starting point (symbol “0” in Fig. 3.2-A) and the points beyond the bor-
ders of targets (symbols “C1” and “C2” in Fig. 3.2-A), are all removed
by applying a predefined filter which defines the area for acceptable x-
y coordinates. Next, the refined pij is transformed into a nij × 1 vector
pcij ∈ R+

{0} of angles (in radians) by means of any arctangent based func-
tion (e.g., atan2). Lastly, the angles in pcij are modeled by means of a linear
histogram whose support varies from [0, π/2] (Fisher, 1995). Note that, the
histogram of movement points (Fig. 3.2-C) represents the directions of the
x-y movements naturally expressed in Rnij×2 as points on the positive real
line R+

{0} whereas the number of points for each bin of the histogram repre-
sent the eventual frictions during the movement. Therefore, the horizontal
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dimension of the histogram reproduces the direction and the amplitude of
the movement whereas the vertical dimension quantifies the motor pauses
that are codified in the Cartesian plane.2

Second modeling step. It transforms the measures in pcij by means of a
smooth cumulative function mij. In particular, mij can be obtained by any
smoothing procedure, for instance by non-parametric Kernel estimation:

mij = (nij)
−1

nij∑
t=1

H

(
pcij − pcijt

h

)
where H(pcij) is the Kernel function that is usually numerically estimated
whereas h is the so-called bandwidth parameter that can be estimated, for
instance, via cross-validation by minimizing the mean integrated squared
error (MISE) (e.g., see Azzalini and Bowman, 1997; Rio and Estevez-Perez,
2012).
Note that as a consequence of the properties of the cumulative functions
(Burr, 1942), mij results to be more robust and regular in case of noisy
and/or irregular movement profiles. This means, for instance, that fast
directional changes in pij result in slower changes in mij and allows the
model to focus expressly on the relevant movement events occurred in
the reaching task. Interestingly, some structural relations exist between
histograms of movement points and cumulative functions (see Fig. 3.3).
In particular, Fig. 3.3-A represents an histogram of movements where the
majority of motor pauses occur toward the cue C1. This aspect is reflected
in the height of the cumulative function that results to be less then the
threshold line (Fig. 3.3-D, solid curve). By contrast, Fig. 3.3-B shows a
typical bimodal histogram associated to movement patterns where mo-
tor pauses are (almost) equally distributed toward both the cues C1 and
C2 of the movement space. In this situation the cumulative function has

2Technically, motor pauses are codified as points showing the same (or almost the same, in a neighborhood) x-y
coordinates.
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FIGURE 3.2: Conceptual diagram of ITA modeling. (A) Cartesian mouse trajecto-
ries pij in 2-dimensional plane. (B) atan2 function transforming pij in radians pc

ij .
(C) histogram modeling pc

ij . (D) Empirical cumulative distribution function mij

associated to the histogram of movement points

height closed to the threshold line (Fig. 3.3-E). Finally, Fig. 3.3-C repre-
sents movement patterns with motor pauses toward the cue C2. As a con-
sequence the cumulative function shows height greater than the threshold
line (Fig. 3.3-F). Moreover, such relations became meaningful in the con-
text of mouse-tracking experiments. In particular, panel A in Fig. 3.3 rep-
resents the typical case in which the cue C1 produces attraction as well as
motor pause at the same time. Indeed, the support of the histogram spans
(in randians) from C1 to C2 whereas the majority of frequencies is located
on C1. On the contrary, panel C in Fig. 3.3 reflects the situation in which
mouse movements show larger motor pauses toward the final selected cue
C2 while showing lower frictions toward C1 even though they span all the
interval ranging from C1 to C2. This situation might occur when fast and
hasty mouse movements do not relate with a real attraction of the com-
petitive cue C1. Instead, panel B in Fig. 3.3 codifies the situation where
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both C1 and C2 cues exercise attraction on mouse movements by gener-
ating the situation of maximum uncertainty. Note that our model allows
to represent all the intermediate situations between movement amplitude
and motor pause, as they are codified by two different characteristics of
the histogram. Consequently, our approach becomes flexible also in mod-
eling situations where motor pauses and amplitude of the movements are
unrelated.
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FIGURE 3.3: Conceptual relations between histograms of movement points and cu-
mulative functions (in yellow). (A-D) Patterns with ideal attraction toward C2. (B-E)
Patterns with attraction equally distributed between C2 and C1. (C-F) Patterns with
no attraction toward C2. Note that dotted gray curves represents the patterns of
pure movement (without pauses) whereas the value of 0.5 in the horizontal axis
represents the threshold line.

Data analysis

While DGA directly extracts movement features from the raw movement
profiles, in the InTMT approach all the information characterizing the
movement are coded with the cumulative functions mij’s that are further
manipulated by means of a dedicated entropy calculus. More formally, the
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model mij is mainly synthesized by the cumulative residual entropy (CRE)
measure:

ψ(mij) = (1−mij)
T log (1−mij) (3.1)

that expresses the information contained in the cumulative function of the
movement.3 Note that ψ(mij) can be directly compared with MD (e.g., it
tends to be large with increasing the amplitude of the movement toward
the unselected cue C1). However, because it is calculated on the model mij

rather than on pij, unlike MD, the measure ψ(mij) appears more robust to
noisy and irregular movement paths. Further, the entropy representation
allows to independently quantify the contribution of movements and mo-
tor pauses as follows:

ψ(mij) = ξ(mij) + ζ(mij) (3.2)

where ξ(mij) is the cumulative residual entropy of the pure movement
(i.e., movement without motor pauses) whereas ζ(mij) is the correspond-
ing entropy associated to the pauses. This is an interesting results, es-
pecially since it allows a simple decomposition of the motor information
provided by the mouse trajectories. In addition, the equality 3.2 can be
further expanded as follows:

ψ(mij) = ξ(mij) + ζ1(mij) + ζ2(mij) (3.3)

where ζ1(mij) and ζ2(mij) are the entropies of the motor pauses occurred
during the movements toward the correct cue (C1) or the competitive cue
(C2), respectively (see also Fig. 3.2-A). In this way, the entropy calculus

3This measure has been introduced by Rao et al. (Rao et al., 2004) by generalizing the main properties of Shannon
entropy. As a number of studies revealed, CRE shows general and nice mathematical properties(Wang et al., 2003;
Baratpour and Rad, 2012; Di Crescenzo and Longobardi, 2009). Particularly, (i) its definition is valid for both continu-
ous and discrete cases, (ii) it can be easily computed from the sample data as its estimation converges in the limit to the
true value, and (iii) can be also computed for bimodal distributions. On this basis, also other traditional information-
theoretic measures have been extended to deal with CRE, such as the cumulative residual KL measure (Park, Rao,
and Shin, 2012), dynamic cumulative residual entropy (Navarro, Aguila, and Asadi, 2010), and cumulative mutual
information (Wang and Vemuri, 2007).
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provides insights into the motor paths recorded during mouse-tracking
tasks.
At this point, we need to quantify all components of the right side of Eq.
3.3. To this aim, we resort to use the following procedure that is in line
with the descriptive approach underlying InTMT.
First, we compute an approximation of the zeroth-frequency moment of pcij

as

p0
ij = F0(p̃

c
ij)

where p̃cij is the nearest integer vector to pcij whereas F0 is implemented by
any appropriate algorithm (Hall Jr, 1948; Coppersmith and Kumar, 2004).
The new vector p0

ij contains only distinct elements of pcij and refers to the
vector of pure movement points.
Second, the cumulative model of the pure movement is computed as pre-
viously described, namely:

m0
ij = (nij)

−1

nij∑
t=1

H

(
p0
ij − p0

ijt

h

)
where H(p0

ij) is the Kernel numerically estimated whereas h refers to the
bandwidth parameter.
Third, the entropy measures associated with the motor pauses are ob-
tained as:

ζ(mij) =
∣∣ ψ(mij) + (1−m0

ij)
T log (1−m0

ij)
∣∣

ζ1(mij) =
∣∣ ψ(mij) + (1−α+

ij)
T log (1−α+

ij)
∣∣

ζ2(mij) =
∣∣ ψ(mij) + (1−α−ij)T log (1−α−ij)

∣∣
where:

α+
ij = {mijt |m0

ijt ≥ mijt} and α−ij = {mijt |m0
ijt < mijt} (t = 1 . . . nij)

Finally, the quantity ξ(mij) follows by the definition 3.2:
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ξ(mij) = ψ(mij)− ζ(mij)

Note that also in this context we can define a taxonomy of relationships
between the models mij and m0

ij (see Fig. 3.3). In particular, when mouse
trajectories and motor pauses are in the direction of the attractor cue C1
(Fig. 3.3-A/D), the curve mij (yellow solid line) always dominates m0

ij

(dotted black line). On the contrary, when movements and pauses are to-
ward the correct cue C2 (Fig. 3.3-C/F), m0

ij always dominates mij. Instead,
in the case of maximum uncertainty (Fig. 3.3-C/E) both the models are in-
terlaced. It should be finally noted that these properties play an important
role in defining the components ζ1 and ζ2 as parts of ζ(mij).4

An additional issue concerns how two or more movement profiles can be
compared. InTMT provides a direct way to compare profiles in terms of
entropy. In particular, given two movements models ma

ij and mb
ij one can

compute the profile overlap in terms of distance by means of the cumulative
KL divergence (Baratpour and Rad, 2012; Park, Rao, and Shin, 2012):

χ(ma
ij,m

b
ij) =

nij∑
t=1

(1−ma
ijt)

[
1−ma

ijt

1−mb
ijt

− log
(

1−ma
ijt

1−mb
ijt

)
−1

]
(3.4)

where χ(ma
ij,m

b
ij) ∈ [0,∞] and equals to zero when ma

ij = mb
ij.

3.4 Some exemplary applications

In this section we will shortly present two applications of the InTMT ap-
proach. In particularly, we will first describe the main characteristics of
the proposed approach by performing a trial-by-trial analysis on the data
coming from a standard categorization task (Dale, Hindy, and Spivey,

4Note that the identity ζ(mij) = ζ1(mij) + ζ2(mij) holds.
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2006). Lastly, we will show how to apply the InTMT procedure on a cross-
sectional analysis of lexical decision data (Barca and Pezzulo, 2012).

Application 1. In this first application we will perform a simple trial-by-
trial analysis on a proper subset of data that are already published (Dale,
Hindy, and Spivey, 2006). This is a simple lexical categorization task
where basic level animal names (e.g., gorilla) were assigned to their re-
spective superordinate category (e.g., mammal). Note that the original ex-
periment was executed using the mouse tracking methodology. Particu-
larly, they were asked to categorize lexical stimuli in the correct category
by choosing between two possible assignments (e.g., gorilla: mammal vs.
reptile). The underlying hypothesis is that stimuli showing higher prox-
imity with the incorrect category will result in larger mouse trajectories
(i.e., the higher uncertainty in categorizing the stimulus, the larger x-y tra-
jectory). The sample is represented by 31 right-handed students from the
Cornell University. Lexical stimuli (125 names of animals) belonging to the
natural superordinate categories of mammal, fish, reptile, bird, and insect,
were extracted from the McRae repository . Experiment was run using Re-
alBasic whereas the computer-mouse sample rate is approximately 40Hz.
Figure 3.4-3.7 show four empirical patterns who are characterized by some
nice properties concerning movements, pauses, and changes in directions.
In particular, Figure 3.4 shows a patter of movement with no attraction
toward the competing category reptile while movement points are all lo-
cated on the area of the correct category mammal. As explained from the
standard ballistic hypothesis in reaching movements, such a patter con-
tains two main pauses at the beginning and at the end of the movement.
As a consequence, they would reflect planning motor executions and their
finalisation, respectively. Therefore, the movement appears straight and
clean providing a global entropy equal to ψ(m) = 9.79 which is almost en-
tirely characterized by the movement component ξ(m) = 9.36 (the quan-
tity ζ2(m) = 0.43 refers to a short pause which happened after the move-
ment started).
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FIGURE 3.4: Application 1: subject 10, trial 61. Note that, ζ1(m) refers to the com-
peting category ’reptile’ whereas ζ2(m) to ’mammal’.

Figure 3.5 shows a typical patter of attraction which is also characterized
by pauses toward the competing category. Accordingly to the hypothesis
underlying such task, participant showed uncertainty in classifying the
stimulus penguin in the correct category bird because of the lexical attrac-
tion provided by the other category mammal. This is reflected in the points
of movement, especially in their location, as well as in the pauses occur-
ring toward the competing category. As a consequence, the global entropy
ψ(m) = 30.31 is mainly ascribed to the movement (ξ(m) = 23.11) and the
pause occurred toward the opposite category mammal (ζ1(m) = 6.22).
Similarly, Figure 3.6 can be interpreted as in the previous case although
here the pause component ascribed to the correct category bird is more
pronounced (ζ2(m) = 2.50).
Figure 3.7 shows an irregular pattern of movement with something like a
stenosis in the first part of the movement and a slow shift toward the cor-
rect category. Note also that, on the las part of the movement the pattern
still shows a stop occurring before clicking the final correct label mam-
mal. Although such an irregular pattern cannot be directly classified with
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FIGURE 3.5: Application 1: subject 13, trial 11. Note that, ζ1(m) refers to the com-
peting category ’mammal’ whereas ζ2(m) to ’bird’.
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FIGURE 3.6: Application 1: subject 25, trial 103. Note that, ζ1(m) refers to the com-
peting category ’mammal’ whereas ζ2(m) to ’bird’.

a regular parabolic layout, it still presents a “proper way” to codify the
uncertainty which would be completely lost in the DGA approach. The
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FIGURE 3.7: Application 1: subject 30, trial 87. Note that, ζ1(m) refers to the com-
peting category ’reptile’ whereas ζ2(m) to ’mammal’.

entropy decomposition follows this configuration as expressed by the in-
dices showed in the figure.

Application 2. In this second application we will perform a simple statis-
tical analysis considering the InTMT measures for all trials together. We
use already published psycholinguistic data where linguistic stimuli (e.g.,
latte, ghebo) are categorized as “lexical” or “non-lexical” (Barca and Pez-
zulo, 2012). The set of stimuli contained 96 lexical as well as non lexical
items from the Italian language (stimuli were equally five letters long).
These stimuli were manipulated according to two dimensions: frequency
(i.e., words with high occurrence vs. words with low occurrence) and type
(i.e., pseudowords vs. letters strings). The underlying hypothesis here
is that more ambiguous items, such as low frequency words and pseu-
dowords, would show more uncertainty during the categorization task.
To do that, 22 right-handed participants with normal/corrected vision
and ages ranging from 20 to 35 years, were recruited while kinematic data
were recorded with the mouse tracking methodology. With regards to the
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aim of our proposal, we have re-analysed data by applying the InTMT
procedure. Figure 3.8 shows the entropy decomposition for each of the
four experimental levels. As expected, compared with the condition letter
strings (LS) the task with pseudowords (PW) generates higher global en-
tropy ψ(m) which is also reflected in higher entropy of movement ξ(m) as
well as pauses ζ(m). In particular, such a condition shows higher pauses
toward the competing categories of the stimuli ζ1(m) than the correspond-
ing LS condition. Generally, the task under the condition PW seems to
generate more difficulties during the categorization task. On the contrary,
the conditions low and high frequencies (HF vs LS) seem to be overlapped
in the entropy components. In particular, the condition LF is associated
with highest global entropy ψ(m). Note that, such a result can be under-
stood under the components ξ(m) and ζ2(m), namely the condition LF
seems to generate higher entropy of movement as well as pauses toward
the correct category C2. However, surprisingly, the condition HF shows
slightly higher entropy of pauses ζ1(m) toward the competing category C1
then LF does. This counter-intuitive result in the condition HF could be in
relation with the occurrence of fast and accidental movements (i.e., words
with high frequency can be easily categorized in the correct categories).
In order to complete these preliminary analysis, we ran some tests for dif-
ferences on the condition HF/LF and LS/PW. Figure 3.9 shows the box-
plot with the associated p-values computed via Wilcox-test. Note that, we
report the condition LS/PW only because the comparison HF/LF showed
no significative differences. In line with the findings of the DGA approach
(Barca and Pezzulo, 2012), in this particular case all the entropy measures
result to be statistically significant.
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FIGURE 3.8: Application 2: Entropy decomposition for the four experimental levels.
Note that, HF and LF mean high and low frequency conditions, whereas LS and PW
indicate letter strings and pseudowords conditions, respectively.

3.5 Conclusions

In this chapter we described some preliminary findings of our InTMT ap-
proach. Unlike the standard DGA approach, it is mainly based on a ro-
bust modelization of the mouse trajectories through an adaptive logistic
function that contains all the spatial information provided by the empir-
ical x-y patterns. Moreover, a set of entropy-based measures which in-
clude a movement-pause entropy decomposition provided a way to ana-
lytically quantify the most relevant spatial information present in the em-
pirical data, namely movements and pauses. In addition, by using suitable
distributional distances, InTMT also provided an appropriate framework
to compare different movement patterns by means of a proper KL diver-
gence. Finally, in order to show some relevant characteristics of our ap-
proach, we conducted two preliminary studies on published datasets. In
particular, the first application showed a trial-by-trial analysis where sin-
gle mouse trajectories were analysed with the InTMT approach whereas
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FIGURE 3.9: Application 2: Wilcox-test for the experimental conditions. Note that,
HF and LF mean high and low frequency conditions, whereas LS and PW indicate
letter strings and pseudowords conditions, respectively.

the second one showed how our entropy decomposition could be a valid
alternative in studying the motor components which underly the mouse
tracker patters of movement. With particular regards to the second case
study, overall our findings confirm what the author already found in their
original research although our measures did not show statistical differ-
ences in the conditions high frequency (HF) and low frequency (LF) as
instead DGA did. In general, this application showed (i) how global dif-
ferences in terms of movement and/or global trajectories could be better
explained by considering their constituent sub-components and (i) how
InTMT could be as sensitive as DGA in detecting true effects when these
are really present in the empirical data.

Several further venues of research will be taken into account. First, an
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extensive and accurate simulation study would test the accuracy, sensitiv-
ity, and reliability of the proposed set of measures in detecting the com-
ponents of the patterns of movement. Therefore, the performance of the
measures as well as their rates of credibility would be investigated by com-
paring with the standard DGA procedure. Lastly, it would be natural to
extend our applications to further domains of research (e.g., moral deci-
sion making). This would help us in clarifying the role of our measures
under controlled and theoretically well-founded scenarios as well as to
understand the real portability of our approach. All these extensions are
already planned to be performed in the coming months.
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Chapter 4

Non-convex fuzzy data and fuzzy
statistics. A first descriptive approach to
data analysis

The content of the chapter has been previously published as: Calcagnì, A., Lombardi,
L., & Pascali, E. (2014). Non-convex fuzzy data and fuzzy statistics: a first descriptive
approach to data analysis. Soft Computing, 18(8), 1575-1588.

4.1 Introduction

Fuzzy statistics is a branch of statistical theory devoted to handle with
fuzzy data characterized by a particular type of uncertainty, called fuzzi-
ness. Nowadays, several statistical models and techniques are available
based on different approaches (Buckley, 2004; Coppi, Gil, and Kiers, 2006;
Nguyen and Wu, 2006; Taheri, 2003; Viertl, 2006). In particular, some
of these models have been defined using the notion of LR-fuzzy number
(Dubois et al., 1988) that can be considered one of the most important con-
cepts in Fuzzy Set Theory (FST). Moreover, LR-fuzzy numbers have been
proven to provide an elegant and compact way to describe a large variety
of fuzzy data in different applicative contexts (Dubois and Prade, 2000;
Ross, 2009; Verkuilen and Smithson, 2006). One of the most important fea-
tures of LR fuzzy numbers is that they are characterized by convex shapes.
However, one potential limitation of convex representations is that, in gen-
eral, they might not be flexible enough to describe complex structures in
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the data. For example, in contexts like human ratings and fuzzy deci-
sion making, observed data can easily show some relevant level of non-
convexity. Within an engineering perspective, the non-convexity problem
could be straightforwardly reconverted into the standard convex repre-
sentation by using ad-hoc data transformation procedures (e.g., the Gra-
ham Scan algorithm). However, this approach may be troublesome when
data are genuinely characterized by non-convex features as the transfor-
mation can distort the original information stored in the data. Unlike this
approach, our contribution proposes an alternative perspective, which is
instead based on a direct representation of non-convex fuzzy data. In-
terestingly, the non-convexity problem has already received some atten-
tion in the FST literature (Facchinetti and Pacchiarotti, 2006; Garibaldi and
John, 2003; Garibaldi et al., 2004; Lee, Kim, and Jang, 2008; Reuter, 2008;
Viertl, 1996). However, the development of specific LR-fuzzy numbers
based statistical techniques to analyse such type of data, as far as we know,
has not been proposed yet. To fill this gap, in this article we introduce a
new computational definition for non-convex fuzzy numbers which ex-
tends the traditional definition of LR-fuzzy numbers. Moreover, we also
present a novel regression model for crisp input and non-convex fuzzy
output which generalizes previous approaches based on the least squares
framework for fuzzy linear regression (Celmiņš, 1987; Coppi et al., 2006;
Diamond, 1988; D’Urso, 2003; Kacprzyk and Fedrizzi, 1992).

The reminder of the chapter is structured as follows. The second section is
devoted to describe the concept of non-convex fuzzy numbers whereas
the third section exposes the fuzzy regression model together with its
main properties. To better highlight the importance of non-convexity in
empirical data, the fourth section illustrates five applications of the fuzzy
regression model to some behavioural and socioeconomic data collected
using different procedures (e.g., fuzzy scales of measurement and fuzzy
measurement systems) as well as previously published datasets. Finally,
the fifth section concludes this chapter by providing final comments and
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suggestions about future extensions of this work.

4.2 Non-convex fuzzy numbers: a computational proposal

We briefly recall some basic definitions about fuzzy sets and LR fuzzy
numbers.

4.2.1 Convex fuzzy sets and LR fuzzy numbers

In general, a fuzzy set Ã can be described by its continuous family of
nested subsets (called α-sets):

Ãα = {x ∈ U | µÃ(x) > α} with α ∈ ]0, 1] (4.1)

with U and µÃ being the universal set and the membership function of Ã,
respectively. A convex fuzzy set is a fuzzy set Ã satisfying the following
condition:

∀ a, b, c ∈ Ã0 | a ≤ b ≤ c : µÃ(b) ≥ min[µÃ(a), µÃ(c)] (4.2)

with Ã0 = {x ∈ U | µÃ(x) > 0} being the support of Ã. Similarly, we say
that Ã is convex if its α-sets are all convex sets. The core of a fuzzy set Ã
is the collection Ãg = {x ∈ U | µÃ(x) = maxy∈U µÃ(y)} of all its maximal
points. The height of Ã is defined as hgt(Ã) = max [µÃ(x)]. More precisely,
if hgt(Ã) = 1 (resp. 0 < hgt(Ã) < 1), the fuzzy set Ã is called normal
(resp. subnormal). Notably, if Ã is a normal convex fuzzy set, then for each
α ∈]0, 1[ the corresponding α-set always yields a compact interval with
proper minimum (min) and maximum (max). Moreover, if Ã satisfies the
following three conditions:

c.1 normality

c.2 convexity

c.3 unimodality (single core representation for Ã)

then it is called a LR-fuzzy number, denoted with ã (Dubois et al., 1988;
Hanss, 2005; Viertl, 2011). Finally, if we also consider two monotonic de-
creasing and left-continuous functions (called shape functions) for ã:

L : R+ → [0, 1] and R : R+ → [0, 1]
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with properties:

L/R(υ)



= 0 if υ = 1

= 1 if υ = 0

> 0 if υ < 1

< 1 if υ > 0

∀υ ∈ R+

then the LR fuzzy number ã can be described using the following mem-
bership function:

µã(x) =

L
(
m−x
l

)
if x < m

R
(
x−m
r

)
if x ≥ m

where m, l, r are the core, left and right spreads, obeying l > 0 and
r > 0. For a particular choice of the shape functions, namely L/R(υ) =

max{0, 1 − υ}, one obtains the example represented in Figure 4.1-b (tri-
angular fuzzy number). The geometrical meaning of the parameters m, l,
r are illustrated in the same figure.1 Finally, the fuzzy number ã can be
represented by the triple:

ã = (m, l, r)LR

which conveys the main information about the fuzzy set, namely its pre-
cision (by means of its core or modal value m) and fuzziness (by means of
l and r). We stress that the analytic expressions of L and R together with
m, l and r allow us to exactly represent the fuzzy number ã.
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FIGURE 4.1: (a) convex fuzzy set with its α-intervals or α-sets (dashed lines) (b)
convex LR fuzzy number

1Note that: l = (m − lb) and r = (ub − m) where ub and lb mean the minimum and maximum of the support,
respectively.
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4.2.2 Non-convex fuzzy sets and non-convex fuzzy numbers
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α_core_2 α_core_1 

FIGURE 4.2: A graphical representation of a non-convex fuzzy set

Figure 4.2 shows an example of a fuzzy set characterized by two cores
with normalized heights. Clearly, the fuzzy set depicted in Figure 4.2 is
non-convex as, for a suitable choice of a′, b′, c′ ∈ U , the convexity condition
is not met. Moreover, we can also notice as Ãα3

(or rather, Ãα2
, Ãα4

) can be
derived by taking the union of disjoint compact intervals, whereas Ãα1

is
a closed and compact α-set. Generally speaking, we can say that a fuzzy
set is non-convex if some of its α-sets represent set theoretical unions of at
least two compact disjoint intervals (Viertl, 1996; Viertl, 2011).
We now present a new operative definition of non-convex fuzzy numbers
which is inspired by the work of (Dubois et al., 1988). More specifically, in
this contribution we will limit our attention to a particular but important
type of non-convex fuzzy set, called 2-mode fuzzy number (see Fig. 4.3-a).
A 2-mode fuzzy number is a particular kind of fuzzy set which satisfies
the following three conditions:

c.4 normality (at least one of the points of its support has full membership
value)

c.5 non-convexity

c.6 bimodality (it has no more than two-modes)

About condition (c.5), we restrict the non-convexity property to its sim-
plest representation which corresponds to α-sets obtained by taking the
union of at maximum two disjoint compact intervals. Finally, notice that
conditions (c.5) and (c.6) generalize the standard definition of LR-fuzzy
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numbers.2 We now provide a more formal definition for 2-mode fuzzy
numbers. Let B̃ be a fuzzy set. If B̃ satisfies the conditions (c.4-c.6), then b̃
represents a 2-mode fuzzy number. Consider four monotonic decreasing
and left-continuous functions:

L : R+ → [0, 1] H : R+ → ]0, 1] I : R+ → ]0, 1] R : R+ → [0, 1]

with properties:

L(υ)


= 0 if υ = 1

= t1 if υ = 0

> 0 if υ < 1

< t1 if υ > 0

H(υ)


= t1 if υ = 0

= z if υ = 1

> z if υ > 0

< t1 if υ < 1

with: υ ∈ R+ t1 ∈ ]0, 1] and z < t1

I(υ)


= z if υ = 1

= t2 if υ = 0

> z if υ > 0

< t2 if υ < 1

R(υ)


= 0 if υ = 1

= t2 if υ = 0

> 0 if υ < 1

< t2 if υ > 0

with: υ ∈ R+ t2 ∈ ]0, 1] and z < t2

By using these functions, the membership function of b̃ can be described
in a very general way as follows:

µb̃(x) =



L
(
m1−x
l

)
if x < m1

H
(
x−m1

h

)
if m1 < x < m0

I
(
m2−x
i

)
if m0 < x < m2

R
(
x−m2

r

)
if x > m2

with m1, m2 and m0 being the modal points and the middle point, respec-
tively; l and r are the external left and right spreads (as defined in the pre-
vious section for convex fuzzy numbers); h and i are the internal spreads

2The name 2-mode fuzzy number is based on the intuition that fuzzy numbers can be represented by means of the
convexity/non-convexity condition. Thus, LR-fuzzy numbers can be named 1-mode fuzzy number because their α-sets
are compact and convex sets, whereas k-modes fuzzy numbers are fuzzy numbers which α-sets are the result of the union
of, at maximum, k disjoint components. It is clear that when k > 1, the fuzzy numbers are non-convex fuzzy sets.
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with h = (m0 − m1) and i = (m2 − m0), respectively. The following con-
ditions must be satisfied in order to guarantee that b̃ is a two-mode fuzzy
number:

c.7 m1 < m0 < m2

c.8 l > 0

c.9 r > 0

c.10 t1 < z < t2

Moreover, if L, H , I , R are chosen to be linear functions, namely:

L(υ) = max{0, (1− υ)t1}

H(υ) = max{0, t1 − υ(t1 − z)}

I(υ) = max{0, t2 − υ(t2 − z)}

R(υ) = max{0, (1− υ)t2}
then one obtains the two-mode fuzzy number represented in Figure 4.3-b.
Finally, the fuzzy number b̃ can be represented as follows:

b̃ = {(m0,m1,m2, l, r, h, i); (µm1
, µm0

, µm2
)}LHIR

where µm1
= t1, µm0

= z, µm2
= t2 are the membership values for m1, m0

and m2.
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FIGURE 4.3: (a) a non-convex fuzzy set and (b) a LHIR fuzzy number

Under particular conditions, a convex fuzzy number can be understood as
a degenerated version of a 2-mode fuzzy number. In particular:

1. when conditions (c.12) is not met the 2-mode fuzzy number degen-
erates into a trapezoidal fuzzy number obeying to the following condi-
tions: m1 < m0 < m2, l > 0, r > 0, t1 = z = t2 = 1. Moreover, in
this particular case, the internal shape functions (H and I) assume the
following forms H(υ) = 1 and I(υ) = 1.
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2. when conditions (c.7) and (c.10) are not met the 2-mode fuzzy number
degenerates into a triangular fuzzy number obeying to the following
conditions: m1 = m0 = m2, l > 0, r > 0. In this case, the internal
shape functions H(υ) and I(υ) (and the corresponding components i
and h) do not take part in the model representation.

4.3 A Fuzzy regression model for 2-mode fuzzy numbers:
the crisp-input/fuzzy-output case

The relation between crisp independent variables and fuzzy dependent
variables plays a particular role in the context of socio-behavioural data.
For instance, in cognitive psychology it is common to evaluate the rela-
tionships between crisp physical or biological measures (e.g., stimulus
brightness, reaction times, eye saccadic movements, levels of blood tox-
ins, etc) and more qualitative psychological responses (e.g., perception of
figures, perceived satisfaction, perceived stress, perceived work satisfac-
tion, etc. See: Pashler and Wixted, 2002). The latter variables can be bet-
ter represented using fuzzy variables. Similarly, in socioeconomic stud-
ies, researchers often analyse the relation between crisp (e.g., family in-
come) and fuzzy quantities (e.g., quality of service, quality of teaching,
etc) (Benítez, Martín, and Román, 2007; Biswas, 1995; Chan, Kao, and Wu,
1999; Chang and Yeh, 2002; Lalla, Facchinetti, and Mastroleo, 2005). There-
fore, it seems worthwhile to develop a model which is able to describe
the relations between these different types of variables. Finally, although
some empirical contexts may require different representations (e.g., fuzzy-
input fuzzy-output relations), in this contribution we wanted to introduce
the concept of non-convex data for the most simple case first.
To this end, in this section we propose a least squares fuzzy regression
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model for crisp-input/nonconvex fuzzy-output data based on a generative-
type representation. Unlike more complex models, the generative one pro-
vides a good compromise between model flexibility and simplicity.3 How-
ever, to avoid confusion, we stress that the model proposed in this article
is only able to deal with 2-mode fuzzy numbers characterized by piece-
wise linear membership functions (as those represented in Figure 4.3-b) as
well as triangular and trapezoidal fuzzy numbers.

4.3.1 Model and data analysis

Let Xn,k be a n (cases) × k (variables) matrix representing the set of inde-
pendent variables. Moreover, let

ỸM1
= {m1,m0,m2, l,h, i, r} and ỸM2

= {µm1
,µm0

,µm2
}

be two fuzzy matrices representing the fuzzy dependent variable. In par-
ticular, ỸM1

and ỸM2
denote the data for the horizontal axis and the ver-

tical axis, respectively, in the two dimensional representation of the fuzzy
set. Note that the components of these two structures are n×1 data vectors.
Now, we propose a model representation for ỸM1

and ỸM2
. In particular,

let

Ỹ ∗
M1

=



m∗
0 = Xa

m∗
1 = m∗

0b+ 1r1

l∗ = m∗
1c+ 1r2

m∗
2 = m∗

0e+ 1r3

r∗ = m∗
2d+ 1r4

Ỹ ∗
M2

=


µ∗
m0

= Xα

µ∗
m1

= µ∗
m0
β + 1ξ1

µ∗
m2

= µ∗
m0
γ + 1ξ2

(4.3)

be the two model components, where X is a n × (k + 1) predictor matrix
containing in addition also a vector 1 of all ones for the intercept, a and α
are (k + 1) × 1 vectors of regression coefficients, and b, c, e, d, r1, r2, r3, r4,
β, γ, ξ1 and ξ2 are scalars. The model adopts a generative approach in which
the first component ỸM1

represents a hierarchical structure such that the

3In the following section we adopt the term estimation to indicate the interpolation procedure without assuming any
inferential meaning (that is to say this approach is based on a descriptive non-inferential rationale).
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point m∗
0 generates m∗

1 and m∗
2 and, subsequently, m∗

1 and m∗
2 generate

their external spreads l∗ and r∗. In a similar way, for the second component
ỸM2

, the membership value µ∗
m0

generates the other two points µ∗
m1

and
µ∗
m2

. Therefore, the model is able to take into account possible relations
between m∗

0 and the modes m∗
1 and m∗

2 as well as the relationships be-
tween these points and the spreads. By contrast, the components h∗ and
i∗ can subsequently be derived in a next step by using the already esti-
mated components. Note that both components work in parallel and in
an independent fashion. In particular, we do not assume nested or hierar-
chical relations between the two components. This model representation
is in line with a semi-confirmatory approach which assumes that our data
are consistent with a generative hypothesis representing possible relations
among the modes of the spreads. More precisely, the model captures the
dynamic of the spreads as a function of the magnitude of the (estimated)
modes. In other words, in some contexts it can be natural to think that the
spread (vagueness) in the measure of an empirical phenomenon is to some
extent proportional to its intensity (see for example D’Urso and Gastaldi,
2000). Therefore, by considering this assumption, it seems worthwhile
to set a descriptive approach based on the minimization of the Euclidean
distance between the observed data and the generative model.

4.3.2 Parameters estimation: an unconstrained version

In what follows we separately consider the two components of the model.

Parameters estimation forM1

According to the least square criterion the model parameters a, b, c, e, d, r1,
r2, r3, r4 are obtained by minimizing the following distance measure, tradi-
tionally used in the fuzzy least squares framework (D’Urso, 2003; D’Urso
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and Gastaldi, 2000):

D2 = ‖m0 −m∗
0‖2 + ‖m1 −m∗

1‖2 + ‖m2 −m∗
2‖2 + ‖l− l∗‖2 + ‖r − r∗‖2

≡ ‖m0 −Xa‖2 + ‖m1 −Xab− 1r1‖2 + ‖m2 −Xae− 1r3‖2+

+ ‖l−Xabc− 1r1c− 1r2‖2 + ‖r −Xaed− 1r3d− 1r4‖2

(4.4)

In order to solve the minimization problem represented in Eq. 4.4 we
equate to zero its partial derivatives (first order conditions), obtaining so
the following solutions (by assumingXTX as non-singular):

â =
1

k
· (XTX)−1 XT [m0 + (m1 − 1r1)b+ (m2 − 1r3)e+

+ (l− 1r1c− 1r2)bc+ (r − 1r3d− 1r4)de];
(4.5)

with: k = b2 + e2 + b2c2 + d2e2

b̂ =
1

c2
(aTXTXa)−1 aTXT [(m1 − 1r1) + (l− 1r1c− 1r2)c]; (4.6)

ê =
1

d2
(aTXTXa)−1 aTXT [(m2 − 1r3) + (r − 1r3d− 1r4)d]; (4.7)

ĉ =
1

b
(aTXTXa)−1 aTXT (l− 1r1c− 1r2); (4.8)

d̂ =
1

e
(aTXTXa)−1 aTXT (r − 1r3e− 1r4); (4.9)

r̂1 =
1

nc2
1T [(m1 −Xab) + (l−Xabc− 1r2)c]; (4.10)

r̂3 =
1

nd2
1T [(m2 −Xae) + (r −Xaed− 1r4)d]; (4.11)

r̂2 =
1

n
1T (l−Xabc− 1r1c); (4.12)

r̂4 =
1

n
1T (r −Xaed− 1r3d); (4.13)
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Finally, the above set of equations can be used to compute the best param-
eter estimates for our model (e.g. using an iterative algorithm).

Parameters estimation forM2

Like for the first component of the model, also for Ỹ ∗
M2

the model parame-
ters α, β, γ, ξ1, ξ2 are obtained by minimizing the following distance mea-
sure:

W2 = ‖µm0
− µ∗

m0
‖2 + ‖µm1

− µ∗
m1
‖2 + ‖µm2

− µ∗
m2
‖2

≡ ‖µm0
−Xα‖2 + ‖µm1

−Xαβ + 1ξ1‖2+

+ ‖µm2
−Xαγ + 1ξ2‖2

(4.14)

By equating to zero the first order conditions for Eq. 4.14 we obtain the
following solutions (by assumingXTX as non-singular):

α̂ =
1

(β2 + γ2)
(XTX)−1XT [µm0

+

+ (µm1
− 1ξ1)β + (µm2

− 1ξ2)γ];

(4.15)

β̂ = (αTXTXα)−1 αTXT (µm1
− 1ξ1); (4.16)

γ̂ = (αTXTXα)−1 αTXT (µm2
− 1ξ2); (4.17)

ξ̂1 =
1

n
1T (Xαβ − µm1

); (4.18)

ξ̂2 =
1

n
1T (Xαγ − µm2

); (4.19)

4.3.3 Properties of the model

In this section we only report the most important properties of the model
(because they are based on the known principles of least squares approach
we omit the proofs from the text).
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Proposition 1. Sums of residuals are zero:

1T (m0 −m∗
0) = 0 1T (m2 −m∗

2) = 0 1T (m1 −m∗
1) = 0

1T (l− l∗) = 0 1T (r − r∗) = 0

Proposition 2. Residuals and estimated components are uncorrelated:

m∗
0
T (m1 −m∗

1) = 0 m∗
0
T (m2 −m∗

2) = 0 m∗
0
T (l− l∗) = 0

m∗
0
T (r − r∗) = 0 m∗

1
T (m2 −m∗

2) = 0 m∗
1
T (l− l∗) = 0

m∗
1
T (r − r∗) = 0 m∗

2
T (l− l∗) = 0 m∗

2
T (r − r∗) = 0

Proposition 3. Estimations and proper residuals are uncorrelated:

m∗
0
T (m0 −m∗

0) = 0 m∗
1
T (m1 −m∗

1) = 0

m∗
2
T (m2 −m∗

2) = 0 l∗T (l− l∗) = 0 r∗T (r − r∗) = 0

Proposition 4. Sums of residuals are zero:

1T (µm0
− µ∗

m0
) = 0 1T (µm1

− µ∗
m1

) = 0 1T (µm2
− µ∗

m2
) = 0

Proposition 5. Residuals and estimated components are uncorrelated:

µ∗
m0

T (µm1
− µ∗

m1
) = 0 µ∗

m0

T (µm2
− µ∗

m2
) = 0

µ∗
m1

T (µm2
− µ∗

m2
) = 0

Proposition 6. Estimations and proper residuals are uncorrelated:

µ∗
m0

T (µm0
− µ∗

m0
) = 0 µ∗

m1

T (µm1
− µ∗

m1
) = 0

µ∗
m2

T (µm2
− µ∗

m2
) = 0

4.3.4 Goodness of fit indices for the model

In order to evaluate the goodness of fit for our model, we considered the
standard R2 and R2

adj (adjusted R2). However, because we are working
with the hypothesis of independence between Ỹ ∗

M1
and Ỹ ∗

M2
we separately

considered the performances measured by the two fit indices. For the first
model Ỹ ∗

M1
, the total sum of squares is:

TSS = ‖m0 − 1m0‖2 + ‖m1 − 1m1‖2+

+ ‖m2 − 1m2‖2 + ‖l− 1l‖2 + ‖r − 1r‖2
(4.20)
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whereas the explained sum of squares for the regression model is:

ESS = ‖m∗
0 − 1m0‖2 + ‖m∗

1 − 1m1‖2+

+ ‖m∗
2 − 1m2‖2 + ‖l∗ − 1l‖2 + ‖r∗ − 1r‖2

(4.21)

finally, the residuals sum of squares is:

RSS = ‖m0 −m∗
0‖2 + ‖m1 −m∗

1‖2 + ‖m2 −m∗
2‖2+

+ ‖l− l∗‖2 + ‖r − r∗‖2
(4.22)

Finally the following identity holds from the earlier definitions:

TSS = ESS + RSS

Its proof is trivial and therefore we omit it in this article. In other words,
the above statement means that the total sum of squares is equal to the
sum of the explained sum of squares and the residual sum of squares for
each component of the model. In this context, the following index can be
written:

R2 =
ESS
TSS

(4.23)

thus providing an interpretation which in line with the traditional regres-
sion approach for crisp data. The adjusted version for the R2 is given as
follows:

R2
adj = 1− (1−R2) ·

(
n− 1

n− q

)
with: q = (k + 1) + 8 (4.24)

where q indicates the number of estimated parameters for the first compo-
nent.

Similarly, for the second component Ỹ ∗
M2

R2 is written as in the previous
case, where its components are the following:

TSS = ‖µm0
− 1µm0

‖2 + ‖µm1
− 1µm1

‖2+

+ ‖µm2
− 1µm2

‖2
(4.25)

ESS = ‖µ∗
m0
− 1µm0

‖2 + ‖µ∗
m1
− 1µm1

‖2

+ ‖µ∗
m2
− 1µm2

‖2
(4.26)
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RSS = ‖µm0
− µ∗

m0
‖2 + ‖µm1

− µ∗
m1
‖2+

+ ‖µm2
− µ∗

m2
‖2

(4.27)

the adjusted version of the R2 index is:

R2
adj = 1− (1−R2) ·

(
n− 1

n− p

)
with: p = (k + 1) + 4 (4.28)

where p is the number of estimated parameters for the second component.
Note that, if we run an analysis on a small dataset with very few observa-
tions, then one should adjust theR2 index only for a factor q/p = n−(k+1).

4.3.5 Some remarks

About the model complexity issue.

It is important to note that the generative model requires 2(k + 1) + 12

parameters ([k + 1] + 8 for Ỹ ∗
M1

and [k + 1] + 4 for Ỹ ∗
M2

), whereas the cor-
responding non-generative model needs a total of 12 · (k + 1) parame-
ters. Therefore, the generative-model is clearly more parsimonious than
the non-generative one.

About the model representation issue.

We recall that our generative model is in line with a semi-confirmatory ap-
proach which assumes full consistency between data and the generative
hypothesis. However, in some applicative contexts this hypothesis may
not be sustainable and, therefore, an alternative approach based on direct
estimation would instead be preferred (D’Urso, 2003). In particular, this
non-generative representation might be suitable when generative hypoth-
esis cannot be properly inferred on the basis of empirical data.

About the algorithmic issue.

In fitting the unconstrained fuzzy regression model, we adopted an itera-
tive procedure based on standard stopping criteria and random initializa-
tion. However, one possible limitation of the unconstrained version of the
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algorithm is that, in some circumstances, it might not yield feasible solu-
tions. In particular, if the fuzzy regression model is fitted to empirical data
which are largely corrupted by noise, the best parameters estimates might
incur in violations of the natural constraints of the 2-mode fuzzy numbers
(namely m∗

1 < m∗
0 < m∗

2, l∗ > 0n, r∗ > 0n and µ∗
m1

< µ∗
m0

< µ∗
m2

).
In these situations, we would prefer a constrained version of the algorithm
based on non-linear constrained programming optimization techniques
(Gill, Murray, and Wright, 1981) or other optimization rationales like, for
example, those at the base of the work of Lima Neto and De Carvalho
(2010).

4.4 Applications

In this section we describe five applications to illustrate the main features
of our fuzzy regression model. All the algorithms developed for these
contributions are available upon request to the authors.

4.4.1 Example 1: Response Times and Moral Dilemma

In this first example we studied the relation between response time (crisp)
and moral judgement (fuzzy). In cognitive decision making (Greene and
Haidt, 2002; Haidt, 2001; Trevino, 1986), moral judgements and dilemmas
are relevant phenomena characterized by high levels of uncertainty in in-
dividuals’ responses. In this application, we used a moral dilemma based
on the well-known trolley scenario (McGuire et al., 2009; Nichols and Mal-
lon, 2006; Rai and Holyoak, 2010):

A trolley is running out of control down a track. In its path are five people who have
been tied to the track by a madman. Fortunately, you can flip a switch that will lead
the trolley down a different track to safety. Unfortunately, there is a single person tied
to that track. Do you agree to flip the switch?

In general, individuals react to the dilemma by using their personal moral
beliefs. However, some individuals in solving the moral dilemma may
hesitate in providing the final response. The trolley dilemma was ad-
ministered to a group of students from the University of Trento (Italy)
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and the responses were collected using a computerized interface based
on the Mouse Tracking methodology (Freeman and Ambady, 2010; John-
son et al., 2012). In particular, participants were told that a pseudo-circular
scale with five response levels (strongly disagree, disagree, neither, agree,
strongly agree) would be presented on the screen, and that they were
asked to choose which of these responses was the most appropriate for
the presented dilemma. After participants clicked a start button, a win-
dow with the moral dilemma appeared at the top of the screen. Next the
scale with the five levels appeared while the cursor was allocated to the
center of the screen. Participants give their responses by mouse-clicking
the chosen level of the scale. Meanwhile, we recorded the streaming x-
y coordinates of the computer mouse (sampling rate of approximately 70
Hz). Figure 4.4 shows two empirical patterns of mouse movements with
the associated contour density plots. In particular, figure 4.4-a represents
an empirical pattern with a low uncertainty/fuzziness, by contrast figure
4.4-b shows a pattern with a higher level of uncertainty. Figure 4.5 shows
the histograms and the associated fuzzy sets constructed using the radial
positions of the x-y mouse movement coordinates of the empirical pat-
terns. In particular, the fuzzy sets were obtained by an heuristic optimiza-
tion procedure that allow to convert histograms into fuzzy sets (Medasani,
Kim, and Krishnapuram, 1998; Nieradka and Butkiewicz, 2007). Table 4.1
shows the empirical data which were used for the regression analysis.
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FIGURE 4.4: Mouse Tracker: empirical patterns of mouse movements (black circles)
and their density (black contour lines). Note that the two patterns are different while
sharing a same finale response (1 = strongly disagree). The numbers encode the five
levels of the scale: 1 = strongly disagree, 2 = disagree, 3 = neither, 4 = agree, 5 =
strongly agree).
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FIGURE 4.5: Mouse Tracker: histograms of the mouse movements represented in
figure 4.4 and the related fuzzy sets (in dotted red line). Note that the histograms
were rescaled in order to provide a better comparison with the fuzzy sets.

TABLE 4.1: Example 1: Original Dataset

x m1 m0 m2 l r µm1 µm0 µm2

1.18 0.70 0.97 1.13 0.25 0.22 1.00 0.80 1.00
2.11 0.70 0.95 1.13 0.27 0.20 1.00 0.80 1.00
3.10 0.73 0.98 1.18 0.33 0.17 1.00 0.75 1.00
4.10 0.84 1.73 2.38 0.34 0.27 1.00 0.65 1.00
5.27 0.82 1.73 2.13 0.24 0.27 1.00 0.65 0.88
6.32 0.80 1.65 2.64 0.28 0.21 1.00 0.70 0.84
7.51 0.83 1.73 2.38 0.25 0.17 0.70 0.60 1.00
8.45 0.70 1.85 2.25 0.25 0.28 0.85 0.80 1.00
9.42 0.83 2.10 3.64 0.33 0.27 1.00 0.70 1.00

11.03 0.80 2.23 3.64 0.25 0.16 0.78 0.60 1.00
12.01 4.59 5.37 6.02 0.32 0.28 0.77 0.40 1.00

For the first component of the model, the regression algorithm converged
after 113 iterations, whereas for the second component it required 132 iter-
ations. The estimated values and parameters are shown in tables 4.2 and
4.3. As table 4.2 and figure 4.6 show, all the estimated components satisfy
the conditions (c.4-c.10) characterizing the 2-mode fuzzy numbers. The
performance of the model was good (R2 = 0.68 for the first component;
R2 = 0.45 for the second component).
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FIGURE 4.6: Example 1: Scatterplot with empirical (solid line) and estimated fuzzy
numbers (dashed line)

The results show a slight increasing relation between response times and
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TABLE 4.2: Example 1: Estimated values

m∗
1 m∗

0 m∗
2 l∗ r∗ µ∗

m1
µ∗
m0

µ∗
m2

0.36 0.75 0.99 0.25 0.22 1.00 0.77 0.94
0.54 1.01 1.34 0.27 0.20 1.00 0.76 0.97
0.59 1.09 1.44 0.33 0.17 1.00 0.76 0.97
0.79 1.37 1.81 0.34 0.27 1.00 0.76 1.00
0.92 1.56 2.06 0.24 0.27 0.98 0.74 1.00
1.15 1.90 2.51 0.28 0.21 0.95 0.71 1.00
1.38 2.24 2.96 0.25 0.17 0.92 0.68 1.00
1.55 2.49 3.29 0.25 0.28 0.90 0.65 1.00
1.88 2.96 3.93 0.33 0.27 0.86 0.61 1.00
2.03 3.17 4.20 0.25 0.16 0.84 0.59 1.00
2.43 3.76 4.98 0.32 0.28 0.79 0.53 1.00

TABLE 4.3: Example 1: Parameters for the model

â = 0.25 -0.26 α̂ = -0.34 0.84
b̂ = 1.00 r̂1 = -0.07 β̂ = -0.10
ĉ = 1.76 r̂2 = 0.50 γ̂ = 1.04
ê = 1.35 r̂3 = 0.27 ξ1 = 0.27
d̂ = 1.31 r̂4 = 0.08 ξ2 = 1.03
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FIGURE 4.7: Example 1: Fuzzy regression plot

final responses (â = 0.25). By contrast, we observed a strong increas-
ing relation between the final responses and fuzziness (ĉ = 1.76 and d̂ =

1.31). In particular, the slower the response time, the greater the uncer-
tainty/fuzziness of the final response.

4.4.2 Example 2: Private Consumption and Perceived Satisfaction

In this second example we studied the relation between private consump-
tion (crisp) and perceived life satisfaction (fuzzy). In this application,
data were collected by means of a computerized questionnaire based on
fuzzy rating scales. This procedure is widely used in human ratings or
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human evaluations studies (Gil and González-Rodríguez, 2012; Hesketh
et al., 1989; Hesketh, Pryor, and Hesketh, 1988; Lalla, Facchinetti, and
Mastroleo, 2005). In particular, the fuzzy scale is based on a pseudo-
continuous scale representing qualitative ordinal values (see figure 4.8).4

By using a graphical interface, the respondent moves the mouse cursor to-
ward the preferred level. In this context, two general scenarios can arise:
the respondent chooses a single level of the scale (Figure 4.9-a) or s(he)
selects an intermediate position which lies between the two levels (Figure
4.9-b).

Stongly 

disagree
Disagree Neither Agree

Stongly 

agree

FIGURE 4.8: Fuzzy rating scale with a pseudo-continuous line and a movable cursor
(in solid line) and a hidden fuzzy variable (in dotted line) representing the levels of
the scale.
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Stongly 

agree

(a)

Stongly 

disagree
Disagree Neither

Stongly 

agree

(b)

Agree

FIGURE 4.9: Fuzzy rating scale: (a) convex-fuzzy set and (b) non-convex fuzzy set,
associated to the respondent’s responses. In grey dotted lines are represented the
levels of the scale while in red dotted lines the activated final levels.

The scale was administered to a group of students from the University of
Trento (Italy). For descriptive purposes, in this application we selected
only a small group of units characterized by non-convex features (see Ta-
ble 5.1).
For the first component of the model, the algorithm converged after 138

4The fuzzy sets were obtained from the histograms of the empirical responses by maximizing the entropy of the
data (Avci and Avci, 2009; Cheng and Chen, 1997; Medasani, Kim, and Krishnapuram, 1998; Nieradka and Butkiewicz,
2007).
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TABLE 4.4: Example 2: Original Dataset

x m1 m0 m2 l r µm1 µm0 µm2

1.00 10.00 16.00 18.00 2.00 1.00 1.00 0.05 0.60
2.00 10.00 13.00 15.00 2.00 1.00 1.00 0.11 0.20
3.00 7.00 9.00 13.00 1.00 1.00 0.20 0.16 1.00
4.00 5.00 8.00 10.00 2.00 1.00 0.40 0.19 1.00
5.00 5.00 9.00 11.00 2.00 1.00 0.40 0.16 1.00
6.00 6.00 7.00 9.00 2.00 1.00 0.40 0.18 1.00
7.00 1.00 5.00 10.00 1.00 1.00 0.31 0.26 1.00
8.00 3.00 4.00 8.00 1.00 1.00 0.52 0.47 1.00
9.00 2.00 3.00 5.00 1.00 4.00 1.00 0.50 1.00
10.00 1.00 3.00 5.00 1.00 4.00 0.75 0.69 1.00

iterations while for the second component of the model, the algorithm re-
quired some additional iterations (202) to converge. The estimated values
and parameters are shown in tables 4.5 and 4.6, respectively.

TABLE 4.5: Example 2: Estimated values

m∗
1 m∗

0 m∗
2 l∗ r∗ µ∗

m1
µ∗
m0

µ∗
m2

9.58 13.78 16.24 2.02 0.29 0.99 0.02 1.00
8.56 12.43 14.94 1.90 0.58 0.90 0.09 1.00
7.55 11.08 13.64 1.79 0.87 0.83 0.16 1.00
6.53 9.73 12.35 1.67 1.16 0.76 0.23 1.00
5.51 8.38 11.05 1.56 1.45 0.71 0.29 1.00
4.49 7.02 9.75 1.44 1.75 0.66 0.34 1.00
3.47 5.67 8.45 1.33 2.04 0.61 0.38 1.00
2.45 4.32 7.16 1.21 2.33 0.57 0.42 1.00
1.44 2.97 5.86 1.10 2.62 0.54 0.46 1.00
0.42 1.62 4.56 0.98 2.91 0.51 0.49 1.00

TABLE 4.6: Example 2: Parameters for the model

â = -1.35 15.13 α̂ = 0.62 -0.06
b̂ = 0.75 r̂1 = -0.80 β̂ = -0.09
ĉ = 0.11 r̂2 = 0.93 γ̂ = 0.90
ê = 0.96 r̂3 = 3.01 ξ1 = 0.62
d̂ = -0.22 r̂4 = 3.93 ξ2 = 0.63

Notice that, the estimated components described in table 4.5 and repre-
sented in figure 4.10 satisfy the conditions (c.4-c.10) of the 2-mode fuzzy
numbers. The performances of the model was very good for the first
component of the model (R2 = 0.88) and discrete for the second one
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(R2 = 0.40). Figures 4.10 and 4.11 show the results of the fuzzy regres-
sion model.
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FIGURE 4.10: Example 2: Scatterplot with empirical (solid line) and estimated fuzzy
numbers (dashed line)
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FIGURE 4.11: Example 2: Fuzzy regression plot

We observed a negative relation between perceived satisfaction and pri-
vate consumption (â = −1.35). Moreover, there was a generative relation
between m∗

0 and m∗
1 (b̂ = 0.75) as well as between m∗

0 and m∗
2 (ê = 0.96).

Left spread had a weak decreasing relation with m∗
1 (ĉ = 0.11) whereas

right spread showed an increasing relation with m∗
2 (d̂ = −0.22). Finally,

the total spread of the perceived satisfaction increased as a function of
increasing levels of private consumption. In summary, perceived satisfac-
tion seemed to be inversely related to private consumptions.

4.4.3 Example 3: Unemployment and Employment rates

In this example we tested our model on a dataset with two crisp inde-
pendent variables (Unemployment rate for 2010 and Employment rate for
2011) and one fuzzy dependent variable (Unemployment rate for 2011).
Data were collected by OECD (OECD, 2011; OECD, 2013) and referred to a
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subset of European countries (see Table 4.7).5 In order to test our model in
the case of multivariate analysis, the three crisp variables were re-scaled to
a common scale and the dependent variable was also fuzzified with a suit-
able fuzzification procedure based on traditional Mamdani fuzzy system.
The fuzzification routine yielded the following sets for the fuzzy depen-
dent variable: very-low (1,2,5), low (2,6,10), middle (6,11,12), high (11,12,15),
very-high (12,15,16).

TABLE 4.7: Example 3: Original Dataset

x1 x2 m1 m0 m2 l r µm1 µm0 µm2

B 5.30 5.82 2.00 3.00 6.00 1.00 3.00 0.67 0.44 1.00
C 4.36 8.71 2.00 3.00 6.00 1.00 3.00 0.67 0.44 1.00
E 13.14 8.28 6.00 7.00 11.00 4.00 0.00 0.42 0.31 1.00
D 4.18 13.90 2.00 5.00 6.00 1.00 3.00 1.00 0.28 0.37
G 9.17 1.00 12.00 14.00 15.00 1.00 0.00 1.00 0.33 0.50
H 7.90 1.20 6.00 10.00 11.00 4.00 0.00 1.00 0.21 0.27
P 7.72 7.57 6.00 7.00 11.00 4.00 0.00 0.42 0.31 1.00
K 10.92 3.98 6.00 7.00 11.00 4.00 0.00 0.42 0.31 1.00
S 5.36 15.07 2.00 3.00 6.00 1.00 3.00 0.67 0.44 1.00

For the first component of the model, the algorithm converged after 331 it-
erations whereas for the second component the algorithm converged after
242 iterations. The estimated values and parameters are shown in tables
4.8 and 5.2, respectively.

TABLE 4.8: Example 3: Estimated values

m∗
1 m∗

0 m∗
2 l∗ r∗ µ∗

m1
µ∗
m0

µ∗
m2

B 4.36 6.01 8.66 2.14 1.61 1.00 0.47 0.81
C 2.95 4.55 7.14 1.61 2.35 1.00 0.48 0.86
E 7.08 8.83 11.58 3.15 0.19 0.39 0.23 1.00
D 1.09 2.63 5.15 0.92 3.32 0.87 0.43 1.00
G 7.77 9.53 12.31 3.40 0.00 1.00 0.48 0.94
H 7.12 8.86 11.62 3.16 0.17 1.00 0.48 0.83
P 4.86 6.53 9.19 2.32 1.35 0.84 0.42 1.00
K 7.54 9.30 12.07 3.32 0.0 0.72 0.37 1.00
S 1.23 2.77 5.29 0.97 3.25 0.70 0.36 1.00

5We used the following abbreviations, B = Belgium, C = Czech Republic, E = Estonia, D = Germany, G = Greece, H
= Hungary, P = Portugal, K = Slovak Republic, S = Sweden.
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TABLE 4.9: Example 3: Parameters for the model

â = 0.47 -0.35 5.57 α̂ = 0.23 -0.14 0.54
b̂ = 0.97 r̂1 = -1.48 β̂ = 2.72
ĉ = 0.37 r̂2 = 0.52 γ̂ = -2.23
ê = 1.04 r̂3 = 2.42 ξ1 = -0.24
d̂ = -0.49 r̂4 = 5.83 ξ2 = 1.50

As in the previous example, the estimated components described in ta-
ble 4.8 satisfy the conditions (c.4-c.10) underlying the 2-mode fuzzy num-
bers. The performance of the model was good for the first component
(R2 = 0.64) and modest for the second component (R2 = 0.21). As ex-
pected, the unemployment rate of the previous year (2010) was a good
predictor for the unemployment rate of the subsequent year (2011), with
âx1 = 0.47. Moreover,m∗

1 andm∗
2 had a good generative relation withm∗

0

(b̂ = 0.97 and ê = 1.04). A similar pattern was observed for the left and
right spreads (ĉ = 0.37 and d̂ = −0.49). In sum, unemployment seemed
to increase as a function of decreasing levels of spread, that is to say, there
was a very little uncertainty in classifying some countries into the high
unemployment country cluster.

4.4.4 Example 4: Degenerate non-convex fuzzy data - triangular case

In this example we tested our model with degenerate non-convex fuzzy
data based on standard triangular shapes. The data referred to the ex-
ample studied by (Bisserier, Boukezzoula, and Galichet, 2010) and are de-
scribed in Table 4.10. Note that in this example the second model is a
trivial one and, therefore, we will not discuss it here.
The performance of the algorithm was excellent and required 144 itera-
tions to converge. Estimated data and parameters are shown in tables 4.11
and 4.12, respectively.
Figures 4.12 and 4.13 show the graphical results of this application.
As expected, the results showed that our model correctly estimated tri-
angular fuzzy numbers. In particular, note as b̂ = ê = 1, r̂1 = r̂3 = 0,
h∗ = i∗ = 0n and how left l∗ and right r∗ spreads directly refer tom∗

0.
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TABLE 4.10: Example 4: Original Dataset

x m1 m0 m2 l r

0.10 2.25 2.25 2.25 0.75 0.75
0.20 2.88 2.88 2.88 0.88 0.88
0.30 2.50 2.50 2.50 1.00 1.00
0.40 4.25 4.25 4.25 1.75 1.75
0.50 4.00 4.00 4.00 1.50 1.50
0.60 5.25 5.25 5.25 1.25 1.25
0.70 7.50 7.50 7.50 2.00 2.00
0.80 8.50 8.50 8.50 1.50 1.50

TABLE 4.11: Example 4: Estimated values

m∗
1 m∗

0 m∗
2 l∗ r∗

1.52 1.52 1.52 0.86 0.86
2.41 2.41 2.41 0.99 0.99
3.30 3.30 3.30 1.13 1.13
4.20 4.20 4.20 1.26 1.26
5.09 5.09 5.09 1.40 1.40
5.98 5.98 5.98 1.53 1.53
6.87 6.87 6.87 1.67 1.67
7.76 7.76 7.76 1.80 1.80

TABLE 4.12: Example 4: Parameters for the model

â = 0.89 0.63
b̂ = 1.00 r̂1 = 0.00
ĉ = 0.15 r̂2 = 0.62
ê = 1.00 r̂3 = 0.00
d̂ = 0.15 r̂4 = 0.62
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FIGURE 4.12: Example 4: Scatterplot with empirical (solid line) and estimated fuzzy
numbers (dashed line)

4.4.5 Example 5: Degenerate non-convex fuzzy data - trapezoidal case

In this last application we tested our model on convex trapezoidal data
formerly published in D’Urso (2003). For descriptive purposes, in this
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FIGURE 4.13: Example 4: Fuzzy regression plot

example we selected only two variables: the cost/km ratio index (as a
crisp independent variable) and expert decision rating (as fuzzy depen-
dent variable). Moreover, in order to show the performance of the fuzzy
regression model, we selected 12 cases with clear trapezoidal shapes from
the original dataset (Table 4.13).

TABLE 4.13: Example 5: Original Dataset

x m1 m0 m2 l r

0.30 7.00 7.50 8.00 1.00 1.00
0.36 4.00 4.50 5.00 1.00 1.00
0.37 4.00 4.50 5.00 1.00 1.00
0.41 6.00 6.50 7.00 1.00 1.00
0.49 6.00 6.50 7.00 1.00 1.00
0.50 4.00 4.50 5.00 1.00 1.00
0.52 6.00 6.50 7.00 1.00 1.00
0.62 7.00 7.50 8.00 1.00 1.00
0.65 7.00 7.50 8.00 1.00 1.00
0.84 7.00 7.50 8.00 1.00 1.00
0.88 7.00 7.50 8.00 1.00 1.00
1.01 8.00 8.50 10.00 1.00 0.00

The resulting dataset and parameters are described in Tables 4.14 and 4.15.
Figures 4.14 and 4.15 show the graphical results.

4.5 Conclusion and further perspectives

In this chapter we discussed the concept of non-convex fuzzy numbers as
a possible extension of convex-fuzzy numbers. In what follows we briefly
list some relevant aspects of our novel proposal.
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TABLE 4.14: Example 5: Estimated values

m∗
1 m∗

0 m∗
2 l∗ r∗

4.97 5.39 5.84 1.00 1.13
5.21 5.66 6.12 1.00 1.08
5.25 5.70 6.17 1.00 1.08
5.41 5.88 6.36 1.00 1.04
5.73 6.23 6.74 1.00 0.98
5.77 6.28 6.79 1.00 0.98
5.85 6.36 6.89 1.00 0.96
6.25 6.81 7.36 1.00 0.89
6.37 6.94 7.50 1.00 0.86
7.13 7.77 8.41 1.00 0.72
7.29 7.95 8.60 1.00 0.69
7.80 8.52 9.21 1.00 0.59

TABLE 4.15: Example 5: Parameters for the model

â = 4.40 4.07
b̂ = 0.90 r̂1 = 0.08
ĉ = 0.00 r̂2 = 1.00
ê = 1.08 r̂3 = 0.02
d̂ = -0.16 r̂4 = 2.06
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FIGURE 4.14: Example 5: Scatterplot with empirical (solid line) and estimated fuzzy
numbers (dashed line)
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FIGURE 4.15: Example 5: Fuzzy regression plot
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Among the positive aspects, we stress how the fuzzy regression model
described in this contribution allows to i) generalize some known fuzzy
regression models based on standard convex fuzzy data, ii) provide a good
performance with non-convex data as well as convex (triangular as well
as trapezoidal) data.
However, our model can potentially suffer from some limitations. For
example, in some empirical phenomena the generative representation as-
sumption and the corresponding independence assumption between the
components cannot be valid. In particular, the unconstrained algorithm
could estimate fuzzy numbers which violate their normative representa-
tion.
Various possible extensions of our proposal to represent non-convex fuzzy
numbers could be considered, both from the algorithmic and the model-
ing perspectives. For example, we could think of a new a fuzzy regression
model for non-convex data based on a two-step hierarchical estimation
procedure in which the components are estimated in a nested fashion us-
ing a full global model. Moreover, the adoption of a constrained approach
for the estimation procedure (e.g., non-linear constrained optimization or
other approaches, such as Generalized Maximum Entropy methods of es-
timation (Ciavolino and Dahlgaard, 2009; Golan and Judge, 1996)) could
always guarantee the consistency between the parameters estimated and
the corresponding normative representations for non-convex fuzzy num-
bers. A future venue of research, would also consist in the generalization
of the proposed approach to Fuzzy Random Variables (FRV) (Colubi et
al., 2001; Gil, López-Díaz, and Ralescu, 2006; Viertl, 2011) for non-convex
data. This would extend our proposal beyond the descriptive approach
presented in this contribution.
Finally, it should not be difficult to extend our approach to consider i) the
development of fuzzy-input fuzzy-output and fuzzy-input crisp-output
regression models for non-convex data and ii) the extension of the regres-
sion model and its estimation procedure to cases where data are described
by means of 2-mode fuzzy numbers beyond the ones characterized by
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piecewise linear membership functions (e.g., gaussian 2-mode fuzzy num-
bers).
In sum, non-convexity seems to be an important feature in many empirical
phenomena and in order to manage this kind of information, the develop-
ment of suitable statistical approaches could be an important step forward
for sciences devoted to manage with fuzziness and uncertainty.





Chapter 5

A dimension reduction technique for
non-convex fuzzy data

The content of the chapter has to appear as: Calcagnì, A., Lombardi, L., & Pascali, E.
(2014). A dimension reduction technique for two-mode non-convex fuzzy data. Soft
Computing, 1-14, In Press

5.1 Introduction

In many research fields such as, for example, behavioural and social sci-
ences, epidemiology, bioinformatics, engineering, researchers often have
to deal with high dimensional datasets which are usually represented by
n (units) × m (variables) matrices. Country statistical profiles, socio eco-
nomic tables, chemical databases, survival tables, and self-report ques-
tionnaires, are all examples of this type of data structures (Eriksson, 2006).
In such contexts, it may be useful to reduce the dimensionality, complex-
ity, of these large datasets. This may happen, for instance, when a re-
searcher wants to enhance the efficiency and accuracy of a data analy-
sis, or when s(he) wants to extract the most relevant information from
the available data. In all these cases, several dimension reduction techniques
such as, for instance, Principal Component Analysis, Independent Com-
ponent Analysis, Multidimensional Scaling, Cluster Analysis, and Latent
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Semantic Analysis, are available to perform data analysis on large struc-
tures (Hastie, Tibshirani, and Friedman, 2001). Among these options, Prin-
cipal Component Analysis (PCA) is a well-known and widely used unsu-
pervised variables transformation technique for linear dimensionality re-
duction. Its aim is to summarize a n × m data matrix into a new n × p

reduced model matrix (with p � m) which reconstructs the information
contained in the original data (Abdi and Williams, 2010). Usually, PCA can
be performed using different mathematical procedures such as, for exam-
ple, eigenvalues decomposition, singular values decomposition, low-rank
approximations, and component analysis.
PCA has been mainly applied to standard crisp data. However, some re-
searchers have extended the PCA framework also to more complex data
(e.g., interval, symbolic or fuzzy) to better model variables with vague and
imprecise information (Lauro and Palumbo, 2000; Douzal-Chouakria, Bil-
lard, and Diday, 2011; Taheri, 2003; Viertl, 2011). A natural way to model
imprecision and vagueness in empirical data is by means of the so-called
fuzzy sets (Zimmermann, 2001).
Conventionally, fuzzy sets have been described by LR-type representation
(Dubois et al., 1988) which is primarily used for modelling convex-shaped
fuzzy objects. However, in some empirical contexts such as, for exam-
ple, human decision making and ratings, convex representations might
not be capable to capture more complex structures in the data. Moreover,
non-convexity seems to arise as a natural property in many applications
based on fuzzy systems, such fuzzy decision making and expert systems
(Calcagnì, Lombardi, and Pascali, 2013; Garibaldi et al., 2004; Facchinetti
and Pacchiarotti, 2006; Reuter, 2008). In this framework, the use of stan-
dard LR type representation could be questionable. A possible way out
consists in adopting ad-hoc data manipulation procedures to transform
non-convex data into standard convex representation (e.g., by using Gra-
ham Scan algorithm or Steiner symmetrization). However, one serious
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limitation of these data transformation procedures is that they can artifi-
cially mask relevant information carried out by the non-convexity prop-
erty. Unfortunately, reduction dimension techniques for analysing non-
convex fuzzy data, as far as we know, has not been proposed yet in the
literature. In this chapter we present a novel dimension reduction tech-
nique, called non-convex fuzzy component analysis (NCFCA), which is based
on the frameworks of Component Analysis - CA (Meredith and Millsap,
1985; Millsap and Meredith, 1988) and least squares approach (Diamond,
1988; Giordani and Kiers, 2004a). Unlike other fuzzy modelling proce-
dure, NCFCA always guarantees a direct modelling of multidimensional
fuzzy data with possibly non-convex shapes.
The reminder of the chapter is organized as follows. The second section is
devoted to briefly recall the basic characteristics of convex as well as non-
convex fuzzy data. The third section exposes the component analysis for
non-convex fuzzy data together with its main features. Moreover, this sec-
tion also describes some useful procedures for data fitting and model eval-
uation. The fourth section illustrates three applications of the proposed
method to some behavioural and socioeconomic data collected using dif-
ferent procedures (e.g., fuzzy scales of measurement and fuzzy measure-
ment systems). Finally, the fifth section concludes this chapter providing
some final remarks and suggestions for future extensions of our approach.

5.2 Non-convex fuzzy component analysis (NCFCA)

In this section we provide a detailed description of the NCFCA model.
From a least squares viewpoint, the main idea is to reduce the dimension-
ality of the underlying structure of the non-convex fuzzy data by finding
a set of components which minimize a specific distance between the em-
pirical data and the fuzzy model data. For the sake of simplicity, in this
article we describe a technique which is restricted to deal with piecewise
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linear 2-mode representations and/or degenerated triangular and trape-
zoidal fuzzy data. Although some empirical contexts may require dif-
ferent representations for non-convex fuzzy data (e.g., quadratic 2-mode
fuzzy numbers), in this contribution we introduce a dimension reduction
technique for the most simple case first.

5.2.1 Model and data analysis

Let X be a n (units) ×m (variables) data matrix representing the observed
data. The generic element xij of X defines the array

xij = {m0, h, i, l, r, µ0, µ1, µ2}ij
representing a parametrized fuzzy set. By adopting the parametric repre-
sentation for 2-mode fuzzy data, the elements of X can be represented by a
collection of n×m matrices, M0, H, I, L, R, MU0, MU1, MU2 which con-
tain the set of parameters involved in the LHIR-representation. Therefore,
the component model for 2-mode fuzzy data can be expressed as follows:



M0 = ΨM0Γ
T + EM0

H = ΨHΓT + EH

I = ΨIΓ
T + EI

L = ΨLΓT + EL

R = ΨRΓT + ER

MU0 = ΨMU0Γ
T + EMU0

MU1 = ΨMU1Γ
T + EMU1

MU2 = ΨMU2Γ
T + EMU2

(5.1)

where ΨM0
, ΨH , ΨI , ΨL, ΨR, ΨMU0

, ΨMU1
, and ΨMU2

denote n×pmatrices
of score components, Γ is a m× p matrix representing the component loadings
whereas EM0

, EH , EI , EL, ER, EMU0
, EMU1

and EMU2
are n×m matrices of

residual terms. In general, the decomposition ΨXΓT yields the best p-rank
approximation for the original matrix X. The loadings matrix Γ contains
the coefficients which relate the original variables to the new components.
From an algebraical point of view, ΓT represents the basis of the subspaces
Rp on which each fuzzy observation is projected. Moreover, ΨM0

, ΨH , ΨI ,
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ΨL, ΨR, ΨMU0
, ΨMU1

, ΨMU2
are the matrices containing the coordinates

of such projections. Note that in our model representation, the internal
and external spreads together with the matrices for the membership val-
ues, have all the same underlying components structure Γ (Millsap and
Meredith, 1988). In general, Γ can be understood as an intermediate rep-
resentation among the midpoints in M0, the membership values in MU0,
MU1, MU2, and the related left (H, L) and right (I, R) spreads, respec-
tively. This should offer a good compromise between model flexibility
and model simplicity for capturing the underlying structure of the data.

5.2.2 Parameters estimation

In NCFCA, each empirical observation can be considered as an object rep-
resented by a m-dimensional polytope in Rm. By considering the main
vertices and hedges of this object, its corresponding support is an interval
in R (for m = 1), a rectangle in R2 (for m = 2), a hyper-rectangle in Rm (for
m ≥ 2). Figure 5.1 shows an example of a generic fuzzy object in R2. It is

 

FIGURE 5.1: Example of a fuzzy object in R2.

interesting to note that the support of the fuzzy object is obtained by tak-
ing the union of two sub-rectangles representing the projection of the in-
ternal and external left and right spreads, respectively. Similarly, for both
the fuzzy sets in the graphical representation, the projection of the modal
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values m0 indicates the upper and lower bounds of these sub-rectangles.
Finally, the external rectangle is obtained by joining the lower and upper
bounds of the left and right sub-rectangles, respectively. By using this for-
mal framework, the parameters estimation is obtained by minimizing a
suitable loss function between the observed data and the model data. To
this end, several measures for fuzzy data can be adopted (Bloch, 1999). In
our proposal, we resort to use a dissimilarity function based on the least
squares criterion (Jahanshahloo, Lotfi, and Izadikhah, 2006; Yang and Ko,
1996):

D2 =
2m∑
k=1

∥∥(M0 −M∗
0)ΦL

k

∥∥2 +

2m∑
k=1

∥∥[(H−H∗) + (L− L∗)]ΦL
k + [(I + I∗) + (R−R∗)]ΦR

k

∥∥2 +

2m∑
k=1

∥∥(MU1 −MU∗1)ΦL
k + (MU2 −MU∗2)ΦR

k

∥∥2 +

2m∑
k=1

∥∥(MU0 −MU∗0)ΦL
k

∥∥2 .

(5.2)

where M∗
0 = ΨM0

ΓT , H∗ = ΨHΓT , I∗ = ΨIΓ
T , L∗ = ΨLΓT , R∗ = ΨRΓT ,

MU∗0 = ΨMU0
ΓT , MU∗1 = ΨMU1

ΓT , MU∗2 = ΨMU2
ΓT . Note that in the

above function, ΦL
k and ΦR

k are m × m diagonal matrices which allow to
separately consider each distinct main vertex/hedge of them-dimensional
polytope. More precisely, the diagonals are equal to the rows of the Boolean
structural matrices ΦL and ΦR of order 2m ×m which are defined accord-
ing to the following properties:

(a) Φ
L/R
t + Φ

L/R

2(m−1)+t
= 0m (i = 1, . . . , 2m−1)

(b) ΦL
k ·ΦR

k = 0m×m

(c) Φ
L/R
k ·ΦR/L

k = Φ
L/R
k

(d) ΦL
k + ΦR

k = Im×m

(e)
∑2m

k=1 Tr(XΦ
L/R
k ) = 2m−1 Tr(X).
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For instance, when m = 2 these matrices take the following form:

ΦL =


1 1

1 0

0 0

0 1

 ΦR =


0 0

0 1

1 1

1 0


Therefore, to represent the lower bounds of the support of them-dimensional
object, we can set LB = M0 −HΦL

1 − LΦL
1 + IΦR

1 + RΦR
1 which, in turn,

is equivalent to write LB = M0 −HΦL
1 −LΦL

1 after noticing that IΦR
1 = 0

and RΦR
1 = 0.

The dissimilarity measure in (5.2) can also be simplified by expanding the
k−th term of the norms by the properties (b), (c) and (e):

D2 = 2m−1
∥∥(M0 −ΨM0Γ

T )
∥∥2 + 2m−1

∥∥(H−ΨHΓT )
∥∥2 + 2m−1

∥∥(I−ΨIΓ
T )
∥∥2

+ 2m−1
∥∥(L−ΨLΓT )

∥∥2 + 2m−1
∥∥(R−ΨRΓT )

∥∥2 + 2m−1
∥∥(MU0 −ΨMU0Γ

T )
∥∥2

+ 2m−1
∥∥(MU1 −ΨMU1Γ

T )
∥∥2 + 2m−1

∥∥(MU2 −ΨMU2Γ
T )
∥∥2

+ 2m Tr[(H−ΨHΓT )T (L−ΨLΓT )] + 2m Tr[(I−ΨIΓ
T )T (R−ΨRΓT )]

(5.3)

where the structural matrices are simply replaced by appropriate weights.
We use the Alternating Least Squares algorithm - ALS (Kiers and Berge,
1989; Kiers, 2002) to estimate the parameters contained in ΨM0

, ΨH , ΨI ,
ΨL, ΨR, ΨMU0

, ΨMU1
, ΨMU2

, Γ.

In particular, the final ALS solutions for the model (5.1) are:

vec(Γ̂) = [ (ΨT
HΨH ⊗ Im×m + ΨT

LΨL ⊗ Im×m + ΨT
I ΨI ⊗ Im×m + ΨT

RΨR ⊗ Im×m)+

+ (ΨT
M0

ΨM0 ⊗ Im×m + ΨT
MU0

ΨMU0 ⊗ Im×m + ΨT
MU1

ΨMU1 ⊗ Im×m + ΨT
MU2

ΨMU2 ⊗ Im×m)+

+ 2(ΨT
HΨL ⊗ Im×m + ΨT

I ΨR ⊗ Im×m) ]−1 · vec[ (HTΨH + LTΨL + ITΨI + RTΨR)+

+ (M0
TΨM0 + MU0

TΨMU0 + MU1
TΨMU1 + MU2

TΨMU2)+

+ (HTΨL + LTΨH + ITΨR + RTΨI) ];

(5.4)

vec(Ψ̂L) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(H−ΨHΓT + L); (5.5)

vec(Ψ̂R) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(I−ΨIΓ
T + R); (5.6)
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vec(Ψ̂I) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(R−ΨRΓT + I); (5.7)

vec(Ψ̂H) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(L−ΨLΓT + H); (5.8)

vec(Ψ̂M0) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(M0); (5.9)

vec(Ψ̂MU0) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(MU0); (5.10)

vec(Ψ̂MU1) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(MU1); (5.11)

vec(Ψ̂MU2) = (ΓTΓ⊗ In×n)−1 · (Γ⊗ In×n)T vec(MU2); (5.12)

where vec(.) is the linear operator that converts a n × m matrix into a
mn × 1 vector, ⊗ denotes the Kronecker product whereas I is an identity
matrix of appropriate order.
In fitting the unconstrained NFCA model, we adopted an iterative proce-
dure based on standard stopping criteria and random initialization. How-
ever, one potential limitation of such algorithm is that, in some circum-
stances, it might not yield feasible solutions. In particular, if the model
is fitted to empirical data which are largely corrupted by noise, the corre-
sponding estimations might violate the natural constraints of the 2-mode
fuzzy numbers (namely: h∗j > 0n, i∗j > 0n, l∗j > 0n, r∗j > 0n, µ∗1j < µ∗0j <

µ∗2j). In these situations, a constrained version of the algorithm based
on specific optimization techniques should instead be preferred (Giordani
and Kiers, 2007). However, a common and easy strategy to deal with even-
tual infeasible parameter estimates is to apply a post-hoc correction on
the estimated parameters (Giordani and Kiers, 2004a). In particular, even-
tual negative spreads estimates could be set to zero whereas the estimated
membership values of the fuzzy data could be row-wise normalized in
order to satisfy their natural constraints.
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5.2.3 Data interpretation and visualization

Once the estimated components are finally obtained, the results can be
analysed by inspecting the loadings matrix Γ̂ and/or by displaying the
scores in a low-dimensional plot. In particular, the loadings can be under-
stood as linear coefficients which express the magnitudo of the relation
between the observed variables and the estimated components. By con-
trast, the scores represent the projections of the fuzzy observation into the
subspace spanned by Γ̂. Like for traditional PCA (or CA), also for NCFCA
the score plot represents an important visualization procedure that allows
to assess the relationship among the projected units (e.g., by analysing the
patterns of similarity or dissimilarity among the units). In what follows,
we describe in more details both the data pre-treatment technique and the
data evaluation procedure adopted in NCFCA modelling.

Data pre-treatment

A common practice in multivariate analysis is to pre-process raw-data in
order to obtain an improved and clean dataset. Two of the most important
ways to pre-process raw-data are centering and scaling. Centering corre-
sponds to a repositioning of the coordinate system such that the center
of gravity of the cloud of data points becomes the origin. By contrast,
scaling allows to re-distribute the data according to a specific factor (e.g.,
the standard deviation). In particular, scaling configures the original vari-
ables within a unique scale range without changing the original structure
of the data. Centering and scaling can be performed for several reasons.
For instance, centering may be applied in order to improve the fit of the
model, remove noise from the data, avoid problems in the estimation pro-
cedures, etc. Similarly, scaling may be implemented in order to adjust for
scale differences, reduce the inflation of small or big values in the data,
improve the interpretation and visualization of the results, etc. (Bro and
Smilde, 2003; Berg et al., 2006). Several methods can be used for centering
and scaling (e.g., auto-scaling, range-scaling, pareto-scaling, vast-scaling,
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etc). In this contribution, we opted for mean-centering and pareto-scaling
methods. In general, given a matrix A, the mean-centered matrix A∗ is ob-
tained as A∗ = A−1n×m ·diag(ā) whereas the pareto-scaling is performed
by A∗ = A · [diag(

√
std(A))]−1. Note that, ā is the vector containing the

column means of A, std(.) indicates the column-wise standard deviation
whereas diag(.) is the operator which transforms a vector into a diago-
nal matrix. In particular, we pre-processed our data matrices according to
the following steps: (i) M0 was simultaneously mean-centered and pareto-
scaled by considering its means and standard deviations, (ii) H and I were
pareto-scaled by considering the standard deviations of M0, (iii) L and R

were pareto-scaled by considering the standard deviations of M1 and M2

respectively, (iv) MU0, MU1 and MU2 were pareto-scaled by considering
the standard deviations of M0, M1 and M2, respectively.

Rotation of Γ̂

Unlike standard PCA (or CA), the NCFCA estimation procedure does not
necessarily yield an orthonormal matrix Γ̂. For this reason, a direct inter-
pretation of Γ̂ might be arduous for some datasets. However, by adopting
an orthonormalization procedure such as, for example, the modified Gram-
Schmidt algorithm, one can always define a rotation matrix Ω such that Γ̂Ω

is column-wise orthonormal (Trefethen and Bau, 1997). In particular, the
modified Gram-Schmidt algorithm requires to balance the estimated score
matrices with the inverse of the transpose of Ω. For instance, by consider-
ing the case of M0 the balancing is performed as Ψ̂M0

(ΩT )−1. In addition,
in order to facilitate the interpretation of the components structure, the
analysis might also involve a rotation of Γ̂Ω. Several techniques can be
adopted to this purpose (Kiers, 1997). In NCFCA modelling we adopted
the well-known Varimax rotation which provides a very simple compo-
nents structure where each original fuzzy variable is associated with a
small set of components (Kaiser, 1958). The rotation of Γ̂ allows to simplify
the interpretation of both numerical and graphical results of the model.
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Model evaluation

In this subsection we illustrate some useful procedures to assess the per-
formance and reliability of the NCFCA model.

Goodness of fit. In order to evaluate the performance of the NCFCA model,
we considered the normalized index:

R = 1− (A/B)

where:

A =
∥∥∥M0 − Ψ̂M0Γ̂

T
∥∥∥2 +

∥∥∥H− Ψ̂HΓ̂T
∥∥∥2 +

∥∥∥I− Ψ̂IΓ̂
T
∥∥∥2 +

∥∥∥L− Ψ̂LΓ̂T
∥∥∥2 +

∥∥∥R− Ψ̂RΓ̂T
∥∥∥2 +

+
∥∥∥MU0 − Ψ̂MU0Γ̂

T
∥∥∥2 +

∥∥∥MU1 − Ψ̂MU1Γ̂
T
∥∥∥2 +

∥∥∥MU2 − Ψ̂MU2Γ̂
T
∥∥∥2 +

+ Tr[(H− Ψ̂HΓ̂T )T (L− Ψ̂LΓ̂T )] + Tr[(I− Ψ̂IΓ̂
T )T (R− Ψ̂RΓ̂T )]

B = ‖M0‖2 + ‖H‖2 + ‖I‖2 + ‖L‖2 + ‖R‖2 + ‖MU0‖2 + ‖MU1‖2 + ‖MU2‖2 +

+ Tr[HTL] + Tr[ITR].

The indexR takes values in [0, 1] and compares the residual sum of squares
(A) with the observed sum of squares (B). High values for this index in-
dicate that the model appropriately fits the data (Giordani, 2010; Bro and
Smilde, 2003).

Reliability. To asses the accuracy of the NCFCA solutions, we used a non-
parametric bootstrap procedure for component analysis (Coppi, Giordani,
and D’Urso, 2006; Kiers, 2004). In particular, in the non-parametric boot-
strapQ samples (withQ ≥ 1000) of size nwere row-wise randomly drawn
(with replacement) from the original matrices M0, H, I, L, R, MU0, MU1,
MU2. For each q-th sample, the loadings matrix Γ̂q was derived by ap-
plying the NCFCA procedure on the sample matrices M0

q, Hq, Iq, Lq, Rq,
MU0

q, MU1
q, MU2

q. In order to make bootstrap solutions optimally com-
parable, Γ̂q was rotated to match as close as possible the original Γ̂. Such
rotation was obtained by finding a rotation matrix Ωq that minimizes the
risk ‖Γ̂qΩq− Γ̂‖2 with the following optimal solution Ωq = (Γ̂qT Γ̂q)

−1
Γ̂qT Γ̂.

These steps were then repeated for Q times. Finally, the ensuing rotate
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sample matrices Γ̂1, Γ̂2, . . . , Γ̂Q were used for computing (by re-sampling)
the standard errors or percentile intervals for every estimated parameter
in the model. In general, the lower the standard errors, the greater the
accuracy of the model.

Score plot

The score plot is the graphical representation of the original n units in the
Rp subspace. Unlike standard PCA (or CA), in the NCFCA framework
each statistical unit is represented by an hyper-rectangle in Rp. There are
several methods that can be considered for score plotting, such as for ex-
ample Maximum Covering Area Rectangle - MCAR (Cazes et al., 1997),
Parallel Edge Connected Shapes - PECS (Irpino, Lauro, and Verde, 2003)
and Polytope Representation (Le-Rademacher and Billard, 2012). In this
contribution we adopted the MCAR approach which is a simple and fast
graphical technique to represent interval, symbolic or fuzzy data. In par-
ticular, in the simple two dimensional case, MCAR allows to illustrate the
statistical units by means of rectangles in R2 whereas the information as-
sociated to the membership functions is usually not represented.1 More
formally, in our context MCAR was applied as follows. Once the loadings
matrix was columnwise orthonormalized and the score matrices balanced,
each non-convex fuzzy data was described as the union of two rectangles
(or hyper-rectangles) referring to the left and right internal and external
spreads (see Figure 5.1). The vertices representing the lower and upper
bounds of the external rectangles were obtained by the score matrices us-
ing the following formula:

Λi = ΦL
2p×p[ diag(Ψ̂M0i)− κ| diag(Ψ̂Hi)| − κ| diag(Ψ̂Li)| ]+

+ ΦR
2p×p[ diag(Ψ̂M0i) + κ| diag(Ψ̂Ii)|+ κ| diag(Ψ̂Ri)| ]

(5.13)

1Note, however, that the membership functions always contribute to the orientation of the axes in Rp even if they
are not directly illustrated in the graphical representation.
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whereas the inner left and right rectangles were depicted by considering
the midpoints in Ψ̂M0

as upper and lower vertices, respectively. Note that
ΦL

2p×p and ΦR
2p×p are Boolean structural matrices of order 2p × p having the

same structures and properties of those described in Section 5.2, whereas
|.| indicates the absolute value. Note that in (5.13) the scalar κ ∈ ]0, 1] acts
as a resizing factor which allows to reduce the eventual oversize-effect of
the plotted rectangles.

5.3 Applications

In this section we describe three applications to illustrate the main features
of the NCFCA analysis.

5.3.1 Example 1: psychological assessment of worry

In this first example we analysed a real dataset about the psychology of
worry (Stöber and Joormann, 2001). In clinical psychology, the assessment
of worry is usually characterized by high levels of imprecision and vague-
ness in the data. The clinical inventory was composed by 7 items (see
Table 5.1) and administered to a group of 10 undergraduate students from
the University of Trento (Italy). The scores were collected using a com-
puterized interface based on the mouse tracking methodology (Calcagnì,
Lombardi, and Pascali, 2013; Johnson et al., 2012). In particular, for each
of the seven items, participants were told that a pseudo-circular scale with
five response levels (strongly disagree, disagree, neither, agree, strongly
agree) would be presented on the screen, and that they were asked to
choose which of these responses was the most appropriate for the pre-
sented item. After participants clicked a start button, a window with the
text of the item appeared at the top of the screen. Next the scale with
the five levels appeared while the cursor was allocated to the center of
the screen. Participants give their responses by mouse-clicking the chosen
level of the scale. Meanwhile, we recorded the streaming x-y coordinates
of the computer mouse. Figure 5.2-a/b shows two empirical patterns of
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mouse movements. In particular, figure 5.2-a represents an empirical pat-
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FIGURE 5.2: Mouse Tracker: empirical patterns of mouse movements (a/b) and
their associated histograms and fuzzy sets (c/d). Note that: the two patterns (a)
and (b) are different while sharing a same finale response (1 = strongly disagree),
the numbers encode the five levels of the scale (1 = strongly disagree, 2 = disagree,
3 = neither, 4 = agree, 5 = strongly agree), whereas the histograms were rescaled in
order to provide a better comparison with the fuzzy sets.

tern with a low imprecision/fuzziness, by contrast figure 5.2-b shows a
pattern with a higher level of imprecision and vagueness. Figure 5.2-c/d
shows the histograms and the associated fuzzy sets constructed using the
radial positions of the x-y mouse movement coordinates of the empirical
patterns. In particular, the fuzzy sets were obtained by a heuristic op-
timization procedure that allowed to convert histograms into fuzzy sets
(Ciavolino, Salvatore, and Calcagnì, 2013). Before running the NCFCA
analysis, the datasets were first pre-processed according to the procedure
described in Sec. 5.5.1, next the NCFCA algorithm was used to extract
two main components (p = 2). The algorithm converged after only 30 it-
erations and the overall goodness of fit of the model was good (R = 0.90).
Moreover, model accuracy and reliability was also good as indicated by
the low standard errors reported in Table 5.1. Finally, the estimated load-
ings matrix was orthonormalized and varimax-rotated to simplify the in-
terpretation of the components in the NCFCA model. Figure 5.3 shows
an example of some observed and reconstructed fuzzy sets on the fifth
variable (x5).
In order to identify the meaning of each extracted component, we selected
the variables with loading values larger than ±0.35 (relevant variables).
The results reported in Table 5.1 showed that the first component de-
pended on x2 (-0.50) and x5 (-0.43) and, to a less extent, on x1 (-0.38), x6 (-
0.39) and x7 (-0.39), whereas the second component exclusively depended
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Clinical items/Variables Comp. 1 Comp. 2
(x1) I am good at controlling negative and positive emotions -0.38(0.03) 0.00(0.05)
(x2) I am worried that I will never realize my ambitions -0.50(0.04) 0.10 (0.08)
(x3) It is important that human relations are based upon trust -0.01(0.04) -0.98(0.16)
(x4) It is important that I am competent in everything I do -0.34(0.04) -0.10(0.08)
(x5) I am worried to be bad -0.43(0.04) -0.01(0.05)
(x6) I am worried to lose my close friends -0.39(0.05) 0.09(0.10)
(x7) I like to be alone when I am working with a problem -0.39(0.03) -0.10(0.04)

TABLE 5.1: Example 1: Loadings matrix Γ̂ with standard errors in parenthesis (Q =
5000). Loadings higher than 0.35 (in absolute sense) are in boldface type.
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FIGURE 5.3: Example 1: Observed (x) and model reconstructed (x∗) fuzzy sets for
the subjects 2 and 9 on x5

on x3 (-0.98). Therefore, taking into account the meaning of the signifi-
cant variables, the first component can be understood as ’individual di-
mension’ whereas the second component can be referred as ’interpersonal
dimension’ of psychology of worry.
Figure 5.4 shows the score plot for the NCFCA model in the two dimen-
sional space spanned by Γ̂. A substantive interpretation of Figure 5.4 can
be provided by considering both the positions and sizes of the rectangles.
In particular, the size of the rectangles reflected the imprecision associated
with the clinical items which played a significant role in the definition of
the two components. In our case, the fuzzy units were arranged into three
main regions: central (units 1, 4, 5, 6, 7, 10), left-outer (units 2, 9), right-
outer (units 3, 8). In particular, the individuals in the middle part of the
plot showed clinical scores that were in the mean range for both the com-
ponents. It is important to note that due to the mean-centering procedure,
the origin of the axis represents the average region and therefore the units
located in this area are characterized by mean profiles. On the contrary, the
units located far away from the center of gravity of the plot shows typical
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FIGURE 5.4: Example 1: Score plot for the first and second components (fuzzy units
are consecutively numbered and represented with different colours)

features which did not belong to the mean profile.

5.3.2 Example 2: Self perception of professional roles

In this second application we studied a real dataset about psychologists’
self perception of their professional role. To this end, a specific 7-items
questionnaire (see Table 5.2) was administered to a group of 24 psychol-
ogy students from the University of Trento (Italy). Data were collected
by means of a computerized questionnaire based on fuzzy rating scales
commonly used in human ratings studies (Hesketh, Pryor, and Hesketh,
1988). In particular, the fuzzy scale was based on a pseudo-continuous
scale implemented using a suitable graphical interface (see Figure 5.5).
Interestingly, the fuzzy rating scale may elicit to different scenarios: the
respondent chooses a single level of the scale (Figure 5.5-b) or s(he) selects
an intermediate position which lies between the two levels (Figure 5.5-c).
The NCFCA model was applied to the pre-processed data and three com-
ponents (p = 3) were extracted using the NCFCA algorithm. The algo-
rithm converged after 112 iterations and the goodness-of-fit of the model
was good (R = 0.88). Model accuracy and reliability were also good as
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FIGURE 5.5: Fuzzy rating scale with a pseudo-continuous line, a movable cursor (in
solid line) and a fuzzy variable (in dotted line) representing the hidden fuzzy levels
of the scale.

shown by the low standard errors reported in Table 5.2. Like for the previ-
ous analysis, also in this second application the estimated loading matrix
was orthonormalized and varimax-rotated in the NCFCA model.

Variables Comp. 1 Comp. 2 Comp. 3
(x1) Degree of development of Italian university system -0.46(0.07) 0.03(0.06) -0.25(0.08)
(x2) Usefulness of university studies 0.23(0.06) -0.17(0.07) -0.80(0.10)
(x3) Trust in local government -0.26(0.06) 0.17(0.07) -0.53(0.08)
(x4) Trust in private enterprise -0.46(0.07) -0.20(0.06) 0.03(0.08)
(x5) Degree of devel. of Italy -0.67(0.06) 0.04(0.06) 0.09(0.07)
(x6) Psychologist is necessary -0.08(0.06) -0.53(0.05) -0.05(0.06)
(x7) Psychologist is useful 0.02(0.07) -0.79(0.06) 0.08(0.09)

TABLE 5.2: Example 2: Loadings matrix Γ̂ with standard errors in parenthesis (Q =
5000). Loadings higher than 0.35 (in absolute sense) are in boldface type.

The results reported in Table 5.2 showed that the first component was in-
versely related to x1 (-0.46), x4 (-0.46) and x5 (-0.67). Similarly, the second
component was also inversely related to x6 (-0.53) and x7 (-0.79). Finally,
the third component inversely depended on x2 (-0.80) and x3 (-0.53). In
line with these results, the first component can be interpreted as ’future
perspective dimension’, the second component refers to ’psychology as
profession’, whereas the third component can be understood as ’present
dimension’. Figure 5.3 shows an example of some observed and recon-
structed fuzzy sets on the second variable (x2). Figures 5.7 and 5.8 show
the score plots for the first vs. second and second vs. third components,
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FIGURE 5.6: Example 2: Observed (x) and model reconstructed (x∗) fuzzy sets for
the subjects 12 and 20 on x2

respectively. In particular, the first score plot (Figure 5.7) contrasts future
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FIGURE 5.7: Example 2: Score plot for the first and second components (fuzzy units
are consecutively numbered and represented with different colours)

and profession. It shows an interesting pattern in which most of the units
were located on the middle part of the plot whereas only small groups
of units are located in the left-outer (units 3,14) and right-outer (units
5,7,13,16) parts of the graphical representation. The second score plot (Fig-
ure 5.8) contrasts present and profession. Like for the previous graphical
representation, also for the second score plot most of the units are located
in the middle portion of the plot. Finally, the sizes of the rectangles were
small and similar among dimensions (in general, the students seemed to
convey the same degree of imprecision in providing their responses).
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FIGURE 5.8: Example 2: Score plot for the second and third components (fuzzy units
are consecutively numbered and represented with different colours)

5.3.3 Example 3: welfare and productivity of Italian regions

In this last example we tested our model on a real dataset about eco-
nomic and social indicators collected by the National Institute of Statis-
tics (ISTAT). The original dataset contained 10 socio-economic indicators
referred to 20 Italian regions (see table 5.3). In order to test our model
the crisp variables were first re-scaled to a common scale and next fuzzi-
fied with a suitable fuzzification procedure based on the Mamdani fuzzy
system (Lalla, Facchinetti, and Mastroleo, 2005). The fuzzification routine
yielded the following sets for the fuzzy variables: null (0,0,1.67), very-low
(0,2.13,3.33), low (1.67,3.87,5.0), middle (3.33,4.69,6.67), high (5.0,7.47,8.33),
very-high (6.67,8.95,10.0), extreme (8.33,10.0,11.67). The NCFCA algorithm
was applied to the pre-processed data and two components (p = 2) were
extracted. The algorithm converged after 20 iterations and the goodness-
of-fit of the model was generally good (R = 0.90). Model accuracy and
reliability were also good as shown by the low standard errors reported
in Table 5.3. Finally. the estimated loading matrix was orthonormalized
and varimax-rotated. By inspecting Table 5.3, one can observe as the first
component was negatively related to x1 (-0.41), x2 (-0.43), x3 (-0.42), x4
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Indicators/Variables Comp. 1 Comp. 2
(x1) Household spending -0.41(0.01) 0.04(0.02)
(x2) Investments -0.43(0.02) 0.03(0.01)
(x3) Income -0.42(0.02) 0.01(0.01)
(x4) Salaries -0.40(0.01) 0.05(0.02)
(x5) Marriage index -0.04(0.02) 0.49(0.02)
(x6) Public education expenditures 0.04(0.01) 0.54(0.01)
(x7) Unemployment index 0.04(0.01) 0.53(0.01)
(x8) Energy consumption -0.05(0.02) 0.42(0.03)
(x9) Public culture expenditures -0.37(0.02) -0.06(0.04)
(x10) Efficiency of health index -0.41(0.02) -0.06(0.02)

TABLE 5.3: Example 3: Loadings matrix Γ̂ with standard errors in parenthesis (Q =
5000). Loadings higher than 0.35 (in absolute sense) are in boldface type.

(-0.40), x10 (-0.41) and to a less extent to x9 (-0.37). By constrast, the sec-
ond component was positively related to x5 (0.49), x6 (0.54), x7 (0.53) and
x8 (0.42). The first component can be interpreted as ’overall productiv-
ity’ and the second one can be referred to ’territorial welfare’. Figure 5.10
shows an example of some observed and reconstructed fuzzy sets on the
seventh variable (x7). Figure 5.10 shows the score plot for the extracted
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FIGURE 5.9: Example 3: Observed (x) and model reconstructed (x∗) fuzzy sets for
the subjects 8 and 19 on x7

components. A clear pattern can be read from the score plot. In particular,
the southern regions (Campania, Calabria, Sicily, Sardinia, Apulia, Molise)
were located in the second quadrant, whereas many of the richest northern
regions (Lombardy, Veneto, Emilia Romagna, Tuscany) were in the fourth
quadrant. Finally, the middle part of the plot contained central regions as
well as some small northern ones (e.g., Friuli, Aosta Valley, Trentino). The
regions in the fourth quadrant showed socio-economical profiles charac-
terized by high productivity as well as a solid territorial welfare, whereas
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FIGURE 5.10: Example 3: Score plot for the first and second components (fuzzy
units are named and represented with different colours)

the regions in the second quadrant of the map showed the opposite pat-
tern. In particular, the regions Campania, Sicily, Calabria and Basilicata
showed low values for productivity and territorial welfare. By consider-
ing the sizes of the projected rectangles, most of the regions were char-
acterized by similar degree of fuzziness whereas Lombardy seemed to be
the region with the higher fuzziness.

5.4 Conclusion and further perspectives

In this chapter we extended the component analysis approach to non-
convex fuzzy data. The proposed NCFCA method allowed to reduce the
dimensionality of multivariate datasets with non-convex fuzzy observa-
tions. In particular, the proposed method considered non-convexity by
directly incorporating the membership values of fuzzy observations in
the NCFCA model. To better illustrate the NCFCA features, we also de-
scribed three real applications with non-convex fuzzy data. The empir-
ical results suggested the important role played by this property when
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researchers have to deal with complex, imprecise and vague information.
Furthermore, it is straightforward to note how NCFCA can also be applied
when data are represented by standard convex fuzzy features, in particu-
lar by setting MU0 = MU1 = MU2 = 1n×m for trapezoidal cases and
H = I = 0n×m together with MU0 = MU1 = MU2 = 1n×m for triangular
cases.
However, the proposed method can potentially suffer from some limita-
tions. For instance, in some empirical cases the piecewise linear represen-
tation for 2-mode fuzzy data cannot be valid and therefore other repre-
sentation should be preferred (e.g., quadratic or cubic 2-mode fuzzy num-
bers). Moreover, for some applications the unconstrained algorithm could
estimate fuzzy data which violate their normative representation and the
MCAR-representation may not adequately represent the whole informa-
tion provided by 2-mode fuzzy data.
Various possible extensions of our proposal could be considered. For ex-
ample, the adoption of a constrained approach for the estimation proce-
dure would always guarantee the consistency between the estimated pa-
rameters and the corresponding normative representations for non-convex
fuzzy numbers. A future venue of research, would also consist in the im-
provement of the graphical representation as well as in the extension of the
NCFCA method to cases where data are described by means of 2-mode
fuzzy data beyond the ones characterized by piecewise linear member-
ship functions. Finally, an organic framework able to deal with random-
ness and fuzziness simultaneously may be adopted (e.g., by using Fuzzy
Random Variables). This would extend our proposal beyond the semi-
descriptive approach presented in this contribution.



Chapter 6

Multiple mediation analysis for
interval-valued data
The content of the chapter has been submitted as a research chapter for Psychometrika and
is currently under review.

6.1 Introduction

In behavioral and social sciences, mediation analyses are widely used tech-
niques for modeling underlying mechanisms of complex relationships in
empirical data (MacKinnon and Fairchild, 2009; Edwards and Lambert,
2007). For instance, in working psychology the relation between job au-
tonomy and job satisfaction/performance is better clarified by adding em-
ployees’ perceived control of their time as a third variable in the original
bi-variate path job autonomy-job satisfaction/performance (Claessens et
al., 2004). Similarly, in clinical psychology the relation between the ef-
fect of a clinical program on adolescent antisocial behaviors is better ex-
plained by considering two intervening variables, namely the reductions
in deviant peer associations and the improved family management skills
(Eddy and Chamberlain, 2000). Likewise, in prevention science, beliefs,
attitudes, motivations, and social support usually mediate the impact of
dietary programs on the percentage of fat intake, servings of vegetables,
and weekly physical activity (Kristal et al., 2000). In general, mediation
analyses can be used to represent situations in which the observed re-
lation between an independent variable, x, and a dependent variable, y,
is explained using a set of third variables, m1,m2, . . . ,mk, in the relation,
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called mediator variables. Considering the cause-effect relation between
x and y, the mediator variables are causally placed between x and y such
that a change in x produces changes in mj (j = 1 . . . k) which, in turn, also
produce changes in y. The x-mj-y pathway explains the process through
which x partially (or fully) acts on y (Baron and Kenny, 1986; Yuan, Cheng,
and Maxwell, 2013).
Traditionally, mediation hypotheses have been addressed and implemented
within the well-known linear least squares approach (Baron and Kenny,
1986; Bollen and Stine, 1990; Edwards and Lambert, 2007; Judd and Kenny,
1981; MacKinnon, 2008). In this context, the direct and indirect pathways
linking the observed variables are modeled by three or more linear equa-
tions whereas the computation of the derived model’s effects is performed
once the model’s parameters are successfully estimated, for instance using
the Baron and Kenny’s steps procedure, Sobel test (Sobel, 1982), distribu-
tion of the product (Preacher, Rucker, and Hayes, 2007), and/or bootstrap
based methods (Preacher and Hayes, 2008). However, over the years me-
diation analysis has been also addressed with the more general framework
of the causal inference analysis (Pearl et al., 2009; Imai and Van Dyk, 2004).
By using a general statistical language based on the counterfactual analy-
sis and taking the advantages of treatment regimes and randomized con-
trol trials, this approach to mediation hypotheses allows to define general
models handling with linear and non-linear relationships, parametric and
non-parametric models, and continuous or discrete mediators (Imai and
Van Dyk, 2004; Imai, Keele, and Tingley, 2010; Vanderweele and Vanstee-
landt, 2009). In such a framework, models’ estimation can be performed,
for instance, with sensitivity analysis (Imai, Keele, and Yamamoto, 2010),
instrumental variables (Nkurunziza and Ejaz Ahmed, 2011), and principal
stratification (Gallop et al., 2009).
In general, mediation models have been developed for single-valued data
only. However, in some empirical contexts the observed information may
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show more complex structures or patterns than those commonly repre-
sented by single-valued data. For example, when large datasets are sum-
marized into smaller and more manageable ones, single statistical units
can be described by classes of different attributes or structures (e.g., interval-
valued data, histogram-valued data, symbolic-valued data) (Billard and
Diday, 2003). In particular, interval-valued data can be understood as the
simplest and most widely known type of structured data. In particular,
interval-valued data may potentially arise in different empirical contexts
such as, for instance, when (i) three-way datasets are reduced in two-way
structures (Diday, Noirhomme-Fraiture, et al., 2008), (ii) clinical patient
course and/or repeated measures are summarized by adopting proce-
dures like the response feature analysis (Frison and Pocock, 1992; Everitt,
1995; Arndt et al., 2000), (iii) confidential data are masked by summarized
data (Little, 1993), (iv) empirical data are modeled by interval semi-orders
(Luce, 1956; Fishburn, 1973; Halff, Ortony, and Anderson, 1976), (v) ob-
served measures are affected by systematic uncertainty (Dai, Wang, and
Mi, 2013; Salicone, 2007; Rowe, 1994).
In this contribution we propose a tailor-made approach, named interval
mediation analysis (IMedA), for multiple mediation analysis with interval
valued data. This framework is based on the methodological procedures
addressing mediation in the context of least squares regression and path
analysis (Edwards and Lambert, 2007) and the symbolic regression for
interval-valued data (Billard and Diday, 2002; Lima Neto and Carvalho,
2008). Despite its simplicity, the regression based mediation remains the
most simple and widely adopted approach in conducting mediation anal-
ysis. It also guarantees that the extension of the mediation analysis to the
interval-valued data still remains at a manageable level of technical com-
plexity.
The remainder of the chapter is organized as follows. Section 6.2 briefly
recalls the basic characteristics of interval-valued data and their applica-
tion in psychological research. Section 6.3 exposes the proposed multiple
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mediation model for interval-valued data together with their main proper-
ties. Sections 6.4 and 6.5 illustrate procedures for data analysis and model
evaluation. Section 6.6 reports a brief Monte Carlo simulation study to
evaluate the performance of the IMedA algorithm. Section 6.7 describes
two case studies showing the application of the new approach to some
psychological datasets. Finally, Section 6.8 concludes this chapter provid-
ing final remarks and suggestions for future extensions of the current con-
tribution.

6.2 Interval-valued data

Here we describe the concept of interval-valued data, their properties,
and some examples of application in psychological research. Note that al-
though different types of interval representations have been defined in the
mathematical/statistical literature (e.g., open, closed, half-open, bounded,
and unbounded intervals), in this article we will limit our attention to
closed bounded intervals, only.

6.2.1 Introduction and examples of application

Interval data are structured data that can be applied in modeling sev-
eral empirical situations where the knowledge to be extracted is complex
and/or highly structured. Unlike single-valued data, which can just repre-
sent single information (e.g., the mean clinical’s change), structured-data
can always take into account a set of additional information or sources
(e.g., baseline, overall clinical’s change, change’s direction) at the same
time. A first example is the well-known longitudinal data problem where
phenomena like daily fluctuations of stock prices or quotes, temperatures,
chemical and physical measures, growth rates, and clinical courses, are
usually represented by means of time-related measurement series. A very
simple, popular, and effective approach to analyze these type of data is the
so-called response feature analysis (Frison and Pocock, 1992; Everitt, 1995;
Arndt et al., 2000). In this approach interval-valued data can model the
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change scores and total increase scores associated with longitudinal measures
(Senn, Stevens, and Chaturvedi, 2000; Arndt et al., 2000). Intuitively, the
change score can be represented by an interval di = [yT −y0, y0 +yT ] where
yi0 indicates the baseline of the treatment response, yT the last treatment
measure, whereas yT − y0 denotes the overall patient’s change. Clearly,
the case yT − y0 = 0 indicates that no changes occurred as an effect of the
treatment. A second important application concerns the representation of
uncertainty and imprecision in empirical measurements (Dai, Wang, and Mi,
2013; Ferson et al., 2004). In some circumstances, accuracies and precisions
can vary as a function of specific properties of the measurands (Kirkup
and Frenkel, 2006) with the consequence that given two measurands, x
and y, their accuracies and precisions may vary considerably. Clearly, in
this situation, the average representations may not well represent all the
critical information stored in the data such as, for example, their natural
fluctuations. On the contrary, the adoption of an interval-valued approach
can provide a valid alternative to represent all the relevant information
carried by the measurands. For instance, the two measurands may be rep-
resented by two intervals x̃ = [x̄−σx, x̄+σx] and ỹ = [ȳ−σy, ȳ+σx] where
σx and σy denote the uncertainties associated with x and y. Of course,
interval-valued data can also be applied in many psychological research
contexts. For example, in organizational research, studies are often con-
ducted using the so-called within-person approach where information re-
garding affects, behaviors, interpersonal interactions, work events, and
other workplace phenomena are collected over the time (Fisher and To,
2012). Daily diary methods, like the interval-contingent protocol, are the
most adopted techniques to regularly collect data related to immediate or
recent experiences from the same sample of people for a given interval of
time. As a consequence, daily diary measurements can be naturally repre-
sented as closed and bounded intervals (Taris, Lange, and Kompier, 2010).
This approach is also widely adopted in the assessment of the individuals’
observable behaviors where interval data can summarize the coded be-
haviors (Hartmann, Barrios, and Wood, 2004). Relatedly, interval-valued
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data can arise when individual’s measurements are collected by means
of mouse-tracking instruments that dynamically measure some relevant
features of the cognitive processes which are associated with individu-
als’ responses (e.g., Calcagnì and Lombardi, 2014; Johnson et al., 2012).
Moreover, interval representations can be also encountered when data are
binning or grouped together, for instance, to reduce signal-noise artifacts
and/or to improve the quality of the recorded data. These techniques are
widespread in cognitive neuroscience studies (Endres et al., 2010). Finally,
interval-valued data may arise when no precise single-valued information
is available (e.g., in cases of privacy or security concerns, confidentiality
requirements, census) and data are naturally incomplete, censored, and
masked (Little, 1993). This problem is well-known in health psychology
where researchers usually work with partial information (Ogden, 2007).
In these cases, interval representations may help in facilitating the recov-
ering of such confidential and sensitive missing data (Kao and Liu, 2000).

6.2.2 Formal definitions

The interval ã = [u, v] is the set of real numbers {x ∈ R| u ≤ x ≤ v}
where u and v denotes the left and right endpoints of the interval. Two
intervals ã and b̃ are equal if their corresponding endpoints are the same.
The interval ã is said to be a degenerated interval if u = v and in this case the
interval simply reduces to the singleton ã = {u}. The width of ã is defined
as wdt(ã) = v − u, whereas its midpoint is mid(ã) = (u + v)/2. The half-
width of ã is called the spread (or radius) of ã and is defined as spr(ã) = (v−
u)/2 . Interval-valued data can be easily extended to the multidimensional
case. In particular, a n × k interval matrix Ã is a matrix whose elements
are interval numbers, namely Ã = (ãij) = ([u, v]ij) with i = 1...n and
j = 1...k. From a geometrical point of view, the i-th row of Ã can be
represented as a k-dimensional hyper-rectangle. More precisely, for k = 1,
ã is a simple interval in R, for k = 2, ã1×2 is a rectangle in R2, whereas
for k ≥ 2, ã1×k is an hyper-rectangle in Rk (see Figure 6.1). The width of
Ã is the non-negative matrix of widths computed on its interval elements
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Aw = wdt(ãij) whereas the spreads of Ã is the non-negative matrix of
spreads of its interval elements Ar = wdt(ãij)/2. Likewise, the midpoint
of Ã is the matrix containing the midpoints of its interval element Ac =

mid(ãij). Further details about the formal properties and operations for
interval-valued data can be found in (Moore, 1966).

6.2.3 Centre-range parametrization

There are several parametric representations (e.g., centered based, min-
max, centre-range) that can be adopted to describe interval-type data (Lima
Neto and Carvalho, 2008). Among these, the centre-range parametrization
allows to describe an interval ã by means of its midpoint and spread:
ã = (c, r)CR where c = mid(ã) and r = spr(ã). Unlike other parametric
representations for interval-valued data, the CR-parametrization shows
some nice features (Blanco-Fernández, Colubi, and García-Bárzana, 2013).
Firstly, from a computational perspective, it always ensures well-defined
intervals by simply satisfying the non-negative condition r > 0.
Secondly, the CR-representation directly works with the parameter space
Oã = {(c, r) ∈ R × R+} of ã. This would allow to extend many classical
statistical approaches to interval-valued data without considering other
sophisticated manipulation methods (e.g., interval algebra). Moreover, in
the case of multidimensional interval data, the CR-representation can de-
compose the n × m interval matrix Ã into two n × m single-valued matri-
ces, Ac and Ar, which contain all the parameters involved in Oã. In this
way, multidimensional interval-valued data may be further manipulated
according to classical statistical techniques. Finally, the CR-representation
may be very useful especially when intervals are used to describe empir-
ical objects in terms of measurement precisions (by means of c) and mea-
surement uncertainty (by means of r).
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u1 v1 u2 v2
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(A) Interval-valued data in R 1 (B) Interval-valued data in R 2
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(C) Interval-valued data in R 3
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 ̃ a2

FIGURE 6.1: Graphical representations for interval-valued data: (a) two intervals in R1, (b)
a collection of interval in R2, (c) intervals in R3. Note that in the panel (b) a linear relation
among the intervals is depicted.

6.3 Interval mediation analysis

In this section we illustrate the new multiple mediation model for interval-
valued data (IMedA) which is in line with the general framework of sym-
bolic data analysis (e.g., Lima Neto and Carvalho, 2008; Palumbo and
Lauro, 2003; Giordani and Kiers, 2004b; Irpino, 2006).

6.3.1 General context and motivation

IMedA is a parallel multiple mediator model with k mediators where the in-
dependent variable affects each mediator which is, in turn, causally linked
to the dependent variable but the mediators are assumed not to affect each
other. In accordance with the general regression framework in mediation
analysis, IMedA uses two regression systems to represent the entire struc-
ture of the model. The first system represents the paths between the in-
dependent variable and the mediator variables. The second system rep-
resents the paths between the mediator variables and the dependent vari-
able. More specifically, from a Least Squares (LS) perspective (Edwards
and Lambert, 2007), both the regression systems are first separately esti-
mated and the mediation effects are then computed after the estimated
regression coefficients are obtained. Such effects are computed using a
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specific procedure for the decomposition of effects in the case of interval-
valued data (see next section). Although some empirical contexts may
require models involving more than one independent (resp. dependent)
variable (usually analyzed via SEMs), in this contribution we preferred
to introduce interval mediation analysis for the most simple and widely
adopted case first (MacKinnon, 2008; Taylor, MacKinnon, and Tein, 2008).

6.3.2 The IMedA model

Let x̃ and ỹ be n (units)× 1 interval vectors representing the independent
and dependent variables, respectively. Let M̃ be a n (units)× k (mediators)
interval matrix containing the set of mediators.
By adopting the CR parametrization for interval data, the elements of x̃,
ỹ, and M̃ can be represented by a collection of n (units)× 1 single-valued
vectors xc, xr, yc, yr, and n (units) × k single-valued matrices Mc, Mr.
The mediation model for interval-valued data can be expressed by two
regression systems as follows:

S1 :

Mc = 1Ac + XΞ + Ec

Mr = 1Ar + (1Ac + XΞ)Π + Er
(6.1)

S2 :

yc = 1αc + Xβ + Mcγc + Mrγr + εc

yr = 1αr + (1αc + Xβ + Mcγc + Mrγr)δ + εr

For S1, the matrices Ac, Ar and Π denote k × k diagonal matrices of inter-
cept terms and coefficients of the ranges, X is a n× 2 column-wise stacked
matrix containing the vectors xc and xr, whereas Ξ is a 2 × k matrix of
regression coefficients between the matrix of mediators Mc and the inde-
pendent variables X. Finally, Ec and Er are n × k matrices of residual
terms. Similarly, for the second system S2, the scalars αc, αr, δ represent
the intercept terms and the range coefficient of the model. Moreover, β is a
2× 1 vector of regression coefficients quantifying the relation between the
independent variables X and theote that dependent variable yc whereas
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γc and γr are k × 1 vectors of regression coefficients between the matrices
of mediators Mc and Mr and the dependent variable yc, with εc and εr

being n × 1 vectors of residual terms. Finally, 1 denotes matrices (or vec-
tors) of appropriate orders of all ones. Figure 6.2-A (resp. 6.2-B) shows the
compact (resp. exploded) conceptual diagram for the IMedA model.
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(A) IMEDA: Compact conceptual diagram (B) IMEDA: Exploded conceptual diagram

FIGURE 6.2: Conceptual (A) and exploded (B) diagrams for the interval mediation model.
Note that the tilde symbol denotes interval variables or coefficients.

6.4 Data analysis

6.4.1 Parameters estimation

In the IMedA model, the parameters estimates are obtained according to
a standard Least Squares (LS) procedure which minimizes the following
dissimilarity measures:

D2
1 = ‖Mc −Mc∗‖2 + ‖Mr −Mr∗‖2

D2
2 = ‖yc − yc∗‖2 + ‖yr − yr∗‖2

(6.2)

where: Mc∗ = 1Ac + XΞ, Mr∗ = 1Ar + Mc∗Π, yc∗ = 1αc + Xβ + Mcβ +

Mrγr, and yr∗ = 1αr + yc∗δ, respectively. To estimate the parameters
contained in Ac, Ar, Π, Ξ, αc, αr, δ, β, and γ, we used the Alternating
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Least Squares (ALS) algorithm (Kiers, 2002). By convention, this alternat-
ing gradient-descendent algorithm converges when ‖θ − θ̂‖2 ≤ ε with θ

being the array containing the model’s parameters, θ̂ the corresponding
estimated array, and ε a small positive quantity, respectively. The detailed
iterative ALS solutions of the model are reported in Appendix A whereas
the basic estimation algorithm is available as supplementary material to
this chapter.

6.4.2 Goodness-of-fit indices

The goodness of fit of the IMedA model can be evaluated by considering
the following two normalized indices:

R2
M = 1− ‖Mc −Mc∗‖2 + ‖Mr −Mr∗‖2

‖Mc − 1 diag(Mc)‖2 + ‖Mr − 1 diag(Mr)‖2

R2
Y = 1− ‖y

c − yc∗‖2 + ‖yr − yr∗‖2

‖yc − yc‖2 + ‖yr − yr‖2

(6.3)

where diag(Mc) and diag(Mr) denote k × k diagonal matrices containing
the column means of the matrices Mc and Mr, 1 is a n × k matrix of all
ones, whereas yc and yr denote n × 1 vectors containing the mean val-
ues of yc and yr, respectively. Note that R2

M and R2
Y take values in [0, 1]

and compare the residual sum of squares with the observed total sum of
squares. The interpretations of the goodness-of-fit indices are in line with
the standard R2 measure adopted in the regression framework.

6.5 Analysis of effects

6.5.1 Decomposition of effects

The decomposition of effects allows to quantify the amount of effect pro-
duced by the mediators on the relation between the dependent variable
and the independent variable (indirect effect) and the residual total effect
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between the two variables when the mediators are held constant (direct
effect) (Alwin and Hauser, 1975). In particular, considering the regression
systems S1 and S2 in Eq. 6.1, the total effect (TE) of x̃ on ỹ can be partitioned
into direct (DE) and indirect (IE) effects. More precisely, the indirect effect
(IE) of x̃ on ỹ is the amount that ỹ is expected to change as x̃ changes as
a result of the effect of x̃ on M̃ which, in turn, affects ỹ. On the contrary,
the direct effect (DE) is usually regarded as that part of the total effect (TE)
which is not transmitted through M̃ and quantifies how much a change
in x̃ affects ỹ independent of its effect on M̃ (Alwin and Hauser, 1975;
Stolzenberg, 1980; Sobel, 1990). As a consequence, the total effect (TE) can
be expressed as TE = DE + IE which represents the basic decomposition
rule for TE. In the IMedA model (see Figure 6.1-B), this basic rule can be
generalized as shown in Table 6.1, where TEc, TEr, DEc, DEr, IEc and IEr
represent the interval components of TE, DE and IE for centers and ranges,
respectively. The terms IE()

c/c, IE()
r/r, IE()

c/r and IE()
r/c indicate the interval ele-

mentary indirect effects of the model.

TE = DE + IE
TEc + TEr = [DEc + DEr] + [IEc + IEr]
TEc + TEr = [(DEy

c

c + DEy
r

c ) + (DEy
c

r + DEy
r

r )] + [(IEy
c

c + IEy
r

c ) + (IEy
c

r + IEy
r

r )]
with:
IEy

c

c + IEy
r

c = (IEy
c

c/c + IEy
c

c/r) + (IEy
r

c/c + IEy
r

c/r)

IEy
c

r + IEy
r

r = (IEy
c

r/c + IEy
c

r/c) + (IEy
r

r/r + IEy
r

r/r)

TABLE 6.1: Decomposition rules for the IMedA model involved by the CR-
parametrization

It is straightforward to note that in IMedA both the centers and ranges
contribute in the total effect of the model. However, because of the char-
acteristics of the IMedA model, we can only use the regression equation
of yc to derive all the effects of the model, whereas the effects related to
the regression equation of yr (i.e., DEy

r

c , DEy
r

r , IEy
r

c , and IEy
r

r ) are subse-
quently computed via δ. As a result of this property, the third line of the
decomposition rules in Table 6.1 can be re-written as:

TEc+TEr = (DEy
c

c +DEy
c

r + IEy
c

c + IEy
c

r )+δ(DEy
c

c +DEy
c

r + IEy
c

c + IEy
c

r ) (6.4)

where δ(DEy
c

c + DEy
c

r + IEy
c

c + IEy
c

r ) = DEy
r

c + DEy
r

r + IEy
r

c + IEy
r

r . Likewise,
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the elementary indirect effects can also be re-written considering the coef-
ficient δ. By applying the decomposition procedure for interval mediation
analysis (see Appendix B), we can formally write all the terms shown in
Eq. 6.4, as follows:

DEy
c

c = β̂c DEy
c

r = β̂r

IEy
c

c = IEy
c

c/c + IEy
c

c/r = (ξ̂c ◦ γ̂cT )1k + (ξ̂c ◦ γ̂rT ◦ Π̂T )1k

IEy
c

r = IEy
c

r/c + IEy
c

r/r = (ξ̂r ◦ γ̂cT )1k + (ξ̂r ◦ γ̂rT ◦ Π̂T )1k

(6.5)

where β̂c and β̂r are the estimated parameters contained in β̂; ξ̂c and ξ̂r

are 1 × k row-vectors of the estimated matrix Ξ̂; γ̂c, γ̂r, and Π̂ are the
estimated parameters previously defined; 1k is a k × 1 vector of all ones
whereas ◦ denotes the usual Hadamard product. Note that, the term 1k in
Eq. 6.5 allows to compute the total indirect effect, that is to say, the sum of
the elementary indirect effects. These are the indirect effects that are associ-
ated with each of the k mediators in the model. In particular, if we omit
the term 1k from the equations of the effects, we obtain the specific indi-
rect effects separately for each mediator in the model. To summarize, the
complete effects involved in the interval mediation analysis are reported
in table 6.2.

DEc = β̂c + δ̂β̂c

DEr = β̂r + δ̂β̂r

IEc = [(ξ̂c ◦ γ̂cT )1k + (ξ̂c ◦ γ̂rT ◦ Π̂T )1k] + δ̂[(ξ̂c ◦ γ̂cT )1k + (ξ̂c ◦ γ̂rT ◦ Π̂T )1k]

IEr = [(ξ̂r ◦ γ̂cT )1k + (ξ̂r ◦ γ̂rT ◦ Π̂T )1k] + δ̂[(ξ̂r ◦ γ̂cT )1k + (ξ̂r ◦ γ̂rT ◦ Π̂T )1k]

TABLE 6.2: Decomposition of effects in the IMedA model

6.5.2 Evaluating the size of the effects

In this section we introduce some descriptive indices to evaluate the size
of the decomposed effects of the IMedA model. In the context of media-
tion analysis, several different indices have been defined to quantify the
size of the decomposed effects, such as ratio measures (e.g., the proportion
mediated index), standardized regression parameters, and indices based
on the variance decomposition (e.g., partial r2, residual-based indices. See:
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Preacher and Kelley, 2011; Fairchild et al., 2009). Because of its simplicity,
variance decomposition becomes the most popular criterion in defining
mediation effect size (although a number of shortcomings have been high-
lighted elsewhere, see MacKinnon, 2008). In this contribution, we resort
to a set of particular indices based on the decomposition of the explained
variance. Unlike other R2-based decompositions which make use of the
so-called commonality analysis (Seibold and McPhee, 1979), our indices
are defined considering the so-called reduced system which is obtained by
merging S1 with S2 (see Appendix C). In this new equations system, the
dependent variable ỹ is modeled as a function of all the pathways ex-
pressed by the IMedA model and its variance can be partitioned accord-
ing to a dedicated regression based decomposition procedure (Mood and
Graybill, 1974; Fields, 2003). This would allow to show the contribution of
the direct and indirect effects in modeling the variance of ỹ, as follows:

DEσ2
ỹ

=

[
cov(yc,xcβ̂c) + cov(yc,xrβ̂r)+

cov(yr, δ̂xcβ̂c) + cov(yr, δ̂xrβ̂r)

]
·

[
var(yc)+

var(yr)

]−1
(6.6)

IEσ2
ỹ

=


cov(yc,xc(ξ̂c ◦ γ̂c T )1k) + cov(yc,xc(ξ̂c ◦ γ̂r T ◦ Π̂T )1k)+

cov(yc,xr(ξ̂r ◦ γ̂c T )1k) + cov(yc,xr(ξ̂r ◦ γ̂r T ◦ Π̂T )1k)+

cov(yr, δ̂xc(ξ̂c ◦ γ̂c T )1k) + cov(yr, δ̂xc(ξ̂c ◦ γ̂r T ◦ Π̂T )1k)+

cov(yr, δ̂xr(ξ̂r ◦ γ̂c T )1k) + cov(yr, δ̂xr(ξ̂r ◦ γ̂r T ◦ Π̂T )1k)

·
[

var(yc)+

var(yr)

]−1
(6.7)

RESσ2
ỹ

=

[
cov(yc, Êcγ̂c) + cov(yc, Êrγ̂r)+

cov(yr, Êcγ̂cδ̂) + cov(yr, Êrγ̂rδ̂)

]
·

[
var(yc)+

var(yr)

]−1
(6.8)

Note that the quantity DEσ2
ỹ

contains the components of the variance re-
ferred to the effects DEc and DEr for both yc and yr. IEσ2

ỹ
contains the

indirect effects IEc and IEr together with the partial indirect effects for the
yc and yr components of the model, whereas RESσ2

ỹ
refers to the residual

terms of the models. Finally, because the sum Λ = DEσ2
ỹ

+ IEσ2
ỹ

+ RESσ2
ỹ

is equal to the observed variability explained by all the pathways in the
IMedA model, we can define the following two indices:

λDE = |DEσ2
ỹ
| · Λ−1 λIE = |IEσ2

ỹ
| · Λ−1 with λDE, λIE ∈ [0, 1] (6.9)
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where |.| indicates the absolute value. In our context, λDE and λIE can be
seen as the proportion of the observed variability explained by the effects
of the model which is exclusively due to either the direct effect (λDE) or the
indirect effect (λIE). Note that when λDE approaches 0 (and consequently,
λIE approaches 1) the representation reduces to the so-called full mediation
case in which the variance explained by the effects is exclusively due to the
mediators in the model. By contrast, if λDE approaches 1 (consequently, λIE

approaches 0), then the mediation model is said to be ill-posed because
mediators do not contribute in explaining the observed variability in the
model. Moreover, by omitting the term 1k in the Eq. 6.7, we obtain k

partial indices λ1
IE, ..., λ

j
IE, ..., λ

k
IE (with

∑k
j λ

j
IE = λIE) where each index λjIE

represents the proportion of the variance explained by that effect which is
specifically due to the corresponding mediator M̃j.

6.6 Simulation study

The aim of this simulation study is twofold. First, we will evaluate the
properties of the estimators of the proposed IMedA-ALS algorithm. The
least squares estimators for mediation analysis and symbolic regression
have been extensively studied in several simulation works (MacKinnon
et al., 2002; Preacher and Hayes, 2008; Zhang and Wang, 2013; Nkurunz-
iza and Ejaz Ahmed, 2011; Lima Neto and Carvalho, 2008). Overall, these
results confirmed that OLS estimators for mediation models are correct,
efficient, and accurate. However, although our model inherits all the clas-
sical least squares properties, in the present study we preferred to evaluate
the performances of the IMedA-ALS algorithm for the sake of complete-
ness and to further provide converging results.
Second, we will re-analyse the same simulated data by means of two alter-
native methods, namely a standard SEM approach and a regression-based
mediation approach for mediation analyses. Because such methodologies
have been widely studied in the mediation literature (Little, 1993; MacK-
innon, 2008), one could ask whether they can be also adopted in the case
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of interval-valued data with minimal changes in their model’s representa-
tions. Therefore, the second aim of our simulation study is to understand
whether these well-known approaches can appropriately reproduce the
interval-valued pathways generated by the original IMedA model repre-
sentation (see Figure 6.2-B).
The simulation study is conducted for the case of a one mediator (m = 1)
and two mediators (m = 2) models, respectively. However, because the
results for the m = 2 case largely mirrored those of the simpler m = 1

case, in the following paragraph we will discuss the latter case only.

6.6.1 Design and procedure

Two factors were systematically varied in a complete two-factorial design:

(i) the sample size (n) at four levels: 50, 250, 500, 1000;

(ii) the amount of noise (e) at four levels: 0.10, 0.30, 0.50, 0.70. Factor e
is defined as the proportion of the total variance in the data that is
not accounted by the IMedA model. Technically, the proportion of
error in the data is computed by modeling the variances of the error
terms in the IMedA model using a predefined set of values stored in
two matrices, HE and Hε, of error variances associated to the IMedA
S1 and S2 regression systems, respectively. These values were defined
according to a previous simulation study and reflect the condition that
the proportions of explained variance accounted by the IMedA model
always equal to 1− ek (k = 1 . . . 4).

Now we are in the position to provide all the details of our simula-
tion design. Let nk and ek be distinct levels of the factors n and e re-
spectively. The following procedural steps were repeated 1000 times
(Q = 1000) for each of the 16 combinations of levels of the simulation
design:
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(a) Generate the interval data matrix x̃nk×2 = ([u, v]ij) from the uni-
form distribution U(1, 10) with [u < v]ij. Next, obtain xc and xr

via the CR-parametrization on x̃nk×2;

(b) Generate the mediator variables Mc
(nk×m) and Mr

(nk×m) (withm =

1) by applying the regression system S1 with Ec ∼ N(0,HE
k,c) and

Er ∼ N(0,HE
k,r) with the following parameters: Ac = 4.8, Ar =

3.1, Ξ = (2.7, 4.1)T , Π = 2.04;

(c) Estimate the parameters Âc
q , Âr

q, Ξ̂q, Π̂q of the system S1 for the q-
th sample by means of the IMedA-ALS estimators (see Appendix
A);

(d) Generate the dependent variables yc
(nk×1) and yr

(nk×1) by applying
the regression system S2 with εc ∼ N(0,Hε

k,c), εr ∼ N(0,Hε
k,r) and

the following parameters: αc = 3.0, αr = −5.3, β = (2.3, 1.9)T ,
γc = 1.9, γr = 0.9, and δ = −3.25.

(e) Estimate the parameters α̂c
q , α̂r

q, β̂q, γ̂c
q , γ̂r

q , and δ̂q of the system S2

for the q-th sample by means of the IMedA-ALS estimators (see
Appendix A);

(f) Save the estimates and proceed until q = 1000.

This procedure was used to generate the estimated distributions of the
regression parameters for each combination of levels of the simulation
design. The whole procedure generated a total of 1000×4×4 = 16000

new data matrices as well as an equivalent number of parameters.

6.6.2 Outcome measures

The sample results were evaluated considering the following global
measures that give information about the overall performance of the
IMedA-ALS estimates:

(a) average root mean square error (AMSE) computed as:

AMSE = Q−1
∑
q

√√√√J−1
∑
j

[
(θ̂qj − θqj) · θqj−1

]2
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with θq and θ̂q being the arrays of parameters of the true and esti-
mated model, respectively. Low values of AMSE indicate that the
estimators accurately reproduce the true parameter values;

(b) proportion of agreement (PA) index computed as:

PA = Q−1
∑
q

[
1−

(
‖θ̂q − θq‖2 · (‖θq‖2)−1

)]
100

The index takes values in [0, 100] and assesses how much the esti-
mated array of parameters θ̂ resembles the true array θ (Timmer-
man and Kiers, 2002). When PA is closed to 100 the estimated
array θ̂ perfectly recovers the true array θ.

6.6.3 Results

The first column of Tables 6.3 reports the results of the simulation
study. As expected, the AMSE index decreased almost linearly with
increasing sample sizes whereas increased with increasing perturba-
tion terms e. On the contrary, the PA index increased with increasing
sample size. In particular, for n ≥ 250, PA became unaffected by factor
e. Overall, the IMedA-ALS algorithm was good and very stable also
in cases of high noise terms. Clearly, these results confirmed how the
ALS algorithm upon which IMedA is based generally shows highly
robust estimates. To summarize, IMedA-ALS always produced excel-
lent estimates when the amount of noise in the data was low (e = 0.1)
or moderate (e = 0.3). Moreover, also in cases of large (e = 0.5) or ex-
treme amount of noise (e = 0.7), IMedA-ALS still showed undistorted
estimates at least when n > 50. By contrast, for small sample sizes the
performance decreased according to the amount of noise.

6.6.4 Further analysis and results

We also evaluated the performances of a standard SEM approach for
single-valued data and a least squares procedure for standard me-
diation analysis in reconstructing the data generated in the previous
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n, e
IMedA-ALS SEM-ML SEM-WLS 2SMA

AMSE PA AMSE PA AMSE PA AMSE PA

n = 50
e1 0.11 99.45 0.44 84.36 14.67 65.89 0.44 84.37
e2 0.21 98.00 0.52 80.58 24.38 66.95 0.52 80.76
e3 0.28 95.13 0.53 80.00 21.24 61.93 0.53 80.25
e4 0.31 93.55 0.53 79.71 28.77 63.82 0.52 80.29

n = 250
e1 0.05 99.88 0.19 96.65 10.74 75.04 0.19 96.68
e2 0.08 99.64 0.22 95.79 12.26 71.98 0.21 95.99
e3 0.11 99.44 0.25 94.95 15.53 73.49 0.23 95.34
e4 0.14 99.12 0.26 94.66 25.21 71.49 0.23 95.39

n = 500
e1 0.03 99.95 0.14 98.26 6.88 79.19 0.14 98.29
e2 0.06 99.85 0.16 97.85 13.62 77.27 0.15 98.05
e3 0.08 99.73 0.19 97.27 13.52 76.35 0.16 97.67
e4 0.09 99.66 0.20 97.00 26.44 78.81 0.16 97.73

n = 1000
e1 0.02 99.98 0.10 99.17 6.79 86.15 0.10 99.20
e2 0.04 99.92 0.12 98.78 14.16 83.31 0.11 98.98
e3 0.05 99.87 0.15 98.37 6.97 82.51 0.12 98.77
e4 0.07 99.84 0.16 98.27 26.89 83.50 0.11 99.00

TABLE 6.3: Monte Carlo study: Percentage of agreement (PA) index and average
root mean square errors (AMSE) for the array of parameters of the single mediation
model (m = 1)

simulation design (see also Fig. 6.2-B). In particular, SEM model fit-
ting and estimation were implemented through the Lavaan R-package
(Rosseel, 2012) using the standard SEM representation for mediation
analysis with both ML and WLS estimation procedures. On the con-
trary, the standard regression approach, named 2SMA, was instead
implemented through a combination of Matlab scripts that modeled
a step-by-step regression procedure. Finally, the AMSE and PA mea-
sures were computed for each condition of the simulation design and
each of the three estimation procedures (SEM-ML, SEM-WLS, 2SMA).
The second, third, and fourth columns of the Table 6.3 report the en-
suing results. An inspection of Table 6.3 suggests how SEM-ML and
2SMA produced comparable results in estimating the IMedA param-
eters. As expected, both the estimation algorithms produced lower
errors with increasing sample size. By contrast, SEM-WLS always
showed lower performances and accuracies than the other two meth-
ods. However, it should be noted that all performances of SEM-ML,
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SEM-WLS, and 2SMA were not as good as those obtained using the
original IMedA-ALS algorithm. Indeed, although SEM-ML and 2SMA
provided acceptable results in resembling the true model structure
provided by the IMedA pathways, they still showed an higher value
of AMSE for each condition of the simulation design even when in-
creasing sample sizes were considered. By and large, this can reflect
relevant structural differences in the modeling and estimation proce-
dures adopted by the other two alternative approaches.

6.7 Empirical examples

By way of illustration we consider two data sets analyzed using the
IMedA approach. The first study evaluates how the relation between
role and work-related burnout can be mediated by some organiza-
tional variables (e.g., job satisfaction, job tenure). The second study
describes a mediation model in human computer interaction (HCI)
studies. In particular, we analysed whether the relationship between
the perceived usability and perceived beauty of the online system
ESSE-3 is mediated by hedonic qualities and familiarity.

6.7.1 Role and work-related burnout

General context and motivation. Role is an important variable in many
organizational research settings (Sawyer, 1992; Toderi et al., 2013). By
and large, role is considered a relevant dimension in predicting em-
ployee health and, more in general, organizational stress (Bliese and
Castro, 2000). Similarly, work-related burnout corresponds to a pro-
tracted individual response to a set of emotional and interpersonal
stressors which are presented in the organization (Ashforth and Mael,
1989). In this illustrative example we tested a model in which the ba-
sic linear relation between role (R) and work-related burnout (WB)
was evaluated by considering job satisfaction (S) and workload (WL)
as mediators.
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Data and measures. In this first application we used some recently pub-
lished data (Avanzi et al., 2012). In particular, data refers to Italian
teachers who participated in a psychosocial risk assessment evalu-
ation conducted in five schools in the Trentino region (northeast of
Italy). Data were collected by means of a specific questionnaire which
was administered in two different occasions (T1 and T2). The sam-
ple was composed of n = 140 teachers (83% females), with a mean
age of 41.2 years (ranging from 23 to 62 with SD = 10.7) and a mean
workload of 19.2 years (ranging from 2 to 37 with SD = 10.3). Because
in this case the variables are collected longitudinally, we decided to
pre-process the T1-T2 variables according to the response feature analy-
sis (Senn, Stevens, and Chaturvedi, 2000; Everitt, 1995). In particular,
considering min(T1, T2) and max(T1, T2) as the lower and the upper
bounds of intervals, centers and ranges were defined according to the
CR-parametrization. Note that in this context, the range of an interval
directly refers to a change score of the measurements collected over the
time.
Data analysis and results. The IMedA algorithm required 781 iterations
to estimate the parameters in the S1 system and 1084 iterations to es-
timate those in the S2 system. The performance of the IMedA model
was moderately good (R2

M = 0.39 and R2
Y = 0.48). Table 6.4 shows

the final estimated parameters together with the corresponding direct
and indirect effects for the model. A quick inspection of Table 6.4 re-
veals that the variance explained by all the pathways of the model
was Λ = 0.60 where the direct effect, the first mediator (WL), and
the second mediator (S) contributed for 22%, 36%, and 42% of the
variance, respectively. The results indicate that the centers of R did
not have a linear impact on WB (βc = 0.06) whereas the ranges of R
showed a weak but significant impact on WB (βr = 0.21). The centers
of R were negatively related to WL (ξc1 = −0.26) but positively asso-
ciated with S (ξc2 = 0.68). Considering the second regression system
S2, the centers and ranges of WL were positively associated with WB
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(γc1 = 0.68 and γr1 = 0.14), whereas the centers and ranges of S were
negatively related to WB (γc2 = −0.38, γr2 = −0.02). Interestingly, in
this example the direct effect of R was mainly produced by the ranges
(DEr = 0.19). By contrast, the centers did not show a significant ef-
fect (DEc = 0.06). The results also suggest that the indirect effects for
the centers and ranges were both significant. In particular, the indi-
rect effect through the centers of WL (IEc = −0.16) was negative and
weaker than the corresponding effect through S (IEc = −0.27). In-
stead, the indirect effect through the ranges of WL (IEr = 0.12) and
S (IEr = −0.10) showed opposite directions and both the effects were
significant. Overall, considering the centers component, the results
indicated that R has a protective impact on WB by reducing the pos-
itive relation between WL and WB. In a similar way, R improves the
negative relation between S and WB, that is to say, the more the role
is perceived as clear by the teacher, the higher is the perceived work
satisfaction and the lower is the perceived work-related burnout. By
contrast, considering the ranges component, R improves the positive
impact of WL on WB whereas it makes the relation between S and
WB vanish. Because in this context ranges are interpreted as change
scores, this result would possibly highlight how the more the teachers
experience unstable clarity of role, the more they experience workload
and work-related burnout.

6.7.2 Beauty and usability in HCI perspective

General context and motivation. The interplay between perceived beauty
and usability has been extensively studied in HCI perspective (Has-
senzahl, 2004). In this context, beauty has been defined as “a pre-
dominantly affect-driven evaluative response to the visual Gestalt of
an object” (Hassenzahl, 2008) whereas usability has been identified as
the ability of a product to fulfill the user’s needs and to support the
so-called “do-goals” (Hassenzahl and Monk, 2010). Over the years,
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first mediator (WL) second mediator (S)

values 95% CIs values 95% CIs

Model
parameters
(M)

Ac 3.92 (2.88,4.88) 0.81 (-0.45,1.94)
Ar 0.36 (-1.59,2.46) 0.17 (-0.99,1.42)
Π -0.08 (-0.73,0.69) 0.08 (-0.27,0.38)
ξξξc -0.26 (-0.50,-0.09) 0.68 (0.41,0.96)
ξξξr 0.17 (0.09,0.55) 0.18 (-0.14,0.57)

Model
parameters
(Y)

αc 1.50 (-0.22,2.37)
αl 0.18 (0.03,0.38)
δ 0.03 (0.05,0.25)
βc 0.06 (-0.06,0.39)
βr 0.21 (0.04,0.46)
γγγc 0.68 (0.54,0.81) -0.38 (-0.48,-0.24)
γγγr 0.14 (0.07,0.39) -0.02 (-0.16,0.07)

Effects

DEc 0.06 (-0.06,0.38)
DEr 0.19 (0.05,0.46)
IEc -0.16 (-0.33,-0.02) -0.27 (-0.40,-0.12)
IEr 0.12 (0.02,0.39) -0.10 (-0.24,-0.01)

Note: R2
M = 0.39, R2

Y = 0.48, λDE = 0.22, λ1IE = 0.36, λ2IE = 0.42, CIs indicate the
95% confidence intervals obtained by bias-corrected and accelerating (BCa) bootstrap
with 5000 bootstrap samples.

TABLE 6.4: First case study: Estimated model parameters and effects

a number of experiments have explored the basic question “what is
beautiful is usable” with mixed and sometimes opposing results (Ham-
borg, Hülsmann, and Kaspar, 2014; Tractinsky, Katz, and Ikar, 2000).
Among others, the well-known Hassenzahl’s model offers an inte-
grated framework in which the relationship between usability, beauty,
and other important product attributes can be evaluated. By adopting
such model, we analysed the perceived beauty and usability of a soft-
ware called ESSE-3. In particular, ESSE-3 is a dedicated online system
developed by CINECA and KION for supporting the digitalization of
Italian universities (CINECA and Kion, 1999). It provides a specific
student management system through which universities and institu-
tions can supply academic services such as registration, examinations,
e-learning, and portfolio to students, researchers, and professors. Al-
though ESSE-3 is used by almost all Italian universities, a growing de-
bate about its usability and overall quality has been carried out over
the recent years. To shed light on this debate, we studied whether
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the relationship between usability (PQ) and perceived beauty (B) of
the system ESSE-3 is mediated by its hedonic qualities (HQ) and the
user’s experience with this system (F). Note that the hedonic quality
(HQ) is referred as the ability of a product to stimulate user’s pleasure
in use and ownership (Hassenzahl and Monk, 2010) whereas user’s
experience evaluates the user’s familiarity with the product in use.

Data and measures. Fifty individuals (16 men, 34 women) participated
in the study. All participants were 1st or 4nd year students at the
University of Trento (Italy) that reported continuous experience with
the ESSE-3 system. The sample’s mean age was 22 years (ranging
from 19 to 48) with SD equals to 4.03. All the variables involved in
the study were measured by the AttracDiff2 questionnaire with bipo-
lar items measured with 7-point scales (Hassenzahl, Burmester, and
Koller, 2003). In particular, usability refers to the “Pragmatic Qual-
ity” (PQ) dimension of the questionnaire whereas hedonic quality
to the “Hedonic Quality-Stimulation” (HQ) dimension. Note that,
beauty (B) and familiarity (F) were obtained by using two single 7-
point scales ranging from hugly-beauty and unknown-known, respec-
tively. The self-reported responses were collected by adopting the
DYFRAT system (Calcagnì and Lombardi, 2014), a novel graphical
interface to dynamically measure some properties of the rating re-
sponses. In particular, using the mouse-tracking paradigm, the sys-
tem collects the streaming x–y coordinates of the computer mouse to-
gether with the response time of the final responses (Johnson et al.,
2012).1 Subsequently, for each participant’s response, the streaming
data was modeled as an histogram whose density expresses the tem-
poral and spatial uncertainty of the final response (see Figure 6.3).

1More technically, for each item, participants were told that a bended scale with seven response levels would be
presented on the screen, and that they were asked to choose which of these levels was the most appropriate for the
presented item. After participants clicked a start button, a window with the scale appeared at the top of the screen
while the cursor was allocated to the center of the screen. Participants gave their responses by mouse-clicking the
chosen level of the scale and, in the meanwhile, the DYFRAT system recorded the x–y coordinates of the computer
mouse with the their time.
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Because there exist a structural relationship between interval-valued
data and histogram-valued data (Billard and Diday, 2003), we easily
derived intervals from the supports of the observed histograms. In this
way, interval-valued data directly codify spatial uncertainties that are
related to the mouse-movements underlying the final individual’s re-
sponse.

ugly beauty

(A) 

ugly beauty

(B) 

1              4             7

(C) 

1              4             7

(D) 

FIGURE 6.3: Mouse Tracker: empirical patterns of mouse movements (A,B) and their asso-
ciated histograms (C,D). Note that the pattern (A) and (B) are different but share the same
final response: in particular, (A) shows a pattern with low spatial uncertainty, by contrast (B)
shows a patter with an higher level of uncertainty. The histograms (C) and (D) reflect this
difference in terms of uncertainty. Interval-valued data are depicted in red color.

Data analysis and results. The IMedA algorithms required 455 iter-
ations to the convergence for the S1 system and 671 iterations for
the S2 system, obtaining good performances in terms of general fit
(R2

M = 0.49 and R2
Y = 0.65). Table 6.5 shows the final estimated pa-

rameters and effects for the model. Overall, the variance explained
by the pathways of the model was Λ = 0.83 whereas the single effects
contributed for 38%, 42% and 20%, respectively. In particulars, the
centers of PQ did not show a strong impact on HQ (ξc1 = 0.10) as well
as on F (ξc2 = 0.13). By contrast, the ranges of PQ were moderately re-
lated to HQ (ξr1 = −0.42) and strongly to F (ξc2 = −0.84). HQ and F pos-
itively related to B for both centers (γc1 = 0.48, γc2 = 0.23) and ranges
(γr1 = 1.10, γr2 = 0.49). The direct impact of PQ on B was positive for
centers (βc = 0.69) and negative for the ranges (βr = −1.01). As a
consequence, the direct effect of PQ was mainly caused by the ranges
(DEr = −1.01). Interestingly, the results also showed how the indirect
effects of the model were mainly generated by the ranges (IEr = 0.58

and IEr = −0.10). In general, the larger the perceived usability of
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ESSE-3, the higher the perceived beauty of the system. Such relation
become stronger with decreasing levels of uncertainty for the PQ re-
sponses. Moreover, PQ increased the perceived hedonic quality (HQ)
of the system and such relation was stronger with decreasing levels
of uncertainties for the PQ responses. The same pattern was also ob-
served for PQ and F. Conversely, HQ and F positively increased the
perceived beauty of ESSE-3 and, in this case, also the variability of the
ranges contributed in explaining such relations. Overall, the results
state that when the usability (PQ) of ESSE-3 is high, also the hedo-
nic quality (HQ) of the system together with its beauty (B) are high.
Likewise, the more the exposition to the system (F), the higher the
perceived beauty (B).

first mediator (HQ) second mediator (F)

values 95% CIs values 95% CIs

Model
parameters
(M)

Ac 7.72 (4.01,9.02) -2.03 (-0.45,3.04)
Ar -1.32 (-1.59,2.46) 1.97 (-0.19,3.11)
Π -1.19 (-1.88,0.05) -1.12 (-1.27,0.08)
ξξξc 0.10 (0.02,0.55) 0.13 (0.09,0.32)
ξξξr -0.42 (-0.77,-0.04) -0.84 (-1.21,-0.19)

Model
parameters
(Y)

αc 3.23 (-0.11,4.01)
αl 2.16 (0.70,2.98)
δ 0.09 (0.02,0.19)
βc 0.69 (0.06,1.18)
βr -1.01 (-1.43,-0.16)
γγγc 0.48 (0.10,1.01) 0.23 (0.06,0.41)
γγγr 1.10 (0.56,1.71) 0.49 (0.20,0.81)

Effects

DEc 0.69 (0.06,1.18)
DEr -1.01 (-1.43,-0.16)
IEc -0.07 (-0.20,-0.02) 0.06 (-0.05,0.19)
IEr 0.58 (0.12,0.70) -0.10 (-0.23,-0.03)

Note: R2
M = 0.49, R2

Y = 0.65, λDE = 0.38, λ1IE = 0.42, λ2IE = 0.20, CIs indicate the
95% confidence intervals obtained by bias-corrected and accelerating (BCa) bootstrap
with 5000 bootstrap samples.

TABLE 6.5: Second case study: Estimated model parameters and effects
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6.8 Conclusions

In this chapter, we developed a novel and simple model (IMedA) to
perform mediation analysis on interval-valued variables. As far as we
know, IMedA is the first proposal that is devoted to mediation analy-
ses of interval data. Globally, the main characteristic of this model is
its use of two linear equations systems for modeling the interval path-
ways among the independent, mediators, and dependent observed
variables. This involved the extension of the well-known Stolzen-
berg’s decomposition to handle with interval-valued causal effects.
Relatedly, a set of variance-based indices was also defined to quan-
tify the sizes of such effects in the interval context. Finally, we used a
simulation study and two real applications to highlight some charac-
teristics of the proposed model. In particular, the simulation study re-
vealed that the IMedA model is generally robust and accurate enough
to reproduce the observed relationships among the interval variables.
Moreover, our findings also showed how IMedA outperforms exist-
ing mediation approaches for single-valued variables that might be
eventually used in modeling interval pathways.

6.8.1 Model’s advantages

One nice property of the IMedA representation is that the regres-
sions for ranges are obtained as linear combinations with the deter-
ministic estimated centers of the intervals (CR dependence assumption).
Consequently, in estimating the model’s parameters, the IMedA algo-
rithm works similarly to an alternating recursive two-steps procedure
where the reconstruction of ranges proceeds conditionally on the re-
construction of centers. This assumption is straightforward in an in-
terval framework, where both the centers and ranges are key compo-
nents in determining the observed interval data structures. To under-
stand this assumption, it is important to remind that our model can
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be regarded as a special case of the general interval centre-range mod-
els introduced by Lima Neto and Carvalho (2008) where, by contrast,
ranges are directly estimated from the observed data. Note that, al-
though the latter models could be more flexible in capturing all the
possible linear relationships among the observed variables, IMedA
would still be able to offer a good compromise between model sim-
plicity and model flexibility. For instance, the CR dependence as-
sumption would possibly allow to constrain the regression parame-
ters of ranges to be in their positive domains during the estimation
procedure as well as to provide a simplified decomposition of effects
on the regression equations. Moreover, the IMedA model also pro-
vides a more parsimonious representation as it requires estimating
only 12k parameters against 16k of the more general centre-range model
(with a benefit of 4k parameters). Finally, IMedA-ALS allows a sim-
ple generalization of the single-valued case as it subsumes the me-
diation model for single-valued variables as a special case. Indeed,
when data are expressed in terms of degenerated intervals, the CR-
parametrization always boils down to single-valued variables (with
xr = yr = 0n×1 and Mr = 0n×k) and the regression systems S1 and S2

simply reduce to the regressions for the ordinary multiple mediation
analysis (MedA), namely M = 1A+xξ+E and y = 1α+xβ+Mγ+ε

(note that in this special case also the IMedA estimators as well as the
effects decomposition reduce accordingly).

6.8.2 Model’s limitations

However, as for other statistical procedures, also the proposed method
can potentially suffer from some limitations. First, if the IMedA model
is fitted to empirical data which are largely corrupted by noise, the
corresponding estimates may violate the natural constraints of interval-
valued data (namely: Mr > 0n×k and yr > 0n×1) thus possibly yield-
ing unfeasible solutions. In these situations, a constrained version of
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the algorithm based on specific optimization techniques should in-
stead be used (lima2010constrained). However, for the standard un-
constrained algorithm, a simple way out might consist in setting to
zero all the negative range estimates so that their natural constraints
are numerically satisfied. Second, the CR dependence assumption can be
a concern when more sophisticated empirical paths are considered.
As a consequence, in these rare cases, the model representation can
result in poor model fits in reconstructing the observed interval data
structures. Third, some empirical contexts may require more complex
models to better evaluate the relationships among the observed vari-
ables. For instance, we may think to moderated mediation models
in which the indirect paths are partially or completely moderated by
other intervening variables (e.g., age, gender, income. See: Edwards
and Lambert, 2007). In a similar way, the structural assumption that
mediators work in parallel could be contrived in some particular con-
texts where models with serial mediators would be instead preferred
(Taylor, MacKinnon, and Tein, 2008). Finally, although our model con-
siders the covariance among mediators only indirectly (i.e., without
any modeling of their covariance matrix), in some circumstances re-
searchers may prefer to adopt specific parametric covariance matrix
estimators in testing mediation assumptions. In this case, because
of its regression based approach, the IMedA representation appears
clearly inadequate to achieve such an advantage.

6.8.3 Future extensions

Various possible extensions of our approach can be considered in fu-
ture works. For example, moderated mediation models for interval-
valued data would allow the modeling of more complex situations in
which the mediated paths vary as a function of third moderator vari-
ables. Likewise, interval mediation models with serial mediators may
also extend our proposal to represent situations in which researchers
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evaluate three-path mediated effects. Further, also modeling corre-
lational paths among the mediator directly, by means of parametric
covariance matrix estimators, can constitute a future target. Clearly,
these structural limitations could vanish in a more general interval-
valued SEM approach and its development can represent a future
venue of our research to be grounded on previous research in this
framework (Little et al., 2007; Iacobucci, Saldanha, and Deng, 2007).
Finally, several empirical situations may also require the use of media-
tion models handling with non-linear decomposition of effects (Hayes
and Preacher, 2010). The extension of the IMedA representation to
deal with non-linear pathways among variables can surely be consid-
ered an interesting future extension of the present chapter.

Appendix A: solutions for IMedA model

vec(Âr) = (Ik ⊗ 1T1)−1 · (Ik ⊗ 1)T vec(Mr −XΞΠ− 1AcΠ); (A1)

vec(Π̂) =

(Ik ⊗ΞTXTXΞ)+

(Ik ⊗ΞTXT1Ac)+

(Ik ⊗AcT1T1Ac)


−1

·

[
(Ik ⊗XΞ)T vec(Mr − 1Ar)+

(Ik ⊗ 1Ac)T vec(Mr − 1Ar)

]
; (A2)

vec(Ξ̂) =

[
(Ik ⊗XTX)+

(Π⊗XTX)

]−1

·

[
(Ik ⊗X)T vec(Mc − 1Ac)+

(Π⊗X)T vec(Mr − 1Ar − 1AcΠ)

]
; (A3)

vec(Âc) =

[
(Ik ⊗ 1T1)+

(Π⊗ 1T1)

]−1

·

[
(Ik ⊗ 1)T vec(Mc −XΞ)+

(Π⊗ 1)T vec(Mr − 1Ar −XΞΠ)

]
; (A4)

δ̂ =

 αc1T1αc + 2αc1TXβ + 2αc1TMγ+

βTXT1αc + 2βTXTXβ + 2βTXTMγ+

γTMT1αc + 2γTMTXβ + 2γTMTMγ


−1

·

 αc1T (yr − 1αr)+

βTXT (yr − 1αr)+

γTMT (yr − 1αr)

 ; (A5)

β̂ =

[
XTX+

δXTXδ

]−1

·

[
XT (yc − 1αc −Mγ)+

XT [ yr − 1αr + (−1αc −Mγ)δ ]δ

]
; (A6)

γ̂c =

[
McTMc+

δMcTMcδ

]−1

·

[
McT (yc − 1αc −Xβ −Mrγr)+

McT [ yr − 1αr + (−1αc −Xβ −Mrγr)δ ]δ

]
; (A7)
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γ̂r =

[
MrTMr+

δMrTMrδ

]−1

·

[
MrT (yr − 1αr −Xβ −Mcγc)+

MrT [ yr − 1αr + (−1αr −Xβ −Mcγc)δ ]δ

]
; (A8)

α̂c =
1

n(1 + δ2)
·

[
1T (yc −Xβ −Mγ)+

1T [ yr − 1αr + (−Xβ −Mγ)δ ]δ

]
; (A9)

α̂r =
1

n
· 1T [ yr − (1αc −Xβ −Mγ)δ]; (A10)

where vec(.) is the linear operator that converts a n× k matrix into a kn× 1 vector,
⊗ denotes the Kronecker product, Ik is a k × k identity matrix whereas 1 is a n × k
matrix of all ones.

Appendix B: Decomposition of effects for IMedA model

In order to derive direct and indirect effects for the IMedA model, we proceed as
follows. Consider the regression system S1 and S2 shown in Eq. 6.1:

S1 :

Mc = 1Ac + XΞ + Ec

Mr = 1Ar + (1Ac + XΞ)Π + Er
S2 :

yc = 1αc + Xβ + Mcγc + Mrγr + εc

yr = 1αr + (1αc + Xβ + Mcγc + Mrγr)δ + εr

Firstly, substitute the equations of Mc and Mr into yc and yr, as follows:

S ′2 :

yc = 1αc + Xβ + [1Ac + XΞ + Ec]γc + [1Ar + (1Ac + XΞ)Π + Er]γr + εc

yr = 1αr + (1αc + Xβ + [1Ac + XΞ + Ec]γc + [1Ar + (1Ac + XΞ)Π + Er]γr)δry + εr
(6.11)

Multiplying through and expanding terms, using a little algebra, we obtain the fol-
lowing reduced form system S ′2:

S ′2 :


yc = 1αc + 1Acγc + 1Arγr + 1AcΠγr + xc[βc + ξc(γc + Πγr)]

+ xr[βr + ξr(γc + Πγr)] + Ecγc + Erγr + εc

yr = 1αr + 1αcδ + 1Acγcδ + 1Arγrδ + 1AcΠγrδ + xc[βc + ξc(γc + Πγr)]δ

+ xr[βr + ξr(γc + Πγr)]δ + Ecγcδ + Erγrδ + εr

(6.12)

Next, taking the partial derivatives of yc and yr with respect to xc and xr we have
the equations for the total effect (TE) of the model, as follows:


∂ yc

∂ xc = δβc + ξc(γc + Πγr) ∂ yc

∂ xr = δβr + ξr(γc + Πγr)

∂ yr

∂ xc = δβc + ξc(γc + Πγr)δ ∂ yr

∂ xr = δβr + ξr(γc + Πγr)δ
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Finally, collecting and simplifying the ensuing terms, we obtain the following equa-
tions for TE:

TEyc

= βc
y + βr

y + (βc
m ◦ γc T

m )1m + (βc
m ◦ γr T

m ◦Π)1m + (βr
m ◦ γc T

m )1m + (βr
m ◦ γr T

m ◦Π)1m

TEyr

= δry[β
c
y + βr

y + (βc
m ◦ γc T

m )1m + (βc
m ◦ γr T

m ◦Π)1m + (βr
m ◦ γc T

m )1m + (βr
m ◦ γr T

m ◦Π)1m]
(6.13)

which are in the general form of TE = DEc + DEr + IEc/c + IEc/r + IEr/c + IEr/r. Note
that the equation TEy

r

for yr is obtained as linear combination of TEy
c

through the
parameter δ.

Appendix C: Decomposition of variance for IMedA model

Considering the reduced form system S ′2:

S ′2 :


yc = 1αc + 1Acγc + 1Arγr + 1AcΠγr + xc[βc + ξc(γc + Πγr)]

+ xr[βr + ξr(γc + Πγr)] + Ecγc + Erγr + εc

yr = 1αr + 1αcδ + 1Acγcδ + 1Arγrδ + 1AcΠγrδ + xc[βc + ξc(γc + Πγr)]δ

+ xr[βr + ξr(γc + Πγr)]δ + Ecγcδ + Erγrδ + εr

(6.14)

the following identities hold:

var(yc) = cov(yc,xcβc) + cov(yc,xrβr) + cov(yc,xc(ξc ◦ γcT )1k) + cov(yc,xc(ξc ◦ γrT ◦ΠT )1k)+

+ cov(yc,xr(ξr ◦ γcT )1k) + cov(yc,xr(ξr ◦ γrT ◦ΠT )1k)+

+ cov(yc,Ecγc) + cov(yc,Erγr) + cov(yc, εc)

var(yr) = cov(yr, δxcβc) + cov(yr, δxrβr) + cov(yr, δxc(ξc ◦ γcT )1k)+

+ cov(yr, δxc(ξc ◦ γrT ◦ΠT )1k) + cov(yr, δxr(ξr ◦ γcT )1k)+

+ cov(yr, δxr(ξr ◦ γrT ◦ΠT )1k)+

+ cov(yr,Ecγcδ) + cov(yr,Erγrδ) + cov(yc, εr)

(6.15)

after noticing that:

cov(yc,1αc + 1Acγc + 1Arγr + 1AcΠγr) = 0

cov(yc,1αr + 1αcδ + 1Acγcδ + 1Arγrδ + 1AcΠγrδ) = 0

where cov(.) and var(.) indicates the covariance and variance operators, ◦ denotes
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the Hadamard product whereas 1k is a k× 1 vector of all ones. The following prop-
erties hold:


cov(yc,xcβc) + cov(yc,xrβr)+

cov(yc,xc(ξc ◦ γcT )1k) + cov(yc,xc(ξc ◦ γrT ◦ΠT )1k)+

cov(yc,xr(ξr ◦ γcT )1k) + cov(yc,xr(ξr ◦ γrT ◦ΠT )1k)+

cov(yc,Ecγc) + cov(yc,Erγr) + cov(yc, εc)

 · [var(yc)
]−1

= 1


cov(yr, δxcβc) + cov(yr, δxrβr)+

cov(yr, δxc(ξc ◦ γcT )1k) + cov(yr, δxc(ξc ◦ γrT ◦ΠT )1k)+

cov(yr, δxr(ξr ◦ γcT )1k) + cov(yr, δxr(ξr ◦ γrT ◦ΠT )1k)+

cov(yr,Ecγcδ) + cov(yr,Erγrδ) + cov(yr, εr)

 · [var(yr)
]−1

= 1

(6.16)


cov(yc,xcβc) + cov(yc,xrβr)+

cov(yc,xc(ξc ◦ γcT )1k) + cov(yc,xc(ξc ◦ γrT ◦ΠT )1k)+

cov(yc,xr(ξr ◦ γcT )1k) + cov(yc,xr(ξr ◦ γrT ◦ΠT )1k)+

cov(yc,Ecγc) + cov(yc,Erγr)

 · [var(yc)
]−1

≈ ‖y
c∗ − ȳc‖2

‖yc − ȳc‖2


cov(yr, δxcβc) + cov(yr, δxrβr)+

cov(yr, δxc(ξc ◦ γcT )1k) + cov(yr, δxc(ξc ◦ γrT ◦ΠT )1k)+

cov(yr, δxr(ξr ◦ γcT )1k) + cov(yr, δxr(ξr ◦ γrT ◦ΠT )1k)+

cov(yr,Ecγcδ) + cov(yr,Erγrδ)

 · [var(yr)
]−1

≈ ‖y
r∗ − ȳr‖2

‖yr − ȳr‖2

(6.17)

where ȳc and ȳr are n× 1 vectors containing the mean values of yc and yr whereas
yc∗ and yr∗ refers to the estimated reduced equations in S ′2 without considering the
residual terms εc and εr. Note that the terms in the right side of Eq. 6.17 denotes the
variance explained by the reduced system S ′2.
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