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A B S T R A C T

Learning from demonstration (LfD) is considered as an efficient way to transfer skills from humans to
robots. Traditionally, LfD has been used to transfer Cartesian and joint positions and forces from human
demonstrations. The traditional approach works well for some robotic tasks, but for many tasks of interest, it
is necessary to learn skills such as orientation, impedance, and/or manipulability that have specific geometric
characteristics. An effective encoding of such skills can be only achieved if the underlying geometric structure
of the skill manifold is considered and the constrains arising from this structure are fulfilled during both
learning and execution. However, typical learned skill models such as dynamic movement primitives (DMPs)
are limited to Euclidean data and fail in correctly embedding quantities with geometric constraints. In this
paper, we propose a novel and mathematically principled framework that uses concepts from Riemannian
geometry to allow DMPs to properly embed geometric constrains. The resulting DMP formulation can deal with
data sampled from any Riemannian manifold including, but not limited to, unit quaternions and symmetric
and positive definite matrices. The proposed approach has been extensively evaluated both on simulated data
and real robot experiments. The performed evaluation demonstrates that beneficial properties of DMPs, such
as convergence to a given goal and the possibility to change the goal during operation, apply also to the
proposed formulation.
1. Introduction

Reliable execution of robotic tasks in highly unstructured and
dynamic scenarios is fundamental to bringing robots into human-
inhabited environments. In such environments, robots need to accu-
rately control their motion in free space as well as during physical
interactions, which requires the capability to generate and adapt online
reference behaviors in the form of motion, impedance, and/or force
trajectories. Therefore, an effective encoding of diverse trajectory data
is the key to spreading robotic solutions in everyday environments.

The Learning from Demonstration (LfD) paradigm [1] aims to de-
velop learning solutions that allow the robot to enrich its skills via
human guidance. Among the existing approaches [2,3], the idea of
encoding robotic skills into stable dynamical systems has gained in-
terest in the LfD community [4–6]. Dynamic Movement Primitives
(DMPs) [7] are one of the first and most popular dynamical system-
based approaches for LfD. DMPs are capable of encoding both discrete
and periodic robotic skills into time-dependent systems. Discrete skills,
also referred to as point-to-point motions, consist of motion trajectories
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with a fixed start and end point (goal) and are well-suited to represent
many human daily tasks such as picking and placing objects.

The original DMP formulation considers one Degree of Freedom
(DoF) trajectories. Multi-DoF trajectories are learned separately for
each DoF and synchronized by a common phase variable. This strategy
is effective for encoding independent skills like joint or Cartesian
position trajectories, but it fails if the different DoFs are mutually
dependent. This situation is common in robotics, where variables of
interest may be interrelated by geometric constraints. Examples of
such variables include: (i) orientation representations, like rotation
matrices [8] or unit quaternions [8–10], and (ii) inertia [11], manipula-
bility [12,13], stiffness, and damping [14,15] that are encapsulated in
Symmetric Positive Definite (SPD) matrices. For variables interrelated
by geometric constraints, the embedding strategy has to be modified to
fulfill the constraints during both training and execution.

Several robotic skills consist of a combination of variables belonging
to different manifolds. A simple example is a pose trajectory where the
position lies in Cartesian space and the orientation is represented e.g., as
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Table 1
Comparison among the state-of-the-art of DMP-based approaches and our -DMP across different Riemannian manifolds: Euclidean space of
dimension 𝑚 𝑚, unit quaternion space 3, 𝑚-unit sphere manifold 𝑚, 3D-rotation matrices space  (3), special orthogonal group in 𝑚
dimensions  (𝑚), and the space of 𝑚 × 𝑚 SPD matrices 𝑚

++.

𝑚 3 𝑚  (3)  (𝑚) 𝑚
++ Composite spaces

e.g., 3 ×3

Ijspeert et al. [4,7] ✓ – – – – – –

Ude et al. [8] – ✓ – ✓ – – –

Koutras et al. [9],
Abu-Dakka et al. [16],
Saveriano et al. [18]

– ✓ – – – – –

Abu-Dakka et al. [17] – – – – – ✓ –

Our -DMP ✓ ✓ ✓ ✓ ✓ ✓ ✓
unit quaternions. To avoid accuracy loss, Riemannian metrics should
be embedded in the DMP formulation, allowing the consideration
of all the constraints arising from various geometric structures in a
unified and consistent manner. This is not possible with existing DMP
formulations [4,8,9,16,17], which are space-dependent.

In this paper, we propose Geometry-aware DMP (-DMP), a new
formulation that uses differential geometry to extend classical DMP
for Euclidean data to other Riemannian manifolds. This extension
allows discrete DMPs to effectively represent data evolving on different
Riemannian manifolds, which subsequently allows the generation of
smooth trajectories for data that do not belong to the Euclidean space.
The formulation allows to encode various forms of point-to-point ma-
nipulation skills with specific geometric constraints in a unified and
manifold independent manner. The general formulation provided in
this paper can be applied to any trajectory of data by considering
the corresponding Riemannian manifold. The effectiveness of the pro-
posed approach is demonstrated both on synthetic data and physical
experimental setups.

Preliminary results of this work have been published in [17], where
we formulated DMP equations to learn SPD data profiles. This pa-
per adds several significant novel contributions with respect to our
published work:

1. A unified and mathematically principled framework, -DMP,
that uses differential geometry to extend classical DMPs to any
Riemannian manifold.

2. Exploitation of manifold composites to encode and learn com-
posite manifolds in one single DMP formulation.

3. Proof of the stability of the proposed -DMP.
4. Formulation of -DMP goal switching without the need to use

parallel transport.
5. An extensive evaluation and comparison with existing

approaches.
6. Instructive and unified source codes accompany the paper with

all necessary datasets at https://gitlab.com/geometry-aware/ga-
dmp.

This paper is organized as follows: Next section presents the state-of-
the-art. A background about standard DMPs and Riemannian geometry
are given in Section 3. Afterwards, we provide the theoretical founda-
tion of -DMPs in Section 4. Subsequently, we evaluate our approach
in several experiments (Section 5). The work is concluded in Section 6.

2. Related works

LfD is a valuable framework to teach the robot new skills with-
out explicitly coding them. LfD framework is effective in extracting
relevant patterns from a few task demonstrations and in generalizing
these patterns to different scenarios. LfD has been deeply investigated
and several approaches have been developed in the literature. These
include, among others, DMP [4,19], Probabilistic Movement Primitives
(ProMP) [20], Gaussian Mixture Models (GMMs) [21], and Kernelized
2

Movement Primitives (KMP) [10].
In many previous works, training data are simply treated as time se-
ries of Euclidean vectors. Other approaches, like [22], learn and adapt
quaternion trajectories without enforcing the unit norm constraint,
which leads to non-unit quaternions and hence requires an additional
re-normalization step. Nevertheless, several works in the literature have
investigated, to some extent, the problem of learning manipulation
skills with specific geometric constraints. Examples of such skills in-
clude orientations, impedance, and manipulability matrices that are
encapsulated in SPD matrices. The following paragraphs examine the
state-of-the-art approaches.

DMP-based approaches: For instance, Abu-Dakka et al. extended
the classical DMPs to encode discrete [16] and periodic [23] unit
quaternion trajectories, while the work in [8] also considers different
formulation to cope with rotation matrices. The quaternion-based DMPs
were also extended to include the real-time goal switching mecha-
nism [8]. The stability of the orientation DMPs is shown in [18]. In [9],
authors proposed a modified formulation of unit quaternion DMPs
to prevent oscillations that may arise in some cases. Abu-Dakka and
Kyrki [17] reformulated DMPs to generate discrete SPD profiles, which
is also able to adapt to a new goal-SPD-point. There is an important
conceptual difference, about how we fit a curve to data points of
a demonstration on a manifold, between -DMP and our previous
work [17]. In [17], to fit a curve to data points {𝐏𝑡}𝑇𝑡=0 on a Riemannian
manifold , we sought a curve 𝛾 ∶ [𝑡0, 𝑡𝑇 ] →  that passed exactly
through each point of the demonstration trajectory. That assumption
does not guarantee proximity between each pair of consecutive points,
and, as detailed in Section 4.1, this led to the need to use parallel
transport to accurately compute the covariance derivative. However, in
this paper, inspired by [24], we look for 𝛾 to be sufficiently straight
while passing sufficiently close to the data points at the given intervals.
This lets us remove the parallel transport operation, i.e., to approximate
the covariant derivative with the total derivative, resulting in a more
compact formulation and a more efficient implementation of -DMP.

Finally, unlike our unified formulation, the formulations of all
these previously mentioned approaches are space-specific and do not
consider the possibility of treating data from different manifolds in a
unified and consistent manner. Table 1 compares our proposed -DMP
and the state-of-the-art of the DMP-based approaches.

Alternative approaches: Point-to-point motions are of particular
interest in robotics as they form the basis of many everyday ma-
nipulation tasks. Therefore, researchers have developed approaches
alternative to DMPs to represent point-to-point motions. Focusing on
variable orientation profiles, [25] extended GMMs to represent the
distribution of the quaternion displacements. Starting from this ex-
tended GMM, the work in [26] exploits the Riemannian structure
of the unit sphere to encode variable orientations into a geometry-
aware Task-Parameterized GMM (TP-GMM) [21]. KMP are extended
to unit quaternions in [10] by projecting orientation data onto the
tangent space of the unit sphere (which is locally Euclidean). Learning
is performed in the tangent space and generated data are projected back

to the manifold.

https://gitlab.com/geometry-aware/ga-dmp
https://gitlab.com/geometry-aware/ga-dmp
https://gitlab.com/geometry-aware/ga-dmp
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Table 2
Key notations. Indices, super/subscripts, constants, and variables have the same meaning over the entire text.

mathcal
symbols e.g.,  ≜ denote manifolds. bold mathcal symbols

e.g.,  ≜ denote trajectories.

capital letter
variables e.g., 𝐏

≜ denote points in a manifold. small letter variables
e.g., 𝐩 ≜ denote points in a tangent space.

𝐏 ≜ The tangent space of a manifold 
around a point 𝐏 ++ ≜ ++

𝑚 ≜ Euclidean space of dimension 𝑚. 𝑚 ≜ Sphere manifold of dimension 𝑚.

 (𝑚) ≜ Special orthogonal group of dimen-
sion 𝑚.  (𝑚) ≜ Special Euclidean group of dimension

𝑚.
𝑚
++ ≜ Space of 𝑚 × 𝑚 SPD. 𝑚 ≜ Space of 𝑚 × 𝑚 symmetric matrices.

𝑁 ≜ # of nonlinear basis functions 𝑖 ≜ index ∶ 𝑖 = 1, 2,… , 𝑁
𝑙 ≜ index ∶ 𝑙 = 1, 2,… , 𝑇 𝑇 ≜ Number of samples

𝑦, 𝑦̇ ≜ trajectory data and its 1st derivative
in classical DMP 𝑧, 𝑧̇ ≜ scaled velocity and acceleration in

-DMP

 , ̇ ≜ trajectory data and its 1st derivative
in -DMP , ̇ ≜ scaled velocity and acceleration in

-DMP
𝛼𝑧 , 𝛽𝑧 , 𝛼𝑥 , 𝛼𝑔 ≜ Positive constant gains. 𝑥 ≜ DMP phase variable.
𝑓 (𝑥),  (𝑥) ≜ forcing term for different spaces 𝑤𝑖 ≜ adjustable weights
𝛹𝑖 ≜ Gaussian basis functions 𝑐𝑖 and ℎ𝑖 ≜ centers and widths of 𝛹𝑖
𝑔 ∈ R and 𝐆 ∈
 ≜ attractor point (goal) in different

spaces ̂ ∈  ≜ new manifold trajectory generated by
-DMP
d

𝑓

SPD matrices are used to encapsulate data in many applications,
ncluding brain–computer interfaces [27], transfer learning [28], dif-
usion tensor imaging [29], as well as various robotic skills [30].
lternative to DMP, the method in [31] used a tensor-based formu-

ation of GMM and Gaussian Mixture Regression (GMR) on the SPD
hat enabled learning and reproducing skills involving SPD without ad-
itional data re-parametrization. Recently, [13] proposed a kernelized
reatment to learn and adapt SPD profiles in the tangent space of the
PD manifold.
-DMP vs. state-of-the-art: The aforementioned geometry-aware

ormulations are space-specific and do not consider the possibility
f treating data from different manifolds in a unified and consistent
anner. On the contrary, our -DMP formulation is general and can be

applied to any trajectory of data even when different DoFs belong to
different spaces. Moreover, DMPs are one of the most popular LfD ap-
proaches and many robotics applications rely on them. In this respect,
-DMP provides a useful framework to let users already familiar with
DMPs to develop new applications.

3. Preliminaries

In this section, we briefly introduce the classical formulation of
discrete DMPs (Section 3.1) and define fundamental operations on Rie-
mannian manifolds (Section 3.2). Table 2 summaries the key notations
used in this paper.

3.1. Dynamic movement primitives

DMP is composed of a system of nonlinear differential equations
capable of encoding movements while guaranteeing convergence to
a designated goal point (attractor) [19]. The foundational work on
DMPs for discrete, point-to-point, motions was first introduced by
Ijspeert et al. [7]. However, in order to generate movements adaptable
to new situations without inducing excessive accelerations or amplifi-
cation, Pastor et al. introduced some modifications [22]. In this paper,
we adopt the formulation proposed by Pastor et al.. For a single DoF
trajectory 𝑦, the DMP system of equations proposed in [22] is described
as follows:

𝜏𝑧̇ = 𝛼𝑧(𝛽𝑧(𝑔 − 𝑦 − (𝑔 − 𝑦0)𝑥 + 𝑓 (𝑥)) − 𝑧), (1)

𝜏𝑦̇ = 𝑧, (2)

𝜏𝑥̇ = −𝛼𝑥𝑥, (3)

where 𝜏 is a positive scalar that represents the temporal scaling factor
and determines the overall duration of the movement. 𝑦̇ represents
3

c

velocity and 𝑧 denotes scaled velocity. 𝑥 is a phase variable, governing
the dynamical system’s evolution towards the attractor point. It is used
to avoid explicit time dependency in the formulation. The canonical
system, given by (3), is initialized as 𝑥(0) = 1 and vanishes exponen-
tially1 as 𝑡 → ∞ if the gain 𝛼𝑥 > 0. 𝛽𝑧 and 𝛼𝑧 are positive gains that
define the dynamical system’s behavior. In order to ensure a critically
damped system, we choose 𝛼𝑧 = 4𝛽𝑧. The attractor (goal) point of the
movement is denoted by 𝑔. This system of equations prevents high
accelerations at the beginning of the motion or when the goal is close
to the initial state, allowing for the reproduction of motions with the
same initial and target states while preventing over-amplifications and
trajectory mirroring effects when changing the goal.

The nonlinear forcing term 𝑓 (𝑥) is classically parameterized as a
linear combination of 𝑁 nonlinear radial basis functions scaled by
the phase variable 𝑥. 𝑓 (𝑥) allows the dynamical system to preserve
the shape of any smooth trajectory, and subsequently, generate this
trajectory from an initial position 𝑦0 to the attractor 𝑔. Thus, 𝑓 (𝑥) is
efined as:

(𝑥) =
∑𝑁

𝑖=1 𝑤𝑖𝛹𝑖(𝑥)
∑𝑁

𝑖=1 𝛹𝑖(𝑥)
𝑥, (4)

𝛹𝑖(𝑥) = exp
(

−ℎ𝑖
(

𝑥 − 𝑐𝑖
)2
)

, (5)

where 𝑤𝑖 are the weights adjusted based on measured data to achieve
the desired behavior. 𝛹𝑖(𝑥) are Gaussian basis functions with centers 𝑐𝑖
and widths ℎ𝑖. For a given number of basis functions 𝑁 , centers 𝑐𝑖 and
widths ℎ𝑖 are defined as follows:

𝑐𝑖 = exp
(

−𝛼𝑥
𝑖 − 1
𝑁 − 1

)

, ℎ𝑖 =
1

(𝑐𝑖+1 − 𝑐𝑖)2
, ℎ𝑁 = ℎ𝑁−1

where 𝑖 = 1,… , 𝑁 . For each DoF.
In order to control multiple DoFs systems, such as trajectories of

joint angles of 𝐷 DoF manipulator, we consider a separate transforma-
tion system (1)–(2) for each of the 𝐷 DoFs to control. Additionally, we
utilize a single canonical system (3) shared across the 𝐷 transformation
systems, which synchronizes their time evolution.

3.2. Riemannian manifolds

An 𝑚-dimensional manifold is a topological space where each point
locally resembles Euclidean space 𝑚. A differentiable manifold ex-
tends this notion to ensure that at each point, there exists a tangent

1 The minimum phase to execute a motion within 𝑇𝑓 seconds can be
omputed through 𝑥(𝑇 ) = exp(− 𝛼𝑥 𝑇 ).
𝑓 𝜏 𝑓
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Fig. 1. A Riemannian manifold  and its tangent space 𝐏 defined at point 𝑷 .

space. A Riemannian manifold  is a smooth and differentiable man-
ifold where each tangent space is equipped with a Riemannian metric
tensor. This tensor, denoted as ⟨⋅, ⋅⟩𝐏, is a positive definite inner prod-
uct defined on the tangent space 𝐏 for every point 𝐏 ∈ . The
Riemannian metric introduces the concept of length on the manifold.
By utilizing this metric, we can generalize the notion of a ‘‘straight
line’’ between two points by defining a geodesic as the shortest curve
that connects two points on a manifold. This geodesic allows for the
transportation of vectors between tangent spaces [32,33]. A geodesic
𝛾(𝑡) is defined as a continuously differentiable curve that connects
points 𝑨,𝑩 on the manifold . It locally minimizes the distance
between these points, and its length is given by the functional:

𝑩
𝑨(𝛾) = ∫

1

0
⟨𝛾̇(𝑡), 𝛾̇(𝑡)⟩d𝑡. (6)

The distance between points 𝑨 and 𝑩 is then defined by minimizing
(6), i.e.,

dist(𝑨,𝑩) = min𝑩
𝑨(𝛾) (7)

3.2.1. Mapping operators
The tangent spaces and their bases provide the ability to perform

linear algebra. In order to perform computations on the manifold while
preserving distances, a mapping system is needed to switch between
the tangent space 𝐏 and the manifold , see Fig. 1. These mapping
operators are:

• The logarithmic map (

Log𝐏 (⋅)
)

is a function that maps a point
𝑨 ∈  into a point 𝒂 ∈ 𝐏 (see Fig. 1). It is defined as:

Log𝐏 (⋅)∶ ↦ 𝐏, (8)

• The exponential map (

Exp𝐏 (⋅)
)

is the inverse of the logarithmic
map. It maps a point 𝒂 ∈ 𝐏 in the tangent space of 𝑷 to a
point 𝑨 ∈  such that 𝑨 lies on the geodesic starting from 𝐏 in the
direction of 𝒂 with distance of ‖𝒂‖ = ⟨𝒂,𝒂⟩𝐏 (see Fig. 1). It is defined
as:

Exp𝐏 (⋅)∶𝐏 ↦ , (9)

3.2.2. Cartesian products in Riemannian geometry
In Riemannian geometry, the Cartesian product of two Riemannian

manifolds  and  is also a manifold denoted as  ×  . This
construction allows us to combine the geometric structures of both 
and  into a single manifold.

For any points 𝐏1 ∈  and 𝑼 1 ∈  , and their corresponding
tangent vectors 𝒑1 ∈ 𝐏1 and 𝒖1 ∈ 𝑼1

 , the tangent space of ×
at the point (𝐏1,𝑼 1) is isomorphic to the direct sum of the tangent
spaces of  and  :

(𝐏1 ,𝑼1)( × ) ≅ 𝐏1⊕ 𝑼1
 , (10)

This means that any tangent vector at (𝐏1,𝑼 1) can be uniquely
decomposed into a pair of tangent vectors, one in 𝐏1 and the other
in   .
4

𝑼1
Table 3
Re-interpretation of basic standard operations in a Riemannian manifold [34].

Euclidean space Riemannian manifold

Subtraction ⃖⃖⃖⃖⃖⃖⃖⃗𝐩1𝐩2 = 𝐩2 − 𝐩1 ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐏1𝐏2 = Log𝐏1

(

𝐏2
)

Addition 𝐩2 = 𝐩1 + ⃖⃖⃖⃖⃖⃖⃖⃗𝐩1𝐩2 𝐏2 = Exp𝐏1

(

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐏1𝐏2

)

Distance dist(𝐩1 ,𝐩2) = ‖𝐩2 − 𝐩1‖ dist(𝐏1 ,𝐏2) =∥ ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐏1𝐏2 ∥𝐏1

Interpolation 𝐩(𝑡) = 𝐩1 + 𝑡 ⃖⃖⃖⃖⃖⃖⃖⃗𝐩1𝐩2 𝐏(𝑡) = Exp𝐏1

(

𝑡⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐏1𝐏2

)

To facilitate computations on the Cartesian product manifold  ×
 , we require to redefine the mapping operators in (8) and (9) as
follows:

Log(𝐏1 ,𝑼1)
(

𝐏2,𝑼 2
)

∶  × ↦ (𝐏1 ,𝑼1)( × ), (11)

Exp(𝐏1 ,𝑼1) (𝒑, 𝒖) ∶ (𝐏1 ,𝑼1)( × ) ↦  × . (12)

This leads to

Log(𝐏1 ,𝑼1)
(

𝐏2,𝑼 2
)

= Log
⎡

⎢

⎢

⎣

𝐏1
𝑼 1

⎤

⎥

⎥

⎦

([

𝐏2
𝑼 2

])

=

[

Log𝐏1
(

𝐏2
)

Log𝑼1

(

𝑼 2
)

]

,

Exp(𝐏1 ,𝑼1) (𝒑, 𝒖) = Exp
⎡

⎢

⎢

⎣

𝐏1
𝑼 1

⎤

⎥

⎥

⎦

([

𝒑
𝒖

])

=
[

Exp𝐏1
(

𝐏2
)

Exp𝑼1

(

𝑼 2
)

]

.

where (𝒑, 𝒖) ∈ (𝐏1 ,𝑼1)( × ) and (𝐏2,𝑼 2) ∈  × .

3.2.3. Computing in Riemannian manifolds
Let 𝐏1,𝐏2 ∈  and 𝐩1,𝐩2 ∈ 𝑚, then the reinterpretation of basic

standard operations (e.g., addition and subtraction) in a Riemannian
manifold are summarized in Table 3.

3.2.4. Riemannian geometric mean
Given a set of points

{

𝐏𝑖
}𝑛
𝑖=1 ∈  and a geodesic distance dist(𝐏𝑗 ,𝐏𝑖)

between two points in , the Fréchet mean [35] is estimated by
minimizing the sum of squared geodesic distances

𝐏 = arg min
𝐏∈

𝑁
∑

𝑖=1
dist2(𝐏,𝐏𝑖), (13)

This estimation can be efficiently computed iteratively by following
Alg. 1 [35].
Algorithm 1 Intrinsic mean

Initialization: 𝐏 = 𝐏1

1: while ‖𝒂‖ < 𝛿 do
2: 𝒂 = 1

𝑁
∑𝑁

𝑖=1 Log𝐏
(

𝐏𝑖
)

3: 𝐏 = Exp𝐏 (𝜖𝒂) ; 𝜖 ≤ 1
4: end while

4. Proposed approach

In this section, we provide a generalized and unified formulation for
DMPs based on Riemannian geometry in order to learn and adapt robot
manipulation skills regardless its corresponding space, for example
orientation trajectories

(

 (3) or 3), pose data ( (3)), and SPD
profiles (𝑚

++) such as stiffness, manipulability, inertia. We also show
that our -DMP inherits desirable properties of the original formulation
like convergence to a target and goal switching.

4.1. Geometry-aware DMPs formulation

In this section, we introduce the mathematical foundations of
-DMP technique. The -DMP formulation offers a comprehensive
and cohesive approach to encode and execute a discrete trajectory
 = {𝑡𝑙 , 𝒀 𝑙}𝑇𝑙=0, commonly known as a point-to-point trajectory, which
evolves within the confines of a Riemannian manifold , where
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each 𝒀 𝑙 ∈ . Its attractor dynamics on the manifold guarantee the
convergence of  toward a goal 𝑮 ∈  regardless of the initial
starting point 𝒀 0. To achieve this, it is necessary to transform the
classical DMP system described by (1)–(2) into a unified geometry-
aware formulation utilizing principles from Riemannian geometry. In
pursuit of this objective, we initiate the process by considering the
expression of a general second-order system evolving on a manifold,
as outlined by Fiori et al. [36]

𝜏∇ = 𝒉 (, , 𝑥) , (14)

𝜏̇ = , (15)

where  and ̇ represent the scaled first and second derivatives of
 . The phase variable 𝑥 is similar to the one defined in (1) and (3).
The covariant derivative ∇ can be defined from the total derivative
̇ using parallel transport [17,36]. However, computing the parallel
transport is, in general, time-consuming. Assuming that consecutive
points on the manifold are sufficiently close, and the geodesic between
them approximates a straight line, the covariant derivative can be
well approximated by manifold-valued finite differences [24,37]. This
approximation significantly simplifies the computation process while
introducing negligible errors. Thus, in this work, we consider the
approximation ∇ ≈ ̇. The function 𝒉(⋅) may encompass multiple
additive contributions. In this study, we assume that

𝒉 (, , 𝑥) = 𝛼𝑧
(

𝛽𝑧
(

Log (𝑮)

− Log𝒀 0
(𝑮) 𝑥 +  (𝑥)

)

−
)

, (16)

where 𝑮 ∈  is the goal point. The function Log (⋅) is defined
in (8). Additionally, positive gains 𝛼𝑧 and 𝛽𝑧 are introduced. The
term −𝛼𝑧 represents a dissipative force that plays a similar role to
damping in a mechanical system. The term 𝛼𝑧(𝛽𝑧 Log (𝑮)) corresponds
to conservative force and can be interpreted as the negative gradi-
ent of a potential. This can be demonstrated by considering that
− 1

2∇dist
2 ( ,𝑮) = Log (𝑮) [36], where dist(⋅, ⋅) denotes the Rieman-

ian distance. Finally, the term  (𝑥) represents a phase-dependent
forcing term which is learned from the demonstration and will be
further discussed in this section.

Consequently, we can redefine the dynamic system presented in
(1)–(2) as follows

𝜏̇ = 𝛼𝑧
(

𝛽𝑧
(

Log (𝑮)

− Log𝒀 0
(𝑮) 𝑥 +  (𝑥)

)

−
)

. (17)

𝜏̇ = , (18)

he forcing term  (𝑥) is defined as follows

(𝑥) =
∑𝑁

𝑖=1 𝒘𝑖𝛹𝑖(𝑥)
∑𝑁

𝑖=1 𝛹𝑖(𝑥)
𝑥, (19)

where 𝒘𝑖 ∈ 𝑚×𝑁 are the weights (free parameters) that can be
stimated by encoding any sampled trajectory (e.g., any robot ma-

nipulation skill profile). In order to estimate the parameters of a
corresponding -DMPs, we need to estimate the 1st and 2nd time
derivatives of the demonstrated trajectory. The 1st time derivative is
computed as follows

̇ =
{(

Log𝒀 𝑙−1

(

𝒀 𝑙
)

)

∕𝛿𝑡
}𝑇

𝑙=1
∈ 𝒀 𝑙−1

, (20)

where 𝛿𝑡 = 𝑡𝑙−𝑡𝑙−1. The 2nd-time-derivative ̈ can be computed straight
forward from ̇ using standard Euclidean tools, i.e., ̈ = {𝑡𝑙 , 𝒚̈𝑙}𝑇𝑙=1
where 𝒚̈𝑙 = (𝒚̇𝑙 − 𝒚̇𝑙−1)∕𝛿𝑡.

Having all necessary data
{

𝑡𝑙 , 𝒀 𝑙 , 𝒚̇𝑙 , 𝒚̈𝑙
}

, and by inverting (17), the
parameters 𝒘𝑖 and the approximated desired shape of the demonstra-
tion are estimated as follows
∑𝑁

𝑖=1 𝒘𝑖𝛹𝑖(𝑥𝑙)
∑𝑁

𝑖=1 𝛹𝑖(𝑥𝑙)
𝑥𝑙 =

𝜏2𝒚̈𝑙 + 𝛼𝑧𝜏𝒚̇𝑙 − Log𝒀 (𝑮) + Log𝒀 (𝑮) 𝑥

(21)
5

𝛼𝑧𝛽𝑧 𝑙 0
sing (21), the weights 𝒘𝑖 can be estimated by encoding any sampled
obot manipulation skill data.

In the reproduction, Eq. (18) is integrated using the forward Euler–
iemann stepping method [36] as

̂ (𝑡 + 𝛿𝑡) = Exp𝒀 𝑡

(

(𝑡) 𝛿𝑡
𝜏

)

, (22)

where ̂ ∈  represents the new robot manipulation skills data.
Eq. (22) is manifold dependent. Exp𝒀 𝑡

(⋅) is defined as in (9), and we
refer to the appendix for the expression of Exp𝒀 𝑡

(⋅) for the manifolds
used in this work.

In case the manifold is a Lie group, the expression of a general
second-order system on a Lie group becomes [36]

𝜏̇ = 𝒉 (, , 𝑥) , (23)

𝜏̇ = 𝒈 (,) , (24)

from which is straightforward to derive that

𝜏̇ = 𝛼𝑧
(

𝛽𝑧
(

Log
(

𝒀 𝑔 ∗ −1
)

− Log
(

𝒀 𝑔 ∗ 𝒀 −1
0
)

+  (𝑥)
)

−
)

, (25)

̇ = 𝒈 (,) . (26)

q. (25) is formally the same as (17), provided we use the logarithmic
ap Log (⋅) = Log

(

𝒀 𝑔 ∗ −1
)

defined using Lie group theory. The
erm 𝒎(⋅) in (26) is the inverse left translation, which maps a tangent
ector from the Lie algebra to the tangent space at 𝒀 𝑡 and depends
n the specific Lie group. The expressions of 𝒈(⋅) and Log(⋅) for unit
uaternions and rotation matrices, two Lie groups commonly used in
obotics, are given in Appendices A.3 and A.5.

As a remark, we used the Riemannian formulation (17)–(18) in the
est of the paper. However, for the sake of completeness, we also have
rovided a formulation for Lie groups in (25)–(26).

.2. Goal switching

In many real scenarios, while the robot executes its trajectory, it
ay encounter situations where it needs to adapt its trajectory to a
ew goal, e.g., new pick-up point, on the fly. This change of goal,
eferred to as goal switching, is a common requirement in dynamic
nvironments. In order to achieve smooth transitions between goals
nd avoid unnecessary jumps, the authors of [4] suggested adding an
xtra first-order differential equation to gradually transition the current
oal 𝑔 to the new goal 𝑔new over time. This differential equation can be
ritten as

𝑔̇ = 𝛼𝑔(𝑔𝑛𝑒𝑤 − 𝑔), (27)

here 𝛼𝑔 > 0 is a positive constant gain. The gradual transition in (27)
nsures that the robot’s behavior remains continuous and responsive to
hanges in its task environment.

Analogously, Riemannian manifold-based -DMP can switch the
oal using

̇ = 𝛼𝑔Log𝑮
(

𝑮𝑛𝑒𝑤
)

. (28)

q. (28) allows to continuously update 𝑮 until it smoothly reaches the
ew value 𝑮𝑛𝑒𝑤 ∈ .

.3. Stability analysis

Theorem 1 states the stability conditions of the geometry-aware
MP formulation in Section 4.1.

heorem 1. Assume that  (𝑥) → 0 for 𝑡 → +∞ and that the gains
𝑧, 𝛽𝑧 > 0. Under these assumptions, the geometry-aware DMP has a
lobally (in its domain of definition) asymptotically stable equilibrium at
𝑮, 𝟎).
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Proof. Recall that, by assumption, we restrict the domain to the points
where the logarithmic map Log (𝑮) is uniquely defined. Recall also
that the forcing term  (𝑥) in (17) is a weighted sum of Gaussian basis
functions. Therefore, the non-linear terms in (17) and (18) are smooth
and uniquely defined functions. Consider also that the time dependency
introduced by 𝑥 vanishes for 𝑡 → +∞. Hence, (17) and (18) are an
asymptotically autonomous differential system and the stability can be
proved by analyzing its asymptotic behavior [38]. This allows us to
neglect the terms  (𝑥) and Log𝒀 0

(𝑮) 𝑥 in the stability analysis and to
focus on the asymptotic dynamics

̇ = 𝛼𝑧𝛽𝑧Log (𝑮) − 𝛼𝑧, (29)

̇ = , (30)

where we set 𝜏 = 1 without loss of generality.
We first show that (𝑮, 𝟎) is an equilibrium point of the system (29)

and (30). The right side of (30) vanishes only for 𝒁 = 𝟎. With 𝒁 = 𝟎,
the right side of (29) vanishes only for Log𝒀 (𝑮) = 𝟎 ⇔ 𝒀 = 𝑮. This
implies that the system (29) and (30) has a unique equilibrium point
at (𝑮, 𝟎).

We now show that the equilibrium (𝑮, 𝟎) is a global attractor in the
chart where the logarithmic map Log (𝑮) is uniquely defined. To this
end, we define the candidate Lyapunov function

𝑉 ( ,) = dist2 ( ,𝑮) + 1
𝛼𝑧𝛽𝑧

⟨,⟩ , (31)

where dist(⋅, ⋅) is the Riemannian distance defined as in (7) and ⟨⋅, ⋅⟩
is the positive definite inner product (see Section 3.2). 𝑉 ( ,) is
positive definite everywhere if 𝛼𝑧𝛽𝑧 > 0 and vanishes only at 𝒀 = 𝑮
(dist2 (𝑮,𝑮) = 0) and 𝒁 = 𝟎 (⟨𝟎, 𝟎⟩ = 0). To show that 𝑉 ( ,) is
a valid Lyapunov function we need to show that its time derivative is
negative definite and vanishes at (𝑮, 𝟎). The time derivative of 𝑉 ( ,)
can be written as

𝑉̇ ( ,) = 𝑑
𝑑𝑡

dist2 ( ,𝑮) + 1
𝛼𝑧𝛽𝑧

𝑑
𝑑𝑡

⟨,⟩

= −2⟨Log (𝑮) , ̇⟩ + 2
𝛼𝑧𝛽𝑧

⟨̇,⟩

(32)

where we used the expression 𝑑
𝑑𝑡dist2 ( ,𝑮) = −2⟨Log (𝑮) , ̇⟩

from [39] and the bi-linearity and the symmetry of the interior product
to write 𝑑

𝑑𝑡 ⟨,⟩ = 2⟨̇,⟩ . By replacing ̇ from (29) and ̇
from (30) into (32), we obtain

𝑉̇ ( ,) = −2⟨Log (𝑮) ,⟩ + 2⟨Log (𝑮) ,⟩

− 2
𝛽𝑧

⟨,⟩ = − 2
𝛽𝑧

⟨,⟩ ≤ 0,

where the last inequality holds if 𝛽𝑧 > 0. Therefore, 𝑉̇ ( ,) ≤ 0 every-
where in the chart and vanishes only at 𝒁 = 𝟎. The LaSalle’s invariance
theorem [40] allows to conclude the stability of (29)–(30). □

Remark 1. The results of Theorem 1 hold where the logarithmic map
is uniquely defined, e.g., 𝒀 𝑙−1

 can be extended as much as it will
not contain points conjugate to 𝒀 𝑙−1 [41]. For manifolds with no cut-
locus, this holds everywhere. Hence, Theorem 1 is globally valid on
manifolds with no cut-locus (e.g., the manifold of SPD matrices with
positive definite eigenvalues [34]). However, for manifolds with cut-
locus (e.g., unit 𝑚-sphere manifolds [32]), the logarithmic map Log (𝑮)
is defined in a region that does not contain points conjugate to 𝑮. For
the unit m-sphere, the logarithmic map Log (𝑮) is uniquely defined
everywhere apart from the antipodal point −𝑮.

For illustration, we used the proposed -DMP to learn two trajec-
tories; (i) the ‘‘N’’ shape on 2 provided in [30] (Fig. 2a), and (ii) a
‘‘C’’ curve with 𝜋 diameter (Fig. 2b). The ‘‘N’’ trajectory covers both the
north and south hemispheres and, as shown in [30], working on the Lie
algebra will introduce large distortions. Moreover, the ‘‘N’’ shape is an
antipodal free trajectory, such that  = {𝒀 𝑙}𝑇−1𝑙=1 ∈ 2

| |𝒀 𝑙 ⋅𝑮| < 1.
However, the ‘‘C’’ curve includes the antipodal of 𝑮. Fig. 2a shows
6

Fig. 2. Results of -DMP while learning and producing trajectories that cover both
south and north hemispheres. Black dashed curves denote demonstrations, while
brown curves represent reproduction. Green point 𝒀 1 denotes the starting point of
the trajectory, while the blue one indicates the goal 𝑮. The red point illustrates the
antipodal point of the goal. The figure shows -DMP while executing a trajectory that
(a) does not contain an antipodal of the goal 𝑮, and (b) contains an antipodal of the
goal.

-DMP successfully reproducing the shape and converges to the goal
(blue point). However, in (b), it fails to follow the trajectory when it
encounters the antipodal of the goal (point in red). -DMP is supposed
to follow the trajectory in the direction of the black arrow starting from
the green point. However, it follows the trajectory until the antipodal
point, then returns back to reach the goal from the opposite direction.
A possible way to solve this issue is to split the trajectory into segments.
For the example in Fig. 2b, this can be done by splitting the trajectory
into 2 segments, namely 𝒀 1 to 𝒀 2, and 𝒀 2 to 𝑮, where 𝒀 2 is any point
in the demonstration between −𝑮 and −𝒀 1. One can then fit 2 separate
-DMP and smoothly merge them [18].

4.4. -DMP on Riemannian manifold products

Let us define  ∈  and  ∈  as two arbitrary trajectories
from two Riemannian manifolds  and  , respectively. Let us call
 = {𝑡𝑙 , (𝒀 𝑙 ,𝑼 𝑙)}𝑇𝑙=1 the set of data points in one demonstration. We
can now define the composite -DMP as

𝜏̇ = 𝛼𝑧(𝛽𝑧Log( , )
(

𝑮𝒀 ,𝑮𝑼
)

− ) +  (𝑥), (33)

𝜏̇ =  , (34)

where  ∈ (𝒀 𝑙 ,𝑼 𝑙)( ×  ) and Log( , )
(

𝑮𝒀 ,𝑮𝑼
)

is the logarithmic
map that maps the attractors 𝑮𝒀 ∈  and 𝑮𝑼 ∈  from the manifold
composite × to the tangent space (𝒀 𝑙 ,𝑼 𝑙 )(× ) at each time-step.

As an illustrative example, consider the pose of the end-effector
of a robot, which can be represented as the Cartesian product of the
hypersphere 3 and 3D-Euclidean space 3, i.e.,  = 3 × 3. It
is worth mentioning that the pose of the end-effector of a robot can
be alternatively represented as a homogeneous transformation matrix
𝑯 ∈ (3) using the Lie group theory formulation [42]; however, in
this work, we exploit the Cartesian product property of Riemannian
manifolds.

Remark 2. The stability of manifold composites -DMP formulation in
(33) and (34) can be straightforwardly proven by applying Theorem 1
separately to  and  .

5. Validation

We validated the proposed -DMP in simulation as well as in real
setups. More in detail, we performed the following evaluations:

• In simulation:

– We augmented two public datasets; 2D-LASA handwriting
dataset [5] and 2D-Letters handwriting dataset [30] with
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Fig. 3. Illustrates the performance of -DMP when executing Riemannian LASA dataset. 1st row: Euclidean 2D trajectory. 2nd row: Unit quaternion trajectory. 3rd row: Rotation
matrix trajectory. 4th row: SPD trajectory. 1st column: Trajectories from different manifolds. 2nd column: first-derivative in different manifolds. 3rd column: The distance in each
manifold between the demonstration and the -DMP reproduction. 4th column: The Cartesian representation of the -DMP reproduction. In 1st and 2nd columns, dashed lines
represent demonstration data while colored solid lines represent the -DMP results.
data samples from three Riemannian manifolds (unit quater-
nion, rotation matrix, and symmetric and positive definite
matrix).

– We compared -DMP with the baseline approaches [9,17].
– Learning manipulability ellipsoids and position by learning

2 × 2
++ with -DMP.

– Goal switching simulation.

• In real experiment:

– Refilling a watering can by learning 3 × 3 × 3
++ with

-DMP.
– Picking from different boxes task by learning 3 ×3

++ with
-DMP.

We have created one by modifying the 2D-LASA and the 2D-Letters
datasets. Mainly, we extended both datasets to include 3, (3), and
2
++ along with the original 2. The 2D-LASA handwriting dataset

contains 30 classes of 2D Euclidean motions starting from different
initial points and converging to the same goal [0, 0]⊤. Each motion
is demonstrated 7 times. A demonstration has exactly 1000 samples
and includes position, velocity, and acceleration profiles. On the other
hand, the 2D-Letters handwriting dataset contains 26 letters of 2D
Euclidean motions starting from different initial points and ending
to different goals. Each motion is demonstrated 10 times. A demon-
stration has exactly 200 samples and includes position, velocity, and
acceleration profiles.

The key idea to generate Riemannian data from Euclidean points
is to consider each demonstration as an observation of a motion in
the tangent space of a given Riemannian manifold. This allows us to
use the exponential map to project the motion onto the manifold. In
both datasets, demonstrations are in 2D (𝑥𝑦-plane), however, in order
to create the 3D tangent space for both 3 and  (3), we added a 𝑧-axis
to each demonstration as an average of 𝑥- and 𝑦-axes. As a result, we
obtain 3 and  (3) demonstrations for each demonstration from both
datasets.

In order to create SPD training data profiles, we followed different
strategies and used the 2D-LASA dataset to generate covariance matrix
7

profiles and the 2D-Letters dataset to generate manipulability profiles.
More in detail, we first fit a GMM for each class of the 2D-LASA
dataset. We then used GMR to retrieve a 2 × 2 covariance matrix
profile. This covariance matrix profile served as SPD training data for
-DMP. Instead, for the 2D-Letters dataset, we placed the base of a
3-DoF 2D-manipulator at [0, 0]⊤, and determined the manipulability
profile of the manipulator while it tracks the Cartesian trajectory of
each demonstration. This manipulability profile served as SPD training
data for -DMP.

5.1. Validation using Riemannian LASA dataset

In order to validate the accuracy of the proposed unified DMP
formulation, we created 4 tests in 4 different manifolds,  ∈ 2,
 ∈ 3,  ∈  (3), and  ∈ 2

++. These are illustrated in Fig. 3 where
each row corresponds to a particular manifold. The leftmost column of
the figure represents the evolution of the elements of the profile over
time.2 Dashed black lines represent the demonstration and colored lines
the reproduction of -DMP. The second column corresponds to the 1st-
time-derivative of the profiles in each manifold, while the 3rd column
shows the error or the distance between the -DMP profile and the
demonstration profile for each manifold. The last column (rightmost)
shows what the profile looks like in Cartesian space. In the case of 3,
we rotate the 3D-frame of the 3D-Cartesian profile of the G-shape, while
in  (3) we show the frame rotating around [0, 0, 0]⊤. In the case of
the 2

++, we illustrated the covariance matrices over the 2D-Cartesian
profile of the G-shape. The results shown in this figure demonstrate the
accuracy of the proposed -DMP to reproduce the desired trajectory
profiles in different manifolds.

2 As SPD matrices are symmetric, and for visualization purposes, in
this figure we visualize the SPD by plotting the corresponding Mandel
representation.
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Fig. 4. -DMP execution of the same unit quaternion trajectory tested in [9]. The
first three rows show the error between the current unit quaternion and the goal
(left) and new goal (right). The bottom four rows show the evolution of each unit
quaternion element, over time, toward the goal and new goal. Dashed black lines
represent information related to the demonstration trajectory.

5.2. Comparison with [9]

The proposed -DMP is rigorously derived in Section 4.1 start-
ing from a generic second-order dynamics evolving on a manifold.
Therefore, our formulation is mathematically correct and it does not
exhibit the oscillatory behaviors described in [9]. In addition to the
mathematical derivation, we provide in this simulation an experimental
comparison to support our claim.

More in detail, we compared our -DMP against the quaternion-
based DMP proposed in3 [9]. We used the same simulated unit quater-
nion trajectory, where the initial and final quaternions are 𝑸0 =
−0.0092 − 0.7126 0.7015 0.0090]⊤ and 𝑸𝑔 = [0.8104 0.3364 0.2141
.4293]⊤. Moreover, we used the same DMP parameters, e.g., 𝛼𝑧 =
60, 𝑁 = 60, and 𝛼𝑥 = 4.6052. Top-left column of Fig. 4 shows the
evolution of the quaternion error computed between the current (from
-DMP) and goal quaternions through 𝑒 = 2Log

(

𝑸𝑔
)

. The top-right
olumn shows the evolution of the error toward a new goal 𝑸𝑛𝑒𝑤

𝑔 =
0.7442 0.5414 −0.0343 0.3897]⊤. The bottom 4 plots, show the evolution
f the trajectories of unit quaternion elements toward the original goal
nd the new one. This figure shows the accuracy of the proposed

3 We thank Leonidas Koutras for sharing with us the implementation and
est trajectory of their work in [9].
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Fig. 5. Comparison between the proposed -DMP and [9]. The first three rows show
ore stable starting using -DMP. Bottom: Compares the mean error of -DMP (in red)

nd [9] (dashed black lines).

Fig. 6. Comparison between the proposed -DMP and our previous approach using
parallel transport [17]. Both approaches executed 20 2

++ trajectories of the modified
Riemannian LASA dataset. Left : The error distance between the demonstration and the
reproduction. Right : The computational cost in milliseconds per control cycle.

-DMP to encode and execute a challenging unit quaternion trajectory.
Moreover, it is clear that -DMP successfully performs a goal-switching
task.

Fig. 5 compares the accuracy of our -DMP with the approach
proposed in [9]. The bottom plot shows that the proposed -DMP is

ore accurate.
Furthermore, the computational complexity during execution, par-

icularly in terms of step time, remains compatible with control fre-
uencies. Specifically, the means of the computational cost exhibited
y [9] and -DMP at each control cycle are 0.04 ms and 0.1 ms, respec-
ively. We also consider a baseline approach that uses the classical DMP
nd performs an extra normalization of the output. For the baseline, the
ean computational cost for integrating and normalizing the output to

eproduce a unit quaternion is 0.008 ms per time step. This indicates
hat all considered approaches can comfortably operate at frequencies
xceeding 1 kHz, ensuring real-time responsiveness in robotic control
pplications.

.3. Comparison with [17]

To illustrate the difference between our new formulation in (17)–
18) and our previous formulation described in [17], where parallel
ransport was employed, we have conducted an experiment where both
pproaches executed 20 2

++ trajectories of the modified Riemannian
LASA dataset (Section 5). Fig. 6 shows bar plots for computational
time required for both approaches to learn and execute complete
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Fig. 7. Comparison between the proposed -DMP and our previous approach using
parallel transport [17]. Both approaches executed 19 𝑚

++ trajectories, where 𝑚 =
2,… , 20. Top: The computational cost in milliseconds per control cycle. Bottom: The
error distance between the demonstration and the reproduction.

trajectories, and the log-Euclidean distance [43] between the generated
SPD profiles and the ground truth demonstrations.

Results in Fig. 6 show that employing parallel transport provides
slightly more accurate results, as evidenced by the reduced log-Eucli-
dean distance from the ground truth demonstrations. However, this
improvement comes at a significant computational cost, as indicated
by the increased computational time required for this approach. For
instance, the mean of the computational cost exhibited by [17] and
-DMP at each control cycle are 0.09 ms and 0.04 ms, respectively.

In Fig. 7 we observe how this computational cost increases expo-
nentially with the approach in [17] as problem dimensions increase.
Though [17] exhibits a slight improvement in accuracy, this must
be weighed against its heightened computational demands. In this
example, we executed both approaches, in [17] and -DMP, over 19
SPD trajectories with dimensions ranging from 2

++ to 20
++, providing

a comprehensive comparison.
This trade-off between accuracy and computational efficiency is an

important consideration in the selection of the appropriate formulation
for specific applications. For tasks where computational resources are
abundant and accuracy is paramount, the parallel transport approach
may be preferred. However, the new formulation offers a more efficient
alternative without penalizing the accuracy for real-time applications
or scenarios with limited computational resources. Finally, it is impor-
tant to note that, while the approach in [17] is specifically designed for
SPD matrices, our -DMP framework is applicable to any Riemannian
manifold.

5.4. Learning manipulability ellipsoids

The manipulability of a robotic arm provides an analytical way to
evaluate the manipulator’s ability to change its end-effector pose from
a certain joint configuration. Manipulability can be illustrated as an el-
lipsoid in 2- or 3-D Euclidean space. Mathematically, the manipulability
of a robotic arm is computed from the forward kinematics

̇ = J̇ , (35)

that relates task velocity ̇ ∈ 𝑚 and the joint velocity ̇ ∈ 𝑛 through
the Jacobian matrix J ∈ 𝑚×𝑛. By considering, in (35), only the joint
velocity with unit norm, i.e., ‖

‖

̇ ‖

‖

= ̇ ⊤̇ = 1, we obtain

̇ ⊤̇ = ̇⊤(J†)⊤J+̇ = ⊤ (

JJ⊤
)† ̇ , (36)
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Fig. 8. Top-Left : The Cartesian trajectory (in centimeters) executed by the 5-DoF
manipulator (black dots), the demonstrated manipulability profile (gray ellipses), and
the manipulability profile learned by -DMP (green ellipses), shown at different times
during the execution of the task. Top-Right : Representation of SPD manifold (gray
cone) containing the demonstrated (dashed black line) and learned (green solid line)
manipulability profiles. Bottom: Variation of demonstrated (gray ellipses) and learned
(green ellipses) manipulability profiles over time.

which defines a point on the surface of an ellipsoid in the end-effector
velocity space. The SPD matrix 𝜰 =

(

JJ⊤
)† ∈ 𝑚

++, called manipulabil-
ity ellipsoid, gives an intuition of the directions where the manipulator
can move its end-effector at large/small velocities.

Here we propose to use a toy example similar to the one in [44]
to evaluate our -DMP formulation while operating SPD data profiles.
One demonstration 𝜩 = {𝑡𝑙 ,𝜰 𝑙}𝑇𝑙=1 is obtained by performing a tracking
task with a 3-DoF manipulator. Let us call  the Cartesian position
trajectory of the robot end-effector. The desired position trajectory ̂
is then tracked by a 5-DoF robot. The force  needed to perform the
tracking task is computed using the following control law originally
proposed in [44]

𝝉𝑑 = J⊤ −
(

𝑰 − J⊤J̄⊤
)

𝛼▿𝑔𝑡( ); 𝛼 > 0, (37)

where J̄ is the inertia-weighted pseudo-inverse of J and 𝝉𝑑 is the desired
joint torque. The cost function 𝑔𝑡( ) is defined as

𝑔𝑡( ) = log
(

det
(

𝜰̂ 𝑡 + 𝜰 𝑎,𝑡( )
2

))

− 1
2

log
(

det
(

𝜰̂ 𝑡𝜰 𝑎,𝑡( )
))

, (38)

where 𝜰 𝑎,𝑡( ) are the actual and 𝜰̂ 𝑡 the desired manipulability ellip-
soids, respectively. 𝜰̂ 𝑡 are generated using the proposed -DMP.

The results of this procedure, applied to track a 2-D S-shape Carte-
sian trajectory, are shown in Fig. 8. Fig. 8(top-left) shows that the
desired manipulability profile (green ellipses) smoothly and accurately
follows the demonstrated manipulability profile (gray ellipses) while
the 5-DoF robot was performing the tracking task. Similar results are
shown in Fig. 8(bottom), but considering the time evolution of desired
and demonstrated manipulability ellipsoids. Fig. 8(top-right) depicts
the SPD manifold (a cone) and the geodesic curve of the desired
and demonstrated manipulability profiles. The -DMP successfully and
accurately followed the demonstrated Cartesian trajectory along with
the manipulability profile, in its composite Riemannian form 2 ×2

++,
and converged to the goal.
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Fig. 9. -DMP adapts the stiffness profile to a new goal using the mechanism of goal
switching (28). Gray ellipsoids represent the demonstrated stiffness profile, green ones
are the result of -DMP, the blue one indicates the instant where goal switching
occurred, and the red one denotes the new goal ellipsoid. Top-Left : The evolution
of -DMP over a Cartesian trajectory. Bottom: The evolution of -DMP over time.
Top-Right : The evolution of the spring forces while tracking the Cartesian trajectory.

Fig. 10. Top: The Log-Euclidean distance between -DMP evolution and the goal in
both cases; reproduction (dashed black lines), adaptation using goal switching (red solid
line). Bottom: The element of stiffness profile in reproduction (dashed black lines) and
adaptation using goal switching (colored solid lines).

5.5. Goal switching

In order to evaluate the proposed -DMP formulation characteristics
under goal switching, we used it to drive an virtual-Mass Spring-
Damper (MSD), with a designed variable stiffness profile, along a spe-
cific Cartesian trajectory. The variable stiffness profile is designed, such
that, it starts with, horizontally-aligned stiffness ellipsoid,
[622.9934 39.9577; 39.9577 79.5444], then we rotated it gradually 90◦,
through 𝐑⊤𝐑 (𝐑 is a rotation matrix), until it ends up with, vertically-
aligned stiffness ellipsoid, [79.5444 −39.9577; −39.9577 588.2443]. This
stiffness profile  ∈ 2

++ is our demonstration, the gray ellipsoids in
Fig. 9(top-left), along with the Cartesian trajectory  ∈ 2, solid black
curve. In this simulation, -DMP encodes the composite Riemannian
manifolds 2 × 2 .
10

++
During the execution, we estimated the spring forces 𝒇 𝑠 while
tracking the Cartesian trajectory. The -DMP reproduction, in the first
execution, has been successfully converged to the original goal, dashed
lines in Fig. 10(bottom). In the second execution, we switched to a new
stiffness goal [200 0; 0 200], red ellipsoid in Fig. 9, at the middle of
the execution. From Fig. 10(top), we can see the error between -DMP
stiffness result, at each time step, and the new stiffness goal converges
to zero (the solid red line), which indicates that the -DMP converges
accurately to the new stiffness goal.

5.6. Robot experiments

We evaluated the proposed approach on a 7 DoF Franka Emika
Panda robot with two experiments, namely picking from different boxes
and refilling a watering can. In order to perform these tasks, the
robot had to continuously modulate its position, orientation, stiffness,
and/or manipulability. In real settings, orientation trajectories are often
collected from demonstrations with a real robot. This requires a prepro-
cessing step to extract unit quaternions from a trajectory of rotation
matrices. The step is needed because the robot’s forward kinematics
is typically expressed as a homogeneous transformation matrix [45].
Numerical approaches to continuously compute quaternions from ro-
tation matrices may return a quaternion at time 𝑡 and its antipodal
at 𝑡 + 1, since antipodal quaternions represent the same rotation. The
resulting discontinuity can be avoided by checking that the dot product
q𝑡 ⋅ q𝑡+1 > 0 and replacing q𝑡+1 with −q𝑡+1 otherwise.

5.6.1. Refilling a watering can
In this experiment, the robot had to refill a watering can by immers-

ing it in a tray full of water (see Fig. 11). To perform the task, the robot
was controlled using the Cartesian impedance control law

 𝑝 = 𝑝
(

 𝑑𝑚𝑝 − 
)

+𝑝

(

̇ 𝑑𝑚𝑝 − ̇
)

,

 𝑜 = 𝑜 Log
(

𝑑𝑚𝑝) +𝑜
(

𝑑𝑚𝑝 −
)

,
(39)

where the subscript 𝑝 indicates position and 𝑜 orientation. The mea-
sured end-effector position and orientation (unit quaternion) are in-
dicated by  and  respectively, and the corresponding linear and
angular velocities are ̇ and  . The desired trajectories  𝑑𝑚𝑝 and
𝑑𝑚𝑝, as well as the variable stiffness matrix 𝑝 and the desired ve-
locities

(

̇ 𝑑𝑚𝑝 and 𝑑𝑚𝑝
)

, were generated with the proposed -DMP.
The orientation stiffness was kept constant at 𝑜 = 150 𝑰 Nm/rad.
The damping matrices 𝑝 and 𝑜 were computed from the respective
stiffness matrices using the double diagonalization approach [46]. The
robot was controlled at 1KHz using the joint torques

𝜏𝑑 = J⊤
[

 𝑝
 𝑜

]

, (40)

where J⊤ is the transpose of the manipulator Jacobian and the Cartesian
forces  𝑝 and  𝑜 are defined as in (39).

Desired position, velocity, and stiffness profiles were learned using
the proposed -DMP. In order to estimate a variable stiffness profile,
we collected 5 kinesthetic demonstrations containing end-effector po-
sitions, velocities, accelerations, and sensed forces. These data were
used through the interaction model proposed in [15] to estimate the
variable stiffness profile shown in Fig. 11 (bottom). Positions and
unit quaternion trajectories were learned from a single demonstration,
obtained by averaging the 5 used to obtain the stiffness profile.

The results in Fig. 11 show that the proposed -DMP formula-
tion is capable of learning complex trajectories evolving on composite
Riemannian manifolds 3×3×3

++ while fulfilling the underlying geo-
metric constraints, i.e., unit norm in variable orientation and symmetry
and positive definiteness in variable stiffness profiles.
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Fig. 11. Results for the refill of a watering can experiment. Top: The robot correctly
performs the task. Bottom: Position, orientation, and stiffness profiles.

5.6.2. Pick from different boxes
In this experiment, the robot had to enter 3 boxes placed at different

locations, mimicking a pick from each of the boxes (see Fig. 12). The
experiment was designed to show that geometry-aware DMPs can (i)
effectively encode manipulability profiles and (ii) change the goal after
the learning.

We provided a kinesthetic demonstration to make the robot en-
ter box 1 while collecting end-effector position and joint trajectories.
As detailed in Section 5.4, collected trajectories were used to learn
position and manipulability profiles using geometry-aware DMPs. At
run time, the robot was controlled using the control law (37) to track
the DMP position as main task and to exploit its redundant DoF to
follow the desired manipulability profile. As shown in Fig. 12 (top),
the robot followed accurately both position and manipulability profiles
and successfully entered box 1.

In order to experimentally verify the generalization capabilities
of geometry-aware DMPs, we repeated the experiment by entering
two boxes placed at different locations wrt box 1. To measure the
new goal, we manually placed the robot inside the boxes and stored
its end-effector position. As shown in Fig. 12 (middle)–(bottom), the
robot reached the new position goals inside box 2 and 3. As already
mentioned, the manipulability profile was tracked in the null-space
of the position task, which introduces an error between the planned
and executed manipulability profiles. However, in this task, null-space
tracking was sufficient to preserve a joint configuration that let the
robot enter boxes 2 and 3 without collision.

Overall, the results in Fig. 12 show that the proposed -DMP for-
mulation is capable of learning complex trajectories evolving on the
11
composite Riemannian manifold 3 × 3
++ while fulfilling the under-

lying geometric constraints, i.e., symmetry and positive definiteness in
variable manipulability profiles.

6. Conclusion

In this paper, we have exploited Riemannian geometry to derive a
new formulation of DMP that is capable of learning and reproducing
robot skills evolving on any Riemannian manifold. Our new formu-
lation, Geometry-aware DMP (-DMP), is manifold independent and
allows us to treat data belonging to different manifolds in a unified
manner. It also preserves the underlying geometric constraints during
both learning and reproduction without pre- or post-processing of
the data. Moreover, it preserves the properties of the classical DMP
formulation such as convergence to a given target and the possibility
to change the target at run-time (goal switching).

-DMP has been extensively validated through multiple simulation
examples and two experiments on a real robotic manipulator. For sim-
ulation, we augmented two Euclidean datasets (2D-Letters and LASA
handwriting) with data samples from three Riemannian manifolds (3,
 (3), and 2

++). We showed that -DMP can accurately learn profiles
evolving on such manifolds while converging to a (possibly changing)
goal. Moreover, a comparison with a baseline approach was conducted
on a unit quaternion trajectory. In this case, -DMP shows improvement
by avoiding slight jumps at the beginning of the trajectories. Finally,
real experiments show the effectiveness of -DMP in encoding data
from manifolds such as orientation, and SPD matrices.

In the future, we propose to integrate our approach with iterative
learning algorithms—for example iterative learning control—in order
to adapt to different situations and perform more complex tasks such
as physical interaction control. Moreover, extending exploration-based
learning methods to Riemannian manifolds is an open research prob-
lem. These methods are crucial when a robot needs to significantly
adapt its behavior to a new situation by considering the data directly
on its corresponding manifold. This will allow us to successfully exploit
-DMPs in a large diversity of task situations.
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Fig. 12. Results for the pick from different boxes experiment. Top: Picking from the demonstrated box 1. Middle: Goal switching is used to pick from a new box 2. Bottom: Goal
switching is used to pick from a new box 3. In the 3 cases, manipulability is controlled in the null-space of the position task to maintain a certain joint configuration during the
motion.
Appendix A. Characterization of used manifolds

A.1. The SPD manifold 𝑚
++

As early mentioned, SPD matrices is important in robotics as it
encapsulate different types of data. The space 𝑚

++ is defined as the
space of 𝑚 × 𝑚 Symmetric Positive Definite matrices. This space is not
closed under scalar product and addition [34], thus, we cannot use
classical Euclidean arithmetic operators to manipulate these matrices.
Alternatively, we can equip SPD matrices with A Riemannian metric in
order to form a Riemannian manifold [34].

Note that the space 𝑚
++ can be represented as the interior of a

convex cone embedded in its tangent space of symmetric 𝑚×𝑚 matrices
𝑚.

For 𝑸,𝑼 ∈ 𝑚
++ and 𝒗 ∈ 𝑼𝑚

++, the logarithmic and exponential
maps (8) and (9) can be defined as in [34]

𝒗 = Log𝑼 (𝑸) = 𝑼
1
2 logm

(

𝑼− 1
2 𝑸𝑼− 1

2
)

𝑼
1
2 , (A.1)

𝑸 = Exp𝑼 (𝒗) = 𝑼
1
2 expm

(

𝑼− 1
2 𝒗𝑼− 1

2
)

𝑼
1
2 , (A.2)

where logm(⋅) and expm(⋅) are the matrix logarithm and exponential
functions.

A.2. The unit 𝑚-sphere manifold 𝑚

𝑚 is a topological space embedded in 𝑚+1 Cartesian space, where
𝑚 =

{

𝑿 ∈ 𝑚+1 ∶ ‖𝑿‖ = 1
}

. For 𝑸,𝑼 ∈ 𝑚 and 𝒗, 𝒓 ∈ 𝑼𝑚 then, the
logarithmic and exponential maps (8) and (9) are defined as in [47]

𝒗 = Log𝑼 (𝑸) =
𝑸 − (𝑼⊤𝑸)𝑼

‖

‖

𝑸 − (𝑼⊤𝑸)𝑼‖

‖

𝑑(𝑼 ,𝑸), (A.3)

𝑸 = Exp𝑼 (𝒗) = 𝑼 cos(‖𝒗‖) + 𝒗
‖𝒗‖

sin(‖𝒗‖), (A.4)

where 𝑑(𝑼 ,𝑸) ≡ arccos(𝑸⊤𝑼 ) defines the geodesic distance between 𝑸
and 𝑼 .
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A.3. The unit quaternions group 3

One way to describe the robot’s end-effector orientation, in 3D-
space, is to use unit quaternion representation. For 𝑸,𝑼 ∈ 3 and
𝒗, 𝒓 ∈ 𝑼3 ≡ 3, where 3 is a unit sphere in 4, 𝑸 = 𝜈𝑞 +𝒖𝑞 , 𝜈𝑞 ∈ ,
and 𝒖𝑞 ∈ 3. The logarithmic and exponential maps (8) and (9) are

𝒗 = Log𝑼 (𝑸) = Log
(

𝑸 ∗ 𝑼̄
)

(A.5)

=

{

arccos(𝜈) 𝒖
‖𝒖‖ , 𝒖 ≠ 𝟎

[0 0 0]⊤, otherwise.

𝑸 = Exp𝑼 (𝒗) (A.6)

=

⎧

⎪

⎨

⎪

⎩

[

cos(‖𝒗‖) + sin(‖𝒗‖) 𝒗
‖𝒗‖

]

∗ 𝑼 , 𝒗 ≠ 𝟎
[

1 + [0 0 0]⊤
]

∗ 𝑼 , otherwise.

where 𝑸 ∗ 𝑼̄ = 𝜈 + 𝒖 ∈ 3, and 𝒗 ∈ 3 is treated as a quaternion with
𝜈 = 0.

A.4. The special orthogonal group  (𝑚)

 (𝑚) is a subgroup of the orthogonal group (𝑚) where its deter-
minant is 1. Let us define 𝑹1,𝑹2 ∈  (𝑚) and 𝒗 ∈ 𝑹1

 (𝑚), then the
logarithmic and exponential maps (8) and (9) are defined as in [47]

𝒗 = Log𝑹1
(𝑹2) = logm

(

𝑹1
⊤𝑹2

)

, (A.7)

𝑹2 = Exp𝑹1
(𝒗) = expm (𝒗)𝑹1. (A.8)

A.5. The rotation group  (3)

Traditionally, orientations, in 3D-space, were represented through
rotation matrices in  (3) = {𝑹 ∈ 3×3 ∶ |𝑹| = 1,𝑹⊤𝑹 = 𝑹𝑹⊤ = 𝑰}
which are widely used in robotics. Let us define 𝑹1,𝑹2 ∈  (3) and
𝒗 ∈ 𝑹1

 (3), then (8) will be [48]

𝒗 = Log𝑹1

(

𝑹2
)

= Log
(

𝑹2𝑹1
⊤) = Log (𝑹)

=

{

[0, 0, 0]⊤, 𝑹 = 𝑰 (A.9)

𝜔 = 𝜃𝒏, otherwise,
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a

𝑹
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m
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v
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e
m

A

a

R

where

𝜃 = arccos
(

trace(𝑹) − 1
2

)

, 𝒏 = 1
2 sin (𝜃)

⎡

⎢

⎢

⎣

𝑟32 − 𝑟23
𝑟13 − 𝑟31
𝑟21 − 𝑟12

⎤

⎥

⎥

⎦

nd (9) will be

2 = Exp𝑹1

(

[𝒗]×
)

=

(

𝑰 + sin(𝜃)
[𝒗]×
‖𝒗‖

+ (1 − cos(𝜃))
[𝒗]2×
‖𝒗‖2

)

𝑹1,
(A.10)

Note that the mappings in (A.6)–(A.7) and in (A.9)–(A.10) are
omputed using Lie group theory as unit quaternions and rotation
atrices form a Lie group [42]. In particular, the mappings are based

n the tangent space placed at the identity element (the so-called Lie
lgebra), and the product operations are used to parallel transport
ectors from the Lie algebra to the tangent space placed at a different
oint (𝑼 or 𝑹1). We used the term Riemannian through the paper since
very Lie group equipped with a Riemannian metric is a Riemannian
anifold, but not vice versa.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.neucom.2024.128056.
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