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Abstract

In the relentless pursuit of human progress, technological innovations have always played a key
role in shaping our society. In recent years, the convergence of innovative measurement tech-
nologies with Mixed Reality (MR) has emerged as a groundbreaking paradigm, offering trans-
formative solutions to enhance individuals across multiple domains. This dissertation focuses on
MR-based applications designed and optimized to restore human centrality, fostering advances in
healthcare, education, and industry. The primary purpose is to provide end users with the best
tools to enhance their perception-action loop in work or education, empowering them to better
achieve and control their final goals. Through the synergy between immersive visualization tech-
nologies and a framework based on innovative measurement systems, unique environments are
created to enhance end users at different levels of the perception-action loop, leading to improved
outcomes and overall well-being. Measurement technologies include three-dimensional cameras,
wearable sensors, inertial sensors, thermal cameras, and pressure matrices. Many challenges were
overcome in this dissertation, such as designing and testing the proper measurement frame and
interface, finding new calibration procedures for measurement systems, and developing original
data processing techniques in computer vision and machine learning.
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Chapter 1

Introduction

In the ever-changing landscape of technological advances, emerging technologies have continu-
ously influenced and shaped human enhancement, redefining our relationship with the external
environment. One of these transformative paradigms is the convergence of innovative measure-
ment technologies with Mixed Reality (MR), opening up new avenues for empowering individuals.
At the heart of this renaissance lies the philosophy of Human-Centered Design (HCD). It is an
approach that places human users’ needs, preferences, and experiences at the center of the design
process [21]. It emphasizes understanding and empathizing with users to create innovative and
practical solutions to their problems. In recent years, HCD has been greatly influenced and
enhanced by integrating innovative technologies [46].

Innovative technologies, such as Artificial Intelligence (AI), Mixed Reality (MR), the Internet
of Things (IoT), and wearable devices, have expanded the possibilities and capabilities of HCD.
These technologies enable designers to gather more prosperous and nuanced user data, create
immersive and interactive experiences, and develop personalized solutions that meet individual
needs.

One key aspect of HCD with innovative technologies is the collection and analysis of user
data. Technologies like AI and IoT can capture vast amounts of data from various sources,
such as user interactions, biometric measurements, and environmental conditions. This data can
provide insights into user behaviour, preferences, and pain points, helping designers understand
their target audience more deeply.

MR is another set of technologies that have revolutionized HCD. They allow designers to cre-
ate realistic simulations of environments and experiences, enabling users to interact and provide
feedback in a controlled and immersive setting. It facilitates early-stage testing and iteration,
leading to more refined and user-friendly designs.

Wearable devices have also played a significant role in HCD. They can collect real-time data
about user activities, health metrics, and environmental factors. This information helps designers
understand user contexts and design solutions that seamlessly integrate into users’ daily lives.

HCD, with innovative technologies, is about more than just creating user-friendly interfaces
or visually appealing products. It aims to create holistic experiences that address user needs and
aspirations. By leveraging innovative technologies, designers can create solutions that are not
only functional but also intuitive, emotionally engaging, and socially responsible.

To successfully implement HCD with innovative technologies, designers must adopt an it-
erative and collaborative approach. They should involve users throughout the design process,
conducting user research, gathering feedback, and refining their designs based on user insights.
Balancing technological advancements with a deep understanding of human behaviour, cultural
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CHAPTER 1. INTRODUCTION

factors, and ethical considerations is crucial.

This dissertation addresses several MR-based applications designed and optimized to restore
human centrality by enhancing users and fostering progress in different domains. Many chal-
lenges were overcome in this dissertation, such as designing and testing the proper measurement
frame and interface, finding new calibration procedures for measurement systems, and developing
original data processing techniques in computer vision and machine learning. In particular, the
sections in this chapter focus on the impact of emerging technologies on the human perception-
action loop and how it can be enhanced through these technologies. The following three chapters
deal with designing frameworks and identifying solutions to address challenges arising from vari-
ous MR-based applications in health care, education, and industry domains. Specifically, Chapter
2 presents the results of Shared Augmented Reality (SAR) frameworks to enhance both the ther-
apist and the patient; Chapter 3 discusses computer vision algorithms developed for applications
in education that aim to increase immersiveness and interaction; Chapter 4 shows how real-time
Augmented Reality (AR) feedback ensures a controlled and efficient work environment in the
industry. The final section outlines the conclusions and future work.

1.1 Perception-Action Loop (PAL)

The fundamental pillar on which the entire dissertation is based concerns the concept of the
perception-action loop and how to try to augment humans in this loop. The perception-action
loop (PAL) [30], often discussed in the literature on sequential decision making [61, 56], is a
concept in cognitive science and robotics that describes how humans typically interact with the
external world. It is a theoretical framework that highlights the continuous cycle of perceiving
sensory information from the environment, processing it, and then taking appropriate action
based on it, Figure 1.1.

Figure 1.1: The human perception-action loop.

In humans, PAL starts with the sensation stage, where sensory organs such as the eyes, ears,
skin, and other senses gather information about the surrounding environment. This sensory
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1.1. PERCEPTION-ACTION LOOP (PAL)

information is processed and interpreted by the brain in the perception stage, allowing us to un-
derstand and make sense of what we perceive. Once the information is processed, the planning
stage follows. It occurs in the brain and involves cognitive processes that allow us to generate a
sequence of actions to achieve a desired goal. This phase incorporates higher-level cognitive func-
tions, such as decision-making, problem-solving, and strategizing. During the planning phase,
humans integrate the sensory information received during perception with their knowledge, mem-
ories, and understanding of the environment. They evaluate potential courses of action, consider
the potential consequences of each option, and select the most suitable plan to achieve their
goals. The planning phase also involves setting priorities, weighing different factors, and taking
into account constraints or limitations. Humans can anticipate future events, plan multiple steps
ahead, and adjust their plans based on evolving circumstances. The loop ends with the actions
stage, where the brain generates appropriate motor commands sent to the muscles, enabling us
to respond and interact with the environment. This action can be as simple as reaching for an
object or as complex as performing intricate movements or making decisions based on perceived
information. Importantly, our actions have consequences, which then feedback into the percep-
tion stage. For example, if we reach for an object and successfully grasp it, the tactile feedback
from our fingers provides additional sensory information that influences our perception. This
feedback loop helps refine and adjust our subsequent actions and perceptions, allowing us to
learn and adapt to our environment.

The same concept of PAL can be applied to a single device or a complex machine responsible
for interacting with and responding to the environment continuously and adaptively. In this
case, PAL follows a similar principle but is implemented differently. Instead of human sensory
organs, devices or machines use sensors such as cameras, microphones, pressure sensors, or other
specialized devices to collect data about the environment. The sensory data is then processed
by algorithms and software, which analyze and extract meaningful information from the raw
sensor inputs. As with humans, this processed information is then used for the planning stage.
It can vary depending on the complexity and capabilities of the system. In simpler systems, the
planning may be pre-determined and programmed by human designers. For example, a robotic
arm in a manufacturing plant may have a predefined set of actions programmed to perform spe-
cific tasks. However, the planning phase can involve sophisticated algorithms and techniques in
more advanced systems, such as autonomous robots. These systems can analyze the perceived
data, interpret the context, and generate plans based on predefined rules, learned behaviours, or
optimization algorithms. Machine planning can range from basic rule-based decision-making to
more complex approaches like search algorithms, Markov Decision Processes (MDPs), reinforce-
ment learning, or even advanced planning techniques like Monte Carlo Tree Search (MCTS) [7].
During the planning phase, machines evaluate potential actions, consider their objectives or
goals, and select an optimal or near-optimal plan based on the available information. They may
also consider environmental factors, resource constraints, safety considerations, and predefined
rules or policies. The generated plan is then executed during the action stage through appropri-
ate responses or actions, which can involve controlling motors, actuators, or other mechanisms.
Like humans, machines can also receive feedback about the consequences of their actions. This
feedback can come from additional sensors or through interactions with the environment. The
feedback is then used to adjust subsequent perceptions and actions, enabling machines to improve
performance and adapt to changing conditions.

It is important to note that while PAL in devices or machines can be designed and pro-
grammed by humans, some advanced systems employ machine learning and AI techniques to
enhance their perception and action capabilities. Without explicit human programming, these
systems can learn from the data they perceive and optimize their actions over time.

PAL is a fundamental concept in human cognition and machine functionality. It allows
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CHAPTER 1. INTRODUCTION

for the continuous flow of information and action, enabling adaptive behaviour and interaction
with the environment. The enhancement of these loops can be described as “any attempt to
temporarily or permanently overcome the current limitations of the human capabilities (physical
and cognitive) through natural and/or artificial means” [4].

1.2 Mixed Reality (MR)

Human enhancement focuses on humans’ physical, cognitive, and perceptual augmentation through
technology. Cognitive enhancement can be achieved either pharmacologically [29] or, less inva-
sively, via AR or MR in general [28, 66].

The definition of MR can be traced back to 1994 in a paper written by Paul Milgram and
Fumio Kishino [74]. Milgram and Kishino define Mixed Reality as blending real and virtual
worlds somewhere along the “reality-virtuality continuum”, which connects completely real en-
vironments to completely virtual ones, Figure 1.2.

Figure 1.2: Reality-Virtuality continuum.

In other words, the MR continuum comprises the following domains:

• The real world;

• Augmented Reality that can augment reality with digital content. Usually, reality calls
for a real-time engine able to elaborate information to provide feedback to a human agent
operating in this context;

• Augmented Virtuality (AV) that can insert real (measured) cues into virtual environments.
Those real elements can be, in most of the applications, elaborated offline. In the virtual
domain, real features related to privacy can be filtered;

• Virtual environments, i.e., Virtual Reality (VR) world.

Within the PAL, users’ sensation can be dramatically increased via MR. For example, data
acquired with sensor networks of very different sensory types can be simultaneously fed to a
user in real-time. Elaborating this large amount of data can, via AI, parallel the human brain
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1.2. MIXED REALITY (MR)

and show the results with low latency in AR. In this way, as shown in Figure 1.3 emerging
technologies can enhance human sensation. Among these technologies there are for example
three-dimensional (3D) time-of-flight (ToF) cameras, pressure matrices, wearable devices for
physiological parameters, MR devices. These technologies together with new data elaboration
hardware/techniques such as DNN and machine learning, can augment human capabilities by
enhancing his sensation or interact directly with the external world with an action.

Figure 1.3: Human perception-action loop augmented by a parallel framework composed by
measurement and visualization devices.

Thanks to the superimposition of digital content on top of the real cues, human sensation
is inherently enhanced with all the basic cognitive functions [94]. The pattern of neuropsycho-
logical functions comprises memory, attention, orientation, executive functions, language, visual
perception, and motion. Each can be enhanced in several ways, as shown in Table 1.1.

1.2.1 Taxonomy

In the MR continuum, a set of distinctions can be analyzed, which are also evident from the
different classes of MR technologies already presented. Generically, the distinctions made were
based on whether the primary world comprises real or virtual objects (AR or AV), whether real
objects are viewed directly or non-directly, whether the viewing is exocentric or egocentric, and
whether or not there is an orthoscopic mapping between the real and virtual worlds. In the paper
of Milgram and Kishino [74], they extended those considerations to classify MR experiences
by transforming them into a formalized taxonomy, which attempts to address the following
questions:

1. How much do we know about the world being displayed?

2. How realistically are we able to display it?
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CHAPTER 1. INTRODUCTION

Table 1.1: Pattern of neuropsychological functions enhanced via Mixed Reality [66].
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1.2. MIXED REALITY (MR)

3. What is the extent of the illusion that the observer is present within that world?

The three questions described three dimensions:

1. Extent of World Knowledge

2. Reproduction Fidelity

3. Extent of Presence Metaphor (immersive technologies)

While the first dimension deal with the amount of information available about the relevant
data such as environment, user viewpoint, gesture, objects location, and classification, the second
and third dimensions both attempt to deal with the issue of realism in MR displays, but in
different ways: in terms of image quality and terms of immersion, or presence, within the display.

Extent of world knowledge dimension

The Extent of World Knowledge (EWK) dimension is illustrated in Figure 1.4, where it has
been broken down into three main groups. These divisions are due to the different amounts of
knowledge the display computer holds about object shapes and locations within the two global
worlds being presented.

Figure 1.4: Extent of World Knowledge dimension.

At one extreme, on the left, is the case in which nothing is known about the world being
displayed. This end of the continuum is reserved for images of objects blindly scanned and syn-
thesized for non-direct “manipulation” in the MR world. The other end of the EWK dimension
defines the conditions necessary for displaying a completely virtual world on top of the real one,
which can be achieved only when the computer has complete knowledge about the environment,
the identification/classification of each real object, its location, the location and viewpoint of the
observer and, when relevant, the viewer’s attempts to change that world by manipulating objects
within it. The mid-section of the EWK continuum is the portion that covers all cases between
the two extrema. The different types of subcases are based on two interrogative particles. The
first, “Where”, refers to cases in which some quantitative data about locations in the remote
world are available. Imagine an obstacle avoidance application where raw scanned data obtained,
for example, from sonar scanners, detect a blob of something that can be generically classified
as an obstacle. The second, “What”, refers to cases in which the control software has instead
identified/classified objects in the image but has only a vague estimation of their location. This
information can be easily achieved via real-time classifiers such as Deep Neural Network (DNN).
In the AR domain, to have the digital content, such as indications, structure, and annotations,
accurately superimposed in real-time with the environment, a high EWK value is needed. An
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CHAPTER 1. INTRODUCTION

example of high EWK hardware can be the Microsoft HoloLens. It is an AR headset capable
of performing SLAM (Simultaneous Localization and Mapping) that enables users to view and
interact with digital content in the context of their physical surroundings, creating immersive
and interactive experiences. On a lower EWK, there is, for example, the DreamGlass Air. It is a
simple AR streaming device that makes the final viewing more immersive or private, regardless
of the surrounding space.

Reprodution fidelty dimension

The term “Reproduction Fidelity” (RF) refers to the quality with which the synthesizing display
can faithfully reproduce real and virtual objects. It lumps together several different factors that
are shown in Figure 1.5 through two progressions:

1. the progression above the axis is meant to show a rough progression of video reproduction
technology;

2. the one below is towards more sophisticated computer graphic modeling and rendering
techniques.

Figure 1.5: Reprodution Fidelty dimension.

Extent of presence metaphor

The third dimension in Figure 1.6 is the Extent of Presence Metaphor (EPM) axis, that is, the
extent to which the observer is intended to feel “present” within the displayed scene. In other
words, this dimension quantifies sensorial immersion.

As already noted, the EPM axis is not entirely orthogonal to RF since each dimension in-
dependently tends towards an extremum which ideally is indistinguishable from viewing reality
directly. In the case of EPM, the axis spans a range of cases extending from the metaphor by
which the observer peers from outside into the world from a single fixed monoscopic viewpoint
up to the metaphor of “real-time imaging”, by which the observer’s sensations are ideally no
different from those of unmediated reality thanks to a multiscopic viewpoint dependent imaging.

1.2.2 MR technologies

With the development of more high-performing and accessible MR technologies, the potential
for their use in different applications is advancing continuously. In most situations, using AR

8



1.2. MIXED REALITY (MR)

Figure 1.6: Extent of Presence Metaphor dimension.

technologies rather than other technologies in the MR spectrum is based on the context and the
intended application [53]. Here are some reasons why AR is often used:

• Interaction with the real world: AR overlays virtual elements onto the real world, allowing
users to interact with their physical environment while enhancing it with digital content.
This integration with reality can benefit various fields, such as real-time assessment, train-
ing, and productivity, where users must engage with their surroundings. Moreover, in
terms of self-to-environment-related movements as hand-eye coordination in AR involves
much less cognitive load than, for example, VR.

• Enhanced situational awareness: AR can provide users with additional information about
their environment, enabling them to make informed decisions or perform tasks more ef-
fectively. For instance, AR can overlay real-time data, such as directions, instructions, or
sensor information, onto the user’s view, enhancing their situational awareness and facili-
tating complex operations.

• Practical applications: AR has numerous practical applications across industries [17]. It
can be used in fields like healthcare for surgical planning and visualization, architecture
and design for virtual prototyping, retail for virtual try-on experiences, and gaming for
immersive gameplay that combines virtual and real-world elements.

• Social interaction: AR can foster social interactions by enabling users to share augmented
experiences with others. Multiple users can see and interact with the same digital content
in a shared physical space. This aspect opens up collaborative work, multiplayer gaming,
and interactive storytelling possibilities.

• Accessibility and portability: AR experiences can be accessed through various devices,
including smartphones and tablets, which are widely available to the general public. Com-
pared to VR, which often requires dedicated headsets and setups, AR can reach a broader
audience, making it more accessible and portable.

More generally, both AR and VR have strengths and limitations. VR provides highly immer-
sive and fully virtual experiences that can be advantageous in certain contexts, such as simula-
tions, training scenarios, or entertainment where complete immersion is desired. Ultimately, the
choice between AR and VR depends on the specific use case, goals, and user requirements.

9



CHAPTER 1. INTRODUCTION

Several MR technologies span the Reality-Virtuality continuum, Figure 1.7. Starting from the
virtual side, we find technologies that immerse the user inside virtual environments. Then we find
the AV domain, where the virtual world can be enhanced by the data coming from environmental
sensors. Finally, we find the AR domain where the user percepts reality with digital content in
overlay through different devices whose immersiveness, i.e., the extent of presence, can differ.

Figure 1.7: Technologies along the Reality-Virtuality continuum.

One of the main differences between AR and AV/VR technologies is that in AR, it is necessary
to align the digital content with the user viewpoint and, therefore, a measurement system able to
estimate the relative position between the used head and the object of interest must be embedded
within the solution. In AV/VR, it is “only” needed to estimate the user viewpoint motion with
respect to a fixed reference system that, in turn, pairs the user motion within the AV/VR domain.

1. AV-VR technologies:

• Google Cardboard, Figure 1.8, and Samsung’s VR Headset are VR platforms that use
a head mount board with a smartphone.

Figure 1.8: Cardboard. © Google via the Google Cardboard website

• VR headsets replace the user’s natural environment with virtual reality content con-
sisting of a full 360° reconstructed VR environment (3D mesh with images on top)

10



1.2. MIXED REALITY (MR)

that allows the user to turn and look around, just as in the physical world. Examples
of VR headsets are Oculus Quest and HTC Vive (Figure 1.9).

Figure 1.9: HTC Vive headset, two controllers, and two motion capture. © HTC via
HTC VIVE website

2. AV technologies:

• Environmental sensors can be whichever kind of sensor that can be integrated into
the actual environment in order to monitor the environment and capture both human
interaction and the human state, Figure 1.10. The most crucial technological issue is
how sensor data are collected in the MR domain. One of the possible architectures to
collect sensor data is Wireless Sensor Networks (WSN).

Figure 1.10: Example of data collection and visualization with immersive technologies
in the Italian AUSILIA project [120].
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CHAPTER 1. INTRODUCTION

3. AR technologies:

• AR can be experienced via a wearable glass device, head-mounted device (HMD), or
through handheld (such as with smartphone) applications. One of the best-known
examples of HMD is the Microsoft HoloLens, Figure 1.11.

Figure 1.11: HoloLens 2. © Microsoft via Microsoft website

• Heads-up displays (HUDs) are another category of devices that can support AR ex-
periences, Figure 1.12. HUDs are designed to present information or digital content
to the user in a way that allows them to keep their attention on the real-world envi-
ronment. While HUDs are often associated with vehicles, such as cars and aircraft,
they can also be used in other contexts to provide AR information.

Figure 1.12: C-130J: Co-pilot’s head-up display. © Telstar Logistics via Telstar Logistics website

• Video projector creates AR with no bulky headset. It is possible by projecting the
digital content directly on top of the relevant scenario. In 2019, the system Lightform,
thanks to projection mapping, enables the projected patterns to superimpose exactly
over real-world objects, Figure 1.13.

Also, the taxonomy space can be used to differentiate between the available AR displays
based on their features and capabilities. In the plot of Figure 1.14 different technologies are
compared: Smartphone, Lightform, and HoloLens.
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Figure 1.13: Lightform. © Volkswagen via project MARTA

Figure 1.14: AR devices in the taxonomy space.

1.2.3 MR framework design

When designers need to develop a framework in which innovative technologies such as those based
on MR visualization are present, regardless of the specific application, they need to answer three
questions:

1. What kind of data would be helpful for the user?

2. How should these data be visualized?

3. Which is the best medium for visualization?

About the first question, designers should aim to gather the information that enables them
to understand users’ needs, preferences, behaviours, and contexts. To design user-centered solu-
tions, they need to manage different data, such as:
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• Final purpose of the framework: Understanding the goals and challenges can guide design-
ers in developing solutions that align with users’ desired outcomes and effectively overcome
their pain points.

• User’s biometric and physiological data: Wearable devices or sensors can collect biometric
data such as breathing rate, heart rate, or stress levels. These data can provide insights
into users’ physical and emotional well-being, enabling designers to create solutions that
promote health and wellness.

• User demographic data: Understanding users’ demographics, such as age, gender, loca-
tion, and level of instruction, can provide insights into their backgrounds, preferences, and
motivations.

• User behaviour data: Collecting data on the existing methods by which users operate can
offer valuable insights. It can include tracking user actions, patterns used to perform tasks,
time spent on specific tasks, and frequency of use.

• Contextual data: Understanding the environment and context in which users operate is
crucial. It can involve gathering data on location, time of day, environmental conditions,
or other contextual factors that impact user experiences.

While emphasizing the value of data collection, it is equally crucial that designers prioritize
user privacy and data security. Transparency and consent are essential when gathering personal
or sensitive information, and data should be anonymized and aggregated whenever possible.

Ultimately, the data that would be helpful for users will depend on the specific context and de-
sign objectives. By combining multiple data sources, designers can comprehensively understand
users and create solutions that meet their needs.

When choosing the data to show, the designer must focus on including only the essential
information needed to minimize the cognitive load on the end user. Neglecting this considera-
tion can lead to a scenario reminiscent of London designer Keiichi Matsuda’s depiction in his
2016 hyper-reality film [70], where a nightmarish sci-fi future unfolds, inundating every surface,
appliance, and peripheral vision with an overwhelming amount of data, Figure 1.15. This hyper-
visualization results in such a high cognitive load that the designed interface becomes unusable.

Figure 1.15: An example of hyper-visualization from a frame of Keiichi Matsuda’s film about
our future life saturated with inescapable streams of information, advertising, and data [70].
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The second question about data visualization involves a combination of objective principles
and subjective design choices. While there are established best practices and guidelines for data
visualization, individuals’ interpretation and design decisions can introduce subjective elements.
When information must be added, whether in a real environment or a reconstructed virtual
environment, it is essential to keep in mind the principles of visual perception and clarity when
visualizing data:

• Data accuracy: Visualizations should accurately represent the underlying data without
distorting or misrepresenting information.

• Clarity and simplicity: Visualizations should be clear, easy to understand, and free from
unnecessary clutter.

• Location: All data should be placed in a way that simplifies understanding without con-
fusing the user. For example, all information about a particular person or machinery can
be displayed on or near them to make it easier to understand who they relate to.

• Consistency: Visual elements such as colour, scale, and labelling should be used consistently
to avoid confusion.

• Contextual relevance: The visualizations should provide appropriate context to help users
understand the data’s meaning and significance.

• Accessibility: Consider accessibility guidelines to ensure that visualizations are usable by
individuals with different abilities.

Additionally, subjective design choices can be adopted:

• Visual style: The choice of visual styles, such as colour palettes, typography, and layout,
can introduce subjective elements and reflect the designer’s aesthetic preferences.

• Emphasis and hierarchy: Designers emphasize specific data points or patterns over others
based on their understanding of the insights and story they want to convey.

• Interaction design: The selection and implementation of interactive features within visu-
alizations can be subjective, influenced by the intended user experience and the designer’s
creative approach.

• Interpretation and storytelling: Designers interpret the data and decide how to tell the
story best or highlight critical insights. It can introduce subjectivity based on their under-
standing, expertise, and intended message.

While subjectivity plays a role in data visualization, designers must validate their choices
through user feedback, usability testing, and iterative design processes. It helps ensure that the
visualizations effectively communicate the intended information and are understood by the tar-
get audience. Collaboration and multidisciplinary approaches can also help balance subjective
design choices with objective principles and domain expertise.

The last design question concerns the best medium for visualization. It depends on several
factors, including the immersiveness required, the nature of the data, and the users’ experience
with the selected technology. It often results in a trade-off among these factors, and one crucial
aspect to consider is accessibility to ensure that visualizations are usable by individuals with
different abilities. For example, AR is suitable for situations where users must simultaneously
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interact with physical and virtual elements. A good level of immersiveness can be provided
by smart glasses such as Microsoft HoloLens, with the advantage of leaving hands free. They
also allow the manipulation of virtual objects with gestures or voice commands, although more
complex than traditional interaction methods on tablets or smartphones. While gestures and
voice commands offer more immersive and interactive experiences, they often require a learning
curve for users to become comfortable with the new interaction paradigms. Accessibility problems
then increase for users with physical disabilities or those with speech impairments.

For this reason, one solution adopted in some AR applications developed and analyzed in
this thesis is to use HoloLens only for visualization and to use traditional interaction methods,
such as tablets or smartphones, to interact with the data, e.g., to decide which ones to display
and which ones not, Figure 1.16.

Figure 1.16: Example of combined use of HoloLens and a smartphone to simplify interaction
with virtual cues.

1.3 PAL in a Shared MR

One of the many advantages offered by MR technologies is their potential use as a medium for
communication [97]. This enables new possibilities, such as multiple users’ simultaneous experi-
ence of an augmented environment. A categorization of Computer-Supported Cooperative Work
(CSCW) allows these technologies and, more generally, any form of computer-based medium to
be classified in a temporal and space dimension [95]. Regarding the temporal dimension, collab-
oration among multiple users can occur synchronously (simultaneously) or asynchronously (at
different times and thus independently). Regarding the spatial dimension, users can be co-located
(in the same space) or remote (in different locations). When Virtual and Augmented Reality
technologies converge to foster interactive and immersive collaborative experiences among mul-
tiple agents [12] it is called shared MR (SMR). Examples are also found in driving cars [86],
in industrial settings [55] and, even in human-robot interaction while sharing the same virtual-
real (mirrored) environment [42, 90]. Within the context of the PAL, SMR presents significant
possibilities for enhancing how humans perceive, process, and respond to their environment by
improving communication, collaboration, and information sharing. This extends PAL to a new
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level of perception. In this dissertation, I focused on co-located and synchronous SMR applica-
tions, Figure 1.17.

Figure 1.17: The second level of the perception-action loop: collaboration between two users in
a shared virtual environment with the virtual environments V1 and V2 aligned in space and time
with each other and the real world R.

Depending on the context, the tasks and roles of the two users may be the same or completely
different. The alignment in space and time between the two shared virtual environments must be
the same for both in a collaborative environment. Indeed, SMR has not yet been fully exploited
because of the extrinsic calibration between the two viewpoints, which requires systems that
can continuously track their positions and orientations with respect to the environment in real-
time. HoloLens, through its depth cameras and inertial measurement units (IMUs), maps the
physical environment allowing a spatial understanding of the surroundings. Using these sensors
and a technology called “spatial anchors” [77], the reference systems of multiple HoloLens can be
aligned in a shared environment. It ensures that virtual objects appear in the correct positions
and orientations for all users involved. Moreover, in an AV context, collaborators in different
locations can experience the same environment simultaneously, fostering a sense of presence and
shared understanding.

Shared Augmented Reality (SAR) and Shared Augmented Virtuality (SAV) enable more
prosperous collaboration and communication through visual annotations, gestures, and shared
content. While SMR offers advantages, it also introduces cognitive load challenges. Users must
simultaneously process physical and virtual information, potentially leading to information over-
load or distraction. Design considerations are crucial to minimizing cognitive load, such as
optimizing the presentation of information and allowing users to adjust the level of augmented
content.

SMR for collaborative purposes can be extended to another level when one of the two users
becomes the supervisor, Figure 1.18.

The supervisor’s perception increases by involving the second user in his virtual world. The
supervisor perceives the virtual world as at the collaborative level but with additional information
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Figure 1.18: The third level of the perception-action loop: supervision of one of the two users.
Supervisor’s perception is augmented by the second user U included in his virtual environment
V1.

from the second user. The measurement systems of the second user involved different stages of
PAL. For example, physiological parameters are related to his perception stage, while the motion
capture system or his interaction with the environment is related to the action. Moreover, in AR,
all this additional information can be displayed above the second user, expressing his relative
reference system with respect to the environment. On the other hand, the second user continues
to perceive only his virtual world. The concept of SMR with a supervisory role introduces a
dynamic and interactive way for experts to assess, assist and guide others in real-world scenar-
ios. Depending on the context, the supervisor may be a therapist assessing a patient, a teacher
evaluating students, and a supervisor monitoring an operator in an industrial environment.

Finally, by embracing human-centered design principles, designers can ensure that SMR ap-
plications are intuitive, inclusive, and empathetic, paving the way for a future in which virtual
collaboration and supervision become seamless, engaging, and deeply human-centered.

This dissertation explores innovative frameworks in various domains, each involving different
levels of PAL. Each of the next chapters will discuss which levels of PAL are involved and
enhanced. Not every designed application encompasses all levels of PAL for multiple users in a
SMR framework. Nevertheless, all the algorithms and methods developed can always be included
in a more general SMR framework with multiple users.
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Chapter 2

AR in healthcare

AR has gained popularity in various industries, including gaming [79] and entertainment [44],
but it has also made significant advancements in healthcare.

AR offers numerous possibilities for improving patient care, medical training, and surgi-
cal procedures in healthcare. By providing real-time, context-specific information, AR enables
healthcare professionals to make more accurate diagnoses, perform complex surgeries with preci-
sion, and enhance patient outcomes. Here are a few areas where AR is being used in healthcare:

• Medical education and training: AR provides a unique platform for medical students and
professionals to learn and practice complex procedures in a safe and controlled environment.
It allows them to visualize and interact with anatomical structures, medical devices, and
simulations, enhancing their understanding and skill development [124].

• Surgical planning and navigation: AR can assist surgeons in preoperative planning by
overlaying patient-specific medical imaging data, such as Computed Tomography (CT)
scans or Magnetic Resonance Imaging (MRI), onto the surgical site [6]. It allows surgeons
to visualize the internal anatomy in real-time during the procedure, improving accuracy
and reducing risks.

• Surgical guidance: During surgeries, AR can provide real-time guidance to surgeons by
overlaying relevant information, such as critical structures, blood vessels, or tumor margins,
directly onto the patient’s body. It helps surgeons navigate complex anatomical areas and
perform procedures with increased precision [18].

• Remote consultations and telemedicine: AR can facilitate remote consultations by enabling
healthcare professionals to project their expertise onto the patient’s location. By using AR
glasses or mobile devices, doctors can visualize and guide patients through examinations,
diagnostics, and treatments, regardless of their physical location [112].

• Patient education and empowerment: AR applications can help patients better under-
stand their medical conditions, treatment options, and post-operative care. By visualizing
the effects of diseases or explaining complex medical concepts, AR empowers patients to
participate in their healthcare decisions actively [3].

• Mental health and well-being: AR can create immersive and interactive experiences pro-
moting mental health and well-being. It can be employed in therapies for anxiety disorders,
phobias [47], and Post-Traumatic Stress Disorder (PTSD) by providing controlled exposure
to triggering situations.
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• Rehabilitation and occupational therapy: AR technology can enhance rehabilitation pro-
grams by providing patients with interactive exercises and real-time feedback. It can help
patients regain motor skills, improve coordination, and track progress [16, 65, 24, 102, 31].

2.1 Co-design

Co-designing AR technology between doctors and engineers can lead to the development of
innovative and practical solutions that cater specifically to the needs of healthcare professionals.
Collaborating on the design process ensures that the AR technology addresses the challenges faced
by doctors and aligns with their clinical requirements [15]. An example of this co-design process
is shown in Figure 2.1 between doctors and therapists at Villa Rosa Rehabilitation Hospital in
Pergine, TN, Italy, and engineers from the Italian Department of Industrial Engineering at the
University of Trento and the Japanese NARA Institute of Science and Technology.

Figure 2.1: Co-design between doctors and engineers in Villa Rosa rehabilitation hospital of
Pergine (TN), Italy.

Here is a general framework for co-design applied to the specific case of AR solutions between
doctors and engineers:

1. Identify needs and challenges: Doctors and engineers should come together to identify the
specific needs, challenges, and opportunities where AR can make a meaningful impact in
healthcare. It can involve discussing current pain points, workflow inefficiencies, and areas
that could benefit from AR technology.

2. Define Objectives: Establish clear objectives for the AR technology based on the identified
needs. Determine the specific goals it should achieve, such as improving surgical precision,
enhancing diagnostic accuracy, or streamlining training processes. These objectives will
guide the design process.

3. Gather user insights: Involve doctors and other healthcare professionals in the design
process as active participants. Conduct interviews, observations, and surveys to gain deep
insights into their workflows, preferences, and requirements. Understand how they interact
with technology, their pain points, and their vision for augmented reality in their practice.
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4. Prototype and iteration: Engineers can develop initial prototypes of the AR technology
based on the insights gathered. These prototypes should be shared and tested with doctors
for feedback and evaluation. This iterative process allows for continuous refinement and
ensures that the technology aligns with the practical needs of doctors.

5. Usability testing: Conduct usability testing sessions with doctors to evaluate the effec-
tiveness and usability of the AR technology. It involves observing how doctors interact
with the prototypes in realistic scenarios and gathering feedback on user interface design,
comfort, accuracy, and overall user experience.

6. Iterative refinement: Based on the feedback received during usability testing, engineers
should refine and iterate the AR technology to address any identified issues or concerns.
This process may involve modifying user interfaces, optimizing performance, enhancing
ergonomics, or integrating new features based on the specific requirements of doctors.

7. Validation and deployment: Once the AR technology has undergone sufficient iterations
and refinement, validate its effectiveness and impact through pilot studies or clinical trials.
Collect data on its performance, user satisfaction, and patient outcomes. This evidence
will help fine-tune the technology further and gain acceptance from doctors and regulatory
bodies.

8. Continuous collaboration: Collaboration between doctors and engineers should continue
after the initial design and deployment. Establishing a continuous feedback loop is crucial,
allowing doctors to provide ongoing input and suggestions for improvements. It ensures
that AR technology remains aligned with the evolving needs of healthcare professionals.

The resulting AR technology will be more effective, practical, and user-friendly by fostering
collaboration and co-design between doctors and engineers. This interdisciplinary approach
leverages the expertise of both parties, leading to the development of innovative solutions that
truly enhance healthcare delivery and patient care.

2.2 Occupational Therapy

Occupational Therapy (OT) is a healthcare profession focused on helping individuals develop,
recover, or maintain the skills needed to participate in Activities of Daily Living (ADLs) [51].
These activities can encompass self-care tasks (such as bathing, dressing, and eating), produc-
tivity tasks (work, school, or volunteering), and leisure occupations (sports, hobbies, and social
interactions).

Occupational therapists work with people of all ages, from infants to the elderly, and across
various settings, such as hospitals, schools, rehabilitation centres, and community-based pro-
grams. They collaborate with individuals with motor/sensory impairments, cognitive/percep-
tual insufficiencies, behavioral shortfalls, or visual discrepancies that may impede their ability
to engage in activities essential to their well-being and independence. They can be the result of
brain injuries such as a stroke, traumatic brain injury, or brain tumor.

The primary goal of OT is to improve a patient’s overall quality of life and functional indepen-
dence. Occupational therapists achieve this through a patient-centred approach that considers
each individual’s unique needs, goals, and abilities. They conduct comprehensive assessments to
identify strengths and challenges, design personalized treatment plans, and implement evidence-
based interventions to address specific areas of difficulty.
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The evaluation of the patient’s abilities is based on a non-standardized method that measures
the patient’s performance using these markers: safety, efficiency, effort, and independence [27].
In the current workflow, occupational therapists give standardized examinations using manuals
such as the Assessment of Motor and Process Skills (AMPS) [19], which makes them more trust-
worthy and consistent, but still has some remaining flaws. Moreover, in order to gain the ability
to conduct the proper AMPS evaluation, continued training is necessary. Consequently, the clin-
ician’s expertise impacts an assessment utilizing these modalities and is therefore susceptible to
mistakes and misinterpretations for less experienced therapists. In addition, today, the number
of health conditions associated with severe disability rates has reached 183 million [80]. The
resources needed for addressing rehabilitation needs out-measures accessibility, resulting in inad-
equacies in these services. To cope with these demands, the education and training of therapists
who have just finished schooling may find their knowledge and expertise lacking in the actual
field [8]. It is mainly due to the differences between the scope of the theoretical knowledge in the
literature about rehabilitation concepts and their application in clinical practice. Developing the
clinical eye would take years of practice, so novice therapists would need help making compli-
cated clinical decisions and evaluations. As a solution to this problem, innovative visualization
technologies such as AR and enhanced measuring techniques can be support tools therapists
use for motor rehabilitation. Introducing these technologies may be more useful for therapists
with less experience. Still, it could support veteran therapists by speeding up the evaluation
process or showing more detailed patient data. The possibility to have more information in AR
contextualized close to the patient simplifies their assessment without losing the exteroception of
the scene. In this way, occupational therapists can define more reliable assessment scales based
on objective parameters, increasing the effectiveness of clinical observation for more effective
rehabilitation programs.

AR assistive technology in clinical settings is widely discussed in the literature for ADLs
support [96, 115, 76]. In most situations, the decision to employ AR technologies for ADLs
training rather than other technologies in the MR spectrum is based on the notion that generally,
subjects perform better in AR than in VR in terms of self-to-environment-related movements, as
hand-eye coordination in VR involves a much higher extraneous cognitive load [53]. Additionally,
the patient can manipulate physical objects while seeing virtual information in AR to ensure the
perception of the surrounding physical surroundings and the weight of those objects. Moreover,
these technologies not only increase the clinical eye of occupational therapists and thus their final
assessment of patients, but also the engagement of patients in daily life through gamification of
some of their daily activities in AR through serious games.

2.3 Serious games

Serious games [2], also known as therapeutic or health-related games, have gained popularity
in OT as a valuable tool to engage patients and enhance their therapeutic outcomes. These
games are designed with specific therapeutic goals. They are intended to be fun and inter-
active while addressing various physical, cognitive, emotional, and social challenges faced by
individuals receiving OT. Therapy sessions are more enjoyable and less intimidating for patients,
particularly children and young adults. By incorporating game elements like rewards, points,
and competition, serious games can boost motivation and engagement during therapy sessions,
encouraging individuals to participate actively in their rehabilitation process. They can simulate
real-life activities, such as cooking, driving, or shopping, to help individuals practice functional
tasks in a controlled and supportive environment. In addition, they can also provide therapists
with valuable data on patients’ progress and performance, enabling personalized treatment plans.
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The immersiveness of serious games can be enhanced through AR. Therapists can leverage
this technology to design engaging and effective interventions, actively motivating patients to
participate in rehabilitation and skill development. Moreover, their perception can be enhanced
at different levels of PAL, from simple collaboration to supervision in a SAR framework, Fig-
ure 2.2.

Figure 2.2: The third level of the perception-action loop between therapist, i.e. supervisor, and
patient in a shared augmented reality framework. The external environment R is represented in
this context by, for example, a domotic apartment.

Within the Measurement, Instrumentation and Robotics Laboratory (MiroLab) of the De-
partment of Industrial Engineering at the University of Trento, several AR-based serious games
were developed, demonstrating the application of this technology in OT. They were co-designed
with doctors and therapists at the Villa Rosa Rehabilitation Hospital in Pergine, TN (Italy). The
purpose of some of them is also to show doctors and therapists the potential that an AR solution
may have, and then jointly evaluate its applicability to a specific pathology. Not all of the demos
described in the next sections have been tested and validated with real patients because they
are still undergoing iterative refinement between engineers and doctors. In Section 2.4, however,
the SAR framework for the specific ADL scenario of setting up the table was validated with real
patients.
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2.3.1 Flower watering game

A first AR-based demo, designed in collaboration with the Interactive Media Design Lab of the
Nara Institute of Science and Technology in Japan, aims for immersive training in horticultural
therapy, Figure 2.3.

Figure 2.3: AR demo presented to the 22nd IEEE International Symposium on Mixed and
Augmented Reality (ISMAR) for watering flowers with virtual objects and two actors: a therapist
and a patient.

The proposed AR-based occupational therapy demo has several advantages for patients and
therapists. For the patient, it is an immersive and engaging training experience without losing
contact and perception of the real environment, thanks to the combination of real and virtual
elements. He can train physical (muscle coordination, range of motion) and cognitive functions
(short-term memory, planning) [100, 59, 45]. Furthermore, it provides real-time performance
feedback with a demo whose difficulty levels can be tailored to their individual skills. The
therapist can control almost all parameters and objectively evaluate the patient’s performance.
In addition, the framework is open to integrating additional sensors on the patient, such as
pressure insoles or wearable heart, electromyography (EMG), or respiratory sensors, to enhance
the therapist’s clinical eye and thus extend the level of PAL to a supervised SAR.

The end user may be a patient with motor disturbances due to upper spinal cord injury
(paraparesis, tetraparesis), cerebellar lesion (ataxia), brain stem/basal nuclei lesion (Parkinson’s
disease and parkinsonisms), brain lesions (stroke with hemiparesis and possible cognitive dis-
orders such as apraxia, inattention, head trauma with executive function problems, tremors,
sensory disturbances (of vision such as diplopia, of proprioception) and multiple sclerosis.

The developed framework involves both the therapist and the patient wearing a HoloLens.
The demo starts with the therapist configuring parameters via a custom smartphone application.
The application allows the therapist to set parameters such as patient name, watering can weight,
flower growth time, watering frequency and adjust the complexity of the task. These parameters
can be tailored to suit the patient’s specific needs and abilities. The smartphone is then placed
on the watering can to measure its tilt angle, fusing its gyroscope output with the attitude
estimated via a Vuforia marker. Combining the two measurement systems improves accuracy
and allows an estimation when the HoloLens camera is obstructed or the watering can is outside
its field of view (FOV).
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Next, the therapist places the virtual pots in the room with HoloLens, Figure 2.4. This
procedure considers objects and obstacles by estimating the environment mesh using the Mixed
Reality Toolkit.

Figure 2.4: Game setting according to the therapist’s FOV.

Now it is the patient’s turn, who, through HoloLens, visualize the pots to water. The patient
is instructed to water the virtual pots using a real watering can (without water) to grow virtual
flowers. When the pot receives water in its (virtual) area, plants and flowers grow dynamically
accordingly to the amount of water received, Figure 2.5. The watering can has the option to add
(real) weight to adjust the training intensity according to the patient’s physical progress.

Figure 2.5: Patient’s task from his FOV.

A countdown timer is displayed on the AR glasses near each virtual pot to guide the patient
in the task. In addition, 3D sounds help the patient to identify the next pot, thus improving
spatial awareness, focus of attention and engagement.

All data, including watering accuracy, watering time, and task completion speed, are saved.
The therapist can decide whether to share the final score with the patient in AR.

During this iterative refinement phase of the co-design process, we received a lot of positive
feedback from doctors and therapists. They appreciated the simplicity of setting up the demo,
the heightened engagement of potential patients due to the high-quality graphical animation that
closely approximates a real-world scenario, and the system’s capability to collect very useful data
for patient assessment while offering effective patient training.
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2.3.2 Balance games

Other demos were presented to therapists as initial prototypes, after identifying with them the
need for a tool to train and assess patients’ balance and body movements.

The first, Figure 2.6, is a serious game developed for people with torso problems; the require-
ment was to create a game where the user must move the head to avoid an object. During the
game, the subject’s feet can stand on top of a baropodometric platform to see how the weight
distribution changes during the game. This game can work either standing or sitting.

Figure 2.6: The AR game demo for people with torso problems.

The second demo in Figure 2.7, is a serious game developed to test and train users’ balance
through an AR balancing game. Users have to hit green virtual capsules with a virtual ball while
avoiding red ones by tilting the plane in front of them.

Figure 2.7: The balance-the-ball AR game demo that was presented to the therapists.

Therapists agree that these demos can help people improve their motor skills and coordina-
tion. The positive feedback collected again highlights the high level of engagement through AR
technologies and the high level of safety in interacting with virtual objects, allowing their use
to be extended to a wider range of patients. These demos were also designed to stimulate the
imagination of therapists so that they could draw up novel programs to give to their patients.
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However, it is essential to use serious games to complement traditional therapeutic meth-
ods rather than replace them. Each patient’s needs and goals should guide the selection and
implementation of serious games, ensuring that they align with the overall treatment plan and
contribute effectively to the individual’s functional outcomes and well-being.

In addition, when using AR in occupational therapy, it is essential to consider the individual’s
comfort with technology, the specific therapeutic goals, and potential safety concerns. Therapists
should provide proper guidance and supervision, ensuring the technology complements the overall
treatment plan and contributes effectively to the client’s functional progress and well-being.

As technology continues to evolve, the possibilities for utilizing AR in occupational ther-
apy will likely expand, offering even more innovative and effective ways to support patients in
achieving their therapeutic goals.

2.4 Specific ADL in a SAR kitchen environment

Another original framework was designed [24] involving all levels of the PAL in a SAR environ-
ment for the specific ADL scenario of setting up the table. The SAR environment is augmenting
with the proper elements from the two different perspectives of the therapist and the patient.
The fundamental novelty of the proposed framework lies in the enhancement and support of
the clinical eye [23] in a SAR environment by increasing empathy between actors [89]. The
proposed prototype increases the therapist’s involvement and perception of the patient with the
ability to access their multidimensional data in AR. Furthermore, it helps improve the patient’s
engagement by allowing interaction with virtual augmented information and real tools/utensils
throughout the ADL exercise. The AR system incorporates a robust, reliable, and accurate
computer vision-based technique to assure the high metrological quality of the evaluation. This
system does not replace the traditional workflow of the therapist-patient interaction during the
ADL but instead promotes and deepens this interaction [37]. This interaction is bridged by
having the patient see virtual guides that support their understanding of the ADL task that the
therapist describes. Moreover, on the therapist’s side, they can see the invisible current condi-
tions of the patient (i.e., body and feet posture, heart rate), and they can better understand the
situation and make correct decisions and guidance about the ADL execution.

The prototype was developed in the MiroLab of the University of Trento and set up inside
the home automation apartment AUSILIA(Assisted Unit for the Simulation of Independent
Activities) [35] at the rehabilitation hospital Villa Rosa in Pergine Valsugana (Italy). Figure 2.8
shows the framework tools used during the ADL assessment.

Visualization devices

Both therapists and patients can see AR cues on Microsoft HoloLens 2 head-mounted displays.
In addition, the therapist can manage and interact with information using a handheld device,
such as a smartphone.

Distributed measurement system

The measurement system includes the following components:

• Two Time-of-Flight (ToF) depth cameras, such as the Microsoft Kinect v2, with the first
one in front of the patient, used to determine where the position of the body joints are in 3D
space [81]; the second one, above the table, used to capture an RGB image (1920 × 1080)
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Figure 2.8: Framework setup in the AUSILIA apartment.

for the computer vision based-algorithm and to measure the height from the table and
check its orientation during the initial setup phase.

• A wearable band system developed by the company Smartex s.r.l of Navacchio (PI), Italy.
It continuously monitors several physiological parameters. In particular, the system can
simultaneously acquire the patient’s electrocardiographic (ECG) and respiratory signals.

• The baropodometric platform used for non-invasive static and dynamic pressure measure-
ment and body stability analysis is a customized model of the FreeMed family manufac-
tured by the Italian company Sensor Medica of Guidonia Montecelio (RM). The platform,
which measures 56 × 120 cm, consists of two units, the sum of which results in 6000 24k
gold-coated resistive sensors with frequency acquisition up to 400Hz.

• The main PC, where all raw sensor data are processed, stored, and sent.

Software development and communication protocols

The control interface for handheld devices such as smartphones was developed with the Node-
RED programming tool, Figure 2.9.

This development tool is useful for real-time data management and elaboration for IoT dis-
tributed systems. Its advantages include: open-source, visual programming (“flow-based pro-
gramming”); fast development; lightweight; efficient MQTT (Message Queuing Telemetry Trans-
port) client-server protocol.

All devices, including HoloLens, a smartphone, and the main computer, are connected over
the same LAN. The MQTT protocol, based on TCP/IP, thanks to its reliability and lightness,
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Figure 2.9: Examples of control interfaces for the therapist’s handheld device.

allows the communication of data involving logic control (i.e., interface buttons, switches, and
other controls). On the other hand, standard UDP (User Datagram Protocol) broadcasts data
that concerns a large and continuous stream of information (i.e., platform data, Kinect data).
The data transmission pipeline is shown in Figure 2.10.

The raw ECG and respiratory signal acquired by the Smartex band were processed and
analyzed via Bluetooth Low Energy (BLE) in the main PC. HoloLens then received this data. In
particular, for the analysis of the ECG and the respiratory signal, we took a 2 s time window to
highlight any changes in physiological signals while the patient was performing short tasks. The
Smartex band acquires the raw ECG signal with a frequency of 250Hz. Data were successively
filtered using a zero-phase passband Butterworth filter (cutoff frequencies, 0.1Hz–20Hz) and a
modified version of the Pan–Tompkins algorithm was implemented to detect the R peaks [83].
The time differences between consecutive R peaks were calculated, obtaining the RR interval time
series. For the patient’s average heart rate, we considered the mean value of the punctual heart
rate values within the 2 s time window. The breath rate was extracted from the raw respiratory
signal (acquired at 50Hz frequency) by removing the mean value and applying a zero-phase
bandpass Butterworth filter (cutoff frequencies, 0.1Hz–0.6Hz). The peaks in the resulting signal
were detected considering the following assumptions: a temporal distance greater than half of the
average distance between all peaks and an amplitude greater than half of the average amplitude.
As for the ECG signal, the considered breath rate was the average value within the 2 s time
window.

Both Kinects are connected via USB to the main PC and are not used for synchronous
acquisitions. The first is used during the table-setting task, and the second when the therapist
presses the button to evaluate the error between virtual and real objects. We choose which sensor
to use by enabling and disabling the USB port to which each Kinect is connected. For the first
Kinect, we considered only the joints of the upper half of the body. The 3D coordinates of these
joints are then converted from Kinect to a marker coordinate system using the transformation
matrix calculated from the calibration. These data are then broadcasted via UDP to HoloLens
at a rate of 30Hz. The second Kinect acquires the RGB image to be provided as input to the
computer vision-based algorithm, the output of which, in the form of deviations in the position
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Figure 2.10: Data transmission pipeline.

and attitude of each object, is sent via UDP to HoloLens.

The FreeMed platform also connects to the main PC via USB. Data is collected using the C#
program given by the FreeMed company, and broadcasted via UDP to HoloLens. The platform
comprises 120 by 50 pressure sensors, with a total of 6000 small sensors. Each sensor returns a
value between 0 and 255, with 0 being no pressure and 255 with max. This sensitivity is adjusted
during the calibration phase.

Butterworth filters were applied to the Kinect and HoloLens data to reduce noise. A sixth-
order Butterworth filter with 3Hz cutoff frequency was selected for filtering both devices. Fig-
ure 2.11 summarizes the data processing flow chart of the main devices.

Figure 2.11: Data processing flow chart.
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Extrinsic parameters calibration

For Kinect and the therapist’s HoloLens to track the patient’s kinematics in the same reference
system, calibration is required (Figure 2.12). During the set-up phase, a marker with enough
detectable feature points was used to derive a transformation matrix from Kinect camera coordi-
nates to marker coordinates. The calibration process is repeated until an acceptable reprojection
error is achieved. Vuforia SDK handles all the image target tracking for HoloLens. A spatial
anchor is saved in the HoloLens using the same marker used for Kinect calibration. In this way,
the Kinect and HoloLens can operate in the same reference system. Once calibrated, the marker
can be removed at any time. Additional spatial anchors are saved in the therapist’s HoloLens to
define the reference systems of the working table and baropodometric platform. On the patient’s
HoloLens, however, only the spatial anchor related to the working table reference system is saved
to operate in the same reference system as the therapist’s HoloLens.

Figure 2.12: Spatial Anchors setting: the red image target is used by the therapist’s HoloLens
and the Kinect to operate in the same reference system; the blue target is used by the therapist’s
and the patient’s Hololens to have the same reference system of the working plane; the green
target is used only by the therapist’s HoloLens to localize the baropodometric platform in space.

2.4.1 Evaluation process in SAR

The therapist assessing the patient during the instrumental ADL of setting the table is aided by
a SAR scenario that can enhance his clinical assessment in an immersive and engaging way for
the patient. The evaluation process involves the following steps:

1. Wearing a head-mounted Microsoft HoloLens 2, the therapist sets the table with virtual
objects, Figure 2.13a. A handheld device’s graphical interface allows the therapist to
select the type and number of objects. Depending on the type of patient being assessed,
therapist can adjust the complexity of the setup as needed. During this phase, the patient
wearing another HoloLens 2 can view the virtual environment setup from his point of view,
Figure 2.13b.
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(a) (b)

Figure 2.13: Example of a SAR environment from the FOV of the (a) therapist’s HoloLens and
(b) patient’s HoloLens.

2. Once finished, the patient can view the virtual environment previously set up by the ther-
apist and must try to match the virtual objects with the real ones.

3. Once the table setting is completed, the patient is asked to move his hands away from
the table to avoid hiding real objects from the camera’s view. Then, by pressing a button
on the smartphone, the therapist estimates how far the real objects are from the virtual
ones based on the position and angle errors that appear in AR next to each object with
numbers following the therapist’s gaze in Figure 2.14a. Numbers are displayed in different
colors (green-yellow-red) according to the tolerance and, therefore, the threshold of error
acceptability set by the therapist. If the algorithm does not find a match between a real
object and a virtual object because, for example, the patient forgot to add the corresponding
real object above the table, the associated virtual object is completely colored red. This
indicates that the patient made an error with this virtual object; it is then up to the
therapist to assess what kind of error because the algorithm could not return an output.

4. Another panel in AR summarizes the average angles and the average distances between
the barycenters of the virtual and real models with the total task execution time, shown
in Figure 2.14b.

(a) (b)

Figure 2.14: (a) Example of errors visualization in AR via therapist’s HoloLens 2 with (b) AR
panel in which error averages and total time are summarized.
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5. Therapists can decide with a smartphone whether to display additional information about
the patient in AR during the exercise session, such as the reconstruction of the patient’s
kinematics and angles between the limbs, the load distribution of the legs, and his physio-
logical parameters (Figure 2.15).

(a) (b)

Figure 2.15: Example of information in AR from the therapist’s point of view on the (a) patient’s
lower and (b) upper body.

6. At the end of each session, the therapist can decide to save all captured data to a text file.

2.4.2 Algorithm for object segmentation, localization & identification

An algorithm was developed in a MATLAB environment to identify and locate real objects of
interest placed on a table by a user. Following the processing of an RGB image, this algorithm
can detect and identify such objects, as summarized in Figure 2.16.

Figure 2.16: Flow chart of algorithm processing data.

It is not a real-time algorithm but is executed only when a snapshot image is taken as input at
the time the therapist presses the button to evaluate the error between virtual and real objects.
In addition, the captured image only covers the plane of the table, so objects that are outside
the camera’s FOV are not considered in the object recognition process. Items to identify include
polished stainless steel cutlery. A sandblasting process made them opaque and unaffected by the
direction of light, overcoming the problem of reflections on their surface that could affect the
result of the algorithm.

The algorithm can be divided into the following steps:

Segmentation and localization

First, the RGB image captured by the Kinect fixed on top of the table was captured and processed
in the following order:
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1. Using a Kinect, grayscale images were acquired of the empty table and the same table
covered with real objects.

2. Images were cropped to take into account only the table region of interest (ROI).

3. Each pixel was subtracted from the two previous images following background subtraction,
and a threshold was selected to convert the result to a binary image.

4. The resulting mask was applied to the initial RGB image of the table set (Figure 2.17a),
and a color-based threshold was applied to remove object shadows from the image (Fig-
ure 2.17b).

5. Next, flood-fill operations were performed on the hole pixels of the closed regions [101], as
shown in Figure 2.17c.

6. A boundary label was applied to the filtered image [38].

7. Noise was removed by applying a threshold on the minimum number of pixels over the area
of each labeled object.

8. The outer boundaries of each object were then traced [84], as shown in Figure 2.17d.

9. Objects were localized by taking the mean of their boundary coordinates and by rotating
them using Singular Value Decomposition (SVD).

10. In the end, a mask with each object-centered and aligned was stored.

Identification

The previous image processing produces a binary image of each object segmented and aligned
to the center of the initial image. Objects under consideration were compared to a previously
created database using a cost function. The database was created using the same segmentation
and realignment method as in the previous subsection, and the final labeling of the objects was
carried out manually. Only one image for each object was required to initialise the database that
will be referenced during matching (REFIM ).

Based on a set threshold, the input image (INIM ) was compared to all objects in the database
to identify the best match.

The first step is determining whether the areas between INIM and REFIM are similar within
30%. If so, the cost function (CF) between them is calculated as follows:

CF =
(1− SC) + (1− SA) + (1− SSIM)

3
(2.1)

where SC is the score of similarity related to the object contours. In particular, the contour of
INIM is smoothed with a 2D Gaussian smoothing kernel with a standard deviation whose value
changes according to the object’s size. Then, the resulting image is converted to a binary image
and multiplied by the contour of REFIM to check how many points of the two contours are in
common. SA is the score of similarity related to the object areas. It consists of the product of
the two binary images of INIM and REFIM to check how many points of the two areas are in
common. SSIM calculates the score related to the structural similarity between the INIM and
REFIM . This score is a multiplicative combination of the three terms, namely the luminance,
contrast, and structural term [113]. However, the black background is very predominant with
respect to the size of the object when comparing INIM and REFIM with SSIM . Therefore,
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(a) (b)

(c) (d)

Figure 2.17: (a) Resulting of the mask applied to the original RGB image; (b) Color-based
threshold to remove object shadows; (c) Flood-fill; (d) Boundary segmentation and blob labeling.

both source images were cropped before comparison to make this score more sensitive to the
objects in the images. The two new images have the same size between them, i.e., 50% more
than the dimensions of the largest object in INIM and REFIM , to be sure that the objects are
still contained in the cropped images. All scores in Equation (2.1) are normalized. All terms are
subtracted from the value 1 because we are looking for the minimum value of CF.

2.4.3 Metric calibration of the working table

After initial camera calibration, metric analyses were performed to assess the implemented algo-
rithm’s performance in identifying real objects and estimating their position and orientation.

Camera calibration

During camera calibration, the coordinates of each pixel on the CCD image sensor are compared
with their real-world measurements. This is done by taking into account lens distortions, which
are the most common monochromatic optical aberrations. At a fixed height of 80 cm, the Kinect
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camera captures an image of a planar pattern perpendicular to the table and in its center. The
planar pattern consists of 55 Aruco markers located at the vertices of a grid with known positions,
Figure 2.18. The geometrical centers and identifiers of the Aruco markers [32] were saved and
compared to their locations in the environment.

Figure 2.18: Aruco markers calibration plane.

An additional planar Aruco model (Figure 2.19a) was used to evaluate the calibration process
and thus the accuracy of a random position on the table plane of dimensions 750 × 1020mm.
Once the set of random Aruco markers in the four corners was taken, the second time, the set of
randomly placed Aruco markers in the center was taken, and the corresponding two-dimensional
covariance matrices were computed. Covariance matrix results are shown in Figure 2.19b. As
expected, the uncertainty ellipse around corners is larger due to the higher camera distortion.

Moreover, the height of the objects used is different. For example, a bottle is much higher
than cutlery which is flat on the table. Nevertheless, it has not been necessary to calibrate the
camera at different heights because knowing the exact heights of the objects and the camera,
with respect to the plane using trigonometric operations, we have always referred to the plane
of the table.

Accuracy in the image-pattern-recognition tool

The reference system of the HoloLens 2 worn by the therapist and the user were initially set up
by watching a square appear on a predefined pattern using the Vuforia Engine image-pattern-
recognition tool and saving its position and orientation over time. It is possible that the two
reference systems are not aligned with each other because image marker detection and rendering
stability can be affected by several factors. The size of the image marker and the resolution
of the head-mounted display (HMD) camera do not affect the final accuracy because the HMD
hardware and the image marker are the same for the therapist and the patient. What most
affects the final accuracy is the distance and angle between the camera and the image marker.
The authors in [87] provided ≤2◦ and ≤2mm inclination angle and positional errors, respectively,
in 70–75% of cases by using a holographic headset combined with an image-pattern-recognition
tool. It could be a problem for the therapist’s final assessment. On the other hand, except for
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(a) (b)

Figure 2.19: (a) Aruco markers plane for accuracy checking; (b) Ellipses of uncertainty in position
(95% confidence level with k = 2.4478 [99]).

a small error of different visualizations of the virtual objects in the SAR environment, it does
not suffer of differences in position and attitude of each object between the real one and its
virtual model. Everything is evaluated on board the patient’s HMD with its reference system.
Therefore, for our metric purpose of therapist assessment of patient exercise, the accuracy of the
image pattern recognition tool is irrelevant between the therapist’s HMD and the user’s HMD.

Algorithm accuracy for object segmentation, localization & identification

We performed rotation tests with a knife to evaluate the performance of the developed computer
vision-based algorithm. In particular, Figure 2.20 shows a cropped RGB acquisition image of
tests conducted using a manual rotation motion platform (Standa 126865) covered with black to
facilitate the background subtraction and filtering process.

Figure 2.20: Cropped RGB image acquired for rotation tests in the two setups: in the center of
the table and near a corner of the table.
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(a) (b)

Figure 2.21: (a) Histograms of residuals and (b) object center positions during rotations in the
two setups.

Figure 2.20 shows both setups: one for tests conducted in the center of the table and one for
tests near a corner.

For the rotation tests, 180 acquisitions were performed for each of the two setups from 0 to
360◦ with a step size of 2◦. The decision to carry out these tests on both the center and sides
of the acquired images was to estimate better the algorithm’s performance over the entire table
surface. The differences between the obtained rotations from the SVD algorithm and the one
from the rotation motion platform taken as ground truth are shown as histograms of residuals
for the two different setups in Figure 2.21a. The histogram spread for the setup at the center
of the table is smaller than for the setting near the corner due to the higher camera distortion.
However, the residual in estimating rotations for the localization algorithm in general over the
entire table surface is less than 1◦. During the same rotation tests in the two setups, the object
center positions at each step were calculated as the mean of its boundary coordinates. The
results of the object centers at each step are shown in Figure 2.21b.

2.4.4 Preliminary User study

An experimental test campaign approved by the ethics committee was also carried out with
patients and healthy testers, as shown in Figure 2.22. This preliminary user study aims to assess
the statistical significance of the data collected. The parameters analyzed are:

• errors in object placement;

• execution time;

• hand speed;

• breath rate;

• heart beat;

• pressure distribution.
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Figure 2.22: User study with four random testers among the eight participants.

In particular, errors in object placement refer to the median error in position and angle
between real and virtual objects above the table; execution time quantifies the time between the
moment the tester starts to pick up the first real object and the moment he finishes arranging
all the objects on the table; hand speed is obtained from the acquired kinematics of the tester.
For statistical analysis, we consider its maximum value. When a tester had a problem in either
joint, he was forced to perform the entire test using only that one; physiological parameters,
such as breath rate and heart beat, are calculated with respect to variations from their basal
values; pressure distribution of each foot is analyzed with Warren Sarle’s bimodality coefficient
(BC) [88]. BC lies within a range of 0 to 1, where values greater than 0.555 indicate bimodal or
multimodal data distributions.

Eight subjects participated in the tests voluntarily after signing a consent form. These were
divided into two groups: three were patients, and five were healthy users. The selected patients,
with ages between 19 and 69 years, including one female, have different pathologies:

• User 1, C5 incomplete tetraplegia, the major deficit in the left hand.

• User 2, cerebellar ataxia, balance, and stability problems.

• User 3, tetraparesis from Guillain–Barré outcomes, upper limb manipulation deficit.

None of them reported having experience with AR technologies such as HoloLens. Instead
of the healthy people, three out of five had already used HoloLens; they are all between ages 20
and 35, including one female.

In the first step, the therapist was trained to set up the table with virtual objects, start the
test, and decide whether or not to display some of the available parameters in real-time. The
therapist can select six standard table configurations from a smartphone, as shown in Figure 2.23,
to give more standardization to the data collected during testing.

The testing protocol was organized as follows:
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(a) (b) (c)

(d) (e) (f)

Figure 2.23: Different table setting configurations: (a–c) from a simple set-up to a complex one
in the center of the table, and (d–f) from different angles.

1. After completing a consent form, the tester receives an initial explanation of the task.

2. Before starting, basal values of physiological data, such as heartbeat and breath rate, were
estimated by acquiring data for 5 min.

3. The therapist starts the tests in sequence: each tester must set the table in any configuration
provided by the therapist.

All testers repeated the protocol for three consecutive days. Given the familiarity with the
standard table-setting task and the ease of superimposing the real objects with the virtual ones,
no initial training was necessary for the tester. We collected all the data acquired on different
days in two populations: the one defined by healthy users and the one described by patients.
The two-sample t-test [54] is used to compare whether the average difference for each selected
parameter between the two populations is significant or if it is due to random effects. Before
the t-test, we applied an initial variance test to check whether the two data samples were from
populations with equal variances. In case of a negative outcome, it is replaced with Welch’s
formulas. The results accept the null hypothesis at the 5% significance only for breath rate
and heart beat parameters. It means that there is no significant difference between patients
and healthy testers for these two parameters. It can be attributed to the simplicity of testers’
tasks and the test’s short duration. In fact, it goes from an average duration value for healthy
testers of 27 s to one of 59 s for patients. The difference in the other parameters allows the two
populations to be distinguished. Figure 2.24 shows the boxcharts of errors in object placement
and execution time.

The difference in mean execution time between healthy testers and patients shown in Fig-
ure 2.24c is more significant than that related to errors in object placement (Figure 2.24a and
Figure 2.24b). In many human-performed tasks, the more precisely the assignment is to be ac-
complished, the slower it is. Fitts’ law [122] reveals the correlation between speed and accuracy
regarding human muscle movement. In our case, unlike a healthy person, for whom good results
can be obtained in less time, i.e., with more speed, for a patient, even with more time, accept-
able results can be obtained in terms of errors in object placement. No time limits were imposed
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(a) (b)

(c)

Figure 2.24: Boxcharts of the median error in (a) position (p-value = 0.001), (b) angle
(p-value = 2.4 × 10−7) and (c) execution time (p-value = 4.8 × 10−5).

during the test, but therapists only told patients to place the objects in the correct position.
The above follows Fitts’ law trade-off between speed and accuracy: to try to keep accuracy low,
the maximum speeds and, therefore, the execution times between patients and healthy testers
change. Figure 2.25 shows an example of the speed results at 6Hz of setting the table in the
configuration of Figure 2.23d.

Longer execution times for patients result in lower maximum speed. In fact, for the healthy
tester in the example, the maximum speed is higher, and five-speed abrupt changes can be
identified, each corresponding to the five objects in the selected configuration. As each object
is grabbed from shelves, the speed remains high for the healthy subject, almost without slowing
down during the grab control phase. The time to place the object in the correct position is also
low and corresponds to the low-speed moments. For the patients, on the other hand, there are
many more and smoother variations at low speeds, indicating continuous grabbing and releasing
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Figure 2.25: Example of speed comparison on the same test between a patient and a healthy
tester.

of objects without clean manipulation during the control phase in the final positioning of objects
and grabbing them from the shelves.

For the same speed example, we show the result of the pressure distribution, as shown in
Figure 2.26.

The healthy tester usually puts all his weight on the leg on the side where he extends the
arm he is using. On the other hand, for patients with stability problems, this is not true. The
trend of the healthy subject, especially when he sets the table toward the lateral sides, follows
a bimodal trend that can be identified with Warren Sarle’s bimodality coefficient. Applying the
BC to the data in Figure 2.26, we obtain the result in Figure 2.27 where, as might be expected,
the BC is greater for the healthy tester for both feet.

In addition, this testing campaign also defined the acceptability threshold of each parameter
for patients. We used the results of healthy testers as acceptability thresholds, so, for example,
an error of 18mm for object position (Figure 2.24a) and 1◦ for its angle (Figure 2.24b) resulted
acceptable for patients. Errors may be due to how the HMD glasses were worn or how the virtual
images were displayed in AR.

2.4.5 Offline interface

One of the advantages of the designed AR framework is the possibility for therapists to have
additional information available to assess patients in real-time and in the correct location near
patients. However, they can save all the data collected during testing for further analysis. An
interface was designed in MATLAB to read and visualize this information collected once the
patient’s name, day, and test number were selected. It allows therapists to have an overview
of the entire test performed by patients, with the possibility of analyzing multiple parameters
synchronized with each other, stopping or moving in time at will. In addition, offline analysis
allows patients’ performance to be compared even between tests performed at a distance of
time. An example of how the offline post-processing interface for each tester looks is shown in
Figure 2.28.
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(a) (b)

(c) (d)

Figure 2.26: Example of pressure distribution on the same test between (a,b) a healthy tester
and (c,d) a patient with right and left foot, respectively.

(a) (b)

(c) (d)

Figure 2.27: Example of Warren Sarle’s bimodality coefficient of the same (a,b) healthy tester
and (c,d) patient from Figure 2.26 data.
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(a)

Figure 2.28: Cont.

(b)

Figure 2.28: (a) Image with therapist and tester data, all errors in object placement and time
of execution; (b) all other tester parameters are summarized in this second panel.
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Chapter 3

AV in educational settings

Technological advancements have transformed the education landscape in recent years, ushering
in a new era of immersive and interactive learning experiences. Among these innovations, MR
has emerged as a groundbreaking tool, bridging the gap between the physical and digital worlds
to create engaging educational environments [25]. MR offers a unique and promising approach
to enhancing teaching and learning processes across diverse disciplines by merging virtual and
real-world elements to create a SAV that enhances users’ perception, extendable to all levels of
the PAL, Figure 3.1.

Figure 3.1: The third level of the perception-action loop between teacher, i.e. supervisor, and
students in a shared augmented virtuality framework. The external environment R is represented
in this context by, for example, a virtual mine.

As educators and learners embrace this cutting-edge technology, questions arise about its
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effectiveness, impact on student engagement and understanding, and its ability to address the
challenges faced in traditional teaching methodologies.

Here are some key aspects of MR in education:

• Enhanced engagement: MR captivates students’ attention and interest by creating inter-
active and immersive learning experiences. It transforms abstract concepts into tangible
visualizations, making complex subjects more engaging and enjoyable.

• Active learning: MR encourages active participation and hands-on experiences, allowing
students to explore and manipulate virtual objects in real-time. This interactive approach
fosters a deeper understanding and retention of knowledge.

• Personalized learning: MR can adapt to individual learning styles and preferences. Stu-
dents can interact with content at their own pace and revisit challenging topics until they
grasp the concepts thoroughly.

• Real-world application: MR enables students to bridge the gap between theory and practice
by simulating real-world scenarios. This practical experience enhances students’ problem-
solving skills and prepares them for real-life challenges, overcoming the limited resources
of practical education classes.

• Collaborative learning: MR can facilitate collaborative learning experiences where students
can work together in a shared virtual space. It encourages teamwork, communication, and
peer-to-peer learning.

• Access to remote or dangerous environments: MR allows students to safely explore distant
or hazardous locations. For example, they can visit historical sites, travel through the
human body, or simulate science experiments without physical constraints. In addition,
they can “visit” places, such as production plants, power plants, mine sites, and plants for
which special permits are mandatory.

• Multi-disciplinary applications: MR is not limited to specific subjects. It can be applied
across various disciplines, including science, engineering, arts, history, and more, tailoring
experiences to different educational needs.

• Professional training and skill development: MR can be used in vocational education and
training, providing learners with realistic simulations of job-related tasks and scenarios.
This approach is precious in fields where hands-on experience is crucial.

• Accessibility and inclusivity: MR can accommodate various learning needs, making educa-
tion more accessible for students with disabilities or learning difficulties.

• Continuous innovation: As MR technology advances, the educational potential will continue
to grow, opening up new possibilities for creative and dynamic learning experiences.

In educational settings that use innovative technologies to enhance the experience of students
and teachers, MiroLab researchers of the University of Trento were involved in the MiReBooks
EIT RawMaterials project [22].
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3.1 MiReBooks

The MiReBooks project aims to redefine higher education in mining in Europe by developing
an innovative series of interactive manuals on mining, leveraging virtual and augmented reality
technology, Figure 3.2. It stands for Mixed Reality Handbooks for Mining Education [49].

This initiative aims to address the challenges prevalent in mining education by synergizing
traditional paper-based teaching materials with MR elements, resulting in comprehensive and
pedagogically cohesive MR manuals for seamless integration in the classroom.

Figure 3.2: Example of a typical lesson on mining in Augmented Virtuality. © MiReBooks via
MiReBooks website

In addition, the project’s innovative approach has potential for application in various aca-
demic disciplines. With the implementation of MiReBooks, the teaching landscape is poised to
transform, enabling teachers to significantly improve student engagement, provide a wealth of
enriched content, and open up new opportunities to improve comprehension.

Implementations of MiReBooks open a wide range of examples of industrial mining environ-
ments for students to explore, leading to a deep understanding of the industry context. This
comprehensive immersion provides graduates with digital native skills, enabling them to influ-
ence and significantly shape the industry’s future. With MR at its core, MiReBooks promises to
optimize the learning experience, drive operational efficiency and foster innovation.

In MiReBooks-assisted classes, students will use specialized smartphone applications to access
augmented illustrations embedded in textbooks. These illustrations activate additional informa-
tion, providing valuable insights. In addition, students can wear virtual reality goggles, which
transport them into immersive virtual mining environments or 3D filmed sequences of real min-
ing processes. This combination of technologies enhances the learning process and paves the way
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for better operational practices and innovative approaches.

Within the MiReBooks project, TU Bergakademie Freiberg’s task in Germany was preparing
a test lecture on continuous mining methods using AV. AV technologies have generated new
challenges to make the experience as immersive and realistic as possible, Figure 3.3. The first
challenge involves adding depth perception to 360◦ images [64] to obtain a final photorealistic 3D
model of the environment, while the second includes estimating the poses of objects from 360◦

videos to give the possibility to interact with their 3D virtual models [121]. These challenges
will be explored in detail in the following sections of this chapter.

Figure 3.3: Summary of challenges overcame to allow virtual lessons on mining. First challenge:
obtain a photorealistic 3D model of the mine environment; Second challenge: estimating truck
poses from 360◦ videos.

3.2 Photorealistic 3D model

Media acquired by 360◦ cameras (also known as omnidirectional, spherical, or panoramic) is
becoming increasingly important to many applications. Compared to conventional cameras, im-
ages taken by 360◦ cameras offer a larger FOV, which is why they are traditionally useful for
applications that derive their state from environmental information. Examples include robot
localization, navigation, and visual servoing [10]. However, omnidirectional cameras have re-
cently also become an essential tool for content creation in AV applications because spherical
photographs and videos can provide high realism. For example, applications for real estate agents
already make use of omnidirectional images and video data within AV headsets to improve the
realism of virtual customer inspections and research domains span widely from 360◦ tourism [36]
to education in 360◦ classrooms [48]. AV applications using omnidirectional media allow users
to change the view within the boundaries of a 360◦ image captured at a specific Point of Interest
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(POI). Thus, AV users are commonly restricted to head rotations only, while translations re-
quire transitioning into a 360◦ image captured at a different POI [67]. Thus, motion parallax is
missing in AV applications, which use omnidirectional data. Furthermore, view transitions are
limited to where omnidirectional images or videos exist. These shortcomings limit the benefit
of omnidirectional media in AV. For example, the missing 3D information restricts the usage of
advanced exploration techniques [107, 106] and the missing motion parallax can cause visual dis-
comfort [110]. The proposed work combines omnidirectional photorealistic image data with the
corresponding 3D representation to overcome these limitations. Since 3D reconstructions com-
monly suffer from poor color representations, a projective texture mapping of omnidirectional
images is applied. This approach supports photorealistic image fidelity at the POIs and motion
parallax at viewpoints nearby. To enable projective texture mapping of 360◦ image data, the
presented approach involves omnidirectional camera pose estimation that automatically identifies
the position and orientation of the 360◦ camera relative to the 3D representation of the envi-
ronment. In order to contextualize the work, an overview of related works is provided, followed
by a description of the methodologies employed for omnidirectional camera pose estimation and
projective texture mapping. Finally, the system is subjected to an evaluation, and potential
pathways for future research are discussed.

3.2.1 Related work

Camera pose detection has always been a key problem in computer vision. For example, Makadia
et al. [69] proposed a useful method for aligning large rotations with potential impact on 3D
shape alignment to estimate the rotation directly from images defined on the sphere and without
correspondence. Unfortunately, this approach is quite resistant only to small translations of the
camera [68]. Another work [57] addresses the problem of camera pose recovery from spherical
panoramas using pairwise essential matrices. In this case, the exact position of each panorama
was an important step to ensure the consistency of visual information about a database of geo-
referenced images. Here the pose recovery works with a two-stage algorithm for rotations and
after for translations with a bad result if the camera starting pose is far from the correct one. The
problems mentioned above have been overcome by the proposed method in this thesis because it
also works for significant variations of translation and rotations. Also, Levin et al. present in [60]
a method to compute camera pose from a sequence of spherical images using an essential matrix
for initial pairwise geometry. Differently from the proposed work and the work of [57], they
also use a rough estimate of the camera path as an additional system input to calculate camera
positions. An example of generating a texture map of a 3D model with 2D high-quality images is
given in [58]. In particular, it is a specific application in the e-commerce presentation of shoes. It
consists of a texture mapping technique that comprises several phases: mesh partitioning, mesh
parameterization and packing, texture transferring, and texture correction and optimization. In
particular, in the texture transferring step, each mesh is allocated to a front image, and all
meshes that use the same front image are put in a group. Finally, the pixels from the front
image corresponding to the 3D mesh are extracted. Differently, the proposed method uses only
a spherical image to recreate the high-resolution 3D model by projecting each pixel of the image
from the correct camera pose previously found. The obtained results are faster and better if the
user’s FOV rotates without large displacements concerning the camera pose. A similar approach
but for another application related to realizing surveying tasks in architectural, archaeological,
and cultural landscape conservation is provided by Abmayr et al. [1]. They developed a laser
scanner that offers high-accuracy measurements of object surfaces, combined with a panoramic
color camera, to achieve precise and accurate monitoring of the actual environment by employing
colored point clouds. The camera rotates according to the same tripod as the laser scanner. Many
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similarities with the method described in the present thesis can be found. The main difference
resides in using a single 360◦ camera instead of a rotating unit and using an automatic pose
estimation method instead of using the same tripod for the laser scanner and camera during the
acquisition process. The proposed method in this thesis is faster, and the 3D model reconstruction
can be more complete because it does not need to be at a fixed distance from the camera during
the scanning process. This aspect becomes more important if it is necessary to reconstruct a
high-resolution model with different cameras from unknown positions. Finally, an interesting
study was provided by Teo et al. [108], where, in the context of remote collaboration, helpers
shared 360◦ live videos or 3D virtual reconstructions of their surroundings from different places
to work together with local workers. The results showed that participants preferred having both
360◦ and 3D modes, as it provides variation in controls and features from different perspectives.
The method proposed in this thesis combines a 360◦ live video and 3D virtual reconstruction to
combine their advantages without switching between them.

3.2.2 Method

This section explains the localization algorithm to estimate the camera pose (i.e., its positions
and orientations in the environment) and the method used to project the texture mapping on a
3D representation of the environment. These two tasks are the basis of the proposed solution,
which aims to achieve a photorealistic 3D model suitable for VR experiences.

Camera pose estimation

A good alignment between the virtual environment and the captured image is fundamental for
the final texture projection covered in the next chapter. For example, this step is necessary when
an operator needs to place the camera in a predefined position and orientation. Some human
errors may be made during this operation, and a method to find an accurate camera pose is
necessary. Moreover, a slight angle or minor position error can compromise the final result for
considerable distances. The large-scale automatic camera pose identification algorithm has been
implemented in Matlab 2019b using a ZMQ communication protocol between Matlab and Unity
3D. Particle Swarm Optimization (PSO) was used. The procedure of the camera pose estimation
is shown in Figure 3.4.

Figure 3.4: Schematic diagram of the camera pose detection algorithm.

Starting from the reconstructed 3D model with its low-quality texture but with depth infor-
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mation of the environment and given as input a high-quality equirectangular photorealistic image
taken by an omnidirectional camera, the localization algorithm finds the pose that gives a 360◦

image taken with a simulated camera that is as similar as possible to the input one. Specifically:

i. A new camera position is set for each iteration of the PSO algorithm.

ii. The equirectangular image corresponding to the set camera pose at the previous step is
acquired.

iii. The algorithm checks the similarity between the new image and the input one that has to be
used as a new texture for the 3D mesh; the parameters to be optimized are the translation
and the Euler angles to be applied to the 3D model to generate an equirectangular image
that matches the one in the input. The cost function for comparing the two equirectangular
images uses the following quantities:

• The structural similarity (SSIM) index of the equirectangular images.

• The mean-squared error (MSE) between the two equirectangular images.

• SSIM of the approximation coefficients (SSIMA) of level 1 of the wavelet decompo-
sition.

• SSIM of the horizontal detail coefficients (SSIMH) of level 1 of the wavelet decom-
position;

• SSIM of the vertical detail coefficients (SSIMV ) of level 1 of the wavelet decompo-
sition;

• SSIM of the diagonal detail coefficients (SSIMD) of level 1 of the wavelet decompo-
sition.

The final cost function C obtained by adding the quantities mentioned above is:

C = SSIM +MSE + SSIMA + SSIMH + SSIMV + SSIMD. (3.1)

The MSE represents the cumulative squared error between two images x(i, j) and y(i, j):

MSE(x, y) =
1

MN

M∑
m=1

N∑
n=1

[x(m,n)− y(m,n)]2, (3.2)

where M and N are the number of rows and columns of x and y.

SSIM is used for measuring the similarity between two images x and y [113]. The SSIM
Index quality assessment index is based on the computation of three terms, namely the
luminance term l, the contrast term c, and the structural term s. The overall index is a
multiplicative combination of the three terms:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (3.3)

where:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(3.4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3.5)

s(x, y) =
σxy + C3

σxσy + C3
. (3.6)
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µx,µy,σx,σx and σxy are the local means, standard deviations, and cross-covariance for
images x and y. C1,C2,C3 are constants to avoid instability for image regions where the
local mean or standard deviation is close to zero. Choosing α=β=γ=1 and C3=

C2

2 , the
index simplifies to:

SSIM(x, y) =
(2µxµy + C1)(2σxσy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (3.7)

iv. the PSO optimization runs until convergence, giving as output the best camera pose (trans-
lation and Euler angles) that makes the two images as similar as possible.

Texture projection

This chapter describes the method to apply high-quality texture mapping. Essentially,
a merge of the high-quality360◦ image with the 3D mesh is performed. Firstly, the 3D
Cartesian coordinates and colors of each 360◦ image’s pixel were obtained by projecting the
equirectangular image on the surface of a unitary radius sphere. Given an equirectangular
image with N rows and M columns, each image’s pixel in 2D Cartesian coordinates (n,m)
was transformed in spherical coordinates, computing the corresponding azimuth a and
elevation e, setting the radius R equal to 1. The equations used for the conversion are:

a = −(
m

M
− 0.5) · 2π (3.8)

e = −(
n

N
− 0.5) · π (3.9)

R = 1. (3.10)

Finally, the 3D Cartesian coordinates are obtained to be visualized in Matlab software like
a 3D point cloud. The mapping from spherical coordinates to 3D Cartesian coordinates is:

x = R · cos(e) · cos(a) (3.11)

y = R · cos(e) · sin(a) (3.12)

z = R · sin(e) (3.13)

This “spherical” point cloud was imported inside Unity and placed with the position and
orientation found in the previous pose estimation step chapter.

The Raycasting technique was used: through the Ray class, it is possible to emit or “cast”
rays in a 3D environment and control the resulting collisions. The rays used in Raycasting
are invisible lines with the center of the image sphere as the origin and are oriented in each
pixel’s direction. The key point is that these invisible lines or rays cast into the scene can
return information about GameObjects that the rays have hit.

Attached to the environment’s mesh as GameObject in Unity is a Mesh Collider to register
a hit with the ray. When a ray intersects or “hits” a GameObject, the event is referred to
as a RaycastHit. This hit provides details about the GameObject and where it was hit,
including a reference to the GameObject’s Transform, the length of the ray when it hits
something, and the point where the hit happened.

Once the collision of each pixel is detected, their new position is saved with color prop-
erties. Lastly, the new point cloud was used to reconstruct a high-quality photorealistic
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texture, using the Screened Poisson Surface Reconstruction algorithm [52] implemented in
Meshlab [20]. This algorithm is particularly useful when the model to reconstruct is very
big, with fine details to be preserved. The reconstruction of the 3D model was done by
setting the Reconstruction Depth parameter (i.e., the maximum depth of the octree used
to make the reconstruction) to 13. The default value of Meshlab for this parameter is 8;
it was increased because, in general, the higher this value is, the more time will be needed
for reconstitution, and the more details will be preserved [52]. It was kept at 13 because,
after 14, it is not possible to see a real change in the final result. The Minimum Number
of Samples was set to 1.5, and the Interpolation Weight to 4 as the default values of Mesh-
lab. Since the Poisson algorithm tends to “close” the reconstructed mesh, the triangles
whose area was above a certain threshold were deleted to preserve the original form of the
reconstructed environment.

3.2.3 Evaluation

For the validation of the camera pose localization algorithm and the high-quality texture mapping
projection, a Wavefront 3D Object File (OBJ file extension) of two 3D high-quality virtual
outdoor environments, one for a mine and one for a city, were imported into Unity 3D platform.
An original script was also written to simulate a 360◦ camera. The 360◦ capture technique is
based on Google’s Omni-directional Stereo (ODS) technology using Cubemap rendering [34].
After the Cubemap is generated, it is possible to convert this Cubemap to an equirectangular
map which is a projection format used by 360◦ video players. After placing the simulated camera
at a specific pose inside the scene of a specific scenario, a high-quality equirectangular image was
acquired, Figure 3.5. These will be the input images whose pose has to be detected by the
developed algorithm.

(a) (b)

Figure 3.5: High-quality equirectangular images whose detection poses must be identified for a
mine (a) and city (b) environments.

To simulate the acquisition of the environment through a 3D scanner, a point cloud for each
analyzed environment was extracted from the 3D high-quality models using the Cloud Compare
software [33]. These point clouds were downsampled to simulate a 3D model with less detail than
the input model, and new reconstructions were performed in MeshLab [20] to obtain new low-
quality 3D models, Figure 3.6. New scenes were then recreated in Unity with the downsampled
3D models.

Figure 3.7 shows the schematic diagram of our camera pose detection algorithm proposed in
Figure 3.4 applied to the specific example of the mine environment. The input omnidirectional
image has a resolution of 4096 X 2048 pixels. However, to improve the calculation time speed,
the comparison between images is done by downsampling them to 256 X 128 pixels for both the
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(a) (b)

Figure 3.6: The 3D downsampled models used by the localization algorithm for a mine (a) and
city (b) environments.

analyzed environments. The bounding box dimensions of the scenario with the mine are 113m
x 169m x 37m for the x, y, z coordinates, respectively. Instead, the dimensions of the city
environment are 440m x 100m x 435m.

Figure 3.7: Example of the camera pose detection algorithm flow for the mine environment.

The same analysis was done for both environments using the same approach and shifting the
camera pose by the same values. Table 3.1 shows the position and orientation for ten random
trials. The initial starting position was set to the origin (0, 0, 0) with null rotations for each trial.
The research limits were set to ±20.00m for translations and ±80.00◦ for rotations.

By default, Unity applies the following rotation order: Extrinsic Rotation around the z axis
(γ), then around the x axis (α), and finally around the y axis (β). The average time spent by the
PSO algorithm is around 20min. The tests were run on a PC with an Intel i7-9700KF processor
and 64.0 GB of RAM.

For each of the ten trials of Table 3.1, the PSO algorithm has been run, changing five times
the numbers of generations, i.e., 200, 250, 300, 350, 400, keeping the number of particles fixed to
100, and five times changing the number of particles, i.e., 60, 70, 80, 90, 100, keeping the number
of generation fixed to 400. The number of generations and particles was changed to force the
algorithm to increase variability.
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Trial x [m] y [m] z [m] α [◦] β [◦] γ [◦]

1 -4.00 10.00 15.00 10.00 15.00 18.00
2 5.00 -2.00 5.00 10.00 -60.00 1.00
3 -8.00 5.00 -6.00 30.00 45.00 15.00
4 2.00 -7.00 15.00 -10.00 -45.00 -20.00
5 10.00 10.00 10.00 20.00 -15.00 5.00
6 0.00 15.00 8.00 25.00 -15.00 6.00
7 -5.00 2.00 -5.00 -10.00 60.00 -1.00
8 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00
9 -15.00 10.00 10.00 40.00 70.00 40.00
10 -19.00 19.00 -19.00 2.00 80.00 -5.00

Table 3.1: Camera poses chosen for 10 trials (ground truth).

To compute the pose detection error, the translation and the rotation part were separated.
The translation error is computed by performing the Euclidean distance between the camera
position found by the PSO algorithm and the ground truth. For what concerns the rotations,
firstly, the rotations found by the optimization process and the ground truth were decomposed
in axis and angle notation. Consequentially, the error, in the case of rotation, has two terms:
the error in the axis orientation with respect to the ground truth and the amount of rotation
around such axis.

Figure 3.8 shows the cost function score for the various error components explained above
(Equation (3.1)), while Figure 3.9 shows the three possible couple combinations of the error
components with respect to the final score optimization value.

As can be noticed, sometimes, a higher cost function score at the end of the optimization
does not mean an incorrect pose was found. This fact is probably due to the mesh reconstruction
process. Indeed, after this process, portions of the environment could be less accurate compared
to the real model. For this reason, considering different camera poses, the meaning of the final
reached score values is not absolute or easily comparable.

This generates the need to quantify the accuracy of the camera localization measurement
within a scene. Despite the uncertainty concerning the accuracy in the pose found by the
algorithm with respect to the final cost function score, Figure 3.8 and Figure 3.9 show that, for
this particular environment, a score below 1.6 ensures that an accurate result has been obtained.
In particular, a score below 1.6 means that, for the trial performed, the error in translation is
below 0.7m, the difference in the amount of rotation is below 1◦, and the difference in the rotation
axis orientation is below 2◦. The same errors correspond to a cost function score of 2 for the city
environment. The score is higher because the city environment is a scenario with much more
detail than a mine. Many of these details, through initial downsampling, are lost, and the initial
reconstructed mesh is much less detailed, as seen in Figure 3b. The final score, therefore, which
measures the similarity between the input high-quality equirectangular image and that obtained
from this low-quality model, turns out to be higher. However, the errors, especially those related
to rotations (Figure 3.8b and Figure 3.8c), are lower for the city environment even at high levels
of the cost function score because the environment is different. Because of this relationship of the
cost function threshold from the level of detail of the reconstructed 3D model, there is a need for
further analysis to investigate possible acceptance criteria and multidimensional models capable
of finding a correlation between the different terms of the cost function and the uncertainty
in translation and rotation. For example, Figure 3.10 shows that MSE could be a possible
discriminant factor for accuracy. Indeed, in this case, the accurate solutions are all centered

55



CHAPTER 3. AV IN EDUCATIONAL SETTINGS

(a) Cost function score vs translation error. (b) Cost function score vs axis orientation error.

(c) Cost function score vs rotation angle error.

Figure 3.8: 2D plots of the cost function score vs the errors in translation (a), axis orientation
(b), and rotation angle (c).

around the 0.005 value for both examinated environments.
Once the camera poses were found for each environment, this information is used to set

the 360◦ image projected on the surface of a unitary radius sphere in the correct position and
orientation, Figure 3.11a. After that, using the Raycasting technique, the 3D mesh, Figure 3.11b.
is hit by 360◦ image pixels, Figure 3.11c.

The final reconstructions of the high-quality 3D models using the Screened Poisson Surface
Reconstruction algorithm implemented in Meshlab are shown in Figure 3.12a and Figure 3.12b
for the mine and city environments, respectively.

3.2.4 NeRF for high-quality 3D rendering

The previous approach presents a method developed to obtain a high-quality textured mesh by
combining a raw 3D mesh model of the environment and 360◦ images. It supports head rota-
tions around all three axes. While this enables immersive experiences, the missing translations
may cause several perceptual issues [109], limiting explorations to the pre-defined viewpoint. To
overcome this problem, the same method can be applied with more than one camera. However,
for the final texture reconstruction, it is necessary to define a discriminating parameter to choose
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(a) Cost function score vs translation error vs ro-
tation angle error.

(b) Cost function score vs axis orientation error
vs rotation angle error.

(c) Cost function score vs translation error vs axis
orientation error.

Figure 3.9: 3D plots of the cost function score and the errors in translation, rotation angle, and
axis orientation.

Figure 3.10: MSE score vs translation error.
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(a) 360◦ image placed on the surface of a uni-
tary sphere (Matlab Software).

(b) Raw 3D mesh (Unity Software).

(c) Point cloud obtained projecting the pixels of the
360◦ image on the raw 3D mesh (Unity Software).

Figure 3.11: The pixels of the 360◦ image of the mine environment are projected on a sphere
surface (a), which is put in the correct camera pose found by our algorithm inside the raw 3D
mesh (b). The pixels are then projected using the ray cast technique on the raw mesh, obtaining
a new dense point cloud (c).

(a) (b)

Figure 3.12: Final results after the 3D reconstruction for the mine (a) and the city (b) environ-
ments.
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which pixels to use from one or the other camera. This new parameter can be useful if the FOV
of one camera is better for some areas of the mesh than another, allowing for a better texture
reconstruction result.

In order to avoid this iterative process, in recent years, a novel technique NeRF (Neural
Radiance Fields) [72] based on deep learning architecture directly generates high-quality 3D
renderings from a collection of 2D images or videos, Figure 3.13.

(a) (b)

Figure 3.13: NeRF input as a set of calibrated images (a) and output a 3D scene representation
(b). © from [73].

NeRF represents an object with a neural network that outputs colour and density for each
point in 3D space. Colour and density values are accumulated along rays, one ray for each pixel
in a 2D image, Figure 3.14.

Figure 3.14: An overview of NeRF scene representation and differentiable rendering procedure.
© from [73].

In particular, NeRF algorithm aims to learn a function f that can render novel views of the
scene from any viewpoint. This function takes as input a 5D coordinate (x, y, z, θ, ϕ), where
(x, y, z) is the spatial location and (θ, ϕ) is the viewing direction. The output of f is a 4D
vector (r, g, b, σ), where (r, g, b) is the RGB colour and σ is the volume density at that point.
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The NeRF algorithm trains the neural network by minimizing a rendering loss, which measures
the difference between rendered and input images. The rendering process is based on volume
rendering, which simulates how light travels through a medium and interacts with it. It uses
gradient descent to update the weights of f such that the rendered images match the input
images as closely as possible. Hierarchical sampling, positional encoding, and fine-tuning are
used in NeRF algorithm to improve the performance and quality of the final rendering.

Due to its high rendering speed and good results, it is becoming very popular in computer
graphics and computer vision. While photogrammetry [71] is suitable for static scenes, NeRF
excels in capturing dynamic and highly detailed scenes. In photogrammetry, the images are
processed to identify corresponding points, from which the spatial relationships are reconstructed
using triangulation algorithms. NeRF, on the other hand, leverages deep learning to model the
volumetric scene representation directly, enabling the synthesis of novel views with intricate
details and realistic lighting effects. It can also handle occlusions, transparency, reflections, and
other challenging effects that are difficult for traditional 3D reconstruction methods.

It is constantly evolving, and new NeRF-based algorithms are emerging [75, 93, 9, 78] to
improve the performance of NeRF in terms of speed and quality of final 3D rendering under
every possible condition. The training time has significantly decreased from the initial version of
NeRF in 2020 [72], which required approximately 12 hours, to the latest InstantNGP in 2022 [75],
which takes about five minutes.

These properties make NeRF suitable for applications such as novel view synthesis, AV, and
AR, where the goal is to generate realistic and immersive 3D renderings of the scene from different
perspectives.

3.3 3D Interaction from 2D images

The second challenge aims to enhance student learning with a more immersive and engaging
experience by enabling the interaction with 3D virtual models of objects from 360◦ videos,
Figure 3.15.

To achieve this goal, a general approach, which can be used for any object and shape, was
developed to allow the transition to the objects’ 3D model from their current pose. In particular,
a method was designed to estimate objects’ 6 Degrees of Freedom (DoF) pose in equidistant 2D
images, making 3D interaction possible. 6DoF estimation is one of the main challenging research
topics in computer vision [39, 111, 43].

The developed pipeline has two main steps: vehicle segmentation from the image background
and estimation of the vehicle pose. Deep learning methods were used to perform the first task,
and for the latter, the same Unity simulator seen in Section 3.2 was used to generate the equirect-
angular synthetic images used for comparison.

3.3.1 Related work

6DoF pose estimation using RGB images involves different fields such as bin picking problems [5],
robot manipulation [11], autonomous vehicles [92], and MR applications [50].

Usually, to accomplish this task, deep learning methods are used. One of the main approaches
to 6DoF pose estimation, as described in [117], is to decouple the translation and the rotation
estimation. The translation is estimated by localizing the object’s center in the image and
predicting its distance from the camera. After that, the rotation is estimated by regressing to
a quaternion representation. A 6DoF Object detection system with two stages is also proposed
in [103]. A single Shot Multibox Detector (SSD) [62] extracts the object bounding boxes, and

60



3.3. 3D INTERACTION FROM 2D IMAGES

(a) (b)

(c) (d)

Figure 3.15: Transitioning from 2D video to the 3D virtual object: (a) 2D video. (b) Object
replacement after detection and localization. (c) Object rotating in front of the user’s viewpoint.
(d) Digital information contextualized with the vehicle model. The corresponding videos can be
found here.

an Augmented AutoEncoder (AAE) estimates the object rotation. Like the previous approach,
DCS-PoseNet [119] uses a two-step process to estimate 6DoF from 2D object bounding boxes.
First, the framework segments the object from the cropped image, then predicts 6DoF pose using
DSC-PoseNet, which employs a differential renderer.

Some solutions try to regress rotation and translation simultaneously. For example, 6D-
VNet [116] uses an end-to-end deep learning network to estimate the 6DoF pose of vehicles. The
network extends the Mask R-CNN object detector, takes its intermediate outputs, and further
regresses for rotation and translation of the object in 3D space.

Other approaches instead try to solve a Perspective-n-Point problem [63]. For example, the
pose estimation method Pix2Pose [85] proposes a deep learning network to supplement a 2D
detection pipeline to enable pose estimation. It regresses pixel-wise 3D coordinates from images
using texture-less 3D models. The pixel-wise prediction is used to form 2D-3D correspondences.
Finally, the PnP algorithm can be applied.

In [14], the authors propose an extension of the EfficientDet architecture [104] used for 2D
object detection to predict the rotation and the translation of the object in the 3D space.

Most current works describe the problem statement and solution for regular RGB images.
The application of the algorithms of these works to equirectangular images is tricky. The main
reason is that equirectangular images present severe distortion, and there is a lack of training
data related to these images. To the best of our knowledge, some works try to perform 2D object
detection in equirectangular images [118, 123], but none performs an estimate of the 6DoF pose.

The pipeline presented in this thesis solves the problem of 6DoF pose estimation for objects
in equirectangular images. Additionally, while other methods primarily rely on deep learning
models to perform the task, the proposed one uses deep learning only for segmentation, which is
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the first step. It then uses an optimization technique for pose estimation that does not require
a trained network and can be applied to any object without effort. Indeed, a benefit of the
proposed method is that there is no need to create a training dataset for the pose estimation,
avoiding a task that can be quite time-consuming and difficult in terms of the acquisition of the
ground truth pose, scalability, and full coverage of possible poses [91].

3.3.2 Algorithm description

The developed algorithm can be subdivided into two main steps:

• vehicle segmentation from the equirectangular image;

• vehicle pose detection with respect to the camera reference frame (6DoF).

A convolutional model for real-time instance segmentation, Yolact++ [13], was used to ac-
complish the first task. Yolact++ proved to be accurate for the segmentation of trucks, also in
equirectangular images, in which the distortion is significant. However, Yolact++ was trained
with 500 equirectangular images to make the vehicle segmentation more robust by manually la-
beling trucks in frames taken from 360° videos of open-pit mining operations. Figure 3.16 shows
the result of the trained Yolact++ model.

(a) (b)

Figure 3.16: The result of the trained convolutional model Yolact++ for an equirectangular
image of a truck. (a) An example of an input image showing a truck in a mining environment.
(b) Result of the segmentation in which the truck is correctly segmented.

The only requirement for the vehicle pose detection is to have an accurate CAD model even
without textures of the item whose pose must be estimated. For the tests described in this
section, the CAD model of a Komatsu HD785 truck was used inside Unity. The same 360°
camera simulator implemented in Section 3.2 was used to capture equirectangular images of the
CAD model. Using the output given by Yolact++, the vehicle pose detection was performed.
The algorithm developed to accomplish this task is schematized in Figure 3.17.

The data exchange between Unity and Matlab was activated via a connection based on
the ZMQ protocol, following the same approach as in Section 3.2. First the truck was randomly
placed inside Unity. Then a picture of the scene was taken using the 360° simulated camera. This
picture is called synthetic image. In Matlab, this synthetic image and the output of Yolact++,
i.e., the segmented image of the real world, are compared for similarity with a score. A Particle
Swarm (PS) optimizer is responsible for finding the optimal solution. At each new iteration, the
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Figure 3.17: Scheme of the pose detection algorithm.

algorithm sends a new pose to Unity. The 360° simulated camera takes a new picture, and the
previous steps are repeated until convergence or the maximum number of iterations are reached.

Hereafter, the expression of the Cost Function (CF):

CF = SE + SA + SC + SV , (3.14)

where its terms depend on:

• edges (SE);

• area (SA);

• difference in the centroids of the edges (SC);

• difference in the eigen vectors of the edges (SV );

The following subsections explain the various term of the cost function in detail. The real-
world and synthetic images in Fig. 3.18 are taken as an example to show the computations made
for the different terms.

Edges

The first term of the cost function is relative to edges. The ”Canny” algorithm [26] was used
to compute the images of the edges of the real-world (Er) and synthetic image (Es). Since a
perfect correspondence between the CAD model and the actual vehicle is impossible, the edges
of Es were smoothed by applying a Gaussian filter with a standard deviation of 0.5. This last
image was called Esg. The two images are then multiplied pixel by pixel, computing Em as:

Em = Er · Esg. (3.15)

Fig. 3.19 shows the images involved in the computation.
The score term is computed as follows:

SE = 1.0− nm

ns
, (3.16)

where nm and ns are the number of pixels of Em and Es that are greater than zero.
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(a) (b)

Figure 3.18: Real-world and synthetic images are examples to illustrate the different terms of
the cost function: (a) real-world image and (b) synthetic image.

Areas

The corresponding binary images (BWr and BWs) are computed from the real and synthetic
worlds. As is the name of the area of BWs, which is the number of pixels whose value is greater
than 0. A dilated version of BWs, called BWsd, is also computed using a disk with a diameter
of 7 pixels as the morphological structuring element. Let’s indicate with BWd the difference
between BWsd and BWs:

BWd = BWsd −BWs. (3.17)

Ad is the area of BWd.
Now, it is possible to compute the images Ma and Md, i.e. the result of the pixel-wise

multiplication between BWr and BWs, and between BWr and BWd:

Mrs = BWr ·BWs, (3.18)

Mrd = BWr ·BWd. (3.19)

Figure 3.20 shows the images involved in the computations.
The score relative to the areas is computed with the following equation:

SA = 1.0−Ars/As +Ard/Ad, (3.20)

where Ars and Ard are the corresponding areas of Mrs and Mrd.

Difference in the centroids of the edges

This part of the cost function is in charge of computing the difference between the centroids of
the images Er and Em. The formula to compute the centroids of the images is the following:

xc =

∑N
i=1 I(xi, yi) · xi∑N

i=1 I(xi, yi)
, (3.21)

yc =

∑N
i=1 I(xi, yi) · yi∑N

i=1 I(xi, yi)
, (3.22)

where (xc, yc) are the coordinates of the centroid of the image I, N is the number of pixels whose
value is greater than 0, (xi, yi) are the general coordinates of the pixel i, and I(xi, yi) is the grey
value of the pixel in position (xi, yi).
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(a) Er. (b) Es.

(c) Esg. (d) Em.

Figure 3.19: The images involved in the computation of the cost function term relative to edges.
(a) Er, edges of the real-world image. (b) Es, edges of the synthetic image. (c) Esg, edges of
the synthetic image after the Gaussian filter. (d) Em, pixel-wise multiplication between Er and
Esg.

The cost function term is computed as:

SC =

√
(xcr − xcm)2 + (ycr − ycm)2√

R2 + C2
, (3.23)

where (xcr, ycr) and (xcm, ycm) are the coordinates of the centroids of Er and Em, and R and C
are the number of rows and columns of Er.

Difference in the eigen vectors of the edges

The last term of the cost function can be explained as a constraint for the edge matching
to be uniform on all the parts of the edge images, i.e. Er and Esg. To reach this aim, the
image coordinates (xi, yi) of the pixels whose value is greater than 0 is arranged in a matrix
of dimension N × 2, where N is the number of pixels whose value is greater than 0. Then the
covariance matrices Cr and Cm of this matrix are computed for Er and Em. The eigenvectors
are computed for both once Cr and Cm are obtained. Let’s call v⃗r and v⃗m the two eigenvectors
that corresponds to the highest eigenvalue for Cr and Cm, Figure 3.21.

The cost function term is the dot product between v⃗r and v⃗m:

SV = 1.0− v⃗r · v⃗m. (3.24)
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(a) BWr. (b) BWs.

(c) BWsd. (d) BWd.

(e) Mrs. (f) Mrd.

Figure 3.20: The images involved in the computation of the cost function term relative to the
areas. (a) BWr, a binary image of the real-world image. (b) BWs, a binary image of the
synthetic image. (c) BWsd, synthetic binary image dilated. (d) BWd, result of the subtraction
between BWsd and BWs. (e) Mrs, result of the multiplication between BWr and BWs. (f)
Mrd, result of the multiplication between BWr and BWd.

3.3.3 Results

Figure 3.22 shows the experimental setup to test the developed algorithm. A 360° camera, such
as the Insta360 ONE X, is placed on a rotary stage, which is placed on a translation stage. The
camera frames a miniature model of a Komatsu HD785 truck.

Ten images were acquired by translating the translation stage of 8 cm each new acquisition,
and eleven images by rotating the camera of 5◦ each new acquisition, Figure 3.23.
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(a) Eigenvector representation of Er. (b) Eigenvector representation of Em.

Figure 3.21: Em and Er with their respective eigenvectors centered in the centroids of the two
images. (a) Er and its eigenvectors. (b) Em and its eigenvectors.

Figure 3.22: Experimental setup to test the developed algorithm. A 360° camera is placed on a
rotary and a translation stage. The camera frames the miniature model of a truck.

Concerning the parameters used for the PS optimization, the swarm size was set to 150 and
the maximum number of iterations to 75. The research range was set to ±20◦ for rotations and
to ±20 cm for translations. The initial pose conditions were set randomly from nominal values
within the imposed research ranges. The algorithm ran on an Intel(R) Core(TM) i7-9700KF
CPU. The mean computational time to find the optimum was about 20min.

Table 3.2 and Figure 3.24 show the results obtained for the imposed rotations.
Table 3.3 and Figure 3.25 show the results obtained for the imposed translations.
Figure 3.26 shows an example of the results obtained; in this case the camera was rotated by

15◦ with respect to the initial orientation.

3.3.4 Discussion

Results show that the developed algorithm achieved good results for both translations and rota-
tions. In particular, the maximum difference in the rotation estimation was 3.2◦ for the nominal
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Figure 3.23: Scheme of the rotations and translations imposed to the camera.

Nominal angle [°] Measured angle [°] Difference [°]

5.0 6.4 1.4
10.0 10.1 0.1
15.0 17.3 2.3
20.0 19.7 -0.3
25.0 26.3 1.3
30.0 31.0 1.0
35.0 37.0 2.0
40.0 41.9 1.9
45.0 48.2 3.2
50.0 52.1 2.1

Table 3.2: Results obtained by the algorithm applying a rotation of 5◦ at each step.

Nominal translation [cm] Measured translation [cm] Difference [cm]

8.0 8.4 0.4
16.0 16.0 0.0
24.0 24.9 0.9
32.0 32.9 0.9
40.0 40.8 0.8
48.0 49.0 1.0
56.0 57.1 1.1
64.0 67.9 3.9
72.0 76.0 4.0

Table 3.3: Results obtained by the algorithm applying a translation of 8 cm at each step.

rotation of 45◦, Table 3.2. Figure 3.27 shows the optimization result for this case.
The mean difference for the rotation is 1.5◦, while the standard deviation is 1.0◦.
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Figure 3.24: Comparison of the imposed rotations with the measured ones.

The maximum difference in the translation estimation was instead 4 cm for the nominal
translation of 72 cm, Table 3.3. As shown in Figure 3.25, the difference increases at the increase
of the translation amount. Probably, looking at Figure 3.28, this is due to how the vehicle appears
in the equirectangular image. In this case, the vehicle appears quite far, and small translations
cannot be appreciated from the image point of view. Indeed, in this case, at least visually, the
difference between the real world and the synthetic image does not seem relevant, Figure 3.28.

The mean difference for the translation is 1.4 cm, while the standard deviation is 1.5 cm. The
computational time of 20min makes the proposed algorithm applicable only offline. However, in
the case of a video, once the pose is estimated in the first frame, the search field for the next
frame is minimal because the vehicle will be in a pose very near to one of the previous frames.
It will speed up the elaboration and pose detection.
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Figure 3.25: Comparison of the imposed translations with the measured ones.

(a) (b)

(c)

Figure 3.26: An example of the optimization result where the camera was rotated by 15◦. (a)
A portion of the input equirectangular image taken by the 360° camera. (b) Result of the
segmentation. (c) Optimization result in which the CAD is rendered in the final pose found by
the optimization algorithm.
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(a) (b)

(c)

Figure 3.27: Optimization result where the camera was rotated by 45◦. (a) Input equirectangular
image taken by the 360° camera. (b) Result of the segmentation. (c) Optimization result of CAD
model.

(a) (b)

(c)

Figure 3.28: Optimization result where the camera was translated by 72 cm. (a) Input equirect-
angular image taken by the 360° camera. (b) Result of the segmentation. (c) Optimization result
of CAD model.
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Chapter 4

AR in industry

In the last decades, technological growth in industry has mainly focused on automation rather
than its fusion with human work. It has generated a clash between human and robot workers,
where the latter, especially those carrying low-level tasks, are worried about being replaced by
the former.

Figure 4.1: The third level of the perception-action loop between a supervisor and an operator
in a shared augmented reality framework. The real environment R is represented in this context
by, for example, a production environment.

Industry 4.0 aims to overcome this situation. Some innovative technologies, such as AR,
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provided an alternative approach to the production environment and created an intelligent fac-
tory [82]. Many companies already use this technology because it improves process performance,
enhances users’ perception at all levels of PAL (Figure 4.1) and reduces costs in different business
areas.

An example in the automotive industry is Volkswagen group, which uses an AR system to help
employees navigate its huge factories for maintenance, inventory, inspections, and other activities.
Another industrial example is the aircraft manufacturer Boeing which managed to reduce the
assembly time for the wiring of its planes. In this case, technicians use voice commands, keep
their hands free, and get help from a remote expert who sees exactly what they see.

The operator can return to compete or collaborate with robots thanks to AR technology. The
operator will not be replaced but will receive a useful tool to increase his senses and cognitive
abilities. It leads to lower staff costs by reducing the time of execution, the number of recurring
errors, or accidental damages of the components due to incorrect execution of procedures.

Many articles in the literature show the advantages of using AR instructions in improving
working procedures [105, 114]. In addition, by increasing speed and accuracy, AR reduces mental
effort [41].

4.1 Smart Gate

At MiroLab, an interactive AR demo for industrial setting on loaded pallet shape measurement
and checking by three simulated ToF cameras was developed and presented to IEEE MetroX-
RAINE 2022.

After the pallet enters the scanning area, the user wearing a HoloLens 2 headset, through the
visualization of point clouds from the simulated cameras, can understand how the system works
and is shown of the load size with respect to the pallet, highlighting the out-of-shape areas. The
user can then move the above box, which has physical properties, to another position with his
hands, and through a smartphone interface, a new scan will be launched, and the dimensions
of the load will be checked in this new configuration. An initial calibration using a 2D Vuforia
marker is necessary to save the reference system to fix the demo’s position.

The immersive experience of the demo is further enhanced by the high-level functions in-
tegrated into the virtual environment. These functions include collision detection and physical
properties such as gravity, 3D sound rendering for realistic audio feedback, and network capa-
bilities for smartphone interaction within the same local area network through a client-server
protocol such as MQTT. Collision detection and physics allow users to interact with virtual
objects realistically, contributing to a more immersive experience.

In addition, this demo is a valuable tool for training and education. The possibility of vi-
sualizing the points intersecting with the load from the simulated cameras provides a better
understanding of how the loaded pallet shape measurement and checking works. Furthermore,
incorporating advanced functionalities, such as physical object manipulation in a virtual envi-
ronment with physical properties, enhances overall immersion and increases engagement.

This demo was designed in AR rather than other MR spectrum technologies, such as VR
because AR offers the user a higher level of proprioception while maintaining a connection with
the surrounding environment. In fact, AR allows visualizing the best 3D camera poses in terms
of load reconstruction directly in the area where the real scanning system will be installed.

4.1.1 Demo process

This demo presents a virtual replica of a measuring system able to reconstruct and check the
shape of loaded pallets through three simulated ToF cameras. The proposed work offers an
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Frames captured during the demo session using HoloLens.

engaging AR equipped with high-level functions to provide an immersive experience for the user
wearing the HoloLens headset. The system leverages simulated camera point clouds, allowing
users to obtain measurements of load dimensions relative to the pallet.

The demo begins when the pallet enters the designated scanning area, Fig. 4.2a. Simulated
cameras acquire point clouds by intersecting objects using the raycasting method, Fig. 4.2b. An
algorithm then evaluates whether there are points outside the pallet shape. The results of the
load size analysis are shown in AR to the user by highlighting any out-of-shape areas, Figure 4.2c.

The demo incorporates physical object manipulation through hand gestures using the HoloLens’
three-dimensional hand-tracking feature to offer users greater flexibility, Figure 4.2d. This inter-
active process enhances user engagement, and the final visualization allows an understanding of
pallet dimensions.

Users can position a box above the load to another location. A new scan is initiated in the
updated configuration through a smartphone-based control interface developed using Node-RED,
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Figure 4.2e. Consequently, the system rechecks the measurement of load size with respect to the
pallet, Fig. 4.2f.

Initial system calibration is essential to place the measurement system in the desired position.
This calibration process is performed using a Vuforia 2D marker, which establishes a reference
system with respect to the physical environment against which it is possible to move using the
developed smartphone interface. When finished, a World Anchor is used to fix the reference
system of the virtual scene in the real world.

4.1.2 Industrial application

A real application follows this demo in industrial and logistics settings, where in this case, only
the results of the scanning area are shown to operators in AR, Figure 4.3a. If some boxes are
outside the pallet shape, the operator is alerted, Figure 4.3b, and guided to the desired location
through AR cues, Figure 4.3c and Figure 4.3d.

(a) (b)

(c) (d)

Figure 4.3: Real industrial application.

4.2 Grinding in aviation

An additional developed AR application in the industrial sector involves aiding operators during
the industrial grinding process to respect working tolerances with repeatability comparable to
an automatic system. For such a purpose, an AR headset was used to support the operator in
respecting the desired working parameters. The proposed framework was developed and tested in
collaboration with Trentino-based company Fly SpA company, which operates in the aeronautics
and aerospace industry for Rolls-Royce company. The grinding process involves titanium welded
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components, specifically the root welding of titanium alloy for Boeing aircraft engine turbine
blades casing, Figure 4.4 .

Figure 4.4: Example Boeing aircraft engine turbine blades casing. © Fly SpA website

The proposed system consists of two main elements: a hardware and software infrastructure
for data acquisition and a visual interface for HoloLens.

4.2.1 Acquisition System

An acquisition system was designed to acquire the desired working parameters, Figure 4.5. It had
to replicate the real grinding process as much as possible on the welded turbine blades simulating
it on welded samples.

The selected process parameters are the tool’s possible inclinations: the feed rate, the tool
pressure ( which controls the cutting speed), and the load applied to the tool. To measure the
tool inclination, elevation, azimuth, and feed rate, an HTC Vive Tracker was used, Figure 4.6.

A motion-tracking accessory was attached to the tool and tracked in 3D through the HTC
Lighthouse system. The tool’s vertical load was measured using a load cell placed under the
sample and fixed with a vise. A National instruments board, NI USB-6210, was taken to read
the load cell. The frequency used to sample these parameters is 47Hz. A further parameter
sent to the HoloLens during the process was the temperature reached by the sample. This
information was obtained using a FLIR A615 thermal camera placed nearby the working area
with a sampling rate of 50Hz. Figure 4.7 reports the schematic structure of the measurement
infrastructure and the information that the operator can receive through HoloLens. The software
acquisition interface was designed in the Qt framework. Communication with the laptop interface
and HoloLens was structured using ZeroMQ and MQTT libraries, respectively.
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Figure 4.5: A picture of the experimental acquisition system. Here are highlighted the exploited
sensors and interfaces.

Figure 4.6: The spherical geometry considered for the characterization of the tool position. Both
elevation and azimuth were computed from the quaternion measured from HTV Vive Tracker.

4.2.2 AR Interface

For the human being, the understanding of the behaviour of a machine can be learned through
adequate interfaces and the repetitive use of the system. In order to find the best AR interface
and thus maximize the potential of this technology, a test campaign was run with five grinding
operators who have yet to experience such a technology. Four user interfaces, shown in Figure 4.8,
were designed with the Unity platform. The operator can see through all of them, where the
background is black.
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Figure 4.7: The schematic representation of the connections among the elements in the system.
For each connection is reported the transmitted data type.

The first interface has a digital control for angles (arrows) and force (thumb emoticon). The
second one has an analogue control, in dimensions and transparency, for angles (external box)
and force (thumb emoticon). The third has an analogue control, in dimensions and transparency,
for force (arrows) and the analogue position for the angles (2d ball). The last one has an analogue
control, in transparency and dimensions, for angles (arrows) and force (circle emoticon).

Different interfaces were tested on different days by each operator. In this way, they could
not influence each other or use the experience learned with the previous interface. After initial
training on how the system works, ten tests were performed for each operator.

In order to evaluate the performance of each operator with the different interfaces, a statistical
study was achieved by analyzing the parameters’ standard deviations at each test. Furthermore,
for each interface, at the end of testing session, each operator reported his opinion through a
questionnaire in terms of:

• Understanding of the system

• Usability
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• The mental activity required

• Further implementations, comments or observations

Based on the statistical analysis of the results and the judgment expressed by the operators,
the best interface was identified as the fourth interface.

Figure 4.8: The four HoloLens interfaces describe with animations the tool’s inclinations (TI)
and its vertical force (F). The top left one describes through a digital control TI with arrows
and F with an inch. The top right instead defines through an analogue control, in transparency
and dimensions, TI with an external box and F with an inch. The down left shows TI with
the centring of a bubble and F with analogue arrows. Through an analog control, the last one
characterizes TI with arrows and F with a coloured circle.

An audio system has been implemented to limit the overload of the AR interface from a visual
point of view. By using a different sensory input channel, the operator can respect a process
parameter, such as the tool’s feed speed, with good results.

Initially, the operator would accelerate or decelerate based on what appeared on the smart
glasses, so he could not respect a constant speed. After some training and with audio, having a
fixed allocated time for completing the process, the operator could finally maintain a constant
speed given the short sample length, 150mm.

During the process, the temperature is monitored in real-time, and only if the threshold is
reached the video of the thermal heating is shown to the operator superimposed to the sample,
Figure 4.9. The transparency level of this image can be adjusted thanks to vocal commands, while
its positioning is identified using the Vuforia Engine package in the virtual Unity environment.

80



4.2. GRINDING IN AVIATION

Figure 4.9: AR implementation for thermal heat: in the picture are visible the Vuforia markers
exploited for generating the AR image, the blue one superposed to the specimen, here colours
were mapped to specified heat levels.

4.2.3 Results

The best interface found was exploited in an experimental campaign design to study the effect of
the technology on the grinding process. The worst operative case was considered in the test: high
azimuth and elevation angles, high vertical force and high feed rate. For high angles without AR
assistance, the operator did not have physical references on keeping those parameters constant:
holding the tool parallel to the sample, which corresponds to a low elevation angle, would be
easier. The parameter values selected for the test were 16◦ for the azimuth, 45◦ for the elevation
and 30N for the vertical force.

The same test was run with and without the HoloLens. At the beginning of both tests, the
operator stated that the tool was in the correct configuration. As for the force parameter, it was
not possible to initially help the operator because he switched on the tool when it was not yet in
contact with the working piece; otherwise, the rotation of the abrasive would leave marks on the
sample. Then, he was told to keep the initial parameters as constant as possible and to finish
the test in seven seconds.

The charts in Figure 4.10 show process parameters results achieved with and without HoloLens,
respectively. When the operator starts without HoloLens, guiding him back inside the correct
ranges is no longer possible if he does not respect them. This case can be seen in Figure 4.10
(red line), where the error is not corrected. In the opposite case, Figure 4.10 (blue line), the
HoloLens helped the operator and corrected his behaviour.

In all plots, a 2nd-order lowpass Butterworth filter is applied with a cut-off frequency of 1Hz
to minimize the effects of vibration from the grinding operation.

Force trends in Figure 4.10c do not start from zero because the operator used a finger as a
guide on the sample from the beginning of the test.

The choice to use ranges instead of continuous corrections was made to avoid mentally over-
loading the operator, which could compromise and damage the quality of his work.

When trying to reduce the ranges, the operator’s performance arrived at a certain threshold
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and did not improve because he could no longer follow the corrections suggested by the system.
The ranges selected for the tests with HoloLens were ±1◦ for the angles, ±5N for the vertical
force and ±0.5 s for the time taken to perform the test.

The material of the sample was titanium. It could have a problem at 250 °C, so an alarm
threshold was set at 200 °C for safety. However, such a value is never reached since the temper-
ature never exceeds the 160 °C. If the threshold alarm is lowered to 150 °C when reached, the
operator sees on the sample its thermal heat. In this case, the software then generates a new
corrective parameters configuration on HoloLens to reduce the heating of the sample, such as
applying a lower pressure.

The experimental evidence verified that human capability can be enhanced through AR tech-
nology. Companies that operate in the field of assembly, navigation, training and maintenance
activities [98, 40] usually use AR, but this is an example of how the same technology can be
applied to mechanical industrial operations supporting the operator’s work directly online, re-
sulting in improved quality. The experimental results showed how, thanks to the visual and audio
support, the operator kept constant within the process tolerance limits and the parameters that
affect the grinding operation for the whole working time. Also, the adjustable thresholds enabled
more versatile management of the processes, resulting in a more controlled process outcome.

(a)

Figure 4.10: Cont.
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(b)

(c)

Figure 4.10: Parameters acquisition with (blue) and without (red) the use of HoloLens (MHL).
In green are the thresholds for the considered parameter in the test: (a) Azimuth, (b) Elevation
and (c) Force parameter, respectively. The icon highlights the input provided to the worker
through HoloLens.
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Conclusions and future work

This dissertation, which focuses on applications and methods designed to restore human cen-
trality and enhance their capabilities within the PAL, demonstrated the profound impact of
human-centered technologies in reshaping the landscape of healthcare, education, and industry.

In particular, AR technologies combined with innovative measurement systems continue
evolving and finding new healthcare applications. They have the potential to revolutionize
medical practices, improve patient and therapist outcomes, and enhance the overall health-
care experience. This dissertation introduces several frameworks designed for this purpose. In
particular, an innovative AR multidimensional framework was developed for the ADL scenario
of setting up the table in a shared AR environment where both therapist and patient have ac-
cess to the same space-aligned VR. The therapist enhances the assessment of a patient’s daily
life activity, and through their interaction, it was possible to increase patient engagement and
therapist involvement. In this demo, all levels of PAL are enhanced in terms of both collabora-
tion and supervision. The co-design of this prototype was realized in collaboration with clinical
experts of the Villa Rosa Rehabilitation Hospital in Pergine Valsugana (Italy). The calibrated
setup ensures an uncertainty in object localization of 5mm with a confidence level of 95% and
residual values due to estimated object rotations of less than 1◦. The designed framework was
evaluated with a user study involving patients and healthy testers. It allowed the selection of
significant parameters, their acceptance thresholds, and the goodness of the proposed method.
The proposed framework was developed for the specific ADL of setting the table. However, it can
also be applied in other AAL scenarios for the metrological assessment of impaired or frail users
and to optimize the living environment. It can be applied in OT to evaluate treatment/training
effectiveness in the clinical setting objectively. In a future test campaign, the prototype will be
used on other patients in parallel with their treatment and training to restore their autonomy
with proper evaluation in the AUSILIA infrastructure.

In addition, MR is likely to become an increasingly valuable and integral component of
the modern educational landscape because of more engaging learning. In order to make the
experience more immersive and realistic by enhancing users’ sensations within the PAL, two
challenges were overcome in this dissertation: obtaining a photorealistic 3D model and estimating
the pose of an object to enable 3D interaction from 2D equirectangular images.

The first challenge was overcome by combining photorealistic with 3D environment represen-
tations using a 360◦ high-quality image and a 3D model of an environment with low-quality. At
the core of the proposed system was developed an approach for automatic large-scale 360◦ camera
pose estimation within a 3D environment and a method for projective texture mapping spherical
images. The camera pose estimator developed works for significant differences in rotation and
displacement and works without the need to start from a known point of view. The positions and
orientations of the camera were estimated with a translation error below 0.7m, and below 1◦ and
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2◦ for the difference in the amount of rotation, and the difference in the rotation axis orientation,
respectively. These results were obtained for both virtual environments analyzed at full size and
with search limits of ±20.00m for translations and ±80.00◦ for rotations using an MSE of 0.005
as a possible discriminant factor for accuracy. While this work was validated using a 360◦ camera
simulation in virtual scenes, its capabilities can also be tested on real scenes. In such situations,
the light conditions could be very different between the model and the equirectangular image,
so the luminance must be carefully considered. Furthermore, the presented approach is valid
until the view of the user rotates without large displacements from the camera’s initial position
because not all the mesh areas are covered after the pixel projection. To overcome this problem,
the same method can be applied with more than one camera, but in the case of the texture’s
final reconstruction, there is no discriminating parameter that allows us to choose which pixels
to use from one or another camera for the final reconstruction. This choice can be useful if the
field of view of one camera is better for some mesh areas than another to obtain a better result
and can be implemented in future work. As discussed in this dissertation, this issue can be easily
overcome by a novel technique, NeRF, that, starting from a collection of 2D images or videos,
directly generates high-quality 3D renderings. Finally, in the optimization camera pose process,
a further study can be done to find a correlation between the different terms of the cost function
and the uncertainty in translation and rotation by investigating other possible acceptance criteria
through a multidimensional analysis.

The second challenge was overcome with an innovative method designed to estimate the 6DoF
pose of vehicles in equirectangular images. This method relies on deep learning methods only
for the object segmentation, while the pose is estimated through a cost function optimization.
Only the CAD model of the object is needed for this step, even without textures, for the nature
of the cost function used. This makes the proposed method quite flexible to be applied to any
object and lighting conditions due to the lack of color-affected terms in the comparison for pose
estimation. The algorithm results were tested through an experimental setup, comparing them
to measured rotations and translations applied to the camera in the real world. A maximum
difference of 3.2◦ was obtained from the ground truth data for rotations, and 4 cm for transla-
tions over a research range of ±20◦ and ±20 cm, respectively. Future works can improve the
computational time and reduce the pose detection error.

Finally, an interactive AR demo for industrial settings was designed by integrating high-level
functions into the virtual environment. It has received positive feedback as a useful tool for
training and education of the proposed measurement system and for determining the optimal
camera positions in the area where the scanning system will actually be installed.

The second designed application was to test the effectiveness of AR technology applied to an
industrial operation as the manual grinding process. Operators’ working capabilities and skills
were analyzed by comparing performances and the processes’ outcomes while performing the
same activities with and without Microsoft HoloLens. The experimental evidence verified that
human capability can be increased through AR technology. Five operators with no previous
experience of such a technology tested and evaluated four AR interfaces. After an initial selec-
tion achieved through a trial session, the best one was exploited in an experimental campaign
design to study the effect of the technology on the target grinding operation. The initial study
presented to select the best interface has allowed to obtain excellent results for the operators who
had no previous experience with this technology. Experimental results showed that, with visual
and audio support, the operator could keep the parameters affecting the grinding operation con-
stant within the tolerance limits of the process and throughout the working time. In addition,
adjustable thresholds allowed more versatile process management with a more controlled out-
come. This application proves how an operator equipped with the right technology returns to
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be the heart of smart factories. He has fewer chances of making mistakes and completes actions
in less time, thanks to the enhancement of his PAL through the amplification of his senses and
the increase of available information. Economic benefits are achieved through reduced runtime
errors, often reflected in a lower cost and better work.

Regardless of the field of application, each actor can improve his PAL from an augmented
visualization to a collaborative or supervised framework, according to the desired level of per-
ception.

In the coming years, challenges such as the initial cost of technology, content development
and technical barriers will be overcome through research contributions and increasing adoption.

The combination of immersive technologies and optimized frameworks prospects a future in
which technology serves humans, fostering a harmonious relationship with them and resulting in
greater human well-being and progress.
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