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Abstract

The famous bifurcation analysis performed by Fliigge on compressed thin-walled cylinders
is based on a series of simplifying assumptions, which allow to obtain the bifurcation land-
scape, together with explicit expressions for limit behaviours: surface instability, wrinkling,
and Euler rod buckling. The most severe assumption introduced by Fliigge is the use of an
incremental constitutive equation, which does not follow from any nonlinear hyperelastic
constitutive law. This is a strong limitation for the applicability of the theory, which be-
comes questionable when is utilized for a material characterized by a different constitutive
equation, such as for instance a Mooney-Rivlin material. We re-derive the entire Fliigge’s
formulation, thus obtaining a framework where any constitutive equation fits. The use of
two different nonlinear hyperelastic constitutive equations, referred to compressible materi-
als, leads to incremental equations, which reduce to those derived by Fliigge under suitable
simplifications. His results are confirmed, together with all the limit equations, now rigor-
ously obtained, and his theory is extended. This extension of the theory of buckling of thin
shells allows for computationally efficient determination of bifurcation landscapes for non-
linear constitutive laws, which may for instance be used to model biomechanics of arteries,
or soft pneumatic robot arms.

Keywords Thin shells - Nonlinear elasticity - Foppl-von Karman’s theory - Fliigge’s
buckling load

Mathematics Subject Classification 74B15 - 74K25

X< D. Bigoni
bigoni @ing.unitn.it

R. Springhetti
roberta.springhetti @unitn.it

G. Rossetto
rossetto.gabriel @ gmail.com

1 DICAM, University of Trento, via Mesiano 77, Trento, Italy

Published online: 20 July 2022 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-022-09905-4&domain=pdf
mailto:bigoni@ing.unitn.it
mailto:roberta.springhetti@unitn.it
mailto:rossetto.gabriel@gmail.com

R. Springhetti et al.

1 Introduction

Buckling of thin-walled cylinders subject to axial thrust represents one of the most famous
problems in mechanics and a fascinating question in bifurcation theory. In fact it is well-
known' that the critical load for buckling (calculated in a linearized context by Lorenz [33],
Timoshenko [47], Southwell [44], von Mises [51], Fliigge [13], and Donnell [11] and el-
egantly reported by Fliigge [14] and Yamaki [54]) provides only an overestimation of the
carrying capacity which can experimentally be measured on real cylinders. This overesti-
mation was explained in terms of post-critical behaviour in a number of celebrated works
(among which, von Kdrmén and Tsien [50], Koiter [27], Hutchinson [24], Hutchinson and
Koiter [25], and Tsien [49]). Fifty years later, the mechanics of thin shells remains a pros-
perous research topic (Lee et al. [30], Jiménez et al. [26], Elishakoff [12], and Ning and
Pellegrino [36]), also embracing recent applications to nanotubes ([52]) and soft materi-
als, the latter developed as a key to understand biological systems, ([32, 45]) or towards
mechanical applications, ([29, 42]).

The bifurcation analysis performed by Fliigge is based on a series of approximations,
among which, the incremental constitutive equations do not follow from a finite strain for-
mulation of any hyperelastic material. In particular, it is shown that the equations relate,
through a fourth-order isotropic elastic tensor, the Oldroyd increment of the Kirchhoff stress
to the incremental Eulerian strain. These equations, involving Lamé moduli A and p are
certainly valuable in an approximate sense, but how this approximation may be tied to a
rigorous theory of nonlinear elasticity remains unknown.

The focus of the present article is the incremental® bifurcation analysis of an axially-
loaded thin-walled cylinder, characterized by rigorously-determined, nonlinear hyperelastic
constitutive equations. Our analysis generalizes and rationalizes the famous derivation per-
formed by Fliigge not only from the point of view of the constitutive equations, but also
because it allows to either rigorously prove, or clearly elucidate other assumptions. In par-
ticular, the Fliigge derivation is based on the smallness assumption for the thickness of the
cylinder wall. This represents an approximation on the one hand and a simplification on
the other. There are only three alternatives to circumvent this approximation, namely: (i.)
a numerical approach (for instance through a finite element code), but numerical solutions
are approximated and far from providing the deep insight and the generality intrinsic to a
theoretical determination; (ii.) a direct approach from three-dimensional incremental elas-
ticity (as for instance pursued by Wilkes [53], Haughton and R. Ogden [19], Bigoni and Gei
[3], and Chau [9]), but the numerical solution of the bifurcation condition involved in this
technique becomes awkward in the thin-walled limit; (iii.) a reduction (if possible) of the
nonlinear elastic constitutive laws to a small-strain version, based on Lamé constants to be
used in the Fliigge equations, but in doing so, an unknown approximation is introduced.

The three above-mentioned alternatives are abandoned in this article (except for the ‘di-
rect approach’ that will be used to validate the obtained results), in favour of a re-derivation
of the buckling of a thin-walled cylinder, pursued from a different perspective. First, the
incremental equilibrium equations are rigorously derived in terms of mean quantities, repre-
sented by generalized stresses (holding true regardless of the thickness of the cylinder),
through a generalization of the approach introduced by Biot [4] for rectangular plates.

IReviews on this topic are reported in many books and articles on structural stability, see for instance Budi-
ansky [5] and Calladine [6].

2 An incremental analysis is, in other words, ‘linearized’, so that the post-critical behaviour is not considered.
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The incremental kinematics is postulated as a deduction from the deformation of a two-
dimensional surface, again in analogy with the incremental kinematics of a plate. Our treat-
ment of thin-walled cylinders allows the use of every nonlinear constitutive law. In partic-
ular, two different nonlinear elastic constitutive equations are rigorously used, describing
compressible neo-Hookean materials [40]. While the linearized kinematics adopted coin-
cides with that used by Fliigge, the incremental equilibrium equations derived in this article
are different from Fliigge’s corresponding equations, but are shown to reduce to the latter by
invoking smallness of the cylinder wall thickness. The equations obtained for the incremen-
tal deformation of prestressed thin cylindrical shells (Sects. 2—4) are general and can be used
for different purposes, so that the ensuing bifurcation analysis represents only an example of
application, while other problems can be pursued, such as for instance, the torsional buck-
ling. When compared (Sect. 5), the bifurcation landscapes obtained from our formulation
and that given by Fliigge are shown to be almost coincident and perfectly consistent with
results obtained through the ‘direct approach’, where the fully three-dimensional problem is
solved (which is also a new result presented here in Sect. 7). Finally, the following formulas
are rigorously obtained as limits of our approach: (i.) the surface instability, in the short
longitudinal wavelength limit; (ii.) the wrinkling, occurring as axial buckling of a mildly
long cylindrical shell, characterized by the well-known formula obtained by Fliigge, (iii.)
the Euler rod buckling for a long cylindrical shell (Sect. 6).

The re-derivation of the Fliigge formulation within a three-dimensional finite elasticity
context, including calculations of the bifurcation loads and the determination of the famous
formula for buckling of a mildly long cylindrical shell, is important from two different per-
spectives. First, the validity of the Fliigge theory, considered a reference in the field, is now
confirmed. Second, the new derivation is applicable to soft materials, characterized in the
framework of nonlinear elasticity by constitutive equations different from those used by
Fliigge. Therefore, the determination of the buckling stress is now possible for a cylindrical
shell made up of an Ogden or a neo-Hookean compressible elastic material [31, 37], or for
an artery obeying the Holzapfel et al. [22] constitutive law.

2 Incremental Field Equations in Terms of Generalized Stresses

The undeformed stress-free configuration of the cylindrical thin-walled body, or shell, con-
sidered here is described by means of cylindrical coordinates (rg, 6, zo), being the zy-axis
aligned parallel to the axis of revolution of the shell. Along its fundamental path before bi-
furcation, the shell is assumed to undergo a homogeneous, axisymmetric compression in its
longitudinal direction zg, preserving the circular cylindrical geometry. A uniaxial stress is
generated in the form

K=K.,G, @.1)

where K = JT represents the Kirchhoff stress tensor, with J = detF, being F the deforma-
tion gradient and T the Cauchy stress, while G = e, ® e, (e; is the unit vector singling out
the z-axis). The current configuration is described through coordinates (r, 6, z) by means of
the principal stretches {X,, g, A} as

r=>Xirg, 0=00, z=2Ar;20,

with A, = Ay following from axial symmetry. Therefore, the deformation gradient and
the left Cauchy-Green deformation tensor read as F = diag{A,; Ag; .} and B = FFT =
diag{AZ; A}; A2}, respectively.
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The incremental equilibrium equations are derived, governing the bifurcations of a cylin-
drical shell of current length /, external radius r, and internal radius r;. The cylinder, whose
thickness is denoted by ¢ = r, — r;, is not assumed to be thin for the moment, therefore
all results presented in this Section are rigorous in terms of mean values of the incremental
field quantities. The geometrical descriptors adopted here are the mid-radius a = (. +r;)/2,
defining the ‘mid-surface’ of the shell, and the so-called reduced radius ¥ =r — a. A stan-
dard notation is used, where bold capital and lower case letters denote tensors and vectors,
respectively.

Adopting a relative Lagrangean description, with the current configuration assumed as
reference, such that F = I, and neglecting the body forces, the incremental equilibrium of
a pre-stressed solid is expressed through S, the increment of the first Piola-Kirchhoff stress
tensor S, as

divS =0. (2.2)

The cylindrical shell is subject to traction-free surface boundary conditions on its lateral
surface, so that

S, =0 as F=+1/2 (i=r0,2). (2.3)

The increment of the Kirchhoff stress K can be related to through equation S = KF~T,
namely

S=EK-KLHFT, (2.4)

where L = grad v is the gradient of the incremental displacement field v. In a relative La-
grangean description, equation (2.4) becomes

S=@wL)T+T-TL". (2.5)

Introducing the uniaxial pre-stress, Eq. (2.1), into Eq. (2.5), the following relations be-
tween the components of the incremental first Piola-Kirchhoff stress tensor S are derived:

Sor =S4,
S,=8.—v.K., (2.6)
Szg = ng —v, K.
2.1 Exact Formulation

2.1.1 Generalized Stresses

In the shell theory, it is common to introduce the so-called ‘generalized stresses’, namely,
stress resultants per unit length referred to the mid-surface of the shell. For a cylinder of
current uniform wall thickness ¢ = A, y, the following definitions are adopted for the incre-
ments of forces and moments:

. t/2 N . t/2 .

n.g :/ stress .o dr, n.; :/ stress.; (1 +7/a)dr,
—t/2 —1/2

2.7

S

1/2 . . t/2 .
0= —/ stressg r dr, m., = —/ stress.; ¥ (1 +7/a)dr,
—t/2 —t/2
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where the subscript - stands for r, 6, or z in turn, while ‘stress.,” and ‘stress .4’ represent the
-z and the -6 component of a generic Eulerian stress measure. The superimposed * identifies
a suitable increment, in particular here symbols - and o are used to denote material time
derivative and Oldroyd derivative, respectively. The factor 1 + 7 /a in ﬁ.z and r;z.Z is the
consequence of the integration over a circular sector.

The following generalized stresses play a role hereafter:

n,e  radial shear force, n,, transverse shear force,

ngg  hoop force, ng,  circumferential membrane shear force,
n,  longitudinal membrane shear force, n.,  longitudinal normal force,

mgg  hoop bending moment, mg, longitudinal twisting moment,

mg  circumferential twisting moment, m,, circumferential bending moment.

2.1.2 Incremental Equilibrium Equations: Material Formulation
In a polar coordinate system {e,, ey, €.}, Eq. (2.2) corresponds to the three scalar equations

(a + 7) (Srr,r + Srz,z) + Sr9,9 + Srr - 599 =0,
(@+7) (Sorr + Soz.2) + Seo.e + Sro + Sor =0, (2.8)
(a+7) (Szr,r + Szz,z) + Sz@,e + Szr =0.

Focusing now on Eq. (2.8),, after multiplication by the reduced radius 7, a through-thickness
integration yields

1/2 t/2

Sy 7 dF + / (S0 + Sp,)7 dF =0. (2.9)
—1/2

v :
a/ (Sor. + So:.2) A +F/a)F d7+/

12 —t)2

The derivatives of the generalized moments rizgy and r14, according to Eqs. (2.7) can easily
be recognized in the above equation, while an integration by parts allows to transform the
first term as

12 12, .
/ Sorr (1 +F/a)F dF = — / Sor (14+27/a) dr + [Sp, (1 +7/a) 7]|t,/,2/2 )
—t/2 —t/2

so that, exploiting Eq. (2.6);, Eq. (2.9) becomes

t/2

", =0. (2.10)

Hge.o + amg; - + aisg — [Sor ¥ (a+7)]
The same procedure can be applied to Eq. (2.8); after multiplication by 7 and subsequent
integration to generate the next rotational equilibrium equation

t/2

amzz.z +mz9.9 +a’:lrz - Pa/t/ v 1+7/a) dr — [Ssz (a+71)] |
—i2

12
=0, @11
where P = K. t represents the pre-stress load per unit length along the mid-circular surface,
multiplied by J.

From a mechanical point of view, Egs. (2.10) and (2.11) enforce the equilibrium of mo-
ments about the z- and 6- axes, respectively.

The three translational equilibrium equations for the generalized stresses are obtained in a
similar vein, through a direct through-thickness integration of Egs. (2.8) with an integration
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by parts

o0 +an,; ; — g + [Srr(a +F)]|t—/t22 =0,

Hog.o + g . + e + [Sor (@ + )]}, =0, 2.12)

—i)2
ATtz +1zp0+ [SZ”(a + 7)] |t—/12/2 =0.

Enforcing the boundary conditions, Eq. (2.3), on Egs. (2.10)—(2.12), the full system of
equilibrium equations is finally obtained

Nrgo+an, . —ng=0,

2,2

Tigg .0 + ez ; +19 =0,
a'nzz,z + nz'G.O =0, . (2.13)
g o +ang, . +an.y =0,
t/2
amy; ;+nig.e +ar'L,Z—Pa/t/ v, 1+7/a) dr =0.
—t/2

A substitution of Eq. (2.13)4 and Eq. (2.13)5 into Eq. (2.13), and Eq. (2.13), allows to
remove the shear forces, thus leading to the following equations:

. . . 2 . .
mgg g9 + a (Mo, +Nizp) g, +a My ;. + angg

1/2

—Pawt/’ V.. (14+7/a)dr =0,
—t/2

angg.o +a’ Ny, —Hlggg — amg; ; =0,

R . (2.14)
ang;+np9=0,
N9 = —Tigg g/a — Mgy -
t/2
’;lrz:_mzz,z_mzé),(?/a"f'P/t/ U, (1+7/a)dr.
—t/2

2.1.3 Incremental Equilibrium Equations: Spatial Formulation

In arelative Lagrangean description, the incremental equilibrium equations (2.14) can equiv-
alently be expressed by means of a new set of generalized stresses, based on the Oldroyd
increment [39] of the Kirchhoff stress K, namely

K=S-LK. (2.15)
The traction-free incremental boundary conditions (2.3) can be re-expressed through K as
Ki,=0 as F=+t/2 (i=r0,2) (2.16)

and a new set of generalized stresses is obtained from the initial definition, Egs. (2.7). In
fact, by introducing the components of K given by Egs. (2.15), the first three Eqgs. (2.14) are
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given the following ‘spatial’ format:

Mge.00 + a (Mo; + 1i0) o +a° 1z o + afige +
t/2
- Paz/t/ [UG,Bzz rla+v; F + Ur,zz] (1+7/a)dr=0,
-y
g i (2.17)
afgep+a’fo. . — tggo —amo. . + Paz/f/ Voo (1+7/a)* dr =0,
2 —t/2
ang .+ fge+ Pa/t/ V.., (14+7/a)dr=0.
.y

2.2 Rotational Equilibrium About Axis r

A sixth incremental equilibrium equation expressing the rotational equilibrium about axis
r can be obtained from a through-thickness integration of Eq. (2.6); after multiplication by
(14+7/a)
t/2 . 12 t/2
/ Sp. (1 +7/a) dr —/ S0 (L+7/a) dr — P/t/ v (1+7/a)dr=0. (2.18)
—t/2 —t/2 —t/2
The introduction of the generalized stresses in Eq. (2.7) leads to the following expression in
the material formulation
t/2
a(ﬁez—ﬁz(,)—i—nth:Pa/t/ v, 1+7/a)dr, (2.19)
—t/2

while the spatial version in terms of Oldroyd increments reads
alfig: — ftzp) +1itzo = 0. (2.20)

Note that all equations obtained until now, in particular Egs. (2.14), (2.17), (2.19), and
(2.20) do not involve any approximation and thus are rigorous.

2.3 The Fliigge Approximation

As already mentioned, all equations derived so far, to be used in the following elaboration,
are exact. Interestingly, the corresponding equations provided by Fliigge [14] can be recov-
ered as an approximation of Egs. (2.17), when the assumption is introduced that the cylinder
wall thickness ¢ is small. In fact, a Taylor series expansion allows to show that
1 t/2
T / v;7/a (14+7/a) dr = O(*/a?)
—t/2

and therefore the equations introduced by Fliigge [14] are recovered:

o o 5 2 . o
Tige 09 + a(tirg; +1izg) o; +a” M .. + aiigg

t/2
—Pd’/t / V.. (14+7/a) dr =0,
—t/2

. 2. . . ) o2 _ _ (2.21)
atigop +a Mg, . —Mog g —amg, .+ Pa’/t Vg (1+7/a)dr~0,
t/2 /2
aﬁzz.z—i—ﬁzgﬁ—l—Pa/tf V, .. (1+7/a)dr =0.
—1)2
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In addition to the above equations, Fliigge used also Eq. (2.20), albeit he did never explicitly
mention the use of either the Oldroyd increment or the Kirchhoff stress measure.

3 Incremental Deformations of a Prestressed Shell

As a premise, the Euler-Bernoulli beam theory is briefly discussed on the basis of the stan-
dard assumptions [34]. The kinematics of a beam in a plane is described through the dis-
placement u(xg;) of a generic point lying on its centroidal axis, singled out by the material
coordinate x(; along the straight reference configuration, X, = x¢;€;. Assuming that the cen-
troidal axis behaves as the Euler’s elastica, corresponding to the evolution of an extensible
line, the unit vector n normal to it (counterclockwise rotated 7t /2 with respect to the tangent)
at point X = [xo; + 1 (x01)] €; + u2(x01) €, reads (Bigoni [1, 2])

—uy e+ (1 +up e

VA +u)? + 1,7

For any point of the beam in its spatial configuration, X = x;e; + x, €;, having xy =
Xo1€1 + xo €, as material counterpart with xo, € [—#/2, +¢/2], the following displacement
field is postulated:

3.1

n(xp)) =

u(xor, Xo2) = W(xgr) + [M(xp) — €] xp2 - (3.2)

If the derivatives of the displacement components (3.2) are negligible compared to unity
(i.e., u1 and u, | < 1), the linearized kinematics of the Euler-Bernoulli beam is recovered,
namely,

wy(xo1, Xo2) R w1 (xo1) — u2,1(Xo1) Xo2,  u2(xo1, Xo2) = Uz(x01) . (3.3)

The kinematics of the incremental deformations in a prestressed cylindrical shell is illus-
trated as an extension of the development outlined above for the beam, following the stan-
dard assumptions discussed, among others, by Love [34], Fliigge [13], Podio-Guidugli [41],
Steigmann and Ogden [46], and Geymonat et al. [16]. In a cylindrical coordinate system, the
prestressed shell configuration and its evolution after superposition of an incremental defor-
mation are described through the geometry of the midsurface ([7, 35, 38]), respectively as

X=ae +ze, X=(@+7)e +TVye + (z+7,)e., (3.4)

where a is the radius of the prestressed cylindrical midsurface, while v, (0, z), vy(0, 2)
and v,(6, z) represent its incremental displacement components. The unit normal to the
deformed surface is defined as

i/ﬁ X i/.z

no,)=——--, (3.5
|x.9 XX,
where | - | represents the norm of its vector argument, while the derivatives read as
- _ _ = _
Xo=r0—TVg)e,+(a+V, +Vpg)es+ U pe;,
i/,zzvr,zer + Uy ;€ + +vz,z)ez~ (3.6)
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It is useful to consider two new vectors parallel to X » and X, respectively,

" (V0 —vp)/a v, g/a
Xpg=7——"""——"—6€ +€ + ———— €,
1+ @ +790)/a 1+ @ +vp0)/a
A~ vr,z 0 ¥4
= e, . 3.7
R L T G7)

Up to the leading-order, assuming the incremental displacement components v, and vy to
be small (negligible if compared to radius @), and the incremental displacement gradient to
be negligible with respect to unity, the following approximations can be introduced

, Uro—ve Uz N

ﬁ er+e6+a+.ezv X,z%U +v9"e9 +ezv (38)

a
while the unit normal to the cylindrical surface n follows as

— Vo —Vr g —
nxe + ———e; — 7, ¢€,. 3.9
a

Parallelling the beam theory assumption, Eqn. (3.2), the incremental kinematics of a
cylindrical shell can be represented in the form [7]

V(7. 0,2) =v(0,2) +[n(6,z) —e]T. (3.10)

On the basis of the above-described linearized kinematics, the gradient of the incremental
displacement becomes

0 (Wr 9—vp)/a Vr.z
L = | @o—7r9)/a [vr—F/aTr go+(147/a)Vg 9]/ (a+T) (147/a)Vp ;. ~T/ar o; |, 3.11)
—Vr z [EZ,H*FFrﬂz]/(G+7) Vz,z=F Ur,zz

so that the components of the Eulerian strain increment tensor D = (L 4+ LT)/2 are

D,y =0, Dgy=[0, —F/aT, 99+ (1 +T/a)Tpp]/(@+T7),

D=0, =TV,
D,y=D,;,=0,
— [F/a @+ 7/a) O + (4 F/aY Voo +Toafa] ) QA+F/@)) . (.12)

4 Two Constitutive Equations for Compressible Hyperelasticity

Two hyperelastic material models, both isotropic in their undeformed state, are considered,
for which the strain energy functions are provided by [40, their Egs. (2.11) and (2.12)].
Adopting the same notation proposed by those authors, the strain energy functions W, and
W), are adopted, namely,

[1,(B) -3 —Inl;(B)] + (5 - ﬁ) (,/13(13) - 1)2, @.1)

W, =
2 3

mm
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and

1
-2, 4.2
1;(B) ) *2

where I;(B) = trB and I5(B) = detB, while x and « represent the shear and bulk moduli
of the material in its unstressed state, related to the Young modulus E and Poisson’s ratio v
through the usual formulae, namely, u = E/(2(1 +v)) and « = E/(3 (1 — 2v)).

The strain energy function (4.1) is a special form of the general Blatz-Ko material model,
in contrast with the strain energy function (4.2), which allows instead a separation between
the pure volumetric effects and other contributions from the deformation. Both the mod-
els describe compressible neo-Hookean materials and satisfy, in the undeformed state, the
stress-free condition, as well as the consistency with the classical linearized elasticity theory.
Therefore, with reference to the generic strain energy function W, the following conditions
hold true

LB

Wi +2W,+W;3=0,
Wi+Wo=—Wo+W;3) =u/2, 4.3)
Wi +4W 10 +4W 0 +2W 13 +4W 03+ W 33 =k /4 + /3,

where the derivatives W,,» =0JdW(l,, I;)/01; are to be evaluated for Iy =, =3 and 5 =1
[23].
The Cauchy stress, in general defined according to

T=2J"'(W, B+ LW, (4.4)
assumes for the strain energy (4.1) the expression
T,=uJ'B-D+k-2/3w0 -DI, 4.5)
while, for the strain energy (4.2), it reads as
T,=pJ P B-1/3D)+k/4(J*—1)J L (4.6)

Through the relative Lagrangean description, in which the current configuration is as-
sumed as reference, the Oldroyd increment of the Kirchhoff stress turns out to be related to
the strain energy density of a hyperelastic material W as [1]

o 92
K=H[D]=J'FXF)

sper F 8 F)’ D], (4.7)

where E® denotes the Green-Langrange strain tensor, while the tensor product X is defined
as (A X B)[C] = ACBT. Inserting the form (4.1) for the strain energy function W, into
Eq. (4.7), the following expression for the elastic fourth-order tensor H is derived

Hy = (k =2/3)2J = DIRT+2[1/J — (k = 2/3u)(J = D] S,

where S is the fourth-order symmetrizer tensor, leaving D unchanged because of its sym-
metry, namely, S[D] = (D + D7) /2 =D. Therefore the Oldroyd increment of the Kirchhoff
stress (4.5) for the model with strain energy (4.1) becomes

K, = (k —2/31)2J — D)D) I+2[n/J — (k —2/3 1)(J — 1)]D, 4.8)
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while, parallelling the procedure for the model with strain energy W, Eq. (4.2), the follow-
ing expression is obtained:

. 2ul JY+1 2 2
Kb:[< ’“+g + )I “B]trD——“(trBD)I

9J5/3 J3 353 353
2uly, ok J4—1
+ <315/3 ~555 )P (4.9)

It is noteworthy to point out that the constitutive equation used by Fliigge can be recovered
from both Egs. (4.8) and (4.9), assuming the pre-stressed and unstressed configurations to
be coincident, so that F =1, a condition leading to

K= (k —2/3w) (rD) I +2uD, (4.10)
which represents the incremental law used by Fliigge.
4.1 Axisymmetric Pre-Stress

The axisymmetric ground-state assumption prescribes the coincidence of the radial and cir-
cumferential stretches, A, = Ay, as well as the vanishing of the radial and circumferential
stress components, T,, = Typg = 0. Therefore, with regard to strain energy function W,, the
following condition is obtained from Eq. (4.5) for the components of the Cauchy stress in
the trivial configuration:

Ty = Tagy = 0 O = 1)/GF A + (c =2/3 ) (A7 A; — 1) =0. (4.11)

Solving Eq. (4.11) for the radial stretch A, yields

2Ot D451
x,:/ v+ D81 (4.12)

4v )2

where § = \/1+4v(A, — I)[(2—3v)A, + 1 — v]. Note that both § and A, are real for v €
[0, 0.5]. The stress tensor in Eq. (4.5) can be simplified by means of Eq. (4.12), so that its
only nonzero component turns out to be

21})\2(2)\?—1)—8—%1—2\)

LQRvA,+1)+8-1) (4.13)

a;; = MK

A substitution of Eq. (4.12) into Eq. (4.8) yields the following expressions for the diago-
nal (denoted assuming the repeated indices i not to be summed over) and the out-of-diagonal
components of the Oldroyd increment of the Kirchhoff stress, tensor K:

P = wl(1=2v)2D;; —trD) + 6 tr D] 5 21 Djj
aij =

(1—-2v)2, T,
(,j=r0,2, i#])). (4.14)

Similarly to Eq. (4.11), the condition of axisymmetric pre-stress for a material admitting
the strain energy function W, Eq. (4.2), can be written as

Ty, =Ty = (2 =22/ (BAPA) b (84— 1) (@35 =0, @15)
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Fig.1 Uniaxial loading before bifurcation for a compressed cylinder, following from two elastic models with
strain energies W, (blue lines) and W, (red lines). (a) The radial stretch A, is determined as a function of the
axial stretch Az; v = {0, 0.3} are considered, together with the incompressibility limit, v = 0.5. (b) The axial
Cauchy stress T3,/ is determined as a function of the axial stretch A;; v =10.3 and v = 0.5 are considered

which can be solved numerically to compute X, as a function of the pre-stretch A, for
v € [0, 0.5). The corresponding axial stress T, as well as the components of the Ol-
droyd increment of the Kirchhoff stress I%b,»,- are finally evaluated by means of Eq. (4.6)
and Eq. (4.9), respectively.

Noteworthy, in the incompressible limit, v — 0.5, the radial stretch tends to the incom-
pressibility constraint A, = A;l/ % with dimensionless axial stress T./nw= ()»:f — 1)/A, for
both materials with the strain energy functions W, and W,,, Eq. (4.1) and Eq. (4.2).

The radial stretch A, and the dimensionless axial stress 7, /u are reported in Fig. 1, for
the two models characterized by the strain energies W, (blue lines) and W,, (red lines), as
functions of the axial stretch A. For the strain energy function W,, Egs. (4.12) and (4.13)
have been used, while for the strain energy function W, Eq. (4.15) has to be numerically
solved. Three values of v are reported in Fig. 1 (a), namely, v = 0.3 (continuous lines), v =0
(dashed lines) and the limit v = 0.5 (green line) corresponding to incompressibility, where
the two models provide the same response. Only two values of v, namely 0.3 and 0.5 are
reported in Fig. 1 (b).

The curves demonstrate the high non-linearity of the models and the differences in the
mechanical response to stretch. Note that when v = 0, the radial stretch is constant and equal
to unity, A, = 1, for the strain energy W,, while for W, A, it remains close to 1 for values
of A, >0.7.

4.2 Incremental Plane Stress Assumption

For cylinders having ‘sufficiently’ thin walls, the assumption of plane stress becomes rea-
sonable and is hereafter extended to the bifurcation state as well, namely,

S, =0, Vrel[—t/2;1/2]. (4.16)

Recognizing that K,, = S, as a result of the assumed structure of the pre-stress in Eq. (2.1),
together with Eq. (2.15), the enforcement of Eq. (4.16) for the material with the strain energy
function W, in Eq. (4.1), yields

P Gt @.17)
rr = V(2—)»%)\.Z)—1 00 2z) .
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to be further simplified through the introduction of Eq. (4.12) as

_ 1—-2v—9§

D,=— (D D,,). 4.18
1—2v+8(69+ zz) ( )

Under the constraint represented by Eq. (4.18), the incremental constitutive equations (4.14)
assume the following expressions

, 20 [28 Do + (6 — 1 +2v) D]

I%arr =0, K= ’
(84+1—-2v)A,
I% . 2/L [((S -1+ 21)) Dgg + 28 Dzz]
e S+1—-2v)A, ’
Koy =21Dro/h:, Ko =2uDre/h:, Koy =20 Dy:/As. (4.19)

For the material with strain energy function W, in Eq. (4.2), the fulfilment of the plane
stress requirement, Eq. (4.16), instead of Eq. (4.18), leads to

dyo Doy +d.. D
D, = 00 Do & G D (4.20)

2(201 = 20) (2 +232) (2) 7 430+ )

where

doy =2(1 —2v) (422 = 32) (022..)"7 =31 +v) (8¢ + 1),

. =2(1—2v) (32 +222) (A22.)

=31 +v) (A +1)].

Finally, the substitution of Eq. (4.20) into Eq. (4.9), after introducing the implicit relation
A (X;) represented in Fig. 1 (a) that aims to satisfy Eq. (4.15), allows to determine the
components of tensor K, whose expression remains in implicit form for the model with
strain energy W,.

5 Bifurcation of an Axially-Compressed Thin-Walled Cylinder

The bifurcation problem for an axially-compressed thin-walled cylinder is set up on the basis
of the kinematical conditions (3.12), the equilibrium equations (2.17), expressed in terms of
generalized incremental stresses, and the constitutive relations:

e Eq. (4.19), for the material obeying the strain energy function W,,
e Eq. (4.9) together with Eq. (4.20), and the implicit relation A, (A;) satisfying Eq. (4.15),
for the material obeying the strain energy function W,.

The pre-stress load per unit length P in equations (2.17) can be evaluated for the two mate-
rials by means of Eq. (4.5) and Eq. (4.6), respectively.

In the following of this article, explicit calculations will be presented with reference
to the constitutive law following from the strain energy function W,, Eq. (4.1), with the
index a omitted (for the sake of conciseness). We have performed analogous calculations
for the function W, in Eq. (4.2), but these are not reported here. Final computations of the
bifurcation solution and asymptotic derivations of limit loads will be presented for both
models.
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As standard in the incremental bifurcation analysis of elastic solids ([20]), the following
ansatz is introduced for the incremental displacements at bifurcation, corresponding to a
free sliding condition along perfectly smooth rigid constraints on the upper (z =[) and
lower (z = 0) faces:

v,(0,z) =cicos(nb)cos(nz/a),
vy(0,z) = cysin(nB)cos (nz/a), 5.1
v,(0,2) =c3cos(nh)sin(nz/a),

where n =0,1,2,... and n =mma/l (m =1,2,...) represent the circumferential and the
longitudinal wave-numbers, respectively, singling out the bifurcation mode, while the am-
plitudes are collected in the vector ¢ = {cy, c3, ¢3}T. The incremental displacement field,
Eq. (5.1), constant throughout the thickness of the shell, enforces the conditions of null
incremental force 71y, and moment iy, at the ends z =0 and z = [. In Fliigge [15] the
boundary conditions for the lower and upper ends were modelled as simple supports, there-
fore preventing radial and circumferential incremental displacements, while no restrictions
were imposed on the axial incremental displacement. However, both the boundary condi-
tions assumed by us and by Fliigge lead to the same bifurcation conditions.

Through the introduction of Eqgs. (5.1) into the kinematical conditions (3.12) and the
substitution into the constitutive relations (4.19), the final form of the three incremental
equilibrium equations (2.17) is obtained, with the generalized stresses defined according to
Egs. (2.7). The bifurcation condition is eventually expressed in the standard form as M ¢ = 0,
where matrix M is a function of the axial stretch A, (while A, is replaced through Eq. (4.12)),
the dimensionless thickness of the shell T = ¢/a, the material parameter v and the wave-
numbers n and 7. Bifurcation occurs when the coefficient matrix is singular,

detM =0, (5.2)

a condition that allows to define the critical stretch XA, for bifurcation (and therefore the
corresponding dimensionless axial compressive load p, = —P/D, with D = Et/(1 — v?)
representing the extensional stiffness of the shell), as a function of the geometrical variable
7, the material parameter v and the wave-numbers n and 7.

Figure 2 shows the buckling diagram obtained for v = 0.3 and r,/r; = 1.05, so that
7 = (0.0488 (note that both the radii ratio r,/r; and the dimensionless thickness 7 remain
constant during the pre-bifurcation deformation, while the cylinder deforms maintaining its
shape). The critical axial stretch is plotted as a function of the longitudinal wave-number 7
for different values of the circumferential wave-number n. The critical modes are illustrated
as continuous lines, while the dashed lines represent the modes corresponding to high ax-
ial stresses that cannot be reached when the load is continuously increased from zero. As
expected, for small values of 7, corresponding to very slender cylinders, the mode represen-
tative of the Euler buckling, characterized by n = 1, becomes dominant.

A selection of the bifurcation eigenmodes for a thin shell, corresponding to different
values of circumferential and longitudinal wave-numbers n and m, is displayed in Fig. 3,
where the colours highlight the peculiar bulges of the buckled shell geometry.

Critical envelopes of the intersecting buckling curves are shown in Fig. 4, for different
ratios r./r; and various circumferential wave numbers n. Depending on the ratio //(ma),
the bi-logarithmic plot shown in Fig. 4 highlights the sequence of three different behaviour
ranges, found by Fliigge and now recovered for two exact models of compressible elasticity:
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. . Intersecting mode
(M) circumferential wave-number

- - - Non intersecting mode
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n=mmnall

Fig.2 Critical stretch A, of an axially-compressed thin-walled cylinder (r./r; = 1.05) made up of a Pence-
Gou compressible material with strain energy function W, (v = 0.3) as a function of the longitudinal wave-
number 7: the curves for different values of the circumferential wave-number n are indicated with the symbol
@. Continuous lines represent the intersecting critical modes contributing to the buckling envelope, while the
dashed lines correspond to modes arising at higher loads. The anti-symmetric mode labelled (D) represents
Euler buckling (n = 1)

e Cylinders with very small curvature (region on the left), tending to behave as plates,
therefore the bifurcation condition approaches the plate buckling. Figure 4 highlights how
the bifurcation solution pertaining to a thin plate (denoted by the letter S in the figure),
tends to progressively dissociate from the bifurcation solution for a thin-walled cylinder
at increasing cylinder wall thicknesses. This analysis will be addressed in Sect. 6.1;

e Moderately long cylinders (intermediate region) present an almost constant buckling load,
independent of both the circumferential and longitudinal wave-numbers. This load is de-
noted in Fig. 4 by the letter W and analyzed in Sect. 6.2;

e Cylinders with high slenderness (on the right) approach the Euler buckling solution,
denoted in Fig. 4 by the letter E. A detailed investigation of this case is presented in
Sect. 6.3.

The results presented above are based on a large strain approach with a constitutive equa-
tion characterized by the strain energy W,, Eq. (4.1). We have obtained similar results with
the strain energy W,, Eq. (4.2), not reported here for conciseness. Both cases are differ-
ent from the small strain analysis performed by Fliigge, which is based on a constitutive
equation not following from a potential. Nevertheless, results in terms of critical loads for
bifurcation turn out to be only marginally dependent on the constitutive equations, because
bifurcation occurs at low stretch. Therefore, a comparison between the approach pursued in
this paper and the solution obtained by Fliigge shows almost coincident results; the compar-
ison is not reported here as the curves are almost superimposed and scarcely distinguishable
from each other.

The accuracy of the current 2D approach (developed on the basis of the two models
provided by Pence-Gou presented in §4) will definitely be assessed though a comparison
with the 3D full-field solution for bifurcation on the basis of the constitutive model with
strain energy W,, Eq. (4.1) (Fig. 5 in Sect. 7).
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Fig. 3 Different views for a selection of bifurcation eigenmodes for a shell with r,/r; = 1.05. The material
obeys the Pence-Gou model with strain energy W, and v = 0.3. In particular, proceeding top-down, a surface
instability mode, the Euler’s buckling mode, and three different ovalization modes are shown

6 Limiting Cases via Asymptotic Analysis

Three crucial limiting cases are analyzed in this Section. The well-known solutions for cylin-
ders with a very small curvature and for moderately long cylinders are rigorously derived
from the finite elasticity approach developed in the present article on the basis of both the
constitutive models, Egs. (4.1) and (4.2). The problem of an Euler rod consisting in a hollow
cylindrical shaft is finally addressed.

In all cases the asymptotic solutions are obtained for both the elasticity models consid-
ered here. Again, for the sake of conciseness, all the results will be presented only for the
material whose strain energy function is W,, Eq. (4.1).
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Fig.4 Lower envelopes for the dimensionless load p; at bifurcation evaluated for a thin-walled cylinder made
up of a Pence-Gou compressible material with strain energy W, (v = 0.3) as a function of 7 /n =1/(ma) for
different ratios r./r; between the external and internal radii of the cylinder (bi-logarithmic representation).
The numbers adjacent to the curves indicate the critical circumferential modes of wave-number 7, alternating
along the envelopes for different values of 77 /5. The dashed lines illustrate the asymptotic buckling loads for
surface instability (S), wrinkling (W) and the Euler’s column (E)

In the following it will be convenient to refer to the relationships expressing the push-
forward operation

t I/ a ap A A
=g, n=mme =mr 22— 2L (6.1)
a ap l lo A, A;

6.1 Cylinders of Very Small Curvature: Surface Instability

If the reference geometry of the shell is altered, increasing the radius ay, while keeping
constant both the length /; and the thickness 7y, a hollow cylinder of very small curvature
is generated. The latter exhibits the surface instability of a plane plate strip with two free
and two constrained opposite edges (endowed with simple supports, or, equivalently, sliding
clamps), subject to an in-plane dead load. The bifurcation solution for such plate strip is
known, see Timoshenko and Gere [48] and Fliigge [15],

Pzs =komg, (6.2)

where ko = Ko/(Doa?) = 13 /12, being Ko = E3/[12(1 — v*)] and Dy = Eto/(1 — v?)
the flexural and extensional stiffnesses of the shell in its reference configuration (note that
in current configuration, k = K /(D a®) = ko). From the analysis of the critical pairs {A., 1}
obtained for the constitutive law Eq. (4.1), it turns out that, as recognized by Fliigge, at
high values of the longitudinal wave-number 7, the dimensionless critical load for the plate
strip p..s, Eq. (6.2), approximates the curves corresponding to n = 0 in the dimensionless
bifurcation load envelopes shown in Fig. 4 for thin shells.

In order to capture this limit behaviour, a Taylor-series expansion in A, truncated at the
linear term about A, = 1, is introduced into the bifurcation condition (5.2), with matrix M
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evaluated at n = 0. The following critical stretch is obtained as

o~ ST ) '+ (. v)n? + o, v)

R , (6.3)
dy(z,v) n* + dr (T, v) n? + do(z,v)

an equation that, neglecting the terms becoming inessential at large values of 7, can be
further simplified to

o @V o)
di(t o)t +da(t,v) ]

6.4)

where
ca=1" (0> = 12) [r* (510’ = 831> + 120 + 17) + 12(17v° —29v° +4v + 7)],
ey =127 (51v° = 5507 — 51v 4 49) 4 1277 (17v* — 240° — 1407 +22v — 3)
— 1441 —v)*(1+ )],
dy =17 (v? = 12) [t* (51v° = 83v> + 9v +20) + 12 (17v* —29v* + 3v + 8) ],
dy =12t[vt* (51v° — 550> — 57v + 55) + 1277 (17v* — 24v° — 16V° + 240 — 3)
— 144(1 —v)*(1 +v)].

At large longitudinal wave-numbers 7, Eq. (6.4), suitable for thin shells (characterized
by small axial deformation before bifurcation), allows to compute the leading-order approx-
imation for the dimensionless pressure p, at bifurcation. An additional third-order series
expansion around T = 0 leads to

2
n-—2v
pe="—13— 2+ O(th). (6.5)

The above detailed procedure, based on an approximation of the bifurcation condition trun-
cated at linear order in A,, was repeated assuming an expansion up to the third-order, which
led to a much more cumbersome equation with respect to Eq. (6.4), but yielded precisely
the same result, Eq. (6.5).

To allow a comparison with the plate strip solution, Eq. (6.2), the asymptotic solution
above, expressed in terms of current variables, as usual in bifurcation analysis, is to be
restated in terms of reference variables, thus an approximated explicit version of Eq. (6.1),
is sought. This equation is conveniently restated as 5> — n(z) 22 /Af = 0, which turns out to
involve only 1, ng, v, 7o upon introducing Egs. (4.12) and (6.4) for A, and A,. Finally, the
development of the latter condition into a Taylor series around 7y = 0 up to the order 3, yields
a bi-quadratic equation in 1, whose solution gives the following approximated relationship,

2~ 27)5 (vr02—3(1—v))
n§r§—6(1—v)

: (6.6)

such that, n — ng as tp — 0. Noteworthy, Eq. (6.6) turns out to be valid for both the material
models characterized by the strain energies W, and W,. Considering Eq. (6.5), with the
variables 1 and 1 replaced by 1o and T, through Eqs. (6.6) and (6.1),, respectively, a final
third-order Taylor series expansion around 7y = O leads to

n§—2v
12

p:= 75 + O(7y), 6.7)
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therefore, for large longitudinal wave-numbers 1o, Eq. (6.2) is recovered asymptotically.

The dimensionless critical pressure for the plate strip, Eq. (6.2), is superimposed as a
straight dashed line in the bi-logarithmic plot reported in Fig. 4 for different values of .
The conclusion is that at large values of 7, the plate theory provides a good approximation
to the critical load of thin-walled cylinders.

6.2 Medium Length Cylinders: Wrinkling

As highlighted by Timoshenko and Gere [48], experiments show that thin cylindrical shells
under compression usually buckle into short longitudinal waves, at a large longitudinal
wave-number 7. The bifurcation diagrams reported in Fig. 4 display an intermediate re-
gion where the buckling loads are almost independent of the values of both wave-numbers
n and 7. This region, for mildly long shells, corresponds to the so-called ‘wrinkling’ ([55]),
for which Fliigge [15] derived the critical load

[1—2
Pz Fligge = 3 70- (68)

This classic solution can be rigorously recovered within the developed framework, by seek-
ing the bifurcation condition as a minimum of the dimensionless axial pressure p, with
respect to variable 1. This corresponds to the stationarity of the bifurcation axial stretch
evaluated for the mode n = 0, Eq. (6.3), leading to five solutions. Among these, one is triv-
ial, two are purely imaginary conjugated roots and two are real with opposite signs. From
the latter pair, the positive real root is selected,

3./
7=2 u, (6.9)
€3

where, assuming € = 17v2 — 20v 4 5,
ey = —3v2e 73 (12 — 12) R
ey =[144v% (1 — v2)2 T—12vie? 4 [ver? —12(1 - 1)2)]2
xlog[2—1)/2+ D] (=2 - 12) ,
e3 = [verz —12(1 —vz)] (2 - 12).
Equation (6.9) is now introduced into Eq. (6.3) to evaluate the minimum axial stretch for the
mode n = 0. The latter is finally used to compute the corresponding load, which is further

expanded about 7 = 0 to obtain, at first-order in t, (recalling Eq. (6.1);) exactly the Fliigge
Eq. (6.8).

6.3 Slender Cylinders: Euler Rod Buckling

For a bar constrained with sliding clamps at both ends, assumed to be linearly elastic with
Young modulus E, the Euler buckling load can be written in the form

3

77
NZ,Euler = TEG(% aé 70 (4 + Tg), (610)
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where ay = r.0 — to/2, while oy = ap/ [ represents the stubbiness ratio, in other words, the
inverse of the slenderness ratio in the reference configuration (being o = a/! its counterpart
in the current configuration).

Euler buckling, affecting slender shells (characterized by a small stubbiness ratio «y),
corresponds to the anti-symmetric buckling mode with m = n = 1. The Euler formula,
Eq. (6.10), is recovered resorting to a perturbative technique [17, 21, 28, 43], in the limit
of vanishing longitudinal wave-number 7. The approach followed by Goriely et al. [18]
for incompressible materials is generalized by expanding both the radial and longitudinal
stretches A, (o) and A, («) into a power series about o = 0, up to the order M,

M M
M) =1+ rid + 0@, r@=1+4) r;a +0@"™), (6.11)

i=1 i=1

with coefficients A,; and A;;. The procedure is described here for the material with strain
energy function W,, Eq. (4.1), but parallel computations have been performed for the strain
energy Wy, Eq. (4.2). The axisymmetry of pre-stress is enforced in Eq. (4.11) using an
approximate form, obtained by developing A2, T,,, in a Taylor-series expansion about o =
0, with coefficients k; up to the order M,

M
WA Ty, =Y kjo! + 0@, (6.12)

j=1

The relation between the coefficients A,; and A_; is thus determined by requiring that the
series in Eq. (6.12) vanishes at each order, so that the final approximation becomes

M
M@ =14 AiOhps s ) @ + 0@, (6.13)

i=1

To exemplify Eq. (6.13), when the order of approximation is M = 2, the following coeffi-
cients are computed: A,y = —vA; and A, = —3 v (A% (8v2 — 11v +2) 4+ 21,).

The approximations, Egs. (6.13) and (6.11),, are substituted in the bifurcation condition
Eq. (5.2), with M computed for m =n = 1. Note that an infinitely slender cylinder buckles
at vanishing load, so that in this case {A,, @} = {1, O} represents a critical pair and therefore
detM,,,—,—1 = 0, when « vanishes and A, = A, = 1. A further expansion into a Taylor series

about o = 0 with coefficients d; up to order N, reduces the buckling condition to

N
detM =1 (A (@), @, T, V) = Zd_f ol + 0@ =0. (6.14)

=1

In order to satisfy condition (6.14) at each order, all coefficients d; are enforced to vanish.
This leads to a system of linear equations for the unknown parameters A,;. As the coefficients
dj(j =1,2) vanish, N = M + 2 is required to determine all coefficients A;; (i =1, .., M)
in Eq. (6.11),.

It turns out that A,; = O for all odd values of the index i = 1, .., M. Hence, the option
N =4 is sufficient to provide the asymptotic expansion of A,(«) up to the third-order,

(2 +12)*12 =36 (12 +4)

2 4
288 (1 - v2) a4+ 0("). (6.15)

Ao(a) =14 72
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The critical axial stretch in Eq. (6.15) is defined with respect to the variables in the current
configuration, and has to be related to the corresponding variables in the initial configuration,
in order to recover the critical load, Eq. (6.10). Therefore, the stubbiness ratio is expressed
in terms of both current and initial variables as « = a/l = oA, /X, so that

ar; —agh, =0. (6.16)

The asymptotic expansions (6.13) and (6.11), for A, and A,, respectively, plus a power series
expansion about « for the function o (with coefficients o),

P
=) araf+0f™), (6.17)
k=1

are introduced into Eq. (6.16). The obtained equation is solved at each order, thus obtaining
the following expression (valid for P =4)

a=ay—rn(1+v)a}+ 0. (6.18)

The longitudinal force resultant (positive when compressive) before bifurcation on the
thin-walled tube can finally be computed as

Ny ==T.m(; —r}) = =2} Ao T, (6.19)

so that inserting Eq. (4.5), and expanding the result in Taylor series about g — O (slender
columns), Eq. (6.19) becomes

3 2
1— v2) (TO2 - 12) T()2:| + O(eg). (6.20)

T Y
N.=" Eddin [4+T§_T

The buckling load asymptotically derived from finite elasticity under the assumption of
plane stress, Eq. (6.20), can now be compared with the Euler buckling load, Eq. (6.10).
It may be concluded that the two expressions for N, are identical at first-order in 7, but
differ at third-order in 7), because of the presence of a term depending on v, so that a
coincidence up to fourth-order occurs only when v = 0. This little discrepancy remains very
small for v € [0, 0.5), when the dimensionless thickness 7 is small, i.e., for thin shells. In
fact, the relative difference (N, — N, guler)/ Nz, guler between the asymptotic approximation in
Eq. (6.20) and the usual formula for Euler’s critical load, Eq. (6.10), is an increasing function
of v and 1, attaining a maximum of 0.42% as r./r; = 1.5 (tp = 0.4, a value already far
beyond the geometry of a thin shell). This is depicted for v = 0.3 in Fig. 4, with the values
of 1y spanning within the large interval [0, 0.4].

The asymptotic analysis has been repeated for the material with the strain energy function
defined by Eq. (4.2), which allows for the separation of the volumetric effects. This analysis
has yield the same asymptotic Euler buckling load up to order 2 given by Eq. (6.20).

It may be suggested that the ‘discrepancy factor’ multiplied by v may be a consequence
of both the incremental plane stress assumption and the simplified kinematics underlying
the two-dimensional approach presented here. In fact, for the material with strain energy
function W, in Eq. (4.1), the incremental plane stress assumption becomes exact for v =0
and the radial stretch becomes unity, A, = 1, as depicted in Fig. 1 (a). For the material with
strain energy W, Eq. (4.2), the incremental plane stress assumption has an order of accuracy
O(aé), and the radial stretch at bifurcation is approximated by the unity, A, =1 + O(a(‘)‘).
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It should be noticed that in [18], the classical Euler buckling formula is exactly recovered
up to the order o on the basis of a fully three-dimensional approach for an incompressible
Mooney-Rivlin material.

7 3D Bifurcation of a Hollow (Thick or Not) Cylinder

The fully three-dimensional solution for the bifurcation of a thick-walled cylinder made up
of a hyperelastic material obeying the Pence-Gou model with strain energy W,, Eq. (4.1), is
derived in this Section, following the procedure outlined by Chau [9] (see also Chau [8] and
Chau and Choi [10]) for a class of materials characterized by an incremental constitutive
law in the form

v

T,,=CnD,+Cp2Dgg+Ci3D;, Tgg=Ci2Dy+ Ci1 Dgo+ Ci3 D,

v

Tzz = C31 (Drr + D(ﬁ) + C33 Dzz s T.o= (Cll - CIZ) D,y , (71)

v

Taz:2c44Daz (a:r,@);

here the Zaremba-Jaumann (or corotational) rate of the Cauchy stress 'i‘ =S— trD)T +
TD — WT is adopted, as a function of D. The Pence-Gou model, Eq. (4.8), fits the incre-
mental form (7.1), when the coefficients C;; are defined as
Cii=kMh +ur (1+A172=2/30722),
Cu=kAh +pur 27 [1+22(1-2/340)].
(7.2)
Co=Ci=Cn—2ud]", Cy=Ci+pur]' (1-27222),
Caa=n/2 (A0 + A7) .

Note that the incremental moduli (7.2) depend on the stretches A, and X, in the pre-
bifurcation state and on the constitutive parameters « and .

The three incremental equilibrium equations for the linearized bifurcation problem can
be decoupled through the introduction of the two potentials ®(r, 8, z) and W(r, 6, 7), such
that

U = q),rz -|-r_llIJ’9 )
Vg = ril (D,Qz - \Il,r s (73)
—[CuVi® + (1 +5)Cy®..] / (Ci3+ (1 —5) Cas) .

where s = (T.. — T,,)/(2Cy) and Vi =r ' 2 (r L) + r‘z%. Equations (2.2) can thus be
written as

2
(V1 — Ul ) (V1 —2> b= 0
(7.4)
(V] + U3 3 2) V= 0,

under the assumption that

v32=2(1+s) Cus/(C11 — Cr2), (7.5)
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with v; and v, representing the roots of the characteristic equation Av? + Bv2 +C =0
(a =1, 2), with coefficients
A=(1—-15)Cy 1 Cyy, B=C1Cs—Ci3C5 — Caa[(1+5)Ciz+ (1 —5)C31] s
C=(1+5)C33Cy.
The regimes can be classified, according to the nature of the roots v; and v,. The fulfilment
of conditions B2 —4AC >0, AC > 0 and B > 0 define the elliptic-imaginary (EI) regime
for the Pence-Gou material considered, where diffuse bifurcation modes are to be found [9].

The following representation for diffuse eigenmodal bifurcations are introduced via the
above-introduced potentials

®(r,0,z) =¢(r) cos(nh) sin(nz),
W(r,0,z) =y (r)sin(nb) cos(nz),

(7.6)

where n and 1 maintain the same definitions as in Egs. (5.1). This choice of the potential
functions, automatically satisfying the boundary conditions of free sliding along the faces
z=0and z =1, allows to write the equilibrium equations (7.4) in the form

(V2407 v7) (V2417 v;) ¢ =0 (7.7)
(V2= n*vi)y =0, '
where V, =r~! % (r %) — n?r~2. The general solutions to Eqs. (7.7) are
¢(r)=bi HV(qvir) + by HV (qvar) + b3 HP (qvir) + by HP (s 1),
(7.8)

Y(r)=bsl,(nv3r)+ b K,(nv3r),

where H" and H® represent the Hankel functions of the first and second kind of order 7,
while I, and K, are the modified Bessel functions of the first and second kind of order n,
with complex coefficients b;.

Enforcing the boundary conditions (2.3) of null tractions on both the inner and outer
lateral surfaces of the pre-stressed cylinder, an eigenvalue problem in the form Mb =0
is obtained, with b = {by, by, b3, by, bs, bs}T . Non-trivial solutions become possible when
det M = 0. The latter condition only depends on the pre-bifurcation axial stretch A_, the di-
mensionless thickness of the shell 7, the material parameter v, as well as the circumferential
and longitudinal wave-numbers 7 and 7. For a given set of parameters v, r./r;, n and 7, the
critical axial stretch can be found numerically.

A comparison is reported in Fig. 5 between the critical envelopes evaluated on the basis of
the 3D approach and the thin-shell approximation. The 3D approach has been developed for
a compressible Pence-Gou material with the strain energy W,, while results for the thin shell
approximation are reported for both strain energies W, and W,. Geometry of the cylinder
varies between very thin-, thin- and medium-walled.

It should be noted that the three-dimensional approach fully captures the nearly constant
branch of the curve, corresponding to the asymptotic load derived by Fliigge for medium
length cylinders, Eq. (6.8).

The accuracy of the thin-shell approximation is evident from the comparison with the
three-dimensional solution described in the present Section. In particular, the critical modes
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Fig. 5 Comparison between the lower envelopes of dimensionless bifurcation loads p; for the buckling of
hollow cylinders, as a function of the longitudinal wave-number 7 in a bi-logarithmic plot. Results from the
thin-shell approximation, developed for Pence-Gou compressible materials with strain energies W, and Wp,
are compared with the three-dimensional analysis performed for the Pence-Gou compressible materials with
strain energy W,; v = 0.3 is adopted

characterized by small longitudinal wave-numbers 7 are neither altered by the chosen ap-
proach, nor by the constitutive model adopted, so that the curves reported in Fig. 5 are
almost coincident within the most important part of the buckling landscape. On the con-
trary, for modes with small circumferential wave-numbers (in particular for n = 0, critical
for large longitudinal wave-numbers 7, Fig. 4) a noticeable difference between the curves
is appreciable, becoming more evident when the thickness of the shell increases. This dis-
crepancy is due to the fact that a surface bifurcation is approached and thus the thin-walled
solution is no longer valid.

Although the thin-shell approximation is highly efficient from the computational point of
view (the CPU times for a single evaluation of a critical pair {A,, n} with the approximated
approach become as low as 1/300 of the times required for the same evaluation with the fully
three-dimensional approach), the inherent hypothesis of incremental plane stress becomes
unrealistic when the shell thickness grows.

8 Conclusions

A complete re-derivation has been presented for the bifurcation of axially compressed thin-
walled cylinders. The most important aspect of the new formulation is the independence
from the constitutive equation used in the original formulation by Fliigge, which does not
stem from any strain potential and is now replaced by a generic nonlinear law of elasticity.
Using two different hyperelastic constitutive laws, we have rigorously confirmed the results
by Fliigge, together with several limit formulae (for surface instability, wrinkling, and Euler
rod buckling). The outlined approach allows now the precise and computationally efficient
analysis of the bifurcation landscape for a thin-walled cylinder obeying any nonlinear elastic
constitutive law.
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