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Abstract:  

 

In this paper, we discuss the possibility of achieving tunable topologically protected edge modes 

through the application of uniaxial deformation in an auxetic metamaterial. The proposed structure 

consists of a thin slab with oriented cuts in a hexagonal lattice, where topologically protected band 

gaps are opened by introducing a controlled variation in the cut lengths. Numerical simulations 

demonstrate the existence of topologically protected and scatter-free wave propagation in the 

structure at the interface between two sub-domains with modified cells, in distinct frequency 

ranges. For the metamaterial considered in this study, this only happens in the presence of 

auxeticity. In addition, exploiting geometrical nonlinearity, the application of a uniaxial strain can 

be used to close the band gaps or to modify their frequency range, i.e., to weaken the localization 

effects or to shift the frequency at which they occur. The spatial and temporal variation of the 

applied strain field can thus be used for the dynamic tuning of metamaterial topological 

waveguiding properties, with applications in mechanical devices for logic operations and 

computations. 

 

 

Keywords: 

elastic wave propagation; topological protection; metamaterials; auxetic materials; geometrical 

nonlinearity; dynamic tunability; valley Chern number.  



   
 

   
 

1. Introduction 

 

Auxetic materials (i.e., materials with negative Poisson’s ratio) exhibit the interesting property of 

contracting/expanding laterally when they are compressed/stretched longitudinally  [1–4]. This 

property leads to an unconventional mechanical behaviour that can be exploited in various fields 

such as biomedical engineering  [5–7], energy harvesting  [8–11], textiles and sporting goods  [12], 

armours and ballistic protection [13]. More recently, so-called auxetic metamaterials  [14,15] have 

been studied for their enhanced mechanical properties compared to conventional materials, like 

indentation resistance [16], impact energy absorption  [17,18], and fatigue performance  [19,20]. 

Recent studies have shown that the construction of a hierarchical structure can lead to enhanced 

auxetic properties  [21], including extremely negative Poisson’s ratio values (close to the lowest 

limit of -1 for isotropic media) by activating kirigami-like behaviour and exploiting the interaction 

between scales  [22].  

So far, most of the investigations on the properties of auxetic materials and metamaterials have 

focused on their static behaviour, but there are indications that many attractive features also appear 

in their dynamic properties  [23–25], including anomalous elastic wave polarization  [26] or smart 

transformation optics  [27]. Auxetic metamaterials are thus ideal candidates to explore new 

possibilities in the control of elastic waves, allowing to combine attractive quasi-static and 

dynamic properties.  

In this context, topological protection has recently emerged as a unique means to propagate waves 

through sharp corners or bends  [28,29], being robust with respect to structural disorder [30,31], line 

defects [32], or backscattering. Initially introduced in the field of condensed matter physics  [33,34], 

topological protection has then been largely investigated in classical systems, such as 



   
 

   
 

photonics  [35], mechanics  [36] and elastic waves  [37]. Topological elastic metamaterials are 

analogous to their electronic and optical counterparts, including Quantum Hall  [38–40], Quantum 

Spin Hall  [41,42], and Quantum Valley Hall [43] effects, supporting chiral [44–46], helical [42,47], 

and valley modes [48–50], respectively. Topologically protected modes arise from the breaking of 

specific classes of symmetry in correspondence of a Dirac cone  [51] and have been exploited for 

the design of waveguides with negligible backscattering both in phononics  [47,52] and mechanical 

metamaterials [51,53–56]. 

Despite the high potential demonstrated so far by topological metamaterials, most of the proposed 

approaches are based on parametric tunability (e.g.  [57,58]), and lack dynamic tunability, meaning 

that their operational frequency cannot be changed once the device is designed. To address this 

issue, dynamically tunable metamaterials  [59], whose wave manipulating properties can be 

modified by various types of actuations (mechanical stimuli, heat transfer, chemical reaction, and 

electromagnetic interaction), have been recently proposed. For example, band gap tunability can 

be achieved using magnetoactive  [60] or photo-responsive  [61] materials, wave guiding can be 

attained in piezoelectric phononic crystals  [62], complex rectifying devices can be realized in 

acoustics using piezoelectric membranes  [63]. The use of programmable switches connecting 

bonded piezoelectric patches has been exploited for dynamic reconfigurable topological 

waveguiding [64]. A tunable elastic valley Hall insulator has been designed, exploiting the 

displacement of a magnetic fluid in a cavity using programmable magnet arrays  [65]. 

Mechanically triggered variations have also been proposed, e.g., the use of pre-stress to tune wave 

band gaps  [66–68], also realized experimentally. The use of pressure to deform a lattice system 

and break space-inversion symmetry has been exploited in  [69] to create acoustic topological edge 

states in truss-like hexagonal lattices. However, in continuous media, strains or deformations need 



   
 

   
 

to be relatively high to obtain significant changes, with correlated damage risks. One way to 

address this problem is to use soft materials (e.g., elastomers), with the additional complication of 

large deformations, nonlinearity, buckling and instabilities  [70–72]. An alternative to this could be 

to use auxetic metamaterials. This enables large volumetric deformations at relatively low values 

of stress due to the small bulk modulus, while maintaining the shear modulus significantly large 

(as is typical of a solid), since the ratio between the bulk and the shear moduli, equal to 2/3(1 +

𝜈)/(1 − 2𝜈), tends to zero as the Poisson’s ratio ν tends to the lowest limit of -1 (for an isotropic 

medium)  [73]. An example of an auxetic metamaterial to demonstrate band gap tunability has 

recently been presented in  [74]. However, this type of mechanical tunability remains to be 

demonstrated for applications such as topological waveguiding. 

In this paper, we present the design and numerical analysis of an auxetic metamaterial, whose 

topologically protected waveguiding properties can be reversibly tuned by applying external pre-

strains. The paper is organized as follows. In Section 2, we discuss the dispersion properties of an 

auxetic medium with cuts arranged in a hexagonal pattern, for which the openings of band gaps in 

correspondence of broken Dirac cones are obtained by perturbing the cut lengths. The topological 

properties of the system are quantitatively demonstrated by calculating the Berry curvature and the 

valley Chern number. In addition, we perform numerical simulations to show the occurrence of 

robust wave propagation at the interface between two sub-domains consisting of cells with 

different perturbations of the cut lengths. In Section 3, we introduce the effect of a uniform pre-

strain considering that the material is nonlinear. We show that the presence of an externally applied 

uniaxial strain can cause the interfacial wave to disappear or be shifted to a different frequency. 

An additional computation shows the robustness of the proposed effect where, as a consequence 

of the application of a non-uniform pre-strain, wave localization is lost in a finite region, but 



   
 

   
 

naturally reappears beyond it, where the pre-strain is absent. In Section 4, we present some 

concluding remarks, and in the Appendices, we provide additional details. 

 

2. Auxetic topological metamaterial  

2.1 Unit cell definition and dispersion properties  

Based on previous work  [22,75,76], we consider a thin slab with oriented cuts, consisting of 

hexagonal unit cells that are periodic in the directions defined by the lattice vectors a1 = (1, 0)T 

and a2 = (1/2, √3/2)T
 in the plane x-y, as shown in Fig. 1a. We start from a unit cell with cuts of 

equal length, which displays C6 symmetry (Fig. 1b). The cuts are all rotated by the same relative 

angle θ = π/4 with respect to the cell edges, as shown in Fig. 1b. To break the C6 symmetry and 

open a topological band gap, we modify the hexagonal unit cells by shortening three cuts (II, IV, 

VI) out of six, to obtain a C3 symmetry (Fig. 1c). The length of the shorter cuts in the C3-symmetric 

unit cell is given by a+b-2l′ (see Fig. 1c for the symbols). 

The auxetic behaviour of both geometries (C6-symmetric and C3-symmetric) is evaluated 

considering a periodic elementary cell and numerically determining the effective Poisson's ratio 

and Young’s modulus by applying macroscopic strains and periodic boundary conditions  [22] (the 

computation is performed in the linear elastic regime and the matrix material is assumed to be 

isotropic). The hexagonal C6 and the trigonal C3 symmetries ensure the in-plane isotropy of the 

low-frequency effective behaviour  [77]. The isotropy is also demonstrated by the isofrequency 

contours reported in Appendix A. For the C6-symmetric cell, we obtain an effective Poisson’s ratio 

which is very close to the lower limit for isotropic media of -1, i.e.,  𝜈𝑒𝑓𝑓 = −0.98. For the C3-



   
 

   
 

symmetric cell, there is an increase in the effective Poisson’s ratio, which, for the parameters 

considered in this work (see below), is given by  𝜈𝑒𝑓𝑓 = - 0.36, implying that the material is still 

auxetic. 

 

Figure 1: Schematic representation of the porous metamaterial in C6-symmetric and C3-symmetric 

configurations. (a) The hexagonal lattice composed of the periodic unit cells along lattice vectors 

a1 and a2. (b) The geometrical details of the C6-symmetric unit cell (all the cuts have the same 

length a+b). (c) The geometrical details of the C3-symmetric unit cell after C6-symmetry breaking 

(the cuts II, IV and VI have length a+b-2l′).  



   
 

   
 

 

We begin by computing the dispersion properties and constructing the band diagrams to describe 

the in-plane wave propagation behaviour of periodic systems obtained by the repetition of the C6-

symmetric and C3-symmetric unit cells presented in Fig. 1. These relations are computed by 

enforcing Bloch-Floquet periodic boundary conditions on the edges of the hexagonal unit cell and 

scanning the contour of the corresponding irreducible Brillouin zone, with high-symmetry points 

given by 𝛤 ≡ (0,0), 𝐾 ≡ (4𝜋/3𝐿, 0), and 𝑀 ≡ (𝜋/𝐿, 𝜋/𝐿√3), where 𝐿 = √3𝑙  is the distance 

between the centres of two adjacent unit cells. The geometrical parameters of the unit cell are taken 

as follows: cut length a = 13 mm, cut width b = 1.6 mm, hexagonal cell size l = 9 mm and cut 

length reduction 𝑙′ = 2.5 mm.   The material properties are considered as representative of an 

elastomeric material with Lamé moduli 𝜇 = 283 kPa and 𝜆 = 806 kPa, and specific mass density 

ρ = 970 kg/m3 [78]. Finite element models are obtained by discretizing the unit cell using second 

order triangular and quadrangular plane elements with a characteristic length of 0.25 mm. The 

corresponding stiffness and mass matrices are obtained considering plane stress behaviour.  

The band structure of the unit cell with equal cuts (Fig. 2a) exhibits two Dirac cones in 

correspondence with the K point, which represent single contact points between pairs of dispersion 

surfaces, where two modes become degenerate [56]. The existence of Dirac cones and their 

dependence on various unit cell and wave vector symmetries have been previously described in 

the literature  [79]. Specifically, reducing the 𝐶6 symmetry of the unit cell to a 𝐶3 symmetry type 

maintains the 𝐶3 symmetry of the wave vector (and thus also the K point), but shifts the degeneracy 

type of the Dirac cone from deterministic to accidental  [80]. In the case of our proposed unit cell, 

the opening of a total band gap in the vicinity of the broken Dirac cone is observed for the auxetic 



   
 

   
 

metamaterial when the 𝐶6 symmetry is reduced to the 𝐶3 type. In Appendix B, we show that this 

effect does not occur in the corresponding non-auxetic system. 

The geometry variation adopted to break the C6 symmetry, reducing it to C3 symmetry, and 

therefore to obtain a topologically protected state in the system, is detailed in Fig. 1c. For this C3-

symmetric unit cell, band structure calculations (Fig. 2b) confirm that three band gaps appear in 

the frequency ranges of 265-328 Hz, 384-456 Hz, and 500-511 Hz. It is interesting to notice that 

the first and third band gaps are opened between the dispersion branches which form Dirac cones 

in the case of the C6-symmetric unit cell, thus suggesting their topological nature.  

 

Figure 2: Band diagrams for the in-plane behaviour computed for (a) C6-symmetric and (b) C3-

symmetric unit cells.  Total band gaps are marked in grey. The occurrence of Dirac cones in the 

case of a C6-symmetric unit cell (a) is associated with the opening of band gaps in the C3-

symmetric unit cell (b). 

 

2.2 Determination of the valley Chern number for the C3-symmetric unit cell  

We now study the topological properties of the perturbed structure (C3-symmetric unit cell), 

characterized by two types of cuts with different lengths. To ensure that the considered perturbed 



   
 

   
 

structure can support topologically protected edge modes, we calculate the valley Chern number 

and the map of the Berry curvature in the reciprocal space. 

For each dispersion surface, we compute the eigenmode displacement U(k) = (Ux(k), Uy(k))T for 

different values of the wave vector k = (kx, ky)
T in the reciprocal space. We notice that the frequency 

of the eigenmode at any value of k also depends on the choice of the dispersion surface. 

The valley Chern number is defined as  [50,81]  

 

𝐶𝑣 =
1

2π
∫ 𝛺(𝒌)d2𝒌

𝐴
 ,     (1) 

 

where Ω(k) represents the Berry curvature and A denotes a small area around a “valley”. In fact, 

since the considered perturbed system does not break time-reversal symmetry, the integration of 

the Berry curvature over the whole Brillouin zone is null; nonetheless, the Berry curvature is 

localized at specific positions (“valleys”) of the reciprocal space, in particular around K and K’ 

points (see Fig. 3), so that the integration of Ω(k) over a small area in correspondence of these 

points is different from zero. 

For each isolated dispersion surface, we calculate the Berry curvature Ω(k) over a prescribed 

domain of the reciprocal space bounded by four  points (rhombus-shaped Brillouin zone, see Fig. 

3) using the following procedure. First, we subdivide the domain into small rhombus-shaped 

patches, whose vertices are denoted by P1, P2, P3 and P4 (taken in the counter-clockwise direction). 



   
 

   
 

For each patch, we compute the U(k) eigenvectors at the k-values corresponding to the four 

vertices. Then, we compute the Berry curvature as follows  [82]: 

 

𝛺(𝒌) = −Im [log (
⟨𝑼(P1)|𝑼(P2)⟩ ⟨𝑼(P2)|𝑼(P3)⟩ ⟨𝑼(P3)|𝑼(P4)⟩ ⟨𝑼(P4)|𝑼(P1)⟩

⟨𝑼(P1)|𝑼(P1)⟩ ⟨𝑼(P2)|𝑼(P2)⟩ ⟨𝑼(P3)|𝑼(P3)⟩ ⟨𝑼(P4)|𝑼(P4)⟩
)] ,  (2) 

 

where 

 

⟨𝑼(P𝑖)|𝑼(P𝑗)⟩ =
1

2𝜋
∫ 𝑼∗(𝒌(P𝑖)) ∙ 𝑼(𝒌(P𝑗))d𝑆

𝑆
 .    (3) 

 

In the formula above, the symbol * indicates the complex conjugate and S represents the area of 

the periodic cell. This procedure is modified in the case of dispersion surfaces that present 

degeneracies due to their merging (e.g., the first and second dispersion branches degenerate at the 

𝛤 point, as do the third and fourth). In this case, it is necessary to compute the Berry curvature for 

the pair of nth and mth dispersion surfaces using an alternative expression (see  [82]), where all four 

inner products of the numerator in the previous equation are substituted by the determinant of a 

2x2 matrix 𝑷(𝑃𝑖 , 𝑃𝑗 ) with 𝑃11 (𝑃𝑖, 𝑃𝑗) = ⟨𝑈𝑛(𝑃𝑖)|𝑈𝑛(𝑃𝑗)⟩, 𝑃12 (𝑃𝑖, 𝑃𝑗) = ⟨𝑈𝑛(𝑃𝑖)|𝑈𝑚(𝑃𝑗)⟩, 

𝑃21 (𝑃𝑖, 𝑃𝑗) = ⟨𝑈𝑚(𝑃𝑖)|𝑈𝑛(𝑃𝑗)⟩, and 𝑃22 (𝑃𝑖, 𝑃𝑗) = ⟨𝑈𝑚(𝑃𝑖)|𝑈𝑚(𝑃𝑗)⟩. 

The colour maps of the Berry curvature associated with the first/second, third/fourth, fifth and 

sixth dispersion surfaces are shown in Fig. 3. They are computed from the curvatures of the 



   
 

   
 

centroids of rhombus-shaped patches of side length 0.005
4

√3

𝜋

𝐿
. We note that the Berry curvature 

exhibits peaks in correspondence of the characteristic points of the reciprocal space, namely K and 

K’, presenting a phase shift between the lower and upper branches for the cases of the first/second-

third/fourth and fifth-sixth bands, thus indicating the topological nature of the band gaps between 

these dispersion surfaces. On the other hand, this phase variation is not observed between the 

third/fourth and the fifth bands, thus revealing that the band gap which nucleates in this frequency 

range does not present a topological nature. 

 

Figure 3: Values of the Berry curvature Ω in the reciprocal space for the combined (a) first/second, 

(b) third/fourth, and single (c) fifth and (d) sixth dispersion surfaces of the perturbed structure 

(C3-symmetric unit cell, Fig. 1c). The high-symmetry points K and K’ are indicated. 

 

Using Eq. (1), we can evaluate the valley Chern number at the above-mentioned characteristic 

points. For all dispersion surfaces, Cv = 0 at Γ (vertices of the parallelograms). On the other hand, 



   
 

   
 

for the first/second and sixth dispersion surfaces, Cv = -0.49525 at K while Cv = +0.49581 at K’. 

Opposite values are found for the third/fourth and fifth dispersion surfaces. This confirms that the 

considered system with broken C6-symmetry allows the generation of topologically protected edge 

modes  [81].  

 

2.3 Topological edge modes  

The existence of valley edge modes can be verified by considering a supercell consisting of two 

distinct domains, constituted by the C3-symmetric unit cells labelled as A (top half) and B (bottom 

half), comprising a total of 16 unit cells separated by an interface in the middle (Fig. 4a). The 

number of unit cells is chosen to ensure that a clear spatial separation exists between wave modes 

occurring at the interface of unit cells with opposing topological phases and their free edges. The 

unit cell B is obtained by rotating the unit cell A by 60o in the counterclockwise direction. The 

resulting supercell can be analysed as a structure which is periodic in the x-direction and has a 

finite length in the y-direction, with free boundary conditions at the top and bottom edges of the 

supercell. The corresponding dispersion diagram can be computed by scanning the first Brillouin 

zone, delimited, in this case, by the high-symmetry points 𝛤(0,0) and 𝑋(𝜋/𝐿, 0). 

Fig. 4 shows the resulting band diagram in three distinct frequency ranges for a clearer 

visualization, namely 250-330 Hz (Fig. 4b), 360-440 Hz (Fig. 4c), and 470-550 Hz (Fig. 4d). In 

each case, the bands which represent localized interface modes are tracked through the modal 

assurance criterion [83] and highlighted in red. The corresponding wave modes, labelled as I1 

through I3, are also computed at the X point of the reciprocal lattice and are shown, respectively, 

inside the green, blue, and orange boxes, with the colour bar representing absolute displacement 



   
 

   
 

amplitude values. The frequencies of the represented wave modes at the X point are 317 Hz, 411 

Hz, and 525 Hz, respectively, presenting mostly longitudinal polarization (direction of the 𝑥 -axis) 

along the interface. 

 

Figure 4: Band diagrams of the supercell. (a) The supercell is obtained as a finite strip composed 

of 16 unit cells, with the bottom and top halves constituted by C3-symmetric unit cells A and B, 

respectively, rotated by 60° with respect to each other. The resulting band diagrams are shown 

for distinct frequency ranges, i.e., (b) 250-330 Hz, (c) 360-440 Hz, and (d) 470-550 Hz, with red 

bands representing topologically localized modes I1 through I3, which show most significant 

relative displacements at the interface of the two sub-domains of the supercell. 

 

2.4 Propagation of topologically protected modes 

The topological waveguiding properties can be demonstrated by constructing a finite-sized sample 

with an interface between the unit cell regions A and B determining the preferential direction of 

ideally scatter-free energy propagation. For this purpose, a finite structure composed of 22 x 34 

unit cells is designed, with a sharp corner of 60o between distinct segments of the interface. This 

structure, which is commonly used in works dealing with topologically protected mechanical 



   
 

   
 

waveguides  [84] , is presented in Fig. 5a, where the interface is highlighted in red and the point 

where an applied in-plane excitation is also shown. The direction of the excitation is taken as 

horizontal, in accordance with the polarization of wave modes 𝐼1-𝐼3 (Figs. 4b-d). Frequency-

domain steady-state analyses are performed considering free boundary conditions, using signals 

with single frequencies corresponding to isolated interface modes. The wave mode corresponding 

to 𝐼1 is excited using a frequency corresponding to the wavenumber 
𝑘𝐿

𝜋
= 0.65 (at 295 Hz), thus 

exciting this isolated wave mode. The second excitation frequency is taken at the X point (at 411 

Hz) of the corresponding mode I2 (Fig. 4c). The results in Fig. 5b and Fig. 5c demonstrate the 

concentration of energy at the interface between unit cells. In the first case, however, the energy 

can propagate through the sharp corner due to the topological nature of this band gap. The second 

excitation frequency leads to energy mostly restricted to the region to the left of the corner, thus 

revealing that waveguiding cannot be performed efficiently in this case due to the trivial (non-

topological) characteristic of this band gap. Additionally, a transient analysis is performed using 

the Newmark method considering a sine “burst” signal obtained by modulating 50 sinusoidal 

cycles with a Hanning window (inset of Fig. 5a) to centre the frequency content of the applied 

input (0.33 ms time step discretization) around the previously excited 𝐼1 mode. The resulting 

absolute displacements are shown for distinct time instants in Fig. 5d and Fig. 5e, respectively, at 

83 and 146 ms. The energy is thus shown to be concentrated at the interface between the two unit 

cell types, with a steep decay moving away from the interface. The presence of the sharp corner 

does not preclude the propagation of the localized mode and no scattering effects are observed. 

The propagation in the transient regime is also reported in the Supplementary Video. 



   
 

   
 

 

Figure 5: Topological waveguiding functionality. A finite structure comprised of 22 x 34 unit cells, 

with the interface highlighted in red, is excited in the horizontal direction at the centre of the region 

indicated by the black circle. The concentration of energy at the interface region is verified by 

frequency-domain steady-state analyses with input frequencies of (b) 295 Hz and (c) 411 Hz. 

Transient analysis with applied sine bursts centred at 295 Hz (inset of part (a)) for time instants 

(d) 83 ms and (e) 146 ms shows excitation of a localized mode, which propagates along the 

interface. 



   
 

   
 

 

Video 1: Topological waveguiding in a time domain simulation (Supplementary Material)  

 

3. Tunability of topologically protected wave propagation 

3.1 Band gap manipulation applying external pre-strain  

The properties of the discussed auxetic metamaterial can become tunable by applying quasi-

statically pre-strains leading to a nonlinear elastic response. To illustrate this, we choose a Neo-

Hookean hyperelastic model  [85,86], which describes the reversible nonlinear behaviour of 

materials like polymers or rubbers for large deformations. The hyperelastic strain energy function 

has the form 

 

𝑊(𝑭) =
𝜇

2
(𝐽1 − 3) −  𝜇 ln(𝐽𝑒𝑙) +  

𝜆

2
 [ln(𝐽𝑒𝑙)]2,    (4) 

 



   
 

   
 

where 𝑭 = 𝛁𝒙 is the deformation gradient, with 𝐽1 = tr(𝑭𝑻𝑭)  and 𝐽𝑒𝑙 = det(𝑭). In the following 

we will apply a uniaxial stretch Fyy=1+𝜀𝑦𝑦 of moderately large amplitude and present results as 

functions of the strain component 𝜀𝑦𝑦. 

Simulations are performed using the structural mechanics and nonlinear elasticity modules of 

COMSOL Multiphysics. The finite element analysis is carried out by means of a coupled 

“stationary” and “eigenfrequency” study, whereby first a large quasi-static pre-strain (with values 

up to 0.2) is applied to the C3-symmetric unit cell including material and geometrical nonlinearity, 

and subsequently the corresponding dispersion surfaces of the deformed unit cells are determined 

by computing the eigenfrequencies of the deformed cell for each value of the wave vector. We 

remark that in this case the dispersion surfaces are preferable to the two-dimensional dispersion 

diagrams, because under pre-strain the unit cell deforms and loses its symmetric properties and, 

hence, dispersion surfaces provide a complete description of the dispersion behaviour of the 

system in the reciprocal plane. Results are presented in Fig. 6 for 𝜀𝑦𝑦 = 0, 0.1, 0.2. For non-zero 

pre-strains (parts b and c), the deformed configurations of the unit cells are also depicted, with the 

local von Mises Cauchy stress distribution represented in colour scale; for 𝜀𝑦𝑦 = 0.1 and 𝜀𝑦𝑦 = 0.2, 

Cauchy stresses reach values of approximately 0.2 MPa and 0.4 MPa, respectively, concentrating 

at slender material portions at the tip of the cuts, where local deformations are greatest.  

The dispersion surfaces of the deformed unit cells of the nonlinear elastic material undergo 

significant changes compared to those for the unloaded ones. Fig. 6b and Fig. 6c show that in the 

presence of a pre-strain of 0.1 and 0.2, respectively, the first topological band gap closes, thus 

eliminating the possibility of generating topologically protected modes at this frequency, while the 

second trivial band gap is preserved but shifted to higher frequencies (from 384 – 456 Hz for 𝜀𝑦𝑦 



   
 

   
 

= 0 to 439 – 485 Hz for 𝜀𝑦𝑦 = 0.2). This introduces the possibility of different manipulation of 

waveguiding effects at the two considered frequencies. In the case of the lower frequency range, 

waveguiding can be eliminated by application of a sufficiently large uniaxial external strain, while 

in the higher range it can be tuned to higher frequencies. It should be noticed that the effect is 

mainly due to geometrical nonlinearities, since at the chosen strain levels material nonlinearity has 

a small influence on results. This has been verified numerically by “turning off” material 

nonlinearity while maintaining geometrical nonlinearity (not shown here for brevity). Results for 

the dispersion surfaces in this case are very similar to those reported in Fig. 6b and Fig. 6c. 

In addition, it is important to underline that the effective Poisson’s ratio of the system is not 

affected significantly by pre-strain, as demonstrated in Appendix C. 



   
 

   
 

 

Figure 6: Dispersion surfaces for a) 𝜀𝑦𝑦  =0, b) 𝜀𝑦𝑦 =0.1, c) 𝜀𝑦𝑦 =0.2, represented in side view 

(left) and in axonometric view (right); the band gaps are coloured in grey in the left diagrams. The 



   
 

   
 

deformed configurations of the unit cells are also reported in b) and c), with von Mises-Cauchy 

stresses represented in colour scale (in Pa). 

 

For a deeper analysis of the phenomenon, a diagram illustrating how the lower two band gaps vary 

with the externally applied pre-strain is calculated. For this purpose, in Fig. 7 we show how the 

ranges of the band gaps (coloured in grey) change with the applied pre-strain 𝜀𝑦𝑦. From the figure, 

it can be seen that the first band gap between max(DS2) and min(DS3) is closed at a strain that is 

slightly larger than 0.07. Conversely, the second band gap between max(DS4) and min(DS5) is 

maintained but shifted to higher frequencies as the value of pre-strain is increased; the frequency 

interval of the second band gap depends on the value of 𝜀𝑦𝑦. Two additional features are retrieved: 

for non-zero values of pre-strain a small band gap between max(DS3) and min(DS4) appears, 

whose width remains small as pre-strain is increased. Additionally, the band gap at higher 

frequencies between max(DS5) and min(DS6) disappears for moderate values of pre-strain and 

reappears again for larger values of pre-strain. 



   
 

   
 

 

Figure 7: Frequency ranges of the lower band gaps (in grey colour) versus the imposed pre-strain 

 𝜀𝑦𝑦. The band gaps are determined by calculating the minima (min) and maxima (max) of the 

dispersion surfaces (DS), where the subscript refers to the number of the considered dispersion 

surface. 

 

3.2 Tuning waveguiding with external pre-strain 

To verify the results emerging from band structure calculations and illustrate how these can be 

exploited in applications requiring control of waveguiding, we present a configuration which 

includes 50 unit cells in the x direction and 32 unit cells in the y direction (Fig. 8a). We perform 

frequency domain simulations, exciting signals at the left side of the sample at a fixed frequency 

of 300 Hz, falling inside the lower topological band gap in the absence of pre-strain (Fig. 8b) and 



   
 

   
 

close to mode I1 in Fig. 4. We evaluate the propagating wave field for increasing vertically applied 

quasi-static strain 𝜀𝑦𝑦 imposed on the entire upper and lower edges of the specimen. For small 

strain values (i.e., for 𝜀𝑦𝑦≤ 0.05, Fig. 8c, d), displacements are well localized at the interface 

between the two domains, as also observed in Fig. 4. With increasing vertical strain, there is a 

gradual weakening of the localization effect, and a transition to non-localized propagation occurs 

at about 𝜀𝑦𝑦  = 0.075 (Fig. 8e). This corresponds to a pre-strain value for which the band gap centred 

at 300 Hz is closed (see Fig. 8b). For 𝜀𝑦𝑦  = 0.1 (Fig. 8f), no residual localization effects remain. 

Thus, simulations confirm that the possibility of localized waveguiding is removed when the 

applied pre-strain closes the band gap responsible for the localized mode. As discussed, this is 

mainly due to the presence of geometrical nonlinearity in the deformation of the auxetic structure.  



   
 

   
 

 

Figure 8: Tuning of waveguiding by applying an external pre-strain yy. (a) Schematic of the FEM 

model for frequency domain simulations. b) Detail of the plot in Fig. 7, focusing on the lower 

topological band gap, highlighting the frequencies and pre-strains considered in the simulations. 

Displacement fields for f=300 Hz and c) yy =0, d) yy =0.05, e) yy =0.075, and f) yy =0.1, 

illustrating progressive loss of wave localization for increasing pre-strain.  

 

On the other hand, the application of an external vertical strain can also be exploited to generate a 

frequency shift in the waveguiding effects of the localized modes at the interface between the two 



   
 

   
 

domains. This takes place for wave propagation in the non-topological band-gap illustrated in Fig. 

9a. In this case, application of an external vertical pre-strain induces a shift of waveguiding effects 

to higher frequencies: f = 440 Hz for 𝜀𝑦𝑦= 0.05 (Fig. 9b), 450 Hz for 𝜀𝑦𝑦= 0.1 (Fig. 9c), and 462 Hz 

for 𝜀𝑦𝑦= 0.15 (Fig. 9d), respectively. Notice that in this case, the upper and lower band gap bounds 

overestimate the range in which interfacial waveguiding occurs, since the localised mode 

associated with I2 only covers a relatively small frequency range within the band gap (see Fig. 4). 

In addition, as expected, the waveguide displays increased backscattering effects at the sharp edge, 

compared to the topological band gap case (Fig. 8) 

 

Figure 9: a) Detail of the plot in Fig. 7 highlighting the frequencies and pre-strains considered in 

the simulations. Displacement fields showing wave localization at increasing frequencies in the 



   
 

   
 

presence of an increasing vertical pre-strain yy: b) f = 440 Hz for yy =0.05, c) f =450 Hz for yy 

=0.1, d) f =462 Hz for yy =0.15. 

 

The effect of a quasi-static pre-strain field on the localization of waves can also be exploited to 

modify the waveguiding properties of a structure locally, in a confined region. This is 

schematically illustrated in Fig. 10 on a specimen composed of 75 unit cells in the x direction and 

32 unit cells in the y direction. In this case, we consider a straight waveguide without a sharp angle, 

since the considered effect is more evident in this type of structure. An external vertical pre-strain 

is applied on a limited length in the centre of the sample (1/3 of the length), as highlighted in Fig. 

10a. In the specific example, waves are excited at 300 Hz, corresponding to the localized 

waveguiding of mode I1, and a pre-strain value of yy = 0.1 is chosen. As shown in Fig. 10b, the 

applied pre-strain disturbs the wave localization only along a restricted length, of the order of the 

distance along which the pre-strain is applied, thus allowing wave control in targeted spatial 

regions of the sample. Very similar results are obtained in other frequency regions, targeting other 

localized modes discussed previously. While this effect is not optimized in terms of control of 

transmitted energy through the waveguide, the simulations qualitatively show how it is possible to 

achieve on-off tunability in waveguiding properties, which can be exploited, e.g., in signal 

processing applications. 



   
 

   
 

 

Figure 10: (a) Schematic of the selected model and loading scenario. (b) Amplitude displacement 

field for  𝜀𝑦𝑦 = 0.1  at 300 Hz. Localized waveguiding is inhibited only in correspondence with the 

spatial location of the application of pre-strain. 

 

4. Conclusions 

In conclusion, we have presented a numerical study to demonstrate the possibility of creating 

reversibly tunable topological metamaterials applying pre-strains, exploiting their auxeticity and 

nonlinearity. 

The proposed unit cell design is simple, and only requires the introduction of oriented cuts arranged 

in a hexagonal pattern within a thin sheet of material. The structure has interesting properties, both 

quasi-static and dynamic, in that it exhibits auxetic behaviour with an extremely negative Poisson’s 

ratio; at the same time, the band structure for both in-plane and out-of-plane modes admits various 

Dirac cones, which can be exploited for the creation of topological valley modes. The in-plane 



   
 

   
 

modes are relatively independent of thickness effects, allowing a 2D treatment of the problem 

without loss of generality. 

The breaking of C6-symmetry of the unit cells to remove degeneracy is obtained by changing the 

length of alternate cuts, also allowing parametric design of the desired dispersion properties. We 

have shown that for the considered structure, this feature only occurs in the presence of cell 

auxeticity. After C6-symmetry breaking and construction of macrocells and/or large lattices with 

interface regions, we have shown good wave localization at the interface and propagation at sharp 

edges with negligible backscattering. 

The novelty compared to previous designs and conceptual experiments is that, in this case, the 

scatter-free waveguiding properties can be manipulated by the simple application of unidirectional 

quasi-static pre-strains of moderate amplitudes (typically below 10%), in which geometrical 

nonlinearity can be activated. This allows a controlled variation of the unit cell dispersion 

properties, with the removal or shifting of band gaps to higher frequencies, thus enabling the 

transition from localized waveguiding to nonlocalized propagation. This modification can also be 

generated in limited portions of the propagation domain, by applying strain that is variable in space 

or time.  

For the proposed design, auxeticity plays a role in this process in various ways: first, it enables 

large volumetric deformations at relatively low values of stress due to the small bulk modulus, and 

therefore enables the large deformations necessary to activate nonlinear elastic behaviour. In the 

specific case of the structure considered in this work, auxeticity also enables the appearance of 

band gaps (see Appendix B) and their variation when pre-strain is applied. More specifically, in 

our design, topological band gaps tend to close for increasing applied pre-strain, while non-

topological band gaps tend to undergo a frequency shift. The closing of bandgaps in the topological 



   
 

   
 

case shows a correlation with the decrease of auxeticity due to pre-strain (Appendix C). On the 

other hand, for non-topological bandgaps, we observe that the volumetric expansion due to the 

application of a uniaxial pre-strain on an auxetic unit cell leads to a shift of band gap frequencies. 

A future detailed study of how strain states correlate to band gap modification and topological 

protection in other auxetic systems will allow to potentially generalize these considerations. 

Given the relative simplicity of the design, these auxetic tunable topological metamaterials should 

be amenable to fabrication in soft polymeric or elastomeric samples with standard techniques (e.g. 

moulding and machining), and the required material/geometrical nonlinearity could be generated 

at relatively small applied pre-strain, allowing for an experimental realization of proof-of-concept 

experiments, and further extending the possibilities in the fast-growing field of tunable 

metamaterials.  
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Appendix A – Isofrequency contours 

Here, we report the isofrequency contours for the dispersion surfaces of the C6-symmetric structure 

shown in Fig. 2a. The contours have been computed at the low frequencies f = 10, 20 Hz and are 

reported in Fig. A1a and A1b for the first and second dispersion surfaces, respectively. The 

"circular" contours indicate the isotropy of the effective behaviour. The same result was obtained 

in  [22] for the hierarchical microstructure but stemming from the too restricting assumption of 

orthotropy for the considered model. 

 

Figure A1: Isofrequency contours for the (a) first and (b) second dispersion surface of the C6-

symmetric unit cell, computed at two different values of the frequency (i.e., f = 10, 20 Hz). 

  



   
 

   
 

Appendix B – Influence of auxeticity on dispersion 

Here, we present the results of a parametric analysis, where the effective Poisson’s ratio of the C6-

symmetric unit cell in Fig. 1b is varied by changing the ratio a/l between the cut length and the 

hexagonal cell size, keeping the angle θ fixed and equal to θ = π/4. 

The dependence of the macroscopic Poisson’s ratio  𝜈𝑒𝑓𝑓  on the ratio a/l was determined for 

different values of θ in  [75]. The outcomes for the case θ = π/4 are reported in Fig. B1a. It can be 

seen that  𝜈𝑒𝑓𝑓  monotonically decreases as the ratio a/l is increased, varying from positive to 

negative values. In particular, for a/l = 0.6  𝜈𝑒𝑓𝑓 > 0 (non-auxetic), while for a/l = 1.0  𝜈𝑒𝑓𝑓 < 0 

(auxetic). 



   
 

   
 

 

Figure B1: (a) Effective Poisson’s ratio  𝜈𝑒𝑓𝑓  of the C6-symmetric unit cell in Fig. 1b as a function 

of the ratio a/l for θ = π/4 (data extrapolated from  [75]). Dispersion diagrams for the C6-symmetric 

(top insets) and C3-symmetric (bottom insets) unit cell for (b) a/l = 0.6 ( 𝜈𝑒𝑓𝑓 > 0) and (c) a/l = 

1.0 ( 𝜈𝑒𝑓𝑓 < 0). 



   
 

   
 

 

In Fig. B1b we present the dispersion diagrams for the case a/l = 0.6, which corresponds to a 

positive value of the low-frequency effective Poisson’s ratio, for the C6-symmetric unit cell (top 

figure) and for the C3-symmetric unit cell (bottom figure) where the cut length reduction is 𝑙′ = 2.5 

mm as in Section 2.1. From the figure, it is apparent that the perturbation of the cut lengths does 

not lead to the opening of a band gap in the proximity of either the lower or upper broken Dirac 

cone. Consequently, topological wave propagation cannot take place in this situation, where 

 𝜈𝑒𝑓𝑓 > 0. 

In Fig. B1c we show the band diagrams when the ratio a/l = 1.0, for which  𝜈𝑒𝑓𝑓 < 0. In this 

scenario, when the cut lengths are varied, a thin band gap appears in the neighborhood of the lower 

Dirac cone and another one of consistent width is opened at the upper Dirac cone. Accordingly, 

topological states can be obtained in this auxetic case. 

From the above and further simulations (whose results are not reported here for brevity), we have 

observed that the possibility of creating topologically protected waves in the considered medium 

is closely related to its auxeticity. 

 

  



   
 

   
 

Appendix C – Evaluation of effective Poisson’s ratio with increasing pre-strain 

In this appendix, the aim is to investigate if the system remains auxetic after pre-strain is applied. 

For this purpose, we consider a finite structure (see Fig. C1a), consisting of 10 × 15 C6-symmetric 

cells, subjected to imposed vertical displacements at the bottom and top boundaries (represented 

by arrows in Fig. C1a). In order to prevent rigid-body motion, the central point of the structure is 

constrained. The magnitude of imposed displacement is increased gradually; at each step, the 

effective Poisson’s ratio is calculated as 

  

𝜈𝑥𝑦
𝑒𝑓𝑓

= −
(𝑢B−𝑢A) (𝑥B−𝑥A)⁄

(𝑣D−𝑣C) (𝑦D−𝑦C)⁄
 ,     (C1) 

  

where u and v are the displacement components along the reference coordinate axes x and y. The 

points A, B, C and D are indicated in Fig. C1a. 

The values of the effective Poisson’s ratio 𝜈𝑥𝑦
𝑒𝑓𝑓

 for increasing values of pre-strain 𝜀𝑦𝑦 are shown 

in Fig. C1b. It is apparent that 𝜈𝑥𝑦
𝑒𝑓𝑓

 changes slightly in the range of pre-strain considered; in 

addition, the system does not lose its strong auxeticity even if it is subjected to large deformation. 

In Figs. C1c and C1d, the colour maps of the displacement components u and v, respectively, are 

presented. The fields are not affected substantially by the boundary conditions. Furthermore, the 

deformed shapes in Figs. C1c and C1d are clear evidence that the system is highly auxetic. 

 



   
 

   
 

 

Figure C1: (a) Finite model, made of 10 × 15 C6-symmetric cells and subjected to imposed 

displacements at the horizontal boundaries; (b) effective Poisson’s ratio 𝜈𝑥𝑦
𝑒𝑓𝑓

 versus the imposed 

engineering strain 𝜀𝑦𝑦;(c,d) displacement field components u and v, represented in colour 

scale.Fare clic o toccare qui per immettere il testo. 

Similar computations are performed for a finite system made of C3-symmetric cells. The results 

are reported in Fig. C2. In this case, the effective Poisson’s ratio increases (i.e., its absolute value 

decreases) more significantly with the applied pre-strain than the model with C6-symmetric unit 

cells (see inset b). However, in the range of pre-strains considered, the system remains auxetic. 



   
 

   
 

From the colour map in Fig. C2c, we observe that the field representing the displacement 

component u is not symmetric with respect to a vertical axis passing through the centre of the 

model; this is due to the fact that the cells are not C6-symmetric. The deformed shapes in Figs. C2c 

and C2d show that there is a small elongation along the transverse direction, since the effective 

Poisson’s ratio is close to -0.1 for the value of pre-strain considered. 

 

Figure C2: (a) Finite model, made of 10 × 15 C3-symmetric cells and subjected to imposed 

displacements at the horizontal boundaries; (b) effective Poisson’s ratio 𝜈𝑥𝑦
𝑒𝑓𝑓

 versus the imposed 

engineering strain 𝜀𝑦𝑦; (c,d) displacement field components u and v, represented in colour scale. 

  



   
 

   
 

Appendix D – 3D dispersion analysis and validation of 2D plane stress results 

In this appendix, the dispersion properties of hexagonal unit cells are presented considering 

computations performed using solid FE models (hexahedral elements, characteristic length of 0.25 

mm, thus not assuming plane stress behaviour) for both C6-symmetric and C3-symmetric unit cells 

(see Fig. 1). These relations are obtained by enforcing periodic Bloch-Floquet boundary conditions 

on the edges of the unit cell and scanning the contour of the corresponding irreducible Brillouin 

zone. The same geometrical parameters presented in Section 2 are considered, except for the values 

of thickness, which range from h = 0.5 mm to h = 2.0 mm, with increasing steps of 0.5 mm. For 

each case, a polarization metric in terms of displacement components, given by  

 

𝑝 = ∫ |𝑢𝑧|2d𝑉
𝑉

∫ (|𝑢𝑥|2 + |𝑢𝑦|
2

+ |𝑢𝑧|2) d𝑉
𝑉

⁄ ,    (D1) 

 

is computed, which yields a value of 1 (0) for purely out-of-plane (in-plane) wave modes. 

Fig. D1a shows that an increase in the thickness of the unit cell greatly influences the out-of-plane 

modes (p ≈ 1), while the in-plane modes (p ≈ 0) remain practically unchanged. Also, in-plane and 

out-of-plane modes are fully decoupled due to the symmetry of the unit cell along the out-of-plane 

axis. The band diagrams corresponding to h = 1.0 and h = 1.5 mm are omitted for the sake of 

brevity. 

The negligible influence of the unit cell thickness on the in-plane modes in the dispersion diagrams 

suggests that a two-dimensional plane stress model is sufficient to capture the representative 

dynamics of the system associated with in-plane modes. This is shown in Fig. D1b, where the 



   
 

   
 

previously computed dispersion relations using a plane stress assumption (see Section 2, red 

hollow circles in Fig. D1b) are indicated as the limit case for solids (filled circles in Fig. D1b) with 

decreasing values of thickness. 

 

 

Figure D1: Band diagrams computed for the (a) solid models of the unit cells with increasing 

values of thickness h for the C6-symmetric (top row) and C3-symmetric (bottom row) unit cells. 

Colour scales refer to polarization values (0 for in-plane, 1 for out-of-plane wave modes). The 

negligible influence of thickness on in-plane modes suggests the use of a plane stress model as a 

reasonable approximation, which is confirmed by (b) the comparison between the band diagram 

of solid models (filled circles) and a plane stress model (red hollow circles).  
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