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Abstract 

In Italy a significant part of the bridge collapses are due to hydraulic causes. Despite this, the Italian technical construction 
standards NTC 2018 provide few indications about the design and verification criteria of bridges with respect to river processes. 
In 2022, a working group on the "Hydraulic Compatibility of Bridges" (sites.google.com/view/gii-ponti) was set up within the 
Italian Group of Hydraulics (GII - Gruppo Italiano di Idraulica), with the aim of formulating proposals for good practices and 
guidelines for assessing the bridge hydraulic compatibility, as a basis for both bridge safety and flood risk analysis. The working 
subgroup on "small basins" aims to provide analysis tools for small river basins: they have peculiar features, requiring the 
adoption of appropriate criteria for the analysis of forcing scenarios and safety measures to be implemented for the hydraulic 
compatibility of river-crossing bridges. Particular attention is devoted to climatic changes that, although gradual, can induce 
strongly non-linear responses. The present manuscript reviews the current best practice for analyzing the hydrologic response, the 
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sediment balance, the flow propagation and the dynamic impact force against bridges in the case of mountain basins, pointing out 
limitations and possible future developments required in order to develop guidelines for bridge safety and flood hazard 
assessment. 
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1. Introduction 

The Italian Group of Hydraulics, GII, established a working group with the objective of formulating best practice 
proposals and guidelines for bridge hydraulic compatibility assessments, as a basis for both bridge safety and flood 
risk analysis. This initiative arose from the observation that regulations provide vague guidance on hydraulic design 
and test criteria for river crossing bridges, although a significant number of bridge collapses are due to hydraulic 
causes. 

A specific working table was created in order to address the methodology for identifying the forcing scenarios 
and the measures to be implemented in the case of small river basins, which are typically characterized by large 
slopes, rapid hydrologic response and intense sediment transport, with the possible formation of mudflow and debris 
flow when intense precipitations occur (Larcher et al. 2022). The above characteristics drive the need to develop 
specific methods, accounting also for climate change and the consequent progressive increase of extreme meteoric 
events frequency and intensity (Barnett et al. 2005). These climatic variations, although gradual, can in fact induce 
non-linear responses (Steffen 2018): when certain rainfall thresholds, which were possibly never or rarely reached in 
the past, are exceeded, extreme consequences can be triggered (e.g., debris flow and mudflow), exposing the 
population and the territory to unexpected disasters and calamities. 

Debris flows differ from ordinary sediment transport in rivers because of their large sediment volume 
concentration, which can exceed 30% and even reach 60-70%, and non-Newtonian rheology (Takahashi 1991; Berzi 
et al. 2010). Moreover, in debris flow the motion of the granular phase is induced directly by gravity and not by the 
fluid, as in ordinary sediment transport.  

Debris flow develop in steep channels if all the following conditions are met: i) sufficient availability of sediment 
(Marchi et al. 2019, Aronica et al. 2012); ii) connectivity of such potential sediment sources with the main channel; 
iii) slopes large enough to trigger debris flows and allow their downstream propagation (Steger et al. 2022). In 
addition, debris flow can originate and propagate also at milder slopes when water and sediments are suddenly 
released due to the failure of natural or artificial barriers. Debris flows often incorporate also large boulders and a 
considerable fraction of woody material, which enhances the clogging occurrence at bridges.  

2. Methods 

2.1. Hydrological response of small basins 

An accurate liquid hydrography analysis is the first, fundamental step of the methodology for verifying the 
hydrogeological risk and safety strategies for bridges built in small river basins. Hydrological models receive 
meteorological data as input, perform calculations and output the liquid discharge. 

Meteorological information, such as precipitation and temperature, represents therefore a key factor for 
hydrograph calculation: the rapid hydrological response of small mountain basins requires accurate short-interval 
precipitation data, possibly at sub-hourly scale (e.g. Mazzoglio et al. 2020; Martinengo et al. 2021), a fine-spatial 
resolution (e.g. Crosta et al. 2001, Aronica et al. 2012) and, at the same time, taking into account the effects of the 
global temperatures increase (e.g. Allamano et al. 2009). Finally, signals of trends on rainfall extremes (e.g. 
Libertino et al. 2019) require special attention for their possible effect on the increase of discharge extremes, as well 
as localized climatic phenomena (e.g. Hirschberg et al. 2021).  
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A critical aspect in obtaining accurate weather data with a fine spatial and time resolution is represented by the 
scarcity of weather stations, which needs to be overcome with different strategies, including regional climate model 
simulations, radar and satellite data, and local weather predictions.  

2.2. Sediment balance 

A good understanding of the basin system is necessary in order to quantify the sediment volumes potentially 
entrained by a debris flow. Firstly, potential sediment source areas have to be mapped and their thickness assessed. 
High-resolution topography and field surveys, ideally complemented by geophysical measurements, are crucial for 
this step. Secondly, the actual degree of connectivity of such potential sediment volumes with the main channel has 
to be determined. If adequate data and computing resources are available, typically for relatively small spatial scales 
(Ivanov et al. 2020), numerical models can be applied (e.g. Brambilla et al. 2020; Gatti et al. 2020). However, for 
large river basins or regional studies, or simply when the necessary data for carrying out meaningful simulations are 
missing, a simpler, geomorphometry-based approach, which is mostly built on high-resolution DEMs coupled to a 
solid statistical modelling, is better suited (e.g. Steger et al. 2022). A similar approach can be employed, coupled 
with an accurate GIS-based forest inventory, for the evaluation of entrained and transported woody debris (e.g. 
Comiti et al. 2016). 

2.3. Debris flows discharge 

The theoretical, maximum possible debris flow discharge, Qdf, can be calculated using a hydraulic method (e.g. 
Takahashi 1991) when the liquid discharge, Q, and the sediment concentration at rest, C0, are given. This theoretical 
value, Qdf, will be effectively reached under the condition that the volume of available sediment is sufficiently large 
(see chapter 2.2).  

𝑄𝑄𝑑𝑑𝑑𝑑 = 𝑄𝑄 𝐶𝐶0
𝐶𝐶0−𝐶𝐶    (1) 

In equation (1), the debris flow concentration, C, is assumed to coincide with that of incipient motion in saturated 
conditions, 

𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼
𝛥𝛥(𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙−𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼),    (2) 

where 𝛼𝛼 represents the channel slope angle, 𝜙𝜙 the sediment friction angle and Δ = (𝜌𝜌𝑠𝑠 − 𝜌𝜌)/𝜌𝜌 the relative buoyant 
density of sediments (Armanini et al. 2005). In case of topographic variations, the sediment concentration, and 
therefore the debris flow discharge, can vary significantly in space and time, developing erosion and deposition 
zones that can be predicted correctly only through the application of appropriate two-phase mathematical models 
(see chapter Errore. L'origine riferimento non è stata trovata.). Moreover, the flow properties can be affected by the 
presence of sediments of multiple sizes (e.g. Larcher & Jenkins 2019), with larger boulders typically more 
concentrated at the debris flow front and on the sides. 

The rapid hydrologic response of small basins is also reflected in a very short duration of debris flow 
hydrographs, with very steep rising limbs and a fast-declining recession phase (Coviello et al. 2021). 

2.4. Debris flow propagation 

Although debris flow is composed of a solid and of a liquid phase, the mixture as a whole behaves like a non-
Newtonian fluid, with features somewhat different from pure water. The flow can be modelled with a system of 
differential equations for the mass and momentum balance of the liquid and of the solid phase, complemented by a 
suitable number of closure equations (Sansone et al. 2021). For this purpose, the shallow flow assumption is 
commonly employed (e.g. Armanini et al. 2009), thus modelling the system in two dimensions, neglecting the 
vertical component of the flow velocity and assuming a hydrostatic pressure distribution. 
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Several simplified versions of the two-phase model are present in the literature, as well as monophase models 
that can describe properly the behavior of mudflows (e.g. O’Brien et al. 1993), but are not suitable for capturing 
erosion and deposition processes typical of debris flow (Rosatti and Zugliani 2015). Another key aspect in 
modelling debris flow is the capability of the model to cope with flows over both mobile and fixed bed, which is not 
possible using monophase models. 

Most of the commercial models use the monophase approach over fixed bed, eventually with potential 
entrainment (Hussin et al. 2012). 

2.5. Impact force acting on bridge structure 

Debris flows and mudflows typically propagate in steep streams at very large velocities, sometimes exceeding 10 
m/s, with a mixture density that can double that of water. As a consequence, their impact force against bridge piers 
and deck can be destructive (see Fig. 1) and should not be evaluated with the same methods used for lowland rivers. 

 

 

Fig. 1. Collapsed bridge after a debris flow event on the Rio di Tel (Parcines, BZ). Courtesy of Agenzia per la Protezione Civile della Provincia 
Autonoma di Bolzano. 

The impact force of the debris flow or of the mudflow can instead be calculated through a momentum balance 
applied to a fixed control volume that includes the incident front a few instants after the impact against the bridge 
(Armanini et al. 2020), considering the mixture as an homogeneous flow. The resulting impact force per unit width, 
S, against the structure can be expressed as a function of the debris flow density, 𝜌𝜌𝑑𝑑𝑑𝑑 , of the gravitational 
acceleration, g, and of the debris flow front velocity, u, and depth, h: 

 𝑆𝑆 = 1
2 𝜌𝜌𝑑𝑑𝑑𝑑𝑔𝑔ℎ

2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝜌𝜌𝑑𝑑𝑑𝑑𝑢𝑢2ℎ    (3) 

In some cases, however, the impact of a single, large boulder against a part of the structure can determine a force 
exceeding the prediction given by equation (3). Therefore, it is appropriate to estimate the size of the largest 
boulders through field analysis and evaluate their impact force as if they were moving with the same velocity of the 
debris flow front. The latter can be estimated in first approximation with uniform flow formulas (e.g. Armanini et al. 
2005) or, preferably, with mathematical models (see chapter 2.4). The presence of a deformable protection in front 
of the bridge allows reducing significantly the impact force of single boulders, because it is inversely proportional to 
their arrest time. The maximum value between the force of a single boulder and the force resulting from equation (3) 
should then be assumed as design impact force. Field observations on the Gadria torrent (BZ) show that the impact 
force of a single, large boulder can be up to 5 times larger than the dynamic impact force generated by a 
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homogeneous debris flow front (Hübl, 2022) if deformable protections are not used. Moreover, the dynamic impact 
force of a debris flow against a structure can in some cases exceed by one order of magnitude the static force. 

In the case of mudflow, characterized by highly concentrated mixtures of water and fine sediments, the peak 
value of the impact force can be assumed equal to the asymptotic value of the final hydrostatic condition. The 
conditions in which it is possible this assumption depend on the fluid rheological characteristics and the geometrical 
parameters governing the phenomenon (Di Cristo et al. 2022). 

2.6. Bridge clogging 

A critical element for the hydraulic safety of steep torrents is represented by the presence of bridges: abutments 
and piers may generate a narrowing of the flow section, inducing sediment deposition upstream of the bridge. Also a 
bed slope reduction near the bridge can produce similar effects. Consequently, it is not so rare that the free surface 
of the debris flow reaches the lower level of the bridge deck (see Fig. 2), leading in some cases to a complete section 
obstruction. Despite the importance of this phenomenon, to the best of our knowledge a comprehensive 
experimental study is not available.  

 

 

Fig. 2. Obstructed bridge after a debris flow event on the Rio di Croda Rossa (Anterselva, BZ). Courtesy of Agenzia per la Protezione Civile 
della Provincia Autonoma di Bolzano. 

A practical approach for hazard assessment can be proposed using a mathematical model suitable for describing 
bed changes due to deposition (therefore excluding monophase models), as well as flow over a non-erodible bed, 
(when the bridge is overtopped). When the free-surface level of the debris flow reaches the lower level of the deck 
for at least some minutes, the bridge can be assumed as obstructed and, from that moment on, the bridge section can 
be considered as a rigid wall. In this way the numerical simulation is split into a pre-clogging and a post-clogging 
phase. A back-analysis of a real event (Amaddii et al. 2022) shows the reliability of the estimate of the clogging 
time using this approach, as well as the importance of the bridge clogging simulation when producing hazard maps 
(Zugliani et al. 2022).  

3. Conclusion and discussion 

Several significant aspects emerged from the analysis carried out by the working group of Italian Group of 
Hydraulics on debris and mud flow phenomena in small basins: i) investigations in analyzing these basins should be 
performed using distinct methodologies as compared to lowland streams; ii) debris and mudflows have to be clearly 
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distinguished from ordinary sediment transport phenomena and also landslides, and should therefore be treated 
accordingly; iii) the use of alternative rainfall data sources (e.g. radar) might improve spatial and temporal resolution 
of the phenomena as there is a lack of sub-hourly rainfall data; iv) the available hydrometric data are extremely 
limited; v) the debris flow discharge calculated with hydraulic models will exceed the effectively observed one in 
the case of a scarce sediment availability; vi) debris and mudflows can cause significant bed elevation variations in a 
very short time, which can be predicted properly only with two-phase mathematical models, possibly capable to 
analyze transitions between erodible-bed and fixed-bed conditions; vii) the dynamic impact force produced by mass-
transport phenomena against bridge piers and decks can in some cases exceed by one order of magnitude the static 
one.  

The considerations above may provide a starting point not only for the drafting of guidelines, but also for the 
development of new research activities. 
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