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Modeling and simulating bio-molecule diffusion in

non-homogeneous solutions. Diffusive spatial effects

on chaperone-assisted protein folding: a case study.

Paola Lecca, Lorenzo Dematté, and Corrado Priami

Abstract

In this report we present a new stochastic algorithm to simulate
reaction-diffusion systems and its application to the simulation of dif-
fusive spatial effects on the chaperone-assisted protein folding in cyto-
plasm.
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1 Introduction

As the name indicates, reaction-diffusion models consist of two components.
The first is a set of biochemical reactions which produce, transform or re-
move chemical species. The second component is a mathematical descrip-
tion of the diffusion process. At molecular level, diffusion is due to the
motion of the molecules in a medium.If solutions of different concentrations
are brought into contact with each other, the solute molecules tend to flow
from regions of higher concentration to regions of lower concentration, and
there is ultimately an equalization of concentration. the driving force lead-
ing to diffusion is the Gibbs energy difference between regions of different
concetration.

The great majority of mesoscopic reaction-diffusion models in intracel-
lular kinetics is usually performed on the premise that diffusion is so fast
that all concentrations are maintained homogeneous in space. However, re-
cent experimental data on intracellular diffusion constants, indicate that this
supposition is not necessarily valid even for small prokaryotic cells [1]. If the
system is composed by a sufficiently large number of molecules, the concen-
tration, i. e. the number of molecules per unit volume, becomes a continuum
and differentiable variable of space and time. In this limit a reaction diffusion
system can be modeled by using differential equations. In an unstructured
solvent, ideally behaving solutes (i. e. solutes for which solute-solute inter-
action are negligible) obey the Fick’s law of diffusion. However in biological
system even for purely diffusive transport phenomena the classical Fickian
diffusion is at best a first approximation [2, 3]. Spatial effects are present
in many biological systems, so that the spatially homogeneous assumption
will not always hold. Examples of spatial effects include mRNA movement
within the cytoplasm [4], Ash 1 mRNA localization in budding yeast [5],
morphogen gradients across egg-polarity genes in Drosophyla oocyte [5],
and the synapse-specificity of long-term facilitation in Aplysia [6]. The in-
tracellular medium is not a homogeneous mixture of chemical species, but a
highly structured environment partitioned into compartments in which the
distribution of the biomolecules could be non-homogeneous. The description
of diffusion processes in this environment has to start from a model of the
diffusion coefficient containing its dependency on the local concentrations of
the solutes and solvent.

Before proceeding further, it is useful to review the concepts of diffusive
fluxes and Fick’s law. The key concepts in the mathematical description of
diffusion are summarised in the definition of flux of solute moving from one
region to another of the space. Let consider a small surface S of area dA
oriented perpendicularly to one of the coordinate axes, let say the x-axis.
The flux of solute in the x direction, J , is defined as the number of molecules
which pass through the surface per unit area per unit time. Therefore, the
number of solute molecules crossing the surface in time dt is JdAdt. The net
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flux depends on the number of molecules in small regions to either side of
the surface: if there are more molecules on the left, then we expect a left-to-
right flux which grows in size as the difference of concentration to either side
of the surface increases. Moving the surface S from one point in space to
another, we may find that this local difference changes. Therefore the flux is
a vectorial quantity depending on the position in space, i. e. J = J(x, y, z).
The simplest description of the concentration dependence of the flux is the
Fick’s first law, namely the flux is proportional to the local derivative of the
concentration c of solute with respect to the spatial variables: J = −D∂c/∂x
in one dimension, or ~J = −D∇c in three dimensions. The quantity D in
the Fick’s law is known as diffusion coefficient. If the medium is isotropic,
D is a constant scalar independent of the concentration of the solute.

In this paper we present a new model of diffusion coefficient for a non-
homogeneous non-well-stirred reaction-diffusion system. In this model the
diffusion coefficient explicitly depends on the local concentration of solute,
frictional coefficient and temperature. In turn, the rate of diffusion of the
biochemical species are expressed in terms of this concentration-dependent
diffusion coefficients. We treat here purely diffusive transport phenomena
of non-charged particles, and, in particular, the case in which the diffusion
is driven by a chemical potential gradient in x direction only (the general-
ization to the three-dimensional case poses no problems). Our derivation
consists of five main steps: 1. calculation of the local virtual force F per
molecules as the spatial derivative of the chemical potential 2. calculation
of the particles mean drift velocity in terms of F and local frictional co-
efficient f ; 3. estimation of the flux J as the product of the mean drift
velocity and the local concentration; 4. definition of diffusion coefficients as
function of local activity and frictional coefficients and concentration, and
5. calculation of diffusion rates as the negative first spatial derivative of
the flux J . The determination of the activity coefficients has required the
estimation of the second virial coefficient, that in our model is calculated by
using the Lennard-Jones potential to describe the inter-molecular interac-
tions. The frictional coefficient is assumed to be linearly dependent on the
local concentration of solute.

The diffusion events are modeled as reaction events and the spatial do-
main of the reaction chamber is divided into cubic subvolumes of size l, that
we from now on we will call indifferently cells, meshes or boxes. The move-
ment of a molecule A from box i to box j is represented by the reaction
Ai

k−→ Aj , where Ai denotes the molecule A in the box i and Aj denotes the
molecule A in the box j. The reaction-diffusion system is thus modeled as a
purely reaction system in which the diffusion events are first order reactions
whose rate coefficients ks are expressed in terms of state-dependent diffusion
coefficients.

The space domain of the system is divided into Ns subvolumes. The
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time evolution of the system is computed by a Gillespie-like algorithm [7]
that at each simulation step selects in each subvolume the fastest reaction,
compares the velocities of the Ns selected reactions and finally executes the
reaction that is by far the fastest. To make the Gillespie approach applicable
in each subvolumes, the size of the mesh has to be chosen sufficiently small
so that the homogeneity and well-stirred assumption on the distribution of
the molecules inside are good approximations, and sufficiently large to have
a number of eventual reaction events significantly greater than one.

The paper is organized as follows: Section 2 illustrates the mathematical
model of the diffusion as a time dependent process. In the subsection of this
section we present our model of diffusion coefficient depending on the state
variables of the system, the models of virial coefficient, intrinsic viscosity
and frictional coefficient. In Section 3 we propose a method to estimate
the suitable size of the subvolumes in which the entire reaction space has
to be subdivided. in Section 4 we describe the algorithm implementing the
simulation of our model of reaction-diffusion systems. Section 5 shows the
results we obtained by applying our algorithm on chaperone-assisted protein
folding to investigate the influence of spatial effect on this process.

2 The model of diffusion

Let consider a solution containing N different solutes. The chemical poten-
tial µi of any particular chemical species i is defined as the partial derivative
of the Gibbs energy G with respect to the concentration of the species i, with
temperature and pressure held constant. Species are in equilibrium if their
chemical potentials are equal.

µi ≡
∂G

∂ci
= µ0

i +RT ln ai (1)

where ci is the concentration of the species i, µ0
i is the standard chemical

potential of the species i (i .e. the Gibbs energy of 1 mol of i at a pressure
of 1 bar), R = 8.314 J · K−1 · mol−1 is the ideal gas constant, and T
the absolute temperature. The quantity ai is called chemical activity of
component i, and it is given by

ai =
γici
c0

(2)

where γi is the activity coefficient, c0 being a reference concentration, which,
for example, could be set equal to the initial concentration. The activity
coefficients express a deviation of a solution from the ideal thermodynamic
behavior and in general they may depend on the concentration of all the
solutes in the system. For an ideal solution, the limit of γi which is recovered
experimentally at high dilutions is γi = 1. If the concentration of species i
varies from point to point in space, then so does the chemical potential. For
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simplicity, we treat here the case in which there is only a chemical potential
gradient in the x direction only. Chemical potential is the free energy per
mole of substance, free energy is the negative of the work W which a system
can perform, and work is connected to force F acting on the molecules by
dW = Fdx. Therefore an inhomogeneous chemical potential is related to a
virtual force per molecule of

Fi = − 1
NA

dµi
dx

= −kBTc
0

γici

∑
j

∂ai
∂cj

∂cj
∂x

(3)

where NA = 6.022 × 1023 mol−1 is the Avogadro’s number, kB = 1.381 ×
10−23 J · K−1 is the Boltzmann’s constant, and the sum is taken over all
species in the system other than the solvent. This force is balanced by the
drag force experienced by the solute (Fdrag,i) as it moves through the solvent.
Drag forces are proportional to the speed. If the speed of the solute is not
too high in such a way that the solvent does not exhibit turbulence, we can
assume that the drag force is

Fdrag,i = fivi (4)

where fi ∝ ci is the frictional coefficient, and vi is the mean drift speed.
Moreover, if the solvent is not turbulent, we can assume that the flux,

defined as the number of moles of solute which pass through a small surface
per unit time per unit area, is

Ji = civi (5)

i. e. the number of molecules per unit volume multiplied by the linear
distance travelled per unit time.

Since the virtual force on the solute is balanced by the drag force (i. e.
Fdrag,i = −Fi), we obtain the following expression for the mean drift velocity

vi =
Fi
fi

so that Eq. (5) becomes

Ji = −kBT
γifi

∑
j

∂ai
∂cj

∂cj
∂x
≡ −

∑
j

Dij
∂cj
∂x

(6)

where

Dij =
kBTc

0

γifi

∂ai
∂cj

(7)

are the diffusion coefficients. The Eq. (7) states that, in general, the flux
of one species depends on the gradients of all the others, and not only on
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its own gradient. However, here we will suppose that the chemical activity
ai depends only weakly on the concentrations of the other solutes, i. e.
we assume that Dij ≈ 0 for i 6= j and the Fick’s laws still holds. Let Di

denote Dii. It is still generally the case that Di depends on ci in sufficiently
concentrated solutions since γi (and thus ai) has a non trivial dependence
on ci [8]. It is only in one very special case, namely that ofan ideal solution
with γi = 1, where we obtain a constant diffusion coefficient, Di = kBT/fi,
as assumed in the classical theory. In order to find an analytic expression of
the diffusion coefficients Di in terms of the concentration ci, let us consider
that the rate of change of concentration of the substance i due to diffusion
is given by

Di = −∂Ji
∂x

(8)

Substituting Eq. (7) into Eq. (6), and then substituting the obtained ex-
pression for Ji into Eq. (8), gives

Di = − ∂

∂x

(
−Di(ci)

∂ci
∂x

)
(9)

so that

Di =
(
∂Di(ci)
∂x

)
∂ci
∂x

+Di(ci)
∂2ci
∂x2

=

=
∂Di(ci)
∂cj

∂cj
∂x

∂ci
∂x

+Di(ci)
∂2ci
∂x2

(10)

Let ci,k denote the concentration of a substance i at coordinate xk, and
l = xk − xk−1 the distance between adjacent mesh points. The derivative of
ci with respect to x calculate in xk− 1

2
is

∂ci
∂x

∣∣∣
x

k− 1
2

≈
ci,k − ci,k−1

l
(11)

By using Eq. (11) into Eq. (6) the diffusive flux of species i midway between
the mesh points Ji,k− 1

2
is obtained:

Ji,k− 1
2

= −Di,k− 1
2

ci,k − ci,k−1

l
(12)

where Di,k− 1
2

is the diffusion coefficient midway between the mesh points.
The rate of diffusion of substance i at the mesh point k is

Dik = −
Ji,k+ 1

2
− Ji,k− 1

2

l

and thence
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Dik =
Di,k− 1

2

l2
(ci,k−1 − ci,k)−

Di,k+ 1
2

l2
(ci,k+1 − ci,k) (13)

To determine completely the right-hand side of Eq. (13) is now necessary to
find an expression for the activity coefficient γi and the frictional coefficient
fi, contained in the formula (7) for the diffusion coefficient. In fact, by
substituting Eq. (2) into Eq. (7) we obtain an expression of the diffusion
coefficient in terms of activity coefficients γi

Dii =
kBT

fi

(
1 +

ci
γi

∂γi
∂ci

)
(14)

Let focus now on the calculation of the activity coefficients, while a way
to estimate the frictional coefficients will be presented in Section 2.1. By
using the subscript ’1’ to denote the solvent and ’2’ to denote the solute, we
have

µ2 = µ0
2 +RT ln

(
γ2c2
c0

)
(15)

where γ2 is the activity coefficient of the solute and c2 is the concentration
of the solute. By differentiating with respect to c2 we obtain

∂µ2

∂c2
= RT

( 1
c2

+
1
γ2

∂γ2

∂c2

)
(16)

The chemical potential of the solvent is related to the osmotic pressure
(Π) by

µ1 = µ0
1 −ΠV1 (17)

where V1 is the partial molar volume of the solvent and µ0
1 its standard

chemical potential. Assuming V1 to be constant and differentiating µ1 with
respect to c2 we obtain

∂µ1

∂c2
= −V1

∂Π
∂c2

(18)

Now, from the Gibbs-Duhem relation [9], the derivative of the chemical
potential of the solute with respect to the solute concentration is

∂µ2

∂c2
= −M(1− c2v)

V1c2

∂µ1

∂c2
=
M(1− c2v)

c2

∂Π
∂c2

(19)

where M is molecular weight of the solute and v is the partial molar volume
of the solute divided by its molecular weight. The concentration dependence
of osmotic pressure is usually written as

Π
c2

=
RT

M

[
1 +BMc2 +O(c22)

]
(20)
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where B is the second virial coefficient (see Section 2.2), and thence the
derivative of Π with respect to the solute concentration is

∂Π
∂c2

=
RT

M
+ 2RTBc2 +O(c22) (21)

Introducing Eq. (21) into Eq. (19) gives

∂µ2

∂c2
= RT (1− c2v)

( 1
c2

+ 2BM
)

(22)

From Eq. (16) and Eq. (22) we have

1
γ2

∂γ2

∂c2
=

1
c2

[
(1− c2v)(1 + 2BMc2)− 1

]
so that ∫ γ′2

1

dγ2

γ2
=
∫ c′2

c0

1
c2

[
(1− c2v)(1 + 2BMc2)− 1

]
dc2

On the grounds that c2v � 1 (see [10]), by solving the integrals we obtain

γ′2 = exp[2BM(c′2 − c0)] (23)

The molecular weight Mi,k of the species i in the mesh k can be expressed
as the ratio between the mass mi,k of the species i in that mesh and the
Avogadro’s number Mi,k = mi,k/NA. If pi is the mass of a molecule of
species i and ci,kl is the number of molecules of species i in the mesh k, then
the molecular weight of the solute of species i in the mesh k is given by

Mi,k =
pi l

NA
ci,k (24)

Substituting this expression in Eq. (23), we obtain for the activity coefficient
of the solute of species i in the mesh k (γi,k), the following equation

γi,k = exp
(

2B
pi l

NA
c2i,k

)
(25)

2.1 Intrinsic viscosity and frictional coefficient

The diffusion coefficient depends on the ease with which the solute molecules
can move. It is a measure of how readily a solute molecule can push aside
its neighboring molecules of solvent. An important aspect of the theory of
diffusion is how the magnitude of the frictional coefficient fi of a solute of
species i and, hence, of the diffusion coefficient Di, depend on the prop-
erties of the solute and solvent molecules. Examination of well-established
experimental data shows that diffusion coefficients tend to decrease as the
molecular size of the solute increases. The reason is that a larger solute
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molecule has to push aside more solvent molecules during its progress and
will therefore move slowly than a smaller molecule. A precise theory of the
frictional coefficients for the diffusion phenomena in biological context can-
not be simply derived from the elementary assumptions and model of the
kinetic theory of gases and liquids. The Stokes’s theory considers a simple
situation in which the solute molecules are so much larger than the solvent
molecules that the latter can be regarded as a continuum (i. e. not having
molecular character). For such a system Stokes deduced that the frictional
coefficient of the solute molecules is fi = 6πr(H)

i η, where r
(H)
i is the hy-

drodynamical radius of the molecule and η is the viscosity of the solvent.
For proteins diffusing in the cytosol, the estimate of frictional coefficient
through the Stokes’s law is hard, for several reasons. First of all, the as-
sumption of very large spherical molecules in a continuous solvent is not a
realistic approximation for proteins moving through the cytosol: proteins
may be not spherical and the solvent is not a continuum. Furthermore, in
the protein-protein interaction, in the cytosol, water molecules should be
included explicitly, thus complicating the estimation of the hydrodynamical
radius. Finally, the viscosity of the solvent η within the cellular environment
cannot be approximated either as the viscosity of liquid or the viscosity of
gas. In both cases, the theory predicts a strong dependence on the temper-
ature of the system, that has not been found in the cell system, where the
most significant factor in determining the behavior of frictional coefficient is
the concentration of solute molecules. To model the effects of non-ideality
on the friction coefficient we assume that it linearly depends on the concen-
tration of the solute as in sedimentation processes [11]. The equation (26)
give the frictional coefficient fi,k of species i at mesh k. In this equation kf
is an empirical constant, whose value can be derived from the knowledge of
the ratio R = kf/[η].

fi,k = kfci,k (26)

Accordingly to the Mark-Houwink equation [9], [η] = kMα is the in-
trinsic viscosity coefficient, α is related to the shape of the molecules of the
solvent, and M is the molecular weight of the solute. If the molecules are
spherical, the intrinsic viscosity is independent of the size of the molecules,
so that α = 0. All globular proteins, regardless of their size, have essentially
the same [η]. If a protein is elongated, its molecules are more effective in in-
creasing the viscosity and [η] is larger. Values of 1.3 or higher are frequently
obtained for molecules that exist in solution as extended chains. Long-chain
molecules that are coiled in solution give intermediate values of α, frequently
in the range from 0.6 to 0.75 [12]. For globular macromolecule, R has a value
in the range of 1.4 - 1.7, with lower values for more asymmetric particles
[13].
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2.2 Calculated second virial coefficient

The mechanical statistical definition of the second virial coefficient is given
by the following expression

B = −2πNA

∫ ∞
0

r2 exp
[
− u(r)
kBT

]
dr (27)

where u(r), which is given in Eq. (28), is the interaction free energy be-
tween two molecules, r is the intermolecular center-center distance, kB is
the Boltzman constant, and T the temperature. In this work, we assume
that u(r) is the Lennard-Jones pair (12,6)-potential (Eq. 28), that cap-
tures the attractive nature of the Van der Waals interactions and the very
short-range Born repulsion due to the overlap of the electron clouds.

u(r) = 4
[(1
r

)12
−
(1
r

)6]
(28)

By expanding the term exp
(

4
kBT

1
r6

)
into an infinite series, the Eq. (27)

becomes

B = −2πNA

∞∑
j=0

1
j!

(T ∗)j
∫ ∞

0
r2−6j exp

[
− T ∗ 1

r2

]
dr

where T ∗ ≡ 4/(kBT ) and thus

B = −πNA

6

∞∑
j=0

1
!j

4j(kBT )−
1
4
+ 1

2
j Γ
(
− 1

4
+

1
2
j
)

(29)

In our model the estimate of B is given by truncating the infite series of Γ
functions to j = 4, since taking into account the additional terms, obtained
for j > 4, does not significatively influence the simulation results.

3 Division of the system’s volume into subvolumes

We divided the reaction chamber volume V into subvolumes of volume ∆
and side length l, on the basis of the kinetic and dynamical properties of the
diffusion particles. The subvolumes has been chosen sufficiently small, so
that the probability distributions of the reactants can be treated as uniform
inside each subvolume. This means that the rate by which two molecules in
a subvolume reacts does not depend on their initial locations.

Let consider diffusion as a time dependent process, in which some dis-
tribution of concentration is established at some moment, and then allowed
to disperse without replenishment. The Fick’s law and its analogues for the
transport of other physical properties relate to the flux under the influence
of a constant gradient. They therefore describe time-independent processes.
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They refer, for example, to the flow of particles along a constant concen-
tration gradient which is sustained by injecting particles in one region, and
drawing them off in another. From the second Fick’s law, the mean distance
through which particle of solute has spread after time t is

lf = 2

√
D t

π
(30)

where D is the diffusion coefficient of the particle.
Let te be the the mean free time with respect to non-reactive (elastic)

collisions and tr the mean free time with respect to reactive collisions. The
net distance covered by the particle during its lifetime is

L = 2

√
D tr
π

= 2

√
πl2f tr

4teπ
= lf

√
tr
te

(31)

In order to have a homogeneous mixing inside boxes, the length l of the box
side has to fulfill the following inequality.

l� L (32)

It is worthy of note the fact that if this inequalities is fulfilled, the particles
in each box obeys the Einstein formula for the probability of fluctuations
around the steady state. Note also that the rate by which two molecules in
a subvolume react does not depend on their initial location if the inequality
(32) is fulfilled.

In terms of the diffusion coefficient D, Eq. (31) and (32) can be re-
written as

l� 2
√
Dtr (33)

Now, in order to estimate the upper bound of l we have to determine the
diffusion coefficient D and the reaction time tr. The diffusion coefficient
differs from species to species, and, in general, depends on the local concen-
tration of solute. Since the local concentration of solute changes in time as
consequence of the occurrence of the chemical reaction events and the dif-
fusion events themselves, this would entail a dynamical change of l through
the Eq. (33). This could make more complex the algorithm of simulation,
so that, we propose to fix the value of l at the initialization time at

l ≈
√
〈D〉tr (34)

where

〈D〉 =
1

Rdiff +Rreact

M(diff)∑
i=1

D0
i (35)
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and D0
i is the diffusion coefficient of the species i-th at time t = 0, and

Mdiff is the number of species that diffuse. In the next section we will see
how to calculate the diffusion coefficient as function of local concentration
and the waiting time of reaction tr.

3.1 The waiting time of reaction

Let Ri be the i-th reaction channel expressed as

Ri : li1Sp(i,1) + li2Sp(i,2) + · · ·+ liLiSp(i,Li)
ri−→ . . .

where lij is the stoichiometric coefficient of reactant Sp(i,j), p(i, j) is the in-
dex that selects the species S that participate to Ri, Li is the number of
reactants in Ri, and ri is the rate constant. If the fundamental hypothesis of
stochastic chemical kinetics [7] holds within a box, both diffusion and reac-
tion events waiting times are distributed according to a negative exponential
distribution, so that a typical time step has size

tr ≈
1
R

( R∑
ν=1

aν

)−1

=
1
R

(Rdiff∑
i=1

a
(diff)
i +

Rreact∑
i=1

a
(react)
i

)
(36)

where R is the number of events. It is given by R = Rdiff + Rreact, where
Rdiff is the number of diffusions and Rreact is the number of reaction events
[14]. The diffusion and reaction propensities are given by the following
expressions, respectively

a
(diff)
i = r

(diff)
i

∏M
(diff)
i

j=1 (#Sp(i,j))lij∏L
(diff)
i

j=1 lij !
(37)

a
(react)
i = r

(react)
i

∏M
(react)
i

j=1 (#Sp(i,j))lij∏L
(react)
i

j=1 lij !
(38)

where M (diff)
i and M

(react)
i are the number of chemical species that diffuse

and the number of those the undergo to reactions, respectively. In general
M 6= M

(diff)
i + M

(react)
i , since some species are involved both in diffusions

and reactions. In Eq. (37), r(diff)
i is the kinetic rate associated to the

jumps between neighboring subvolumes, whereas in Eq. (38), r(react)i is the
stochastic rate constants of the i-th reaction.

From Eq. (13), we recognize that

r
(diff)
i =

Dii

l2
(39)

It is the rate coefficient of the first order reaction representing a diffusion.
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4 The algorithm and data structure

We developed a stochastic simulation algorithm that incorporates into a
Gillespie-like approach the spatial effects of diffusive phenomena accordingly
to the diffusion model presented in the previous sections.

For the reader’s convenience, we briefly report a brief description of the
Gillespie Direct and First Reaction methods. Let suppose that in the system
there are R reactions and M chemical species. at any instant of time the
system is decribed by the state vector ~X(t) = {X1(t), . . . , XM (t)} Gillespies
algorithm asks two questions:

1. Which reaction occurs next?

2. When does it occur?

Both of these questions must be answered probabilistically by specifying the
probability density P (µ, τ) that the next reaction is µ and it occurs at time
τ . It can be shown [7] that

P (µ, τ) = aµ exp
(
− τ

R∑
j=1

aj

)
dτ (40)

This equation leads directly to the answers of the two afore mentioned ques-
tions. First, what is the probability distribution for reactions? Integrating
P (µ, τ)) over all τ from 0 to ∞ results in

Pr(Reaction = µ) =
aµ∑R

j=1 ajaj
(41)

where aj the propensity of reaction j as in Eqs. (37) and (38).
Second, what is the probability distribution for times? Summing P (µ, τ)

over all τ results in

P (τ)dτ =
( R∑
j=1

ajaj

)
exp

(
− τ

R∑
j=1

aj

)
dτ (42)

These two distributions lead to Gillespies direct algorithm:

1. Set initial numbers of molecules in ~X(t), set t ← 0, and the absolute
simulation time T .

2. Calculate the propensity function, aµ, for all j, j = 1, . . . , R.

3. Choose j according to the distribution in Eq. (41).

4. Choose τ according to an exponential with parameter
∑R

j=1 aj (as in
Eq. (42)).
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5. Change the number of molecules to reflect execution of reaction µ. Set
t← t+ τ .

6. Go to Step 2 and repeat the procedure until t ≤ T .

The algorithm is direct in the sense that it generates µ and τ directly. Gille-
spie also developed the First Reaction Method which generates a putative
time τj for each reaction to occur - a time the reaction would occur if no
other reaction occurred first - then lets µ be the reaction whose putative
time is first, and lets τ be the putative time τj . Formally, the algorithm for
the First Reaction Method is as follows:

1. Set initial numbers of molecules in ~X(t), set t ← 0, and the absolute
simulation time T .

2. Calculate the propensity function, aµ, for all j, j = 1, . . . , R..

3. For each µ, generate a putative time, τj , according to an exponential
distribution with parameter aj .

4. Let µ be the reaction whose putative time, τj , is least. 5. Let τ be τj .

5. Change the number of molecules to reflect execution of reaction µ. Set
t← t+ τ .

6. Go to Step 2 and repeat the procedure until t ≤ T .

At first glance, these two algorithms may seem very different, but they are
provably equivalent [7] that is, the probability distributions used to choose
µ and τ are the same. We shall not repeat the proof here. With regard to
the complexity of the procedure, this algorithm uses R random numbers per
iteration (where R is the number of reactions), takes time proportional to r
to update the aJs, and takes time proportional to R to identify the smallest
τj .

The design of our algorithm is inspired to the one proposed by Elf et
al. [15] in the so-called Next sub-volume method. This method selects the
next reaction and the time at which it will occur by using the Gillespie
First Reaction method [7]. Each cell and the corresponding reaction time
and reaction type is stored in a global priority queue that is sorted with
increasing writing reaction time. From this queue at each time step, the
fastest reaction (i. e. the reaction with the smallest waiting time) is picked
and executed. Once the reaction has been executed the state of the cell, as
well as the state of the neighboring cells that eventually have been affected
by the occurrence of this reaction are updated. This approach is efficient as
it does not update the state of all the cells, but only the one of the cells in
which the occurrence of a reaction has produced changes in the inner amount
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of molecules. However, the method is centralised and sequential and does not
scale to very large systems. Moreover, it cannot be easily adapted to turn
parallel or distributed computing procedures to profit. Since the number
of reactions involved in the system could be of the order of millions, the
property of scalability is required to make large simulations feasible. Our
algorithm overcomes the scalability’s limitations of the Next sub-volume
method by renouncing to the use of a global priority queue.

For each cell we draw a set of dependency relations with neighbor cells; in
a cell an event (reaction of diffusion) can be executed only if it is quicker than
the diffusion events of the neighbor cells, since the diffusion events in and
out of the cell could change the reactant concentrations, and, consequently
the reaction propensities and the waiting times of the events in the neighbor
cells. The algorithm has still the same average computational complexity
of Elf’s methods. Nevertheless, by removing the global priority queue and
introducing a dependency relations graph, the algorithm gains the scalability
property. Our algorithm is as follows:

1. Set initial numbers of molecules in ~X(t), set t ← 0, and the absolute
simulation time T . Divide the reaction chamber volume V into boxes
of size l as in Eq. (34).

2. In each cell, calculate the time and the type of the next event with
the FRM are and store them in a private priority queue, ordered with
increasing waiting time.

3. Each cell “communicates” with its neighbors, in a hierarchical way on
the basis of the dependency relations, to decide which one holds the
event with the smallest waiting time, say τs. that will be executed
next. Execute the event and update the state of the cell and the one
of the neighbor cells, in the case in which the event is a diffusion, are
updated.

4. Update the time variable: t← t+ τs.

5. Go to Step 2 and repeat the steps until t ≤ T .

5 Case study: chaperone-assisted folding

Although a protein chain can fold in its correct conformation without outside
help, protein folding in a living cell is often assisted by special proteins called
molecular chaperones. These proteins bind to partly folded polypeptide
chains and help them progress along the most energetically favorable folding
pathways. Chaperones are vital in the crowded conditions of the cytoplasm,
since they prevent the temporarly exposed hydrophobic regions in newly
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synthesized protein chains from associating with each other to form proteins
aggregates.

In the healthy cells, if a protein does not assume the correct 3D shape,
or a cellular stress induces a right-folded protein to assume a wrong folding,
the chaperones re-shape it correctly. In the case in which the protein is not
correctly refolded, and the ubitiquitin-proteasome system, designed to its
digestion, does not correctly work, as in many neurodegenerative disorders,
the faulty proteins accumulate and damage the cell.

Protein folding, chaperone binding, and misfolded protein accumula-
tion - all of these processes take place inhomogeneously in the space. The
spatial distribution of chaperones in the cytoplams may not be uniform,
and consequently the distribution of correct and faulty proteins may be
not uniform. In turn, the time evolution of spatial distribution of chap-
erones may affect the time evolution of the spatial distribution of faulty
proteins. We considered a reaction-diffusion systems consisting of the four
reactions showed in Table 1, where chaperone represents the molecular chap-
erone, nascent protein presents the protein chain release from the ribosome,
right protein denotes the correctly folded protein, misfolded 1 is a faulty
protein generated by the first interaction with the chaperone (Reaction 2),
and misfolded 2 is the misfolded protein generated by the interaction be-
tween misfolded 1 and chaperone (Reaction 4).

Accordingly to the measurements reported in [16] we considered the
following diffusion coefficients D0

protein = D0
right protein = D0

misfolded 1 =
D0
misfolded 2 = 10 µm2sec−1, and D0

chaperone = 1 µm2sec−1. As simula-
tion space, we consider a square grid 9 × 9µm2, thus consisiting of 81 cells
(each cell has size l = 1 nm). We simulated a 2D diffusion model and we
assumed a spatially homogeneous distribution of nascent protein and an
initial null concentration of right protein in every cell. The density (ex-
pressed in number of molecules per µm3) and the spatial distribution of
chaperone, misfolded 1, and misfolded 2 in the first instans of simulation
are shown in the first plots (at time t ≈ 10−5 sec), in Fig. 1 (A), Fig. 1 (B),
Fig. 1 (C), and Fig. 1 (D) respectively.

At time t = 1.1054 × 10−5 sec - immediately after the begging of the
simulation, the correctly folded proteins are located in the regions where the
concentrations of chaperones is high (see Fig. 1 (A) and (B)). The misfolded
proteins produced by Reaction 2 and Reaction 4 in the first instants of the
simulation are close to the chaperones (Fig. 1 (C) and (B), Fig. 2 (C) and
(D), and Fig. 3 (C) and (D)). at time t = 0.000483 sec, the chaperones and
the correctly folded proteins start to leave their initial positions to migrate
toward the central area of the system (Fig. 4 (A)). The concentration of
misfolded proteins (of type 1 and 2) increses and their distributions spread
in the space (Fig. 4 (C) and (D)). From t = 0.003211 sec to t = 0.005080
sec, the concentration of the chaperones is non-null ever all the simulation
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Reaction 1 :

nascent protein+ chaperone
100µM−1sec−1

−−−−−−−−−→ chaperone+ right protein

Reaction 2 :

nascent protein+ chaperone
100µM−1sec−1

−−−−−−−−−→ chaperone+misfolded 1

Reaction 3 :

misfolded 1 + chaperone
100µM−1sec−1

−−−−−−−−−→ chaperone+ rprotein

Reaction 4 :

misfolded 1 + chaperone
100µM−1sec−1

−−−−−−−−−→ chaperone+misfolded 2

Table 1: Chaperone-assisted protein folding. Reaction 1 describes the fold-
ing of the nascent protein into a correctly working protein (right protein).
Reaction 2 describes the uncorrect folding of the nascent protein into a mis-
folded protein (misfolded 1). Reaction 3 describes the interaction between
the chaperone and the misfolded protein, that, consequently, is transformed
into a correctly folded protein. Finally, reaction 4 describes the interaction
between the chaperone and the misfolded proteins, that is not converted
into a correctly working protein.

space with a peak in the right upper corner (Fig. 7 (A) and Fig. 8 (A)).
The distribution of right folded proteins is similar (Fig. 7 (B) and 8 9B).
The concentration of misofled proteins produced by Reaction 2 is almost
null in all the space except along the borders (Fig. 7 (C) and Fig. 8 (C)).
Nevertheless, the concentration of misfolded proteins produced by Reaction
4 is significantly different from zero and fairly homogeneous (Fig 7 (D) and
Fig. 8 (D)). At t = 0.007749 sec, the chaperones shift to the upper norder of
the simulation space (Fig. 9 (A)); the correctly folded proteins concentration
has a maximum in the right upper corner (Fig. 9 (B)); the concentration
of misfolded proteins by Reaction 2 is almost everywhere except that on
the borders, whereas the distribution of misfolded produced in Reaction 4
is almost everywhere null , but it has a peak in the right upper corner (Fig.
9 (D)). Finally, at time t = 0.014273 secis non-null over all the space. It
increases linearly from the upper border (Fig. 10 (A)). The concentration
of correctly folded proteins increases from the lower left corner to the right
upper corner (Fig. 10 (B)). Unlike the distribution of misfolded proteins
deriving from Reaction 2, the distribution of misfolded proteins deriving
from reaction 4 is different from zero everywhere (Fig, 10 (C) and increases
from the left lower corner to the right upper corner (Fig, 10 (D)).
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(A) (B)
(C) (D)

Figure 1: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 1.1054× 10−05 sec.

(A) (B)
(C) (D)

Figure 2: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 6.333× 10−05 sec.

(A) (B)
(C) (D)

Figure 3: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.000197 sec.

(A) (B)
(C) (D)

Figure 4: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.000483 sec.

(A) (B)
(C) (D)

Figure 5: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.001046 sec.
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(A) (B)
(C) (D)

Figure 6: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.001956 sec.

(A) (B)
(C) (D)

Figure 7: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.003212 sec.

(A) (B)
(C) (D)

Figure 8: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.005080 sec.

(A) (B)
(C) (D)

Figure 9: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.007747 sec.
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(A) (B)
(C) (D)

Figure 10: Distribution of the concentration of chaperones (A), correctly
folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and
misfolded proteins deriving from Reaction 4 (D). The figures are snapshots
of the system at time t = 0.014273 sec.

5.1 Spatial correlation between chaperones and proteins

The spatial correlation between the proteins and chaperones has been mon-
itored in terms of the quantity Cp,c, which is defined by

Cp,c =
〈(Φp − 〈Φp〉)(Φc − 〈Φc〉)

〈Φp〉〈Φc〉
(43)

where Φp = Φp(x, y, z) and Φc = Φc(x, y, z) are function of spatial coordi-
nates and denote the concentrations of nascent proteins and chaperones,
respectively. The symbol 〈·〉 denotes the mean value of “·”. The sub-
script p ranges over the following species right protein, misfolded 1, and
misfolded 2, whereas the subscript c denotes chaperone. The positive value
of Cp,c means that the species p and c on average tend to be close each other
in space.

The average correlation between chaperones and correctly folded pro-
teins, chaperones abd misfolded proteins derived from Reaction 2 and chap-
erones and misfolded proteins derived from reaction 4 decrease with increas-
ing time (Fig. 11 (A), (B), and (C), respectively). The distribution of the
intensity of these correlations in the simulation space is shown in Figs. 13 -
Figs. 22. These results show that, at the beginning of the simulation, both
the correctly folded and the misfolded proteins are likely to appear near the
chaperones, that is they are released by the chaperones, and then they dif-
fuse away from them, as it was obtained also in [16]. The figures 12 (A), (B),
and (C) show that the total concentrations of correctly proteins, misfolded
proteins (1) and (2), respectively, have a time behavior symmetric to the
time behavior of their average correlations with the concentration of chap-
erones. In fact, the maximum of the correlation between chaperones and
both correctly and misfolded proteins correspond to the onset of increase in
protein concentration. The figures 11 (B) and 12 (B) show that the concen-
tration of misfolded proteins produced in reaction 2 reaches the maximum
when their correlation with the chaperones has a minimum. This behavior
is due to the fact that the misfolded proteins of type 1 are released from the
chaperones and then they quickly diffuse away from them. The chaperones
also diffuse away from their initial positions but less quickly, so that they
reach later the misfolded proteins of type 1. Once the chaperoens reached
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the misfolded proteins, the occurrence of Reaction 4 causes the decreasing
of the concentration of misfolded protein of type 1.

(A)

(B)

(C)

Figure 11: Time behavior of the average correlation between chaperones and
correctly folded proteins (A), chaperones and misfolded proteins produce in
Reaction 2 (B), and chaperones and misfolded proteins produced in Reaction
4 (C).

(A)

(B)

(C)

Figure 12: Time behavior of the total concentration of correctly folded pro-
teins (A), misfolded proteins produce in Reaction 2 (B), and misfolded pro-
teins produced in Reaction 4 (C).
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(A)

(B)

(C)

Figure 13: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 1.1054× 10−05 sec.

(A)

(B)

(C)

Figure 14: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 6.333× 10−05 sec.

(A)

(B)

(C)

Figure 15: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.000197 sec.

22



(A)

(B)

(C)

Figure 16: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.000483× 10−05 sec.

(A)

(B)

(C)

Figure 17: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.001046 sec.

(A)

(B)

(C)

Figure 18: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.001956 sec.
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(A)

(B)

(C)

Figure 19: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.003212 sec.

(A)

(B)

(C)

Figure 20: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.005080 sec.
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(B)

(C)

Figure 21: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.007747 sec.
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(A)

(B)

(C)

Figure 22: Matrices of correlation (Eq, (43)) between chaperones and cor-
rectly folded proteins concentrations (A), chaperones and misfolded proteins
conccentrations deriving from the Reaction 2 (B), and chaperones and mis-
folded proteins concentration deriving from Reaction 4 (C). The figures are
snapshots of the system at time t = 0.014273 sec.

5.2 Validity of the model

In the present paper, we have introduced a model of the spatial effects due
to the irregular distribution of chaperones on the kinetics of the chaperone-
assisted protein folding. The internal structure and mechanism of the chap-
erone, as well as the size and the internal dynamics of the protein folding are
not treated. No external source of energy is exerted upon the system in the
present simulations: the diffusive transport is caused by spatial differences
of concentrations of solute.

Moreover, chaperones assist not only the efficient folding of newly trans-
lated proteins as these proteins are being synthesized on the ribosome, but
they can also maintain pre-existing proteins in a stable conformation. Chap-
erones can also promote the disaggregation of preformed protein aggregates.
The general mechanism by which chaperones carry out their function usu-
ally involves multiple rounds of regulated binding and release of an unstable
conformer of target polypeptides. These reaction are not included in this
simple model.

Apart from the above limitations, the model captures the essential fea-
tures of the kinetics the chaperone-assisted protein folding, as described in
many well established experimental and theoretical studies [16, 17, 18, 19,
20, 21, 22]. Both the correct and misfolded proteins appear near to the chap-
erones, as the proteins are released from the chaperones. The correlation
between chaperones and correctly folded proteins, as well as the correlation
between chaperones and misfolded proteins deriving from Reaction 4, vanish
at t ≈ 0.01. This suggest that, after that time, the proteins released from
the chaperones quickly diffuse away from them and aggregates at the site
where the cheperones are less abundant. The diffusion of the chaperones
toward those sites causes the decrement and the subsequent stabilization of
the amount of misfolded proteins.
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6 Conclusions

We have presented a model for the diffusion of non-charged molecules, in
which the diffusion coefficients are not constant with respect to the time
and space. Constant diffusion coefficients are rather more the exception
than the rule in living cells and, more generally in biological tissues. We
implemented the procedure in the framework of stochastic simulation of
reaction-diffusion systems and we presented the results of our method on
the case study of chaperone-assisted protein folding. With respect to pre-
vious works as [8, 14, 23], our model provides a theoretical derivation of
the molecular origins of the parameters, determining the time-behavior of
the diffusive phenomena. Moreover, it provides results in agreement with
experimental qualitative and quantitative data. Future work will consist
in a further refinement of the procedure to make it closer to the chem-
istry and physics of biological transport phenomena. Some future directions
will consist of a more accurate calculation of the second virial coefficient
for biomolecules, especially for proteins. The use of the Lennard-Jones po-
tential is a good approximation of the molecular interaction, but it is a
drawback in describing protein-protein interaction is that water molecules
must be included explicitly [24], complicating the computational task. The
condition of solvated molecules is reflected also to the expression of the
concentration-dependence of frictional coefficient, that will need to be ac-
cordingly modified. Finally, we this algorithm can be incorporated with the
time extension of Gillespie algorithm, that the authors developed, in the
context of process algebra languages, to treat rate coefficients depending on
time [25, 26]. The algorithm which simulates this diffusion model provides
more accurate and realistic results with respect to the algorithm simulat-
ing classical Fickian diffusion and can be used to calculate and predict the
time-behavior of proteins and biomolecules diffusing in a highly structured
and inhomogeneous medium.
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