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A probabilistic representation for the solution of the partial differential equation (𝜕/𝜕𝑡)𝑢(𝑡, 𝑥) = −𝛼Δ2𝑢(𝑡, 𝑥), 𝛼 ∈ C, is constructed
in terms of the expectation with respect to the measure associated to a complex-valued stochastic process.

1. Introduction

The connection between the solution of parabolic equations
associated to second-order elliptic operators and the theory
of stochastic processes is a largely studied topic [1]. The
main instance is the Feynman-Kac formula, providing a
representation of the solution of the heat equation with
potential 𝑉 ∈ 𝐶

∞
(R𝑑) (the continuous functions vanishing

at infinity):
𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) =

1

2
Δ𝑢 (𝑡, 𝑥) − 𝑉 (𝑥) 𝑢 (𝑡, 𝑥) , 𝑡 ∈ R

+
, 𝑥 ∈ R

𝑑
,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥)

(1)

in terms of an integral with respect to the measure of the
Wiener process, the mathematical model of the Brownian
motion [2]:

𝑢 (𝑡, 𝑥) = ∫
𝐶
𝑡

𝑒
−∫
𝑡

0
𝑉(𝜔(𝑠)+𝑥)𝑑𝑠

𝑢
0
(𝜔 (𝑡) + 𝑥) 𝑑𝑊 (𝜔) . (2)

If the Laplacian in (1) is replaced with a higher order
differential operator, that is, if we consider a Cauchy problem
of the form

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) = (−1)

𝑁+1
Δ

𝑁
𝑢 (𝑡, 𝑥) − 𝑉 (𝑥) 𝑢 (𝑡, 𝑥) ,

𝑡 ∈ R
+
, 𝑥 ∈ R

𝑑
,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) ,

(3)

with 𝑁 ∈ N, 𝑁 ≥ 2, then a formula analogous to (2), giving
the solution of (3) in terms of the expectation with respect
to the measure associated to a Markov process, is lacking.
In fact, such a formula cannot be proved for semigroups
whose generator does not satisfy the maximum principle, as
in the case of Δ𝑁 with 𝑁 > 1. In fact in the case where
𝑁 > 1 the Cauchy problem (3) is not well posed on the
space of continuous bounded functions [3]. In other words it
is not possible to find a stochastic process which plays for the
parabolic equation (3) the same role that the Wiener process
plays for the heat equation.

We would like to point out that the problem of the
probabilistic representation of the solution of the Cauchy
problem (3) presents some similarities with the problem of
the mathematical definition of Feynman path integrals (see
[4–7] for a discussion of this topic). Indeed in both cases it is
not possible to implement an integration theory of Lebesgue
type in terms of a bounded variation measure on a space
of continuous paths [8]. An analogous of the Feynman-Kac
formula for the parabolic equation (3), namely, an equation
of the form

𝑢 (𝑡, 𝑥) = ∫
𝜔(0)=𝑥

𝑒
−∫
𝑡

0
𝑉(𝜔(𝑠))𝑑𝑠

𝑢
0
(𝜔 (𝑡)) 𝑑𝑃 (𝜔) (4)

(where 𝑃 should be some “measure” on a space of “paths” 𝜔 :

[0, 𝑡] → R), can be obtained only under some restrictions
on 𝑢

0
and𝑉 and by giving up a traditional integration theory
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in the Lebesgue sense with respect to a bounded variation
measure on a space of (real) continuous paths.

In the mathematical literature two main approaches have
been proposed. The first one [9, 10] realizes formula (4) in
terms of the expectationwith respect to a signedmeasure𝑃

2𝑁

on a space of paths on the interval [0, 𝑡].
It is worthwhile to mention that an analogous of the arc-

sine law [10, 11], of the central limit theorem [12], and of Ito
formula and Ito stochastic calculus [10, 13] have been proved
for the (finite additive) signed measure 𝑃

2𝑁
. Moreover,

a Feynman-Kac formula has been proved [9–11], for the
representation of the solution of the Cauchy problem (3) in
the case where𝑉 is a bounded piecewise continuous function
and for an initial datum 𝑢

0
∈ 𝐶2𝑁, by realizing formula

(4) as limit of finite dimensional cylindrical approximations
[14]. We also mention the work by Levin and Lyons [15] on
rough paths, conjecturing that the signed measure 𝑃

2𝑁
could

exist on the quotient space of equivalence classes of paths
corresponding to different parametrization of the same path.

A different approach is based on the construction of a
stochastic process on a space of complex paths. In this case
the integration is performed with respect to a well-defined
positive probability measure on a complex space. One of
the first results was given by Funaki [16], who constructed
a complex stochastic process {𝑋

𝑡
}
𝑡≥0

by composing two
independent Brownianmotions {𝐵(𝑡)}

𝑡≥0
and {𝑤(𝑡)}

𝑡≥0
in the

following way:

𝑋
𝑡
:= {

𝐵 (𝑤 (𝑡)) if 𝑤 (𝑡) ≥ 0

𝑖𝐵 (−𝑤 (𝑡)) if 𝑤 (𝑡) < 0
(5)

and proving that, for a suitable class of analytic initial datum
𝑢
0
, the solution of the Cauchy problem

𝜕𝑢

𝜕𝑡
=

1

8

𝜕4𝑢

𝜕𝑥4
−∞ < 𝑥 < ∞, 0 < 𝑡 < ∞,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥)

(6)

is given by the expectation

𝑢 (𝑡, 𝑥) = E [𝑢
0
(𝑥 + 𝑋

𝑡
)] . (7)

In fact this result can be generalized to partial differential
equations of order 2

𝑛, by multiple iterations of suitable
processes [16–18]. These results are also related to Bochner
subordination [19].

There are also similarities between the Funaki’s process
{𝑋

𝑡
} and the “iterated Brownian motion” [20], but the

latter is not connected to the probabilistic representation of
the solution of a partial differential equation with regular
coefficients. In fact the processes constructed by iterating
copies of independent BMs (or other process) are associated
to higher order PDE of particular form, where the initial
datumplays a particular role and enters also in the differential
equation [21].

Complex-valued processes, connected to PDEof the form
(3), have been also proposed by other authors by means
of different techniques. In [22–24] Madrecki et al. consider
the fourth degree heat-type equation (6) and construct a

probabilistic representation for its solution in terms of a
stable probabilistic Borel measure 𝑚 on the space Ω =

𝐶([0, 𝑡],C∞) of continuous mappings on [0, 𝑡] with values
in the set C∞ of complex-valued sequences, endowed with
the product topology. In this setting a Feynman-Kac type
formula is proved, for the fourth order heat equation with
linear potential.

Another probabilistic approach is presented by Sainty in
[25], where a representation for the solution of (𝜕/𝜕𝑡)𝑢(𝑡, 𝑥) =
(𝜕

𝑛/𝜕𝑥𝑛)𝑢(𝑡, 𝑥) is given in terms of the expectation with
respect to a particular complex-valued process 𝑋

[𝑛]
(𝑡), 𝑡 ≥

0, called “Brownian motion of order 𝑛”. It is worthwhile
also to mention a completely different approach proposed
by Léandre [26, 27], which has some analogies with the
mathematical realization of Feynman path integrals bymeans
of white noise calculus [28]. Indeed Léandre has recently
constructed a “probabilistic representation” of the solution
of the Cauchy problem (3) in terms of an infinite dimen-
sional distribution on the Connes space [27, 29, 30]. Another
interesting approach related to the theory of pseudoprocesses
introduced by Daletsky and Fomin [31] has been recently
proposed by Smorodina and Faddeev [32].

We eventually mention an interesting probabilistic
approach to the equation Δ

𝑘𝑢 = 0 described in [33].
The present paper presents the construction of an alterna-

tive complex-valued stochastic process generalizing Funaki’s
result [16] and a corresponding probabilistic representation
for the solution of the Cauchy problem:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = −

𝛼

8

𝜕
4

𝜕𝑥4
𝑢 (𝑥, 𝑡) + 𝑉 (𝑡, 𝑥) 𝑢 (𝑡, 𝑥)

−∞ < 𝑥 < ∞, 0 ≤ 𝑡 < ∞,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(8)

with 𝛼 ∈ C and for 𝑉, 𝑢
0
satisfying suitable analyticity

assumptions.
The paper is organized as follows. Section 2 presents

the construction of a complex random variable 𝑧
𝛼

𝑡
and the

representation of the solution of (8) with 𝑉 ≡ 0 in terms
of the expectation with respect to the probability measure
associatedwith 𝑧𝛼

𝑡
. Section 3 presents the proof of a Feynman-

Kac type formula for the solution of (8) in the cases where 𝑉
is linear in the space variables and presents an explicit time
dependence.

2. A Complex-Valued Random
Variable Associated to the 4-Order
Heat-Type Equation

In the present section we construct a probabilistic represen-
tation for the solution of (8) in the case where𝑉 = 0, namely,

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = −

𝛼

8

𝜕4𝑢

𝜕𝑥4
(𝑥, 𝑡) −∞ < 𝑥 < ∞, 0 ≤ 𝑡 < ∞.

(9)

An equation of this form in the case where 𝛼 ∈ R, as
mentioned in the introduction, has been studied by several
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authors by means of different techniques [9, 10, 16, 25]. In
this section we show that the results in [9, 10, 16] can be
seen as particular cases of a general theory presented in
[34–37], connecting the solution of parabolic problems with
the solution of related hyperbolic problems.

Given a Banach space𝑋 and a strongly continuous group
of operators {𝑇

𝐴
(𝑡)}

𝑡∈R on𝑋with generator𝐴, it is possible to
construct the holomorphic semigroup 𝑒𝑡(𝐴

2
/2) with generator

𝐴2/2 in terms of a Gaussian expectation of the group 𝑇(𝑡):

𝑒
𝑡(𝐴
2
/2)
𝑓 = E

𝑁(0,𝑡)
[𝑇 (𝑠) 𝑓]

= (2𝜋𝑡)
−1/2

∫
∞

−∞

𝑒
−𝑠
2
/2𝑡
𝑇 (𝑠) 𝑓𝑑𝑠, 𝑓 ∈ 𝑋.

(10)

More generally, given a polynomial 𝑃(𝐴) in 𝐴 with complex
coefficients, whose leading term has the form 𝑐

2𝑚
𝐴2𝑚, with

(−1)
𝑚+1 Re(𝑐

2𝑚
) > 0, then 𝑃(𝐴) generates a holomorphic

semigroup on 𝑋. Its action on a vector 𝑓 ∈ 𝑋 belonging to
the domain of 𝐴2𝑚 is given by

𝑒
𝑡𝑃(𝐴)

𝑓 = ∫
∞

−∞

𝑔
𝑡
(𝑠) 𝑇

𝐴
(𝑠) 𝑓𝑑𝑠, 𝑓 ∈ 𝑋, (11)

with 𝑔
𝑡
(𝑠) = (1/2𝜋) ∫

∞

−∞
𝑒−𝑖𝑠𝜉𝑒𝑡𝑃(𝑖𝜉)𝑑𝜉 (see [36]). Equation

(11) can be regarded as a particular example of the “method
of transmutation” described in [38], which allows to relate
different classes of problems by means of a suitable transfor-
mation technique.

Let us consider (11) in the case where 𝑋 is the Hilbert
space 𝐿

2(R), 𝐴 = 𝑖 (Δ/2), and 𝑃(𝑥) = 𝑥2/2. One gets the
following representation:

𝑒
−(𝑡/8)Δ

2

= ∫
∞

−∞

𝑒
𝑖𝑠(Δ/2) 𝑒

−𝑠
2
/2𝑡

√2𝜋𝑡
𝑑𝑠, (12)

giving the semigroup 𝑒−(𝑡/8)Δ
2

in terms of a Gaussian expecta-
tion, with respect to the time variable 𝑠 ∈ R, of the Schröding-
er group 𝑒𝑖𝑠(Δ/2). By applying (12) to an initial datum𝑢

0
∈ 𝑆(R)

one can write the following chain of equalities:

𝑒
−(𝑡/8)Δ

2

𝑢
0
(𝑥)

= ∫
∞

−∞

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
𝑒
𝑖𝑠(Δ/2)

𝑢
0
(𝑥) 𝑑𝑠

= ∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
(𝑒

𝑖𝑠(Δ/2)
𝑢
0
(𝑥) + 𝑒

−𝑖𝑠(Δ/2)
𝑢
0
(𝑥)) 𝑑𝑠

= ∫
∞

0

𝑒
−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

(
𝑒
𝑖(𝑦
2
/2𝑠)

√2𝜋𝑖𝑠
𝑢
0
(𝑥 + 𝑦)

+
𝑒
−𝑖(𝑦
2
/2𝑠)

√−2𝜋𝑖𝑠
𝑢
0
(𝑥 + 𝑦))𝑑𝑦𝑑𝑠.

(13)

Under the assumptions that 𝑢
0
can be extended to an entire

function on the complex plane C, denoted again with 𝑢
0
,

such that for any ℎ ∈ R+ one has that 𝑒−ℎ|𝑧|
2

|𝑢
0
(𝑧)| is a

bounded function on C, a rotation of the integration path in
the complex 𝑦-plane gives

𝑒
−(𝑡/8)Δ

2

𝑢
0
(𝑥)

= ∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝑢

0
(𝑥 + 𝑒

𝑖𝜋/4
𝑦)

+ 𝑢
0
(𝑥 + 𝑒

−𝑖𝜋/4
𝑦)) 𝑑𝑦𝑑𝑠.

(14)

Analogously, if 𝛼 is a real positive constant, a change of
variable in the latter integral gives

𝑒
−(𝛼𝑡/8)Δ

2

𝑢
0
(𝑥)

= ∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝑢

0
(𝑥+𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+ 𝑢
0
(𝑥+𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦)) 𝑑𝑦𝑑𝑠.

(15)

Now the integral on the right hand side of (15) makes sense
for a class of functions 𝑢

0
larger than those considered so

far, as well as for complex values of the parameter 𝛼. Let us
consider the Cauchy problem

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = −

𝛼

8

𝜕4𝑢

𝜕𝑥4
(𝑥, 𝑡) − ∞ < 𝑥 < ∞, 0 ≤ 𝑡 < ∞,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(16)

with 𝛼 ∈ C. The next theorems give a characterization of
some classes of functions 𝑢

0
such that the integral

∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝑢

0
(𝑥 + 𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+ 𝑢
0
(𝑥 + 𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦)) 𝑑𝑦𝑑𝑠

(17)

is absolutely convergent and provides a representation for the
solution of the Cauchy problem (16). The following theorem
is a generalization of Funaki’s result [16] to the case where 𝛼
is an arbitrary complex parameter.

Theorem 1. Let 𝑢
0
be a real valued function satisfying the

following properties:

(1) 𝑢
0
can be extended to an entire function on the complex

plane C, denoted again with 𝑢
0
;

(2) for any ℎ ∈ R+, one has that 𝑒−ℎ|𝑧|
2

|𝑢
0
(𝑧)|,

𝑒−ℎ|𝑧|
2

|𝜕𝑢
0
(𝑧)/𝜕𝑥|, and 𝑒−ℎ|𝑧|

2

|𝜕𝑢
0
(𝑧)/𝜕𝑦|, with 𝑧 = 𝑥+

𝑖𝑦, are bounded functions on C.

Then the solution of (16) is given by (17).
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Proof. By the assumption that 𝑒−ℎ|𝑧|
2

|𝑢
0
(𝑧)| is a bounded

functions on C for any ℎ ∈ R+, one can easily verify that the
integral

𝑢 (𝑡, 𝑥) = ∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝑢

0
(𝑥 + 𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+ 𝑢
0
(𝑥 + 𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦))𝑑𝑦𝑑𝑠

(18)

is absolutely convergent. By estimates

𝑒
−ℎ|𝑧|
2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0
(𝑧)

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝐶,

𝑒
−ℎ|𝑧|
2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0
(𝑧)

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝐶

(19)

and an integration by parts formula, one has that (𝜕4/𝜕𝑥4)𝑢(𝑡,

𝑥) is given by

𝜕4

𝜕𝑥4
𝑢 (𝑡, 𝑥)

= −
8

𝛼
∫

∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
(

𝑠
2

2𝑡4
−

1

2𝑡
)

× ∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝑢

0
(𝑥 + 𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+ 𝑢
0
(𝑥 + 𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦)) 𝑑𝑦𝑑𝑠

(20)

which is equal to −(8/𝛼)(𝜕/𝜕𝑡)𝑢(𝑡, 𝑥).

Remark 2. The functions 𝑢
0
satisfying the assumptions (1)

and (2) of Theorem 1 include, for instance, polynomials of
arbitrary degree, as well as the functions 𝑢

0
that are Fourier

transform of measures, that is, of the form

𝑢
0
(𝑥) = ∫

R

𝑒
𝑖𝑘𝑥
𝑑𝜇 (𝑘) , (21)

where 𝜇 is a complex bounded variation measure such that
∀𝑥, 𝑦 ∈ R:

(i) ∫
R
𝑒𝑘𝑦𝑑|𝜇|(𝑘) < ∞, ∫

R
𝑒𝑘𝑦𝑑|𝜇|(𝑘) < ∞, |𝜇| being the

total variation measure of 𝜇,
(ii) for any ℎ ∈ R+, the functions (𝑥, 𝑦) 󳨃→

𝑒−ℎ(𝑥
2
+𝑦
2
)| ∫

R
𝑒𝑖𝑘𝑥−𝑘𝑦𝑑𝜇(𝑘)| and (𝑥, 𝑦) 󳨃→

𝑒−ℎ(𝑥
2
+𝑦
2
)| ∫

R
𝑒𝑖𝑘𝑥−𝑘𝑦𝑑𝜇(𝑘)| are bounded on R2.

Remark 3. The Funaki formula (7) for the solution of (16) in
the case where 𝛼 = −1 can be written in the following form:

𝑢 (𝑡, 𝑥) =∫
∞

0

𝑒−𝑦
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑧
2
/2𝑦

√2𝜋𝑦
(𝑢

0
(𝑥 + 𝑧)+𝑢

0
(𝑥 + 𝑖𝑧)) 𝑑𝑧𝑑𝑦

(22)

and can be obtained as a special case of (17).

The following theorem describes a particular class of
functions 𝑢

0
such that the integral (17) is absolutely conver-

gent and provides a representation for the solution of the
Cauchy problem (16).

Theorem 4. Let 𝑢
0
be a real valued function of the form

𝑢
0
(𝑥) = ∫

R

𝑒
𝑖𝑘𝑥
𝑑𝜇 (𝑘) , 𝑥 ∈ R, (23)

where 𝜇 is a complex bounded variation measure onR satisfy-
ing the following bound:

∫
R

𝑒
(|𝛼|𝑡/8)𝑦

4

𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑦) < ∞, (24)

|𝜇| being the total variation measure of 𝜇.
Then the solution of the Cauchy problem (16) is given by

(17).

Proof. Under the stated assumption on 𝑢
0
, the integral (17)

assumes the following form:

∫
∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
∫
R

(𝑒
𝑖𝑘(𝑥+𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+𝑒
𝑖𝑘(𝑥+𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦)
) 𝑑𝜇 (𝑘)

(25)

by Fubini theorem, which holds because of condition (24);
the latter is equal to

∫
R

𝑒
𝑖𝑘𝑥
𝑒
𝛼𝑡𝑦
4
/8
𝑑𝜇 (𝑦) (26)

which is the solution of the Cauchy problem (16).

Equation (17) can be written in terms of the expectation
with respect to the measure associated to a complex random
variable 𝑧𝛼

𝑡
:

𝑒
−𝛼(𝑡/8)Δ

2

𝑢
0
(𝑥) = E [𝑢

0
(𝑥 + 𝑧

𝛼

𝑡
)] , (27)

where 𝑧𝛼
𝑡
has the following distribution:

𝑃 (𝑧
𝛼

𝑡
∈ 𝐴) = ∫

∞

0

𝑒−𝑠
2
/2𝑡

√2𝜋𝑡
∫
R

𝑒−𝑦
2
/2𝑠

√2𝜋𝑠
(𝜒

𝐴
(𝛼

1/4
𝑒
𝑖𝜋/4

𝑦)

+𝜒
𝐴
(𝛼

1/4
𝑒
−𝑖𝜋/4

𝑦))𝑑𝑦𝑑𝑠,

(28)

𝐴 being a Borel subset of the complex plane and 𝜒
𝐴
being its

characteristic function. Clearly the measure is concentrated
on two rays of the complex plane 𝛼1/4𝑒𝑖𝜋/4R and 𝛼1/4𝑒−𝑖𝜋/4R.

One can easily verify that random variable 𝑧𝛼
𝑡
has the

following properties:

(i) 𝑧𝛼
𝑡
∼ 𝑡1/4𝑧𝛼

1
,

(ii) E[(𝑧𝛼
𝑡
)
𝑘
] = 0, 𝑘 = 1, 2, 3,

(iii) E[(𝑧𝛼
𝑡
)
4
] = −3𝑡,
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(iv) E[|𝑧𝛼
𝑡
|2] = 2|𝛼𝑡|1/2 ∫

∞

0
(𝑒−𝑠
2
/2/√2𝜋)𝑠𝑑𝑠 < +∞,

(v) E[𝑒𝑖𝜆𝑧
𝛼

𝑡 ] = 𝑒
−(𝑡/8)𝛼𝜆

4

.

Moreover formula (27) can be written in Funaki’s nota-
tion (see (6) and (7)). Indeed let us consider two independent
Brownian motions {𝐵(𝑡)}

𝑡≥0
and {𝑤(𝑡)}

𝑡≥0
and define the

process {𝑋𝛼

𝑡
}
𝑡≥0

as

𝑋
𝛼

𝑡
:=

{

{

{

𝑒𝑖𝜋/4𝛼1/4𝐵 (𝑤 (𝑡)) if 𝑤 (𝑡) ≥ 0

𝑒−𝑖𝜋/4𝛼1/4𝐵 (−𝑤 (𝑡)) if 𝑤 (𝑡) < 0.
(29)

Then (17) can then be written in the following form:

𝑒
−𝛼(𝑡/8)Δ

2

𝑢
0
(𝑥) = E [𝑢

0
(𝑥 + 𝑋

𝛼

𝑡
)] . (30)

Remark 5. Analogous results can be obtained also in the case
where Δ2 is replaced with higher powers of the Laplacian,
namely, Δ4, Δ8, . . . , Δ2

𝑛

. It is sufficient to iterate 𝑛-times
formula (10). One obtains a formula with multiple Gaussian
integrations, similar to the one proposed, for instance, in [17].
As in the Funaki approach, the probability measure of the
complex random variable can also be obtained by composing
three independent Brownianmotions in a suitableway. In fact
any even power of the Laplacian can be handled by means of
the general formula (11), but a probabilistic interpretation in
terms of the composition of several independent Brownian
motions is not always possible. For instance, in the case where
one considers Δ6, (11) gives the following result:

𝑒
−(𝑡/2
6
)Δ
6

𝑓 (𝑥) = ∫
∞

−∞

𝑔
𝑡
(𝑠) 𝑒

𝑖𝑠(Δ/2)
𝑢
0
(𝑥) 𝑑𝑠, (31)

with

𝑔
𝑡
(𝑠) =

1

2𝜋
∫

∞

−∞

𝑒
−𝑖𝑠𝜉

𝑒
−𝑡𝜉
6

𝑑𝜉. (32)

We will not further develop these formulae here, but we will
only focus on the case of Δ2.

3. Feynman-Kac Type Formulae

The process {𝑋𝛼

𝑡
}
𝑡≥0

defined in (29) and appearing in (30)
provides a probabilistic representation for the solution of (16)
(under suitable analyticity assumptions on the initial datum
𝑢
0
). On the other hand it has not independent increments,

so it does not naturally give rise to generalizations of formula
(30) to the case where (16) contains also a potential𝑉, that is,
to a Feynman-Kac formula of the form

𝑢 (𝑡, 𝑥) = E [𝑢
0
(𝑥 + 𝑋

𝛼

𝑡
) 𝑒

−∫
𝑡

0
𝑉(𝑥+𝑋

𝛼

𝑠
)𝑑𝑠
] . (33)

Indeed, by applying formally theTrotter product formula, one
gets

𝑒
−𝑡((𝛼Δ

2
/8)+𝑉)

𝑢
0
(𝑥)

= lim
𝑛→∞

(𝑒
−(𝑡/𝑛)(𝛼Δ

2
/8)
𝑒
−(𝑡/𝑛)𝑉

)
𝑛

𝑢
0
(𝑥)

= lim
𝑛→∞

E[

[

𝑒
−(𝑡/𝑛)∑

𝑛

𝑘=1
𝑉(𝑥+∑

𝑘

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛))

× 𝑢
0
(𝑥 +

𝑛

∑
𝑗=1

𝑧
𝛼

𝑗
(
𝑡

𝑛
))]

]

,

(34)

where 𝑧
𝛼

𝑗
(𝑡/𝑛), 𝑗 = 1, . . . 𝑛, is a family of 𝑛 independent

identically distributed random variables, distributed as 𝑧𝛼
𝑡/𝑛

(see (28)). In the latter line one would be tempted to interpret
the random variables 𝑧𝛼

𝑗
(𝑡/𝑛) as the independent increments

of a complex-valued stochastic process {𝑍𝛼

𝑡
}
𝑡≥0

, different from
{𝑋𝛼

𝑡
}
𝑡≥0

, that is, to interpret the limit (34) as the cylindrical
approximations of an integral of the following form:

E [𝑢
0
(𝑥 + 𝑍

𝛼

𝑡
) 𝑒

−∫
𝑡

0
𝑉(𝑥+𝑍

𝛼

𝑠
)𝑑𝑠
]

= lim
𝑛→∞

E[

[

𝑒
−(𝑡/𝑛)∑

𝑛

𝑘=1
𝑉(𝑥+∑

𝑘

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛))

× 𝑢
0
(𝑥 +

𝑛

∑
𝑗=1

𝑧
𝛼

𝑗
(
𝑡

𝑛
))]

]

.

(35)

In fact such a process cannot exist, as its construction would
be possible providing the weak convergence of the sequence
of complex random variables ∑

𝑛

𝑗=1
𝑧𝛼
𝑗
(𝑡/𝑛) as 𝑛 → ∞.

By using the scaling properties of the random variable 𝑧
𝛼

𝑡
,

this is equivalent to the weak convergence of the sequence
𝑛−1/4

∑
𝑛

𝑗=1
𝑧𝛼
𝑗
(1). As 𝑧𝛼

𝑗
(1) are independent identically dis-

tributed complex random variables with finite covariance,
then the sequence 𝑛−1/2 ∑

𝑛

𝑗=1
𝑧𝛼
𝑗
(1) has a Gaussian limit.

Consequently, the sequence 𝑛−1/4
∑

𝑛

𝑗=1
𝑧𝛼
𝑗
(1) cannot converge

weakly, as erroneously stated in [25], and formula (35) cannot
be interpreted as an integral with respect to the measure
associated to a process but just as the limit (34). Indeed
the present section is devoted to the proof, for a suitable
class of continuous functions 𝑉 and initial datum 𝑢

0
, of

a Feynman-Kac formula representing the solution of the
Cauchy problem (8) as the limit of a sequence of finite
dimensional approximations.

The implementation of formula (35) presents some tech-
nical problems, which do not appear in the proof of the
classical Feynman-Kac formula (for the heat equation with
potential). The first one is the definition of the integrals
involved. In fact, since the random variables 𝑧

𝛼(𝑡/𝑛) are
complex valued, the real valued function 𝑉 as well as the
initial datum𝑢

0
has to admit an analytic extension to an entire

function on the complex plane. We cannot require that it is
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bounded on C; otherwise we could consider only the trivial
case. Consequently we will integrate unbounded function,
and in principle the convergence of the integrals has to be
checked. In fact, for a large class of potentials, the integrals are
not absolutely convergent and have to be defined in a suitable
way.

The second problem concerns the proof that the integral
(35) represents the solution of the Cauchy problem (8). Even
if the second line of (35) recalls Trotter’s product, this formula
cannot be directly applied since it does not hold for general
𝛼 ∈ C and 𝑉 continuous real valued function.

The problem of the proof of a Feynman-Kac type formula
for equations of the form (8) has been analyzed in [22], where
the case of a linear potential 𝑉 is handled, and in [39], but a
detailed proof for a sufficiently large class of potentials 𝑉 is
still lacking. We generalized these results to the case where
𝑉 is linear in the space variable and presents an explicit time
dependence.

Theorem 6. Let 𝑎 : R → C be a continuous function and let
us denote 𝑀 := max

𝑠∈[0,𝑡]
|𝑎(𝑠)|. Let 𝑢

0
be of the form 𝑢

0
(𝑥)

= ∫
R
𝑒𝑖𝑥𝑦𝑑𝜇

0
(𝑦), where 𝜇

0
is a complex bounded variation

measure on R satisfying the following condition:

∫
R

𝑒
(|𝛼|𝑡/8)(|𝑦|+𝑀𝑡)

4

𝑑
󵄨󵄨󵄨󵄨𝜇0

󵄨󵄨󵄨󵄨 (𝑦) < ∞. (36)

Then the solution of the Cauchy problem:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = −

𝛼

8

𝜕4

𝜕𝑥4
𝑢 (𝑥, 𝑡) − 𝑖𝑎 (𝑡) 𝑥𝑢 (𝑡, 𝑥)

−∞ < 𝑥 < ∞, 0 ≤ 𝑡 < ∞,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(37)

is given by

𝑢 (𝑡, 𝑥) = E [𝑢
0
(𝑥 + 𝑍

𝛼

𝑡
) 𝑒

−𝑖 ∫
𝑡

0
𝑎(𝑡−𝑠)(𝑥+𝑍

𝛼

𝑠
)𝑑𝑠
]

:= lim
𝑛→∞

E[

[

𝑢
0
(𝑥 +

𝑛

∑
𝑗=1

𝑧
𝛼

𝑗
(
𝑡

𝑛
))

× 𝑒
−𝑖𝑡/𝑛∑

𝑛

𝑘=1
𝑎(𝑡−(𝑘𝑡/𝑛))(𝑥+∑

𝑘

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛))]

]

,

(38)

Proof. Under the stated assumptions, the finite dimensional
integrals appearing in formula (38) assume the following
form:

𝑒
−(𝑖𝑡𝑥/𝑛)∑

𝑛

𝑘=1
𝑎(𝑡−(𝑘𝑡/𝑛))

E [𝑒
−𝑖(𝑡/𝑛)∑

𝑛

𝑘=1
𝑎(𝑡−(𝑘𝑡/𝑛)) ∑

𝑘

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛)

×∫
R

𝑒
𝑖𝑥𝑦

𝑒
𝑖𝑦∑
𝑛

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛)

𝑑𝜇
0
(𝑦)] ,

(39)

where 𝑧𝛼
𝑗
(𝑡/𝑛), 𝑗 = 1, . . . 𝑛, is a family of 𝑛 independent

identically distributed random variables, distributed as 𝑧𝛼
𝑡/𝑛
.

Now by applying the Fubini theorem, which holds because of
condition (36), the latter is equal to

𝑒
−(𝑖𝑡𝑥/𝑛)∑

𝑛

𝑘=1
𝑎(𝑡−(𝑘𝑡/𝑛))

× ∫
R

𝑒
𝑖𝑥𝑦

E [𝑒
−𝑖∑
𝑛

𝑗=1
𝑧
𝛼

𝑗
(𝑡/𝑛)(−𝑦+𝑡/𝑛∑

𝑛

𝑘=𝑗
𝑎(𝑡−(𝑘𝑡/𝑛)))

] 𝑑𝜇
0
(𝑦)

= 𝑒
−(𝑖𝑡𝑥/𝑛)∑

𝑛

𝑘=1
𝑎(𝑡−(𝑘𝑡/𝑛))

× ∫
R

𝑒
𝑖𝑥𝑦

𝑒
−(𝛼/8)(𝑡/𝑛)∑

𝑛

𝑗=1
(−𝑦+𝑡/𝑛∑

𝑛

𝑘=𝑗
𝑎(𝑡−(𝑘𝑡/𝑛)))

4

𝑑𝜇
0
(𝑦) .

(40)

By dominated convergence theorem, the limit as 𝑛 → ∞ of
the last line is equal to

𝑒
−𝑖𝑥 ∫
𝑡

0
𝑎(𝑠)𝑑𝑠

∫
R

𝑒
𝑖𝑥𝑦

𝑒
−(𝛼/8) ∫

𝑡

0
(−𝑦+∫

𝑡

𝑠
𝑎(𝑡−𝑢)𝑑𝑢)

4
𝑑𝑠
𝑑𝜇

0
(𝑦) , (41)

which is the solution of Cauchy problem (37).

4. Conclusions

In this paper we have proposed the construction of a
particular probabilistic representation for the solution of the
equation 𝑢̇ = − 𝛼Δ

2𝑢 + 𝑉 in terms of a Feynman-Kac type
formula. The class of potentials 𝑉 which can be handled
by requiring that the probabilistic integrals are defined in
Lebesgue sense, that is, as absolutely convergent integrals, is
rather restricted because of the complex nature of the process.
A generalization of these results to more general potentials
requires the implementation of an integration technique,
in infinite dimensions, of a different type, by relaxing the
absolute convergence of the integrals, as in the cases han-
dled, for instance, in [6] concerning the functional integral
representation for the solution of Schrödinger equations.This
problem will be handled in a forthcoming paper.
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