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Abstract
We give some sufficient conditions for the existence of isochronous sections
of plane differential systems. We consider both isochronous sections at a critical
point and at a cycle.

1 Introduction

Let us consider an autonomous differential system
z=X(2), (1)

where z = (z,y) € £, open connected subset of the real plane, X (z) = (P(z),Q(z))
C? vector field defined on Q. Given a second vector field U € C*(Q, R?) we write
[X,U] := 0xU — 0y X for the Lie brackets of X and U. If [X, U] = 0 on Q, we say
that X and U commute. Denoting by X A U the wedge product of X and U, we
say that U is a normalizer of X if [X,U] A X = 0. The dynamics of commuting
systems was studied in [7]. Some of the results obtained in [7] do not actually
require commutativity, but can be proved by only assuming some normalizing
property. For instance, the absence of limit cycles of X can be proved by only
assuming X to have a non-trivial normalizer U [10].

In this paper we study the existence of isochronous sections under the as-
sumption that X is the normalizer of a trasversal vector field U.

Looking for normalizers allows to study isochronicity phenomena in a simpler
way than looking for commutators. In fact, given a vector field X, looking for a
commutator is equivalent to look for a solution to a system of two PDE’s, obtained
imposing the vector condition [X,U] = 0. On the other hand, looking for a
normalizer is equivalent to look for a solution to one PDE, given by [X, U]AU = 0.
As an example, consider the class of Loud quadratic systems,

z' = —y + By, Y =z + By’, B €. 2)
Such systems have the following systems as commutators,

2’ = z(1 — Bz), y' =y(1 — Bz). (3)
On the other hand, the systems (2) normalize every system of the type

¢ = zo(z,y), y = yo(z,y), (4)

where ¢ is a non-vanishing scalar function of class C?.

In what follows we consider first isochronous sections at critical points, then at
cycles. For critical points of analytic systems, similar results have been recently
proved in [4]. A result related to the presence of isochronous sections of limit
cycles has been recently presented in [2].
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2 Isochronous sections at critical points

For every z € Q, we denote by ¢x (t, z) the solution of (1) such that ¢x (0, z) = 2.
We denote by —¢x the negative local flow defined by (1), —¢x (t,2) = ¢px(—t, 2).
Let (p,0) be the polar coordinates of a point in the plane. We denote by
p(dx(t, 2)), resp. 8(¢x(t,z)), the radius and the argument of ¢x (¢, 2).

Throughout this section, we assume O = (0, 0) to be the unique critical point
of (1). We say that O is a center-focus if there exists a neighbourhood €1 of
O such that for every non-critical orbit ¢x (¢, z) starting at a point of Qq, the
function 8(¢x (t,2)) is increasing (decreasing) and diverging to +oo (—o0). We
say that O is a focus if O is a center-focus and has a neighbourhood free of
nontrivial cycles.

From now on, Q; will denote a neighbourhood of the critical point O, and we
shall write Q7 := Q1 \ {O}.

We say that O is a center if O has a neighbourhood filled with nontrivial cycles.
O is said to be isochronous if every cycle has the same period T. We write No
for the largest connected region surrounding O, covered with non-trivial cycles.
No is a punctured neighbourhood of O.

Given a second vector field U € C*(,R?), U(z) = (R(z),5(z)), we say
that X is a normalizer of U, or normalizes U on Q, if [X, U] AU = 0 on Q.
We say that X is a non-trivial normalizer of U if X and U are transversal at
non-critical points. Let us set X AU := PS — QR. If X normalizes U, setting
Z:={2€ Q:U(z) = (0,0)}, there exists a scalar function v € C*(Q\ Z, R) such
that [X,U] = vU. The regularity of v at non-critical points of U comes from the
equality v = U'—[I}Xléﬂ, where U - [X, U] is the scalar product of U and [X, U]. The
regularity of v at O is not relevant in what follows.

X is a normalizer of U if and only if [6] ¢x(t,-) takes arcs of orbits of

2 =U(2), (5)

into arcs of orbits of (5). This is usually expressed by saying that X is an
infinitesimal generator of a Lie symmetry for U, or for ¢y, the local flow defined
by (5). When X and U are non-trivial normalizers of each other, we say that they
are commutators. A center of (1) is isochronous if and only if X has a non-trivial
commutator [8]. Such a result can be improved by requesting X to be only a
normalizer of a transversal vector field U.

Theorem 1 Let O be a center of (1). Then O is isochronous if and only if there
exists Q1 and U € C*(Qu) such that X is a non-trivial normalizer of U on Q.

Proof. If O is isochronous, then by theorem 2 in [8], X has a non-trivial commu-
tator, which is also a normalizer.

Vice-versa, if X is a normalizer of U, then ¢x (¢,-) takes arcs of U-orbits into
arcs of U-orbits. Let T be the period of ¢x (¢, z0), for z0 € No. Let € > 0 be such
that n(s) := ¢v (s, z0) € No, for all s € (—e,e). Then ¢x(T,n) C n. Moreover,
since every X-orbit in No is a cycle, one has ¢x (T, n(s)) = n(s), so that every
X-cycle meeting 7)(s), for s € (—e¢, €), has period T'. This argument is independent
of the particular zo € No, hence the period of every cycle in Np is T. &

In [3], assuming O to be a center and [X,U] = pX, it was proved that the
monotonicity of the period function T' depends on the sign of fOT 1, where the
integration is performed along a cycle of the period annulus. Here we cannot
prove anything similar, because if [X, U] = vU, then a center is isochronous. In



fact, v provides information about the character of a critical point, rather than
about the period function.

Corollary 1 Under the hypotheses of theorem 1, for every T -periodic non-trivial
cycle v contained in No one has

/ v(y(t))dt = 0.

Proof. The system (1) has an isochronous center at O. By [8], theorem 2, X
has a non-trivial commutator W € C?(No,IR?). By the trasversality of X and
U, there exist scalar functions o, 8 defined in a punctured neighbourhood of O,
such that W = ¢ X + BU, with 8 # 0. Without loss of generality, we can assume
B > 0 in a punctured neighbourhood of O. The equalities

J_W/\U ﬂ_W/\X
TXAU’ T UAX

show that o and 8 are of class C? for z # O. Computing the commutator [X, W]
one has

0=[X,0X +8U] =0x(cX)—0oxX +0x(BU) — 0pu X =

(Ox0)X + (0xB)U + BOxU — Boy X = 6)
(0x0)X + (0xP)U + B[X, U] =

(Oxa)X + (0xB + Bv)U.

By the transversality of X and U one has, for z # O,

V= _(0xB) = —0x log 8.

B

Hence, integrating along «(t),

/ vy ()dt = - / 9 log B((1))dt = log B(~(T)) — log A((0)) = 0.

As an immediate consequence, one has the following corollary.

Corollary 2 Let O be a center-focus of (1). Assume [X,U] = vU for U €
C?(,1R?), transversal at z # O. If v(0) # 0 in a punctured neighbourhood of
O, then O is not a center.

In particular, corollary 2 applies when v has a continuous extension 7 to O
and 7(0) # 0.

The following definition has been introduced in [9] in order to study isochronic-
ity at center-foci.

Definition 1 Let O be an isolated critical point of (1). Let 1 : [0,4+00) — IR?
be a C' curve trasversal to X such that limg_s 400 7(s) = O. Then we say that
1 1s an isochronous section of (1) at O if either ¢x or —px has the following
property:

There exists T > 0 such that ¥V z € n, one has

(i) px(nT, z) €, for every positive integer n;

(ii) ¢x(t,z) €n, fort > 0,t # nT.



If a system has an isochronous section 7 in a neighbourhood of O, then every
curve s — ¢x(t,n(s)), with 0 < ¢t < T, is an isochronous section of the sys-
tem at O. Hence, if a system has an isochronous section, it has infinitely many
isochronous sections.

In general, the existence of an isochronous section n does not immediately
imply that every orbit in a punctured neighbourhood 7 of O meet 7. Hence
we say that n is a complete section on 2 if every non-trivial X-orbit passing
through Q1 meets 7. The completeness of a section is an non-trivial issue when
7 is choosen as an orbit of a differential system. For instance, we could consider
the system

o =y+a@+y’), o =y+yl’+y°)

which commutes with
g =y—a@@®+y’), ' =y—y@+y°).

It is not immediately evident whether the orbits of the first system meet every
orbit of the second one.

In next lemma we give a simple sufficient condition for the existence of a
complete isochronous section. We denote by 7’'(s) the tangent vector of 7(s).

Lemma 1 Let n be an isochronous section of X at a critical point O. If O has
a neighbourhood without homoclinic orbits, then 1 is a complete section of (1) at
0.

Proof. If O is a center, then 7 crosses every cycle in a neighbourhood of O, since
7 tends to O.

If O is not a center, there exists a point zp € n which is not on a cycle. By
possibly changing 7’s parametrization, we may assume that zo = 1n(0). One has
¢x(T,20) = n(sr), for some s > 0. Since X A n'(s) # 0, the simple closed
curve I' consisting of the arc 7(s),s € [0, sr] and of the arc ¢x (¢, 20),t € [0,T],
is positively (negatively) invariant for (1).

By Poincaré-Bendixson theory, this implies that I" surrounds a critical point,
that coincides with O. Let us consider the family of curves n;(s) := ¢(t,n(s)) for
t € [0,+00). We claim that the set A := {O} U {n:(s),s € [0, +00),t € [0, +00)}
coincides with the bounded region I'; defined by the Jordan curve I'.

In fact, if by absurd A # I';, then there would exist a point z1 € I';, z1 # O,
z1 # ¢(t,n(s)) Vt € [0,400) Vs € [0,+00). Let us set d(t) := ¢x(t,21). By
construction, 6 NT' = (), hence § C T;.

The positive an negative limit sets A1 (5), A~ () of & are contained in I'; UT.
None of them is a cycle, because in that case n would cross it, since it tends to
O, and by transversality and continuity 1 would cross also d, contradicting the
definition of z;. Hence AT(§) = A~(§) = {O}, contradicting the assumption
about the absence of homoclinic orbits. &

As a consequence of lemma 1, every isochronous section of a center-focus is a
complete section. The above argument also shows that in absence of homoclinic
orbits, I'; is a neighbourhood of O.

Lemma 2 Let U € C*(Q},1R?) be a non-vanishing vector field. Then there exists
A€ C*(u,R), A(2) #£ 0 for z # O, such that the vector field

U)=0, Uz)=XM2)U(2), z#0,
is in C?(Q1,R?).



Proof. Let us set U = (R, 5). We have to show the existence of A such that both
AR and AS are of class C? in Qi, when extended to O by setting R(O) = O,
S(0) =0.

We do not report this proof in full detail. It is an adaptation of the proof
of lemma 1.5 in [5], where a function F : RT — IR was constructed so that, for
every multi-index a,

lim |D*(F(I(z))| =0, lal =1,...,k

|z|—0
for a given I(z), not regular at O. . In this lemma, we need a function A(z) such
that

lim |D* (A(2)R(2))| =0, lim |D* (A(2)5(2)) | =0, lal =0,1,2.
[z[|—0 |z]—0

this is possible by choosing A(z) of the form F(|z|?), and imposing that in suitable

neighbourhoods of O the following inequalities hold

ID* (AHR@) <[, 1D* (M2)8()) | < |2

In fact, all reduces to finding F' such that in suitable neighbourhoods of O a finite
set of inequalities of the form

la

D AD()AT <2

i=1

hold, where the A% are polynomials in , y, R, S and their derivatives. This can
be done just as in lemma 1.5 of [5]. &

Theorem 2 Let O be a center-focus of (1). If (1) has an isochronous section
n at O, then there exists Q1 and U € C*(u, R?), such that X is a non-trivial
normalizer of U on Q.

Proof. Let us define the vector field U on Q; as follows

00)=0,  T(x(t,(s) = opx(tn(s))-

X is trivially a normalizer of U at O. U is not necessarily differentiable at O.
By construction, every s — 1:(s) := ¢x(t,n(s)) is an integral curve of 2’ =

U(z). Since every time-advancement map ¢x (7, -) takes the curve n:(s) into the

curve 7+, (s), X is a normalizer of U. Also, X and U are transversal for z # O,

because ¢x (7, -) is a diffecomorphism. Let us set 7 := ﬁi[éxl’f]

exists A such that U(z) := M2)U(z), U(O) := O, is of class C?, and vanishes at
O with its derivatives. Then, for z # O,

. By lemma ??, there

3X)\+)\17)\U= 3XA+)\17U

[X,U] = [X, U] = (0x U + A[X, U] = =~ .

so that X normalizes also U = \U. &

The following theorem is a partial converse of theorem 2. We say that a C*
curve 7(s) tends to O with limit tangent if there exists lims—, 400 6(n'(s)) # *oo.



Theorem 3 Let O be a center-focus of (1). If X is a non-trivial normalizer of
U € C*(Qu,R?) on Qu, and (5) has an orbit ¢y (s, 20) tending to O with limit
tangent, then X has a complete isochronous section.

Proof. If O is a center, then one can apply theorem 1 in order to prove that it is
isochronous. Then it is easy to prove that every orbit of U (in fact, every curve
transversal to X) is a complete isochronous section of X.

If O is not a center, possibly considering —¢x, we may assume O to be stable,
so that ¢x (¢, z) exists for all ¢ > 0.

Assume that lims_, { o ¢ (s,20) = O. Let us set 7(s) := ¢u(s,20). By pos-
sibly rotating the axes, we may assume that lims_, o, 1'(s) = (1,0). Then, for
every positive €, there exists § such that for s > 3, the point 7(s) is in the angle
{(z,y) € R?: —ex < y < ez}. O is a center-focus of (1), hence every X-orbit
¢x(t, z) close enough to O cuts both the line y = —ex and the line y = ex in-
finitely many times. By continuity, ¢x (¢, z) has to meet 7 infinitely many times.
Hence ¢x(t,21), where z1 := n(2s) meets n infinitely many times. Let us set
T :=min{t > 0: ¢x(¢,21) € n}.

Since X is a normalizer of U, ¢,(T, ) takes arcs of U-orbits into arcs of U-
orbits. Hence, ¢x (T,n) C n. By absurd, let us assume that for some z € n and
t # nT, where n is a positive integer, one has ¢x (t,z) € n. Writing t = nT +t, n
non-negative integer, 0 < £ < T, one has ¢x (AT + 1, 2)) = ¢x (AT, dx (£, 2)) € 7.
Also —X is a normalizer of U, taking as well arcs of U-orbits into arcs of U-
orbits. The —X-solution starting at ¢x (t, z) exists in the interval [0,¢]. Applying
—px (AT, ) t0 ¢x (£, 2) one has —px (AT, dx (£, 2)) = $x (—AT+1,2) = px (£, 2) €
7. Since X normalizes U, one has ¢x (£, 1) C n, with ¢ € (0, T), contradicting the
definition of T. &

3 Isochronous sections at a cycle

We adapt to cycles the definition of isochronous section given previously. We do
not restrict to limit cycles. Since a cycle 7y is a closed Jordan curve, it separates
the real plane into two disjoint connected regions. We denote the bounded one
by I'; and the unbounded one by I.

Definition 2 Let v(t) := ¢x(t,20) be a T-periodic non-trivial cycle of (1). Let
n:(—€€) = Q be a C curve transversal to X, such that n(0) = zo. Then we say
that m s a one-sided isochronous section of (1) at zo if (i) and (i3) of definition
1 hold for ¢x or —px on T'; (Te).

Moreover, 1 is said to be an isochronous section of (1) at zo if it is a one-sided
isochronous section both on I'; and on T'..

In the above definition, it is possible that (i) and (ii) be satisfied as t — +oo
onTI';, and ast — —oo on I'¢, or vice-versa. This may occur when + is a semistable
limit cycle, with neighbouring orbits approaching v as t — +oco from the stable
side, as t = —oo from the unstable side.

If the system is not analytic, then cycles may accumulate on a cycle. For
instance, is possible that a cycle be the boundary of a period annulus, or that
a cycle have infinitely many limit cycles in every neighbourhood. Even in such
cases, isochronous sections are possible.

Theorem 4 X has a transversal isochronous section at a non-trivial cycle v if
and only if X is a non-trivial normalizer of a vector field U in a neighbourhood

of 7.



Proof. Let us assume X to have an isochronous section 7 : (—¢,€) — IR? at
~y(t) = ¢x(t,20). We work on I'e. Possibly considering the negative flow —¢x,
we may assume I'c to be externally stable. Then there exists e; < € such that
Vzen(0,e1) : ox(T,2) € ([0, e1)).

As in section 2, one can prove that for ¢ € [0,T), every curve n(s) :=
¢x (t,n(s)), defined on [0, 1) is an isochronous section of X. Since Vt € [0, T') the
map ¢x (t,-) is a diffeomorphism, every 7:(s) is trasversal to the orbits of X.

Let N be the half-neighbourhood of 7 defined as Ne := {¢x(t,n(s)) : s €
[0,€1),t € [0,+00)}. Let us define the vector field U on N, as follows:

U(@x (tn(s)) = medx(t,m(5)).

By construction, the curves 7:(s) are solutions to the differential system (5). Since
by hypothesis every time-advancement map ¢x (7, ) takes a curve n:(s) into the
curve n¢4+-(s), X is a normalizer of U on Ne.

Now let us consider I';. If also I'; is stable, we repeat the above procedure so
to define a normalizer U on a full neighbourhood of 4. If T'; is negatively stable,
we repeat the above procedure working on —¢x. In both cases we obtain a vector
field U whose integral curves are the curves 7:(s), so that X is a normalizer of U.

Vice-versa, if X is the normalizer of a transversal vector field U, one can work
as in the proof of theorem 3. &

If X is a normalizer of U, then for every function ¢ € C*(Q,R), X 4+ (U is a
normalizer of U. In fact

[X +¢U, U] =X, U]+ KU, U] = (v — 0u¢)U.

This suggests a simple procedure to construct examples of limit cycles with
isochronous sections. It is sufficient to take X and U such that [X,U]AU =0,
and a function ( taking opposite signs in suitable regions, then consider the vector
field X + ¢U. For instance, one can consider the following quadratic systems

Bz® By’
«' = —y + Buy, y'=w—Tx+;" (7)

with B € IR, having as commutators, hence normalizers, the systems

, Bz?
T =r—

B2
4 By

U
=y — Bry.
5 5 Yy =y— Bzy (8)

Assume B > (. The origin is an isochronous center of (7), with period annulus
{(z,y) : < 5}. Denoting by X the vector field of (7) and by U that one of (8),
let us consider the field X + ¢U, with ¢(z,y) = 2 + y*> — 4B?(2* + y*)?. Since
C(z,y) >0for 0 < z?+92 < ﬁ, for small values of ¢ the orbits of X + (U cross
outwards every X-cycle contained in the circle {(z,y) : 2 +9° < ;25 }. On the
other hand, every X-cycle of No contained in {(z,y) : 2* + y* > 15z } is crossed
inwards by the orbits of X + (U. This implies that X + (U has at least a limit
cycle 7y in Nop, since it has no critical points in No. The orbits of (8) contained
in {(z,y) : ¢ < 5} are isochronous sections of .
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