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Inverse Problems with SVMs{basedRun-Time Reon�gurable SystemsA. Boni, F. Pianegiani, D. PetriDepartment of Information and Communiation TehnologyUniversity of Trento,Via Sommarive, 14 { 38050 Trento, ItalyPhone: +39 0461 883902, Fax: +39 0461 882093, E{mail: petri�dit.unitn.it.Index TermsInverse modeling, Support Vetor Mahines (SVMs), System on Chip (SoC),dynami reon�guration.I. IntrodutionIn the last few years, the evolution of miroeletroni tehnologies has promoted thedevelopment of measurement systems that extrat the information of interest using learn-ing by examples methodologies instead of a priori de�ned algorithms [1℄. Appliation oflearning by examples tehniques, suh as Arti�ial Neural Networks (ANNs), are appeal-ing beause allow to model a system without knowing its analyti struture, and usingonly a set of input/output samples, also alled training set. Reently, important devel-opments in Statistial Learning Theory (SLT) [2℄ have introdued new paradigms thatoverome several drawbaks of ANNs suh as the struture of the learning algorithm andthe absene of a solid theoretial bakground. Among other methodologies based on the-orems from SLT, the so{alled Support Vetor Mahines (SVMs) seem to be the mostappealing [1℄. Their main harateristi is the struture of the learning algorithm, whihonsists in the solution of a simple onstrained quadrati optimization problem. In pra-tie, SVMs �nd a set of parameters during a learning phase, whih are used in a forwardphase to estimate the desired outome. Hardware platforms suitable for the exeution ofsuh tasks are systems able to hange at run{time their on�guration in order to arryout di�erent proessing algorithms. Over the last few years, the development of FieldProgrammable Systems on Chip heralded the emerging tehnology of the hardware thatan be dynamially reon�gured. The use of suh arhitetures adds a new dimension tothe design of adaptive measurement systems.In this paper we fae a general inverse{modeling problem [3℄ and desribe the designand the implementation of a omplete adaptive system based on SVMs and reon�gurableField Programmable Gate Array (FPGA) devies. In setion II the problem is formulatedfrom a theoretial point of view. In setion III simulation results on a typial equalizationproblem are given. Finally, in the last setion, a omplete desription of the hardware{platform design of the onsidered ase of study and the performanes ahieved with thehardware implementation are reported.II. Problem formulationAdaptive systems are applied in many �elds, suh as lassi�ation of input patterns,system identi�ation, predition and noise anellation [3℄. They are haraterized by theoexistene of many interdisiplinary areas, suh as ANNs, SLT and signal proessing.Here, we fous our attention on inverse{modeling problems, where a speial{purposeadaptive arhiteture an be fruitfully used in order to estimate a disrete signal u(n),input of a nonlinear disrete system, on the basis of the signal x(n) observed at theoutput of the system. Usually, the lassial theory takles this problem by �nding an



2optimal estimator, for example the Bayesian Maximum Likelihood (ML) detetor, thatprovides an assessment û(n�D) of u(n�D) through the observation of an r{dimensionalfeature vetor x(r)n = [x(n) ;x(n� 1) ; : : : ;x(n� r+1)℄T , where D represents the intrinsidelay of the estimator and r the minimum number of hannels useful to obtain a reliableestimation. Conversely, SVMs selet an estimator of the input signal from a given lass offuntions on the basis of a set of m previous observations of the input and output signals:z(m) = n�x(r)i ;ui�om�1i=0 (1)Notie that in the following of this paper the signals are identi�ed by the indexes i and nduring the learning and the forward phases respetively.In [4℄ several advantages of SVMs with respet to the state of the art of equalizationmethods are reported. The authors also suggest two open issues, suh as the need forboth an eÆient implementation and an adaptive proessing, not resolved at that time.In this work we propose a solution for suh requirements. Here, we provide some briefdetails on SVMs for lassi�ation, where a lassi�er has to be de�ned in order to separatetwo di�erent set of observations [1℄, [2℄. In aordane to the maximum generalizationriteria formalized by the Vapnik and Chervonenkis' theory [2℄, in order to identify thebest lassi�er for a given set of linearly separable observations z(m), SVMs try to �nd themaximum{margin separating hyperplane, where suh margin is de�ned as the maximumdistane between the losest samples belonging to two di�erent lasses. However, in real{world problems the available set z(m) is often not linearly separable. It is neessary to use anonlinear funtion ' : <r !<R;R >> r that maps eah element xi of z(m) in a new high{dimensional feature spae, where the maximum{margin hyperplane an be found [1℄, [2℄.From a mathematial point of view, the most important harateristi of SVMs onsistsin the fat that they do not require the expliit knowledge of the funtion '. In e�et, thenonlinear mapping is impliitly omputed by a kernel funtion K (x;y) = '(x) �'(y) thattypially an be linear (K (x;y) = x �y), Gaussian (K (x;y) = exp��kx�yk2 =2�2�) orpolynomial (K (x;y) = (1+x �y)p). As a onsequene, the struture of the estimator,used in the forward phase, is de�ned as û(n�D) = Pi2SV �iu�iK �x(r)i ;x(r)n �+ b, whereu�i = ui for lassi�ation problems and SV = fi : �i 6= 0g is the index set of the supportvetors xi, with i 2 SV . The parameters �i and b are omputed during the learning phaseby solving an optimization problem in whih the parameters �i are onstrained to lie in thebox [0;C℄;8i 2 SV . In the lassi�ation ase, C is the parameter that ontrols the tradeo�between the generalization ability of the lassi�er and the number of mislassi�ed inputpatterns, when z(m) is not linearly separable in the feature spae. In this work we usea Gaussian kernel, beause of its apability of providing robust solutions in lassi�ationproblems [1℄. Finally, the parameters �2 and C are set after a model seletion riteria [5℄.III. Simulation resultsIn this setion, we onsider the equalization of a nonlinear hannel as a typial ase ofstudy of inverse modeling problems. In suh ase, a symbol u(n) 2 f+1;�1g, generated bya given soure, has to be estimated by the reeiver, after passing through a noisy hannelhaving intersymbol interferene of length N . The unpreditable nonlinear e�ets ausedfrom the involved omponents (i.e., transmitter, hannel, reeiver) are usually modeledas FIR �lters, plus a Gaussian distributed noise e with zero mean and variane �2e . Thefollowing expressions desribe suh a kind of model:



3TABLE IParameters values of different modelsModel h0 h1 h2 1 2 31 1 0.5 - 1 0 -0.92 0.5 1 - 1 0.1 0.053 0.3482 0.9704 0.3482 1 0.2 -TABLE IIBayesian Maximum Likelihood Classifier vs. SVM for Model 1 and Model 2Model D ML(%) SVM(%) C{�21 0 14.4 15.6 1.6{0.41 1 5.2 5.4 1.6{0.41 2 3.7 3.5 3.2{1.62 0 13.7 12.1 1.6{1.02 1 4.3 4.6 1.6{1.02 2 0.7 0.7 1.6{1.0
~x (n) = N�1Pk=0 hku(n� k)x̂ (n) = PPp=1p~xp (n)x(n) = x̂(n)+ e(n) (2)where N represents the duration of the �lter time{response and P is the order of thenonlinearity. In the following we apply the ML [6℄ and SVM based approahes to theonsidered ase and ompare their performane, in terms of bit error rate. Note thatthe former method requires the knowledge of the hannel (input onstellation and noisestatistis), whereas the latter works only by using a set of samples. In order to testthe SVM lassi�er, several data have been olleted aording to equation (2) and byusing three di�erent nonlinear models of the hannel (see table I): N = 2, P = 3 andGaussian white noise (Model 1); N = 2, P = 3 and Gaussian olored noise (Model 2);N = 3, P = 2 and Gaussian olored noise (Model 3). In the Model 2 and Model 3, thenoise was generated by using the following FIR �ltering:e(n) = �ep1+ �2w (n)+ �e�p1+ �2w (n� 1) (3)where w is an unorrelated noise with zero mean and variane �2w = 1, while � = 0:75. As a�rst experiment, we �xed �2e = 0:2 and onsidered three di�erent delay values (D = 0;1;2)in order to maximize the performane of the equalizer. Moreover, a Gaussian kernelfuntion has been seleted. Table II reports the results for the Model 1 and Model 2,obtained by onsidering 500 training samples and 3000 test samples. In the same tableC and �2 represent the SVM hyperparameters found after a model seletion proess [5℄.As a seond experiment, the e�et of the number of training samples (m) and the noisevariane on the SVM performane have been tested by usingModel 3 as a funtion. Notiethat the number of observations m is important beause it determines the omplexity ofthe required hardware platform and the delay of the system to hange in the input signal.Table III shows the results, for r = 3 and D = 2. Tables II and III on�rm the validityof the SVM{based approah, as the designed estimators often overome the lassial



4TABLE IIISimulations with different training samples for Model 3m �2e ML(%) SVM(%) C{�2500 0.1 1.8 1.7 4{0.1500 0.2 5.2 4.7 2{1.6500 0.3 8.9 7.5 4{6.4500 0.4 11.9 10.5 4{12.8128 0.1 1.8 1.7 16{1.6128 0.2 5.2 6.1 32{0.8128 0.3 8.9 8.3 8{3.2128 0.4 11.9 10.7 32{12.864 0.1 1.8 1.8 16{1.664 0.2 5.2 7.5 16{0.864 0.3 8.9 9.0 8{6.464 0.4 11.9 11.9 32{12.832 0.1 1.8 2.0 8{0.832 0.2 5.2 8.1 16{0.832 0.3 8.9 10.8 8{3.232 0.4 11.9 13 8{12.8maximum likelihood lassi�er. This behavior is due to the Gaussian distribution of thenoise that, together with the use of Gaussian kernels, allows to design a lassi�er that isvery lose to the best one, if a suÆient number of training samples are onsidered [2℄.As a �nal remark note that the performanes reported on table III are just a test on asingle realization omposed of about 3000 samples obtained using the same seed. In the�nal paper we will report a detailed bootstrap{based statistial validation.IV. System arhiteture and performanesThis setion fous on the design, implementation and performane analysis of an eÆ-ient hardware platform for the proposed equalization problem. The design of SVM las-si�ers is not new to the sienti� ommunity [7℄. Here, instead of using a mixed{signalVLSI proessor like in [7℄, an FPGA-based proessor has been employed as target devie.In suh a way, a ompletely reon�gurable system on hip that adapt the harateristisof the estimator to the behavior of nonlinear transmission hannels an be implemented.Current generation of FPGA platforms are powerful systems equipped with high densityprogrammable logi and embedded Blok RAMs (BRAMs), multipliers and hardware andsoftware CPU ores. As shown in Fig. 1(a), suh harateristis together with advanedtehniques of dynami reon�guration have been used to design an arhiteture mainlyomposed by [8℄, [9℄: a general purpose proessor, whih ollets input data and ats as asystem supervisor; a module that an be dynamially reon�gured to alternately imple-ment the FIBS or the KTRON ores, whih arry out the learning and forward phases,respetively. In partiular, the FIBS ore �nds and stores in a memory the parameters�i; b and the set of support vetors xi. The KTRON, so alled for its similarities with thereently proposed Kernel Pereptron algorithm [10℄, reeives the set of parameters foundby the FIBS and estimates the input signal of the nonlinear system. The FIBS{KTRONmodule is dynamially reon�gured as soon as a learning proess is required, when a newset of observation is available. In this �rst version, this ours after a synhronization pro-edure between the transmitter and the reeiver, exeuted at �xed intervals. In pratie,the transmitter sends to the reeiver an a priori known sequene, used for training.In [6℄ a full desription of the FIBS arhiteture is reported. In brief, it makes use
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R e a d y (b)Fig. 1. Basi blok diagram of an inverse{modeling estimator (a) and the KTRON arhiteture (b).of a new algorithm for SVM learning, whih is less sensitive to quantization errors withrespet to the solution appeared so far in the literature. The ore is omposed of twoparts: the �rst one exploits a reurrent network for �nding the parameters of the SVMlassi�er; the seond one uses a bisetion proess for omputing the threshold b. Sine theSVM lassi�ation funtion is very similar to the one realized by a pereptron, the pro-posed KTRON arhiteture, reported in Fig. 1(b), takes its inspiration from the TOTEMproessor, whih was reently implemented on a programmable logi devie [11℄. Startingfrom the VHDL high{level desription of the TOTEM proessor, an hardware implemen-tation of the KTRON o{proessor has been designed. The obtained arhiteture is shownin �gure 1(b). K Type RAM is a simple ip{op ontaining a ag indiating the type ofomputations arried out by the Pre Kernel unit. Ktron Drive ontains the RAMs tostorage both the set of support vetors and the input x to be proessed. Pre Kernel, the�rst proessing unit, omputes an inner produt or a squared norm aording to the valuein the K Type RAM module. Kernel, a seond proessing unit, omputes in pratie thekernel funtion, by using a look-up table (LUT) in whih kernel values are stored. Notethat in this �rst version of the prototype, the division for 2�2 has been implemented byapproximating 2�2 to a power of 2 and using a shift register. Out MAC, the last omputa-tion unit, multiplies and aumulates the results provided by the Kernel unit. Ktron trlis the main ontrol unit of the ore. In pratie, only two embedded multipliers are used,one in the Pre{Kernel module, and another in the Out MAC module.In order to design the prototype of the KTRON ore, 32 samples for training with r = 2and a Gaussian kernel with 2�2 = 1 have been used. Data were internally represented by16{bit in 2's omplement oding, with 3 bits and 13 bits for the integer and frationalparts, respetively. Suh values were obtained after a model seletion riterion, in order toreah a lassi�ation error of 4.3% onModel 2 [6℄. The whole arhiteture was implementedon a Xilinx Virtex II (XC2V1000) by using the Xilinx ISE 5.2i and XST as developmentand synthesis tools, respetively. Our ore maps 280 Virtex{II Slies (5.6%) and worksat a lok frequeny of 100 MHz. Four embedded 2 KByte Blok RAM (BRAM) of theVirtex II, used to store the support vetors, the weights, the x vetor to be proessedand the kernel LUT have been instantiated. In pratie, the four BRAMs allow to storeup to 100 support vetors of r = 10 features eah. The number of lok yles needed toobtain the result is around 430, for m= 32 and r = 2, and 7300, for m = 100 and r = 10.As a �nal remark, note that the perentage of logi used by the FIBS ore is around 58%(2950 slies) and by the KTRON is about 6% (289 slies), while the remaining part of



6the FPGA is used to implement the general purpose proessor and all I/O interfaes.Referenes[1℄ B. Sholkopf, A. Smola, Learning with kernels, The MIT Press, 2002.[2℄ V. Vapnik, Statistial Learning Theory, Wiley, 1998.[3℄ B. Widrow, Adaptive Signal Proessing, Prentie Hall, 1985[4℄ D.J. Sebald, J.A. Buklew, Support Vetor Mahine Tehniques for Nonlinear Equal-ization, IEEE Trans. on Signal Proessing, Vol. 48, No. 11, 2000, pp. 3217{3226.[5℄ D. Anguita, S. Ridella, F. Rivieio, R. Zunino, Hyperparameter Design Criteria forSupport Vetor Mahines, Neuroomputing, Volume 55, Issues 1{2, Pages 109{134,September 2003.[6℄ D. Anguita, A. Boni, S. Ridella, A Digital Arhiteture for Support Vetor Mahines:theory, algorithm and FPGA implementation, IEEE Trans. on Neural Networks {Speial Issue on Hardware Implementations, in press., 2003.[7℄ R. Genov, G. Cauwenberghs: Kerneltron: Support Vetor Mahine in Silion, IEEETrans. on Neural Networks, in press., 2003.[8℄ D. Mesquita, F. Moraes, J. Palma, L. Moller, N. Calazans, Remote and partial re-on�guration of FPGAs: tools and trends, Pro. Parallel and Distributed ProessingSymposium, pp. 177{184, Frane, Apr. 22{26, 2003.[9℄ Xilinx In., Two Flows for Partial Reon�guration: Core Based or Small Bit Manip-ulations, Appliation Note No. 290, May 2002.[10℄ D. Anguita, A. Boni, S. Ridella, Digital Kernel Pereptron, Eletronis letters, Vol.38, n. 10, pp. 445{446, 2002.[11℄ S. MBader, L. Clementel, A. Sartori, A. Boni, P. Lee: SoftTotem: an FPGA Im-plementation of the Totem Parallel Proessor, Pro. FPL2002, Frane, Sept. 2{4,2002.


