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Inverse Problems with SVMs{basedRun-Time Re
on�gurable SystemsA. Boni, F. Pianegiani, D. PetriDepartment of Information and Communi
ation Te
hnologyUniversity of Trento,Via Sommarive, 14 { 38050 Trento, ItalyPhone: +39 0461 883902, Fax: +39 0461 882093, E{mail: petri�dit.unitn.it.Index TermsInverse modeling, Support Ve
tor Ma
hines (SVMs), System on Chip (SoC),dynami
 re
on�guration.I. Introdu
tionIn the last few years, the evolution of mi
roele
troni
 te
hnologies has promoted thedevelopment of measurement systems that extra
t the information of interest using learn-ing by examples methodologies instead of a priori de�ned algorithms [1℄. Appli
ation oflearning by examples te
hniques, su
h as Arti�
ial Neural Networks (ANNs), are appeal-ing be
ause allow to model a system without knowing its analyti
 stru
ture, and usingonly a set of input/output samples, also 
alled training set. Re
ently, important devel-opments in Statisti
al Learning Theory (SLT) [2℄ have introdu
ed new paradigms thatover
ome several drawba
ks of ANNs su
h as the stru
ture of the learning algorithm andthe absen
e of a solid theoreti
al ba
kground. Among other methodologies based on the-orems from SLT, the so{
alled Support Ve
tor Ma
hines (SVMs) seem to be the mostappealing [1℄. Their main 
hara
teristi
 is the stru
ture of the learning algorithm, whi
h
onsists in the solution of a simple 
onstrained quadrati
 optimization problem. In pra
-ti
e, SVMs �nd a set of parameters during a learning phase, whi
h are used in a forwardphase to estimate the desired out
ome. Hardware platforms suitable for the exe
ution ofsu
h tasks are systems able to 
hange at run{time their 
on�guration in order to 
arryout di�erent pro
essing algorithms. Over the last few years, the development of FieldProgrammable Systems on Chip heralded the emerging te
hnology of the hardware that
an be dynami
ally re
on�gured. The use of su
h ar
hite
tures adds a new dimension tothe design of adaptive measurement systems.In this paper we fa
e a general inverse{modeling problem [3℄ and des
ribe the designand the implementation of a 
omplete adaptive system based on SVMs and re
on�gurableField Programmable Gate Array (FPGA) devi
es. In se
tion II the problem is formulatedfrom a theoreti
al point of view. In se
tion III simulation results on a typi
al equalizationproblem are given. Finally, in the last se
tion, a 
omplete des
ription of the hardware{platform design of the 
onsidered 
ase of study and the performan
es a
hieved with thehardware implementation are reported.II. Problem formulationAdaptive systems are applied in many �elds, su
h as 
lassi�
ation of input patterns,system identi�
ation, predi
tion and noise 
an
ellation [3℄. They are 
hara
terized by the
oexisten
e of many interdis
iplinary areas, su
h as ANNs, SLT and signal pro
essing.Here, we fo
us our attention on inverse{modeling problems, where a spe
ial{purposeadaptive ar
hite
ture 
an be fruitfully used in order to estimate a dis
rete signal u(n),input of a nonlinear dis
rete system, on the basis of the signal x(n) observed at theoutput of the system. Usually, the 
lassi
al theory ta
kles this problem by �nding an



2optimal estimator, for example the Bayesian Maximum Likelihood (ML) dete
tor, thatprovides an assessment û(n�D) of u(n�D) through the observation of an r{dimensionalfeature ve
tor x(r)n = [x(n) ;x(n� 1) ; : : : ;x(n� r+1)℄T , where D represents the intrinsi
delay of the estimator and r the minimum number of 
hannels useful to obtain a reliableestimation. Conversely, SVMs sele
t an estimator of the input signal from a given 
lass offun
tions on the basis of a set of m previous observations of the input and output signals:z(m) = n�x(r)i ;ui�om�1i=0 (1)Noti
e that in the following of this paper the signals are identi�ed by the indexes i and nduring the learning and the forward phases respe
tively.In [4℄ several advantages of SVMs with respe
t to the state of the art of equalizationmethods are reported. The authors also suggest two open issues, su
h as the need forboth an eÆ
ient implementation and an adaptive pro
essing, not resolved at that time.In this work we propose a solution for su
h requirements. Here, we provide some briefdetails on SVMs for 
lassi�
ation, where a 
lassi�er has to be de�ned in order to separatetwo di�erent set of observations [1℄, [2℄. In a

ordan
e to the maximum generalization
riteria formalized by the Vapnik and Chervonenkis' theory [2℄, in order to identify thebest 
lassi�er for a given set of linearly separable observations z(m), SVMs try to �nd themaximum{margin separating hyperplane, where su
h margin is de�ned as the maximumdistan
e between the 
losest samples belonging to two di�erent 
lasses. However, in real{world problems the available set z(m) is often not linearly separable. It is ne
essary to use anonlinear fun
tion ' : <r !<R;R >> r that maps ea
h element xi of z(m) in a new high{dimensional feature spa
e, where the maximum{margin hyperplane 
an be found [1℄, [2℄.From a mathemati
al point of view, the most important 
hara
teristi
 of SVMs 
onsistsin the fa
t that they do not require the expli
it knowledge of the fun
tion '. In e�e
t, thenonlinear mapping is impli
itly 
omputed by a kernel fun
tion K (x;y) = '(x) �'(y) thattypi
ally 
an be linear (K (x;y) = x �y), Gaussian (K (x;y) = exp��kx�yk2 =2�2�) orpolynomial (K (x;y) = (1+x �y)p). As a 
onsequen
e, the stru
ture of the estimator,used in the forward phase, is de�ned as û(n�D) = Pi2SV �iu�iK �x(r)i ;x(r)n �+ b, whereu�i = ui for 
lassi�
ation problems and SV = fi : �i 6= 0g is the index set of the supportve
tors xi, with i 2 SV . The parameters �i and b are 
omputed during the learning phaseby solving an optimization problem in whi
h the parameters �i are 
onstrained to lie in thebox [0;C℄;8i 2 SV . In the 
lassi�
ation 
ase, C is the parameter that 
ontrols the tradeo�between the generalization ability of the 
lassi�er and the number of mis
lassi�ed inputpatterns, when z(m) is not linearly separable in the feature spa
e. In this work we usea Gaussian kernel, be
ause of its 
apability of providing robust solutions in 
lassi�
ationproblems [1℄. Finally, the parameters �2 and C are set after a model sele
tion 
riteria [5℄.III. Simulation resultsIn this se
tion, we 
onsider the equalization of a nonlinear 
hannel as a typi
al 
ase ofstudy of inverse modeling problems. In su
h 
ase, a symbol u(n) 2 f+1;�1g, generated bya given sour
e, has to be estimated by the re
eiver, after passing through a noisy 
hannelhaving intersymbol interferen
e of length N . The unpredi
table nonlinear e�e
ts 
ausedfrom the involved 
omponents (i.e., transmitter, 
hannel, re
eiver) are usually modeledas FIR �lters, plus a Gaussian distributed noise e with zero mean and varian
e �2e . Thefollowing expressions des
ribe su
h a kind of model:



3TABLE IParameters values of different modelsModel h0 h1 h2 
1 
2 
31 1 0.5 - 1 0 -0.92 0.5 1 - 1 0.1 0.053 0.3482 0.9704 0.3482 1 0.2 -TABLE IIBayesian Maximum Likelihood Classifier vs. SVM for Model 1 and Model 2Model D ML(%) SVM(%) C{�21 0 14.4 15.6 1.6{0.41 1 5.2 5.4 1.6{0.41 2 3.7 3.5 3.2{1.62 0 13.7 12.1 1.6{1.02 1 4.3 4.6 1.6{1.02 2 0.7 0.7 1.6{1.0
~x (n) = N�1Pk=0 hku(n� k)x̂ (n) = PPp=1
p~xp (n)x(n) = x̂(n)+ e(n) (2)where N represents the duration of the �lter time{response and P is the order of thenonlinearity. In the following we apply the ML [6℄ and SVM based approa
hes to the
onsidered 
ase and 
ompare their performan
e, in terms of bit error rate. Note thatthe former method requires the knowledge of the 
hannel (input 
onstellation and noisestatisti
s), whereas the latter works only by using a set of samples. In order to testthe SVM 
lassi�er, several data have been 
olle
ted a

ording to equation (2) and byusing three di�erent nonlinear models of the 
hannel (see table I): N = 2, P = 3 andGaussian white noise (Model 1); N = 2, P = 3 and Gaussian 
olored noise (Model 2);N = 3, P = 2 and Gaussian 
olored noise (Model 3). In the Model 2 and Model 3, thenoise was generated by using the following FIR �ltering:e(n) = �ep1+ �2w (n)+ �e�p1+ �2w (n� 1) (3)where w is an un
orrelated noise with zero mean and varian
e �2w = 1, while � = 0:75. As a�rst experiment, we �xed �2e = 0:2 and 
onsidered three di�erent delay values (D = 0;1;2)in order to maximize the performan
e of the equalizer. Moreover, a Gaussian kernelfun
tion has been sele
ted. Table II reports the results for the Model 1 and Model 2,obtained by 
onsidering 500 training samples and 3000 test samples. In the same tableC and �2 represent the SVM hyperparameters found after a model sele
tion pro
ess [5℄.As a se
ond experiment, the e�e
t of the number of training samples (m) and the noisevarian
e on the SVM performan
e have been tested by usingModel 3 as a fun
tion. Noti
ethat the number of observations m is important be
ause it determines the 
omplexity ofthe required hardware platform and the delay of the system to 
hange in the input signal.Table III shows the results, for r = 3 and D = 2. Tables II and III 
on�rm the validityof the SVM{based approa
h, as the designed estimators often over
ome the 
lassi
al



4TABLE IIISimulations with different training samples for Model 3m �2e ML(%) SVM(%) C{�2500 0.1 1.8 1.7 4{0.1500 0.2 5.2 4.7 2{1.6500 0.3 8.9 7.5 4{6.4500 0.4 11.9 10.5 4{12.8128 0.1 1.8 1.7 16{1.6128 0.2 5.2 6.1 32{0.8128 0.3 8.9 8.3 8{3.2128 0.4 11.9 10.7 32{12.864 0.1 1.8 1.8 16{1.664 0.2 5.2 7.5 16{0.864 0.3 8.9 9.0 8{6.464 0.4 11.9 11.9 32{12.832 0.1 1.8 2.0 8{0.832 0.2 5.2 8.1 16{0.832 0.3 8.9 10.8 8{3.232 0.4 11.9 13 8{12.8maximum likelihood 
lassi�er. This behavior is due to the Gaussian distribution of thenoise that, together with the use of Gaussian kernels, allows to design a 
lassi�er that isvery 
lose to the best one, if a suÆ
ient number of training samples are 
onsidered [2℄.As a �nal remark note that the performan
es reported on table III are just a test on asingle realization 
omposed of about 3000 samples obtained using the same seed. In the�nal paper we will report a detailed bootstrap{based statisti
al validation.IV. System ar
hite
ture and performan
esThis se
tion fo
us on the design, implementation and performan
e analysis of an eÆ-
ient hardware platform for the proposed equalization problem. The design of SVM 
las-si�ers is not new to the s
ienti�
 
ommunity [7℄. Here, instead of using a mixed{signalVLSI pro
essor like in [7℄, an FPGA-based pro
essor has been employed as target devi
e.In su
h a way, a 
ompletely re
on�gurable system on 
hip that adapt the 
hara
teristi
sof the estimator to the behavior of nonlinear transmission 
hannels 
an be implemented.Current generation of FPGA platforms are powerful systems equipped with high densityprogrammable logi
 and embedded Blo
k RAMs (BRAMs), multipliers and hardware andsoftware CPU 
ores. As shown in Fig. 1(a), su
h 
hara
teristi
s together with advan
edte
hniques of dynami
 re
on�guration have been used to design an ar
hite
ture mainly
omposed by [8℄, [9℄: a general purpose pro
essor, whi
h 
olle
ts input data and a
ts as asystem supervisor; a module that 
an be dynami
ally re
on�gured to alternately imple-ment the FIBS or the KTRON 
ores, whi
h 
arry out the learning and forward phases,respe
tively. In parti
ular, the FIBS 
ore �nds and stores in a memory the parameters�i; b and the set of support ve
tors xi. The KTRON, so 
alled for its similarities with there
ently proposed Kernel Per
eptron algorithm [10℄, re
eives the set of parameters foundby the FIBS and estimates the input signal of the nonlinear system. The FIBS{KTRONmodule is dynami
ally re
on�gured as soon as a learning pro
ess is required, when a newset of observation is available. In this �rst version, this o

urs after a syn
hronization pro-
edure between the transmitter and the re
eiver, exe
uted at �xed intervals. In pra
ti
e,the transmitter sends to the re
eiver an a priori known sequen
e, used for training.In [6℄ a full des
ription of the FIBS ar
hite
ture is reported. In brief, it makes use
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 blo
k diagram of an inverse{modeling estimator (a) and the KTRON ar
hite
ture (b).of a new algorithm for SVM learning, whi
h is less sensitive to quantization errors withrespe
t to the solution appeared so far in the literature. The 
ore is 
omposed of twoparts: the �rst one exploits a re
urrent network for �nding the parameters of the SVM
lassi�er; the se
ond one uses a bise
tion pro
ess for 
omputing the threshold b. Sin
e theSVM 
lassi�
ation fun
tion is very similar to the one realized by a per
eptron, the pro-posed KTRON ar
hite
ture, reported in Fig. 1(b), takes its inspiration from the TOTEMpro
essor, whi
h was re
ently implemented on a programmable logi
 devi
e [11℄. Startingfrom the VHDL high{level des
ription of the TOTEM pro
essor, an hardware implemen-tation of the KTRON 
o{pro
essor has been designed. The obtained ar
hite
ture is shownin �gure 1(b). K Type RAM is a simple 
ip{
op 
ontaining a 
ag indi
ating the type of
omputations 
arried out by the Pre Kernel unit. Ktron Drive 
ontains the RAMs tostorage both the set of support ve
tors and the input x to be pro
essed. Pre Kernel, the�rst pro
essing unit, 
omputes an inner produ
t or a squared norm a

ording to the valuein the K Type RAM module. Kernel, a se
ond pro
essing unit, 
omputes in pra
ti
e thekernel fun
tion, by using a look-up table (LUT) in whi
h kernel values are stored. Notethat in this �rst version of the prototype, the division for 2�2 has been implemented byapproximating 2�2 to a power of 2 and using a shift register. Out MAC, the last 
omputa-tion unit, multiplies and a

umulates the results provided by the Kernel unit. Ktron 
trlis the main 
ontrol unit of the 
ore. In pra
ti
e, only two embedded multipliers are used,one in the Pre{Kernel module, and another in the Out MAC module.In order to design the prototype of the KTRON 
ore, 32 samples for training with r = 2and a Gaussian kernel with 2�2 = 1 have been used. Data were internally represented by16{bit in 2's 
omplement 
oding, with 3 bits and 13 bits for the integer and fra
tionalparts, respe
tively. Su
h values were obtained after a model sele
tion 
riterion, in order torea
h a 
lassi�
ation error of 4.3% onModel 2 [6℄. The whole ar
hite
ture was implementedon a Xilinx Virtex II (XC2V1000) by using the Xilinx ISE 5.2i and XST as developmentand synthesis tools, respe
tively. Our 
ore maps 280 Virtex{II Sli
es (5.6%) and worksat a 
lo
k frequen
y of 100 MHz. Four embedded 2 KByte Blo
k RAM (BRAM) of theVirtex II, used to store the support ve
tors, the weights, the x ve
tor to be pro
essedand the kernel LUT have been instantiated. In pra
ti
e, the four BRAMs allow to storeup to 100 support ve
tors of r = 10 features ea
h. The number of 
lo
k 
y
les needed toobtain the result is around 430, for m= 32 and r = 2, and 7300, for m = 100 and r = 10.As a �nal remark, note that the per
entage of logi
 used by the FIBS 
ore is around 58%(2950 sli
es) and by the KTRON is about 6% (289 sli
es), while the remaining part of
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