UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

INVERSE PROBLEMS WITH SVM-BASED RUN-TIME

RECONFIGURABLE SYSTEMS

Andrea Boni, Fernando Pianegiani, Dario Petri

May 2004

Technical Report # DIT-03-059

Inverse Problems with SVMs—based
Run-Time Reconfigurable Systems

A. Boni, F. Pianegiani, D. Petri

Department of Information and Communication Technology
University of Trento,
Via Sommarive, 14 — 38050 Trento, Italy
Phone: +39 0461 883902, Fax: 439 0461 882093, E-mail: petri@Qdit.unitn.it.

Index Terms

Inverse modeling, Support Vector Machines (SVMs), System on Chip (SoC),
dynamic reconfiguration.

I. INTRODUCTION

In the last few years, the evolution of microelectronic technologies has promoted the
development of measurement systems that extract the information of interest using learn-
ing by examples methodologies instead of a priori defined algorithms [1]. Application of
learning by examples techniques, such as Artificial Neural Networks (ANNs), are appeal-
ing because allow to model a system without knowing its analytic structure, and using
only a set of input/output samples, also called training set. Recently, important devel-
opments in Statistical Learning Theory (SLT) [2] have introduced new paradigms that
overcome several drawbacks of ANNs such as the structure of the learning algorithm and
the absence of a solid theoretical background. Among other methodologies based on the-
orems from SLT, the so—called Support Vector Machines (SVMs) seem to be the most
appealing [1]. Their main characteristic is the structure of the learning algorithm, which
consists in the solution of a simple constrained quadratic optimization problem. In prac-
tice, SVMs find a set of parameters during a learning phase, which are used in a forward
phase to estimate the desired outcome. Hardware platforms suitable for the execution of
such tasks are systems able to change at run-time their configuration in order to carry
out different processing algorithms. Over the last few years, the development of Field
Programmable Systems on Chip heralded the emerging technology of the hardware that
can be dynamically reconfigured. The use of such architectures adds a new dimension to
the design of adaptive measurement systems.

In this paper we face a general inverse-modeling problem [3] and describe the design
and the implementation of a complete adaptive system based on SVMs and reconfigurable
Field Programmable Gate Array (FPGA) devices. In section II the problem is formulated
from a theoretical point of view. In section III simulation results on a typical equalization
problem are given. Finally, in the last section, a complete description of the hardware—
platform design of the considered case of study and the performances achieved with the
hardware implementation are reported.

II. PROBLEM FORMULATION

Adaptive systems are applied in many fields, such as classification of input patterns,
system identification, prediction and noise cancellation [3]. They are characterized by the
coexistence of many interdisciplinary areas, such as ANNs, SLT and signal processing.
Here, we focus our attention on inverse-modeling problems, where a special-purpose
adaptive architecture can be fruitfully used in order to estimate a discrete signal u(n),
input of a nonlinear discrete system, on the basis of the signal z(n) observed at the
output of the system. Usually, the classical theory tackles this problem by finding an

optimal estimator, for example the Bayesian Maximum Likelihood (ML) detector, that
provides an assessment @(n — D) of u(n— D) through the observation of an r—dimensional

feature vector (") = [z (n),z(n—1),...,x(n—r+1)]", where D represents the intrinsic
delay of the estimator and r the minimum number of channels useful to obtain a reliable
estimation. Conversely, SVMs select an estimator of the input signal from a given class of
functions on the basis of a set of m previous observations of the input and output signals:

2(m) — {(azgr),ui) }m71 (1)

1=0

Notice that in the following of this paper the signals are identified by the indexes ¢ and n
during the learning and the forward phases respectively.

In [4] several advantages of SVMs with respect to the state of the art of equalization
methods are reported. The authors also suggest two open issues, such as the need for
both an efficient implementation and an adaptive processing, not resolved at that time.
In this work we propose a solution for such requirements. Here, we provide some brief
details on SVMs for classification, where a classifier has to be defined in order to separate
two different set of observations [1], [2]. In accordance to the maximum generalization
criteria formalized by the Vapnik and Chervonenkis’ theory [2], in order to identify the
best classifier for a given set of linearly separable observations 2™, SVMs try to find the
maximum-margin separating hyperplane, where such margin is defined as the maximum
distance between the closest samples belonging to two different classes. However, in real—
world problems the available set z(™ is often not linearly separable. It is necessary to use a
nonlinear function ¢ : R" — RE, R >> r that maps each element x; of z™ in a new high—
dimensional feature space, where the maximum-margin hyperplane can be found [1], [2].
From a mathematical point of view, the most important characteristic of SVMs consists
in the fact that they do not require the explicit knowledge of the function ¢. In effect, the
nonlinear mapping is implicitly computed by a kernel function K (,y) = ¢ (x) ¢ (y) that
typically can be linear (K (x,y) =« -y), Gaussian (K (x,y) = exp (— |z — y||2/202)) or
polynomial (K (z,y) = (1+x-y)”). As a consequence, the structure of the estimator,
used in the forward phase, is defined as u(n — D) = > aufK (mz(-r),azgf)) + b, where

iesv
u? = u; for classification problems and SV = {i: a; # 0} is the index set of the support
vectors x;, with ¢ € SV. The parameters o; and b are computed during the learning phase
by solving an optimization problem in which the parameters «; are constrained to lie in the
box [0,C],Vi € SV. In the classification case, C' is the parameter that controls the tradeoff
between the generalization ability of the classifier and the number of misclassified input
patterns, when z(™ is not linearly separable in the feature space. In this work we use
a Gaussian kernel, because of its capability of providing robust solutions in classification
problems [1]. Finally, the parameters o and C' are set after a model selection criteria [5].

III. SIMULATION RESULTS

In this section, we consider the equalization of a nonlinear channel as a typical case of
study of inverse modeling problems. In such case, a symbol u(n) € {+1,—1}, generated by
a given source, has to be estimated by the receiver, after passing through a noisy channel
having intersymbol interference of length N. The unpredictable nonlinear effects caused
from the involved components (i.e., transmitter, channel, receiver) are usually modeled
as FIR filters, plus a Gaussian distributed noise e with zero mean and variance o2. The
following expressions describe such a kind of model:

TABLE I
PARAMETERS VALUES OF DIFFERENT MODELS
Model ho h1 hg Cq Co C3
1 1 0.5 - 1 0 -0.9
2 0.5 1 - 1 01 0.0
3 0.3482 0.9704 0.3482 1 0.2 -
TABLE II
BAYESIAN MAXIMUM LIKELIHOOD CLASSIFIER VS. SVM FOR Model 1 AND Model 2
Model | D ML(%) SVM(%) C-o?
1 0 14.4 15.6 1.6-0.4
1 1 5.2 5.4 1.6-0.4
1 2 3.7 3.5 3.2-1.6
2 0 13.7 12.1 1.6-1.0
2 1 4.3 4.6 1.6-1.0
2 2 0.7 0.7 1.6-1.0

B () = 3 6 (n) (2)

where N represents the duration of the filter time-response and P is the order of the
nonlinearity. In the following we apply the ML [6] and SVM based approaches to the
considered case and compare their performance, in terms of bit error rate. Note that
the former method requires the knowledge of the channel (input constellation and noise
statistics), whereas the latter works only by using a set of samples. In order to test
the SVM classifier, several data have been collected according to equation (2) and by
using three different nonlinear models of the channel (see table I): N =2, P =3 and
Gaussian white noise (Model 1); N =2, P =3 and Gaussian colored noise (Model 2);
N =3, P =2 and Gaussian colored noise (Model 3). In the Model 2 and Model 3, the
noise was generated by using the following FIR filtering:

Oe 0.

Ve e

where w is an uncorrelated noise with zero mean and variance o2 = 1, while £ = 0.75. As a
first experiment, we fixed 02 = 0.2 and considered three different delay values (D = 0,1,2)
in order to maximize the performance of the equalizer. Moreover, a Gaussian kernel
function has been selected. Table II reports the results for the Model 1 and Model 2,
obtained by considering 500 training samples and 3000 test samples. In the same table
C and o? represent the SVM hyperparameters found after a model selection process [5].
As a second experiment, the effect of the number of training samples (m) and the noise
variance on the SVM performance have been tested by using Model 3 as a function. Notice
that the number of observations m is important because it determines the complexity of
the required hardware platform and the delay of the system to change in the input signal.
Table III shows the results, for r =3 and D = 2. Tables II and III confirm the validity
of the SVM-based approach, as the designed estimators often overcome the classical

e(n) = w(n—1) (3)

TABLE III
SIMULATIONS WITH DIFFERENT TRAINING SAMPLES FOR Model 3

m | o2 ML(%) SVM(%) C-o?
500 | 0.1 1.8 1.7 4-0.1
200 | 0.2 5.2 4.7 2-1.6
200 | 0.3 8.9 7.5 4-6.4
500 | 0.4 11.9 10.5 4-12.8
128 1 0.1 1.8 1.7 16-1.6
128 | 0.2 2.2 6.1 32-0.8
128 1 0.3 8.9 8.3 8-3.2
128 |1 0.4 11.9 10.7 32-12.8
64 | 0.1 1.8 1.8 16-1.6
64 | 0.2 5.2 7.5 16-0.8
64 | 0.3 8.9 9.0 8-6.4
64 |04 11.9 11.9 32-12.8
32 | 0.1 1.8 2.0 8-0.8
32 (0.2 5.2 8.1 16-0.8
32 103 8.9 10.8 8-3.2
32 (04 11.9 13 8§-12.8

maximum likelihood classifier. This behavior is due to the Gaussian distribution of the
noise that, together with the use of Gaussian kernels, allows to design a classifier that is
very close to the best one, if a sufficient number of training samples are considered [2].
As a final remark note that the performances reported on table III are just a test on a
single realization composed of about 3000 samples obtained using the same seed. In the
final paper we will report a detailed bootstrap—based statistical validation.

IV. SYSTEM ARCHITECTURE AND PERFORMANCES

This section focus on the design, implementation and performance analysis of an effi-
cient hardware platform for the proposed equalization problem. The design of SVM clas-
sifiers is not new to the scientific community [7]. Here, instead of using a mixed-signal
VLSI processor like in [7], an FPGA-based processor has been employed as target device.
In such a way, a completely reconfigurable system on chip that adapt the characteristics
of the estimator to the behavior of nonlinear transmission channels can be implemented.
Current generation of FPGA platforms are powerful systems equipped with high density
programmable logic and embedded Block RAMs (BRAMs), multipliers and hardware and
software CPU cores. As shown in Fig. 1(a), such characteristics together with advanced
techniques of dynamic reconfiguration have been used to design an architecture mainly
composed by [8], [9]: a general purpose processor, which collects input data and acts as a
system supervisor; a module that can be dynamically reconfigured to alternately imple-
ment the FIBS or the KTRON cores, which carry out the learning and forward phases,
respectively. In particular, the FIBS core finds and stores in a memory the parameters
a;,b and the set of support vectors ;. The KTRON, so called for its similarities with the
recently proposed Kernel Perceptron algorithm [10], receives the set of parameters found
by the FIBS and estimates the input signal of the nonlinear system. The FIBS-KTRON
module is dynamically reconfigured as soon as a learning process is required, when a new
set of observation is available. In this first version, this occurs after a synchronization pro-
cedure between the transmitter and the receiver, executed at fixed intervals. In practice,
the transmitter sends to the receiver an a priori known sequence, used for training.

In [6] a full description of the FIBS architecture is reported. In brief, it makes use

DatalN

CLK
7 j K_Type_RAM AddriN Req Ack CS
General purpose processor [
Nonlinear | x(n x(n-1 x(n—r+1 ;
u(n) Discrete () Zil L) Zil () Ktron_Drive i
System [,
Pre_Kernel [
L)
e Ktron_ctrl
T]
| SVM-learning ||SVM-estimator A [
! (FIBS) | (KTRON) |t ti(n—D)
Kernel fe—sf AddrIN Req Ack CS
FIBS-KTRON
module ™
KTRON
Out_MAC |
(a",b,x,,) L DataOUT Ready Ack
RAM| DataOUT Ready Ack|
Reconfigurable-adaptive DataBUSi J]
System on Chip - RaSoC (a) ControlBUS (b)

Fig. 1. Basic block diagram of an inverse-modeling estimator (a) and the KTRON architecture (b).

of a new algorithm for SVM learning, which is less sensitive to quantization errors with
respect to the solution appeared so far in the literature. The core is composed of two
parts: the first one exploits a recurrent network for finding the parameters of the SVM
classifier; the second one uses a bisection process for computing the threshold b. Since the
SVM classification function is very similar to the one realized by a perceptron, the pro-
posed KTRON architecture, reported in Fig. 1(b), takes its inspiration from the TOTEM
processor, which was recently implemented on a programmable logic device [11]. Starting
from the VHDL high—level description of the TOTEM processor, an hardware implemen-
tation of the KTRON co-processor has been designed. The obtained architecture is shown
in figure 1(b). K_Type_RAM is a simple flip-flop containing a flag indicating the type of
computations carried out by the Pre_Kernel unit. Ktron_Drive contains the RAMs to
storage both the set of support vectors and the input & to be processed. Pre_Kernel, the
first processing unit, computes an inner product or a squared norm according to the value
in the K_Type_RAM module. Kernel, a second processing unit, computes in practice the
kernel function, by using a look-up table (LUT) in which kernel values are stored. Note
that in this first version of the prototype, the division for 202 has been implemented by
approximating 202 to a power of 2 and using a shift register. Out_MAC, the last computa-
tion unit, multiplies and accumulates the results provided by the Kernel unit. Ktron_ctrl
is the main control unit of the core. In practice, only two embedded multipliers are used,
one in the Pre-Kernel module, and another in the Out_MAC module.

In order to design the prototype of the KTRON core, 32 samples for training with r = 2
and a Gaussian kernel with 202 =1 have been used. Data were internally represented by
16-bit in 2’s complement coding, with 3 bits and 13 bits for the integer and fractional
parts, respectively. Such values were obtained after a model selection criterion, in order to
reach a classification error of 4.3% on Model 2 [6]. The whole architecture was implemented
on a Xilinx Virtex II (XC2V1000) by using the Xilinx ISE 5.2i and XST as development
and synthesis tools, respectively. Our core maps 280 Virtex-II Slices (5.6%) and works
at a clock frequency of 100 MHz. Four embedded 2 KByte Block RAM (BRAM) of the
Virtex II, used to store the support vectors, the weights, the & vector to be processed
and the kernel LUT have been instantiated. In practice, the four BRAMs allow to store
up to 100 support vectors of r = 10 features each. The number of clock cycles needed to
obtain the result is around 430, for m = 32 and r = 2, and 7300, for m = 100 and r = 10.
As a final remark, note that the percentage of logic used by the FIBS core is around 58%
(2950 slices) and by the KTRON is about 6% (289 slices), while the remaining part of

the FPGA is used to implement the general purpose processor and all I/O interfaces.

REFERENCES

[1] B. Scholkopf, A. Smola, Learning with kernels, The MIT Press, 2002.
[2] V. Vapnik, Statistical Learning Theory, Wiley, 1998.

[3] B. Widrow, Adaptive Signal Processing, Prentice Hall, 1985

[4]

D.J. Sebald, J.A. Bucklew, Support Vector Machine Techniques for Nonlinear Equal-

ization, IEEE Trans. on Signal Processing, Vol. 48, No. 11, 2000, pp. 3217-3226.

[5] D. Anguita, S. Ridella, F. Rivieccio, R. Zunino, Hyperparameter Design Criteria for
Support Vector Machines, Neurocomputing, Volume 55, Issues 1-2, Pages 109-134,

September 2003.

[6] D. Anguita, A. Boni, S. Ridella, A Digital Architecture for Support Vector Machines:
theory, algorithm and FPGA implementation, IEEE Trans. on Neural Networks —

Special Issue on Hardware Implementations, in press., 2003.

[7] R. Genov, G. Cauwenberghs: Kerneltron: Support Vector Machine in Silicon, IEEE

Trans. on Neural Networks, in press., 2003.

[8] D. Mesquita, F. Moraes, J. Palma, L. Moller, N. Calazans, Remote and partial re-
configuration of FPGAs: tools and trends, Proc. Parallel and Distributed Processing

Symposium, pp. 177-184, France, Apr. 22-26, 2003.

[9] Xilinx Inc., Two Flows for Partial Reconfiguration: Core Based or Small Bit Manip-

ulations, Application Note No. 290, May 2002.

[10] D. Anguita, A. Boni, S. Ridella, Digital Kernel Perceptron, Electronics letters, Vol.

38, n. 10, pp. 445-446, 2002.

[11] S. McBader, L. Clementel, A. Sartori, A. Boni, P. Lee: SoftTotem: an FPGA Im-
plementation of the Totem Parallel Processor, Proc. FPL2002, France, Sept. 2-4,

2002.

