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Abstract
We prove a local Cauchy-type integral formula for slice-regular functions. The for-
mula is obtained as a corollary of a general integral representation formula where the
integration is performed on the boundary of an open subset of the quaternionic space,
with no requirement of axial symmetry. As a step towards the proof, we provide a
decomposition of a slice-regular function as a combination of two axially monogenic
functions.
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operator · Cauchy integral formula

Mathematics Subject Classification 30G35 · 30E20 · 26B20

1 Introduction

Cauchy’s integral formula is one of the most powerful tools in complex analysis. It
plays a key role also in the study of any function theory that aims to extend complex
analysis to higher dimensional algebras. In the four dimensional case represented
by the quaternionic skew field, there are at least two different generalizations of the
concept of holomorphic functions. Here we mention only the two function theories
that will be used in the present paper. The first one deals with functions in the kernel
of the Cauchy–Riemann–Fueter differential operator
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∂ := 1

2

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
,

where i, j, k are the quaternionic basic imaginary units and x = x0+i x1+ j x2+kx3 is
the real representation of a quaternion x . These functions, usually called Fueter-regular
or monogenic, have been studied extensively for many decades. Primary references
are the article of Fueter [7], where Cauchy’s integral theorem was proved, the paper of
Sudbery [23] and themonograph [2], where the results were given in their generality in
the context of Clifford analysis. The second function theory, introduced in 2006–2007
by Gentili and Struppa [10, 11] following an idea of Cullen [5], with the objective to
include quaternionic polynomials and series, is the theory of quaternionic slice-regular
functions. This function theory is based on the particular complex-slice structure of
the quaternionic space H. In Sect. 2 we briefly recall the definitions and properties of
slice functions and slice-regular functions that are used in the subsequent sections.

A Cauchy-type integral formula for slice-regular functions was proved in the semi-
nal paper [11]. A version of theCauchy formulawith slice-regular kernelwas proved in
[3]. In these formulas integration is performed over the boundary of a two-dimensional
domain having an axial symmetry with respect to the real axis. A volume Cauchy-
type formula, where integration is performed over the boundary of an open axially
symmetric domain, was proved in [14] in the more general context of real alternative
*-algebras. That result extended to every slice-regular function a similar one obtained
by Cullen [5] on the quaternions. Further generalizations of the Cauchy formula were
given in [13, 17].

The aim of the present paper is to prove a local Cauchy-type integral formula for
slice-regular functions (Corollary 3). To achieve this goal near any point of the domain,
not only for those on the real axis, it is necessary to have an integral representation
formulawhere the integration is performed on the boundary of a not necessarily axially
symmetric domain (Theorem 4). Observe that all the known Cauchy-type formulas in
the literature of slice analysis require this symmetry condition. The integral kernel we
construct is not slice-regular, but it is universal, i.e., not depending on the domain. An
unavoidable aspect of the formula is the appearing, along with the boundary values
of the slice-regular function, of the values of a complementary function, namely, the
spherical derivative of a slice primitive of the function.

The Cauchy-type formula is proved using facts from both the above-mentioned
quaternionic functions theories. We show (Theorem 3) that every slice-regular func-
tion can be expressed as a combination of two axially monogenic functions, to which
the Fueter’s version ofCauchy’s integral formula apply.We recall that an axiallymono-
genic function is a monogenic slice function, i.e., a slice function in the kernel of the
operator ∂ . We also give a new proof (Theorem 2) of the surjectivity of the Laplacian
mapping from the space of slice-regular functions to that of axially monogenic func-
tions (see [4]). This result has a role in proving the uniqueness of the above-mentioned
decomposition in terms of axially monogenic functions.
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2 Preliminaries

The slice function theory of one quaternionic variable [10, 11] is based on the slice
decomposition of the quaternionic space H. For each element J in the sphere of
quaternionic imaginary units

S =
{
J ∈ H | J 2 = −1

}
=

{
x1i + x2 j + x3k ∈ H | x21 + x22 + x23 = 1

}
,

we let CJ = 〈1, J 〉 � C be the subalgebra generated by J . Then it holds

H =
⋃
J∈S

CJ , with CJ ∩ CK = R for every J , K ∈ S, J �= ±K .

A differentiable function f : � ⊆ H → H is called (left) slice-regular [11] on the
open set � if, for each J ∈ S, the restriction f |�∩CJ : � ∩ CJ → H is holomorphic
with respect to the complex structure defined by left multiplication by J . We refer the
reader to [9] and the references therein for more results in this function theory.

Another approach to slice regularity was introduced in [12, 13] (see also [18] for
recent developments), making use of the concept of slice functions. We briefly recall
their definition and someoperations on them.Given a set D ⊆ C, invariantwith respect
to complex conjugation, a function F : D → H ⊗ C that satisfies F(z) = F(z) for
every z ∈ D (the conjugation in H ⊗ C is induced by complex conjugation in the
second factor) is called a stem function on D, a concept already present in seminal
works of Fueter [7] and Cullen [5].

Let �J : C → CJ be the canonical isomorphism that maps a + ıb ∈ C to a + Jb
(with ı2 = −1). Given an open set D ⊆ C, let �D = ∪J∈S�J (D) ⊂ H. Open sets
in H of the form � = �D are called axially symmetric sets. An axially symmetric
connected set� is called a slice domain if�∩R �= ∅, a product domain if�∩R = ∅.
Any axially symmetric open set is a union of a family of domains of these two types.

The stem function F = F1 + ı F2 on D (with F1, F2 : D → H) induces the slice
function f = I(F) : �D → H as follows: if x = α + Jβ = �J (z) ∈ �D ∩CJ , then

f (x) = F1(z) + J F2(z).

The slice function f is called slice-regular if F is holomorphic w.r.t. the complex
structure inducedonH⊗Cby the second factor. If a domain� inH is axially symmetric
and intersects the real axis, then this definition of slice regularity is equivalent to
the one proposed by Gentili and Struppa [11]. We will denote by SR(�) the right
quaternionic module of slice-regular functions on � and by S1(�) the class of slice
functions induced by stem functions of the class C1 on �.

The slice product of two slice functions f = I(F), g = I(G) on � = �D is
defined by means of the pointwise product of the stem functions:

f · g = I(FG).
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The function f = I(F) is called slice-preserving if the H-components F1 and F2 of
the stem function F are real-valued. This is equivalent to the condition f (x) = f (x)
for every x ∈ �. If f is slice-preserving, then f · g coincides with the pointwise
product of f and g. If f , g are slice-regular on �, then also their slice product f · g
is slice-regular on �.

The slice derivatives

∂ f

∂x
,

∂ f

∂xc

of a slice functions f = I(F) are defined bymeans of the Cauchy–Riemann operators
applied to the inducing stem function F :

∂ f

∂x
= I

(
∂F

∂z

)
,

∂ f

∂xc
= I

(
∂F

∂z

)
.

It follows that f is slice-regular if and only if

∂ f

∂xc
= 0

and if f is slice-regular on � then also ∂ f
∂x is slice-regular on �. Moreover, the slice

derivatives satisfy the Leibniz product rule w.r.t. the slice product. If f = ∂g
∂x , we will

say that g is a slice primitive of f .
We recall other two useful concepts introduced in [13]. Given a slice function

f = I(F1 + ı F2) on �, the function f ◦
s : � → H, called the spherical value of f ,

and the function f ′
s : � \R → H, called the spherical derivative of f , are defined as

f ◦
s (x) := 1

2
( f (x) + f (x)) and f ′

s (x) := 1

2
Im(x)−1( f (x) − f (x)).

The functions f ◦
s = I(F1) and f ′

s = I(β−1F2) are slice functions, constant on
2-spheres Sx = α + Sβ for any x = α + Jβ ∈ � \ R, and such that

f (x) = f ◦
s (x) + Im(x) f ′

s (x) (1)

for every x ∈ � \ R. The spherical derivative satisfies a Leibniz-type rule w.r.t. the
slice product (see [13, §5]): ( f · g)′s = f ′

s g
◦
s + f ◦

s g
′
s . For any slice-regular function

f on �, f ′
s extends as the slice derivative

∂ f
∂x on � ∩R. Note that if f is slice-regular

and f ′
s ≡ 0, then F2 ≡ 0 and F is locally constant. Another remarkable property of

the spherical derivative of a slice-regular function is its harmonicity when considered
as a map of four real variables (see Theorem 1 of Sect. 3).
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3 An Axially Monogenic Decomposition for Slice-Regular Functions

Let ∂ denote the Cauchy–Riemann–Fueter operator

∂ = 1

2

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
.

Given an axially symmetric domain � of H, let AM(�) be the class of axially
monogenic functions, i.e., of monogenic slice functions on �:

AM(�) = { f ∈ S1(�) | ∂ f = 0}.

There is a result, usually called Fueter’s Theorem [7], which in its generalised form can
be seen as a bridge between the class of slice-regular functions and the one of mono-
genic functions (see, e.g., [4]).We report this result from [21, Prop. 3.61, Cor. 3.6.2 and
Thm. 3.6.3], where some formulas linking the spherical derivative of slice functions
with the Cauchy–Riemann–Fueter operator were proved. Let � denote the Laplacian
operator in R4. In the statement of this result we will also need the global differential
operator ϑ introduced in [15]. For slice functions f ∈ C1(�), ϑ f = ∂ f

∂xc on �\R
(see [15, Thm. 2.2]).

Theorem 1 ([21]) Let � be an axially symmetric domain in H. Let f : � → H be a
slice function of class C1(�). Then

1. ∂ f = ϑ f − f ′
s = ∂ f

∂xc − f ′
s on �\R. In particular, f is slice-regular if and only

if ∂ f = − f ′
s , and f is axially monogenic if and only if ∂ f

∂xc = f ′
s .

2. If f : � → H is slice-regular, then:

(a) The four real components of f ′
s are harmonic on �.

(b) The following generalization of Fueter’s Theorem holds:

∂� f = �∂ f = −� f ′
s = 0.

(c) � f = −4 ∂ f ′
s

∂x .

In the following we will also use the following result from [20], which shows that
the Laplacian of a slice-regular function can be expressed by first order derivatives.

Lemma 1 ([20, Lem. 23]) If f ∈ SR(�), then for every x ∈ � we have

Im(x)� f = 2

(
f ′
s − ∂ f

∂x

)
= −2

(
∂ f + ∂ f

∂x

)
.

It is known that the Laplacian (also called Fueter mapping in this context) maps
the space SR(�) ontoAM(�) surjectively (see [4, 6] and references therein). If� is
connected, the inverse image in SR(�) of a function g ∈ AM(�) under � is unique
up to a quaternionic affine function xa + b (see [20, Lem. 23(a)]). Using Lemma 1,
we now give an elementary proof of the surjectivity of � under suitable topological
hypotheses.
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Theorem 2 Let � = �D be an axially symmetric open set in H. Assume that every
connected component of D is simply connected. Then the Laplacian

� : SR(�) → AM(�)

is surjective.

Proof Let g = I(G) = I(G1 + ıG2) ∈ AM(�). Let {e0, e1, e2, e3} be a real basis
of H. The decomposition G = ∑3

i=0 G
iei defines four stem functions Gi : D →

R ⊗ C � C. Let Gi = Gi
1 + ıGi

2, with Gi
1,G

i
2 real valued. Since g ∈ AM(�), in

view of Theorem 1 we have

I
(

∂G

∂z

)
= ∂g

∂xc
= g′

s = I(β−1G2),

i.e.,

∂G

∂z
= β−1G2.

Then

∂G

∂z
=

3∑
i=0

∂Gi

∂z
ei = β−1G2 =

3∑
i=0

(β−1Gi
2)ei ,

which implies

∂Gi

∂z
= β−1Gi

2 for each i = 0, . . . , 3.

Therefore g = ∑3
i=0 g

i ei , with every gi = I(Gi ) ∈ AM(�) and slice-preserving.
If we find f i ∈ SR(�) such that �( f i ) = gi , then �(

∑3
i=0 f i ei ) = g. We can then

assume that g ∈ AM(�) is slice-preserving, i.e., G1 and G2 are real valued.
Our aim is to find a slice-preserving f ∈ SR(�) such that

Im(x)g = 2

(
f ′
s − ∂ f

∂x

)
,

since then Lemma 1 gives � f = g. As above, the condition ∂g = 0 is equivalent to
∂G
∂z = β−1G2, i.e., if z = α + ıβ,

∂G1

∂α
− ∂G2

∂β
= 2β−1G2,

∂G1

∂β
+ ∂G2

∂α
= 0. (2)

Since any axially symmetric open set is a union of a family of slice domains or product
domains, we can assume that � is a domain of one of these types.

123



A Local Cauchy Integral Formula for Slice-Regular…

If� = �D is a slice domain, D is a simply connected subset ofC. From the second
equality in (2), we can find H ∈ C∞(D,R) such that

4
∂H

∂z
= 2

(
∂H

∂α
+ ı

∂H

∂β

)
= −G = −G1 + ıG2.

Let

F2(z) := β

2
(H(z) + H(z)) ∈ C∞(D,R).

Then F2 is odd w.r.t. β, and we have

4
∂

∂z

(
F2
β

)
= −G.

A direct computation shows that

�F2 = G2 − β

2

(
∂G1

∂α
− ∂G2

∂β

)
.

The first equality in (2) then implies that F2 is harmonic on D. Let F1 ∈ C∞(D,R)

be a harmonic conjugate of F2. Replacing F1 with (F1(z)+ F1(z))/2 if necessary, we
get that F1 is even w.r.t. β and that F := F1 + ı F2 is holomorphic on D, i.e., F is
a stem function on D, inducing a slice-regular f := I(F) on �. It remains to show
that

2

(
f ′
s − ∂ f

∂x

)
= Im(x)g,

or, equivalently, that

4

(
F2
β

− ∂F

∂z

)
= (z − z)G.

We have

−G = 4
∂

∂z

(
F2
β

)
= 4

β

∂F2
∂z

+ 2F2
ıβ2 ⇒ −G = 4

β

∂F2
∂z

− 2F2
ıβ2 .

Then

4

(
F2
β

− ∂F

∂z

)
= 4

F2
β

− 2ı

(
4
∂F2
∂z

)
= 4

F2
β

− 2ı

(
−βG + 2F2

ıβ

)
= 2ıβG.

If � = �D is a product domain, let D+ = D ∩ C
+ and D− = D ∩ C

−. Since
D+ is simply connected, there exist H ∈ C∞(D+,R) such that 4 ∂H

∂z = −G on D+.
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H can be extended to D setting H(z) = H(z) for z ∈ D−. Then as in the previous
case F2 := βH is harmonic on D, odd w.r.t. β. Let F1 ∈ C∞(D+,R) such that
F = F1 + ı F2 is holomorphic on D+. Setting F1(z) = F1(z) for z ∈ D−, F can be
extended to a holomorphic stem function on D satisfying as above

4

(
F2
β

− ∂F

∂z

)
= (z − z)G on D.

��
In view of Theorem 1(2c), a right inverse �̃ : AM(�) → SR(�) of � can be

defined on axially monogenic polynomials as in [20, Prop. 24]. For every n ∈ Z it
associates the slice-regular monomial− 1

4 x
n+2 to the rational functionPn , defined by

Pn(x) := − 1
4�(xn+2) = ∂

∂x
((xn+2)

′
s). (3)

The functionsPn are axially monogenic and then harmonic. They are slice-preserving
functions (not slice-regular for n �= 0) on H. They were computed already by Fueter
in [7] (see formula (12) on p. 316) and afterwords used by many authors. For n ≥ 0
the functions Pn are polynomials of degree n in x0, x1, x2, x3. For n < 0 they are
homogeneous functions on H \ {0}, still of degree n. The functions Pn and P−n

are related through the Kelvin transform of R4 ( [21, Prop. 6.7(c)]). In particular,
P−1 = P−2 ≡ 0, while P−3(x) = x/|x |4 is equal, up to a multiplicative constant, to
the Cauchy–Fueter kernel

E(x) = 1

2π2

x

|x |4

(see [7] and also [23], [19, Ch. 3] for more recent expositions).
For n ≥ 0, the polynomials Pn are related to the spherical derivatives Z̃n(x) :=

(xn+1)
′
s of quaternionic powers. These functions are harmonic homogeneous polyno-

mials of degree n in the four real variables x0, x1, x2, x3. The polynomials Z̃n are
called zonal harmonic polynomials with pole 1, since they have an axial symmetry
with respect to the real axis (see [1, Ch. 5] and [21, 22]).

We are now able to write a decomposition of quaternionic polynomials in terms of
a pair of axially monogenic polynomials.

Proposition 1 For every n ∈ N, we have

(n + 1)xn = Pn(x) − x Pn−1(x) (4)

for every x ∈ H.

Proof It was proved in [21, Cor. 6.7] that for every n ∈ N, the following holds

xn+1 = Z̃n+1(x) − x Z̃n(x) = Z̃n+1(x) − x · Z̃n(x) for all x ∈ H.
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Here the pointwise and slice products coincide since x is a slice-preserving function.
Taking slice derivatives and using the Leibniz property, we get

(n + 1)xn=∂Z̃n+1(x)

∂x
− x · ∂Z̃n(x)

∂x
=Pn(x) − x · Pn−1(x)=Pn(x) − x Pn−1(x).

��
Corollary 1 Let P ∈ H[X ] have degree d ≥ 1. There exist two axially monogenic
polynomials Q1, Q2, of degrees d and d − 1 respectively, such that

P(x) = Q1(x) − xQ2(x) for all x ∈ H.

Proof Let P(x) = ∑d
n=0 x

nan . The corollary follows immediately from Proposition
1 by setting

Q1(x) =
d∑

n=0

Pn(x)

n + 1
an and Q2(x) =

d∑
n=1

Pn−1(x)

n + 1
an .

��
Corollary 1 can be generalized to every slice-regular function. Before doing this,

we show one more general property of axially monogenic functions.

Lemma 2 Let � be as in Theorem 2. If both g and xg are axially monogenic on �,
then g is identically zero.

Proof Let D be the first order linear operator defined for any slice function h of class
C2(�) by

D(h) = ∂

(
x
∂h

∂x

)
. (5)

We claim that if f ∈ SR(�), then

D( f ′
s ) =

(
∂ f

∂x

)′

s
.

Indeed, we have

x
∂ f ′

s

∂x
= ∂(x f ′

s )

∂x
= ∂(x0 f ′

s − Im(x) f ′
s )

∂x
= ∂(x0 f ′

s + f ◦
s )

∂x
+ ∂(− f ◦

s − Im(x) f ′
s )

∂x

= ∂((x f )′s)
∂x

− ∂ f

∂x
= −1

4
�(x f ) − ∂ f

∂x
,
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where we used Theorem 1(2c). Then

D( f ′
s ) = −1

4
∂ (�(x f )) − ∂

(
∂ f

∂x

)
= −∂

(
∂ f

∂x

)
=

(
∂ f

∂x

)′

s

thanks to point (2b) of Theorem 1 applied to the slice-regular function x f and point
(1) of the same theorem applied to ∂ f

∂x .
If g ∈ AM(�), thanks to the surjectivity of � : SR(�) → AM(�) we can

assume that g = � f , with f ∈ SR(�). If also xg ∈ AM(�), then

0 = ∂(xg) = ∂(x� f ) = −4∂

(
x
∂ f ′

s

∂x

)
= −4D( f ′

s ) = −4

(
∂ f

∂x

)′

s
.

Therefore ∂ f
∂x is locally constant, f is (locally) an affine function f (x) = xa+b, with

a, b ∈ H and g = � f = 0. ��
Remark 1 LetD be the operator defined in (5). The claim given in the proof of Lemma
2 shows that

D(Z̃n+1) = (n + 2)Z̃n, i.e., ∂(xPn) = (n + 2)Z̃n

for every n ∈ N.

Now we extend Corollary 1 to every slice-regular function. Since every monogenic
function is harmonic, the result we obtain can be seen as a refinement of the Almansi
type decomposition proved in [22, Thm. 4]

Theorem 3 Let f be slice-regular on an axially symmetric open set �. Assume that
� = �D, and that every connected component of D is simply connected. Then there
exist two uniquely determined axially monogenic functions g1 and g2, such that

f (x) = g1(x) − xg2(x) ∀x ∈ �.

The functions g1 and g2 can be computed from a slice-regular primitive of f . If f = ∂g
∂x

on �, with g ∈ SR(�), then

g1 = −1

4
�(xg), g2 = −1

4
�g.

Moreover, f is slice-preserving if and only if g1 and g2 are slice-preserving.

Proof Since any axially symmetric open set is a union of a family of slice domains or
product domains, we can assume that � is a domain of one of these types. Assume
that there exists g ∈ SR(�) such that f = ∂g

∂x on �. Then, using Theorem 1(2c), the
Leibniz-type formula for spherical derivative (see [13, §5]) and (1) we get

−1

4
(�(xg) − x�g) = ∂((xg)′s)

∂x
− x

∂(g′
s)

∂x
= ∂

∂x

(
x0g

′
s + g◦

s

) − x
∂(g′

s)

∂x
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= ∂

∂x

(
x0g

′
s + g◦

s − xg′
s

) = ∂

∂x

(
g◦
s + Im(x)g′

s

) = ∂g

∂x
= f .

The functions g1 := − 1
4�(xg) and g2 = − 1

4�g are axially monogenic on � thanks
to Fueter’s Theorem 1(2b). To conclude the existence part of the proof it remains to
show that there exists a slice-regular primitive of f on �. Let {e0, e1, e2, e3} be a real
basis ofH. If f = I(F), the decomposition F = ∑3

i=0 F
iei defines four holomorphic

stem functions Fi : D → R ⊗ C � C.
If � = �D is a slice domain, by assumption D is a simply connected subset of C.

Let Gi : D → C be a holomorphic primitive of Fi , for i = 0, 1, 2, 3 and let G̃i be
defined on D by

G̃i (z) := 1

2
(Gi (z) + Gi (z)).

Then G̃i is a holomorphic stem function on D such that ∂G̃i

∂z = Fi . The slice function

g = I(
∑3

i=0 G̃
i ei ) is a slice-regular primitive of f .

If� = �D is a product domain, let D+ = D∩C
+. Since D+ is simply connected,

there exist holomorphic primitives Gi+ : D+ → C of Fi , for i = 0, 1, 2, 3. Define

Gi− on D− := D ∩C
− by Gi−(z) := Gi+(z). Then the function Gi defined as Gi+ on

D+ and as Gi− on D− is a holomorphic stem function on D such that ∂Gi

∂z = Fi . We

conclude by observing that the sum
∑3

i=0 G
iei induces a slice-regular primitive of f .

To prove uniqueness of g1, g2, we use the linearity of the mapping (g1, g2) �→ f
and Lemma 2. If f ≡ 0, then 0 ≡ g1 − xg2. This means that g2 and xg2 = g1 are
axially monogenic, and then g2 (and also g1) is identically zero.

The last statement is immediate from the uniqueness of g1 and g2. If f is slice-
preserving, then also g and then �g and �(xg) are slice-preserving. Conversely, if
g1, g2 are slice-preserving, then g1 − xg2 has the same property. ��
Corollary 2 Formula (4) holds also for negative integers n and x ∈ H \ {0}.
Proof If n = −1, both sides of formula (4) vanish. Let n ∈ Z, n ≤ −2. Since
(n + 1)−1xn+1 is a slice-regular primitive of xn on H\{0}, Theorem 3 gives the
monogenic decomposition

xn = −1

4
�((n + 1)−1xn+2) − x

(
−1

4
�((n + 1)−1xn+1)

)

Therefore

(n + 1)xn = −1

4
�(xn+2) − x

(
−1

4
�(xn+1)

)
= Pn(x) − xPn−1(x).

��
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Example 1 Let f (x) = exp(x) ∈ SR(H). Then

exp(x) = −1

4
�(x exp(x)) − x

(
−1

4
� exp(x)

)
,

with �(x exp(x)) and � exp(x) axially monogenic on H. The function

� exp(x) = −2ex0
(
sinc(β) − Ix (sinc(β))′

)
,

where

Ix = Im(x)

| Im(x)| , β = | Im(x)|,

coincides up to a multiplicative constant with the function EXP3(x) defined in [19,
Ex. 11.34] in the more general context of Clifford algebras.

The function Log(x) ∈ SR(H \ {x ∈ R | x ≤ 0} induced by the complex principal
logarithm (see e.g. [22, Ex. 5]) is a slice-regular primitive of x−1 onH\{x ∈ R | x ≤ 0}.
Then we can write

x−1 = −1

4
�(x Log(x)) + x

4
�(Log(x)),

with �(x Log(x)) and �(Log(x)) axially monogenic on H \ {x ∈ R | x ≤ 0}. The
function �(Log(x)) coincides up to a multiplicative constant with the ∂-primitive
L(x) of the Cauchy–Fueter kernel E(x) defined in [23, (5.7)]. Here ∂ is the conjugated
Cauchy–Riemann–Fueter operator.

The statement of Theorem 3 has a converse. In the following proposition we give a
differential condition on the pair (g1, g2) that ensures the slice-regularity of g1 − xg2.

Proposition 2 Let g1 and g2 be two axially monogenic functions on an axially sym-
metric set �. If f is defined as f (x) = g1(x) − xg2(x) for every x ∈ �, then f is
slice-regular on � if and only if

∂g1
∂xc

= g2 + x
∂g2
∂xc

. (6)

Proof Clearly f is a slice function on �. From Theorem 1(1), f is slice-regular if and
only if f ′

s = −∂ f . But f ′
s = (g1)′s − (xg2)′s , while

−∂ f = ∂(xg2) = ∂(xg2)

∂xc
− (xg2)

′
s = g2 + x

∂g2
∂xc

− (xg2)
′
s .

Since again from Theorem 1(1) we have

(g1)
′
s = ∂g1

∂xc
,

it follows that f is slice-regular if and only if (6) holds. ��
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4 A Local Cauchy-Type Integral Formula

Let � = �D be an axially symmetric open set. Assume that every connected com-
ponent of D is simply connected. Given f ∈ SR(�), we know from the proof of
Theorem 3 that it is possible to find a slice-regular primitive g ∈ SR(�). LetZH(�)

denote the right H-module of zonal harmonic functions with pole 1 on �, i.e., the
quaternionic harmonic functions h on �, such that h ◦ T = h for every orthogonal
transformation T of H � R

4 that fixes 1.
Let � be a slice domain. Using Theorem 1(2a), we can define a linear operator

S : SR(�) → ZH(�)

that maps f to the spherical derivative g′
s = −∂g of any slice-regular primitive g of

f . This map is well-defined since if

∂g

∂x
= ∂ g̃

∂x
,

with g, g̃ slice-regular, then g− g̃ is locally constant, and then g′
s− g̃′

s = ∂(g̃−g) = 0.
We have S(a) = a for any constant a ∈ H, S(xn) = (n + 1)−1Z̃n for every n ∈ N

and S f (x) = f (x) ∀x ∈ R ∩ �. If f is slice-preserving, then S f is real-valued.
Moreover, S is injective, since

ker(S) =
{
f ∈ SR(�) | f = ∂g

∂x
, g ∈ SR(�) ∩ AM(�)

}
= {0}.

If � is a product domain, we define S( f ) as the spherical derivative of any slice-
regular primitive of f . Let

E(x) = 1

2π2 x/|x |4 ∈ AM(H \ {0})

be the Cauchy–Fueter kernel and let Dy be the 3-form with quaternionic coefficients
defined as in [23, (2.28)]:

Dy = dy1 ∧ dy2 ∧ dy3 − idy0 ∧ dy2 ∧ dy3
+ jdy0 ∧ dy1 ∧ dy3 − kdy0 ∧ dy1 ∧ dy2,

where y = y0 + iy1 + j y2 + ky3 ∈ H with y0, y1, y2, y3 real. For every x ∈ H,
y ∈ H \ R, with x �= y, define the two quaternionic 3-forms

K1(x, y) := (
E(y − x)(Dy)y − xE(y − x)Dy

)
(y − y)−1,

K2(x, y) := (
xE(y − x)Dy − E(y − x)(Dy)y

)
(y − y)−1.

We are now in a position to prove a Cauchy-type integral formula for slice-regular
functions on�where the integration is performed on the boundary of a not necessarily
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axially symmetric open subset of �. As a consequence, we are able to prove a local
Cauchy-type integral formula for slice-regular functions.

Theorem 4 Let f be slice-regular on an axially symmetric open set �. Assume that
� = �D, and that every connected component of D is simply connected. Let U ⊂ H

be a bounded open set with rectifiable boundary and such that U ⊂ �. Then

f (x) =
∫

∂U

(
K1(x, y) f (y) + K2(x, y)S f (y)

)
(7)

for every x ∈ U.

Proof FromTheorem 3we get the decomposition f (x) = g1(x)−xg2(x)with axially
monogenic components

g1 = −1

4
�(xg), g2 = −1

4
�g,

where g ∈ SR(�) satisfies ∂g
∂x = f . From the Cauchy–Fueter integral formula for

monogenic, i.e., Fueter-regular, functions (see [7] for the original proof and also [23],
where the formula was proved in its full generality), we get

f (x) =
∫

∂U
E(y − x)(Dy)g1(y) − x

∫
∂U

E(y − x)(Dy)g2(y)

for every x ∈ U . Now we transform the two integrals using Lemma 1. We obtain

g1 = (2 Im(x))−1
(

−(xg)′s + ∂(xg)

∂x

)
= (2 Im(x))−1 (−xg′

s + x f
)
, (8)

where we used the equality

(xg)′s = g◦
s + x0g

′
s = (g◦

s + Im(x)g′
s) + xg′

s = g + xg′
s,

and

g2 = (2 Im(x))−1(−g′
s + f ). (9)

Using (8), (9) and g′
s = S{, we get

E(y − x)(Dy)g1(y) − xE(y − x)(Dy)g2(y)

=
(
E(y − x)(Dy)(2 Im(y))−1y − xE(y − x)(Dy)(2 Im(y))−1

)
f (y)

−
(
E(y − x)(Dy)(2 Im(y))−1y − xE(y − x)(Dy)(2 Im(y))−1

)
S f (y)

= K1(x, y) f (y) + K2(x, y)S f (y)

and the integral formula is proved. ��
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Remark 2 The 3-forms K1, K2 are real-analytic for (x, y) ∈ H× (H \R) with x �= y.
If the closure of U does not intersect the real axis, then the two integrals with kernels
K1 and K2 also converge separately and the integral formula (7) can be written as a
sum of two integrals

f (x) =
∫

∂U
K1(x, y) f (y) +

∫
∂U

K2(x, y)S f (y) for every x ∈ U .

The same also holds when the boundary ∂U is sufficiently smooth and the intersection
∂U ∩ R �= ∅ is transversal.

Corollary 3 (Local Cauchy-type integral formula) Let f be slice-regular on an axially
symmetric open set �. For any point x̃ ∈ �, there exists an axially symmetric open
neighbourhood W ⊆ � of x̃ such that for any bounded open set U with rectifiable
boundary and U ⊂ W, we have

f (x) =
∫

∂U

(
K1(x, y) f (y) + K2(x, y)S f (y)

)
(10)

for every x ∈ U.

Proof If B ⊆ � is an open ball centred at x̃ , we can take W as the symmetric com-
pletion B̃ = ∪x∈BSx of B, where Sx = α + Sβ for x = α + Jβ ∈ B. Then W = �E

with E ⊂ C having simply connected components (E is a complex disc, or a pair
of disjoint conjugate discs, or the union of two intersecting conjugate discs). Since
f ∈ SR(W ), the corollary follows from Theorem 4. ��
The proof of the preceding corollary shows that the operator S can be defined on

SR(�) for every axially symmetric slice domain � = �D , without further assump-
tions on D. For every pair of slice-regular primitives g ∈ SR(W ), g̃ ∈ SR(W̃ ) of f ,
we have g′

s = g̃′
s on the intersection W ∩ W̃ . This common value defines S f .

In the case of quaternionic polynomials, from the equality S(xn) = (n + 1)−1Z̃n

we obtain a more explicit form of the integral formula:

Corollary 4 Let f = ∑d
n=0 x

nan ∈ H[x] be a polynomial. Then, for any bounded
open set U ⊂ H with rectifiable boundary, we have

f (x) =
d∑

n=0

∫
∂U

(
K1(x, y)y

n + K2(x, y)
Z̃n(y)

n + 1

)
an

for every x ∈ U.

��
Example 2 Let f (x) = x and let B ⊆ H be an open ball. ThenS f (x) = 1

2 Z̃1(x) = x0.
For every x ∈ B we have

∫
∂B

(K1(x, y)y + K2(x, y)y0) =
∫
∂B

(K1(x, y) + K2(x, y))y0 + 1

2

∫
∂B

K1(x, y)(y − y)
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=
∫
∂B

E(y − x)(Dy)y0 + 1

2

∫
∂B

(E(y − x)(Dy)y − xE(y − x)Dy)

=
∫
∂B

E(y − x)(Dy)

(
y0 + 1

2
y

)
− x

2

∫
∂B

E(y − x)Dy =
(
x0 + 1

2
x

)
− x

2
= x,

since the function g1(x) = x0 + 1
2 x and any constant function are Fueter-regular.

Observe that if x is outside the closure of B the integral formula gives a zero value.

Remark 3 The integral formula (7) has an interpretation which is analogous to the
classical Cauchy formula in complex analysis. If F is a complex holomorphic function
on a neighbourhood W of D, and G is a holomorphic primitive of F on W , then
Cauchy’s integral formula can be written as

F(x) =
∫

∂D
dGy(C(x, y)dy) for every x ∈ D,

whereC(x, y) = (2π i)−1(y−x)−1 is the Cauchy kernel and the real differential dGy

of G at y acts on a complex 1-form ady as multiplication by G ′(y) = F(y).
If g is a slice-regular primitive of f on �, its real differential at y ∈ � ∩ CI is the

left CI -linear map given by

dgy = R ∂g
∂x (y) ◦ πI + Rg′

s (y) ◦ π⊥
I ,

where πI : H → H denotes the orthogonal projection onto the real vector subspace
CI , π⊥

I = idH − πI and Ra is the operator of right multiplication by a ∈ H (see
[8, §3] and [16, Cor. 3.2]). Let d̃gy : H2 → H be the left H-linear extension of dgy
defined by

d̃gy(v,w) := R ∂g
∂x (y)(v) + Rg′

s (y)(w).

Then we have dgy(v) = d̃gy(πI (v), π⊥
I (v)) for every v ∈ Ty� � H. Since ∂g

∂x (y) =
f (y) and g′

s(y) = S{(y), the integral formula (7) of Theorem 4 can then be written
as

f (x) =
∫

∂U
d̃gy(K1(x, y), K2(x, y)) for every x ∈ U ,

where the action of the operator d̃gy is extended linearly to quaternionic 3-forms by
making it act on the coefficients of the forms.

We now deduce a local Cauchy-type integral formula for the slice derivatives of
f ∈ SR(�). Since

∂n f

∂xn
= ∂n f

∂x0n
for every n ∈ N
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(see e.g. [11]), these formulas can be obtained by computing the derivatives of
the kernels K1, K2 w.r.t. x0. Let ∂0 denote the partial derivative w.r.t. x0. Define
K (n)
1 (x, y) := ∂n0 K1(x, y) and K (n)

2 (x, y) := ∂n0 K2(x, y).

Proposition 3 We have

∂n0 E(y − x) = n!
2π2P−n−3(y − x), (11)

and

K (n)
1 (x, y) = n!

2π2P−n−3(y − x)(Dy)y(y − y)−1

− n!
2π2 (P−n−2(y − x) + xP−n−3(y − x)) Dy(y − y)−1, (12)

K (n)
2 (x, y) = n!

2π2 (P−n−2(y − x) + xP−n−3(y − x)) Dy(y − y)−1

− n!
2π2P−n−3(y − x)(Dy)y(y − y)−1. (13)

for every n ∈ N. In particular,

K (n)
1 (x, y) + K (n)

2 (x, y) = n!
2π2P−n−3(y − x)Dy = ∂n0 E(y − x)Dy.

Proof Since E is axially monogenic, we have

∂0E = (∂ + ∂)E = ∂E = 1

2π2 ∂P−3.

Since ∂Pn = (n + 2)Pn−1 for every n ∈ Z (see [20, Rem. 27]), we get

∂0E = − 1

2π2P−4

and then, inductively,

∂n0 E(x) = (−1)n
n!
2π2P−n−3(x) for every n ∈ N.

Formula (11) follows immediately. In order to obtain (12) and (13), we must also
compute ∂n0 (xE(y − x)). From

∂0(xE(y − x)) = E(y − x) + x ∂0E(y − x)

we get inductively

∂n0 (xE(y − x)) = n∂n−1
0 E(y − x) + x∂n0 E(y − x).
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Using (11) we obtain

∂n0 (xE(y − x)) = n!
2π2 (P−n−2(y − x) + x P−n−3(y − x)) .

From this equality and (11), we get (12) and (13). ��
Corollary 5 (Local Cauchy-type formula for slice derivatives) Let f ∈ SR(�). For
any point x̃ ∈ �, there exists an axially symmetric open neighbourhood W ⊆ � of x̃
such that for any bounded open set U with rectifiable boundary and U ⊂ W, we have

∂n f

∂xn
(x) =

∫
∂U

(
K (n)
1 (x, y) f (y) + K (n)

2 (x, y)S f (y)
)

(14)

for every x ∈ U, n ∈ N. ��
Example 3 Let f and B ⊆ H be as in Example 2. For every x ∈ B we have

∫
∂B

(
K (1)
1 (x, y)y + K (1)

2 (x, y)y0
)

=
∫
∂B

(K (1)
1 (x, y) + K (1)

2 (x, y))y0 + 1

2

∫
∂B

K (1)
1 (x, y)(y − y)

=
∫
∂B

∂0E(y − x)(Dy)y0 + 1

2

∫
∂B

(∂0E(y − x)(Dy)y − E(y − x)Dy)

− 1

2

∫
∂B

x∂0E(y − x)Dy

=
∫
∂B

∂0E(y − x)(Dy)(y0 + 1

2
y) − 1

2

∫
∂B

E(y − x)Dy − x

2

∫
∂B

∂0E(y − x)Dy

= 3

2
− 1

2
= 1 = ∂ f

∂x
,

since the function x0 + 1
2 x is Fueter-regular with derivative 3/2 w.r.t. x0.

Remark 4 One could deduce Cauchy-type estimates for the slice derivatives of a slice-
regular function from formula (14). However, we observe that they were already
obtained more easily by means of the two-dimensional Cauchy formula (see [9,
Prop. 6.8])
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